1 /*
   2  * Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "runtime/advancedThresholdPolicy.hpp"
  27 #include "runtime/simpleThresholdPolicy.inline.hpp"
  28 
  29 #ifdef TIERED
  30 // Print an event.
  31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  32                                              int bci, CompLevel level) {
  33   tty->print(" rate: ");
  34   if (mh->prev_time() == 0) tty->print("n/a");
  35   else tty->print("%f", mh->rate());
  36 
  37   tty->print(" k: %.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  38                                 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  39 
  40 }
  41 
  42 void AdvancedThresholdPolicy::initialize() {
  43   // Turn on ergonomic compiler count selection
  44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  46   }
  47   int count = CICompilerCount;
  48   if (CICompilerCountPerCPU) {
  49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  50     int log_cpu = log2_intptr(os::active_processor_count());
  51     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  53   }
  54 
  55   set_c1_count(MAX2(count / 3, 1));
  56   set_c2_count(MAX2(count - count / 3, 1));
  57 
  58   // Some inlining tuning
  59 #ifdef X86
  60   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  61     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  62   }
  63 #endif
  64 
  65 #ifdef SPARC
  66   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  67     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  68   }
  69 #endif
  70 
  71 
  72   set_start_time(os::javaTimeMillis());
  73 }
  74 
  75 // update_rate() is called from select_task() while holding a compile queue lock.
  76 void AdvancedThresholdPolicy::update_rate(jlong t, methodOop m) {
  77   if (is_old(m)) {
  78     // We don't remove old methods from the queue,
  79     // so we can just zero the rate.
  80     m->set_rate(0);
  81     return;
  82   }
  83 
  84   // We don't update the rate if we've just came out of a safepoint.
  85   // delta_s is the time since last safepoint in milliseconds.
  86   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  87   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  88   // How many events were there since the last time?
  89   int event_count = m->invocation_count() + m->backedge_count();
  90   int delta_e = event_count - m->prev_event_count();
  91 
  92   // We should be running for at least 1ms.
  93   if (delta_s >= TieredRateUpdateMinTime) {
  94     // And we must've taken the previous point at least 1ms before.
  95     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
  96       m->set_prev_time(t);
  97       m->set_prev_event_count(event_count);
  98       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
  99     } else
 100       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 101         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 102         m->set_rate(0);
 103       }
 104   }
 105 }
 106 
 107 // Check if this method has been stale from a given number of milliseconds.
 108 // See select_task().
 109 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, methodOop m) {
 110   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 111   jlong delta_t = t - m->prev_time();
 112   if (delta_t > timeout && delta_s > timeout) {
 113     int event_count = m->invocation_count() + m->backedge_count();
 114     int delta_e = event_count - m->prev_event_count();
 115     // Return true if there were no events.
 116     return delta_e == 0;
 117   }
 118   return false;
 119 }
 120 
 121 // We don't remove old methods from the compile queue even if they have
 122 // very low activity. See select_task().
 123 bool AdvancedThresholdPolicy::is_old(methodOop method) {
 124   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 125 }
 126 
 127 double AdvancedThresholdPolicy::weight(methodOop method) {
 128   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
 129 }
 130 
 131 // Apply heuristics and return true if x should be compiled before y
 132 bool AdvancedThresholdPolicy::compare_methods(methodOop x, methodOop y) {
 133   if (x->highest_comp_level() > y->highest_comp_level()) {
 134     // recompilation after deopt
 135     return true;
 136   } else
 137     if (x->highest_comp_level() == y->highest_comp_level()) {
 138       if (weight(x) > weight(y)) {
 139         return true;
 140       }
 141     }
 142   return false;
 143 }
 144 
 145 // Is method profiled enough?
 146 bool AdvancedThresholdPolicy::is_method_profiled(methodOop method) {
 147   methodDataOop mdo = method->method_data();
 148   if (mdo != NULL) {
 149     int i = mdo->invocation_count_delta();
 150     int b = mdo->backedge_count_delta();
 151     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
 152   }
 153   return false;
 154 }
 155 
 156 // Called with the queue locked and with at least one element
 157 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 158   CompileTask *max_task = NULL;
 159   methodOop max_method;
 160   jlong t = os::javaTimeMillis();
 161   // Iterate through the queue and find a method with a maximum rate.
 162   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 163     CompileTask* next_task = task->next();
 164     methodOop method = (methodOop)JNIHandles::resolve(task->method_handle());
 165     methodDataOop mdo = method->method_data();
 166     update_rate(t, method);
 167     if (max_task == NULL) {
 168       max_task = task;
 169       max_method = method;
 170     } else {
 171       // If a method has been stale for some time, remove it from the queue.
 172       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 173         if (PrintTieredEvents) {
 174           print_event(KILL, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 175         }
 176         CompileTaskWrapper ctw(task); // Frees the task
 177         compile_queue->remove(task);
 178         method->clear_queued_for_compilation();
 179         task = next_task;
 180         continue;
 181       }
 182 
 183       // Select a method with a higher rate
 184       if (compare_methods(method, max_method)) {
 185         max_task = task;
 186         max_method = method;
 187       }
 188     }
 189     task = next_task;
 190   }
 191 
 192   if (max_task->comp_level() == CompLevel_full_profile && is_method_profiled(max_method)) {
 193     max_task->set_comp_level(CompLevel_limited_profile);
 194     if (PrintTieredEvents) {
 195       print_event(UPDATE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 196     }
 197   }
 198 
 199   return max_task;
 200 }
 201 
 202 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 203   double queue_size = CompileBroker::queue_size(level);
 204   int comp_count = compiler_count(level);
 205   double k = queue_size / (feedback_k * comp_count) + 1;
 206   return k;
 207 }
 208 
 209 // Call and loop predicates determine whether a transition to a higher
 210 // compilation level should be performed (pointers to predicate functions
 211 // are passed to common()).
 212 // Tier?LoadFeedback is basically a coefficient that determines of
 213 // how many methods per compiler thread can be in the queue before
 214 // the threshold values double.
 215 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
 216   switch(cur_level) {
 217   case CompLevel_none:
 218   case CompLevel_limited_profile: {
 219     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 220     return loop_predicate_helper<CompLevel_none>(i, b, k);
 221   }
 222   case CompLevel_full_profile: {
 223     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 224     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
 225   }
 226   default:
 227     return true;
 228   }
 229 }
 230 
 231 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
 232   switch(cur_level) {
 233   case CompLevel_none:
 234   case CompLevel_limited_profile: {
 235     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 236     return call_predicate_helper<CompLevel_none>(i, b, k);
 237   }
 238   case CompLevel_full_profile: {
 239     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 240     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
 241   }
 242   default:
 243     return true;
 244   }
 245 }
 246 
 247 // If a method is old enough and is still in the interpreter we would want to
 248 // start profiling without waiting for the compiled method to arrive.
 249 // We also take the load on compilers into the account.
 250 bool AdvancedThresholdPolicy::should_create_mdo(methodOop method, CompLevel cur_level) {
 251   if (cur_level == CompLevel_none &&
 252       CompileBroker::queue_size(CompLevel_full_optimization) <=
 253       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 254     int i = method->invocation_count();
 255     int b = method->backedge_count();
 256     double k = Tier0ProfilingStartPercentage / 100.0;
 257     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
 258   }
 259   return false;
 260 }
 261 
 262 // Create MDO if necessary.
 263 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, TRAPS) {
 264   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
 265   if (mh->method_data() == NULL) {
 266     methodOopDesc::build_interpreter_method_data(mh, THREAD);
 267     if (HAS_PENDING_EXCEPTION) {
 268       CLEAR_PENDING_EXCEPTION;
 269     }
 270   }
 271 }
 272 
 273 
 274 /*
 275  * Method states:
 276  *   0 - interpreter (CompLevel_none)
 277  *   1 - pure C1 (CompLevel_simple)
 278  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 279  *   3 - C1 with full profiling (CompLevel_full_profile)
 280  *   4 - C2 (CompLevel_full_optimization)
 281  *
 282  * Common state transition patterns:
 283  * a. 0 -> 3 -> 4.
 284  *    The most common path. But note that even in this straightforward case
 285  *    profiling can start at level 0 and finish at level 3.
 286  *
 287  * b. 0 -> 2 -> 3 -> 4.
 288  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
 289  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 290  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 291  *
 292  * c. 0 -> (3->2) -> 4.
 293  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 294  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 295  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
 296  *    is compiling.
 297  *
 298  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 299  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 300  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 301  *
 302  * e. 0 -> 4.
 303  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 304  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 305  *    the compiled version already exists).
 306  *
 307  * Note that since state 0 can be reached from any other state via deoptimization different loops
 308  * are possible.
 309  *
 310  */
 311 
 312 // Common transition function. Given a predicate determines if a method should transition to another level.
 313 CompLevel AdvancedThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level) {
 314   if (is_trivial(method)) return CompLevel_simple;
 315 
 316   CompLevel next_level = cur_level;
 317   int i = method->invocation_count();
 318   int b = method->backedge_count();
 319 
 320   switch(cur_level) {
 321   case CompLevel_none:
 322     // If we were at full profile level, would we switch to full opt?
 323     if (common(p, method, CompLevel_full_profile) == CompLevel_full_optimization) {
 324       next_level = CompLevel_full_optimization;
 325     } else if ((this->*p)(i, b, cur_level)) {
 326       // C1-generated fully profiled code is about 30% slower than the limited profile
 327       // code that has only invocation and backedge counters. The observation is that
 328       // if C2 queue is large enough we can spend too much time in the fully profiled code
 329       // while waiting for C2 to pick the method from the queue. To alleviate this problem
 330       // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 331       // we choose to compile a limited profiled version and then recompile with full profiling
 332       // when the load on C2 goes down.
 333       if (CompileBroker::queue_size(CompLevel_full_optimization) >
 334           Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 335         next_level = CompLevel_limited_profile;
 336       } else {
 337         next_level = CompLevel_full_profile;
 338       }
 339     }
 340     break;
 341   case CompLevel_limited_profile:
 342     if (is_method_profiled(method)) {
 343       // Special case: we got here because this method was fully profiled in the interpreter.
 344       next_level = CompLevel_full_optimization;
 345     } else {
 346       methodDataOop mdo = method->method_data();
 347       if (mdo != NULL) {
 348         if (mdo->would_profile()) {
 349           if (CompileBroker::queue_size(CompLevel_full_optimization) <=
 350               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 351               (this->*p)(i, b, cur_level)) {
 352             next_level = CompLevel_full_profile;
 353           }
 354         } else {
 355           next_level = CompLevel_full_optimization;
 356         }
 357       }
 358     }
 359     break;
 360   case CompLevel_full_profile:
 361     {
 362       methodDataOop mdo = method->method_data();
 363       if (mdo != NULL) {
 364         if (mdo->would_profile()) {
 365           int mdo_i = mdo->invocation_count_delta();
 366           int mdo_b = mdo->backedge_count_delta();
 367           if ((this->*p)(mdo_i, mdo_b, cur_level)) {
 368             next_level = CompLevel_full_optimization;
 369           }
 370         } else {
 371           next_level = CompLevel_full_optimization;
 372         }
 373       }
 374     }
 375     break;
 376   }
 377   return next_level;
 378 }
 379 
 380 // Determine if a method should be compiled with a normal entry point at a different level.
 381 CompLevel AdvancedThresholdPolicy::call_event(methodOop method,  CompLevel cur_level) {
 382   CompLevel osr_level = (CompLevel) method->highest_osr_comp_level();
 383   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 384 
 385   // If OSR method level is greater than the regular method level, the levels should be
 386   // equalized by raising the regular method level in order to avoid OSRs during each
 387   // invocation of the method.
 388   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 389     methodDataOop mdo = method->method_data();
 390     guarantee(mdo != NULL, "MDO should not be NULL");
 391     if (mdo->invocation_count() >= 1) {
 392       next_level = CompLevel_full_optimization;
 393     }
 394   } else {
 395     next_level = MAX2(osr_level, next_level);
 396   }
 397 
 398   return next_level;
 399 }
 400 
 401 // Determine if we should do an OSR compilation of a given method.
 402 CompLevel AdvancedThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
 403   if (cur_level == CompLevel_none) {
 404     // If there is a live OSR method that means that we deopted to the interpreter
 405     // for the transition.
 406     CompLevel osr_level = (CompLevel)method->highest_osr_comp_level();
 407     if (osr_level > CompLevel_none) {
 408       return osr_level;
 409     }
 410   }
 411   return common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level);
 412 }
 413 
 414 // Update the rate and submit compile
 415 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
 416   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 417   update_rate(os::javaTimeMillis(), mh());
 418   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
 419 }
 420 
 421 
 422 // Handle the invocation event.
 423 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
 424                                                       CompLevel level, TRAPS) {
 425   if (should_create_mdo(mh(), level)) {
 426     create_mdo(mh, THREAD);
 427   }
 428   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
 429     CompLevel next_level = call_event(mh(), level);
 430     if (next_level != level) {
 431       compile(mh, InvocationEntryBci, next_level, THREAD);
 432     }
 433   }
 434 }
 435 
 436 // Handle the back branch event. Notice that we can compile the method
 437 // with a regular entry from here.
 438 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
 439                                                        int bci, CompLevel level, TRAPS) {
 440   if (should_create_mdo(mh(), level)) {
 441     create_mdo(mh, THREAD);
 442   }
 443 
 444   // If the method is already compiling, quickly bail out.
 445   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, bci)) {
 446     // Use loop event as an opportinity to also check there's been
 447     // enough calls.
 448     CompLevel cur_level = comp_level(mh());
 449     CompLevel next_level = call_event(mh(), cur_level);
 450     CompLevel next_osr_level = loop_event(mh(), level);
 451     if (next_osr_level  == CompLevel_limited_profile) {
 452       next_osr_level = CompLevel_full_profile; // OSRs are supposed to be for very hot methods.
 453     }
 454     next_level = MAX2(next_level,
 455                       next_osr_level < CompLevel_full_optimization ? next_osr_level : cur_level);
 456     bool is_compiling = false;
 457     if (next_level != cur_level) {
 458       compile(mh, InvocationEntryBci, next_level, THREAD);
 459       is_compiling = true;
 460     }
 461 
 462     // Do the OSR version
 463     if (!is_compiling && next_osr_level != level) {
 464       compile(mh, bci, next_osr_level, THREAD);
 465     }
 466   }
 467 }
 468 
 469 #endif // TIERED