1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_x86.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 // Item will be loaded into a byte register; Intel only
  47 void LIRItem::load_byte_item() {
  48   load_item();
  49   LIR_Opr res = result();
  50 
  51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
  52     // make sure that it is a byte register
  53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
  54            "can't load floats in byte register");
  55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
  56     __ move(res, reg);
  57 
  58     _result = reg;
  59   }
  60 }
  61 
  62 
  63 void LIRItem::load_nonconstant() {
  64   LIR_Opr r = value()->operand();
  65   if (r->is_constant()) {
  66     _result = r;
  67   } else {
  68     load_item();
  69   }
  70 }
  71 
  72 //--------------------------------------------------------------
  73 //               LIRGenerator
  74 //--------------------------------------------------------------
  75 
  76 
  77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
  78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
  79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
  80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
  81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
  82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
  83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
  84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  85 
  86 
  87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  88   LIR_Opr opr;
  89   switch (type->tag()) {
  90     case intTag:     opr = FrameMap::rax_opr;          break;
  91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
  92     case longTag:    opr = FrameMap::long0_opr;        break;
  93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
  94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
  95 
  96     case addressTag:
  97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  98   }
  99 
 100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 101   return opr;
 102 }
 103 
 104 
 105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 106   LIR_Opr reg = new_register(T_INT);
 107   set_vreg_flag(reg, LIRGenerator::byte_reg);
 108   return reg;
 109 }
 110 
 111 
 112 //--------- loading items into registers --------------------------------
 113 
 114 
 115 // i486 instructions can inline constants
 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 117   if (type == T_SHORT || type == T_CHAR) {
 118     // there is no immediate move of word values in asembler_i486.?pp
 119     return false;
 120   }
 121   Constant* c = v->as_Constant();
 122   if (c && c->state_before() == NULL) {
 123     // constants of any type can be stored directly, except for
 124     // unloaded object constants.
 125     return true;
 126   }
 127   return false;
 128 }
 129 
 130 
 131 bool LIRGenerator::can_inline_as_constant(Value v) const {
 132   if (v->type()->tag() == longTag) return false;
 133   return v->type()->tag() != objectTag ||
 134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
 135 }
 136 
 137 
 138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 139   if (c->type() == T_LONG) return false;
 140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
 141 }
 142 
 143 
 144 LIR_Opr LIRGenerator::safepoint_poll_register() {
 145   return LIR_OprFact::illegalOpr;
 146 }
 147 
 148 
 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 150                                             int shift, int disp, BasicType type) {
 151   assert(base->is_register(), "must be");
 152   if (index->is_constant()) {
 153     return new LIR_Address(base,
 154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
 155                            type);
 156   } else {
 157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
 158   }
 159 }
 160 
 161 
 162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 163                                               BasicType type, bool needs_card_mark) {
 164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 165 
 166   LIR_Address* addr;
 167   if (index_opr->is_constant()) {
 168     int elem_size = type2aelembytes(type);
 169     addr = new LIR_Address(array_opr,
 170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
 171   } else {
 172 #ifdef _LP64
 173     if (index_opr->type() == T_INT) {
 174       LIR_Opr tmp = new_register(T_LONG);
 175       __ convert(Bytecodes::_i2l, index_opr, tmp);
 176       index_opr = tmp;
 177     }
 178 #endif // _LP64
 179     addr =  new LIR_Address(array_opr,
 180                             index_opr,
 181                             LIR_Address::scale(type),
 182                             offset_in_bytes, type);
 183   }
 184   if (needs_card_mark) {
 185     // This store will need a precise card mark, so go ahead and
 186     // compute the full adddres instead of computing once for the
 187     // store and again for the card mark.
 188     LIR_Opr tmp = new_pointer_register();
 189     __ leal(LIR_OprFact::address(addr), tmp);
 190     return new LIR_Address(tmp, type);
 191   } else {
 192     return addr;
 193   }
 194 }
 195 
 196 
 197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 198   LIR_Opr r;
 199   if (type == T_LONG) {
 200     r = LIR_OprFact::longConst(x);
 201   } else if (type == T_INT) {
 202     r = LIR_OprFact::intConst(x);
 203   } else {
 204     ShouldNotReachHere();
 205   }
 206   return r;
 207 }
 208 
 209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 210   LIR_Opr pointer = new_pointer_register();
 211   __ move(LIR_OprFact::intptrConst(counter), pointer);
 212   LIR_Address* addr = new LIR_Address(pointer, type);
 213   increment_counter(addr, step);
 214 }
 215 
 216 
 217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
 219 }
 220 
 221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 222   __ cmp_mem_int(condition, base, disp, c, info);
 223 }
 224 
 225 
 226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 228 }
 229 
 230 
 231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 233 }
 234 
 235 
 236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 237   if (tmp->is_valid()) {
 238     if (is_power_of_2(c + 1)) {
 239       __ move(left, tmp);
 240       __ shift_left(left, log2_intptr(c + 1), left);
 241       __ sub(left, tmp, result);
 242       return true;
 243     } else if (is_power_of_2(c - 1)) {
 244       __ move(left, tmp);
 245       __ shift_left(left, log2_intptr(c - 1), left);
 246       __ add(left, tmp, result);
 247       return true;
 248     }
 249   }
 250   return false;
 251 }
 252 
 253 
 254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 255   BasicType type = item->type();
 256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
 257 }
 258 
 259 //----------------------------------------------------------------------
 260 //             visitor functions
 261 //----------------------------------------------------------------------
 262 
 263 
 264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 265   assert(x->is_pinned(),"");
 266   bool needs_range_check = true;
 267   bool use_length = x->length() != NULL;
 268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 270                                          !get_jobject_constant(x->value())->is_null_object());
 271 
 272   LIRItem array(x->array(), this);
 273   LIRItem index(x->index(), this);
 274   LIRItem value(x->value(), this);
 275   LIRItem length(this);
 276 
 277   array.load_item();
 278   index.load_nonconstant();
 279 
 280   if (use_length) {
 281     needs_range_check = x->compute_needs_range_check();
 282     if (needs_range_check) {
 283       length.set_instruction(x->length());
 284       length.load_item();
 285     }
 286   }
 287   if (needs_store_check) {
 288     value.load_item();
 289   } else {
 290     value.load_for_store(x->elt_type());
 291   }
 292 
 293   set_no_result(x);
 294 
 295   // the CodeEmitInfo must be duplicated for each different
 296   // LIR-instruction because spilling can occur anywhere between two
 297   // instructions and so the debug information must be different
 298   CodeEmitInfo* range_check_info = state_for(x);
 299   CodeEmitInfo* null_check_info = NULL;
 300   if (x->needs_null_check()) {
 301     null_check_info = new CodeEmitInfo(range_check_info);
 302   }
 303 
 304   // emit array address setup early so it schedules better
 305   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 306 
 307   if (GenerateRangeChecks && needs_range_check) {
 308     if (use_length) {
 309       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 310       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 311     } else {
 312       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 313       // range_check also does the null check
 314       null_check_info = NULL;
 315     }
 316   }
 317 
 318   if (GenerateArrayStoreCheck && needs_store_check) {
 319     LIR_Opr tmp1 = new_register(objectType);
 320     LIR_Opr tmp2 = new_register(objectType);
 321     LIR_Opr tmp3 = new_register(objectType);
 322 
 323     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 324     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
 325   }
 326 
 327   if (obj_store) {
 328     // Needs GC write barriers.
 329     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 330                 true /* do_load */, false /* patch */, NULL);
 331     __ move(value.result(), array_addr, null_check_info);
 332     // Seems to be a precise
 333     post_barrier(LIR_OprFact::address(array_addr), value.result());
 334   } else {
 335     __ move(value.result(), array_addr, null_check_info);
 336   }
 337 }
 338 
 339 
 340 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 341   assert(x->is_pinned(),"");
 342   LIRItem obj(x->obj(), this);
 343   obj.load_item();
 344 
 345   set_no_result(x);
 346 
 347   // "lock" stores the address of the monitor stack slot, so this is not an oop
 348   LIR_Opr lock = new_register(T_INT);
 349   // Need a scratch register for biased locking on x86
 350   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 351   if (UseBiasedLocking) {
 352     scratch = new_register(T_INT);
 353   }
 354 
 355   CodeEmitInfo* info_for_exception = NULL;
 356   if (x->needs_null_check()) {
 357     info_for_exception = state_for(x);
 358   }
 359   // this CodeEmitInfo must not have the xhandlers because here the
 360   // object is already locked (xhandlers expect object to be unlocked)
 361   CodeEmitInfo* info = state_for(x, x->state(), true);
 362   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 363                         x->monitor_no(), info_for_exception, info);
 364 }
 365 
 366 
 367 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 368   assert(x->is_pinned(),"");
 369 
 370   LIRItem obj(x->obj(), this);
 371   obj.dont_load_item();
 372 
 373   LIR_Opr lock = new_register(T_INT);
 374   LIR_Opr obj_temp = new_register(T_INT);
 375   set_no_result(x);
 376   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 377 }
 378 
 379 
 380 // _ineg, _lneg, _fneg, _dneg
 381 void LIRGenerator::do_NegateOp(NegateOp* x) {
 382   LIRItem value(x->x(), this);
 383   value.set_destroys_register();
 384   value.load_item();
 385   LIR_Opr reg = rlock(x);
 386   __ negate(value.result(), reg);
 387 
 388   set_result(x, round_item(reg));
 389 }
 390 
 391 
 392 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 393 //      _dadd, _dmul, _dsub, _ddiv, _drem
 394 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 395   LIRItem left(x->x(),  this);
 396   LIRItem right(x->y(), this);
 397   LIRItem* left_arg  = &left;
 398   LIRItem* right_arg = &right;
 399   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
 400   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
 401   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
 402     left.load_item();
 403   } else {
 404     left.dont_load_item();
 405   }
 406 
 407   // do not load right operand if it is a constant.  only 0 and 1 are
 408   // loaded because there are special instructions for loading them
 409   // without memory access (not needed for SSE2 instructions)
 410   bool must_load_right = false;
 411   if (right.is_constant()) {
 412     LIR_Const* c = right.result()->as_constant_ptr();
 413     assert(c != NULL, "invalid constant");
 414     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
 415 
 416     if (c->type() == T_FLOAT) {
 417       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
 418     } else {
 419       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
 420     }
 421   }
 422 
 423   if (must_load_both) {
 424     // frem and drem destroy also right operand, so move it to a new register
 425     right.set_destroys_register();
 426     right.load_item();
 427   } else if (right.is_register() || must_load_right) {
 428     right.load_item();
 429   } else {
 430     right.dont_load_item();
 431   }
 432   LIR_Opr reg = rlock(x);
 433   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 434   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 435     tmp = new_register(T_DOUBLE);
 436   }
 437 
 438   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
 439     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
 440     LIR_Opr fpu0, fpu1;
 441     if (x->op() == Bytecodes::_frem) {
 442       fpu0 = LIR_OprFact::single_fpu(0);
 443       fpu1 = LIR_OprFact::single_fpu(1);
 444     } else {
 445       fpu0 = LIR_OprFact::double_fpu(0);
 446       fpu1 = LIR_OprFact::double_fpu(1);
 447     }
 448     __ move(right.result(), fpu1); // order of left and right operand is important!
 449     __ move(left.result(), fpu0);
 450     __ rem (fpu0, fpu1, fpu0);
 451     __ move(fpu0, reg);
 452 
 453   } else {
 454     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
 455   }
 456 
 457   set_result(x, round_item(reg));
 458 }
 459 
 460 
 461 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 462 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 463   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
 464     // long division is implemented as a direct call into the runtime
 465     LIRItem left(x->x(), this);
 466     LIRItem right(x->y(), this);
 467 
 468     // the check for division by zero destroys the right operand
 469     right.set_destroys_register();
 470 
 471     BasicTypeList signature(2);
 472     signature.append(T_LONG);
 473     signature.append(T_LONG);
 474     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 475 
 476     // check for division by zero (destroys registers of right operand!)
 477     CodeEmitInfo* info = state_for(x);
 478 
 479     const LIR_Opr result_reg = result_register_for(x->type());
 480     left.load_item_force(cc->at(1));
 481     right.load_item();
 482 
 483     __ move(right.result(), cc->at(0));
 484 
 485     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 486     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 487 
 488     address entry;
 489     switch (x->op()) {
 490     case Bytecodes::_lrem:
 491       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 492       break; // check if dividend is 0 is done elsewhere
 493     case Bytecodes::_ldiv:
 494       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 495       break; // check if dividend is 0 is done elsewhere
 496     case Bytecodes::_lmul:
 497       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 498       break;
 499     default:
 500       ShouldNotReachHere();
 501     }
 502 
 503     LIR_Opr result = rlock_result(x);
 504     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 505     __ move(result_reg, result);
 506   } else if (x->op() == Bytecodes::_lmul) {
 507     // missing test if instr is commutative and if we should swap
 508     LIRItem left(x->x(), this);
 509     LIRItem right(x->y(), this);
 510 
 511     // right register is destroyed by the long mul, so it must be
 512     // copied to a new register.
 513     right.set_destroys_register();
 514 
 515     left.load_item();
 516     right.load_item();
 517 
 518     LIR_Opr reg = FrameMap::long0_opr;
 519     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
 520     LIR_Opr result = rlock_result(x);
 521     __ move(reg, result);
 522   } else {
 523     // missing test if instr is commutative and if we should swap
 524     LIRItem left(x->x(), this);
 525     LIRItem right(x->y(), this);
 526 
 527     left.load_item();
 528     // don't load constants to save register
 529     right.load_nonconstant();
 530     rlock_result(x);
 531     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 532   }
 533 }
 534 
 535 
 536 
 537 // for: _iadd, _imul, _isub, _idiv, _irem
 538 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 539   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 540     // The requirements for division and modulo
 541     // input : rax,: dividend                         min_int
 542     //         reg: divisor   (may not be rax,/rdx)   -1
 543     //
 544     // output: rax,: quotient  (= rax, idiv reg)       min_int
 545     //         rdx: remainder (= rax, irem reg)       0
 546 
 547     // rax, and rdx will be destroyed
 548 
 549     // Note: does this invalidate the spec ???
 550     LIRItem right(x->y(), this);
 551     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
 552 
 553     // call state_for before load_item_force because state_for may
 554     // force the evaluation of other instructions that are needed for
 555     // correct debug info.  Otherwise the live range of the fix
 556     // register might be too long.
 557     CodeEmitInfo* info = state_for(x);
 558 
 559     left.load_item_force(divInOpr());
 560 
 561     right.load_item();
 562 
 563     LIR_Opr result = rlock_result(x);
 564     LIR_Opr result_reg;
 565     if (x->op() == Bytecodes::_idiv) {
 566       result_reg = divOutOpr();
 567     } else {
 568       result_reg = remOutOpr();
 569     }
 570 
 571     if (!ImplicitDiv0Checks) {
 572       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
 573       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 574     }
 575     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
 576     if (x->op() == Bytecodes::_irem) {
 577       __ irem(left.result(), right.result(), result_reg, tmp, info);
 578     } else if (x->op() == Bytecodes::_idiv) {
 579       __ idiv(left.result(), right.result(), result_reg, tmp, info);
 580     } else {
 581       ShouldNotReachHere();
 582     }
 583 
 584     __ move(result_reg, result);
 585   } else {
 586     // missing test if instr is commutative and if we should swap
 587     LIRItem left(x->x(),  this);
 588     LIRItem right(x->y(), this);
 589     LIRItem* left_arg = &left;
 590     LIRItem* right_arg = &right;
 591     if (x->is_commutative() && left.is_stack() && right.is_register()) {
 592       // swap them if left is real stack (or cached) and right is real register(not cached)
 593       left_arg = &right;
 594       right_arg = &left;
 595     }
 596 
 597     left_arg->load_item();
 598 
 599     // do not need to load right, as we can handle stack and constants
 600     if (x->op() == Bytecodes::_imul ) {
 601       // check if we can use shift instead
 602       bool use_constant = false;
 603       bool use_tmp = false;
 604       if (right_arg->is_constant()) {
 605         int iconst = right_arg->get_jint_constant();
 606         if (iconst > 0) {
 607           if (is_power_of_2(iconst)) {
 608             use_constant = true;
 609           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
 610             use_constant = true;
 611             use_tmp = true;
 612           }
 613         }
 614       }
 615       if (use_constant) {
 616         right_arg->dont_load_item();
 617       } else {
 618         right_arg->load_item();
 619       }
 620       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 621       if (use_tmp) {
 622         tmp = new_register(T_INT);
 623       }
 624       rlock_result(x);
 625 
 626       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 627     } else {
 628       right_arg->dont_load_item();
 629       rlock_result(x);
 630       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 631       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 632     }
 633   }
 634 }
 635 
 636 
 637 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 638   // when an operand with use count 1 is the left operand, then it is
 639   // likely that no move for 2-operand-LIR-form is necessary
 640   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 641     x->swap_operands();
 642   }
 643 
 644   ValueTag tag = x->type()->tag();
 645   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 646   switch (tag) {
 647     case floatTag:
 648     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 649     case longTag:    do_ArithmeticOp_Long(x); return;
 650     case intTag:     do_ArithmeticOp_Int(x);  return;
 651   }
 652   ShouldNotReachHere();
 653 }
 654 
 655 
 656 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 657 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 658   // count must always be in rcx
 659   LIRItem value(x->x(), this);
 660   LIRItem count(x->y(), this);
 661 
 662   ValueTag elemType = x->type()->tag();
 663   bool must_load_count = !count.is_constant() || elemType == longTag;
 664   if (must_load_count) {
 665     // count for long must be in register
 666     count.load_item_force(shiftCountOpr());
 667   } else {
 668     count.dont_load_item();
 669   }
 670   value.load_item();
 671   LIR_Opr reg = rlock_result(x);
 672 
 673   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 674 }
 675 
 676 
 677 // _iand, _land, _ior, _lor, _ixor, _lxor
 678 void LIRGenerator::do_LogicOp(LogicOp* x) {
 679   // when an operand with use count 1 is the left operand, then it is
 680   // likely that no move for 2-operand-LIR-form is necessary
 681   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 682     x->swap_operands();
 683   }
 684 
 685   LIRItem left(x->x(), this);
 686   LIRItem right(x->y(), this);
 687 
 688   left.load_item();
 689   right.load_nonconstant();
 690   LIR_Opr reg = rlock_result(x);
 691 
 692   logic_op(x->op(), reg, left.result(), right.result());
 693 }
 694 
 695 
 696 
 697 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 698 void LIRGenerator::do_CompareOp(CompareOp* x) {
 699   LIRItem left(x->x(), this);
 700   LIRItem right(x->y(), this);
 701   ValueTag tag = x->x()->type()->tag();
 702   if (tag == longTag) {
 703     left.set_destroys_register();
 704   }
 705   left.load_item();
 706   right.load_item();
 707   LIR_Opr reg = rlock_result(x);
 708 
 709   if (x->x()->type()->is_float_kind()) {
 710     Bytecodes::Code code = x->op();
 711     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 712   } else if (x->x()->type()->tag() == longTag) {
 713     __ lcmp2int(left.result(), right.result(), reg);
 714   } else {
 715     Unimplemented();
 716   }
 717 }
 718 
 719 
 720 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
 721   assert(x->number_of_arguments() == 3, "wrong type");
 722   LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
 723   LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
 724   LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
 725 
 726   // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
 727   cmp_value.load_item_force(FrameMap::long0_opr);
 728 
 729   // new value must be in rcx,ebx (hi,lo)
 730   new_value.load_item_force(FrameMap::long1_opr);
 731 
 732   // object pointer register is overwritten with field address
 733   obj.load_item();
 734 
 735   // generate compare-and-swap; produces zero condition if swap occurs
 736   int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
 737   LIR_Opr addr = new_pointer_register();
 738   __ leal(LIR_OprFact::address(new LIR_Address(obj.result(), value_offset, T_LONG)), addr);
 739   LIR_Opr t1 = LIR_OprFact::illegalOpr;  // no temp needed
 740   LIR_Opr t2 = LIR_OprFact::illegalOpr;  // no temp needed
 741   __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
 742 
 743   // generate conditional move of boolean result
 744   LIR_Opr result = rlock_result(x);
 745   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result, T_LONG);
 746 }
 747 
 748 
 749 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 750   assert(x->number_of_arguments() == 4, "wrong type");
 751   LIRItem obj   (x->argument_at(0), this);  // object
 752   LIRItem offset(x->argument_at(1), this);  // offset of field
 753   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 754   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 755 
 756   assert(obj.type()->tag() == objectTag, "invalid type");
 757 
 758   // In 64bit the type can be long, sparc doesn't have this assert
 759   // assert(offset.type()->tag() == intTag, "invalid type");
 760 
 761   assert(cmp.type()->tag() == type->tag(), "invalid type");
 762   assert(val.type()->tag() == type->tag(), "invalid type");
 763 
 764   // get address of field
 765   obj.load_item();
 766   offset.load_nonconstant();
 767 
 768   if (type == objectType) {
 769     cmp.load_item_force(FrameMap::rax_oop_opr);
 770     val.load_item();
 771   } else if (type == intType) {
 772     cmp.load_item_force(FrameMap::rax_opr);
 773     val.load_item();
 774   } else if (type == longType) {
 775     cmp.load_item_force(FrameMap::long0_opr);
 776     val.load_item_force(FrameMap::long1_opr);
 777   } else {
 778     ShouldNotReachHere();
 779   }
 780 
 781   LIR_Opr addr = new_pointer_register();
 782   LIR_Address* a;
 783   if(offset.result()->is_constant()) {
 784     a = new LIR_Address(obj.result(),
 785                         NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
 786                         as_BasicType(type));
 787   } else {
 788     a = new LIR_Address(obj.result(),
 789                         offset.result(),
 790                         LIR_Address::times_1,
 791                         0,
 792                         as_BasicType(type));
 793   }
 794   __ leal(LIR_OprFact::address(a), addr);
 795 
 796   if (type == objectType) {  // Write-barrier needed for Object fields.
 797     // Do the pre-write barrier, if any.
 798     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 799                 true /* do_load */, false /* patch */, NULL);
 800   }
 801 
 802   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 803   if (type == objectType)
 804     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
 805   else if (type == intType)
 806     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
 807   else if (type == longType)
 808     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
 809   else {
 810     ShouldNotReachHere();
 811   }
 812 
 813   // generate conditional move of boolean result
 814   LIR_Opr result = rlock_result(x);
 815   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 816            result, as_BasicType(type));
 817   if (type == objectType) {   // Write-barrier needed for Object fields.
 818     // Seems to be precise
 819     post_barrier(addr, val.result());
 820   }
 821 }
 822 
 823 
 824 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 825   assert(x->number_of_arguments() == 1, "wrong type");
 826   LIRItem value(x->argument_at(0), this);
 827 
 828   bool use_fpu = false;
 829   if (UseSSE >= 2) {
 830     switch(x->id()) {
 831       case vmIntrinsics::_dsin:
 832       case vmIntrinsics::_dcos:
 833       case vmIntrinsics::_dtan:
 834       case vmIntrinsics::_dlog:
 835       case vmIntrinsics::_dlog10:
 836         use_fpu = true;
 837     }
 838   } else {
 839     value.set_destroys_register();
 840   }
 841 
 842   value.load_item();
 843 
 844   LIR_Opr calc_input = value.result();
 845   LIR_Opr calc_result = rlock_result(x);
 846 
 847   // sin and cos need two free fpu stack slots, so register two temporary operands
 848   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
 849   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
 850 
 851   if (use_fpu) {
 852     LIR_Opr tmp = FrameMap::fpu0_double_opr;
 853     __ move(calc_input, tmp);
 854 
 855     calc_input = tmp;
 856     calc_result = tmp;
 857     tmp1 = FrameMap::caller_save_fpu_reg_at(1);
 858     tmp2 = FrameMap::caller_save_fpu_reg_at(2);
 859   }
 860 
 861   switch(x->id()) {
 862     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 863     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 864     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
 865     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
 866     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
 867     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
 868     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
 869     default:                    ShouldNotReachHere();
 870   }
 871 
 872   if (use_fpu) {
 873     __ move(calc_result, x->operand());
 874   }
 875 }
 876 
 877 
 878 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 879   assert(x->number_of_arguments() == 5, "wrong type");
 880 
 881   // Make all state_for calls early since they can emit code
 882   CodeEmitInfo* info = state_for(x, x->state());
 883 
 884   LIRItem src(x->argument_at(0), this);
 885   LIRItem src_pos(x->argument_at(1), this);
 886   LIRItem dst(x->argument_at(2), this);
 887   LIRItem dst_pos(x->argument_at(3), this);
 888   LIRItem length(x->argument_at(4), this);
 889 
 890   // operands for arraycopy must use fixed registers, otherwise
 891   // LinearScan will fail allocation (because arraycopy always needs a
 892   // call)
 893 
 894 #ifndef _LP64
 895   src.load_item_force     (FrameMap::rcx_oop_opr);
 896   src_pos.load_item_force (FrameMap::rdx_opr);
 897   dst.load_item_force     (FrameMap::rax_oop_opr);
 898   dst_pos.load_item_force (FrameMap::rbx_opr);
 899   length.load_item_force  (FrameMap::rdi_opr);
 900   LIR_Opr tmp =           (FrameMap::rsi_opr);
 901 #else
 902 
 903   // The java calling convention will give us enough registers
 904   // so that on the stub side the args will be perfect already.
 905   // On the other slow/special case side we call C and the arg
 906   // positions are not similar enough to pick one as the best.
 907   // Also because the java calling convention is a "shifted" version
 908   // of the C convention we can process the java args trivially into C
 909   // args without worry of overwriting during the xfer
 910 
 911   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 912   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 913   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 914   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 915   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 916 
 917   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 918 #endif // LP64
 919 
 920   set_no_result(x);
 921 
 922   int flags;
 923   ciArrayKlass* expected_type;
 924   arraycopy_helper(x, &flags, &expected_type);
 925 
 926   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 927 }
 928 
 929 
 930 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 931 // _i2b, _i2c, _i2s
 932 LIR_Opr fixed_register_for(BasicType type) {
 933   switch (type) {
 934     case T_FLOAT:  return FrameMap::fpu0_float_opr;
 935     case T_DOUBLE: return FrameMap::fpu0_double_opr;
 936     case T_INT:    return FrameMap::rax_opr;
 937     case T_LONG:   return FrameMap::long0_opr;
 938     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
 939   }
 940 }
 941 
 942 void LIRGenerator::do_Convert(Convert* x) {
 943   // flags that vary for the different operations and different SSE-settings
 944   bool fixed_input, fixed_result, round_result, needs_stub;
 945 
 946   switch (x->op()) {
 947     case Bytecodes::_i2l: // fall through
 948     case Bytecodes::_l2i: // fall through
 949     case Bytecodes::_i2b: // fall through
 950     case Bytecodes::_i2c: // fall through
 951     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 952 
 953     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
 954     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
 955     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
 956     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 957     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 958     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 959     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
 960     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
 961     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 962     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 963     default: ShouldNotReachHere();
 964   }
 965 
 966   LIRItem value(x->value(), this);
 967   value.load_item();
 968   LIR_Opr input = value.result();
 969   LIR_Opr result = rlock(x);
 970 
 971   // arguments of lir_convert
 972   LIR_Opr conv_input = input;
 973   LIR_Opr conv_result = result;
 974   ConversionStub* stub = NULL;
 975 
 976   if (fixed_input) {
 977     conv_input = fixed_register_for(input->type());
 978     __ move(input, conv_input);
 979   }
 980 
 981   assert(fixed_result == false || round_result == false, "cannot set both");
 982   if (fixed_result) {
 983     conv_result = fixed_register_for(result->type());
 984   } else if (round_result) {
 985     result = new_register(result->type());
 986     set_vreg_flag(result, must_start_in_memory);
 987   }
 988 
 989   if (needs_stub) {
 990     stub = new ConversionStub(x->op(), conv_input, conv_result);
 991   }
 992 
 993   __ convert(x->op(), conv_input, conv_result, stub);
 994 
 995   if (result != conv_result) {
 996     __ move(conv_result, result);
 997   }
 998 
 999   assert(result->is_virtual(), "result must be virtual register");
1000   set_result(x, result);
1001 }
1002 
1003 
1004 void LIRGenerator::do_NewInstance(NewInstance* x) {
1005 #ifndef PRODUCT
1006   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1007     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1008   }
1009 #endif
1010   CodeEmitInfo* info = state_for(x, x->state());
1011   LIR_Opr reg = result_register_for(x->type());
1012   LIR_Opr klass_reg = new_register(objectType);
1013   new_instance(reg, x->klass(),
1014                        FrameMap::rcx_oop_opr,
1015                        FrameMap::rdi_oop_opr,
1016                        FrameMap::rsi_oop_opr,
1017                        LIR_OprFact::illegalOpr,
1018                        FrameMap::rdx_oop_opr, info);
1019   LIR_Opr result = rlock_result(x);
1020   __ move(reg, result);
1021 }
1022 
1023 
1024 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1025   CodeEmitInfo* info = state_for(x, x->state());
1026 
1027   LIRItem length(x->length(), this);
1028   length.load_item_force(FrameMap::rbx_opr);
1029 
1030   LIR_Opr reg = result_register_for(x->type());
1031   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1032   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1033   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1034   LIR_Opr tmp4 = reg;
1035   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1036   LIR_Opr len = length.result();
1037   BasicType elem_type = x->elt_type();
1038 
1039   __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1040 
1041   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1042   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1043 
1044   LIR_Opr result = rlock_result(x);
1045   __ move(reg, result);
1046 }
1047 
1048 
1049 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1050   LIRItem length(x->length(), this);
1051   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1052   // and therefore provide the state before the parameters have been consumed
1053   CodeEmitInfo* patching_info = NULL;
1054   if (!x->klass()->is_loaded() || PatchALot) {
1055     patching_info =  state_for(x, x->state_before());
1056   }
1057 
1058   CodeEmitInfo* info = state_for(x, x->state());
1059 
1060   const LIR_Opr reg = result_register_for(x->type());
1061   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1062   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1063   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1064   LIR_Opr tmp4 = reg;
1065   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1066 
1067   length.load_item_force(FrameMap::rbx_opr);
1068   LIR_Opr len = length.result();
1069 
1070   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1071   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
1072   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1073     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1074   }
1075   jobject2reg_with_patching(klass_reg, obj, patching_info);
1076   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1077 
1078   LIR_Opr result = rlock_result(x);
1079   __ move(reg, result);
1080 }
1081 
1082 
1083 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1084   Values* dims = x->dims();
1085   int i = dims->length();
1086   LIRItemList* items = new LIRItemList(dims->length(), NULL);
1087   while (i-- > 0) {
1088     LIRItem* size = new LIRItem(dims->at(i), this);
1089     items->at_put(i, size);
1090   }
1091 
1092   // Evaluate state_for early since it may emit code.
1093   CodeEmitInfo* patching_info = NULL;
1094   if (!x->klass()->is_loaded() || PatchALot) {
1095     patching_info = state_for(x, x->state_before());
1096 
1097     // cannot re-use same xhandlers for multiple CodeEmitInfos, so
1098     // clone all handlers.  This is handled transparently in other
1099     // places by the CodeEmitInfo cloning logic but is handled
1100     // specially here because a stub isn't being used.
1101     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1102   }
1103   CodeEmitInfo* info = state_for(x, x->state());
1104 
1105   i = dims->length();
1106   while (i-- > 0) {
1107     LIRItem* size = items->at(i);
1108     size->load_nonconstant();
1109 
1110     store_stack_parameter(size->result(), in_ByteSize(i*4));
1111   }
1112 
1113   LIR_Opr reg = result_register_for(x->type());
1114   jobject2reg_with_patching(reg, x->klass(), patching_info);
1115 
1116   LIR_Opr rank = FrameMap::rbx_opr;
1117   __ move(LIR_OprFact::intConst(x->rank()), rank);
1118   LIR_Opr varargs = FrameMap::rcx_opr;
1119   __ move(FrameMap::rsp_opr, varargs);
1120   LIR_OprList* args = new LIR_OprList(3);
1121   args->append(reg);
1122   args->append(rank);
1123   args->append(varargs);
1124   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1125                   LIR_OprFact::illegalOpr,
1126                   reg, args, info);
1127 
1128   LIR_Opr result = rlock_result(x);
1129   __ move(reg, result);
1130 }
1131 
1132 
1133 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1134   // nothing to do for now
1135 }
1136 
1137 
1138 void LIRGenerator::do_CheckCast(CheckCast* x) {
1139   LIRItem obj(x->obj(), this);
1140 
1141   CodeEmitInfo* patching_info = NULL;
1142   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1143     // must do this before locking the destination register as an oop register,
1144     // and before the obj is loaded (the latter is for deoptimization)
1145     patching_info = state_for(x, x->state_before());
1146   }
1147   obj.load_item();
1148 
1149   // info for exceptions
1150   CodeEmitInfo* info_for_exception = state_for(x);
1151 
1152   CodeStub* stub;
1153   if (x->is_incompatible_class_change_check()) {
1154     assert(patching_info == NULL, "can't patch this");
1155     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1156   } else {
1157     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1158   }
1159   LIR_Opr reg = rlock_result(x);
1160   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1161   if (!x->klass()->is_loaded() || UseCompressedOops) {
1162     tmp3 = new_register(objectType);
1163   }
1164   __ checkcast(reg, obj.result(), x->klass(),
1165                new_register(objectType), new_register(objectType), tmp3,
1166                x->direct_compare(), info_for_exception, patching_info, stub,
1167                x->profiled_method(), x->profiled_bci());
1168 }
1169 
1170 
1171 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1172   LIRItem obj(x->obj(), this);
1173 
1174   // result and test object may not be in same register
1175   LIR_Opr reg = rlock_result(x);
1176   CodeEmitInfo* patching_info = NULL;
1177   if ((!x->klass()->is_loaded() || PatchALot)) {
1178     // must do this before locking the destination register as an oop register
1179     patching_info = state_for(x, x->state_before());
1180   }
1181   obj.load_item();
1182   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1183   if (!x->klass()->is_loaded() || UseCompressedOops) {
1184     tmp3 = new_register(objectType);
1185   }
1186   __ instanceof(reg, obj.result(), x->klass(),
1187                 new_register(objectType), new_register(objectType), tmp3,
1188                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1189 }
1190 
1191 
1192 void LIRGenerator::do_If(If* x) {
1193   assert(x->number_of_sux() == 2, "inconsistency");
1194   ValueTag tag = x->x()->type()->tag();
1195   bool is_safepoint = x->is_safepoint();
1196 
1197   If::Condition cond = x->cond();
1198 
1199   LIRItem xitem(x->x(), this);
1200   LIRItem yitem(x->y(), this);
1201   LIRItem* xin = &xitem;
1202   LIRItem* yin = &yitem;
1203 
1204   if (tag == longTag) {
1205     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1206     // mirror for other conditions
1207     if (cond == If::gtr || cond == If::leq) {
1208       cond = Instruction::mirror(cond);
1209       xin = &yitem;
1210       yin = &xitem;
1211     }
1212     xin->set_destroys_register();
1213   }
1214   xin->load_item();
1215   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1216     // inline long zero
1217     yin->dont_load_item();
1218   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1219     // longs cannot handle constants at right side
1220     yin->load_item();
1221   } else {
1222     yin->dont_load_item();
1223   }
1224 
1225   // add safepoint before generating condition code so it can be recomputed
1226   if (x->is_safepoint()) {
1227     // increment backedge counter if needed
1228     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1229     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1230   }
1231   set_no_result(x);
1232 
1233   LIR_Opr left = xin->result();
1234   LIR_Opr right = yin->result();
1235   __ cmp(lir_cond(cond), left, right);
1236   // Generate branch profiling. Profiling code doesn't kill flags.
1237   profile_branch(x, cond);
1238   move_to_phi(x->state());
1239   if (x->x()->type()->is_float_kind()) {
1240     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1241   } else {
1242     __ branch(lir_cond(cond), right->type(), x->tsux());
1243   }
1244   assert(x->default_sux() == x->fsux(), "wrong destination above");
1245   __ jump(x->default_sux());
1246 }
1247 
1248 
1249 LIR_Opr LIRGenerator::getThreadPointer() {
1250 #ifdef _LP64
1251   return FrameMap::as_pointer_opr(r15_thread);
1252 #else
1253   LIR_Opr result = new_register(T_INT);
1254   __ get_thread(result);
1255   return result;
1256 #endif //
1257 }
1258 
1259 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1260   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1261   LIR_OprList* args = new LIR_OprList();
1262   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1263   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1264 }
1265 
1266 
1267 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1268                                         CodeEmitInfo* info) {
1269   if (address->type() == T_LONG) {
1270     address = new LIR_Address(address->base(),
1271                               address->index(), address->scale(),
1272                               address->disp(), T_DOUBLE);
1273     // Transfer the value atomically by using FP moves.  This means
1274     // the value has to be moved between CPU and FPU registers.  It
1275     // always has to be moved through spill slot since there's no
1276     // quick way to pack the value into an SSE register.
1277     LIR_Opr temp_double = new_register(T_DOUBLE);
1278     LIR_Opr spill = new_register(T_LONG);
1279     set_vreg_flag(spill, must_start_in_memory);
1280     __ move(value, spill);
1281     __ volatile_move(spill, temp_double, T_LONG);
1282     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1283   } else {
1284     __ store(value, address, info);
1285   }
1286 }
1287 
1288 
1289 
1290 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1291                                        CodeEmitInfo* info) {
1292   if (address->type() == T_LONG) {
1293     address = new LIR_Address(address->base(),
1294                               address->index(), address->scale(),
1295                               address->disp(), T_DOUBLE);
1296     // Transfer the value atomically by using FP moves.  This means
1297     // the value has to be moved between CPU and FPU registers.  In
1298     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1299     // SSE2+ mode it can be moved directly.
1300     LIR_Opr temp_double = new_register(T_DOUBLE);
1301     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1302     __ volatile_move(temp_double, result, T_LONG);
1303     if (UseSSE < 2) {
1304       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1305       set_vreg_flag(result, must_start_in_memory);
1306     }
1307   } else {
1308     __ load(address, result, info);
1309   }
1310 }
1311 
1312 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1313                                      BasicType type, bool is_volatile) {
1314   if (is_volatile && type == T_LONG) {
1315     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1316     LIR_Opr tmp = new_register(T_DOUBLE);
1317     __ load(addr, tmp);
1318     LIR_Opr spill = new_register(T_LONG);
1319     set_vreg_flag(spill, must_start_in_memory);
1320     __ move(tmp, spill);
1321     __ move(spill, dst);
1322   } else {
1323     LIR_Address* addr = new LIR_Address(src, offset, type);
1324     __ load(addr, dst);
1325   }
1326 }
1327 
1328 
1329 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1330                                      BasicType type, bool is_volatile) {
1331   if (is_volatile && type == T_LONG) {
1332     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1333     LIR_Opr tmp = new_register(T_DOUBLE);
1334     LIR_Opr spill = new_register(T_DOUBLE);
1335     set_vreg_flag(spill, must_start_in_memory);
1336     __ move(data, spill);
1337     __ move(spill, tmp);
1338     __ move(tmp, addr);
1339   } else {
1340     LIR_Address* addr = new LIR_Address(src, offset, type);
1341     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1342     if (is_obj) {
1343       // Do the pre-write barrier, if any.
1344       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1345                   true /* do_load */, false /* patch */, NULL);
1346       __ move(data, addr);
1347       assert(src->is_register(), "must be register");
1348       // Seems to be a precise address
1349       post_barrier(LIR_OprFact::address(addr), data);
1350     } else {
1351       __ move(data, addr);
1352     }
1353   }
1354 }