1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciCPCache.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/heapRegion.hpp"
  40 #endif
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  49 #ifdef ARM
  50 #define PATCHED_ADDR  (204)
  51 #else
  52 #define PATCHED_ADDR  (max_jint)
  53 #endif
  54 
  55 void PhiResolverState::reset(int max_vregs) {
  56   // Initialize array sizes
  57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  58   _virtual_operands.trunc_to(0);
  59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _other_operands.trunc_to(0);
  61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _vreg_table.trunc_to(0);
  63 }
  64 
  65 
  66 
  67 //--------------------------------------------------------------
  68 // PhiResolver
  69 
  70 // Resolves cycles:
  71 //
  72 //  r1 := r2  becomes  temp := r1
  73 //  r2 := r1           r1 := r2
  74 //                     r2 := temp
  75 // and orders moves:
  76 //
  77 //  r2 := r3  becomes  r1 := r2
  78 //  r1 := r2           r2 := r3
  79 
  80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  81  : _gen(gen)
  82  , _state(gen->resolver_state())
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset(max_vregs);
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == NULL, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != NULL) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands()[i];
 149     if (!node->visited()) {
 150       _loop = NULL;
 151       move(NULL, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands()[i];
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, NULL);
 172     assert(node == NULL || node->operand() == opr, "");
 173     if (node == NULL) {
 174       node = new ResolveNode(opr);
 175       vreg_table()[vreg_num] = node;
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {
 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {
 236       _result = LIR_OprFact::value_type(value()->type());
 237     }
 238   } else if (type == T_BYTE || type == T_BOOLEAN) {
 239     load_byte_item();
 240   } else {
 241     load_item();
 242   }
 243 }
 244 
 245 void LIRItem::load_item_force(LIR_Opr reg) {
 246   LIR_Opr r = result();
 247   if (r != reg) {
 248 #if !defined(ARM) && !defined(E500V2)
 249     if (r->type() != reg->type()) {
 250       // moves between different types need an intervening spill slot
 251       r = _gen->force_to_spill(r, reg->type());
 252     }
 253 #endif
 254     __ move(r, reg);
 255     _result = reg;
 256   }
 257 }
 258 
 259 ciObject* LIRItem::get_jobject_constant() const {
 260   ObjectType* oc = type()->as_ObjectType();
 261   if (oc) {
 262     return oc->constant_value();
 263   }
 264   return NULL;
 265 }
 266 
 267 
 268 jint LIRItem::get_jint_constant() const {
 269   assert(is_constant() && value() != NULL, "");
 270   assert(type()->as_IntConstant() != NULL, "type check");
 271   return type()->as_IntConstant()->value();
 272 }
 273 
 274 
 275 jint LIRItem::get_address_constant() const {
 276   assert(is_constant() && value() != NULL, "");
 277   assert(type()->as_AddressConstant() != NULL, "type check");
 278   return type()->as_AddressConstant()->value();
 279 }
 280 
 281 
 282 jfloat LIRItem::get_jfloat_constant() const {
 283   assert(is_constant() && value() != NULL, "");
 284   assert(type()->as_FloatConstant() != NULL, "type check");
 285   return type()->as_FloatConstant()->value();
 286 }
 287 
 288 
 289 jdouble LIRItem::get_jdouble_constant() const {
 290   assert(is_constant() && value() != NULL, "");
 291   assert(type()->as_DoubleConstant() != NULL, "type check");
 292   return type()->as_DoubleConstant()->value();
 293 }
 294 
 295 
 296 jlong LIRItem::get_jlong_constant() const {
 297   assert(is_constant() && value() != NULL, "");
 298   assert(type()->as_LongConstant() != NULL, "type check");
 299   return type()->as_LongConstant()->value();
 300 }
 301 
 302 
 303 
 304 //--------------------------------------------------------------
 305 
 306 
 307 void LIRGenerator::init() {
 308   _bs = Universe::heap()->barrier_set();
 309 }
 310 
 311 
 312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 313 #ifndef PRODUCT
 314   if (PrintIRWithLIR) {
 315     block->print();
 316   }
 317 #endif
 318 
 319   // set up the list of LIR instructions
 320   assert(block->lir() == NULL, "LIR list already computed for this block");
 321   _lir = new LIR_List(compilation(), block);
 322   block->set_lir(_lir);
 323 
 324   __ branch_destination(block->label());
 325 
 326   if (LIRTraceExecution &&
 327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 328       !block->is_set(BlockBegin::exception_entry_flag)) {
 329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 330     trace_block_entry(block);
 331   }
 332 }
 333 
 334 
 335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 336 #ifndef PRODUCT
 337   if (PrintIRWithLIR) {
 338     tty->cr();
 339   }
 340 #endif
 341 
 342   // LIR_Opr for unpinned constants shouldn't be referenced by other
 343   // blocks so clear them out after processing the block.
 344   for (int i = 0; i < _unpinned_constants.length(); i++) {
 345     _unpinned_constants.at(i)->clear_operand();
 346   }
 347   _unpinned_constants.trunc_to(0);
 348 
 349   // clear our any registers for other local constants
 350   _constants.trunc_to(0);
 351   _reg_for_constants.trunc_to(0);
 352 }
 353 
 354 
 355 void LIRGenerator::block_do(BlockBegin* block) {
 356   CHECK_BAILOUT();
 357 
 358   block_do_prolog(block);
 359   set_block(block);
 360 
 361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 362     if (instr->is_pinned()) do_root(instr);
 363   }
 364 
 365   set_block(NULL);
 366   block_do_epilog(block);
 367 }
 368 
 369 
 370 //-------------------------LIRGenerator-----------------------------
 371 
 372 // This is where the tree-walk starts; instr must be root;
 373 void LIRGenerator::do_root(Value instr) {
 374   CHECK_BAILOUT();
 375 
 376   InstructionMark im(compilation(), instr);
 377 
 378   assert(instr->is_pinned(), "use only with roots");
 379   assert(instr->subst() == instr, "shouldn't have missed substitution");
 380 
 381   instr->visit(this);
 382 
 383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 385 }
 386 
 387 
 388 // This is called for each node in tree; the walk stops if a root is reached
 389 void LIRGenerator::walk(Value instr) {
 390   InstructionMark im(compilation(), instr);
 391   //stop walk when encounter a root
 392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 394   } else {
 395     assert(instr->subst() == instr, "shouldn't have missed substitution");
 396     instr->visit(this);
 397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 398   }
 399 }
 400 
 401 
 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 403   assert(state != NULL, "state must be defined");
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
 465   if (!obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ oop2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ oop2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index, true);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool    did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           int c = right->as_jint();
 540           if (is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597   if (TwoOperandLIRForm && value != result_op) {
 598     assert(count != result_op, "malformed");
 599     __ move(value, result_op);
 600     value = result_op;
 601   }
 602 
 603   assert(count->is_constant() || count->is_register(), "must be");
 604   switch(code) {
 605   case Bytecodes::_ishl:
 606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 607   case Bytecodes::_ishr:
 608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 609   case Bytecodes::_iushr:
 610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 611   default: ShouldNotReachHere();
 612   }
 613 }
 614 
 615 
 616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 617   if (TwoOperandLIRForm && left_op != result_op) {
 618     assert(right_op != result_op, "malformed");
 619     __ move(left_op, result_op);
 620     left_op = result_op;
 621   }
 622 
 623   switch(code) {
 624     case Bytecodes::_iand:
 625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 626 
 627     case Bytecodes::_ior:
 628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 629 
 630     case Bytecodes::_ixor:
 631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 632 
 633     default: ShouldNotReachHere();
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 639   if (!GenerateSynchronizationCode) return;
 640   // for slow path, use debug info for state after successful locking
 641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 642   __ load_stack_address_monitor(monitor_no, lock);
 643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 645 }
 646 
 647 
 648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 649   if (!GenerateSynchronizationCode) return;
 650   // setup registers
 651   LIR_Opr hdr = lock;
 652   lock = new_hdr;
 653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 654   __ load_stack_address_monitor(monitor_no, lock);
 655   __ unlock_object(hdr, object, lock, scratch, slow_path);
 656 }
 657 
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   jobject2reg_with_patching(klass_reg, klass, info);
 661   // If klass is not loaded we do not know if the klass has finalizers:
 662   if (UseFastNewInstance && klass->is_loaded()
 663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 664 
 665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 666 
 667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 668 
 669     assert(klass->is_loaded(), "must be loaded");
 670     // allocate space for instance
 671     assert(klass->size_helper() >= 0, "illegal instance size");
 672     const int instance_size = align_object_size(klass->size_helper());
 673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 675   } else {
 676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 678     __ branch_destination(slow_path->continuation());
 679   }
 680 }
 681 
 682 
 683 static bool is_constant_zero(Instruction* inst) {
 684   IntConstant* c = inst->type()->as_IntConstant();
 685   if (c) {
 686     return (c->value() == 0);
 687   }
 688   return false;
 689 }
 690 
 691 
 692 static bool positive_constant(Instruction* inst) {
 693   IntConstant* c = inst->type()->as_IntConstant();
 694   if (c) {
 695     return (c->value() >= 0);
 696   }
 697   return false;
 698 }
 699 
 700 
 701 static ciArrayKlass* as_array_klass(ciType* type) {
 702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 703     return (ciArrayKlass*)type;
 704   } else {
 705     return NULL;
 706   }
 707 }
 708 
 709 static Value maxvalue(IfOp* ifop) {
 710   switch (ifop->cond()) {
 711     case If::eql: return NULL;
 712     case If::neq: return NULL;
 713     case If::lss: // x <  y ? x : y
 714     case If::leq: // x <= y ? x : y
 715       if (ifop->x() == ifop->tval() &&
 716           ifop->y() == ifop->fval()) return ifop->y();
 717       return NULL;
 718 
 719     case If::gtr: // x >  y ? y : x
 720     case If::geq: // x >= y ? y : x
 721       if (ifop->x() == ifop->tval() &&
 722           ifop->y() == ifop->fval()) return ifop->y();
 723       return NULL;
 724 
 725   }
 726 }
 727 
 728 static ciType* phi_declared_type(Phi* phi) {
 729   ciType* t = phi->operand_at(0)->declared_type();
 730   if (t == NULL) {
 731     return NULL;
 732   }
 733   for(int i = 1; i < phi->operand_count(); i++) {
 734     if (t != phi->operand_at(i)->declared_type()) {
 735       return NULL;
 736     }
 737   }
 738   return t;
 739 }
 740 
 741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 742   Instruction* src     = x->argument_at(0);
 743   Instruction* src_pos = x->argument_at(1);
 744   Instruction* dst     = x->argument_at(2);
 745   Instruction* dst_pos = x->argument_at(3);
 746   Instruction* length  = x->argument_at(4);
 747 
 748   // first try to identify the likely type of the arrays involved
 749   ciArrayKlass* expected_type = NULL;
 750   bool is_exact = false, src_objarray = false, dst_objarray = false;
 751   {
 752     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 753     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 754     Phi* phi;
 755     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 756       src_declared_type = as_array_klass(phi_declared_type(phi));
 757     }
 758     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 759     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 760     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 761       dst_declared_type = as_array_klass(phi_declared_type(phi));
 762     }
 763 
 764     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 765       // the types exactly match so the type is fully known
 766       is_exact = true;
 767       expected_type = src_exact_type;
 768     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 769       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 770       ciArrayKlass* src_type = NULL;
 771       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 772         src_type = (ciArrayKlass*) src_exact_type;
 773       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 774         src_type = (ciArrayKlass*) src_declared_type;
 775       }
 776       if (src_type != NULL) {
 777         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 778           is_exact = true;
 779           expected_type = dst_type;
 780         }
 781       }
 782     }
 783     // at least pass along a good guess
 784     if (expected_type == NULL) expected_type = dst_exact_type;
 785     if (expected_type == NULL) expected_type = src_declared_type;
 786     if (expected_type == NULL) expected_type = dst_declared_type;
 787 
 788     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 789     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 790   }
 791 
 792   // if a probable array type has been identified, figure out if any
 793   // of the required checks for a fast case can be elided.
 794   int flags = LIR_OpArrayCopy::all_flags;
 795 
 796   if (!src_objarray)
 797     flags &= ~LIR_OpArrayCopy::src_objarray;
 798   if (!dst_objarray)
 799     flags &= ~LIR_OpArrayCopy::dst_objarray;
 800 
 801   if (!x->arg_needs_null_check(0))
 802     flags &= ~LIR_OpArrayCopy::src_null_check;
 803   if (!x->arg_needs_null_check(2))
 804     flags &= ~LIR_OpArrayCopy::dst_null_check;
 805 
 806 
 807   if (expected_type != NULL) {
 808     Value length_limit = NULL;
 809 
 810     IfOp* ifop = length->as_IfOp();
 811     if (ifop != NULL) {
 812       // look for expressions like min(v, a.length) which ends up as
 813       //   x > y ? y : x  or  x >= y ? y : x
 814       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 815           ifop->x() == ifop->fval() &&
 816           ifop->y() == ifop->tval()) {
 817         length_limit = ifop->y();
 818       }
 819     }
 820 
 821     // try to skip null checks and range checks
 822     NewArray* src_array = src->as_NewArray();
 823     if (src_array != NULL) {
 824       flags &= ~LIR_OpArrayCopy::src_null_check;
 825       if (length_limit != NULL &&
 826           src_array->length() == length_limit &&
 827           is_constant_zero(src_pos)) {
 828         flags &= ~LIR_OpArrayCopy::src_range_check;
 829       }
 830     }
 831 
 832     NewArray* dst_array = dst->as_NewArray();
 833     if (dst_array != NULL) {
 834       flags &= ~LIR_OpArrayCopy::dst_null_check;
 835       if (length_limit != NULL &&
 836           dst_array->length() == length_limit &&
 837           is_constant_zero(dst_pos)) {
 838         flags &= ~LIR_OpArrayCopy::dst_range_check;
 839       }
 840     }
 841 
 842     // check from incoming constant values
 843     if (positive_constant(src_pos))
 844       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 845     if (positive_constant(dst_pos))
 846       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 847     if (positive_constant(length))
 848       flags &= ~LIR_OpArrayCopy::length_positive_check;
 849 
 850     // see if the range check can be elided, which might also imply
 851     // that src or dst is non-null.
 852     ArrayLength* al = length->as_ArrayLength();
 853     if (al != NULL) {
 854       if (al->array() == src) {
 855         // it's the length of the source array
 856         flags &= ~LIR_OpArrayCopy::length_positive_check;
 857         flags &= ~LIR_OpArrayCopy::src_null_check;
 858         if (is_constant_zero(src_pos))
 859           flags &= ~LIR_OpArrayCopy::src_range_check;
 860       }
 861       if (al->array() == dst) {
 862         // it's the length of the destination array
 863         flags &= ~LIR_OpArrayCopy::length_positive_check;
 864         flags &= ~LIR_OpArrayCopy::dst_null_check;
 865         if (is_constant_zero(dst_pos))
 866           flags &= ~LIR_OpArrayCopy::dst_range_check;
 867       }
 868     }
 869     if (is_exact) {
 870       flags &= ~LIR_OpArrayCopy::type_check;
 871     }
 872   }
 873 
 874   IntConstant* src_int = src_pos->type()->as_IntConstant();
 875   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 876   if (src_int && dst_int) {
 877     int s_offs = src_int->value();
 878     int d_offs = dst_int->value();
 879     if (src_int->value() >= dst_int->value()) {
 880       flags &= ~LIR_OpArrayCopy::overlapping;
 881     }
 882     if (expected_type != NULL) {
 883       BasicType t = expected_type->element_type()->basic_type();
 884       int element_size = type2aelembytes(t);
 885       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 886           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 887         flags &= ~LIR_OpArrayCopy::unaligned;
 888       }
 889     }
 890   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 891     // src and dest positions are the same, or dst is zero so assume
 892     // nonoverlapping copy.
 893     flags &= ~LIR_OpArrayCopy::overlapping;
 894   }
 895 
 896   if (src == dst) {
 897     // moving within a single array so no type checks are needed
 898     if (flags & LIR_OpArrayCopy::type_check) {
 899       flags &= ~LIR_OpArrayCopy::type_check;
 900     }
 901   }
 902   *flagsp = flags;
 903   *expected_typep = (ciArrayKlass*)expected_type;
 904 }
 905 
 906 
 907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 908   assert(opr->is_register(), "why spill if item is not register?");
 909 
 910   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 911     LIR_Opr result = new_register(T_FLOAT);
 912     set_vreg_flag(result, must_start_in_memory);
 913     assert(opr->is_register(), "only a register can be spilled");
 914     assert(opr->value_type()->is_float(), "rounding only for floats available");
 915     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 916     return result;
 917   }
 918   return opr;
 919 }
 920 
 921 
 922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 923   assert(type2size[t] == type2size[value->type()], "size mismatch");
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_OBJECT);
 958     __ oop2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     LIR_Opr operand = cur_val->operand();
1000     if (cur_val->operand()->is_illegal()) {
1001       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002              "these can be produced lazily");
1003       operand = operand_for_instruction(cur_val);
1004     }
1005     resolver->move(operand, operand_for_instruction(phi));
1006   }
1007 }
1008 
1009 
1010 // Moves all stack values into their PHI position
1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012   BlockBegin* bb = block();
1013   if (bb->number_of_sux() == 1) {
1014     BlockBegin* sux = bb->sux_at(0);
1015     assert(sux->number_of_preds() > 0, "invalid CFG");
1016 
1017     // a block with only one predecessor never has phi functions
1018     if (sux->number_of_preds() > 1) {
1019       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1020       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1021 
1022       ValueStack* sux_state = sux->state();
1023       Value sux_value;
1024       int index;
1025 
1026       assert(cur_state->scope() == sux_state->scope(), "not matching");
1027       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1028       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1029 
1030       for_each_stack_value(sux_state, index, sux_value) {
1031         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1032       }
1033 
1034       for_each_local_value(sux_state, index, sux_value) {
1035         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1036       }
1037 
1038       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1039     }
1040   }
1041 }
1042 
1043 
1044 LIR_Opr LIRGenerator::new_register(BasicType type) {
1045   int vreg = _virtual_register_number;
1046   // add a little fudge factor for the bailout, since the bailout is
1047   // only checked periodically.  This gives a few extra registers to
1048   // hand out before we really run out, which helps us keep from
1049   // tripping over assertions.
1050   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1051     bailout("out of virtual registers");
1052     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1053       // wrap it around
1054       _virtual_register_number = LIR_OprDesc::vreg_base;
1055     }
1056   }
1057   _virtual_register_number += 1;
1058   return LIR_OprFact::virtual_register(vreg, type);
1059 }
1060 
1061 
1062 // Try to lock using register in hint
1063 LIR_Opr LIRGenerator::rlock(Value instr) {
1064   return new_register(instr->type());
1065 }
1066 
1067 
1068 // does an rlock and sets result
1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
1070   LIR_Opr reg = rlock(x);
1071   set_result(x, reg);
1072   return reg;
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078   LIR_Opr reg;
1079   switch (type) {
1080   case T_BYTE:
1081   case T_BOOLEAN:
1082     reg = rlock_byte(type);
1083     break;
1084   default:
1085     reg = rlock(x);
1086     break;
1087   }
1088 
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 //---------------------------------------------------------------------
1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096   ObjectType* oc = value->type()->as_ObjectType();
1097   if (oc) {
1098     return oc->constant_value();
1099   }
1100   return NULL;
1101 }
1102 
1103 
1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107 
1108   // no moves are created for phi functions at the begin of exception
1109   // handlers, so assign operands manually here
1110   for_each_phi_fun(block(), phi,
1111                    operand_for_instruction(phi));
1112 
1113   LIR_Opr thread_reg = getThreadPointer();
1114   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115                exceptionOopOpr());
1116   __ move_wide(LIR_OprFact::oopConst(NULL),
1117                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118   __ move_wide(LIR_OprFact::oopConst(NULL),
1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120 
1121   LIR_Opr result = new_register(T_OBJECT);
1122   __ move(exceptionOopOpr(), result);
1123   set_result(x, result);
1124 }
1125 
1126 
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //                        visitor functions
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 
1137 void LIRGenerator::do_Phi(Phi* x) {
1138   // phi functions are never visited directly
1139   ShouldNotReachHere();
1140 }
1141 
1142 
1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144 void LIRGenerator::do_Constant(Constant* x) {
1145   if (x->state_before() != NULL) {
1146     // Any constant with a ValueStack requires patching so emit the patch here
1147     LIR_Opr reg = rlock_result(x);
1148     CodeEmitInfo* info = state_for(x, x->state_before());
1149     __ oop2reg_patch(NULL, reg, info);
1150   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151     if (!x->is_pinned()) {
1152       // unpinned constants are handled specially so that they can be
1153       // put into registers when they are used multiple times within a
1154       // block.  After the block completes their operand will be
1155       // cleared so that other blocks can't refer to that register.
1156       set_result(x, load_constant(x));
1157     } else {
1158       LIR_Opr res = x->operand();
1159       if (!res->is_valid()) {
1160         res = LIR_OprFact::value_type(x->type());
1161       }
1162       if (res->is_constant()) {
1163         LIR_Opr reg = rlock_result(x);
1164         __ move(res, reg);
1165       } else {
1166         set_result(x, res);
1167       }
1168     }
1169   } else {
1170     set_result(x, LIR_OprFact::value_type(x->type()));
1171   }
1172 }
1173 
1174 
1175 void LIRGenerator::do_Local(Local* x) {
1176   // operand_for_instruction has the side effect of setting the result
1177   // so there's no need to do it here.
1178   operand_for_instruction(x);
1179 }
1180 
1181 
1182 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1183   Unimplemented();
1184 }
1185 
1186 
1187 void LIRGenerator::do_Return(Return* x) {
1188   if (compilation()->env()->dtrace_method_probes()) {
1189     BasicTypeList signature;
1190     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1191     signature.append(T_OBJECT); // methodOop
1192     LIR_OprList* args = new LIR_OprList();
1193     args->append(getThreadPointer());
1194     LIR_Opr meth = new_register(T_OBJECT);
1195     __ oop2reg(method()->constant_encoding(), meth);
1196     args->append(meth);
1197     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1198   }
1199 
1200   if (x->type()->is_void()) {
1201     __ return_op(LIR_OprFact::illegalOpr);
1202   } else {
1203     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1204     LIRItem result(x->result(), this);
1205 
1206     result.load_item_force(reg);
1207     __ return_op(result.result());
1208   }
1209   set_no_result(x);
1210 }
1211 
1212 // Examble: ref.get()
1213 // Combination of LoadField and g1 pre-write barrier
1214 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1215 
1216   const int referent_offset = java_lang_ref_Reference::referent_offset;
1217   guarantee(referent_offset > 0, "referent offset not initialized");
1218 
1219   assert(x->number_of_arguments() == 1, "wrong type");
1220 
1221   LIRItem reference(x->argument_at(0), this);
1222   reference.load_item();
1223 
1224   // need to perform the null check on the reference objecy
1225   CodeEmitInfo* info = NULL;
1226   if (x->needs_null_check()) {
1227     info = state_for(x);
1228   }
1229 
1230   LIR_Address* referent_field_adr =
1231     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1232 
1233   LIR_Opr result = rlock_result(x);
1234 
1235   __ load(referent_field_adr, result, info);
1236 
1237   // Register the value in the referent field with the pre-barrier
1238   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1239               result /* pre_val */,
1240               false  /* do_load */,
1241               false  /* patch */,
1242               NULL   /* info */);
1243 }
1244 
1245 // Example: object.getClass ()
1246 void LIRGenerator::do_getClass(Intrinsic* x) {
1247   assert(x->number_of_arguments() == 1, "wrong type");
1248 
1249   LIRItem rcvr(x->argument_at(0), this);
1250   rcvr.load_item();
1251   LIR_Opr result = rlock_result(x);
1252 
1253   // need to perform the null check on the rcvr
1254   CodeEmitInfo* info = NULL;
1255   if (x->needs_null_check()) {
1256     info = state_for(x);
1257   }
1258   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1259   __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1260                                klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1261 }
1262 
1263 
1264 // Example: Thread.currentThread()
1265 void LIRGenerator::do_currentThread(Intrinsic* x) {
1266   assert(x->number_of_arguments() == 0, "wrong type");
1267   LIR_Opr reg = rlock_result(x);
1268   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1269 }
1270 
1271 
1272 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1273   assert(x->number_of_arguments() == 1, "wrong type");
1274   LIRItem receiver(x->argument_at(0), this);
1275 
1276   receiver.load_item();
1277   BasicTypeList signature;
1278   signature.append(T_OBJECT); // receiver
1279   LIR_OprList* args = new LIR_OprList();
1280   args->append(receiver.result());
1281   CodeEmitInfo* info = state_for(x, x->state());
1282   call_runtime(&signature, args,
1283                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1284                voidType, info);
1285 
1286   set_no_result(x);
1287 }
1288 
1289 
1290 //------------------------local access--------------------------------------
1291 
1292 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1293   if (x->operand()->is_illegal()) {
1294     Constant* c = x->as_Constant();
1295     if (c != NULL) {
1296       x->set_operand(LIR_OprFact::value_type(c->type()));
1297     } else {
1298       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1299       // allocate a virtual register for this local or phi
1300       x->set_operand(rlock(x));
1301       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1302     }
1303   }
1304   return x->operand();
1305 }
1306 
1307 
1308 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1309   if (opr->is_virtual()) {
1310     return instruction_for_vreg(opr->vreg_number());
1311   }
1312   return NULL;
1313 }
1314 
1315 
1316 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1317   if (reg_num < _instruction_for_operand.length()) {
1318     return _instruction_for_operand.at(reg_num);
1319   }
1320   return NULL;
1321 }
1322 
1323 
1324 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1325   if (_vreg_flags.size_in_bits() == 0) {
1326     BitMap2D temp(100, num_vreg_flags);
1327     temp.clear();
1328     _vreg_flags = temp;
1329   }
1330   _vreg_flags.at_put_grow(vreg_num, f, true);
1331 }
1332 
1333 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1334   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1335     return false;
1336   }
1337   return _vreg_flags.at(vreg_num, f);
1338 }
1339 
1340 
1341 // Block local constant handling.  This code is useful for keeping
1342 // unpinned constants and constants which aren't exposed in the IR in
1343 // registers.  Unpinned Constant instructions have their operands
1344 // cleared when the block is finished so that other blocks can't end
1345 // up referring to their registers.
1346 
1347 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1348   assert(!x->is_pinned(), "only for unpinned constants");
1349   _unpinned_constants.append(x);
1350   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1351 }
1352 
1353 
1354 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1355   BasicType t = c->type();
1356   for (int i = 0; i < _constants.length(); i++) {
1357     LIR_Const* other = _constants.at(i);
1358     if (t == other->type()) {
1359       switch (t) {
1360       case T_INT:
1361       case T_FLOAT:
1362         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1363         break;
1364       case T_LONG:
1365       case T_DOUBLE:
1366         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1367         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1368         break;
1369       case T_OBJECT:
1370         if (c->as_jobject() != other->as_jobject()) continue;
1371         break;
1372       }
1373       return _reg_for_constants.at(i);
1374     }
1375   }
1376 
1377   LIR_Opr result = new_register(t);
1378   __ move((LIR_Opr)c, result);
1379   _constants.append(c);
1380   _reg_for_constants.append(result);
1381   return result;
1382 }
1383 
1384 // Various barriers
1385 
1386 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1387                                bool do_load, bool patch, CodeEmitInfo* info) {
1388   // Do the pre-write barrier, if any.
1389   switch (_bs->kind()) {
1390 #ifndef SERIALGC
1391     case BarrierSet::G1SATBCT:
1392     case BarrierSet::G1SATBCTLogging:
1393       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1394       break;
1395 #endif // SERIALGC
1396     case BarrierSet::CardTableModRef:
1397     case BarrierSet::CardTableExtension:
1398       // No pre barriers
1399       break;
1400     case BarrierSet::ModRef:
1401     case BarrierSet::Other:
1402       // No pre barriers
1403       break;
1404     default      :
1405       ShouldNotReachHere();
1406 
1407   }
1408 }
1409 
1410 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1411   switch (_bs->kind()) {
1412 #ifndef SERIALGC
1413     case BarrierSet::G1SATBCT:
1414     case BarrierSet::G1SATBCTLogging:
1415       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1416       break;
1417 #endif // SERIALGC
1418     case BarrierSet::CardTableModRef:
1419     case BarrierSet::CardTableExtension:
1420       CardTableModRef_post_barrier(addr,  new_val);
1421       break;
1422     case BarrierSet::ModRef:
1423     case BarrierSet::Other:
1424       // No post barriers
1425       break;
1426     default      :
1427       ShouldNotReachHere();
1428     }
1429 }
1430 
1431 ////////////////////////////////////////////////////////////////////////
1432 #ifndef SERIALGC
1433 
1434 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1435                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1436   // First we test whether marking is in progress.
1437   BasicType flag_type;
1438   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1439     flag_type = T_INT;
1440   } else {
1441     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1442               "Assumption");
1443     flag_type = T_BYTE;
1444   }
1445   LIR_Opr thrd = getThreadPointer();
1446   LIR_Address* mark_active_flag_addr =
1447     new LIR_Address(thrd,
1448                     in_bytes(JavaThread::satb_mark_queue_offset() +
1449                              PtrQueue::byte_offset_of_active()),
1450                     flag_type);
1451   // Read the marking-in-progress flag.
1452   LIR_Opr flag_val = new_register(T_INT);
1453   __ load(mark_active_flag_addr, flag_val);
1454   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1455 
1456   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1457 
1458   CodeStub* slow;
1459 
1460   if (do_load) {
1461     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1462     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1463 
1464     if (patch)
1465       pre_val_patch_code = lir_patch_normal;
1466 
1467     pre_val = new_register(T_OBJECT);
1468 
1469     if (!addr_opr->is_address()) {
1470       assert(addr_opr->is_register(), "must be");
1471       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1472     }
1473     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1474   } else {
1475     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1476     assert(pre_val->is_register(), "must be");
1477     assert(pre_val->type() == T_OBJECT, "must be an object");
1478     assert(info == NULL, "sanity");
1479 
1480     slow = new G1PreBarrierStub(pre_val);
1481   }
1482 
1483   __ branch(lir_cond_notEqual, T_INT, slow);
1484   __ branch_destination(slow->continuation());
1485 }
1486 
1487 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1488   // If the "new_val" is a constant NULL, no barrier is necessary.
1489   if (new_val->is_constant() &&
1490       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1491 
1492   if (!new_val->is_register()) {
1493     LIR_Opr new_val_reg = new_register(T_OBJECT);
1494     if (new_val->is_constant()) {
1495       __ move(new_val, new_val_reg);
1496     } else {
1497       __ leal(new_val, new_val_reg);
1498     }
1499     new_val = new_val_reg;
1500   }
1501   assert(new_val->is_register(), "must be a register at this point");
1502 
1503   if (addr->is_address()) {
1504     LIR_Address* address = addr->as_address_ptr();
1505     LIR_Opr ptr = new_pointer_register();
1506     if (!address->index()->is_valid() && address->disp() == 0) {
1507       __ move(address->base(), ptr);
1508     } else {
1509       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1510       __ leal(addr, ptr);
1511     }
1512     addr = ptr;
1513   }
1514   assert(addr->is_register(), "must be a register at this point");
1515 
1516   LIR_Opr xor_res = new_pointer_register();
1517   LIR_Opr xor_shift_res = new_pointer_register();
1518   if (TwoOperandLIRForm ) {
1519     __ move(addr, xor_res);
1520     __ logical_xor(xor_res, new_val, xor_res);
1521     __ move(xor_res, xor_shift_res);
1522     __ unsigned_shift_right(xor_shift_res,
1523                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1524                             xor_shift_res,
1525                             LIR_OprDesc::illegalOpr());
1526   } else {
1527     __ logical_xor(addr, new_val, xor_res);
1528     __ unsigned_shift_right(xor_res,
1529                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1530                             xor_shift_res,
1531                             LIR_OprDesc::illegalOpr());
1532   }
1533 
1534   if (!new_val->is_register()) {
1535     LIR_Opr new_val_reg = new_register(T_OBJECT);
1536     __ leal(new_val, new_val_reg);
1537     new_val = new_val_reg;
1538   }
1539   assert(new_val->is_register(), "must be a register at this point");
1540 
1541   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1542 
1543   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1544   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1545   __ branch_destination(slow->continuation());
1546 }
1547 
1548 #endif // SERIALGC
1549 ////////////////////////////////////////////////////////////////////////
1550 
1551 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1552 
1553   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1554   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1555   if (addr->is_address()) {
1556     LIR_Address* address = addr->as_address_ptr();
1557     // ptr cannot be an object because we use this barrier for array card marks
1558     // and addr can point in the middle of an array.
1559     LIR_Opr ptr = new_pointer_register();
1560     if (!address->index()->is_valid() && address->disp() == 0) {
1561       __ move(address->base(), ptr);
1562     } else {
1563       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1564       __ leal(addr, ptr);
1565     }
1566     addr = ptr;
1567   }
1568   assert(addr->is_register(), "must be a register at this point");
1569 
1570 #ifdef ARM
1571   // TODO: ARM - move to platform-dependent code
1572   LIR_Opr tmp = FrameMap::R14_opr;
1573   if (VM_Version::supports_movw()) {
1574     __ move((LIR_Opr)card_table_base, tmp);
1575   } else {
1576     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1577   }
1578 
1579   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1580   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1581   if(((int)ct->byte_map_base & 0xff) == 0) {
1582     __ move(tmp, card_addr);
1583   } else {
1584     LIR_Opr tmp_zero = new_register(T_INT);
1585     __ move(LIR_OprFact::intConst(0), tmp_zero);
1586     __ move(tmp_zero, card_addr);
1587   }
1588 #else // ARM
1589   LIR_Opr tmp = new_pointer_register();
1590   if (TwoOperandLIRForm) {
1591     __ move(addr, tmp);
1592     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1593   } else {
1594     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1595   }
1596   if (can_inline_as_constant(card_table_base)) {
1597     __ move(LIR_OprFact::intConst(0),
1598               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1599   } else {
1600     __ move(LIR_OprFact::intConst(0),
1601               new LIR_Address(tmp, load_constant(card_table_base),
1602                               T_BYTE));
1603   }
1604 #endif // ARM
1605 }
1606 
1607 
1608 //------------------------field access--------------------------------------
1609 
1610 // Comment copied form templateTable_i486.cpp
1611 // ----------------------------------------------------------------------------
1612 // Volatile variables demand their effects be made known to all CPU's in
1613 // order.  Store buffers on most chips allow reads & writes to reorder; the
1614 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1615 // memory barrier (i.e., it's not sufficient that the interpreter does not
1616 // reorder volatile references, the hardware also must not reorder them).
1617 //
1618 // According to the new Java Memory Model (JMM):
1619 // (1) All volatiles are serialized wrt to each other.
1620 // ALSO reads & writes act as aquire & release, so:
1621 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1622 // the read float up to before the read.  It's OK for non-volatile memory refs
1623 // that happen before the volatile read to float down below it.
1624 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1625 // that happen BEFORE the write float down to after the write.  It's OK for
1626 // non-volatile memory refs that happen after the volatile write to float up
1627 // before it.
1628 //
1629 // We only put in barriers around volatile refs (they are expensive), not
1630 // _between_ memory refs (that would require us to track the flavor of the
1631 // previous memory refs).  Requirements (2) and (3) require some barriers
1632 // before volatile stores and after volatile loads.  These nearly cover
1633 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1634 // case is placed after volatile-stores although it could just as well go
1635 // before volatile-loads.
1636 
1637 
1638 void LIRGenerator::do_StoreField(StoreField* x) {
1639   bool needs_patching = x->needs_patching();
1640   bool is_volatile = x->field()->is_volatile();
1641   BasicType field_type = x->field_type();
1642   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1643 
1644   CodeEmitInfo* info = NULL;
1645   if (needs_patching) {
1646     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1647     info = state_for(x, x->state_before());
1648   } else if (x->needs_null_check()) {
1649     NullCheck* nc = x->explicit_null_check();
1650     if (nc == NULL) {
1651       info = state_for(x);
1652     } else {
1653       info = state_for(nc);
1654     }
1655   }
1656 
1657 
1658   LIRItem object(x->obj(), this);
1659   LIRItem value(x->value(),  this);
1660 
1661   object.load_item();
1662 
1663   if (is_volatile || needs_patching) {
1664     // load item if field is volatile (fewer special cases for volatiles)
1665     // load item if field not initialized
1666     // load item if field not constant
1667     // because of code patching we cannot inline constants
1668     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1669       value.load_byte_item();
1670     } else  {
1671       value.load_item();
1672     }
1673   } else {
1674     value.load_for_store(field_type);
1675   }
1676 
1677   set_no_result(x);
1678 
1679 #ifndef PRODUCT
1680   if (PrintNotLoaded && needs_patching) {
1681     tty->print_cr("   ###class not loaded at store_%s bci %d",
1682                   x->is_static() ?  "static" : "field", x->printable_bci());
1683   }
1684 #endif
1685 
1686   if (x->needs_null_check() &&
1687       (needs_patching ||
1688        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1689     // emit an explicit null check because the offset is too large
1690     __ null_check(object.result(), new CodeEmitInfo(info));
1691   }
1692 
1693   LIR_Address* address;
1694   if (needs_patching) {
1695     // we need to patch the offset in the instruction so don't allow
1696     // generate_address to try to be smart about emitting the -1.
1697     // Otherwise the patching code won't know how to find the
1698     // instruction to patch.
1699     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1700   } else {
1701     address = generate_address(object.result(), x->offset(), field_type);
1702   }
1703 
1704   if (is_volatile && os::is_MP()) {
1705     __ membar_release();
1706   }
1707 
1708   if (is_oop) {
1709     // Do the pre-write barrier, if any.
1710     pre_barrier(LIR_OprFact::address(address),
1711                 LIR_OprFact::illegalOpr /* pre_val */,
1712                 true /* do_load*/,
1713                 needs_patching,
1714                 (info ? new CodeEmitInfo(info) : NULL));
1715   }
1716 
1717   if (is_volatile && !needs_patching) {
1718     volatile_field_store(value.result(), address, info);
1719   } else {
1720     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1721     __ store(value.result(), address, info, patch_code);
1722   }
1723 
1724   if (is_oop) {
1725     // Store to object so mark the card of the header
1726     post_barrier(object.result(), value.result());
1727   }
1728 
1729   if (is_volatile && os::is_MP()) {
1730     __ membar();
1731   }
1732 }
1733 
1734 
1735 void LIRGenerator::do_LoadField(LoadField* x) {
1736   bool needs_patching = x->needs_patching();
1737   bool is_volatile = x->field()->is_volatile();
1738   BasicType field_type = x->field_type();
1739 
1740   CodeEmitInfo* info = NULL;
1741   if (needs_patching) {
1742     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1743     info = state_for(x, x->state_before());
1744   } else if (x->needs_null_check()) {
1745     NullCheck* nc = x->explicit_null_check();
1746     if (nc == NULL) {
1747       info = state_for(x);
1748     } else {
1749       info = state_for(nc);
1750     }
1751   }
1752 
1753   LIRItem object(x->obj(), this);
1754 
1755   object.load_item();
1756 
1757 #ifndef PRODUCT
1758   if (PrintNotLoaded && needs_patching) {
1759     tty->print_cr("   ###class not loaded at load_%s bci %d",
1760                   x->is_static() ?  "static" : "field", x->printable_bci());
1761   }
1762 #endif
1763 
1764   if (x->needs_null_check() &&
1765       (needs_patching ||
1766        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1767     // emit an explicit null check because the offset is too large
1768     __ null_check(object.result(), new CodeEmitInfo(info));
1769   }
1770 
1771   LIR_Opr reg = rlock_result(x, field_type);
1772   LIR_Address* address;
1773   if (needs_patching) {
1774     // we need to patch the offset in the instruction so don't allow
1775     // generate_address to try to be smart about emitting the -1.
1776     // Otherwise the patching code won't know how to find the
1777     // instruction to patch.
1778     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1779   } else {
1780     address = generate_address(object.result(), x->offset(), field_type);
1781   }
1782 
1783   if (is_volatile && !needs_patching) {
1784     volatile_field_load(address, reg, info);
1785   } else {
1786     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1787     __ load(address, reg, info, patch_code);
1788   }
1789 
1790   if (is_volatile && os::is_MP()) {
1791     __ membar_acquire();
1792   }
1793 }
1794 
1795 
1796 //------------------------java.nio.Buffer.checkIndex------------------------
1797 
1798 // int java.nio.Buffer.checkIndex(int)
1799 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1800   // NOTE: by the time we are in checkIndex() we are guaranteed that
1801   // the buffer is non-null (because checkIndex is package-private and
1802   // only called from within other methods in the buffer).
1803   assert(x->number_of_arguments() == 2, "wrong type");
1804   LIRItem buf  (x->argument_at(0), this);
1805   LIRItem index(x->argument_at(1), this);
1806   buf.load_item();
1807   index.load_item();
1808 
1809   LIR_Opr result = rlock_result(x);
1810   if (GenerateRangeChecks) {
1811     CodeEmitInfo* info = state_for(x);
1812     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1813     if (index.result()->is_constant()) {
1814       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1815       __ branch(lir_cond_belowEqual, T_INT, stub);
1816     } else {
1817       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1818                   java_nio_Buffer::limit_offset(), T_INT, info);
1819       __ branch(lir_cond_aboveEqual, T_INT, stub);
1820     }
1821     __ move(index.result(), result);
1822   } else {
1823     // Just load the index into the result register
1824     __ move(index.result(), result);
1825   }
1826 }
1827 
1828 
1829 //------------------------array access--------------------------------------
1830 
1831 
1832 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1833   LIRItem array(x->array(), this);
1834   array.load_item();
1835   LIR_Opr reg = rlock_result(x);
1836 
1837   CodeEmitInfo* info = NULL;
1838   if (x->needs_null_check()) {
1839     NullCheck* nc = x->explicit_null_check();
1840     if (nc == NULL) {
1841       info = state_for(x);
1842     } else {
1843       info = state_for(nc);
1844     }
1845   }
1846   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1847 }
1848 
1849 
1850 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1851   bool use_length = x->length() != NULL;
1852   LIRItem array(x->array(), this);
1853   LIRItem index(x->index(), this);
1854   LIRItem length(this);
1855   bool needs_range_check = true;
1856 
1857   if (use_length) {
1858     needs_range_check = x->compute_needs_range_check();
1859     if (needs_range_check) {
1860       length.set_instruction(x->length());
1861       length.load_item();
1862     }
1863   }
1864 
1865   array.load_item();
1866   if (index.is_constant() && can_inline_as_constant(x->index())) {
1867     // let it be a constant
1868     index.dont_load_item();
1869   } else {
1870     index.load_item();
1871   }
1872 
1873   CodeEmitInfo* range_check_info = state_for(x);
1874   CodeEmitInfo* null_check_info = NULL;
1875   if (x->needs_null_check()) {
1876     NullCheck* nc = x->explicit_null_check();
1877     if (nc != NULL) {
1878       null_check_info = state_for(nc);
1879     } else {
1880       null_check_info = range_check_info;
1881     }
1882   }
1883 
1884   // emit array address setup early so it schedules better
1885   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1886 
1887   if (GenerateRangeChecks && needs_range_check) {
1888     if (use_length) {
1889       // TODO: use a (modified) version of array_range_check that does not require a
1890       //       constant length to be loaded to a register
1891       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1892       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1893     } else {
1894       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1895       // The range check performs the null check, so clear it out for the load
1896       null_check_info = NULL;
1897     }
1898   }
1899 
1900   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1901 }
1902 
1903 
1904 void LIRGenerator::do_NullCheck(NullCheck* x) {
1905   if (x->can_trap()) {
1906     LIRItem value(x->obj(), this);
1907     value.load_item();
1908     CodeEmitInfo* info = state_for(x);
1909     __ null_check(value.result(), info);
1910   }
1911 }
1912 
1913 
1914 void LIRGenerator::do_Throw(Throw* x) {
1915   LIRItem exception(x->exception(), this);
1916   exception.load_item();
1917   set_no_result(x);
1918   LIR_Opr exception_opr = exception.result();
1919   CodeEmitInfo* info = state_for(x, x->state());
1920 
1921 #ifndef PRODUCT
1922   if (PrintC1Statistics) {
1923     increment_counter(Runtime1::throw_count_address(), T_INT);
1924   }
1925 #endif
1926 
1927   // check if the instruction has an xhandler in any of the nested scopes
1928   bool unwind = false;
1929   if (info->exception_handlers()->length() == 0) {
1930     // this throw is not inside an xhandler
1931     unwind = true;
1932   } else {
1933     // get some idea of the throw type
1934     bool type_is_exact = true;
1935     ciType* throw_type = x->exception()->exact_type();
1936     if (throw_type == NULL) {
1937       type_is_exact = false;
1938       throw_type = x->exception()->declared_type();
1939     }
1940     if (throw_type != NULL && throw_type->is_instance_klass()) {
1941       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1942       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1943     }
1944   }
1945 
1946   // do null check before moving exception oop into fixed register
1947   // to avoid a fixed interval with an oop during the null check.
1948   // Use a copy of the CodeEmitInfo because debug information is
1949   // different for null_check and throw.
1950   if (GenerateCompilerNullChecks &&
1951       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1952     // if the exception object wasn't created using new then it might be null.
1953     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1954   }
1955 
1956   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1957     // we need to go through the exception lookup path to get JVMTI
1958     // notification done
1959     unwind = false;
1960   }
1961 
1962   // move exception oop into fixed register
1963   __ move(exception_opr, exceptionOopOpr());
1964 
1965   if (unwind) {
1966     __ unwind_exception(exceptionOopOpr());
1967   } else {
1968     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1969   }
1970 }
1971 
1972 
1973 void LIRGenerator::do_RoundFP(RoundFP* x) {
1974   LIRItem input(x->input(), this);
1975   input.load_item();
1976   LIR_Opr input_opr = input.result();
1977   assert(input_opr->is_register(), "why round if value is not in a register?");
1978   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1979   if (input_opr->is_single_fpu()) {
1980     set_result(x, round_item(input_opr)); // This code path not currently taken
1981   } else {
1982     LIR_Opr result = new_register(T_DOUBLE);
1983     set_vreg_flag(result, must_start_in_memory);
1984     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1985     set_result(x, result);
1986   }
1987 }
1988 
1989 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1990   LIRItem base(x->base(), this);
1991   LIRItem idx(this);
1992 
1993   base.load_item();
1994   if (x->has_index()) {
1995     idx.set_instruction(x->index());
1996     idx.load_nonconstant();
1997   }
1998 
1999   LIR_Opr reg = rlock_result(x, x->basic_type());
2000 
2001   int   log2_scale = 0;
2002   if (x->has_index()) {
2003     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2004     log2_scale = x->log2_scale();
2005   }
2006 
2007   assert(!x->has_index() || idx.value() == x->index(), "should match");
2008 
2009   LIR_Opr base_op = base.result();
2010 #ifndef _LP64
2011   if (x->base()->type()->tag() == longTag) {
2012     base_op = new_register(T_INT);
2013     __ convert(Bytecodes::_l2i, base.result(), base_op);
2014   } else {
2015     assert(x->base()->type()->tag() == intTag, "must be");
2016   }
2017 #endif
2018 
2019   BasicType dst_type = x->basic_type();
2020   LIR_Opr index_op = idx.result();
2021 
2022   LIR_Address* addr;
2023   if (index_op->is_constant()) {
2024     assert(log2_scale == 0, "must not have a scale");
2025     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2026   } else {
2027 #ifdef X86
2028 #ifdef _LP64
2029     if (!index_op->is_illegal() && index_op->type() == T_INT) {
2030       LIR_Opr tmp = new_pointer_register();
2031       __ convert(Bytecodes::_i2l, index_op, tmp);
2032       index_op = tmp;
2033     }
2034 #endif
2035     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2036 #elif defined(ARM)
2037     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2038 #else
2039     if (index_op->is_illegal() || log2_scale == 0) {
2040 #ifdef _LP64
2041       if (!index_op->is_illegal() && index_op->type() == T_INT) {
2042         LIR_Opr tmp = new_pointer_register();
2043         __ convert(Bytecodes::_i2l, index_op, tmp);
2044         index_op = tmp;
2045       }
2046 #endif
2047       addr = new LIR_Address(base_op, index_op, dst_type);
2048     } else {
2049       LIR_Opr tmp = new_pointer_register();
2050       __ shift_left(index_op, log2_scale, tmp);
2051       addr = new LIR_Address(base_op, tmp, dst_type);
2052     }
2053 #endif
2054   }
2055 
2056   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2057     __ unaligned_move(addr, reg);
2058   } else {
2059     if (dst_type == T_OBJECT && x->is_wide()) {
2060       __ move_wide(addr, reg);
2061     } else {
2062       __ move(addr, reg);
2063     }
2064   }
2065 }
2066 
2067 
2068 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2069   int  log2_scale = 0;
2070   BasicType type = x->basic_type();
2071 
2072   if (x->has_index()) {
2073     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2074     log2_scale = x->log2_scale();
2075   }
2076 
2077   LIRItem base(x->base(), this);
2078   LIRItem value(x->value(), this);
2079   LIRItem idx(this);
2080 
2081   base.load_item();
2082   if (x->has_index()) {
2083     idx.set_instruction(x->index());
2084     idx.load_item();
2085   }
2086 
2087   if (type == T_BYTE || type == T_BOOLEAN) {
2088     value.load_byte_item();
2089   } else {
2090     value.load_item();
2091   }
2092 
2093   set_no_result(x);
2094 
2095   LIR_Opr base_op = base.result();
2096 #ifndef _LP64
2097   if (x->base()->type()->tag() == longTag) {
2098     base_op = new_register(T_INT);
2099     __ convert(Bytecodes::_l2i, base.result(), base_op);
2100   } else {
2101     assert(x->base()->type()->tag() == intTag, "must be");
2102   }
2103 #endif
2104 
2105   LIR_Opr index_op = idx.result();
2106   if (log2_scale != 0) {
2107     // temporary fix (platform dependent code without shift on Intel would be better)
2108     index_op = new_pointer_register();
2109 #ifdef _LP64
2110     if(idx.result()->type() == T_INT) {
2111       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2112     } else {
2113 #endif
2114       // TODO: ARM also allows embedded shift in the address
2115       __ move(idx.result(), index_op);
2116 #ifdef _LP64
2117     }
2118 #endif
2119     __ shift_left(index_op, log2_scale, index_op);
2120   }
2121 #ifdef _LP64
2122   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2123     LIR_Opr tmp = new_pointer_register();
2124     __ convert(Bytecodes::_i2l, index_op, tmp);
2125     index_op = tmp;
2126   }
2127 #endif
2128 
2129   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2130   __ move(value.result(), addr);
2131 }
2132 
2133 
2134 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2135   BasicType type = x->basic_type();
2136   LIRItem src(x->object(), this);
2137   LIRItem off(x->offset(), this);
2138 
2139   off.load_item();
2140   src.load_item();
2141 
2142   LIR_Opr reg = rlock_result(x, x->basic_type());
2143 
2144   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
2145 
2146 #ifndef SERIALGC
2147   // We might be reading the value of the referent field of a
2148   // Reference object in order to attach it back to the live
2149   // object graph. If G1 is enabled then we need to record
2150   // the value that is being returned in an SATB log buffer.
2151   //
2152   // We need to generate code similar to the following...
2153   //
2154   // if (offset == java_lang_ref_Reference::referent_offset) {
2155   //   if (src != NULL) {
2156   //     if (klass(src)->reference_type() != REF_NONE) {
2157   //       pre_barrier(..., reg, ...);
2158   //     }
2159   //   }
2160   // }
2161   //
2162   // The first non-constant check of either the offset or
2163   // the src operand will be done here; the remainder
2164   // will take place in the generated code stub.
2165 
2166   if (UseG1GC && type == T_OBJECT) {
2167     bool gen_code_stub = true;       // Assume we need to generate the slow code stub.
2168     bool gen_offset_check = true;       // Assume the code stub has to generate the offset guard.
2169     bool gen_source_check = true;       // Assume the code stub has to check the src object for null.
2170 
2171     if (off.is_constant()) {
2172       jlong off_con = (off.type()->is_int() ?
2173                         (jlong) off.get_jint_constant() :
2174                         off.get_jlong_constant());
2175 
2176 
2177       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2178         // The constant offset is something other than referent_offset.
2179         // We can skip generating/checking the remaining guards and
2180         // skip generation of the code stub.
2181         gen_code_stub = false;
2182       } else {
2183         // The constant offset is the same as referent_offset -
2184         // we do not need to generate a runtime offset check.
2185         gen_offset_check = false;
2186       }
2187     }
2188 
2189     // We don't need to generate stub if the source object is an array
2190     if (gen_code_stub && src.type()->is_array()) {
2191       gen_code_stub = false;
2192     }
2193 
2194     if (gen_code_stub) {
2195       // We still need to continue with the checks.
2196       if (src.is_constant()) {
2197         ciObject* src_con = src.get_jobject_constant();
2198 
2199         if (src_con->is_null_object()) {
2200           // The constant src object is null - We can skip
2201           // generating the code stub.
2202           gen_code_stub = false;
2203         } else {
2204           // Non-null constant source object. We still have to generate
2205           // the slow stub - but we don't need to generate the runtime
2206           // null object check.
2207           gen_source_check = false;
2208         }
2209       }
2210     }
2211 
2212     if (gen_code_stub) {
2213       // Temoraries.
2214       LIR_Opr src_klass = new_register(T_OBJECT);
2215 
2216       // Get the thread pointer for the pre-barrier
2217       LIR_Opr thread = getThreadPointer();
2218 
2219       CodeStub* stub;
2220 
2221       // We can have generate one runtime check here. Let's start with
2222       // the offset check.
2223       if (gen_offset_check) {
2224         // if (offset == referent_offset) -> slow code stub
2225         // If offset is an int then we can do the comparison with the
2226         // referent_offset constant; otherwise we need to move
2227         // referent_offset into a temporary register and generate
2228         // a reg-reg compare.
2229 
2230         LIR_Opr referent_off;
2231 
2232         if (off.type()->is_int()) {
2233           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2234         } else {
2235           assert(off.type()->is_long(), "what else?");
2236           referent_off = new_register(T_LONG);
2237           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2238         }
2239 
2240         __ cmp(lir_cond_equal, off.result(), referent_off);
2241 
2242         // Optionally generate "src == null" check.
2243         stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
2244                                                     src_klass, thread,
2245                                                     gen_source_check);
2246 
2247         __ branch(lir_cond_equal, as_BasicType(off.type()), stub);
2248       } else {
2249         if (gen_source_check) {
2250           // offset is a const and equals referent offset
2251           // if (source != null) -> slow code stub
2252           __ cmp(lir_cond_notEqual, src.result(), LIR_OprFact::oopConst(NULL));
2253 
2254           // Since we are generating the "if src == null" guard here,
2255           // there is no need to generate the "src == null" check again.
2256           stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
2257                                                     src_klass, thread,
2258                                                     false);
2259 
2260           __ branch(lir_cond_notEqual, T_OBJECT, stub);
2261         } else {
2262           // We have statically determined that offset == referent_offset
2263           // && src != null so we unconditionally branch to code stub
2264           // to perform the guards and record reg in the SATB log buffer.
2265 
2266           stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
2267                                                     src_klass, thread,
2268                                                     false);
2269 
2270           __ branch(lir_cond_always, T_ILLEGAL, stub);
2271         }
2272       }
2273 
2274       // Continuation point
2275       __ branch_destination(stub->continuation());
2276     }
2277   }
2278 #endif // SERIALGC
2279 
2280   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2281 }
2282 
2283 
2284 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2285   BasicType type = x->basic_type();
2286   LIRItem src(x->object(), this);
2287   LIRItem off(x->offset(), this);
2288   LIRItem data(x->value(), this);
2289 
2290   src.load_item();
2291   if (type == T_BOOLEAN || type == T_BYTE) {
2292     data.load_byte_item();
2293   } else {
2294     data.load_item();
2295   }
2296   off.load_item();
2297 
2298   set_no_result(x);
2299 
2300   if (x->is_volatile() && os::is_MP()) __ membar_release();
2301   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2302   if (x->is_volatile() && os::is_MP()) __ membar();
2303 }
2304 
2305 
2306 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2307   LIRItem src(x->object(), this);
2308   LIRItem off(x->offset(), this);
2309 
2310   src.load_item();
2311   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2312     // let it be a constant
2313     off.dont_load_item();
2314   } else {
2315     off.load_item();
2316   }
2317 
2318   set_no_result(x);
2319 
2320   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2321   __ prefetch(addr, is_store);
2322 }
2323 
2324 
2325 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2326   do_UnsafePrefetch(x, false);
2327 }
2328 
2329 
2330 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2331   do_UnsafePrefetch(x, true);
2332 }
2333 
2334 
2335 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2336   int lng = x->length();
2337 
2338   for (int i = 0; i < lng; i++) {
2339     SwitchRange* one_range = x->at(i);
2340     int low_key = one_range->low_key();
2341     int high_key = one_range->high_key();
2342     BlockBegin* dest = one_range->sux();
2343     if (low_key == high_key) {
2344       __ cmp(lir_cond_equal, value, low_key);
2345       __ branch(lir_cond_equal, T_INT, dest);
2346     } else if (high_key - low_key == 1) {
2347       __ cmp(lir_cond_equal, value, low_key);
2348       __ branch(lir_cond_equal, T_INT, dest);
2349       __ cmp(lir_cond_equal, value, high_key);
2350       __ branch(lir_cond_equal, T_INT, dest);
2351     } else {
2352       LabelObj* L = new LabelObj();
2353       __ cmp(lir_cond_less, value, low_key);
2354       __ branch(lir_cond_less, L->label());
2355       __ cmp(lir_cond_lessEqual, value, high_key);
2356       __ branch(lir_cond_lessEqual, T_INT, dest);
2357       __ branch_destination(L->label());
2358     }
2359   }
2360   __ jump(default_sux);
2361 }
2362 
2363 
2364 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2365   SwitchRangeList* res = new SwitchRangeList();
2366   int len = x->length();
2367   if (len > 0) {
2368     BlockBegin* sux = x->sux_at(0);
2369     int key = x->lo_key();
2370     BlockBegin* default_sux = x->default_sux();
2371     SwitchRange* range = new SwitchRange(key, sux);
2372     for (int i = 0; i < len; i++, key++) {
2373       BlockBegin* new_sux = x->sux_at(i);
2374       if (sux == new_sux) {
2375         // still in same range
2376         range->set_high_key(key);
2377       } else {
2378         // skip tests which explicitly dispatch to the default
2379         if (sux != default_sux) {
2380           res->append(range);
2381         }
2382         range = new SwitchRange(key, new_sux);
2383       }
2384       sux = new_sux;
2385     }
2386     if (res->length() == 0 || res->last() != range)  res->append(range);
2387   }
2388   return res;
2389 }
2390 
2391 
2392 // we expect the keys to be sorted by increasing value
2393 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2394   SwitchRangeList* res = new SwitchRangeList();
2395   int len = x->length();
2396   if (len > 0) {
2397     BlockBegin* default_sux = x->default_sux();
2398     int key = x->key_at(0);
2399     BlockBegin* sux = x->sux_at(0);
2400     SwitchRange* range = new SwitchRange(key, sux);
2401     for (int i = 1; i < len; i++) {
2402       int new_key = x->key_at(i);
2403       BlockBegin* new_sux = x->sux_at(i);
2404       if (key+1 == new_key && sux == new_sux) {
2405         // still in same range
2406         range->set_high_key(new_key);
2407       } else {
2408         // skip tests which explicitly dispatch to the default
2409         if (range->sux() != default_sux) {
2410           res->append(range);
2411         }
2412         range = new SwitchRange(new_key, new_sux);
2413       }
2414       key = new_key;
2415       sux = new_sux;
2416     }
2417     if (res->length() == 0 || res->last() != range)  res->append(range);
2418   }
2419   return res;
2420 }
2421 
2422 
2423 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2424   LIRItem tag(x->tag(), this);
2425   tag.load_item();
2426   set_no_result(x);
2427 
2428   if (x->is_safepoint()) {
2429     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2430   }
2431 
2432   // move values into phi locations
2433   move_to_phi(x->state());
2434 
2435   int lo_key = x->lo_key();
2436   int hi_key = x->hi_key();
2437   int len = x->length();
2438   LIR_Opr value = tag.result();
2439   if (UseTableRanges) {
2440     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2441   } else {
2442     for (int i = 0; i < len; i++) {
2443       __ cmp(lir_cond_equal, value, i + lo_key);
2444       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2445     }
2446     __ jump(x->default_sux());
2447   }
2448 }
2449 
2450 
2451 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2452   LIRItem tag(x->tag(), this);
2453   tag.load_item();
2454   set_no_result(x);
2455 
2456   if (x->is_safepoint()) {
2457     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2458   }
2459 
2460   // move values into phi locations
2461   move_to_phi(x->state());
2462 
2463   LIR_Opr value = tag.result();
2464   if (UseTableRanges) {
2465     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2466   } else {
2467     int len = x->length();
2468     for (int i = 0; i < len; i++) {
2469       __ cmp(lir_cond_equal, value, x->key_at(i));
2470       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2471     }
2472     __ jump(x->default_sux());
2473   }
2474 }
2475 
2476 
2477 void LIRGenerator::do_Goto(Goto* x) {
2478   set_no_result(x);
2479 
2480   if (block()->next()->as_OsrEntry()) {
2481     // need to free up storage used for OSR entry point
2482     LIR_Opr osrBuffer = block()->next()->operand();
2483     BasicTypeList signature;
2484     signature.append(T_INT);
2485     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2486     __ move(osrBuffer, cc->args()->at(0));
2487     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2488                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2489   }
2490 
2491   if (x->is_safepoint()) {
2492     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2493 
2494     // increment backedge counter if needed
2495     CodeEmitInfo* info = state_for(x, state);
2496     increment_backedge_counter(info, x->profiled_bci());
2497     CodeEmitInfo* safepoint_info = state_for(x, state);
2498     __ safepoint(safepoint_poll_register(), safepoint_info);
2499   }
2500 
2501   // Gotos can be folded Ifs, handle this case.
2502   if (x->should_profile()) {
2503     ciMethod* method = x->profiled_method();
2504     assert(method != NULL, "method should be set if branch is profiled");
2505     ciMethodData* md = method->method_data_or_null();
2506     assert(md != NULL, "Sanity");
2507     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2508     assert(data != NULL, "must have profiling data");
2509     int offset;
2510     if (x->direction() == Goto::taken) {
2511       assert(data->is_BranchData(), "need BranchData for two-way branches");
2512       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2513     } else if (x->direction() == Goto::not_taken) {
2514       assert(data->is_BranchData(), "need BranchData for two-way branches");
2515       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2516     } else {
2517       assert(data->is_JumpData(), "need JumpData for branches");
2518       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2519     }
2520     LIR_Opr md_reg = new_register(T_OBJECT);
2521     __ oop2reg(md->constant_encoding(), md_reg);
2522 
2523     increment_counter(new LIR_Address(md_reg, offset,
2524                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2525   }
2526 
2527   // emit phi-instruction move after safepoint since this simplifies
2528   // describing the state as the safepoint.
2529   move_to_phi(x->state());
2530 
2531   __ jump(x->default_sux());
2532 }
2533 
2534 
2535 void LIRGenerator::do_Base(Base* x) {
2536   __ std_entry(LIR_OprFact::illegalOpr);
2537   // Emit moves from physical registers / stack slots to virtual registers
2538   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2539   IRScope* irScope = compilation()->hir()->top_scope();
2540   int java_index = 0;
2541   for (int i = 0; i < args->length(); i++) {
2542     LIR_Opr src = args->at(i);
2543     assert(!src->is_illegal(), "check");
2544     BasicType t = src->type();
2545 
2546     // Types which are smaller than int are passed as int, so
2547     // correct the type which passed.
2548     switch (t) {
2549     case T_BYTE:
2550     case T_BOOLEAN:
2551     case T_SHORT:
2552     case T_CHAR:
2553       t = T_INT;
2554       break;
2555     }
2556 
2557     LIR_Opr dest = new_register(t);
2558     __ move(src, dest);
2559 
2560     // Assign new location to Local instruction for this local
2561     Local* local = x->state()->local_at(java_index)->as_Local();
2562     assert(local != NULL, "Locals for incoming arguments must have been created");
2563 #ifndef __SOFTFP__
2564     // The java calling convention passes double as long and float as int.
2565     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2566 #endif // __SOFTFP__
2567     local->set_operand(dest);
2568     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2569     java_index += type2size[t];
2570   }
2571 
2572   if (compilation()->env()->dtrace_method_probes()) {
2573     BasicTypeList signature;
2574     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2575     signature.append(T_OBJECT); // methodOop
2576     LIR_OprList* args = new LIR_OprList();
2577     args->append(getThreadPointer());
2578     LIR_Opr meth = new_register(T_OBJECT);
2579     __ oop2reg(method()->constant_encoding(), meth);
2580     args->append(meth);
2581     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2582   }
2583 
2584   if (method()->is_synchronized()) {
2585     LIR_Opr obj;
2586     if (method()->is_static()) {
2587       obj = new_register(T_OBJECT);
2588       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2589     } else {
2590       Local* receiver = x->state()->local_at(0)->as_Local();
2591       assert(receiver != NULL, "must already exist");
2592       obj = receiver->operand();
2593     }
2594     assert(obj->is_valid(), "must be valid");
2595 
2596     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2597       LIR_Opr lock = new_register(T_INT);
2598       __ load_stack_address_monitor(0, lock);
2599 
2600       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2601       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2602 
2603       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2604       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2605     }
2606   }
2607 
2608   // increment invocation counters if needed
2609   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2610     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2611     increment_invocation_counter(info);
2612   }
2613 
2614   // all blocks with a successor must end with an unconditional jump
2615   // to the successor even if they are consecutive
2616   __ jump(x->default_sux());
2617 }
2618 
2619 
2620 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2621   // construct our frame and model the production of incoming pointer
2622   // to the OSR buffer.
2623   __ osr_entry(LIR_Assembler::osrBufferPointer());
2624   LIR_Opr result = rlock_result(x);
2625   __ move(LIR_Assembler::osrBufferPointer(), result);
2626 }
2627 
2628 
2629 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2630   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2631   for (; i < args->length(); i++) {
2632     LIRItem* param = args->at(i);
2633     LIR_Opr loc = arg_list->at(i);
2634     if (loc->is_register()) {
2635       param->load_item_force(loc);
2636     } else {
2637       LIR_Address* addr = loc->as_address_ptr();
2638       param->load_for_store(addr->type());
2639       if (addr->type() == T_OBJECT) {
2640         __ move_wide(param->result(), addr);
2641       } else
2642         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2643           __ unaligned_move(param->result(), addr);
2644         } else {
2645           __ move(param->result(), addr);
2646         }
2647     }
2648   }
2649 
2650   if (x->has_receiver()) {
2651     LIRItem* receiver = args->at(0);
2652     LIR_Opr loc = arg_list->at(0);
2653     if (loc->is_register()) {
2654       receiver->load_item_force(loc);
2655     } else {
2656       assert(loc->is_address(), "just checking");
2657       receiver->load_for_store(T_OBJECT);
2658       __ move_wide(receiver->result(), loc->as_address_ptr());
2659     }
2660   }
2661 }
2662 
2663 
2664 // Visits all arguments, returns appropriate items without loading them
2665 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2666   LIRItemList* argument_items = new LIRItemList();
2667   if (x->has_receiver()) {
2668     LIRItem* receiver = new LIRItem(x->receiver(), this);
2669     argument_items->append(receiver);
2670   }
2671   if (x->is_invokedynamic()) {
2672     // Insert a dummy for the synthetic MethodHandle argument.
2673     argument_items->append(NULL);
2674   }
2675   int idx = x->has_receiver() ? 1 : 0;
2676   for (int i = 0; i < x->number_of_arguments(); i++) {
2677     LIRItem* param = new LIRItem(x->argument_at(i), this);
2678     argument_items->append(param);
2679     idx += (param->type()->is_double_word() ? 2 : 1);
2680   }
2681   return argument_items;
2682 }
2683 
2684 
2685 // The invoke with receiver has following phases:
2686 //   a) traverse and load/lock receiver;
2687 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2688 //   c) push receiver on stack
2689 //   d) load each of the items and push on stack
2690 //   e) unlock receiver
2691 //   f) move receiver into receiver-register %o0
2692 //   g) lock result registers and emit call operation
2693 //
2694 // Before issuing a call, we must spill-save all values on stack
2695 // that are in caller-save register. "spill-save" moves thos registers
2696 // either in a free callee-save register or spills them if no free
2697 // callee save register is available.
2698 //
2699 // The problem is where to invoke spill-save.
2700 // - if invoked between e) and f), we may lock callee save
2701 //   register in "spill-save" that destroys the receiver register
2702 //   before f) is executed
2703 // - if we rearange the f) to be earlier, by loading %o0, it
2704 //   may destroy a value on the stack that is currently in %o0
2705 //   and is waiting to be spilled
2706 // - if we keep the receiver locked while doing spill-save,
2707 //   we cannot spill it as it is spill-locked
2708 //
2709 void LIRGenerator::do_Invoke(Invoke* x) {
2710   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2711 
2712   LIR_OprList* arg_list = cc->args();
2713   LIRItemList* args = invoke_visit_arguments(x);
2714   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2715 
2716   // setup result register
2717   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2718   if (x->type() != voidType) {
2719     result_register = result_register_for(x->type());
2720   }
2721 
2722   CodeEmitInfo* info = state_for(x, x->state());
2723 
2724   // invokedynamics can deoptimize.
2725   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2726 
2727   invoke_load_arguments(x, args, arg_list);
2728 
2729   if (x->has_receiver()) {
2730     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2731     receiver = args->at(0)->result();
2732   }
2733 
2734   // emit invoke code
2735   bool optimized = x->target_is_loaded() && x->target_is_final();
2736   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2737 
2738   // JSR 292
2739   // Preserve the SP over MethodHandle call sites.
2740   ciMethod* target = x->target();
2741   if (target->is_method_handle_invoke()) {
2742     info->set_is_method_handle_invoke(true);
2743     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2744   }
2745 
2746   switch (x->code()) {
2747     case Bytecodes::_invokestatic:
2748       __ call_static(target, result_register,
2749                      SharedRuntime::get_resolve_static_call_stub(),
2750                      arg_list, info);
2751       break;
2752     case Bytecodes::_invokespecial:
2753     case Bytecodes::_invokevirtual:
2754     case Bytecodes::_invokeinterface:
2755       // for final target we still produce an inline cache, in order
2756       // to be able to call mixed mode
2757       if (x->code() == Bytecodes::_invokespecial || optimized) {
2758         __ call_opt_virtual(target, receiver, result_register,
2759                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2760                             arg_list, info);
2761       } else if (x->vtable_index() < 0) {
2762         __ call_icvirtual(target, receiver, result_register,
2763                           SharedRuntime::get_resolve_virtual_call_stub(),
2764                           arg_list, info);
2765       } else {
2766         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2767         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2768         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2769       }
2770       break;
2771     case Bytecodes::_invokedynamic: {
2772       ciBytecodeStream bcs(x->scope()->method());
2773       bcs.force_bci(x->state()->bci());
2774       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2775       ciCPCache* cpcache = bcs.get_cpcache();
2776 
2777       // Get CallSite offset from constant pool cache pointer.
2778       int index = bcs.get_method_index();
2779       size_t call_site_offset = cpcache->get_f1_offset(index);
2780 
2781       // If this invokedynamic call site hasn't been executed yet in
2782       // the interpreter, the CallSite object in the constant pool
2783       // cache is still null and we need to deoptimize.
2784       if (cpcache->is_f1_null_at(index)) {
2785         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2786         // clone all handlers.  This is handled transparently in other
2787         // places by the CodeEmitInfo cloning logic but is handled
2788         // specially here because a stub isn't being used.
2789         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2790 
2791         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2792         __ jump(deopt_stub);
2793       }
2794 
2795       // Use the receiver register for the synthetic MethodHandle
2796       // argument.
2797       receiver = LIR_Assembler::receiverOpr();
2798       LIR_Opr tmp = new_register(objectType);
2799 
2800       // Load CallSite object from constant pool cache.
2801       __ oop2reg(cpcache->constant_encoding(), tmp);
2802       __ move_wide(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2803 
2804       // Load target MethodHandle from CallSite object.
2805       __ load(new LIR_Address(tmp, java_lang_invoke_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2806 
2807       __ call_dynamic(target, receiver, result_register,
2808                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
2809                       arg_list, info);
2810       break;
2811     }
2812     default:
2813       ShouldNotReachHere();
2814       break;
2815   }
2816 
2817   // JSR 292
2818   // Restore the SP after MethodHandle call sites.
2819   if (target->is_method_handle_invoke()) {
2820     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2821   }
2822 
2823   if (x->type()->is_float() || x->type()->is_double()) {
2824     // Force rounding of results from non-strictfp when in strictfp
2825     // scope (or when we don't know the strictness of the callee, to
2826     // be safe.)
2827     if (method()->is_strict()) {
2828       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2829         result_register = round_item(result_register);
2830       }
2831     }
2832   }
2833 
2834   if (result_register->is_valid()) {
2835     LIR_Opr result = rlock_result(x);
2836     __ move(result_register, result);
2837   }
2838 }
2839 
2840 
2841 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2842   assert(x->number_of_arguments() == 1, "wrong type");
2843   LIRItem value       (x->argument_at(0), this);
2844   LIR_Opr reg = rlock_result(x);
2845   value.load_item();
2846   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2847   __ move(tmp, reg);
2848 }
2849 
2850 
2851 
2852 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2853 void LIRGenerator::do_IfOp(IfOp* x) {
2854 #ifdef ASSERT
2855   {
2856     ValueTag xtag = x->x()->type()->tag();
2857     ValueTag ttag = x->tval()->type()->tag();
2858     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2859     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2860     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2861   }
2862 #endif
2863 
2864   LIRItem left(x->x(), this);
2865   LIRItem right(x->y(), this);
2866   left.load_item();
2867   if (can_inline_as_constant(right.value())) {
2868     right.dont_load_item();
2869   } else {
2870     right.load_item();
2871   }
2872 
2873   LIRItem t_val(x->tval(), this);
2874   LIRItem f_val(x->fval(), this);
2875   t_val.dont_load_item();
2876   f_val.dont_load_item();
2877   LIR_Opr reg = rlock_result(x);
2878 
2879   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2880   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2881 }
2882 
2883 
2884 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2885   switch (x->id()) {
2886   case vmIntrinsics::_intBitsToFloat      :
2887   case vmIntrinsics::_doubleToRawLongBits :
2888   case vmIntrinsics::_longBitsToDouble    :
2889   case vmIntrinsics::_floatToRawIntBits   : {
2890     do_FPIntrinsics(x);
2891     break;
2892   }
2893 
2894   case vmIntrinsics::_currentTimeMillis: {
2895     assert(x->number_of_arguments() == 0, "wrong type");
2896     LIR_Opr reg = result_register_for(x->type());
2897     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2898                          reg, new LIR_OprList());
2899     LIR_Opr result = rlock_result(x);
2900     __ move(reg, result);
2901     break;
2902   }
2903 
2904   case vmIntrinsics::_nanoTime: {
2905     assert(x->number_of_arguments() == 0, "wrong type");
2906     LIR_Opr reg = result_register_for(x->type());
2907     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2908                          reg, new LIR_OprList());
2909     LIR_Opr result = rlock_result(x);
2910     __ move(reg, result);
2911     break;
2912   }
2913 
2914   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2915   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2916   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2917 
2918   case vmIntrinsics::_dlog:           // fall through
2919   case vmIntrinsics::_dlog10:         // fall through
2920   case vmIntrinsics::_dabs:           // fall through
2921   case vmIntrinsics::_dsqrt:          // fall through
2922   case vmIntrinsics::_dtan:           // fall through
2923   case vmIntrinsics::_dsin :          // fall through
2924   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2925   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2926 
2927   // java.nio.Buffer.checkIndex
2928   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2929 
2930   case vmIntrinsics::_compareAndSwapObject:
2931     do_CompareAndSwap(x, objectType);
2932     break;
2933   case vmIntrinsics::_compareAndSwapInt:
2934     do_CompareAndSwap(x, intType);
2935     break;
2936   case vmIntrinsics::_compareAndSwapLong:
2937     do_CompareAndSwap(x, longType);
2938     break;
2939 
2940     // sun.misc.AtomicLongCSImpl.attemptUpdate
2941   case vmIntrinsics::_attemptUpdate:
2942     do_AttemptUpdate(x);
2943     break;
2944 
2945   case vmIntrinsics::_Reference_get:
2946     do_Reference_get(x);
2947     break;
2948 
2949   default: ShouldNotReachHere(); break;
2950   }
2951 }
2952 
2953 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2954   // Need recv in a temporary register so it interferes with the other temporaries
2955   LIR_Opr recv = LIR_OprFact::illegalOpr;
2956   LIR_Opr mdo = new_register(T_OBJECT);
2957   // tmp is used to hold the counters on SPARC
2958   LIR_Opr tmp = new_pointer_register();
2959   if (x->recv() != NULL) {
2960     LIRItem value(x->recv(), this);
2961     value.load_item();
2962     recv = new_register(T_OBJECT);
2963     __ move(value.result(), recv);
2964   }
2965   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2966 }
2967 
2968 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
2969   // We can safely ignore accessors here, since c2 will inline them anyway,
2970   // accessors are also always mature.
2971   if (!x->inlinee()->is_accessor()) {
2972     CodeEmitInfo* info = state_for(x, x->state(), true);
2973     // Notify the runtime very infrequently only to take care of counter overflows
2974     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
2975   }
2976 }
2977 
2978 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
2979   int freq_log;
2980   int level = compilation()->env()->comp_level();
2981   if (level == CompLevel_limited_profile) {
2982     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
2983   } else if (level == CompLevel_full_profile) {
2984     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
2985   } else {
2986     ShouldNotReachHere();
2987   }
2988   // Increment the appropriate invocation/backedge counter and notify the runtime.
2989   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
2990 }
2991 
2992 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
2993                                                 ciMethod *method, int frequency,
2994                                                 int bci, bool backedge, bool notify) {
2995   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
2996   int level = _compilation->env()->comp_level();
2997   assert(level > CompLevel_simple, "Shouldn't be here");
2998 
2999   int offset = -1;
3000   LIR_Opr counter_holder = new_register(T_OBJECT);
3001   LIR_Opr meth;
3002   if (level == CompLevel_limited_profile) {
3003     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
3004                                  methodOopDesc::invocation_counter_offset());
3005     __ oop2reg(method->constant_encoding(), counter_holder);
3006     meth = counter_holder;
3007   } else if (level == CompLevel_full_profile) {
3008     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
3009                                  methodDataOopDesc::invocation_counter_offset());
3010     ciMethodData* md = method->method_data_or_null();
3011     assert(md != NULL, "Sanity");
3012     __ oop2reg(md->constant_encoding(), counter_holder);
3013     meth = new_register(T_OBJECT);
3014     __ oop2reg(method->constant_encoding(), meth);
3015   } else {
3016     ShouldNotReachHere();
3017   }
3018   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3019   LIR_Opr result = new_register(T_INT);
3020   __ load(counter, result);
3021   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3022   __ store(result, counter);
3023   if (notify) {
3024     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3025     __ logical_and(result, mask, result);
3026     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3027     // The bci for info can point to cmp for if's we want the if bci
3028     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3029     __ branch(lir_cond_equal, T_INT, overflow);
3030     __ branch_destination(overflow->continuation());
3031   }
3032 }
3033 
3034 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3035   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3036   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3037 
3038   if (x->pass_thread()) {
3039     signature->append(T_ADDRESS);
3040     args->append(getThreadPointer());
3041   }
3042 
3043   for (int i = 0; i < x->number_of_arguments(); i++) {
3044     Value a = x->argument_at(i);
3045     LIRItem* item = new LIRItem(a, this);
3046     item->load_item();
3047     args->append(item->result());
3048     signature->append(as_BasicType(a->type()));
3049   }
3050 
3051   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3052   if (x->type() == voidType) {
3053     set_no_result(x);
3054   } else {
3055     __ move(result, rlock_result(x));
3056   }
3057 }
3058 
3059 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3060   LIRItemList args(1);
3061   LIRItem value(arg1, this);
3062   args.append(&value);
3063   BasicTypeList signature;
3064   signature.append(as_BasicType(arg1->type()));
3065 
3066   return call_runtime(&signature, &args, entry, result_type, info);
3067 }
3068 
3069 
3070 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3071   LIRItemList args(2);
3072   LIRItem value1(arg1, this);
3073   LIRItem value2(arg2, this);
3074   args.append(&value1);
3075   args.append(&value2);
3076   BasicTypeList signature;
3077   signature.append(as_BasicType(arg1->type()));
3078   signature.append(as_BasicType(arg2->type()));
3079 
3080   return call_runtime(&signature, &args, entry, result_type, info);
3081 }
3082 
3083 
3084 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3085                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3086   // get a result register
3087   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3088   LIR_Opr result = LIR_OprFact::illegalOpr;
3089   if (result_type->tag() != voidTag) {
3090     result = new_register(result_type);
3091     phys_reg = result_register_for(result_type);
3092   }
3093 
3094   // move the arguments into the correct location
3095   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3096   assert(cc->length() == args->length(), "argument mismatch");
3097   for (int i = 0; i < args->length(); i++) {
3098     LIR_Opr arg = args->at(i);
3099     LIR_Opr loc = cc->at(i);
3100     if (loc->is_register()) {
3101       __ move(arg, loc);
3102     } else {
3103       LIR_Address* addr = loc->as_address_ptr();
3104 //           if (!can_store_as_constant(arg)) {
3105 //             LIR_Opr tmp = new_register(arg->type());
3106 //             __ move(arg, tmp);
3107 //             arg = tmp;
3108 //           }
3109       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3110         __ unaligned_move(arg, addr);
3111       } else {
3112         __ move(arg, addr);
3113       }
3114     }
3115   }
3116 
3117   if (info) {
3118     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3119   } else {
3120     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3121   }
3122   if (result->is_valid()) {
3123     __ move(phys_reg, result);
3124   }
3125   return result;
3126 }
3127 
3128 
3129 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3130                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3131   // get a result register
3132   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3133   LIR_Opr result = LIR_OprFact::illegalOpr;
3134   if (result_type->tag() != voidTag) {
3135     result = new_register(result_type);
3136     phys_reg = result_register_for(result_type);
3137   }
3138 
3139   // move the arguments into the correct location
3140   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3141 
3142   assert(cc->length() == args->length(), "argument mismatch");
3143   for (int i = 0; i < args->length(); i++) {
3144     LIRItem* arg = args->at(i);
3145     LIR_Opr loc = cc->at(i);
3146     if (loc->is_register()) {
3147       arg->load_item_force(loc);
3148     } else {
3149       LIR_Address* addr = loc->as_address_ptr();
3150       arg->load_for_store(addr->type());
3151       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3152         __ unaligned_move(arg->result(), addr);
3153       } else {
3154         __ move(arg->result(), addr);
3155       }
3156     }
3157   }
3158 
3159   if (info) {
3160     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3161   } else {
3162     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3163   }
3164   if (result->is_valid()) {
3165     __ move(phys_reg, result);
3166   }
3167   return result;
3168 }