1 /*
   2  * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  27 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  28 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
  29 #include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
  30 #include "gc_implementation/shared/mutableSpace.hpp"
  31 #include "memory/memRegion.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "oops/oop.psgc.inline.hpp"
  34 
  35 PSPromotionManager**         PSPromotionManager::_manager_array = NULL;
  36 OopStarTaskQueueSet*         PSPromotionManager::_stack_array_depth = NULL;
  37 PSOldGen*                    PSPromotionManager::_old_gen = NULL;
  38 MutableSpace*                PSPromotionManager::_young_space = NULL;
  39 
  40 void PSPromotionManager::initialize() {
  41   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  42   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  43 
  44   _old_gen = heap->old_gen();
  45   _young_space = heap->young_gen()->to_space();
  46 
  47   assert(_manager_array == NULL, "Attempt to initialize twice");
  48   _manager_array = NEW_C_HEAP_ARRAY(PSPromotionManager*, ParallelGCThreads+1 );
  49   guarantee(_manager_array != NULL, "Could not initialize promotion manager");
  50 
  51   _stack_array_depth = new OopStarTaskQueueSet(ParallelGCThreads);
  52   guarantee(_stack_array_depth != NULL, "Cound not initialize promotion manager");
  53 
  54   // Create and register the PSPromotionManager(s) for the worker threads.
  55   for(uint i=0; i<ParallelGCThreads; i++) {
  56     _manager_array[i] = new PSPromotionManager();
  57     guarantee(_manager_array[i] != NULL, "Could not create PSPromotionManager");
  58     stack_array_depth()->register_queue(i, _manager_array[i]->claimed_stack_depth());
  59   }
  60 
  61   // The VMThread gets its own PSPromotionManager, which is not available
  62   // for work stealing.
  63   _manager_array[ParallelGCThreads] = new PSPromotionManager();
  64   guarantee(_manager_array[ParallelGCThreads] != NULL, "Could not create PSPromotionManager");
  65 }
  66 
  67 PSPromotionManager* PSPromotionManager::gc_thread_promotion_manager(int index) {
  68   assert(index >= 0 && index < (int)ParallelGCThreads, "index out of range");
  69   assert(_manager_array != NULL, "Sanity");
  70   return _manager_array[index];
  71 }
  72 
  73 PSPromotionManager* PSPromotionManager::vm_thread_promotion_manager() {
  74   assert(_manager_array != NULL, "Sanity");
  75   return _manager_array[ParallelGCThreads];
  76 }
  77 
  78 void PSPromotionManager::pre_scavenge() {
  79   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  80   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  81 
  82   _young_space = heap->young_gen()->to_space();
  83 
  84   for(uint i=0; i<ParallelGCThreads+1; i++) {
  85     manager_array(i)->reset();
  86   }
  87 }
  88 
  89 void PSPromotionManager::post_scavenge() {
  90   TASKQUEUE_STATS_ONLY(if (PrintGCDetails && ParallelGCVerbose) print_stats());
  91   for (uint i = 0; i < ParallelGCThreads + 1; i++) {
  92     PSPromotionManager* manager = manager_array(i);
  93     assert(manager->claimed_stack_depth()->is_empty(), "should be empty");
  94     manager->flush_labs();
  95   }
  96 }
  97 
  98 #if TASKQUEUE_STATS
  99 void
 100 PSPromotionManager::print_taskqueue_stats(uint i) const {
 101   tty->print("%3u ", i);
 102   _claimed_stack_depth.stats.print();
 103   tty->cr();
 104 }
 105 
 106 void
 107 PSPromotionManager::print_local_stats(uint i) const {
 108   #define FMT " " SIZE_FORMAT_W(10)
 109   tty->print_cr("%3u" FMT FMT FMT FMT, i, _masked_pushes, _masked_steals,
 110                 _arrays_chunked, _array_chunks_processed);
 111   #undef FMT
 112 }
 113 
 114 static const char* const pm_stats_hdr[] = {
 115   "    --------masked-------     arrays      array",
 116   "thr       push      steal    chunked     chunks",
 117   "--- ---------- ---------- ---------- ----------"
 118 };
 119 
 120 void
 121 PSPromotionManager::print_stats() {
 122   tty->print_cr("== GC Tasks Stats, GC %3d",
 123                 Universe::heap()->total_collections());
 124 
 125   tty->print("thr "); TaskQueueStats::print_header(1); tty->cr();
 126   tty->print("--- "); TaskQueueStats::print_header(2); tty->cr();
 127   for (uint i = 0; i < ParallelGCThreads + 1; ++i) {
 128     manager_array(i)->print_taskqueue_stats(i);
 129   }
 130 
 131   const uint hlines = sizeof(pm_stats_hdr) / sizeof(pm_stats_hdr[0]);
 132   for (uint i = 0; i < hlines; ++i) tty->print_cr(pm_stats_hdr[i]);
 133   for (uint i = 0; i < ParallelGCThreads + 1; ++i) {
 134     manager_array(i)->print_local_stats(i);
 135   }
 136 }
 137 
 138 void
 139 PSPromotionManager::reset_stats() {
 140   claimed_stack_depth()->stats.reset();
 141   _masked_pushes = _masked_steals = 0;
 142   _arrays_chunked = _array_chunks_processed = 0;
 143 }
 144 #endif // TASKQUEUE_STATS
 145 
 146 PSPromotionManager::PSPromotionManager() {
 147   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 148   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 149 
 150   // We set the old lab's start array.
 151   _old_lab.set_start_array(old_gen()->start_array());
 152 
 153   uint queue_size;
 154   claimed_stack_depth()->initialize();
 155   queue_size = claimed_stack_depth()->max_elems();
 156 
 157   _totally_drain = (ParallelGCThreads == 1) || (GCDrainStackTargetSize == 0);
 158   if (_totally_drain) {
 159     _target_stack_size = 0;
 160   } else {
 161     // don't let the target stack size to be more than 1/4 of the entries
 162     _target_stack_size = (uint) MIN2((uint) GCDrainStackTargetSize,
 163                                      (uint) (queue_size / 4));
 164   }
 165 
 166   _array_chunk_size = ParGCArrayScanChunk;
 167   // let's choose 1.5x the chunk size
 168   _min_array_size_for_chunking = 3 * _array_chunk_size / 2;
 169 
 170   reset();
 171 }
 172 
 173 void PSPromotionManager::reset() {
 174   assert(stacks_empty(), "reset of non-empty stack");
 175 
 176   // We need to get an assert in here to make sure the labs are always flushed.
 177 
 178   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 179   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 180 
 181   // Do not prefill the LAB's, save heap wastage!
 182   HeapWord* lab_base = young_space()->top();
 183   _young_lab.initialize(MemRegion(lab_base, (size_t)0));
 184   _young_gen_is_full = false;
 185 
 186   lab_base = old_gen()->object_space()->top();
 187   _old_lab.initialize(MemRegion(lab_base, (size_t)0));
 188   _old_gen_is_full = false;
 189 
 190   TASKQUEUE_STATS_ONLY(reset_stats());
 191 }
 192 
 193 
 194 void PSPromotionManager::drain_stacks_depth(bool totally_drain) {
 195   totally_drain = totally_drain || _totally_drain;
 196 
 197 #ifdef ASSERT
 198   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 199   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 200   MutableSpace* to_space = heap->young_gen()->to_space();
 201   MutableSpace* old_space = heap->old_gen()->object_space();
 202   MutableSpace* perm_space = heap->perm_gen()->object_space();
 203 #endif /* ASSERT */
 204 
 205   OopStarTaskQueue* const tq = claimed_stack_depth();
 206   do {
 207     StarTask p;
 208 
 209     // Drain overflow stack first, so other threads can steal from
 210     // claimed stack while we work.
 211     while (tq->pop_overflow(p)) {
 212       process_popped_location_depth(p);
 213     }
 214 
 215     if (totally_drain) {
 216       while (tq->pop_local(p)) {
 217         process_popped_location_depth(p);
 218       }
 219     } else {
 220       while (tq->size() > _target_stack_size && tq->pop_local(p)) {
 221         process_popped_location_depth(p);
 222       }
 223     }
 224   } while (totally_drain && !tq->taskqueue_empty() || !tq->overflow_empty());
 225 
 226   assert(!totally_drain || tq->taskqueue_empty(), "Sanity");
 227   assert(totally_drain || tq->size() <= _target_stack_size, "Sanity");
 228   assert(tq->overflow_empty(), "Sanity");
 229 }
 230 
 231 void PSPromotionManager::flush_labs() {
 232   assert(stacks_empty(), "Attempt to flush lab with live stack");
 233 
 234   // If either promotion lab fills up, we can flush the
 235   // lab but not refill it, so check first.
 236   assert(!_young_lab.is_flushed() || _young_gen_is_full, "Sanity");
 237   if (!_young_lab.is_flushed())
 238     _young_lab.flush();
 239 
 240   assert(!_old_lab.is_flushed() || _old_gen_is_full, "Sanity");
 241   if (!_old_lab.is_flushed())
 242     _old_lab.flush();
 243 
 244   // Let PSScavenge know if we overflowed
 245   if (_young_gen_is_full) {
 246     PSScavenge::set_survivor_overflow(true);
 247   }
 248 }
 249 
 250 //
 251 // This method is pretty bulky. It would be nice to split it up
 252 // into smaller submethods, but we need to be careful not to hurt
 253 // performance.
 254 //
 255 
 256 oop PSPromotionManager::copy_to_survivor_space(oop o) {
 257   assert(PSScavenge::should_scavenge(&o), "Sanity");
 258 
 259   oop new_obj = NULL;
 260 
 261   // NOTE! We must be very careful with any methods that access the mark
 262   // in o. There may be multiple threads racing on it, and it may be forwarded
 263   // at any time. Do not use oop methods for accessing the mark!
 264   markOop test_mark = o->mark();
 265 
 266   // The same test as "o->is_forwarded()"
 267   if (!test_mark->is_marked()) {
 268     bool new_obj_is_tenured = false;
 269     size_t new_obj_size = o->size();
 270 
 271     // Find the objects age, MT safe.
 272     int age = (test_mark->has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
 273       test_mark->displaced_mark_helper()->age() : test_mark->age();
 274 
 275     // Try allocating obj in to-space (unless too old)
 276     if (age < PSScavenge::tenuring_threshold()) {
 277       new_obj = (oop) _young_lab.allocate(new_obj_size);
 278       if (new_obj == NULL && !_young_gen_is_full) {
 279         // Do we allocate directly, or flush and refill?
 280         if (new_obj_size > (YoungPLABSize / 2)) {
 281           // Allocate this object directly
 282           new_obj = (oop)young_space()->cas_allocate(new_obj_size);
 283         } else {
 284           // Flush and fill
 285           _young_lab.flush();
 286 
 287           HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
 288           if (lab_base != NULL) {
 289             _young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
 290             // Try the young lab allocation again.
 291             new_obj = (oop) _young_lab.allocate(new_obj_size);
 292           } else {
 293             _young_gen_is_full = true;
 294           }
 295         }
 296       }
 297     }
 298 
 299     // Otherwise try allocating obj tenured
 300     if (new_obj == NULL) {
 301 #ifndef PRODUCT
 302       if (Universe::heap()->promotion_should_fail()) {
 303         return oop_promotion_failed(o, test_mark);
 304       }
 305 #endif  // #ifndef PRODUCT
 306 
 307       new_obj = (oop) _old_lab.allocate(new_obj_size);
 308       new_obj_is_tenured = true;
 309 
 310       if (new_obj == NULL) {
 311         if (!_old_gen_is_full) {
 312           // Do we allocate directly, or flush and refill?
 313           if (new_obj_size > (OldPLABSize / 2)) {
 314             // Allocate this object directly
 315             new_obj = (oop)old_gen()->cas_allocate(new_obj_size);
 316           } else {
 317             // Flush and fill
 318             _old_lab.flush();
 319 
 320             HeapWord* lab_base = old_gen()->cas_allocate(OldPLABSize);
 321             if(lab_base != NULL) {
 322               _old_lab.initialize(MemRegion(lab_base, OldPLABSize));
 323               // Try the old lab allocation again.
 324               new_obj = (oop) _old_lab.allocate(new_obj_size);
 325             }
 326           }
 327         }
 328 
 329         // This is the promotion failed test, and code handling.
 330         // The code belongs here for two reasons. It is slightly
 331         // different thatn the code below, and cannot share the
 332         // CAS testing code. Keeping the code here also minimizes
 333         // the impact on the common case fast path code.
 334 
 335         if (new_obj == NULL) {
 336           _old_gen_is_full = true;
 337           return oop_promotion_failed(o, test_mark);
 338         }
 339       }
 340     }
 341 
 342     assert(new_obj != NULL, "allocation should have succeeded");
 343 
 344     // Copy obj
 345     Copy::aligned_disjoint_words((HeapWord*)o, (HeapWord*)new_obj, new_obj_size);
 346 
 347     // Now we have to CAS in the header.
 348     if (o->cas_forward_to(new_obj, test_mark)) {
 349       // We won any races, we "own" this object.
 350       assert(new_obj == o->forwardee(), "Sanity");
 351 
 352       // Increment age if obj still in new generation. Now that
 353       // we're dealing with a markOop that cannot change, it is
 354       // okay to use the non mt safe oop methods.
 355       if (!new_obj_is_tenured) {
 356         new_obj->incr_age();
 357         assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
 358       }
 359 
 360       // Do the size comparison first with new_obj_size, which we
 361       // already have. Hopefully, only a few objects are larger than
 362       // _min_array_size_for_chunking, and most of them will be arrays.
 363       // So, the is->objArray() test would be very infrequent.
 364       if (new_obj_size > _min_array_size_for_chunking &&
 365           new_obj->is_objArray() &&
 366           PSChunkLargeArrays) {
 367         // we'll chunk it
 368         oop* const masked_o = mask_chunked_array_oop(o);
 369         push_depth(masked_o);
 370         TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_masked_pushes);
 371       } else {
 372         // we'll just push its contents
 373         new_obj->push_contents(this);
 374       }
 375     }  else {
 376       // We lost, someone else "owns" this object
 377       guarantee(o->is_forwarded(), "Object must be forwarded if the cas failed.");
 378 
 379       // Try to deallocate the space.  If it was directly allocated we cannot
 380       // deallocate it, so we have to test.  If the deallocation fails,
 381       // overwrite with a filler object.
 382       if (new_obj_is_tenured) {
 383         if (!_old_lab.unallocate_object((HeapWord*) new_obj, new_obj_size)) {
 384           CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
 385         }
 386       } else if (!_young_lab.unallocate_object((HeapWord*) new_obj, new_obj_size)) {
 387         CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
 388       }
 389 
 390       // don't update this before the unallocation!
 391       new_obj = o->forwardee();
 392     }
 393   } else {
 394     assert(o->is_forwarded(), "Sanity");
 395     new_obj = o->forwardee();
 396   }
 397 
 398 #ifdef DEBUG
 399   // This code must come after the CAS test, or it will print incorrect
 400   // information.
 401   if (TraceScavenge) {
 402     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (" SIZE_FORMAT ")}",
 403        PSScavenge::should_scavenge(&new_obj) ? "copying" : "tenuring",
 404        new_obj->blueprint()->internal_name(), o, new_obj, new_obj->size());
 405   }
 406 #endif
 407 
 408   return new_obj;
 409 }
 410 
 411 template <class T> void PSPromotionManager::process_array_chunk_work(
 412                                                  oop obj,
 413                                                  int start, int end) {
 414   assert(start <= end, "invariant");
 415   T* const base      = (T*)objArrayOop(obj)->base();
 416   T* p               = base + start;
 417   T* const chunk_end = base + end;
 418   while (p < chunk_end) {
 419     if (PSScavenge::should_scavenge(p)) {
 420       claim_or_forward_depth(p);
 421     }
 422     ++p;
 423   }
 424 }
 425 
 426 void PSPromotionManager::process_array_chunk(oop old) {
 427   assert(PSChunkLargeArrays, "invariant");
 428   assert(old->is_objArray(), "invariant");
 429   assert(old->is_forwarded(), "invariant");
 430 
 431   TASKQUEUE_STATS_ONLY(++_array_chunks_processed);
 432 
 433   oop const obj = old->forwardee();
 434 
 435   int start;
 436   int const end = arrayOop(old)->length();
 437   if (end > (int) _min_array_size_for_chunking) {
 438     // we'll chunk more
 439     start = end - _array_chunk_size;
 440     assert(start > 0, "invariant");
 441     arrayOop(old)->set_length(start);
 442     push_depth(mask_chunked_array_oop(old));
 443     TASKQUEUE_STATS_ONLY(++_masked_pushes);
 444   } else {
 445     // this is the final chunk for this array
 446     start = 0;
 447     int const actual_length = arrayOop(obj)->length();
 448     arrayOop(old)->set_length(actual_length);
 449   }
 450 
 451   if (UseCompressedOops) {
 452     process_array_chunk_work<narrowOop>(obj, start, end);
 453   } else {
 454     process_array_chunk_work<oop>(obj, start, end);
 455   }
 456 }
 457 
 458 oop PSPromotionManager::oop_promotion_failed(oop obj, markOop obj_mark) {
 459   assert(_old_gen_is_full || PromotionFailureALot, "Sanity");
 460 
 461   // Attempt to CAS in the header.
 462   // This tests if the header is still the same as when
 463   // this started.  If it is the same (i.e., no forwarding
 464   // pointer has been installed), then this thread owns
 465   // it.
 466   if (obj->cas_forward_to(obj, obj_mark)) {
 467     // We won any races, we "own" this object.
 468     assert(obj == obj->forwardee(), "Sanity");
 469 
 470     obj->push_contents(this);
 471 
 472     // Save the mark if needed
 473     PSScavenge::oop_promotion_failed(obj, obj_mark);
 474   }  else {
 475     // We lost, someone else "owns" this object
 476     guarantee(obj->is_forwarded(), "Object must be forwarded if the cas failed.");
 477 
 478     // No unallocation to worry about.
 479     obj = obj->forwardee();
 480   }
 481 
 482 #ifdef DEBUG
 483   if (TraceScavenge) {
 484     gclog_or_tty->print_cr("{%s %s 0x%x (%d)}",
 485                            "promotion-failure",
 486                            obj->blueprint()->internal_name(),
 487                            obj, obj->size());
 488 
 489   }
 490 #endif
 491 
 492   return obj;
 493 }