1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 protected:
  43 #ifdef ASSERT
  44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  45 #endif
  46   virtual uint size_of() const; // Size is bigger (ASSERT only)
  47 public:
  48   enum { Control,               // When is it safe to do this load?
  49          Memory,                // Chunk of memory is being loaded from
  50          Address,               // Actually address, derived from base
  51          ValueIn,               // Value to store
  52          OopStore               // Preceeding oop store, only in StoreCM
  53   };
  54 protected:
  55   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  56     : Node(c0,c1,c2   ) {
  57     init_class_id(Class_Mem);
  58     debug_only(_adr_type=at; adr_type();)
  59   }
  60   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  61     : Node(c0,c1,c2,c3) {
  62     init_class_id(Class_Mem);
  63     debug_only(_adr_type=at; adr_type();)
  64   }
  65   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  66     : Node(c0,c1,c2,c3,c4) {
  67     init_class_id(Class_Mem);
  68     debug_only(_adr_type=at; adr_type();)
  69   }
  70 
  71 public:
  72   // Helpers for the optimizer.  Documented in memnode.cpp.
  73   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  74                                       Node* p2, AllocateNode* a2,
  75                                       PhaseTransform* phase);
  76   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  77 
  78   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  79   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  80   // This one should probably be a phase-specific function:
  81   static bool all_controls_dominate(Node* dom, Node* sub);
  82 
  83   // Find any cast-away of null-ness and keep its control.
  84   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  85   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
  86 
  87   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  88 
  89   // Shared code for Ideal methods:
  90   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  91 
  92   // Helper function for adr_type() implementations.
  93   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  94 
  95   // Raw access function, to allow copying of adr_type efficiently in
  96   // product builds and retain the debug info for debug builds.
  97   const TypePtr *raw_adr_type() const {
  98 #ifdef ASSERT
  99     return _adr_type;
 100 #else
 101     return 0;
 102 #endif
 103   }
 104 
 105   // Map a load or store opcode to its corresponding store opcode.
 106   // (Return -1 if unknown.)
 107   virtual int store_Opcode() const { return -1; }
 108 
 109   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 110   virtual BasicType memory_type() const = 0;
 111   virtual int memory_size() const {
 112 #ifdef ASSERT
 113     return type2aelembytes(memory_type(), true);
 114 #else
 115     return type2aelembytes(memory_type());
 116 #endif
 117   }
 118 
 119   // Search through memory states which precede this node (load or store).
 120   // Look for an exact match for the address, with no intervening
 121   // aliased stores.
 122   Node* find_previous_store(PhaseTransform* phase);
 123 
 124   // Can this node (load or store) accurately see a stored value in
 125   // the given memory state?  (The state may or may not be in(Memory).)
 126   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 127 
 128 #ifndef PRODUCT
 129   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 130   virtual void dump_spec(outputStream *st) const;
 131 #endif
 132 };
 133 
 134 //------------------------------LoadNode---------------------------------------
 135 // Load value; requires Memory and Address
 136 class LoadNode : public MemNode {
 137 protected:
 138   virtual uint cmp( const Node &n ) const;
 139   virtual uint size_of() const; // Size is bigger
 140   const Type* const _type;      // What kind of value is loaded?
 141 public:
 142 
 143   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
 144     : MemNode(c,mem,adr,at), _type(rt) {
 145     init_class_id(Class_Load);
 146   }
 147 
 148   // Polymorphic factory method:
 149   static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 150                      const TypePtr* at, const Type *rt, BasicType bt );
 151 
 152   virtual uint hash()   const;  // Check the type
 153 
 154   // Handle algebraic identities here.  If we have an identity, return the Node
 155   // we are equivalent to.  We look for Load of a Store.
 156   virtual Node *Identity( PhaseTransform *phase );
 157 
 158   // If the load is from Field memory and the pointer is non-null, we can
 159   // zero out the control input.
 160   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 161 
 162   // Split instance field load through Phi.
 163   Node* split_through_phi(PhaseGVN *phase);
 164 
 165   // Recover original value from boxed values
 166   Node *eliminate_autobox(PhaseGVN *phase);
 167 
 168   // Compute a new Type for this node.  Basically we just do the pre-check,
 169   // then call the virtual add() to set the type.
 170   virtual const Type *Value( PhaseTransform *phase ) const;
 171 
 172   // Common methods for LoadKlass and LoadNKlass nodes.
 173   const Type *klass_value_common( PhaseTransform *phase ) const;
 174   Node *klass_identity_common( PhaseTransform *phase );
 175 
 176   virtual uint ideal_reg() const;
 177   virtual const Type *bottom_type() const;
 178   // Following method is copied from TypeNode:
 179   void set_type(const Type* t) {
 180     assert(t != NULL, "sanity");
 181     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 182     *(const Type**)&_type = t;   // cast away const-ness
 183     // If this node is in the hash table, make sure it doesn't need a rehash.
 184     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 185   }
 186   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 187 
 188   // Do not match memory edge
 189   virtual uint match_edge(uint idx) const;
 190 
 191   // Map a load opcode to its corresponding store opcode.
 192   virtual int store_Opcode() const = 0;
 193 
 194   // Check if the load's memory input is a Phi node with the same control.
 195   bool is_instance_field_load_with_local_phi(Node* ctrl);
 196 
 197 #ifndef PRODUCT
 198   virtual void dump_spec(outputStream *st) const;
 199 #endif
 200 #ifdef ASSERT
 201   // Helper function to allow a raw load without control edge for some cases
 202   static bool is_immutable_value(Node* adr);
 203 #endif
 204 protected:
 205   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 206                                      ciKlass* klass) const;
 207 };
 208 
 209 //------------------------------LoadBNode--------------------------------------
 210 // Load a byte (8bits signed) from memory
 211 class LoadBNode : public LoadNode {
 212 public:
 213   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
 214     : LoadNode(c,mem,adr,at,ti) {}
 215   virtual int Opcode() const;
 216   virtual uint ideal_reg() const { return Op_RegI; }
 217   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 218   virtual const Type *Value(PhaseTransform *phase) const;
 219   virtual int store_Opcode() const { return Op_StoreB; }
 220   virtual BasicType memory_type() const { return T_BYTE; }
 221 };
 222 
 223 //------------------------------LoadUBNode-------------------------------------
 224 // Load a unsigned byte (8bits unsigned) from memory
 225 class LoadUBNode : public LoadNode {
 226 public:
 227   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
 228     : LoadNode(c, mem, adr, at, ti) {}
 229   virtual int Opcode() const;
 230   virtual uint ideal_reg() const { return Op_RegI; }
 231   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 232   virtual const Type *Value(PhaseTransform *phase) const;
 233   virtual int store_Opcode() const { return Op_StoreB; }
 234   virtual BasicType memory_type() const { return T_BYTE; }
 235 };
 236 
 237 //------------------------------LoadUSNode-------------------------------------
 238 // Load an unsigned short/char (16bits unsigned) from memory
 239 class LoadUSNode : public LoadNode {
 240 public:
 241   LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
 242     : LoadNode(c,mem,adr,at,ti) {}
 243   virtual int Opcode() const;
 244   virtual uint ideal_reg() const { return Op_RegI; }
 245   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 246   virtual const Type *Value(PhaseTransform *phase) const;
 247   virtual int store_Opcode() const { return Op_StoreC; }
 248   virtual BasicType memory_type() const { return T_CHAR; }
 249 };
 250 
 251 //------------------------------LoadSNode--------------------------------------
 252 // Load a short (16bits signed) from memory
 253 class LoadSNode : public LoadNode {
 254 public:
 255   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
 256     : LoadNode(c,mem,adr,at,ti) {}
 257   virtual int Opcode() const;
 258   virtual uint ideal_reg() const { return Op_RegI; }
 259   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 260   virtual const Type *Value(PhaseTransform *phase) const;
 261   virtual int store_Opcode() const { return Op_StoreC; }
 262   virtual BasicType memory_type() const { return T_SHORT; }
 263 };
 264 
 265 //------------------------------LoadINode--------------------------------------
 266 // Load an integer from memory
 267 class LoadINode : public LoadNode {
 268 public:
 269   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
 270     : LoadNode(c,mem,adr,at,ti) {}
 271   virtual int Opcode() const;
 272   virtual uint ideal_reg() const { return Op_RegI; }
 273   virtual int store_Opcode() const { return Op_StoreI; }
 274   virtual BasicType memory_type() const { return T_INT; }
 275 };
 276 
 277 //------------------------------LoadRangeNode----------------------------------
 278 // Load an array length from the array
 279 class LoadRangeNode : public LoadINode {
 280 public:
 281   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
 282     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
 283   virtual int Opcode() const;
 284   virtual const Type *Value( PhaseTransform *phase ) const;
 285   virtual Node *Identity( PhaseTransform *phase );
 286   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 287 };
 288 
 289 //------------------------------LoadLNode--------------------------------------
 290 // Load a long from memory
 291 class LoadLNode : public LoadNode {
 292   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 293   virtual uint cmp( const Node &n ) const {
 294     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 295       && LoadNode::cmp(n);
 296   }
 297   virtual uint size_of() const { return sizeof(*this); }
 298   const bool _require_atomic_access;  // is piecewise load forbidden?
 299 
 300 public:
 301   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
 302              const TypeLong *tl = TypeLong::LONG,
 303              bool require_atomic_access = false )
 304     : LoadNode(c,mem,adr,at,tl)
 305     , _require_atomic_access(require_atomic_access)
 306   {}
 307   virtual int Opcode() const;
 308   virtual uint ideal_reg() const { return Op_RegL; }
 309   virtual int store_Opcode() const { return Op_StoreL; }
 310   virtual BasicType memory_type() const { return T_LONG; }
 311   bool require_atomic_access() { return _require_atomic_access; }
 312   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
 313 #ifndef PRODUCT
 314   virtual void dump_spec(outputStream *st) const {
 315     LoadNode::dump_spec(st);
 316     if (_require_atomic_access)  st->print(" Atomic!");
 317   }
 318 #endif
 319 };
 320 
 321 //------------------------------LoadL_unalignedNode----------------------------
 322 // Load a long from unaligned memory
 323 class LoadL_unalignedNode : public LoadLNode {
 324 public:
 325   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
 326     : LoadLNode(c,mem,adr,at) {}
 327   virtual int Opcode() const;
 328 };
 329 
 330 //------------------------------LoadFNode--------------------------------------
 331 // Load a float (64 bits) from memory
 332 class LoadFNode : public LoadNode {
 333 public:
 334   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
 335     : LoadNode(c,mem,adr,at,t) {}
 336   virtual int Opcode() const;
 337   virtual uint ideal_reg() const { return Op_RegF; }
 338   virtual int store_Opcode() const { return Op_StoreF; }
 339   virtual BasicType memory_type() const { return T_FLOAT; }
 340 };
 341 
 342 //------------------------------LoadDNode--------------------------------------
 343 // Load a double (64 bits) from memory
 344 class LoadDNode : public LoadNode {
 345 public:
 346   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
 347     : LoadNode(c,mem,adr,at,t) {}
 348   virtual int Opcode() const;
 349   virtual uint ideal_reg() const { return Op_RegD; }
 350   virtual int store_Opcode() const { return Op_StoreD; }
 351   virtual BasicType memory_type() const { return T_DOUBLE; }
 352 };
 353 
 354 //------------------------------LoadD_unalignedNode----------------------------
 355 // Load a double from unaligned memory
 356 class LoadD_unalignedNode : public LoadDNode {
 357 public:
 358   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
 359     : LoadDNode(c,mem,adr,at) {}
 360   virtual int Opcode() const;
 361 };
 362 
 363 //------------------------------LoadPNode--------------------------------------
 364 // Load a pointer from memory (either object or array)
 365 class LoadPNode : public LoadNode {
 366 public:
 367   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
 368     : LoadNode(c,mem,adr,at,t) {}
 369   virtual int Opcode() const;
 370   virtual uint ideal_reg() const { return Op_RegP; }
 371   virtual int store_Opcode() const { return Op_StoreP; }
 372   virtual BasicType memory_type() const { return T_ADDRESS; }
 373   // depends_only_on_test is almost always true, and needs to be almost always
 374   // true to enable key hoisting & commoning optimizations.  However, for the
 375   // special case of RawPtr loads from TLS top & end, the control edge carries
 376   // the dependence preventing hoisting past a Safepoint instead of the memory
 377   // edge.  (An unfortunate consequence of having Safepoints not set Raw
 378   // Memory; itself an unfortunate consequence of having Nodes which produce
 379   // results (new raw memory state) inside of loops preventing all manner of
 380   // other optimizations).  Basically, it's ugly but so is the alternative.
 381   // See comment in macro.cpp, around line 125 expand_allocate_common().
 382   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
 383 };
 384 
 385 
 386 //------------------------------LoadNNode--------------------------------------
 387 // Load a narrow oop from memory (either object or array)
 388 class LoadNNode : public LoadNode {
 389 public:
 390   LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
 391     : LoadNode(c,mem,adr,at,t) {}
 392   virtual int Opcode() const;
 393   virtual uint ideal_reg() const { return Op_RegN; }
 394   virtual int store_Opcode() const { return Op_StoreN; }
 395   virtual BasicType memory_type() const { return T_NARROWOOP; }
 396   // depends_only_on_test is almost always true, and needs to be almost always
 397   // true to enable key hoisting & commoning optimizations.  However, for the
 398   // special case of RawPtr loads from TLS top & end, the control edge carries
 399   // the dependence preventing hoisting past a Safepoint instead of the memory
 400   // edge.  (An unfortunate consequence of having Safepoints not set Raw
 401   // Memory; itself an unfortunate consequence of having Nodes which produce
 402   // results (new raw memory state) inside of loops preventing all manner of
 403   // other optimizations).  Basically, it's ugly but so is the alternative.
 404   // See comment in macro.cpp, around line 125 expand_allocate_common().
 405   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
 406 };
 407 
 408 //------------------------------LoadKlassNode----------------------------------
 409 // Load a Klass from an object
 410 class LoadKlassNode : public LoadPNode {
 411 public:
 412   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
 413     : LoadPNode(c,mem,adr,at,tk) {}
 414   virtual int Opcode() const;
 415   virtual const Type *Value( PhaseTransform *phase ) const;
 416   virtual Node *Identity( PhaseTransform *phase );
 417   virtual bool depends_only_on_test() const { return true; }
 418 
 419   // Polymorphic factory method:
 420   static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
 421                      const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
 422 };
 423 
 424 //------------------------------LoadNKlassNode---------------------------------
 425 // Load a narrow Klass from an object.
 426 class LoadNKlassNode : public LoadNNode {
 427 public:
 428   LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk )
 429     : LoadNNode(c,mem,adr,at,tk) {}
 430   virtual int Opcode() const;
 431   virtual uint ideal_reg() const { return Op_RegN; }
 432   virtual int store_Opcode() const { return Op_StoreNKlass; }
 433   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 434 
 435   virtual const Type *Value( PhaseTransform *phase ) const;
 436   virtual Node *Identity( PhaseTransform *phase );
 437   virtual bool depends_only_on_test() const { return true; }
 438 };
 439 
 440 
 441 //------------------------------StoreNode--------------------------------------
 442 // Store value; requires Store, Address and Value
 443 class StoreNode : public MemNode {
 444 protected:
 445   virtual uint cmp( const Node &n ) const;
 446   virtual bool depends_only_on_test() const { return false; }
 447 
 448   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 449   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 450 
 451 public:
 452   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
 453     : MemNode(c,mem,adr,at,val) {
 454     init_class_id(Class_Store);
 455   }
 456   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
 457     : MemNode(c,mem,adr,at,val,oop_store) {
 458     init_class_id(Class_Store);
 459   }
 460 
 461   // Polymorphic factory method:
 462   static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 463                           const TypePtr* at, Node *val, BasicType bt );
 464 
 465   virtual uint hash() const;    // Check the type
 466 
 467   // If the store is to Field memory and the pointer is non-null, we can
 468   // zero out the control input.
 469   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 470 
 471   // Compute a new Type for this node.  Basically we just do the pre-check,
 472   // then call the virtual add() to set the type.
 473   virtual const Type *Value( PhaseTransform *phase ) const;
 474 
 475   // Check for identity function on memory (Load then Store at same address)
 476   virtual Node *Identity( PhaseTransform *phase );
 477 
 478   // Do not match memory edge
 479   virtual uint match_edge(uint idx) const;
 480 
 481   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 482 
 483   // Map a store opcode to its corresponding own opcode, trivially.
 484   virtual int store_Opcode() const { return Opcode(); }
 485 
 486   // have all possible loads of the value stored been optimized away?
 487   bool value_never_loaded(PhaseTransform *phase) const;
 488 };
 489 
 490 //------------------------------StoreBNode-------------------------------------
 491 // Store byte to memory
 492 class StoreBNode : public StoreNode {
 493 public:
 494   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 495   virtual int Opcode() const;
 496   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 497   virtual BasicType memory_type() const { return T_BYTE; }
 498 };
 499 
 500 //------------------------------StoreCNode-------------------------------------
 501 // Store char/short to memory
 502 class StoreCNode : public StoreNode {
 503 public:
 504   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 505   virtual int Opcode() const;
 506   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 507   virtual BasicType memory_type() const { return T_CHAR; }
 508 };
 509 
 510 //------------------------------StoreINode-------------------------------------
 511 // Store int to memory
 512 class StoreINode : public StoreNode {
 513 public:
 514   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 515   virtual int Opcode() const;
 516   virtual BasicType memory_type() const { return T_INT; }
 517 };
 518 
 519 //------------------------------StoreLNode-------------------------------------
 520 // Store long to memory
 521 class StoreLNode : public StoreNode {
 522   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 523   virtual uint cmp( const Node &n ) const {
 524     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 525       && StoreNode::cmp(n);
 526   }
 527   virtual uint size_of() const { return sizeof(*this); }
 528   const bool _require_atomic_access;  // is piecewise store forbidden?
 529 
 530 public:
 531   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 532               bool require_atomic_access = false )
 533     : StoreNode(c,mem,adr,at,val)
 534     , _require_atomic_access(require_atomic_access)
 535   {}
 536   virtual int Opcode() const;
 537   virtual BasicType memory_type() const { return T_LONG; }
 538   bool require_atomic_access() { return _require_atomic_access; }
 539   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
 540 #ifndef PRODUCT
 541   virtual void dump_spec(outputStream *st) const {
 542     StoreNode::dump_spec(st);
 543     if (_require_atomic_access)  st->print(" Atomic!");
 544   }
 545 #endif
 546 };
 547 
 548 //------------------------------StoreFNode-------------------------------------
 549 // Store float to memory
 550 class StoreFNode : public StoreNode {
 551 public:
 552   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 553   virtual int Opcode() const;
 554   virtual BasicType memory_type() const { return T_FLOAT; }
 555 };
 556 
 557 //------------------------------StoreDNode-------------------------------------
 558 // Store double to memory
 559 class StoreDNode : public StoreNode {
 560 public:
 561   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 562   virtual int Opcode() const;
 563   virtual BasicType memory_type() const { return T_DOUBLE; }
 564 };
 565 
 566 //------------------------------StorePNode-------------------------------------
 567 // Store pointer to memory
 568 class StorePNode : public StoreNode {
 569 public:
 570   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 571   virtual int Opcode() const;
 572   virtual BasicType memory_type() const { return T_ADDRESS; }
 573 };
 574 
 575 //------------------------------StoreNNode-------------------------------------
 576 // Store narrow oop to memory
 577 class StoreNNode : public StoreNode {
 578 public:
 579   StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 580   virtual int Opcode() const;
 581   virtual BasicType memory_type() const { return T_NARROWOOP; }
 582 };
 583 
 584 //------------------------------StoreNKlassNode--------------------------------------
 585 // Store narrow klass to memory
 586 class StoreNKlassNode : public StoreNNode {
 587 public:
 588   StoreNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNNode(c,mem,adr,at,val) {}
 589   virtual int Opcode() const;
 590   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 591 };
 592 
 593 //------------------------------StoreCMNode-----------------------------------
 594 // Store card-mark byte to memory for CM
 595 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 596 // Preceeding equivalent StoreCMs may be eliminated.
 597 class StoreCMNode : public StoreNode {
 598  private:
 599   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 600   virtual uint cmp( const Node &n ) const {
 601     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 602       && StoreNode::cmp(n);
 603   }
 604   virtual uint size_of() const { return sizeof(*this); }
 605   int _oop_alias_idx;   // The alias_idx of OopStore
 606 
 607 public:
 608   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 609     StoreNode(c,mem,adr,at,val,oop_store),
 610     _oop_alias_idx(oop_alias_idx) {
 611     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 612            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 613            "bad oop alias idx");
 614   }
 615   virtual int Opcode() const;
 616   virtual Node *Identity( PhaseTransform *phase );
 617   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 618   virtual const Type *Value( PhaseTransform *phase ) const;
 619   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 620   int oop_alias_idx() const { return _oop_alias_idx; }
 621 };
 622 
 623 //------------------------------LoadPLockedNode---------------------------------
 624 // Load-locked a pointer from memory (either object or array).
 625 // On Sparc & Intel this is implemented as a normal pointer load.
 626 // On PowerPC and friends it's a real load-locked.
 627 class LoadPLockedNode : public LoadPNode {
 628 public:
 629   LoadPLockedNode( Node *c, Node *mem, Node *adr )
 630     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
 631   virtual int Opcode() const;
 632   virtual int store_Opcode() const { return Op_StorePConditional; }
 633   virtual bool depends_only_on_test() const { return true; }
 634 };
 635 
 636 //------------------------------SCMemProjNode---------------------------------------
 637 // This class defines a projection of the memory  state of a store conditional node.
 638 // These nodes return a value, but also update memory.
 639 class SCMemProjNode : public ProjNode {
 640 public:
 641   enum {SCMEMPROJCON = (uint)-2};
 642   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 643   virtual int Opcode() const;
 644   virtual bool      is_CFG() const  { return false; }
 645   virtual const Type *bottom_type() const {return Type::MEMORY;}
 646   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 647   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 648   virtual const Type *Value( PhaseTransform *phase ) const;
 649 #ifndef PRODUCT
 650   virtual void dump_spec(outputStream *st) const {};
 651 #endif
 652 };
 653 
 654 //------------------------------LoadStoreNode---------------------------
 655 // Note: is_Mem() method returns 'true' for this class.
 656 class LoadStoreNode : public Node {
 657 private:
 658   const Type* const _type;      // What kind of value is loaded?
 659   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 660   virtual uint size_of() const; // Size is bigger
 661 public:
 662   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 663   virtual bool depends_only_on_test() const { return false; }
 664   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 665 
 666   virtual const Type *bottom_type() const { return _type; }
 667   virtual uint ideal_reg() const;
 668   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 669 
 670   bool result_not_used() const;
 671 };
 672 
 673 class LoadStoreConditionalNode : public LoadStoreNode {
 674 public:
 675   enum {
 676     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 677   };
 678   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 679 };
 680 
 681 //------------------------------StorePConditionalNode---------------------------
 682 // Conditionally store pointer to memory, if no change since prior
 683 // load-locked.  Sets flags for success or failure of the store.
 684 class StorePConditionalNode : public LoadStoreConditionalNode {
 685 public:
 686   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 687   virtual int Opcode() const;
 688   // Produces flags
 689   virtual uint ideal_reg() const { return Op_RegFlags; }
 690 };
 691 
 692 //------------------------------StoreIConditionalNode---------------------------
 693 // Conditionally store int to memory, if no change since prior
 694 // load-locked.  Sets flags for success or failure of the store.
 695 class StoreIConditionalNode : public LoadStoreConditionalNode {
 696 public:
 697   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 698   virtual int Opcode() const;
 699   // Produces flags
 700   virtual uint ideal_reg() const { return Op_RegFlags; }
 701 };
 702 
 703 //------------------------------StoreLConditionalNode---------------------------
 704 // Conditionally store long to memory, if no change since prior
 705 // load-locked.  Sets flags for success or failure of the store.
 706 class StoreLConditionalNode : public LoadStoreConditionalNode {
 707 public:
 708   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 709   virtual int Opcode() const;
 710   // Produces flags
 711   virtual uint ideal_reg() const { return Op_RegFlags; }
 712 };
 713 
 714 
 715 //------------------------------CompareAndSwapLNode---------------------------
 716 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 717 public:
 718   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 719   virtual int Opcode() const;
 720 };
 721 
 722 
 723 //------------------------------CompareAndSwapINode---------------------------
 724 class CompareAndSwapINode : public LoadStoreConditionalNode {
 725 public:
 726   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 727   virtual int Opcode() const;
 728 };
 729 
 730 
 731 //------------------------------CompareAndSwapPNode---------------------------
 732 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 733 public:
 734   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 735   virtual int Opcode() const;
 736 };
 737 
 738 //------------------------------CompareAndSwapNNode---------------------------
 739 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 740 public:
 741   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 742   virtual int Opcode() const;
 743 };
 744 
 745 //------------------------------GetAndAddINode---------------------------
 746 class GetAndAddINode : public LoadStoreNode {
 747 public:
 748   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 749   virtual int Opcode() const;
 750 };
 751 
 752 //------------------------------GetAndAddLNode---------------------------
 753 class GetAndAddLNode : public LoadStoreNode {
 754 public:
 755   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 756   virtual int Opcode() const;
 757 };
 758 
 759 
 760 //------------------------------GetAndSetINode---------------------------
 761 class GetAndSetINode : public LoadStoreNode {
 762 public:
 763   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 764   virtual int Opcode() const;
 765 };
 766 
 767 //------------------------------GetAndSetINode---------------------------
 768 class GetAndSetLNode : public LoadStoreNode {
 769 public:
 770   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 771   virtual int Opcode() const;
 772 };
 773 
 774 //------------------------------GetAndSetPNode---------------------------
 775 class GetAndSetPNode : public LoadStoreNode {
 776 public:
 777   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 778   virtual int Opcode() const;
 779 };
 780 
 781 //------------------------------GetAndSetNNode---------------------------
 782 class GetAndSetNNode : public LoadStoreNode {
 783 public:
 784   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 785   virtual int Opcode() const;
 786 };
 787 
 788 //------------------------------ClearArray-------------------------------------
 789 class ClearArrayNode: public Node {
 790 public:
 791   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 792     : Node(ctrl,arymem,word_cnt,base) {
 793     init_class_id(Class_ClearArray);
 794   }
 795   virtual int         Opcode() const;
 796   virtual const Type *bottom_type() const { return Type::MEMORY; }
 797   // ClearArray modifies array elements, and so affects only the
 798   // array memory addressed by the bottom_type of its base address.
 799   virtual const class TypePtr *adr_type() const;
 800   virtual Node *Identity( PhaseTransform *phase );
 801   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 802   virtual uint match_edge(uint idx) const;
 803 
 804   // Clear the given area of an object or array.
 805   // The start offset must always be aligned mod BytesPerInt.
 806   // The end offset must always be aligned mod BytesPerLong.
 807   // Return the new memory.
 808   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 809                             intptr_t start_offset,
 810                             intptr_t end_offset,
 811                             PhaseGVN* phase);
 812   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 813                             intptr_t start_offset,
 814                             Node* end_offset,
 815                             PhaseGVN* phase);
 816   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 817                             Node* start_offset,
 818                             Node* end_offset,
 819                             PhaseGVN* phase);
 820   // Return allocation input memory edge if it is different instance
 821   // or itself if it is the one we are looking for.
 822   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 823 };
 824 
 825 //------------------------------StrIntrinsic-------------------------------
 826 // Base class for Ideal nodes used in String instrinsic code.
 827 class StrIntrinsicNode: public Node {
 828 public:
 829   StrIntrinsicNode(Node* control, Node* char_array_mem,
 830                    Node* s1, Node* c1, Node* s2, Node* c2):
 831     Node(control, char_array_mem, s1, c1, s2, c2) {
 832   }
 833 
 834   StrIntrinsicNode(Node* control, Node* char_array_mem,
 835                    Node* s1, Node* s2, Node* c):
 836     Node(control, char_array_mem, s1, s2, c) {
 837   }
 838 
 839   StrIntrinsicNode(Node* control, Node* char_array_mem,
 840                    Node* s1, Node* s2):
 841     Node(control, char_array_mem, s1, s2) {
 842   }
 843 
 844   virtual bool depends_only_on_test() const { return false; }
 845   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 846   virtual uint match_edge(uint idx) const;
 847   virtual uint ideal_reg() const { return Op_RegI; }
 848   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 849   virtual const Type *Value(PhaseTransform *phase) const;
 850 };
 851 
 852 //------------------------------StrComp-------------------------------------
 853 class StrCompNode: public StrIntrinsicNode {
 854 public:
 855   StrCompNode(Node* control, Node* char_array_mem,
 856               Node* s1, Node* c1, Node* s2, Node* c2):
 857     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 858   virtual int Opcode() const;
 859   virtual const Type* bottom_type() const { return TypeInt::INT; }
 860 };
 861 
 862 //------------------------------StrEquals-------------------------------------
 863 class StrEqualsNode: public StrIntrinsicNode {
 864 public:
 865   StrEqualsNode(Node* control, Node* char_array_mem,
 866                 Node* s1, Node* s2, Node* c):
 867     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
 868   virtual int Opcode() const;
 869   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 870 };
 871 
 872 //------------------------------StrIndexOf-------------------------------------
 873 class StrIndexOfNode: public StrIntrinsicNode {
 874 public:
 875   StrIndexOfNode(Node* control, Node* char_array_mem,
 876               Node* s1, Node* c1, Node* s2, Node* c2):
 877     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 878   virtual int Opcode() const;
 879   virtual const Type* bottom_type() const { return TypeInt::INT; }
 880 };
 881 
 882 //------------------------------AryEq---------------------------------------
 883 class AryEqNode: public StrIntrinsicNode {
 884 public:
 885   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
 886     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
 887   virtual int Opcode() const;
 888   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 889 };
 890 
 891 
 892 //------------------------------EncodeISOArray--------------------------------
 893 // encode char[] to byte[] in ISO_8859_1
 894 class EncodeISOArrayNode: public Node {
 895 public:
 896   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
 897   virtual int Opcode() const;
 898   virtual bool depends_only_on_test() const { return false; }
 899   virtual const Type* bottom_type() const { return TypeInt::INT; }
 900   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
 901   virtual uint match_edge(uint idx) const;
 902   virtual uint ideal_reg() const { return Op_RegI; }
 903   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 904   virtual const Type *Value(PhaseTransform *phase) const;
 905 };
 906 
 907 //------------------------------MemBar-----------------------------------------
 908 // There are different flavors of Memory Barriers to match the Java Memory
 909 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
 910 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
 911 // volatile-load.  Monitor-exit and volatile-store act as Release: no
 912 // preceding ref can be moved to after them.  We insert a MemBar-Release
 913 // before a FastUnlock or volatile-store.  All volatiles need to be
 914 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
 915 // separate it from any following volatile-load.
 916 class MemBarNode: public MultiNode {
 917   virtual uint hash() const ;                  // { return NO_HASH; }
 918   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
 919 
 920   virtual uint size_of() const { return sizeof(*this); }
 921   // Memory type this node is serializing.  Usually either rawptr or bottom.
 922   const TypePtr* _adr_type;
 923 
 924 public:
 925   enum {
 926     Precedent = TypeFunc::Parms  // optional edge to force precedence
 927   };
 928   MemBarNode(Compile* C, int alias_idx, Node* precedent);
 929   virtual int Opcode() const = 0;
 930   virtual const class TypePtr *adr_type() const { return _adr_type; }
 931   virtual const Type *Value( PhaseTransform *phase ) const;
 932   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 933   virtual uint match_edge(uint idx) const { return 0; }
 934   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
 935   virtual Node *match( const ProjNode *proj, const Matcher *m );
 936   // Factory method.  Builds a wide or narrow membar.
 937   // Optional 'precedent' becomes an extra edge if not null.
 938   static MemBarNode* make(Compile* C, int opcode,
 939                           int alias_idx = Compile::AliasIdxBot,
 940                           Node* precedent = NULL);
 941 };
 942 
 943 // "Acquire" - no following ref can move before (but earlier refs can
 944 // follow, like an early Load stalled in cache).  Requires multi-cpu
 945 // visibility.  Inserted after a volatile load.
 946 class MemBarAcquireNode: public MemBarNode {
 947 public:
 948   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
 949     : MemBarNode(C, alias_idx, precedent) {}
 950   virtual int Opcode() const;
 951 };
 952 
 953 // "Release" - no earlier ref can move after (but later refs can move
 954 // up, like a speculative pipelined cache-hitting Load).  Requires
 955 // multi-cpu visibility.  Inserted before a volatile store.
 956 class MemBarReleaseNode: public MemBarNode {
 957 public:
 958   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
 959     : MemBarNode(C, alias_idx, precedent) {}
 960   virtual int Opcode() const;
 961 };
 962 
 963 // "Acquire" - no following ref can move before (but earlier refs can
 964 // follow, like an early Load stalled in cache).  Requires multi-cpu
 965 // visibility.  Inserted after a FastLock.
 966 class MemBarAcquireLockNode: public MemBarNode {
 967 public:
 968   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
 969     : MemBarNode(C, alias_idx, precedent) {}
 970   virtual int Opcode() const;
 971 };
 972 
 973 // "Release" - no earlier ref can move after (but later refs can move
 974 // up, like a speculative pipelined cache-hitting Load).  Requires
 975 // multi-cpu visibility.  Inserted before a FastUnLock.
 976 class MemBarReleaseLockNode: public MemBarNode {
 977 public:
 978   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
 979     : MemBarNode(C, alias_idx, precedent) {}
 980   virtual int Opcode() const;
 981 };
 982 
 983 class MemBarStoreStoreNode: public MemBarNode {
 984 public:
 985   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
 986     : MemBarNode(C, alias_idx, precedent) {
 987     init_class_id(Class_MemBarStoreStore);
 988   }
 989   virtual int Opcode() const;
 990 };
 991 
 992 // Ordering between a volatile store and a following volatile load.
 993 // Requires multi-CPU visibility?
 994 class MemBarVolatileNode: public MemBarNode {
 995 public:
 996   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
 997     : MemBarNode(C, alias_idx, precedent) {}
 998   virtual int Opcode() const;
 999 };
1000 
1001 // Ordering within the same CPU.  Used to order unsafe memory references
1002 // inside the compiler when we lack alias info.  Not needed "outside" the
1003 // compiler because the CPU does all the ordering for us.
1004 class MemBarCPUOrderNode: public MemBarNode {
1005 public:
1006   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1007     : MemBarNode(C, alias_idx, precedent) {}
1008   virtual int Opcode() const;
1009   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1010 };
1011 
1012 // Isolation of object setup after an AllocateNode and before next safepoint.
1013 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1014 class InitializeNode: public MemBarNode {
1015   friend class AllocateNode;
1016 
1017   enum {
1018     Incomplete    = 0,
1019     Complete      = 1,
1020     WithArraycopy = 2
1021   };
1022   int _is_complete;
1023 
1024   bool _does_not_escape;
1025 
1026 public:
1027   enum {
1028     Control    = TypeFunc::Control,
1029     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1030     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1031     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1032   };
1033 
1034   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1035   virtual int Opcode() const;
1036   virtual uint size_of() const { return sizeof(*this); }
1037   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1038   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1039 
1040   // Manage incoming memory edges via a MergeMem on in(Memory):
1041   Node* memory(uint alias_idx);
1042 
1043   // The raw memory edge coming directly from the Allocation.
1044   // The contents of this memory are *always* all-zero-bits.
1045   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1046 
1047   // Return the corresponding allocation for this initialization (or null if none).
1048   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1049   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1050   AllocateNode* allocation();
1051 
1052   // Anything other than zeroing in this init?
1053   bool is_non_zero();
1054 
1055   // An InitializeNode must completed before macro expansion is done.
1056   // Completion requires that the AllocateNode must be followed by
1057   // initialization of the new memory to zero, then to any initializers.
1058   bool is_complete() { return _is_complete != Incomplete; }
1059   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1060 
1061   // Mark complete.  (Must not yet be complete.)
1062   void set_complete(PhaseGVN* phase);
1063   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1064 
1065   bool does_not_escape() { return _does_not_escape; }
1066   void set_does_not_escape() { _does_not_escape = true; }
1067 
1068 #ifdef ASSERT
1069   // ensure all non-degenerate stores are ordered and non-overlapping
1070   bool stores_are_sane(PhaseTransform* phase);
1071 #endif //ASSERT
1072 
1073   // See if this store can be captured; return offset where it initializes.
1074   // Return 0 if the store cannot be moved (any sort of problem).
1075   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1076 
1077   // Capture another store; reformat it to write my internal raw memory.
1078   // Return the captured copy, else NULL if there is some sort of problem.
1079   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1080 
1081   // Find captured store which corresponds to the range [start..start+size).
1082   // Return my own memory projection (meaning the initial zero bits)
1083   // if there is no such store.  Return NULL if there is a problem.
1084   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1085 
1086   // Called when the associated AllocateNode is expanded into CFG.
1087   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1088                         intptr_t header_size, Node* size_in_bytes,
1089                         PhaseGVN* phase);
1090 
1091  private:
1092   void remove_extra_zeroes();
1093 
1094   // Find out where a captured store should be placed (or already is placed).
1095   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1096                                      PhaseTransform* phase);
1097 
1098   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1099 
1100   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1101 
1102   bool detect_init_independence(Node* n, int& count);
1103 
1104   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1105                                PhaseGVN* phase);
1106 
1107   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1108 };
1109 
1110 //------------------------------MergeMem---------------------------------------
1111 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1112 class MergeMemNode: public Node {
1113   virtual uint hash() const ;                  // { return NO_HASH; }
1114   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1115   friend class MergeMemStream;
1116   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1117 
1118 public:
1119   // If the input is a whole memory state, clone it with all its slices intact.
1120   // Otherwise, make a new memory state with just that base memory input.
1121   // In either case, the result is a newly created MergeMem.
1122   static MergeMemNode* make(Compile* C, Node* base_memory);
1123 
1124   virtual int Opcode() const;
1125   virtual Node *Identity( PhaseTransform *phase );
1126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1127   virtual uint ideal_reg() const { return NotAMachineReg; }
1128   virtual uint match_edge(uint idx) const { return 0; }
1129   virtual const RegMask &out_RegMask() const;
1130   virtual const Type *bottom_type() const { return Type::MEMORY; }
1131   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1132   // sparse accessors
1133   // Fetch the previously stored "set_memory_at", or else the base memory.
1134   // (Caller should clone it if it is a phi-nest.)
1135   Node* memory_at(uint alias_idx) const;
1136   // set the memory, regardless of its previous value
1137   void set_memory_at(uint alias_idx, Node* n);
1138   // the "base" is the memory that provides the non-finite support
1139   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1140   // warning: setting the base can implicitly set any of the other slices too
1141   void set_base_memory(Node* def);
1142   // sentinel value which denotes a copy of the base memory:
1143   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1144   static Node* make_empty_memory(); // where the sentinel comes from
1145   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1146   // hook for the iterator, to perform any necessary setup
1147   void iteration_setup(const MergeMemNode* other = NULL);
1148   // push sentinels until I am at least as long as the other (semantic no-op)
1149   void grow_to_match(const MergeMemNode* other);
1150   bool verify_sparse() const PRODUCT_RETURN0;
1151 #ifndef PRODUCT
1152   virtual void dump_spec(outputStream *st) const;
1153 #endif
1154 };
1155 
1156 class MergeMemStream : public StackObj {
1157  private:
1158   MergeMemNode*       _mm;
1159   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1160   Node*               _mm_base;  // loop-invariant base memory of _mm
1161   int                 _idx;
1162   int                 _cnt;
1163   Node*               _mem;
1164   Node*               _mem2;
1165   int                 _cnt2;
1166 
1167   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1168     // subsume_node will break sparseness at times, whenever a memory slice
1169     // folds down to a copy of the base ("fat") memory.  In such a case,
1170     // the raw edge will update to base, although it should be top.
1171     // This iterator will recognize either top or base_memory as an
1172     // "empty" slice.  See is_empty, is_empty2, and next below.
1173     //
1174     // The sparseness property is repaired in MergeMemNode::Ideal.
1175     // As long as access to a MergeMem goes through this iterator
1176     // or the memory_at accessor, flaws in the sparseness will
1177     // never be observed.
1178     //
1179     // Also, iteration_setup repairs sparseness.
1180     assert(mm->verify_sparse(), "please, no dups of base");
1181     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1182 
1183     _mm  = mm;
1184     _mm_base = mm->base_memory();
1185     _mm2 = mm2;
1186     _cnt = mm->req();
1187     _idx = Compile::AliasIdxBot-1; // start at the base memory
1188     _mem = NULL;
1189     _mem2 = NULL;
1190   }
1191 
1192 #ifdef ASSERT
1193   Node* check_memory() const {
1194     if (at_base_memory())
1195       return _mm->base_memory();
1196     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1197       return _mm->memory_at(_idx);
1198     else
1199       return _mm_base;
1200   }
1201   Node* check_memory2() const {
1202     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1203   }
1204 #endif
1205 
1206   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1207   void assert_synch() const {
1208     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1209            "no side-effects except through the stream");
1210   }
1211 
1212  public:
1213 
1214   // expected usages:
1215   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1216   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1217 
1218   // iterate over one merge
1219   MergeMemStream(MergeMemNode* mm) {
1220     mm->iteration_setup();
1221     init(mm);
1222     debug_only(_cnt2 = 999);
1223   }
1224   // iterate in parallel over two merges
1225   // only iterates through non-empty elements of mm2
1226   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1227     assert(mm2, "second argument must be a MergeMem also");
1228     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1229     mm->iteration_setup(mm2);
1230     init(mm, mm2);
1231     _cnt2 = mm2->req();
1232   }
1233 #ifdef ASSERT
1234   ~MergeMemStream() {
1235     assert_synch();
1236   }
1237 #endif
1238 
1239   MergeMemNode* all_memory() const {
1240     return _mm;
1241   }
1242   Node* base_memory() const {
1243     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1244     return _mm_base;
1245   }
1246   const MergeMemNode* all_memory2() const {
1247     assert(_mm2 != NULL, "");
1248     return _mm2;
1249   }
1250   bool at_base_memory() const {
1251     return _idx == Compile::AliasIdxBot;
1252   }
1253   int alias_idx() const {
1254     assert(_mem, "must call next 1st");
1255     return _idx;
1256   }
1257 
1258   const TypePtr* adr_type() const {
1259     return Compile::current()->get_adr_type(alias_idx());
1260   }
1261 
1262   const TypePtr* adr_type(Compile* C) const {
1263     return C->get_adr_type(alias_idx());
1264   }
1265   bool is_empty() const {
1266     assert(_mem, "must call next 1st");
1267     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1268     return _mem->is_top();
1269   }
1270   bool is_empty2() const {
1271     assert(_mem2, "must call next 1st");
1272     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1273     return _mem2->is_top();
1274   }
1275   Node* memory() const {
1276     assert(!is_empty(), "must not be empty");
1277     assert_synch();
1278     return _mem;
1279   }
1280   // get the current memory, regardless of empty or non-empty status
1281   Node* force_memory() const {
1282     assert(!is_empty() || !at_base_memory(), "");
1283     // Use _mm_base to defend against updates to _mem->base_memory().
1284     Node *mem = _mem->is_top() ? _mm_base : _mem;
1285     assert(mem == check_memory(), "");
1286     return mem;
1287   }
1288   Node* memory2() const {
1289     assert(_mem2 == check_memory2(), "");
1290     return _mem2;
1291   }
1292   void set_memory(Node* mem) {
1293     if (at_base_memory()) {
1294       // Note that this does not change the invariant _mm_base.
1295       _mm->set_base_memory(mem);
1296     } else {
1297       _mm->set_memory_at(_idx, mem);
1298     }
1299     _mem = mem;
1300     assert_synch();
1301   }
1302 
1303   // Recover from a side effect to the MergeMemNode.
1304   void set_memory() {
1305     _mem = _mm->in(_idx);
1306   }
1307 
1308   bool next()  { return next(false); }
1309   bool next2() { return next(true); }
1310 
1311   bool next_non_empty()  { return next_non_empty(false); }
1312   bool next_non_empty2() { return next_non_empty(true); }
1313   // next_non_empty2 can yield states where is_empty() is true
1314 
1315  private:
1316   // find the next item, which might be empty
1317   bool next(bool have_mm2) {
1318     assert((_mm2 != NULL) == have_mm2, "use other next");
1319     assert_synch();
1320     if (++_idx < _cnt) {
1321       // Note:  This iterator allows _mm to be non-sparse.
1322       // It behaves the same whether _mem is top or base_memory.
1323       _mem = _mm->in(_idx);
1324       if (have_mm2)
1325         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1326       return true;
1327     }
1328     return false;
1329   }
1330 
1331   // find the next non-empty item
1332   bool next_non_empty(bool have_mm2) {
1333     while (next(have_mm2)) {
1334       if (!is_empty()) {
1335         // make sure _mem2 is filled in sensibly
1336         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1337         return true;
1338       } else if (have_mm2 && !is_empty2()) {
1339         return true;   // is_empty() == true
1340       }
1341     }
1342     return false;
1343   }
1344 };
1345 
1346 //------------------------------Prefetch---------------------------------------
1347 
1348 // Non-faulting prefetch load.  Prefetch for many reads.
1349 class PrefetchReadNode : public Node {
1350 public:
1351   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1352   virtual int Opcode() const;
1353   virtual uint ideal_reg() const { return NotAMachineReg; }
1354   virtual uint match_edge(uint idx) const { return idx==2; }
1355   virtual const Type *bottom_type() const { return Type::ABIO; }
1356 };
1357 
1358 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1359 class PrefetchWriteNode : public Node {
1360 public:
1361   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1362   virtual int Opcode() const;
1363   virtual uint ideal_reg() const { return NotAMachineReg; }
1364   virtual uint match_edge(uint idx) const { return idx==2; }
1365   virtual const Type *bottom_type() const { return Type::ABIO; }
1366 };
1367 
1368 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1369 class PrefetchAllocationNode : public Node {
1370 public:
1371   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1372   virtual int Opcode() const;
1373   virtual uint ideal_reg() const { return NotAMachineReg; }
1374   virtual uint match_edge(uint idx) const { return idx==2; }
1375   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1376 };
1377 
1378 #endif // SHARE_VM_OPTO_MEMNODE_HPP