1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "utilities/bitMap.inline.hpp"
  35 #ifdef TARGET_ARCH_x86
  36 # include "vmreg_x86.inline.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vmreg_sparc.inline.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vmreg_zero.inline.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_arm
  45 # include "vmreg_arm.inline.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_ppc
  48 # include "vmreg_ppc.inline.hpp"
  49 #endif
  50 
  51 
  52 #ifndef PRODUCT
  53 
  54   static LinearScanStatistic _stat_before_alloc;
  55   static LinearScanStatistic _stat_after_asign;
  56   static LinearScanStatistic _stat_final;
  57 
  58   static LinearScanTimers _total_timer;
  59 
  60   // helper macro for short definition of timer
  61   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  62 
  63   // helper macro for short definition of trace-output inside code
  64   #define TRACE_LINEAR_SCAN(level, code)       \
  65     if (TraceLinearScanLevel >= level) {       \
  66       code;                                    \
  67     }
  68 
  69 #else
  70 
  71   #define TIME_LINEAR_SCAN(timer_name)
  72   #define TRACE_LINEAR_SCAN(level, code)
  73 
  74 #endif
  75 
  76 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  77 #ifdef _LP64
  78 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  79 #else
  80 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  81 #endif
  82 
  83 
  84 // Implementation of LinearScan
  85 
  86 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  87  : _compilation(ir->compilation())
  88  , _ir(ir)
  89  , _gen(gen)
  90  , _frame_map(frame_map)
  91  , _num_virtual_regs(gen->max_virtual_register_number())
  92  , _has_fpu_registers(false)
  93  , _num_calls(-1)
  94  , _max_spills(0)
  95  , _unused_spill_slot(-1)
  96  , _intervals(0)   // initialized later with correct length
  97  , _new_intervals_from_allocation(new IntervalList())
  98  , _sorted_intervals(NULL)
  99  , _needs_full_resort(false)
 100  , _lir_ops(0)     // initialized later with correct length
 101  , _block_of_op(0) // initialized later with correct length
 102  , _has_info(0)
 103  , _has_call(0)
 104  , _scope_value_cache(0) // initialized later with correct length
 105  , _interval_in_loop(0, 0) // initialized later with correct length
 106  , _cached_blocks(*ir->linear_scan_order())
 107 #ifdef X86
 108  , _fpu_stack_allocator(NULL)
 109 #endif
 110 {
 111   assert(this->ir() != NULL,          "check if valid");
 112   assert(this->compilation() != NULL, "check if valid");
 113   assert(this->gen() != NULL,         "check if valid");
 114   assert(this->frame_map() != NULL,   "check if valid");
 115 }
 116 
 117 
 118 // ********** functions for converting LIR-Operands to register numbers
 119 //
 120 // Emulate a flat register file comprising physical integer registers,
 121 // physical floating-point registers and virtual registers, in that order.
 122 // Virtual registers already have appropriate numbers, since V0 is
 123 // the number of physical registers.
 124 // Returns -1 for hi word if opr is a single word operand.
 125 //
 126 // Note: the inverse operation (calculating an operand for register numbers)
 127 //       is done in calc_operand_for_interval()
 128 
 129 int LinearScan::reg_num(LIR_Opr opr) {
 130   assert(opr->is_register(), "should not call this otherwise");
 131 
 132   if (opr->is_virtual_register()) {
 133     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 134     return opr->vreg_number();
 135   } else if (opr->is_single_cpu()) {
 136     return opr->cpu_regnr();
 137   } else if (opr->is_double_cpu()) {
 138     return opr->cpu_regnrLo();
 139 #ifdef X86
 140   } else if (opr->is_single_xmm()) {
 141     return opr->fpu_regnr() + pd_first_xmm_reg;
 142   } else if (opr->is_double_xmm()) {
 143     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 144 #endif
 145   } else if (opr->is_single_fpu()) {
 146     return opr->fpu_regnr() + pd_first_fpu_reg;
 147   } else if (opr->is_double_fpu()) {
 148     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 149   } else {
 150     ShouldNotReachHere();
 151     return -1;
 152   }
 153 }
 154 
 155 int LinearScan::reg_numHi(LIR_Opr opr) {
 156   assert(opr->is_register(), "should not call this otherwise");
 157 
 158   if (opr->is_virtual_register()) {
 159     return -1;
 160   } else if (opr->is_single_cpu()) {
 161     return -1;
 162   } else if (opr->is_double_cpu()) {
 163     return opr->cpu_regnrHi();
 164 #ifdef X86
 165   } else if (opr->is_single_xmm()) {
 166     return -1;
 167   } else if (opr->is_double_xmm()) {
 168     return -1;
 169 #endif
 170   } else if (opr->is_single_fpu()) {
 171     return -1;
 172   } else if (opr->is_double_fpu()) {
 173     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 174   } else {
 175     ShouldNotReachHere();
 176     return -1;
 177   }
 178 }
 179 
 180 
 181 // ********** functions for classification of intervals
 182 
 183 bool LinearScan::is_precolored_interval(const Interval* i) {
 184   return i->reg_num() < LinearScan::nof_regs;
 185 }
 186 
 187 bool LinearScan::is_virtual_interval(const Interval* i) {
 188   return i->reg_num() >= LIR_OprDesc::vreg_base;
 189 }
 190 
 191 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 192   return i->reg_num() < LinearScan::nof_cpu_regs;
 193 }
 194 
 195 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 196 #if defined(__SOFTFP__) || defined(E500V2)
 197   return i->reg_num() >= LIR_OprDesc::vreg_base;
 198 #else
 199   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 200 #endif // __SOFTFP__ or E500V2
 201 }
 202 
 203 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 204   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 205 }
 206 
 207 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 208 #if defined(__SOFTFP__) || defined(E500V2)
 209   return false;
 210 #else
 211   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 212 #endif // __SOFTFP__ or E500V2
 213 }
 214 
 215 bool LinearScan::is_in_fpu_register(const Interval* i) {
 216   // fixed intervals not needed for FPU stack allocation
 217   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 218 }
 219 
 220 bool LinearScan::is_oop_interval(const Interval* i) {
 221   // fixed intervals never contain oops
 222   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 223 }
 224 
 225 
 226 // ********** General helper functions
 227 
 228 // compute next unused stack index that can be used for spilling
 229 int LinearScan::allocate_spill_slot(bool double_word) {
 230   int spill_slot;
 231   if (double_word) {
 232     if ((_max_spills & 1) == 1) {
 233       // alignment of double-word values
 234       // the hole because of the alignment is filled with the next single-word value
 235       assert(_unused_spill_slot == -1, "wasting a spill slot");
 236       _unused_spill_slot = _max_spills;
 237       _max_spills++;
 238     }
 239     spill_slot = _max_spills;
 240     _max_spills += 2;
 241 
 242   } else if (_unused_spill_slot != -1) {
 243     // re-use hole that was the result of a previous double-word alignment
 244     spill_slot = _unused_spill_slot;
 245     _unused_spill_slot = -1;
 246 
 247   } else {
 248     spill_slot = _max_spills;
 249     _max_spills++;
 250   }
 251 
 252   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 253 
 254   // the class OopMapValue uses only 11 bits for storing the name of the
 255   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 256   // that is not reported in product builds. Prevent this by checking the
 257   // spill slot here (altough this value and the later used location name
 258   // are slightly different)
 259   if (result > 2000) {
 260     bailout("too many stack slots used");
 261   }
 262 
 263   return result;
 264 }
 265 
 266 void LinearScan::assign_spill_slot(Interval* it) {
 267   // assign the canonical spill slot of the parent (if a part of the interval
 268   // is already spilled) or allocate a new spill slot
 269   if (it->canonical_spill_slot() >= 0) {
 270     it->assign_reg(it->canonical_spill_slot());
 271   } else {
 272     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 273     it->set_canonical_spill_slot(spill);
 274     it->assign_reg(spill);
 275   }
 276 }
 277 
 278 void LinearScan::propagate_spill_slots() {
 279   if (!frame_map()->finalize_frame(max_spills())) {
 280     bailout("frame too large");
 281   }
 282 }
 283 
 284 // create a new interval with a predefined reg_num
 285 // (only used for parent intervals that are created during the building phase)
 286 Interval* LinearScan::create_interval(int reg_num) {
 287   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 288 
 289   Interval* interval = new Interval(reg_num);
 290   _intervals.at_put(reg_num, interval);
 291 
 292   // assign register number for precolored intervals
 293   if (reg_num < LIR_OprDesc::vreg_base) {
 294     interval->assign_reg(reg_num);
 295   }
 296   return interval;
 297 }
 298 
 299 // assign a new reg_num to the interval and append it to the list of intervals
 300 // (only used for child intervals that are created during register allocation)
 301 void LinearScan::append_interval(Interval* it) {
 302   it->set_reg_num(_intervals.length());
 303   _intervals.append(it);
 304   _new_intervals_from_allocation->append(it);
 305 }
 306 
 307 // copy the vreg-flags if an interval is split
 308 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 309   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 310     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 311   }
 312   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 313     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 314   }
 315 
 316   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 317   //       intervals (only the very beginning of the interval must be in memory)
 318 }
 319 
 320 
 321 // ********** spill move optimization
 322 // eliminate moves from register to stack if stack slot is known to be correct
 323 
 324 // called during building of intervals
 325 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 326   assert(interval->is_split_parent(), "can only be called for split parents");
 327 
 328   switch (interval->spill_state()) {
 329     case noDefinitionFound:
 330       assert(interval->spill_definition_pos() == -1, "must no be set before");
 331       interval->set_spill_definition_pos(def_pos);
 332       interval->set_spill_state(oneDefinitionFound);
 333       break;
 334 
 335     case oneDefinitionFound:
 336       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 337       if (def_pos < interval->spill_definition_pos() - 2) {
 338         // second definition found, so no spill optimization possible for this interval
 339         interval->set_spill_state(noOptimization);
 340       } else {
 341         // two consecutive definitions (because of two-operand LIR form)
 342         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 343       }
 344       break;
 345 
 346     case noOptimization:
 347       // nothing to do
 348       break;
 349 
 350     default:
 351       assert(false, "other states not allowed at this time");
 352   }
 353 }
 354 
 355 // called during register allocation
 356 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 357   switch (interval->spill_state()) {
 358     case oneDefinitionFound: {
 359       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 360       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 361 
 362       if (def_loop_depth < spill_loop_depth) {
 363         // the loop depth of the spilling position is higher then the loop depth
 364         // at the definition of the interval -> move write to memory out of loop
 365         // by storing at definitin of the interval
 366         interval->set_spill_state(storeAtDefinition);
 367       } else {
 368         // the interval is currently spilled only once, so for now there is no
 369         // reason to store the interval at the definition
 370         interval->set_spill_state(oneMoveInserted);
 371       }
 372       break;
 373     }
 374 
 375     case oneMoveInserted: {
 376       // the interval is spilled more then once, so it is better to store it to
 377       // memory at the definition
 378       interval->set_spill_state(storeAtDefinition);
 379       break;
 380     }
 381 
 382     case storeAtDefinition:
 383     case startInMemory:
 384     case noOptimization:
 385     case noDefinitionFound:
 386       // nothing to do
 387       break;
 388 
 389     default:
 390       assert(false, "other states not allowed at this time");
 391   }
 392 }
 393 
 394 
 395 bool LinearScan::must_store_at_definition(const Interval* i) {
 396   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 397 }
 398 
 399 // called once before asignment of register numbers
 400 void LinearScan::eliminate_spill_moves() {
 401   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 402   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 403 
 404   // collect all intervals that must be stored after their definion.
 405   // the list is sorted by Interval::spill_definition_pos
 406   Interval* interval;
 407   Interval* temp_list;
 408   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 409 
 410 #ifdef ASSERT
 411   Interval* prev = NULL;
 412   Interval* temp = interval;
 413   while (temp != Interval::end()) {
 414     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 415     if (prev != NULL) {
 416       assert(temp->from() >= prev->from(), "intervals not sorted");
 417       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 418     }
 419 
 420     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 421     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 422     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 423 
 424     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 425 
 426     temp = temp->next();
 427   }
 428 #endif
 429 
 430   LIR_InsertionBuffer insertion_buffer;
 431   int num_blocks = block_count();
 432   for (int i = 0; i < num_blocks; i++) {
 433     BlockBegin* block = block_at(i);
 434     LIR_OpList* instructions = block->lir()->instructions_list();
 435     int         num_inst = instructions->length();
 436     bool        has_new = false;
 437 
 438     // iterate all instructions of the block. skip the first because it is always a label
 439     for (int j = 1; j < num_inst; j++) {
 440       LIR_Op* op = instructions->at(j);
 441       int op_id = op->id();
 442 
 443       if (op_id == -1) {
 444         // remove move from register to stack if the stack slot is guaranteed to be correct.
 445         // only moves that have been inserted by LinearScan can be removed.
 446         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 447         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 448         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 449 
 450         LIR_Op1* op1 = (LIR_Op1*)op;
 451         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 452 
 453         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 454           // move target is a stack slot that is always correct, so eliminate instruction
 455           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 456           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 457         }
 458 
 459       } else {
 460         // insert move from register to stack just after the beginning of the interval
 461         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 462         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 463 
 464         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 465           if (!has_new) {
 466             // prepare insertion buffer (appended when all instructions of the block are processed)
 467             insertion_buffer.init(block->lir());
 468             has_new = true;
 469           }
 470 
 471           LIR_Opr from_opr = operand_for_interval(interval);
 472           LIR_Opr to_opr = canonical_spill_opr(interval);
 473           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 474           assert(to_opr->is_stack(), "to operand must be a stack slot");
 475 
 476           insertion_buffer.move(j, from_opr, to_opr);
 477           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 478 
 479           interval = interval->next();
 480         }
 481       }
 482     } // end of instruction iteration
 483 
 484     if (has_new) {
 485       block->lir()->append(&insertion_buffer);
 486     }
 487   } // end of block iteration
 488 
 489   assert(interval == Interval::end(), "missed an interval");
 490 }
 491 
 492 
 493 // ********** Phase 1: number all instructions in all blocks
 494 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 495 
 496 void LinearScan::number_instructions() {
 497   {
 498     // dummy-timer to measure the cost of the timer itself
 499     // (this time is then subtracted from all other timers to get the real value)
 500     TIME_LINEAR_SCAN(timer_do_nothing);
 501   }
 502   TIME_LINEAR_SCAN(timer_number_instructions);
 503 
 504   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 505   int num_blocks = block_count();
 506   int num_instructions = 0;
 507   int i;
 508   for (i = 0; i < num_blocks; i++) {
 509     num_instructions += block_at(i)->lir()->instructions_list()->length();
 510   }
 511 
 512   // initialize with correct length
 513   _lir_ops = LIR_OpArray(num_instructions);
 514   _block_of_op = BlockBeginArray(num_instructions);
 515 
 516   int op_id = 0;
 517   int idx = 0;
 518 
 519   for (i = 0; i < num_blocks; i++) {
 520     BlockBegin* block = block_at(i);
 521     block->set_first_lir_instruction_id(op_id);
 522     LIR_OpList* instructions = block->lir()->instructions_list();
 523 
 524     int num_inst = instructions->length();
 525     for (int j = 0; j < num_inst; j++) {
 526       LIR_Op* op = instructions->at(j);
 527       op->set_id(op_id);
 528 
 529       _lir_ops.at_put(idx, op);
 530       _block_of_op.at_put(idx, block);
 531       assert(lir_op_with_id(op_id) == op, "must match");
 532 
 533       idx++;
 534       op_id += 2; // numbering of lir_ops by two
 535     }
 536     block->set_last_lir_instruction_id(op_id - 2);
 537   }
 538   assert(idx == num_instructions, "must match");
 539   assert(idx * 2 == op_id, "must match");
 540 
 541   _has_call = BitMap(num_instructions); _has_call.clear();
 542   _has_info = BitMap(num_instructions); _has_info.clear();
 543 }
 544 
 545 
 546 // ********** Phase 2: compute local live sets separately for each block
 547 // (sets live_gen and live_kill for each block)
 548 
 549 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 550   LIR_Opr opr = value->operand();
 551   Constant* con = value->as_Constant();
 552 
 553   // check some asumptions about debug information
 554   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 555   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 556   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 557 
 558   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 559     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 560     int reg = opr->vreg_number();
 561     if (!live_kill.at(reg)) {
 562       live_gen.set_bit(reg);
 563       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 564     }
 565   }
 566 }
 567 
 568 
 569 void LinearScan::compute_local_live_sets() {
 570   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 571 
 572   int  num_blocks = block_count();
 573   int  live_size = live_set_size();
 574   bool local_has_fpu_registers = false;
 575   int  local_num_calls = 0;
 576   LIR_OpVisitState visitor;
 577 
 578   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 579   local_interval_in_loop.clear();
 580 
 581   // iterate all blocks
 582   for (int i = 0; i < num_blocks; i++) {
 583     BlockBegin* block = block_at(i);
 584 
 585     BitMap live_gen(live_size);  live_gen.clear();
 586     BitMap live_kill(live_size); live_kill.clear();
 587 
 588     if (block->is_set(BlockBegin::exception_entry_flag)) {
 589       // Phi functions at the begin of an exception handler are
 590       // implicitly defined (= killed) at the beginning of the block.
 591       for_each_phi_fun(block, phi,
 592         live_kill.set_bit(phi->operand()->vreg_number())
 593       );
 594     }
 595 
 596     LIR_OpList* instructions = block->lir()->instructions_list();
 597     int num_inst = instructions->length();
 598 
 599     // iterate all instructions of the block. skip the first because it is always a label
 600     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 601     for (int j = 1; j < num_inst; j++) {
 602       LIR_Op* op = instructions->at(j);
 603 
 604       // visit operation to collect all operands
 605       visitor.visit(op);
 606 
 607       if (visitor.has_call()) {
 608         _has_call.set_bit(op->id() >> 1);
 609         local_num_calls++;
 610       }
 611       if (visitor.info_count() > 0) {
 612         _has_info.set_bit(op->id() >> 1);
 613       }
 614 
 615       // iterate input operands of instruction
 616       int k, n, reg;
 617       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 618       for (k = 0; k < n; k++) {
 619         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 620         assert(opr->is_register(), "visitor should only return register operands");
 621 
 622         if (opr->is_virtual_register()) {
 623           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 624           reg = opr->vreg_number();
 625           if (!live_kill.at(reg)) {
 626             live_gen.set_bit(reg);
 627             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 628           }
 629           if (block->loop_index() >= 0) {
 630             local_interval_in_loop.set_bit(reg, block->loop_index());
 631           }
 632           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 633         }
 634 
 635 #ifdef ASSERT
 636         // fixed intervals are never live at block boundaries, so
 637         // they need not be processed in live sets.
 638         // this is checked by these assertions to be sure about it.
 639         // the entry block may have incoming values in registers, which is ok.
 640         if (!opr->is_virtual_register() && block != ir()->start()) {
 641           reg = reg_num(opr);
 642           if (is_processed_reg_num(reg)) {
 643             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 644           }
 645           reg = reg_numHi(opr);
 646           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 647             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 648           }
 649         }
 650 #endif
 651       }
 652 
 653       // Add uses of live locals from interpreter's point of view for proper debug information generation
 654       n = visitor.info_count();
 655       for (k = 0; k < n; k++) {
 656         CodeEmitInfo* info = visitor.info_at(k);
 657         ValueStack* stack = info->stack();
 658         for_each_state_value(stack, value,
 659           set_live_gen_kill(value, op, live_gen, live_kill)
 660         );
 661       }
 662 
 663       // iterate temp operands of instruction
 664       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 665       for (k = 0; k < n; k++) {
 666         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 667         assert(opr->is_register(), "visitor should only return register operands");
 668 
 669         if (opr->is_virtual_register()) {
 670           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 671           reg = opr->vreg_number();
 672           live_kill.set_bit(reg);
 673           if (block->loop_index() >= 0) {
 674             local_interval_in_loop.set_bit(reg, block->loop_index());
 675           }
 676           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 677         }
 678 
 679 #ifdef ASSERT
 680         // fixed intervals are never live at block boundaries, so
 681         // they need not be processed in live sets
 682         // process them only in debug mode so that this can be checked
 683         if (!opr->is_virtual_register()) {
 684           reg = reg_num(opr);
 685           if (is_processed_reg_num(reg)) {
 686             live_kill.set_bit(reg_num(opr));
 687           }
 688           reg = reg_numHi(opr);
 689           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 690             live_kill.set_bit(reg);
 691           }
 692         }
 693 #endif
 694       }
 695 
 696       // iterate output operands of instruction
 697       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 698       for (k = 0; k < n; k++) {
 699         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 700         assert(opr->is_register(), "visitor should only return register operands");
 701 
 702         if (opr->is_virtual_register()) {
 703           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 704           reg = opr->vreg_number();
 705           live_kill.set_bit(reg);
 706           if (block->loop_index() >= 0) {
 707             local_interval_in_loop.set_bit(reg, block->loop_index());
 708           }
 709           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 710         }
 711 
 712 #ifdef ASSERT
 713         // fixed intervals are never live at block boundaries, so
 714         // they need not be processed in live sets
 715         // process them only in debug mode so that this can be checked
 716         if (!opr->is_virtual_register()) {
 717           reg = reg_num(opr);
 718           if (is_processed_reg_num(reg)) {
 719             live_kill.set_bit(reg_num(opr));
 720           }
 721           reg = reg_numHi(opr);
 722           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 723             live_kill.set_bit(reg);
 724           }
 725         }
 726 #endif
 727       }
 728     } // end of instruction iteration
 729 
 730     block->set_live_gen (live_gen);
 731     block->set_live_kill(live_kill);
 732     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 733     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 734 
 735     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 736     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 737   } // end of block iteration
 738 
 739   // propagate local calculated information into LinearScan object
 740   _has_fpu_registers = local_has_fpu_registers;
 741   compilation()->set_has_fpu_code(local_has_fpu_registers);
 742 
 743   _num_calls = local_num_calls;
 744   _interval_in_loop = local_interval_in_loop;
 745 }
 746 
 747 
 748 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 749 // (sets live_in and live_out for each block)
 750 
 751 void LinearScan::compute_global_live_sets() {
 752   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 753 
 754   int  num_blocks = block_count();
 755   bool change_occurred;
 756   bool change_occurred_in_block;
 757   int  iteration_count = 0;
 758   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 759 
 760   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 761   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 762   // Exception handlers must be processed because not all live values are
 763   // present in the state array, e.g. because of global value numbering
 764   do {
 765     change_occurred = false;
 766 
 767     // iterate all blocks in reverse order
 768     for (int i = num_blocks - 1; i >= 0; i--) {
 769       BlockBegin* block = block_at(i);
 770 
 771       change_occurred_in_block = false;
 772 
 773       // live_out(block) is the union of live_in(sux), for successors sux of block
 774       int n = block->number_of_sux();
 775       int e = block->number_of_exception_handlers();
 776       if (n + e > 0) {
 777         // block has successors
 778         if (n > 0) {
 779           live_out.set_from(block->sux_at(0)->live_in());
 780           for (int j = 1; j < n; j++) {
 781             live_out.set_union(block->sux_at(j)->live_in());
 782           }
 783         } else {
 784           live_out.clear();
 785         }
 786         for (int j = 0; j < e; j++) {
 787           live_out.set_union(block->exception_handler_at(j)->live_in());
 788         }
 789 
 790         if (!block->live_out().is_same(live_out)) {
 791           // A change occurred.  Swap the old and new live out sets to avoid copying.
 792           BitMap temp = block->live_out();
 793           block->set_live_out(live_out);
 794           live_out = temp;
 795 
 796           change_occurred = true;
 797           change_occurred_in_block = true;
 798         }
 799       }
 800 
 801       if (iteration_count == 0 || change_occurred_in_block) {
 802         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 803         // note: live_in has to be computed only in first iteration or if live_out has changed!
 804         BitMap live_in = block->live_in();
 805         live_in.set_from(block->live_out());
 806         live_in.set_difference(block->live_kill());
 807         live_in.set_union(block->live_gen());
 808       }
 809 
 810 #ifndef PRODUCT
 811       if (TraceLinearScanLevel >= 4) {
 812         char c = ' ';
 813         if (iteration_count == 0 || change_occurred_in_block) {
 814           c = '*';
 815         }
 816         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 817         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 818       }
 819 #endif
 820     }
 821     iteration_count++;
 822 
 823     if (change_occurred && iteration_count > 50) {
 824       BAILOUT("too many iterations in compute_global_live_sets");
 825     }
 826   } while (change_occurred);
 827 
 828 
 829 #ifdef ASSERT
 830   // check that fixed intervals are not live at block boundaries
 831   // (live set must be empty at fixed intervals)
 832   for (int i = 0; i < num_blocks; i++) {
 833     BlockBegin* block = block_at(i);
 834     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 835       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 836       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 837       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 838     }
 839   }
 840 #endif
 841 
 842   // check that the live_in set of the first block is empty
 843   BitMap live_in_args(ir()->start()->live_in().size());
 844   live_in_args.clear();
 845   if (!ir()->start()->live_in().is_same(live_in_args)) {
 846 #ifdef ASSERT
 847     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 848     tty->print_cr("affected registers:");
 849     print_bitmap(ir()->start()->live_in());
 850 
 851     // print some additional information to simplify debugging
 852     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 853       if (ir()->start()->live_in().at(i)) {
 854         Instruction* instr = gen()->instruction_for_vreg(i);
 855         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 856 
 857         for (int j = 0; j < num_blocks; j++) {
 858           BlockBegin* block = block_at(j);
 859           if (block->live_gen().at(i)) {
 860             tty->print_cr("  used in block B%d", block->block_id());
 861           }
 862           if (block->live_kill().at(i)) {
 863             tty->print_cr("  defined in block B%d", block->block_id());
 864           }
 865         }
 866       }
 867     }
 868 
 869 #endif
 870     // when this fails, virtual registers are used before they are defined.
 871     assert(false, "live_in set of first block must be empty");
 872     // bailout of if this occurs in product mode.
 873     bailout("live_in set of first block not empty");
 874   }
 875 }
 876 
 877 
 878 // ********** Phase 4: build intervals
 879 // (fills the list _intervals)
 880 
 881 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 882   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 883   LIR_Opr opr = value->operand();
 884   Constant* con = value->as_Constant();
 885 
 886   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 887     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 888     add_use(opr, from, to, use_kind);
 889   }
 890 }
 891 
 892 
 893 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 894   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 895   assert(opr->is_register(), "should not be called otherwise");
 896 
 897   if (opr->is_virtual_register()) {
 898     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 899     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 900 
 901   } else {
 902     int reg = reg_num(opr);
 903     if (is_processed_reg_num(reg)) {
 904       add_def(reg, def_pos, use_kind, opr->type_register());
 905     }
 906     reg = reg_numHi(opr);
 907     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 908       add_def(reg, def_pos, use_kind, opr->type_register());
 909     }
 910   }
 911 }
 912 
 913 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 914   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 915   assert(opr->is_register(), "should not be called otherwise");
 916 
 917   if (opr->is_virtual_register()) {
 918     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 919     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 920 
 921   } else {
 922     int reg = reg_num(opr);
 923     if (is_processed_reg_num(reg)) {
 924       add_use(reg, from, to, use_kind, opr->type_register());
 925     }
 926     reg = reg_numHi(opr);
 927     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 928       add_use(reg, from, to, use_kind, opr->type_register());
 929     }
 930   }
 931 }
 932 
 933 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 934   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 935   assert(opr->is_register(), "should not be called otherwise");
 936 
 937   if (opr->is_virtual_register()) {
 938     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 939     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 940 
 941   } else {
 942     int reg = reg_num(opr);
 943     if (is_processed_reg_num(reg)) {
 944       add_temp(reg, temp_pos, use_kind, opr->type_register());
 945     }
 946     reg = reg_numHi(opr);
 947     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 948       add_temp(reg, temp_pos, use_kind, opr->type_register());
 949     }
 950   }
 951 }
 952 
 953 
 954 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 955   Interval* interval = interval_at(reg_num);
 956   if (interval != NULL) {
 957     assert(interval->reg_num() == reg_num, "wrong interval");
 958 
 959     if (type != T_ILLEGAL) {
 960       interval->set_type(type);
 961     }
 962 
 963     Range* r = interval->first();
 964     if (r->from() <= def_pos) {
 965       // Update the starting point (when a range is first created for a use, its
 966       // start is the beginning of the current block until a def is encountered.)
 967       r->set_from(def_pos);
 968       interval->add_use_pos(def_pos, use_kind);
 969 
 970     } else {
 971       // Dead value - make vacuous interval
 972       // also add use_kind for dead intervals
 973       interval->add_range(def_pos, def_pos + 1);
 974       interval->add_use_pos(def_pos, use_kind);
 975       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 976     }
 977 
 978   } else {
 979     // Dead value - make vacuous interval
 980     // also add use_kind for dead intervals
 981     interval = create_interval(reg_num);
 982     if (type != T_ILLEGAL) {
 983       interval->set_type(type);
 984     }
 985 
 986     interval->add_range(def_pos, def_pos + 1);
 987     interval->add_use_pos(def_pos, use_kind);
 988     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 989   }
 990 
 991   change_spill_definition_pos(interval, def_pos);
 992   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 993         // detection of method-parameters and roundfp-results
 994         // TODO: move this directly to position where use-kind is computed
 995     interval->set_spill_state(startInMemory);
 996   }
 997 }
 998 
 999 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
1000   Interval* interval = interval_at(reg_num);
1001   if (interval == NULL) {
1002     interval = create_interval(reg_num);
1003   }
1004   assert(interval->reg_num() == reg_num, "wrong interval");
1005 
1006   if (type != T_ILLEGAL) {
1007     interval->set_type(type);
1008   }
1009 
1010   interval->add_range(from, to);
1011   interval->add_use_pos(to, use_kind);
1012 }
1013 
1014 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1015   Interval* interval = interval_at(reg_num);
1016   if (interval == NULL) {
1017     interval = create_interval(reg_num);
1018   }
1019   assert(interval->reg_num() == reg_num, "wrong interval");
1020 
1021   if (type != T_ILLEGAL) {
1022     interval->set_type(type);
1023   }
1024 
1025   interval->add_range(temp_pos, temp_pos + 1);
1026   interval->add_use_pos(temp_pos, use_kind);
1027 }
1028 
1029 
1030 // the results of this functions are used for optimizing spilling and reloading
1031 // if the functions return shouldHaveRegister and the interval is spilled,
1032 // it is not reloaded to a register.
1033 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1034   if (op->code() == lir_move) {
1035     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1036     LIR_Op1* move = (LIR_Op1*)op;
1037     LIR_Opr res = move->result_opr();
1038     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1039 
1040     if (result_in_memory) {
1041       // Begin of an interval with must_start_in_memory set.
1042       // This interval will always get a stack slot first, so return noUse.
1043       return noUse;
1044 
1045     } else if (move->in_opr()->is_stack()) {
1046       // method argument (condition must be equal to handle_method_arguments)
1047       return noUse;
1048 
1049     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1050       // Move from register to register
1051       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1052         // special handling of phi-function moves inside osr-entry blocks
1053         // input operand must have a register instead of output operand (leads to better register allocation)
1054         return shouldHaveRegister;
1055       }
1056     }
1057   }
1058 
1059   if (opr->is_virtual() &&
1060       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1061     // result is a stack-slot, so prevent immediate reloading
1062     return noUse;
1063   }
1064 
1065   // all other operands require a register
1066   return mustHaveRegister;
1067 }
1068 
1069 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1070   if (op->code() == lir_move) {
1071     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1072     LIR_Op1* move = (LIR_Op1*)op;
1073     LIR_Opr res = move->result_opr();
1074     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1075 
1076     if (result_in_memory) {
1077       // Move to an interval with must_start_in_memory set.
1078       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1079       return mustHaveRegister;
1080 
1081     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1082       // Move from register to register
1083       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1084         // special handling of phi-function moves inside osr-entry blocks
1085         // input operand must have a register instead of output operand (leads to better register allocation)
1086         return mustHaveRegister;
1087       }
1088 
1089       // The input operand is not forced to a register (moves from stack to register are allowed),
1090       // but it is faster if the input operand is in a register
1091       return shouldHaveRegister;
1092     }
1093   }
1094 
1095 
1096 #ifdef X86
1097   if (op->code() == lir_cmove) {
1098     // conditional moves can handle stack operands
1099     assert(op->result_opr()->is_register(), "result must always be in a register");
1100     return shouldHaveRegister;
1101   }
1102 
1103   // optimizations for second input operand of arithmehtic operations on Intel
1104   // this operand is allowed to be on the stack in some cases
1105   BasicType opr_type = opr->type_register();
1106   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1107     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1108       // SSE float instruction (T_DOUBLE only supported with SSE2)
1109       switch (op->code()) {
1110         case lir_cmp:
1111         case lir_add:
1112         case lir_sub:
1113         case lir_mul:
1114         case lir_div:
1115         {
1116           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1117           LIR_Op2* op2 = (LIR_Op2*)op;
1118           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1119             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1120             return shouldHaveRegister;
1121           }
1122         }
1123       }
1124     } else {
1125       // FPU stack float instruction
1126       switch (op->code()) {
1127         case lir_add:
1128         case lir_sub:
1129         case lir_mul:
1130         case lir_div:
1131         {
1132           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1133           LIR_Op2* op2 = (LIR_Op2*)op;
1134           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1135             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1136             return shouldHaveRegister;
1137           }
1138         }
1139       }
1140     }
1141 
1142   } else if (opr_type != T_LONG) {
1143     // integer instruction (note: long operands must always be in register)
1144     switch (op->code()) {
1145       case lir_cmp:
1146       case lir_add:
1147       case lir_sub:
1148       case lir_logic_and:
1149       case lir_logic_or:
1150       case lir_logic_xor:
1151       {
1152         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1153         LIR_Op2* op2 = (LIR_Op2*)op;
1154         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1155           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1156           return shouldHaveRegister;
1157         }
1158       }
1159     }
1160   }
1161 #endif // X86
1162 
1163   // all other operands require a register
1164   return mustHaveRegister;
1165 }
1166 
1167 
1168 void LinearScan::handle_method_arguments(LIR_Op* op) {
1169   // special handling for method arguments (moves from stack to virtual register):
1170   // the interval gets no register assigned, but the stack slot.
1171   // it is split before the first use by the register allocator.
1172 
1173   if (op->code() == lir_move) {
1174     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1175     LIR_Op1* move = (LIR_Op1*)op;
1176 
1177     if (move->in_opr()->is_stack()) {
1178 #ifdef ASSERT
1179       int arg_size = compilation()->method()->arg_size();
1180       LIR_Opr o = move->in_opr();
1181       if (o->is_single_stack()) {
1182         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1183       } else if (o->is_double_stack()) {
1184         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1185       } else {
1186         ShouldNotReachHere();
1187       }
1188 
1189       assert(move->id() > 0, "invalid id");
1190       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1191       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1192 
1193       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1194 #endif
1195 
1196       Interval* interval = interval_at(reg_num(move->result_opr()));
1197 
1198       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1199       interval->set_canonical_spill_slot(stack_slot);
1200       interval->assign_reg(stack_slot);
1201     }
1202   }
1203 }
1204 
1205 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1206   // special handling for doubleword move from memory to register:
1207   // in this case the registers of the input address and the result
1208   // registers must not overlap -> add a temp range for the input registers
1209   if (op->code() == lir_move) {
1210     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1211     LIR_Op1* move = (LIR_Op1*)op;
1212 
1213     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1214       LIR_Address* address = move->in_opr()->as_address_ptr();
1215       if (address != NULL) {
1216         if (address->base()->is_valid()) {
1217           add_temp(address->base(), op->id(), noUse);
1218         }
1219         if (address->index()->is_valid()) {
1220           add_temp(address->index(), op->id(), noUse);
1221         }
1222       }
1223     }
1224   }
1225 }
1226 
1227 void LinearScan::add_register_hints(LIR_Op* op) {
1228   switch (op->code()) {
1229     case lir_move:      // fall through
1230     case lir_convert: {
1231       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1232       LIR_Op1* move = (LIR_Op1*)op;
1233 
1234       LIR_Opr move_from = move->in_opr();
1235       LIR_Opr move_to = move->result_opr();
1236 
1237       if (move_to->is_register() && move_from->is_register()) {
1238         Interval* from = interval_at(reg_num(move_from));
1239         Interval* to = interval_at(reg_num(move_to));
1240         if (from != NULL && to != NULL) {
1241           to->set_register_hint(from);
1242           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1243         }
1244       }
1245       break;
1246     }
1247     case lir_cmove: {
1248       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1249       LIR_Op2* cmove = (LIR_Op2*)op;
1250 
1251       LIR_Opr move_from = cmove->in_opr1();
1252       LIR_Opr move_to = cmove->result_opr();
1253 
1254       if (move_to->is_register() && move_from->is_register()) {
1255         Interval* from = interval_at(reg_num(move_from));
1256         Interval* to = interval_at(reg_num(move_to));
1257         if (from != NULL && to != NULL) {
1258           to->set_register_hint(from);
1259           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1260         }
1261       }
1262       break;
1263     }
1264   }
1265 }
1266 
1267 
1268 void LinearScan::build_intervals() {
1269   TIME_LINEAR_SCAN(timer_build_intervals);
1270 
1271   // initialize interval list with expected number of intervals
1272   // (32 is added to have some space for split children without having to resize the list)
1273   _intervals = IntervalList(num_virtual_regs() + 32);
1274   // initialize all slots that are used by build_intervals
1275   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1276 
1277   // create a list with all caller-save registers (cpu, fpu, xmm)
1278   // when an instruction is a call, a temp range is created for all these registers
1279   int num_caller_save_registers = 0;
1280   int caller_save_registers[LinearScan::nof_regs];
1281 
1282   int i;
1283   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1284     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1285     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1286     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1287     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1288   }
1289 
1290   // temp ranges for fpu registers are only created when the method has
1291   // virtual fpu operands. Otherwise no allocation for fpu registers is
1292   // perfomed and so the temp ranges would be useless
1293   if (has_fpu_registers()) {
1294 #ifdef X86
1295     if (UseSSE < 2) {
1296 #endif
1297       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1298         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1299         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1300         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1301         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1302       }
1303 #ifdef X86
1304     }
1305     if (UseSSE > 0) {
1306       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1307         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1308         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1309         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1310         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1311       }
1312     }
1313 #endif
1314   }
1315   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1316 
1317 
1318   LIR_OpVisitState visitor;
1319 
1320   // iterate all blocks in reverse order
1321   for (i = block_count() - 1; i >= 0; i--) {
1322     BlockBegin* block = block_at(i);
1323     LIR_OpList* instructions = block->lir()->instructions_list();
1324     int         block_from =   block->first_lir_instruction_id();
1325     int         block_to =     block->last_lir_instruction_id();
1326 
1327     assert(block_from == instructions->at(0)->id(), "must be");
1328     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1329 
1330     // Update intervals for registers live at the end of this block;
1331     BitMap live = block->live_out();
1332     int size = (int)live.size();
1333     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1334       assert(live.at(number), "should not stop here otherwise");
1335       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1336       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1337 
1338       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1339 
1340       // add special use positions for loop-end blocks when the
1341       // interval is used anywhere inside this loop.  It's possible
1342       // that the block was part of a non-natural loop, so it might
1343       // have an invalid loop index.
1344       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1345           block->loop_index() != -1 &&
1346           is_interval_in_loop(number, block->loop_index())) {
1347         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1348       }
1349     }
1350 
1351     // iterate all instructions of the block in reverse order.
1352     // skip the first instruction because it is always a label
1353     // definitions of intervals are processed before uses
1354     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1355     for (int j = instructions->length() - 1; j >= 1; j--) {
1356       LIR_Op* op = instructions->at(j);
1357       int op_id = op->id();
1358 
1359       // visit operation to collect all operands
1360       visitor.visit(op);
1361 
1362       // add a temp range for each register if operation destroys caller-save registers
1363       if (visitor.has_call()) {
1364         for (int k = 0; k < num_caller_save_registers; k++) {
1365           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1366         }
1367         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1368       }
1369 
1370       // Add any platform dependent temps
1371       pd_add_temps(op);
1372 
1373       // visit definitions (output and temp operands)
1374       int k, n;
1375       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1376       for (k = 0; k < n; k++) {
1377         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1378         assert(opr->is_register(), "visitor should only return register operands");
1379         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1380       }
1381 
1382       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1383       for (k = 0; k < n; k++) {
1384         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1385         assert(opr->is_register(), "visitor should only return register operands");
1386         add_temp(opr, op_id, mustHaveRegister);
1387       }
1388 
1389       // visit uses (input operands)
1390       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1391       for (k = 0; k < n; k++) {
1392         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1393         assert(opr->is_register(), "visitor should only return register operands");
1394         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1395       }
1396 
1397       // Add uses of live locals from interpreter's point of view for proper
1398       // debug information generation
1399       // Treat these operands as temp values (if the life range is extended
1400       // to a call site, the value would be in a register at the call otherwise)
1401       n = visitor.info_count();
1402       for (k = 0; k < n; k++) {
1403         CodeEmitInfo* info = visitor.info_at(k);
1404         ValueStack* stack = info->stack();
1405         for_each_state_value(stack, value,
1406           add_use(value, block_from, op_id + 1, noUse);
1407         );
1408       }
1409 
1410       // special steps for some instructions (especially moves)
1411       handle_method_arguments(op);
1412       handle_doubleword_moves(op);
1413       add_register_hints(op);
1414 
1415     } // end of instruction iteration
1416   } // end of block iteration
1417 
1418 
1419   // add the range [0, 1[ to all fixed intervals
1420   // -> the register allocator need not handle unhandled fixed intervals
1421   for (int n = 0; n < LinearScan::nof_regs; n++) {
1422     Interval* interval = interval_at(n);
1423     if (interval != NULL) {
1424       interval->add_range(0, 1);
1425     }
1426   }
1427 }
1428 
1429 
1430 // ********** Phase 5: actual register allocation
1431 
1432 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1433   if (*a != NULL) {
1434     if (*b != NULL) {
1435       return (*a)->from() - (*b)->from();
1436     } else {
1437       return -1;
1438     }
1439   } else {
1440     if (*b != NULL) {
1441       return 1;
1442     } else {
1443       return 0;
1444     }
1445   }
1446 }
1447 
1448 #ifndef PRODUCT
1449 bool LinearScan::is_sorted(IntervalArray* intervals) {
1450   int from = -1;
1451   int i, j;
1452   for (i = 0; i < intervals->length(); i ++) {
1453     Interval* it = intervals->at(i);
1454     if (it != NULL) {
1455       if (from > it->from()) {
1456         assert(false, "");
1457         return false;
1458       }
1459       from = it->from();
1460     }
1461   }
1462 
1463   // check in both directions if sorted list and unsorted list contain same intervals
1464   for (i = 0; i < interval_count(); i++) {
1465     if (interval_at(i) != NULL) {
1466       int num_found = 0;
1467       for (j = 0; j < intervals->length(); j++) {
1468         if (interval_at(i) == intervals->at(j)) {
1469           num_found++;
1470         }
1471       }
1472       assert(num_found == 1, "lists do not contain same intervals");
1473     }
1474   }
1475   for (j = 0; j < intervals->length(); j++) {
1476     int num_found = 0;
1477     for (i = 0; i < interval_count(); i++) {
1478       if (interval_at(i) == intervals->at(j)) {
1479         num_found++;
1480       }
1481     }
1482     assert(num_found == 1, "lists do not contain same intervals");
1483   }
1484 
1485   return true;
1486 }
1487 #endif
1488 
1489 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1490   if (*prev != NULL) {
1491     (*prev)->set_next(interval);
1492   } else {
1493     *first = interval;
1494   }
1495   *prev = interval;
1496 }
1497 
1498 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1499   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1500 
1501   *list1 = *list2 = Interval::end();
1502 
1503   Interval* list1_prev = NULL;
1504   Interval* list2_prev = NULL;
1505   Interval* v;
1506 
1507   const int n = _sorted_intervals->length();
1508   for (int i = 0; i < n; i++) {
1509     v = _sorted_intervals->at(i);
1510     if (v == NULL) continue;
1511 
1512     if (is_list1(v)) {
1513       add_to_list(list1, &list1_prev, v);
1514     } else if (is_list2 == NULL || is_list2(v)) {
1515       add_to_list(list2, &list2_prev, v);
1516     }
1517   }
1518 
1519   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1520   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1521 
1522   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1523   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1524 }
1525 
1526 
1527 void LinearScan::sort_intervals_before_allocation() {
1528   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1529 
1530   if (_needs_full_resort) {
1531     // There is no known reason why this should occur but just in case...
1532     assert(false, "should never occur");
1533     // Re-sort existing interval list because an Interval::from() has changed
1534     _sorted_intervals->sort(interval_cmp);
1535     _needs_full_resort = false;
1536   }
1537 
1538   IntervalList* unsorted_list = &_intervals;
1539   int unsorted_len = unsorted_list->length();
1540   int sorted_len = 0;
1541   int unsorted_idx;
1542   int sorted_idx = 0;
1543   int sorted_from_max = -1;
1544 
1545   // calc number of items for sorted list (sorted list must not contain NULL values)
1546   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1547     if (unsorted_list->at(unsorted_idx) != NULL) {
1548       sorted_len++;
1549     }
1550   }
1551   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1552 
1553   // special sorting algorithm: the original interval-list is almost sorted,
1554   // only some intervals are swapped. So this is much faster than a complete QuickSort
1555   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1556     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1557 
1558     if (cur_interval != NULL) {
1559       int cur_from = cur_interval->from();
1560 
1561       if (sorted_from_max <= cur_from) {
1562         sorted_list->at_put(sorted_idx++, cur_interval);
1563         sorted_from_max = cur_interval->from();
1564       } else {
1565         // the asumption that the intervals are already sorted failed,
1566         // so this interval must be sorted in manually
1567         int j;
1568         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1569           sorted_list->at_put(j + 1, sorted_list->at(j));
1570         }
1571         sorted_list->at_put(j + 1, cur_interval);
1572         sorted_idx++;
1573       }
1574     }
1575   }
1576   _sorted_intervals = sorted_list;
1577   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1578 }
1579 
1580 void LinearScan::sort_intervals_after_allocation() {
1581   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1582 
1583   if (_needs_full_resort) {
1584     // Re-sort existing interval list because an Interval::from() has changed
1585     _sorted_intervals->sort(interval_cmp);
1586     _needs_full_resort = false;
1587   }
1588 
1589   IntervalArray* old_list      = _sorted_intervals;
1590   IntervalList*  new_list      = _new_intervals_from_allocation;
1591   int old_len = old_list->length();
1592   int new_len = new_list->length();
1593 
1594   if (new_len == 0) {
1595     // no intervals have been added during allocation, so sorted list is already up to date
1596     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1597     return;
1598   }
1599 
1600   // conventional sort-algorithm for new intervals
1601   new_list->sort(interval_cmp);
1602 
1603   // merge old and new list (both already sorted) into one combined list
1604   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1605   int old_idx = 0;
1606   int new_idx = 0;
1607 
1608   while (old_idx + new_idx < old_len + new_len) {
1609     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1610       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1611       old_idx++;
1612     } else {
1613       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1614       new_idx++;
1615     }
1616   }
1617 
1618   _sorted_intervals = combined_list;
1619   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1620 }
1621 
1622 
1623 void LinearScan::allocate_registers() {
1624   TIME_LINEAR_SCAN(timer_allocate_registers);
1625 
1626   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1627   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1628 
1629   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1630   if (has_fpu_registers()) {
1631     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1632 #ifdef ASSERT
1633   } else {
1634     // fpu register allocation is omitted because no virtual fpu registers are present
1635     // just check this again...
1636     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1637     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1638 #endif
1639   }
1640 
1641   // allocate cpu registers
1642   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1643   cpu_lsw.walk();
1644   cpu_lsw.finish_allocation();
1645 
1646   if (has_fpu_registers()) {
1647     // allocate fpu registers
1648     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1649     fpu_lsw.walk();
1650     fpu_lsw.finish_allocation();
1651   }
1652 }
1653 
1654 
1655 // ********** Phase 6: resolve data flow
1656 // (insert moves at edges between blocks if intervals have been split)
1657 
1658 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1659 // instead of returning NULL
1660 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1661   Interval* result = interval->split_child_at_op_id(op_id, mode);
1662   if (result != NULL) {
1663     return result;
1664   }
1665 
1666   assert(false, "must find an interval, but do a clean bailout in product mode");
1667   result = new Interval(LIR_OprDesc::vreg_base);
1668   result->assign_reg(0);
1669   result->set_type(T_INT);
1670   BAILOUT_("LinearScan: interval is NULL", result);
1671 }
1672 
1673 
1674 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1675   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1676   assert(interval_at(reg_num) != NULL, "no interval found");
1677 
1678   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1679 }
1680 
1681 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1682   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1683   assert(interval_at(reg_num) != NULL, "no interval found");
1684 
1685   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1686 }
1687 
1688 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1689   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1690   assert(interval_at(reg_num) != NULL, "no interval found");
1691 
1692   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1693 }
1694 
1695 
1696 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1697   DEBUG_ONLY(move_resolver.check_empty());
1698 
1699   const int num_regs = num_virtual_regs();
1700   const int size = live_set_size();
1701   const BitMap live_at_edge = to_block->live_in();
1702 
1703   // visit all registers where the live_at_edge bit is set
1704   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1705     assert(r < num_regs, "live information set for not exisiting interval");
1706     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1707 
1708     Interval* from_interval = interval_at_block_end(from_block, r);
1709     Interval* to_interval = interval_at_block_begin(to_block, r);
1710 
1711     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1712       // need to insert move instruction
1713       move_resolver.add_mapping(from_interval, to_interval);
1714     }
1715   }
1716 }
1717 
1718 
1719 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1720   if (from_block->number_of_sux() <= 1) {
1721     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1722 
1723     LIR_OpList* instructions = from_block->lir()->instructions_list();
1724     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1725     if (branch != NULL) {
1726       // insert moves before branch
1727       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1728       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1729     } else {
1730       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1731     }
1732 
1733   } else {
1734     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1735 #ifdef ASSERT
1736     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1737 
1738     // because the number of predecessor edges matches the number of
1739     // successor edges, blocks which are reached by switch statements
1740     // may have be more than one predecessor but it will be guaranteed
1741     // that all predecessors will be the same.
1742     for (int i = 0; i < to_block->number_of_preds(); i++) {
1743       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1744     }
1745 #endif
1746 
1747     move_resolver.set_insert_position(to_block->lir(), 0);
1748   }
1749 }
1750 
1751 
1752 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1753 void LinearScan::resolve_data_flow() {
1754   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1755 
1756   int num_blocks = block_count();
1757   MoveResolver move_resolver(this);
1758   BitMap block_completed(num_blocks);  block_completed.clear();
1759   BitMap already_resolved(num_blocks); already_resolved.clear();
1760 
1761   int i;
1762   for (i = 0; i < num_blocks; i++) {
1763     BlockBegin* block = block_at(i);
1764 
1765     // check if block has only one predecessor and only one successor
1766     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1767       LIR_OpList* instructions = block->lir()->instructions_list();
1768       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1769       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1770       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1771 
1772       // check if block is empty (only label and branch)
1773       if (instructions->length() == 2) {
1774         BlockBegin* pred = block->pred_at(0);
1775         BlockBegin* sux = block->sux_at(0);
1776 
1777         // prevent optimization of two consecutive blocks
1778         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1779           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1780           block_completed.set_bit(block->linear_scan_number());
1781 
1782           // directly resolve between pred and sux (without looking at the empty block between)
1783           resolve_collect_mappings(pred, sux, move_resolver);
1784           if (move_resolver.has_mappings()) {
1785             move_resolver.set_insert_position(block->lir(), 0);
1786             move_resolver.resolve_and_append_moves();
1787           }
1788         }
1789       }
1790     }
1791   }
1792 
1793 
1794   for (i = 0; i < num_blocks; i++) {
1795     if (!block_completed.at(i)) {
1796       BlockBegin* from_block = block_at(i);
1797       already_resolved.set_from(block_completed);
1798 
1799       int num_sux = from_block->number_of_sux();
1800       for (int s = 0; s < num_sux; s++) {
1801         BlockBegin* to_block = from_block->sux_at(s);
1802 
1803         // check for duplicate edges between the same blocks (can happen with switch blocks)
1804         if (!already_resolved.at(to_block->linear_scan_number())) {
1805           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1806           already_resolved.set_bit(to_block->linear_scan_number());
1807 
1808           // collect all intervals that have been split between from_block and to_block
1809           resolve_collect_mappings(from_block, to_block, move_resolver);
1810           if (move_resolver.has_mappings()) {
1811             resolve_find_insert_pos(from_block, to_block, move_resolver);
1812             move_resolver.resolve_and_append_moves();
1813           }
1814         }
1815       }
1816     }
1817   }
1818 }
1819 
1820 
1821 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1822   if (interval_at(reg_num) == NULL) {
1823     // if a phi function is never used, no interval is created -> ignore this
1824     return;
1825   }
1826 
1827   Interval* interval = interval_at_block_begin(block, reg_num);
1828   int reg = interval->assigned_reg();
1829   int regHi = interval->assigned_regHi();
1830 
1831   if ((reg < nof_regs && interval->always_in_memory()) ||
1832       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1833     // the interval is split to get a short range that is located on the stack
1834     // in the following two cases:
1835     // * the interval started in memory (e.g. method parameter), but is currently in a register
1836     //   this is an optimization for exception handling that reduces the number of moves that
1837     //   are necessary for resolving the states when an exception uses this exception handler
1838     // * the interval would be on the fpu stack at the begin of the exception handler
1839     //   this is not allowed because of the complicated fpu stack handling on Intel
1840 
1841     // range that will be spilled to memory
1842     int from_op_id = block->first_lir_instruction_id();
1843     int to_op_id = from_op_id + 1;  // short live range of length 1
1844     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1845            "no split allowed between exception entry and first instruction");
1846 
1847     if (interval->from() != from_op_id) {
1848       // the part before from_op_id is unchanged
1849       interval = interval->split(from_op_id);
1850       interval->assign_reg(reg, regHi);
1851       append_interval(interval);
1852     } else {
1853       _needs_full_resort = true;
1854     }
1855     assert(interval->from() == from_op_id, "must be true now");
1856 
1857     Interval* spilled_part = interval;
1858     if (interval->to() != to_op_id) {
1859       // the part after to_op_id is unchanged
1860       spilled_part = interval->split_from_start(to_op_id);
1861       append_interval(spilled_part);
1862       move_resolver.add_mapping(spilled_part, interval);
1863     }
1864     assign_spill_slot(spilled_part);
1865 
1866     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1867   }
1868 }
1869 
1870 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1871   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1872   DEBUG_ONLY(move_resolver.check_empty());
1873 
1874   // visit all registers where the live_in bit is set
1875   int size = live_set_size();
1876   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1877     resolve_exception_entry(block, r, move_resolver);
1878   }
1879 
1880   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1881   for_each_phi_fun(block, phi,
1882     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1883   );
1884 
1885   if (move_resolver.has_mappings()) {
1886     // insert moves after first instruction
1887     move_resolver.set_insert_position(block->lir(), 0);
1888     move_resolver.resolve_and_append_moves();
1889   }
1890 }
1891 
1892 
1893 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1894   if (interval_at(reg_num) == NULL) {
1895     // if a phi function is never used, no interval is created -> ignore this
1896     return;
1897   }
1898 
1899   // the computation of to_interval is equal to resolve_collect_mappings,
1900   // but from_interval is more complicated because of phi functions
1901   BlockBegin* to_block = handler->entry_block();
1902   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1903 
1904   if (phi != NULL) {
1905     // phi function of the exception entry block
1906     // no moves are created for this phi function in the LIR_Generator, so the
1907     // interval at the throwing instruction must be searched using the operands
1908     // of the phi function
1909     Value from_value = phi->operand_at(handler->phi_operand());
1910 
1911     // with phi functions it can happen that the same from_value is used in
1912     // multiple mappings, so notify move-resolver that this is allowed
1913     move_resolver.set_multiple_reads_allowed();
1914 
1915     Constant* con = from_value->as_Constant();
1916     if (con != NULL && !con->is_pinned()) {
1917       // unpinned constants may have no register, so add mapping from constant to interval
1918       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1919     } else {
1920       // search split child at the throwing op_id
1921       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1922       move_resolver.add_mapping(from_interval, to_interval);
1923     }
1924 
1925   } else {
1926     // no phi function, so use reg_num also for from_interval
1927     // search split child at the throwing op_id
1928     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1929     if (from_interval != to_interval) {
1930       // optimization to reduce number of moves: when to_interval is on stack and
1931       // the stack slot is known to be always correct, then no move is necessary
1932       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1933         move_resolver.add_mapping(from_interval, to_interval);
1934       }
1935     }
1936   }
1937 }
1938 
1939 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1940   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1941 
1942   DEBUG_ONLY(move_resolver.check_empty());
1943   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1944   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1945   assert(handler->entry_code() == NULL, "code already present");
1946 
1947   // visit all registers where the live_in bit is set
1948   BlockBegin* block = handler->entry_block();
1949   int size = live_set_size();
1950   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1951     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1952   }
1953 
1954   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1955   for_each_phi_fun(block, phi,
1956     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1957   );
1958 
1959   if (move_resolver.has_mappings()) {
1960     LIR_List* entry_code = new LIR_List(compilation());
1961     move_resolver.set_insert_position(entry_code, 0);
1962     move_resolver.resolve_and_append_moves();
1963 
1964     entry_code->jump(handler->entry_block());
1965     handler->set_entry_code(entry_code);
1966   }
1967 }
1968 
1969 
1970 void LinearScan::resolve_exception_handlers() {
1971   MoveResolver move_resolver(this);
1972   LIR_OpVisitState visitor;
1973   int num_blocks = block_count();
1974 
1975   int i;
1976   for (i = 0; i < num_blocks; i++) {
1977     BlockBegin* block = block_at(i);
1978     if (block->is_set(BlockBegin::exception_entry_flag)) {
1979       resolve_exception_entry(block, move_resolver);
1980     }
1981   }
1982 
1983   for (i = 0; i < num_blocks; i++) {
1984     BlockBegin* block = block_at(i);
1985     LIR_List* ops = block->lir();
1986     int num_ops = ops->length();
1987 
1988     // iterate all instructions of the block. skip the first because it is always a label
1989     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1990     for (int j = 1; j < num_ops; j++) {
1991       LIR_Op* op = ops->at(j);
1992       int op_id = op->id();
1993 
1994       if (op_id != -1 && has_info(op_id)) {
1995         // visit operation to collect all operands
1996         visitor.visit(op);
1997         assert(visitor.info_count() > 0, "should not visit otherwise");
1998 
1999         XHandlers* xhandlers = visitor.all_xhandler();
2000         int n = xhandlers->length();
2001         for (int k = 0; k < n; k++) {
2002           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2003         }
2004 
2005 #ifdef ASSERT
2006       } else {
2007         visitor.visit(op);
2008         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2009 #endif
2010       }
2011     }
2012   }
2013 }
2014 
2015 
2016 // ********** Phase 7: assign register numbers back to LIR
2017 // (includes computation of debug information and oop maps)
2018 
2019 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2020   VMReg reg = interval->cached_vm_reg();
2021   if (!reg->is_valid() ) {
2022     reg = vm_reg_for_operand(operand_for_interval(interval));
2023     interval->set_cached_vm_reg(reg);
2024   }
2025   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2026   return reg;
2027 }
2028 
2029 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2030   assert(opr->is_oop(), "currently only implemented for oop operands");
2031   return frame_map()->regname(opr);
2032 }
2033 
2034 
2035 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2036   LIR_Opr opr = interval->cached_opr();
2037   if (opr->is_illegal()) {
2038     opr = calc_operand_for_interval(interval);
2039     interval->set_cached_opr(opr);
2040   }
2041 
2042   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2043   return opr;
2044 }
2045 
2046 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2047   int assigned_reg = interval->assigned_reg();
2048   BasicType type = interval->type();
2049 
2050   if (assigned_reg >= nof_regs) {
2051     // stack slot
2052     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2053     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2054 
2055   } else {
2056     // register
2057     switch (type) {
2058       case T_OBJECT: {
2059         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2060         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2061         return LIR_OprFact::single_cpu_oop(assigned_reg);
2062       }
2063 
2064       case T_ADDRESS: {
2065         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2066         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2067         return LIR_OprFact::single_cpu_address(assigned_reg);
2068       }
2069 
2070       case T_METADATA: {
2071         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2072         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2073         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2074       }
2075 
2076 #ifdef __SOFTFP__
2077       case T_FLOAT:  // fall through
2078 #endif // __SOFTFP__
2079       case T_INT: {
2080         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2081         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2082         return LIR_OprFact::single_cpu(assigned_reg);
2083       }
2084 
2085 #ifdef __SOFTFP__
2086       case T_DOUBLE:  // fall through
2087 #endif // __SOFTFP__
2088       case T_LONG: {
2089         int assigned_regHi = interval->assigned_regHi();
2090         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2091         assert(num_physical_regs(T_LONG) == 1 ||
2092                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2093 
2094         assert(assigned_reg != assigned_regHi, "invalid allocation");
2095         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2096                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2097         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2098         if (requires_adjacent_regs(T_LONG)) {
2099           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2100         }
2101 
2102 #ifdef _LP64
2103         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2104 #else
2105 #if defined(SPARC) || defined(PPC)
2106         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2107 #else
2108         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2109 #endif // SPARC
2110 #endif // LP64
2111       }
2112 
2113 #ifndef __SOFTFP__
2114       case T_FLOAT: {
2115 #ifdef X86
2116         if (UseSSE >= 1) {
2117           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2118           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2119           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2120         }
2121 #endif
2122 
2123         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2124         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2125         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2126       }
2127 
2128       case T_DOUBLE: {
2129 #ifdef X86
2130         if (UseSSE >= 2) {
2131           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2132           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2133           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2134         }
2135 #endif
2136 
2137 #ifdef SPARC
2138         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2139         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2140         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2141         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2142 #elif defined(ARM)
2143         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2144         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2145         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2146         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2147 #else
2148         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2149         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2150         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2151 #endif
2152         return result;
2153       }
2154 #endif // __SOFTFP__
2155 
2156       default: {
2157         ShouldNotReachHere();
2158         return LIR_OprFact::illegalOpr;
2159       }
2160     }
2161   }
2162 }
2163 
2164 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2165   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2166   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2167 }
2168 
2169 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2170   assert(opr->is_virtual(), "should not call this otherwise");
2171 
2172   Interval* interval = interval_at(opr->vreg_number());
2173   assert(interval != NULL, "interval must exist");
2174 
2175   if (op_id != -1) {
2176 #ifdef ASSERT
2177     BlockBegin* block = block_of_op_with_id(op_id);
2178     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2179       // check if spill moves could have been appended at the end of this block, but
2180       // before the branch instruction. So the split child information for this branch would
2181       // be incorrect.
2182       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2183       if (branch != NULL) {
2184         if (block->live_out().at(opr->vreg_number())) {
2185           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2186           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2187         }
2188       }
2189     }
2190 #endif
2191 
2192     // operands are not changed when an interval is split during allocation,
2193     // so search the right interval here
2194     interval = split_child_at_op_id(interval, op_id, mode);
2195   }
2196 
2197   LIR_Opr res = operand_for_interval(interval);
2198 
2199 #ifdef X86
2200   // new semantic for is_last_use: not only set on definite end of interval,
2201   // but also before hole
2202   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2203   // last use information is completely correct
2204   // information is only needed for fpu stack allocation
2205   if (res->is_fpu_register()) {
2206     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2207       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2208       res = res->make_last_use();
2209     }
2210   }
2211 #endif
2212 
2213   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2214 
2215   return res;
2216 }
2217 
2218 
2219 #ifdef ASSERT
2220 // some methods used to check correctness of debug information
2221 
2222 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2223   if (values == NULL) {
2224     return;
2225   }
2226 
2227   for (int i = 0; i < values->length(); i++) {
2228     ScopeValue* value = values->at(i);
2229 
2230     if (value->is_location()) {
2231       Location location = ((LocationValue*)value)->location();
2232       assert(location.where() == Location::on_stack, "value is in register");
2233     }
2234   }
2235 }
2236 
2237 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2238   if (values == NULL) {
2239     return;
2240   }
2241 
2242   for (int i = 0; i < values->length(); i++) {
2243     MonitorValue* value = values->at(i);
2244 
2245     if (value->owner()->is_location()) {
2246       Location location = ((LocationValue*)value->owner())->location();
2247       assert(location.where() == Location::on_stack, "owner is in register");
2248     }
2249     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2250   }
2251 }
2252 
2253 void assert_equal(Location l1, Location l2) {
2254   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2255 }
2256 
2257 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2258   if (v1->is_location()) {
2259     assert(v2->is_location(), "");
2260     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2261   } else if (v1->is_constant_int()) {
2262     assert(v2->is_constant_int(), "");
2263     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2264   } else if (v1->is_constant_double()) {
2265     assert(v2->is_constant_double(), "");
2266     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2267   } else if (v1->is_constant_long()) {
2268     assert(v2->is_constant_long(), "");
2269     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2270   } else if (v1->is_constant_oop()) {
2271     assert(v2->is_constant_oop(), "");
2272     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2273   } else {
2274     ShouldNotReachHere();
2275   }
2276 }
2277 
2278 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2279   assert_equal(m1->owner(), m2->owner());
2280   assert_equal(m1->basic_lock(), m2->basic_lock());
2281 }
2282 
2283 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2284   assert(d1->scope() == d2->scope(), "not equal");
2285   assert(d1->bci() == d2->bci(), "not equal");
2286 
2287   if (d1->locals() != NULL) {
2288     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2289     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2290     for (int i = 0; i < d1->locals()->length(); i++) {
2291       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2292     }
2293   } else {
2294     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2295   }
2296 
2297   if (d1->expressions() != NULL) {
2298     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2299     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2300     for (int i = 0; i < d1->expressions()->length(); i++) {
2301       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2302     }
2303   } else {
2304     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2305   }
2306 
2307   if (d1->monitors() != NULL) {
2308     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2309     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2310     for (int i = 0; i < d1->monitors()->length(); i++) {
2311       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2312     }
2313   } else {
2314     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2315   }
2316 
2317   if (d1->caller() != NULL) {
2318     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2319     assert_equal(d1->caller(), d2->caller());
2320   } else {
2321     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2322   }
2323 }
2324 
2325 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2326   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2327     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2328     switch (code) {
2329       case Bytecodes::_ifnull    : // fall through
2330       case Bytecodes::_ifnonnull : // fall through
2331       case Bytecodes::_ifeq      : // fall through
2332       case Bytecodes::_ifne      : // fall through
2333       case Bytecodes::_iflt      : // fall through
2334       case Bytecodes::_ifge      : // fall through
2335       case Bytecodes::_ifgt      : // fall through
2336       case Bytecodes::_ifle      : // fall through
2337       case Bytecodes::_if_icmpeq : // fall through
2338       case Bytecodes::_if_icmpne : // fall through
2339       case Bytecodes::_if_icmplt : // fall through
2340       case Bytecodes::_if_icmpge : // fall through
2341       case Bytecodes::_if_icmpgt : // fall through
2342       case Bytecodes::_if_icmple : // fall through
2343       case Bytecodes::_if_acmpeq : // fall through
2344       case Bytecodes::_if_acmpne :
2345         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2346         break;
2347     }
2348   }
2349 }
2350 
2351 #endif // ASSERT
2352 
2353 
2354 IntervalWalker* LinearScan::init_compute_oop_maps() {
2355   // setup lists of potential oops for walking
2356   Interval* oop_intervals;
2357   Interval* non_oop_intervals;
2358 
2359   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2360 
2361   // intervals that have no oops inside need not to be processed
2362   // to ensure a walking until the last instruction id, add a dummy interval
2363   // with a high operation id
2364   non_oop_intervals = new Interval(any_reg);
2365   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2366 
2367   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2368 }
2369 
2370 
2371 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2372   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2373 
2374   // walk before the current operation -> intervals that start at
2375   // the operation (= output operands of the operation) are not
2376   // included in the oop map
2377   iw->walk_before(op->id());
2378 
2379   int frame_size = frame_map()->framesize();
2380   int arg_count = frame_map()->oop_map_arg_count();
2381   OopMap* map = new OopMap(frame_size, arg_count);
2382 
2383   // Check if this is a patch site.
2384   bool is_patch_info = false;
2385   if (op->code() == lir_move) {
2386     assert(!is_call_site, "move must not be a call site");
2387     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2388     LIR_Op1* move = (LIR_Op1*)op;
2389 
2390     is_patch_info = move->patch_code() != lir_patch_none;
2391   }
2392 
2393   // Iterate through active intervals
2394   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2395     int assigned_reg = interval->assigned_reg();
2396 
2397     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2398     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2399     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2400 
2401     // Check if this range covers the instruction. Intervals that
2402     // start or end at the current operation are not included in the
2403     // oop map, except in the case of patching moves.  For patching
2404     // moves, any intervals which end at this instruction are included
2405     // in the oop map since we may safepoint while doing the patch
2406     // before we've consumed the inputs.
2407     if (is_patch_info || op->id() < interval->current_to()) {
2408 
2409       // caller-save registers must not be included into oop-maps at calls
2410       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2411 
2412       VMReg name = vm_reg_for_interval(interval);
2413       set_oop(map, name);
2414 
2415       // Spill optimization: when the stack value is guaranteed to be always correct,
2416       // then it must be added to the oop map even if the interval is currently in a register
2417       if (interval->always_in_memory() &&
2418           op->id() > interval->spill_definition_pos() &&
2419           interval->assigned_reg() != interval->canonical_spill_slot()) {
2420         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2421         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2422         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2423 
2424         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2425       }
2426     }
2427   }
2428 
2429   // add oops from lock stack
2430   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2431   int locks_count = info->stack()->total_locks_size();
2432   for (int i = 0; i < locks_count; i++) {
2433     set_oop(map, frame_map()->monitor_object_regname(i));
2434   }
2435 
2436   return map;
2437 }
2438 
2439 
2440 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2441   assert(visitor.info_count() > 0, "no oop map needed");
2442 
2443   // compute oop_map only for first CodeEmitInfo
2444   // because it is (in most cases) equal for all other infos of the same operation
2445   CodeEmitInfo* first_info = visitor.info_at(0);
2446   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2447 
2448   for (int i = 0; i < visitor.info_count(); i++) {
2449     CodeEmitInfo* info = visitor.info_at(i);
2450     OopMap* oop_map = first_oop_map;
2451 
2452     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2453       // this info has a different number of locks then the precomputed oop map
2454       // (possible for lock and unlock instructions) -> compute oop map with
2455       // correct lock information
2456       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2457     }
2458 
2459     if (info->_oop_map == NULL) {
2460       info->_oop_map = oop_map;
2461     } else {
2462       // a CodeEmitInfo can not be shared between different LIR-instructions
2463       // because interval splitting can occur anywhere between two instructions
2464       // and so the oop maps must be different
2465       // -> check if the already set oop_map is exactly the one calculated for this operation
2466       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2467     }
2468   }
2469 }
2470 
2471 
2472 // frequently used constants
2473 // Allocate them with new so they are never destroyed (otherwise, a
2474 // forced exit could destroy these objects while they are still in
2475 // use).
2476 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2477 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2478 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2479 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2480 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2481 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2482 
2483 void LinearScan::init_compute_debug_info() {
2484   // cache for frequently used scope values
2485   // (cpu registers and stack slots)
2486   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2487 }
2488 
2489 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2490   Location loc;
2491   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2492     bailout("too large frame");
2493   }
2494   ScopeValue* object_scope_value = new LocationValue(loc);
2495 
2496   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2497     bailout("too large frame");
2498   }
2499   return new MonitorValue(object_scope_value, loc);
2500 }
2501 
2502 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2503   Location loc;
2504   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2505     bailout("too large frame");
2506   }
2507   return new LocationValue(loc);
2508 }
2509 
2510 
2511 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2512   assert(opr->is_constant(), "should not be called otherwise");
2513 
2514   LIR_Const* c = opr->as_constant_ptr();
2515   BasicType t = c->type();
2516   switch (t) {
2517     case T_OBJECT: {
2518       jobject value = c->as_jobject();
2519       if (value == NULL) {
2520         scope_values->append(_oop_null_scope_value);
2521       } else {
2522         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2523       }
2524       return 1;
2525     }
2526 
2527     case T_INT: // fall through
2528     case T_FLOAT: {
2529       int value = c->as_jint_bits();
2530       switch (value) {
2531         case -1: scope_values->append(_int_m1_scope_value); break;
2532         case 0:  scope_values->append(_int_0_scope_value); break;
2533         case 1:  scope_values->append(_int_1_scope_value); break;
2534         case 2:  scope_values->append(_int_2_scope_value); break;
2535         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2536       }
2537       return 1;
2538     }
2539 
2540     case T_LONG: // fall through
2541     case T_DOUBLE: {
2542 #ifdef _LP64
2543       scope_values->append(_int_0_scope_value);
2544       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2545 #else
2546       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2547         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2548         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2549       } else {
2550         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2551         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2552       }
2553 #endif
2554       return 2;
2555     }
2556 
2557     case T_ADDRESS: {
2558 #ifdef _LP64
2559       scope_values->append(new ConstantLongValue(c->as_jint()));
2560 #else
2561       scope_values->append(new ConstantIntValue(c->as_jint()));
2562 #endif
2563       return 1;
2564     }
2565 
2566     default:
2567       ShouldNotReachHere();
2568       return -1;
2569   }
2570 }
2571 
2572 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2573   if (opr->is_single_stack()) {
2574     int stack_idx = opr->single_stack_ix();
2575     bool is_oop = opr->is_oop_register();
2576     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2577 
2578     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2579     if (sv == NULL) {
2580       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2581       sv = location_for_name(stack_idx, loc_type);
2582       _scope_value_cache.at_put(cache_idx, sv);
2583     }
2584 
2585     // check if cached value is correct
2586     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2587 
2588     scope_values->append(sv);
2589     return 1;
2590 
2591   } else if (opr->is_single_cpu()) {
2592     bool is_oop = opr->is_oop_register();
2593     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2594     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2595 
2596     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2597     if (sv == NULL) {
2598       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2599       VMReg rname = frame_map()->regname(opr);
2600       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2601       _scope_value_cache.at_put(cache_idx, sv);
2602     }
2603 
2604     // check if cached value is correct
2605     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2606 
2607     scope_values->append(sv);
2608     return 1;
2609 
2610 #ifdef X86
2611   } else if (opr->is_single_xmm()) {
2612     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2613     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2614 
2615     scope_values->append(sv);
2616     return 1;
2617 #endif
2618 
2619   } else if (opr->is_single_fpu()) {
2620 #ifdef X86
2621     // the exact location of fpu stack values is only known
2622     // during fpu stack allocation, so the stack allocator object
2623     // must be present
2624     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2625     assert(_fpu_stack_allocator != NULL, "must be present");
2626     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2627 #endif
2628 
2629     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2630     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2631 #ifndef __SOFTFP__
2632 #ifndef VM_LITTLE_ENDIAN
2633     if (! float_saved_as_double) {
2634       // On big endian system, we may have an issue if float registers use only
2635       // the low half of the (same) double registers.
2636       // Both the float and the double could have the same regnr but would correspond
2637       // to two different addresses once saved.
2638 
2639       // get next safely (no assertion checks)
2640       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2641       if (next->is_reg() &&
2642           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2643         // the back-end does use the same numbering for the double and the float
2644         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2645       }
2646     }
2647 #endif
2648 #endif
2649     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2650 
2651     scope_values->append(sv);
2652     return 1;
2653 
2654   } else {
2655     // double-size operands
2656 
2657     ScopeValue* first;
2658     ScopeValue* second;
2659 
2660     if (opr->is_double_stack()) {
2661 #ifdef _LP64
2662       Location loc1;
2663       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2664       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2665         bailout("too large frame");
2666       }
2667       // Does this reverse on x86 vs. sparc?
2668       first =  new LocationValue(loc1);
2669       second = _int_0_scope_value;
2670 #else
2671       Location loc1, loc2;
2672       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2673         bailout("too large frame");
2674       }
2675       first =  new LocationValue(loc1);
2676       second = new LocationValue(loc2);
2677 #endif // _LP64
2678 
2679     } else if (opr->is_double_cpu()) {
2680 #ifdef _LP64
2681       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2682       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2683       second = _int_0_scope_value;
2684 #else
2685       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2686       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2687 
2688       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2689         // lo/hi and swapped relative to first and second, so swap them
2690         VMReg tmp = rname_first;
2691         rname_first = rname_second;
2692         rname_second = tmp;
2693       }
2694 
2695       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2696       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2697 #endif //_LP64
2698 
2699 
2700 #ifdef X86
2701     } else if (opr->is_double_xmm()) {
2702       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2703       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2704 #  ifdef _LP64
2705       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2706       second = _int_0_scope_value;
2707 #  else
2708       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2709       // %%% This is probably a waste but we'll keep things as they were for now
2710       if (true) {
2711         VMReg rname_second = rname_first->next();
2712         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2713       }
2714 #  endif
2715 #endif
2716 
2717     } else if (opr->is_double_fpu()) {
2718       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2719       // the double as float registers in the native ordering. On X86,
2720       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2721       // the low-order word of the double and fpu_regnrLo + 1 is the
2722       // name for the other half.  *first and *second must represent the
2723       // least and most significant words, respectively.
2724 
2725 #ifdef X86
2726       // the exact location of fpu stack values is only known
2727       // during fpu stack allocation, so the stack allocator object
2728       // must be present
2729       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2730       assert(_fpu_stack_allocator != NULL, "must be present");
2731       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2732 
2733       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2734 #endif
2735 #ifdef SPARC
2736       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2737 #endif
2738 #ifdef ARM
2739       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2740 #endif
2741 #ifdef PPC
2742       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2743 #endif
2744 
2745 #ifdef VM_LITTLE_ENDIAN
2746       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2747 #else
2748       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2749 #endif
2750 
2751 #ifdef _LP64
2752       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2753       second = _int_0_scope_value;
2754 #else
2755       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2756       // %%% This is probably a waste but we'll keep things as they were for now
2757       if (true) {
2758         VMReg rname_second = rname_first->next();
2759         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2760       }
2761 #endif
2762 
2763     } else {
2764       ShouldNotReachHere();
2765       first = NULL;
2766       second = NULL;
2767     }
2768 
2769     assert(first != NULL && second != NULL, "must be set");
2770     // The convention the interpreter uses is that the second local
2771     // holds the first raw word of the native double representation.
2772     // This is actually reasonable, since locals and stack arrays
2773     // grow downwards in all implementations.
2774     // (If, on some machine, the interpreter's Java locals or stack
2775     // were to grow upwards, the embedded doubles would be word-swapped.)
2776     scope_values->append(second);
2777     scope_values->append(first);
2778     return 2;
2779   }
2780 }
2781 
2782 
2783 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2784   if (value != NULL) {
2785     LIR_Opr opr = value->operand();
2786     Constant* con = value->as_Constant();
2787 
2788     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2789     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2790 
2791     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2792       // Unpinned constants may have a virtual operand for a part of the lifetime
2793       // or may be illegal when it was optimized away,
2794       // so always use a constant operand
2795       opr = LIR_OprFact::value_type(con->type());
2796     }
2797     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2798 
2799     if (opr->is_virtual()) {
2800       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2801 
2802       BlockBegin* block = block_of_op_with_id(op_id);
2803       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2804         // generating debug information for the last instruction of a block.
2805         // if this instruction is a branch, spill moves are inserted before this branch
2806         // and so the wrong operand would be returned (spill moves at block boundaries are not
2807         // considered in the live ranges of intervals)
2808         // Solution: use the first op_id of the branch target block instead.
2809         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2810           if (block->live_out().at(opr->vreg_number())) {
2811             op_id = block->sux_at(0)->first_lir_instruction_id();
2812             mode = LIR_OpVisitState::outputMode;
2813           }
2814         }
2815       }
2816 
2817       // Get current location of operand
2818       // The operand must be live because debug information is considered when building the intervals
2819       // if the interval is not live, color_lir_opr will cause an assertion failure
2820       opr = color_lir_opr(opr, op_id, mode);
2821       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2822 
2823       // Append to ScopeValue array
2824       return append_scope_value_for_operand(opr, scope_values);
2825 
2826     } else {
2827       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2828       assert(opr->is_constant(), "operand must be constant");
2829 
2830       return append_scope_value_for_constant(opr, scope_values);
2831     }
2832   } else {
2833     // append a dummy value because real value not needed
2834     scope_values->append(_illegal_value);
2835     return 1;
2836   }
2837 }
2838 
2839 
2840 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2841   IRScopeDebugInfo* caller_debug_info = NULL;
2842 
2843   ValueStack* caller_state = cur_state->caller_state();
2844   if (caller_state != NULL) {
2845     // process recursively to compute outermost scope first
2846     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2847   }
2848 
2849   // initialize these to null.
2850   // If we don't need deopt info or there are no locals, expressions or monitors,
2851   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2852   GrowableArray<ScopeValue*>*   locals      = NULL;
2853   GrowableArray<ScopeValue*>*   expressions = NULL;
2854   GrowableArray<MonitorValue*>* monitors    = NULL;
2855 
2856   // describe local variable values
2857   int nof_locals = cur_state->locals_size();
2858   if (nof_locals > 0) {
2859     locals = new GrowableArray<ScopeValue*>(nof_locals);
2860 
2861     int pos = 0;
2862     while (pos < nof_locals) {
2863       assert(pos < cur_state->locals_size(), "why not?");
2864 
2865       Value local = cur_state->local_at(pos);
2866       pos += append_scope_value(op_id, local, locals);
2867 
2868       assert(locals->length() == pos, "must match");
2869     }
2870     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2871     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2872   } else if (cur_scope->method()->max_locals() > 0) {
2873     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2874     nof_locals = cur_scope->method()->max_locals();
2875     locals = new GrowableArray<ScopeValue*>(nof_locals);
2876     for(int i = 0; i < nof_locals; i++) {
2877       locals->append(_illegal_value);
2878     }
2879   }
2880 
2881   // describe expression stack
2882   int nof_stack = cur_state->stack_size();
2883   if (nof_stack > 0) {
2884     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2885 
2886     int pos = 0;
2887     while (pos < nof_stack) {
2888       Value expression = cur_state->stack_at_inc(pos);
2889       append_scope_value(op_id, expression, expressions);
2890 
2891       assert(expressions->length() == pos, "must match");
2892     }
2893     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2894   }
2895 
2896   // describe monitors
2897   int nof_locks = cur_state->locks_size();
2898   if (nof_locks > 0) {
2899     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2900     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2901     for (int i = 0; i < nof_locks; i++) {
2902       monitors->append(location_for_monitor_index(lock_offset + i));
2903     }
2904   }
2905 
2906   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2907 }
2908 
2909 
2910 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2911   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2912 
2913   IRScope* innermost_scope = info->scope();
2914   ValueStack* innermost_state = info->stack();
2915 
2916   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2917 
2918   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2919 
2920   if (info->_scope_debug_info == NULL) {
2921     // compute debug information
2922     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2923   } else {
2924     // debug information already set. Check that it is correct from the current point of view
2925     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2926   }
2927 }
2928 
2929 
2930 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2931   LIR_OpVisitState visitor;
2932   int num_inst = instructions->length();
2933   bool has_dead = false;
2934 
2935   for (int j = 0; j < num_inst; j++) {
2936     LIR_Op* op = instructions->at(j);
2937     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2938       has_dead = true;
2939       continue;
2940     }
2941     int op_id = op->id();
2942 
2943     // visit instruction to get list of operands
2944     visitor.visit(op);
2945 
2946     // iterate all modes of the visitor and process all virtual operands
2947     for_each_visitor_mode(mode) {
2948       int n = visitor.opr_count(mode);
2949       for (int k = 0; k < n; k++) {
2950         LIR_Opr opr = visitor.opr_at(mode, k);
2951         if (opr->is_virtual_register()) {
2952           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2953         }
2954       }
2955     }
2956 
2957     if (visitor.info_count() > 0) {
2958       // exception handling
2959       if (compilation()->has_exception_handlers()) {
2960         XHandlers* xhandlers = visitor.all_xhandler();
2961         int n = xhandlers->length();
2962         for (int k = 0; k < n; k++) {
2963           XHandler* handler = xhandlers->handler_at(k);
2964           if (handler->entry_code() != NULL) {
2965             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2966           }
2967         }
2968       } else {
2969         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2970       }
2971 
2972       // compute oop map
2973       assert(iw != NULL, "needed for compute_oop_map");
2974       compute_oop_map(iw, visitor, op);
2975 
2976       // compute debug information
2977       if (!use_fpu_stack_allocation()) {
2978         // compute debug information if fpu stack allocation is not needed.
2979         // when fpu stack allocation is needed, the debug information can not
2980         // be computed here because the exact location of fpu operands is not known
2981         // -> debug information is created inside the fpu stack allocator
2982         int n = visitor.info_count();
2983         for (int k = 0; k < n; k++) {
2984           compute_debug_info(visitor.info_at(k), op_id);
2985         }
2986       }
2987     }
2988 
2989 #ifdef ASSERT
2990     // make sure we haven't made the op invalid.
2991     op->verify();
2992 #endif
2993 
2994     // remove useless moves
2995     if (op->code() == lir_move) {
2996       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2997       LIR_Op1* move = (LIR_Op1*)op;
2998       LIR_Opr src = move->in_opr();
2999       LIR_Opr dst = move->result_opr();
3000       if (dst == src ||
3001           !dst->is_pointer() && !src->is_pointer() &&
3002           src->is_same_register(dst)) {
3003         instructions->at_put(j, NULL);
3004         has_dead = true;
3005       }
3006     }
3007   }
3008 
3009   if (has_dead) {
3010     // iterate all instructions of the block and remove all null-values.
3011     int insert_point = 0;
3012     for (int j = 0; j < num_inst; j++) {
3013       LIR_Op* op = instructions->at(j);
3014       if (op != NULL) {
3015         if (insert_point != j) {
3016           instructions->at_put(insert_point, op);
3017         }
3018         insert_point++;
3019       }
3020     }
3021     instructions->truncate(insert_point);
3022   }
3023 }
3024 
3025 void LinearScan::assign_reg_num() {
3026   TIME_LINEAR_SCAN(timer_assign_reg_num);
3027 
3028   init_compute_debug_info();
3029   IntervalWalker* iw = init_compute_oop_maps();
3030 
3031   int num_blocks = block_count();
3032   for (int i = 0; i < num_blocks; i++) {
3033     BlockBegin* block = block_at(i);
3034     assign_reg_num(block->lir()->instructions_list(), iw);
3035   }
3036 }
3037 
3038 
3039 void LinearScan::do_linear_scan() {
3040   NOT_PRODUCT(_total_timer.begin_method());
3041 
3042   number_instructions();
3043 
3044   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3045 
3046   compute_local_live_sets();
3047   compute_global_live_sets();
3048   CHECK_BAILOUT();
3049 
3050   build_intervals();
3051   CHECK_BAILOUT();
3052   sort_intervals_before_allocation();
3053 
3054   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3055   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3056 
3057   allocate_registers();
3058   CHECK_BAILOUT();
3059 
3060   resolve_data_flow();
3061   if (compilation()->has_exception_handlers()) {
3062     resolve_exception_handlers();
3063   }
3064   // fill in number of spill slots into frame_map
3065   propagate_spill_slots();
3066   CHECK_BAILOUT();
3067 
3068   NOT_PRODUCT(print_intervals("After Register Allocation"));
3069   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3070 
3071   sort_intervals_after_allocation();
3072 
3073   DEBUG_ONLY(verify());
3074 
3075   eliminate_spill_moves();
3076   assign_reg_num();
3077   CHECK_BAILOUT();
3078 
3079   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3080   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3081 
3082   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3083 
3084     if (use_fpu_stack_allocation()) {
3085       allocate_fpu_stack(); // Only has effect on Intel
3086       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3087     }
3088   }
3089 
3090   { TIME_LINEAR_SCAN(timer_optimize_lir);
3091 
3092     EdgeMoveOptimizer::optimize(ir()->code());
3093     ControlFlowOptimizer::optimize(ir()->code());
3094     // check that cfg is still correct after optimizations
3095     ir()->verify();
3096   }
3097 
3098   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3099   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3100   NOT_PRODUCT(_total_timer.end_method(this));
3101 }
3102 
3103 
3104 // ********** Printing functions
3105 
3106 #ifndef PRODUCT
3107 
3108 void LinearScan::print_timers(double total) {
3109   _total_timer.print(total);
3110 }
3111 
3112 void LinearScan::print_statistics() {
3113   _stat_before_alloc.print("before allocation");
3114   _stat_after_asign.print("after assignment of register");
3115   _stat_final.print("after optimization");
3116 }
3117 
3118 void LinearScan::print_bitmap(BitMap& b) {
3119   for (unsigned int i = 0; i < b.size(); i++) {
3120     if (b.at(i)) tty->print("%d ", i);
3121   }
3122   tty->cr();
3123 }
3124 
3125 void LinearScan::print_intervals(const char* label) {
3126   if (TraceLinearScanLevel >= 1) {
3127     int i;
3128     tty->cr();
3129     tty->print_cr("%s", label);
3130 
3131     for (i = 0; i < interval_count(); i++) {
3132       Interval* interval = interval_at(i);
3133       if (interval != NULL) {
3134         interval->print();
3135       }
3136     }
3137 
3138     tty->cr();
3139     tty->print_cr("--- Basic Blocks ---");
3140     for (i = 0; i < block_count(); i++) {
3141       BlockBegin* block = block_at(i);
3142       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3143     }
3144     tty->cr();
3145     tty->cr();
3146   }
3147 
3148   if (PrintCFGToFile) {
3149     CFGPrinter::print_intervals(&_intervals, label);
3150   }
3151 }
3152 
3153 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3154   if (TraceLinearScanLevel >= level) {
3155     tty->cr();
3156     tty->print_cr("%s", label);
3157     print_LIR(ir()->linear_scan_order());
3158     tty->cr();
3159   }
3160 
3161   if (level == 1 && PrintCFGToFile) {
3162     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3163   }
3164 }
3165 
3166 #endif //PRODUCT
3167 
3168 
3169 // ********** verification functions for allocation
3170 // (check that all intervals have a correct register and that no registers are overwritten)
3171 #ifdef ASSERT
3172 
3173 void LinearScan::verify() {
3174   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3175   verify_intervals();
3176 
3177   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3178   verify_no_oops_in_fixed_intervals();
3179 
3180   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3181   verify_constants();
3182 
3183   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3184   verify_registers();
3185 
3186   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3187 }
3188 
3189 void LinearScan::verify_intervals() {
3190   int len = interval_count();
3191   bool has_error = false;
3192 
3193   for (int i = 0; i < len; i++) {
3194     Interval* i1 = interval_at(i);
3195     if (i1 == NULL) continue;
3196 
3197     i1->check_split_children();
3198 
3199     if (i1->reg_num() != i) {
3200       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3201       has_error = true;
3202     }
3203 
3204     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3205       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3206       has_error = true;
3207     }
3208 
3209     if (i1->assigned_reg() == any_reg) {
3210       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3211       has_error = true;
3212     }
3213 
3214     if (i1->assigned_reg() == i1->assigned_regHi()) {
3215       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3216       has_error = true;
3217     }
3218 
3219     if (!is_processed_reg_num(i1->assigned_reg())) {
3220       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3221       has_error = true;
3222     }
3223 
3224     if (i1->first() == Range::end()) {
3225       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3226       has_error = true;
3227     }
3228 
3229     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3230       if (r->from() >= r->to()) {
3231         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3232         has_error = true;
3233       }
3234     }
3235 
3236     for (int j = i + 1; j < len; j++) {
3237       Interval* i2 = interval_at(j);
3238       if (i2 == NULL) continue;
3239 
3240       // special intervals that are created in MoveResolver
3241       // -> ignore them because the range information has no meaning there
3242       if (i1->from() == 1 && i1->to() == 2) continue;
3243       if (i2->from() == 1 && i2->to() == 2) continue;
3244 
3245       int r1 = i1->assigned_reg();
3246       int r1Hi = i1->assigned_regHi();
3247       int r2 = i2->assigned_reg();
3248       int r2Hi = i2->assigned_regHi();
3249       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3250         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3251         i1->print(); tty->cr();
3252         i2->print(); tty->cr();
3253         has_error = true;
3254       }
3255     }
3256   }
3257 
3258   assert(has_error == false, "register allocation invalid");
3259 }
3260 
3261 
3262 void LinearScan::verify_no_oops_in_fixed_intervals() {
3263   Interval* fixed_intervals;
3264   Interval* other_intervals;
3265   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3266 
3267   // to ensure a walking until the last instruction id, add a dummy interval
3268   // with a high operation id
3269   other_intervals = new Interval(any_reg);
3270   other_intervals->add_range(max_jint - 2, max_jint - 1);
3271   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3272 
3273   LIR_OpVisitState visitor;
3274   for (int i = 0; i < block_count(); i++) {
3275     BlockBegin* block = block_at(i);
3276 
3277     LIR_OpList* instructions = block->lir()->instructions_list();
3278 
3279     for (int j = 0; j < instructions->length(); j++) {
3280       LIR_Op* op = instructions->at(j);
3281       int op_id = op->id();
3282 
3283       visitor.visit(op);
3284 
3285       if (visitor.info_count() > 0) {
3286         iw->walk_before(op->id());
3287         bool check_live = true;
3288         if (op->code() == lir_move) {
3289           LIR_Op1* move = (LIR_Op1*)op;
3290           check_live = (move->patch_code() == lir_patch_none);
3291         }
3292         LIR_OpBranch* branch = op->as_OpBranch();
3293         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3294           // Don't bother checking the stub in this case since the
3295           // exception stub will never return to normal control flow.
3296           check_live = false;
3297         }
3298 
3299         // Make sure none of the fixed registers is live across an
3300         // oopmap since we can't handle that correctly.
3301         if (check_live) {
3302           for (Interval* interval = iw->active_first(fixedKind);
3303                interval != Interval::end();
3304                interval = interval->next()) {
3305             if (interval->current_to() > op->id() + 1) {
3306               // This interval is live out of this op so make sure
3307               // that this interval represents some value that's
3308               // referenced by this op either as an input or output.
3309               bool ok = false;
3310               for_each_visitor_mode(mode) {
3311                 int n = visitor.opr_count(mode);
3312                 for (int k = 0; k < n; k++) {
3313                   LIR_Opr opr = visitor.opr_at(mode, k);
3314                   if (opr->is_fixed_cpu()) {
3315                     if (interval_at(reg_num(opr)) == interval) {
3316                       ok = true;
3317                       break;
3318                     }
3319                     int hi = reg_numHi(opr);
3320                     if (hi != -1 && interval_at(hi) == interval) {
3321                       ok = true;
3322                       break;
3323                     }
3324                   }
3325                 }
3326               }
3327               assert(ok, "fixed intervals should never be live across an oopmap point");
3328             }
3329           }
3330         }
3331       }
3332 
3333       // oop-maps at calls do not contain registers, so check is not needed
3334       if (!visitor.has_call()) {
3335 
3336         for_each_visitor_mode(mode) {
3337           int n = visitor.opr_count(mode);
3338           for (int k = 0; k < n; k++) {
3339             LIR_Opr opr = visitor.opr_at(mode, k);
3340 
3341             if (opr->is_fixed_cpu() && opr->is_oop()) {
3342               // operand is a non-virtual cpu register and contains an oop
3343               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3344 
3345               Interval* interval = interval_at(reg_num(opr));
3346               assert(interval != NULL, "no interval");
3347 
3348               if (mode == LIR_OpVisitState::inputMode) {
3349                 if (interval->to() >= op_id + 1) {
3350                   assert(interval->to() < op_id + 2 ||
3351                          interval->has_hole_between(op_id, op_id + 2),
3352                          "oop input operand live after instruction");
3353                 }
3354               } else if (mode == LIR_OpVisitState::outputMode) {
3355                 if (interval->from() <= op_id - 1) {
3356                   assert(interval->has_hole_between(op_id - 1, op_id),
3357                          "oop input operand live after instruction");
3358                 }
3359               }
3360             }
3361           }
3362         }
3363       }
3364     }
3365   }
3366 }
3367 
3368 
3369 void LinearScan::verify_constants() {
3370   int num_regs = num_virtual_regs();
3371   int size = live_set_size();
3372   int num_blocks = block_count();
3373 
3374   for (int i = 0; i < num_blocks; i++) {
3375     BlockBegin* block = block_at(i);
3376     BitMap live_at_edge = block->live_in();
3377 
3378     // visit all registers where the live_at_edge bit is set
3379     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3380       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3381 
3382       Value value = gen()->instruction_for_vreg(r);
3383 
3384       assert(value != NULL, "all intervals live across block boundaries must have Value");
3385       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3386       assert(value->operand()->vreg_number() == r, "register number must match");
3387       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3388     }
3389   }
3390 }
3391 
3392 
3393 class RegisterVerifier: public StackObj {
3394  private:
3395   LinearScan*   _allocator;
3396   BlockList     _work_list;      // all blocks that must be processed
3397   IntervalsList _saved_states;   // saved information of previous check
3398 
3399   // simplified access to methods of LinearScan
3400   Compilation*  compilation() const              { return _allocator->compilation(); }
3401   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3402   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3403 
3404   // currently, only registers are processed
3405   int           state_size()                     { return LinearScan::nof_regs; }
3406 
3407   // accessors
3408   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3409   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3410   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3411 
3412   // helper functions
3413   IntervalList* copy(IntervalList* input_state);
3414   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3415   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3416 
3417   void process_block(BlockBegin* block);
3418   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3419   void process_successor(BlockBegin* block, IntervalList* input_state);
3420   void process_operations(LIR_List* ops, IntervalList* input_state);
3421 
3422  public:
3423   RegisterVerifier(LinearScan* allocator)
3424     : _allocator(allocator)
3425     , _work_list(16)
3426     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3427   { }
3428 
3429   void verify(BlockBegin* start);
3430 };
3431 
3432 
3433 // entry function from LinearScan that starts the verification
3434 void LinearScan::verify_registers() {
3435   RegisterVerifier verifier(this);
3436   verifier.verify(block_at(0));
3437 }
3438 
3439 
3440 void RegisterVerifier::verify(BlockBegin* start) {
3441   // setup input registers (method arguments) for first block
3442   IntervalList* input_state = new IntervalList(state_size(), NULL);
3443   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3444   for (int n = 0; n < args->length(); n++) {
3445     LIR_Opr opr = args->at(n);
3446     if (opr->is_register()) {
3447       Interval* interval = interval_at(reg_num(opr));
3448 
3449       if (interval->assigned_reg() < state_size()) {
3450         input_state->at_put(interval->assigned_reg(), interval);
3451       }
3452       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3453         input_state->at_put(interval->assigned_regHi(), interval);
3454       }
3455     }
3456   }
3457 
3458   set_state_for_block(start, input_state);
3459   add_to_work_list(start);
3460 
3461   // main loop for verification
3462   do {
3463     BlockBegin* block = _work_list.at(0);
3464     _work_list.remove_at(0);
3465 
3466     process_block(block);
3467   } while (!_work_list.is_empty());
3468 }
3469 
3470 void RegisterVerifier::process_block(BlockBegin* block) {
3471   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3472 
3473   // must copy state because it is modified
3474   IntervalList* input_state = copy(state_for_block(block));
3475 
3476   if (TraceLinearScanLevel >= 4) {
3477     tty->print_cr("Input-State of intervals:");
3478     tty->print("    ");
3479     for (int i = 0; i < state_size(); i++) {
3480       if (input_state->at(i) != NULL) {
3481         tty->print(" %4d", input_state->at(i)->reg_num());
3482       } else {
3483         tty->print("   __");
3484       }
3485     }
3486     tty->cr();
3487     tty->cr();
3488   }
3489 
3490   // process all operations of the block
3491   process_operations(block->lir(), input_state);
3492 
3493   // iterate all successors
3494   for (int i = 0; i < block->number_of_sux(); i++) {
3495     process_successor(block->sux_at(i), input_state);
3496   }
3497 }
3498 
3499 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3500   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3501 
3502   // must copy state because it is modified
3503   input_state = copy(input_state);
3504 
3505   if (xhandler->entry_code() != NULL) {
3506     process_operations(xhandler->entry_code(), input_state);
3507   }
3508   process_successor(xhandler->entry_block(), input_state);
3509 }
3510 
3511 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3512   IntervalList* saved_state = state_for_block(block);
3513 
3514   if (saved_state != NULL) {
3515     // this block was already processed before.
3516     // check if new input_state is consistent with saved_state
3517 
3518     bool saved_state_correct = true;
3519     for (int i = 0; i < state_size(); i++) {
3520       if (input_state->at(i) != saved_state->at(i)) {
3521         // current input_state and previous saved_state assume a different
3522         // interval in this register -> assume that this register is invalid
3523         if (saved_state->at(i) != NULL) {
3524           // invalidate old calculation only if it assumed that
3525           // register was valid. when the register was already invalid,
3526           // then the old calculation was correct.
3527           saved_state_correct = false;
3528           saved_state->at_put(i, NULL);
3529 
3530           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3531         }
3532       }
3533     }
3534 
3535     if (saved_state_correct) {
3536       // already processed block with correct input_state
3537       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3538     } else {
3539       // must re-visit this block
3540       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3541       add_to_work_list(block);
3542     }
3543 
3544   } else {
3545     // block was not processed before, so set initial input_state
3546     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3547 
3548     set_state_for_block(block, copy(input_state));
3549     add_to_work_list(block);
3550   }
3551 }
3552 
3553 
3554 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3555   IntervalList* copy_state = new IntervalList(input_state->length());
3556   copy_state->push_all(input_state);
3557   return copy_state;
3558 }
3559 
3560 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3561   if (reg != LinearScan::any_reg && reg < state_size()) {
3562     if (interval != NULL) {
3563       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3564     } else if (input_state->at(reg) != NULL) {
3565       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3566     }
3567 
3568     input_state->at_put(reg, interval);
3569   }
3570 }
3571 
3572 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3573   if (reg != LinearScan::any_reg && reg < state_size()) {
3574     if (input_state->at(reg) != interval) {
3575       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3576       return true;
3577     }
3578   }
3579   return false;
3580 }
3581 
3582 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3583   // visit all instructions of the block
3584   LIR_OpVisitState visitor;
3585   bool has_error = false;
3586 
3587   for (int i = 0; i < ops->length(); i++) {
3588     LIR_Op* op = ops->at(i);
3589     visitor.visit(op);
3590 
3591     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3592 
3593     // check if input operands are correct
3594     int j;
3595     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3596     for (j = 0; j < n; j++) {
3597       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3598       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3599         Interval* interval = interval_at(reg_num(opr));
3600         if (op->id() != -1) {
3601           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3602         }
3603 
3604         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3605         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3606 
3607         // When an operand is marked with is_last_use, then the fpu stack allocator
3608         // removes the register from the fpu stack -> the register contains no value
3609         if (opr->is_last_use()) {
3610           state_put(input_state, interval->assigned_reg(),   NULL);
3611           state_put(input_state, interval->assigned_regHi(), NULL);
3612         }
3613       }
3614     }
3615 
3616     // invalidate all caller save registers at calls
3617     if (visitor.has_call()) {
3618       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3619         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3620       }
3621       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3622         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3623       }
3624 
3625 #ifdef X86
3626       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3627         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3628       }
3629 #endif
3630     }
3631 
3632     // process xhandler before output and temp operands
3633     XHandlers* xhandlers = visitor.all_xhandler();
3634     n = xhandlers->length();
3635     for (int k = 0; k < n; k++) {
3636       process_xhandler(xhandlers->handler_at(k), input_state);
3637     }
3638 
3639     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3640     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3641     for (j = 0; j < n; j++) {
3642       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3643       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3644         Interval* interval = interval_at(reg_num(opr));
3645         if (op->id() != -1) {
3646           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3647         }
3648 
3649         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3650         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3651       }
3652     }
3653 
3654     // set output operands
3655     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3656     for (j = 0; j < n; j++) {
3657       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3658       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3659         Interval* interval = interval_at(reg_num(opr));
3660         if (op->id() != -1) {
3661           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3662         }
3663 
3664         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3665         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3666       }
3667     }
3668   }
3669   assert(has_error == false, "Error in register allocation");
3670 }
3671 
3672 #endif // ASSERT
3673 
3674 
3675 
3676 // **** Implementation of MoveResolver ******************************
3677 
3678 MoveResolver::MoveResolver(LinearScan* allocator) :
3679   _allocator(allocator),
3680   _multiple_reads_allowed(false),
3681   _mapping_from(8),
3682   _mapping_from_opr(8),
3683   _mapping_to(8),
3684   _insert_list(NULL),
3685   _insert_idx(-1),
3686   _insertion_buffer()
3687 {
3688   for (int i = 0; i < LinearScan::nof_regs; i++) {
3689     _register_blocked[i] = 0;
3690   }
3691   DEBUG_ONLY(check_empty());
3692 }
3693 
3694 
3695 #ifdef ASSERT
3696 
3697 void MoveResolver::check_empty() {
3698   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3699   for (int i = 0; i < LinearScan::nof_regs; i++) {
3700     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3701   }
3702   assert(_multiple_reads_allowed == false, "must have default value");
3703 }
3704 
3705 void MoveResolver::verify_before_resolve() {
3706   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3707   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3708   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3709 
3710   int i, j;
3711   if (!_multiple_reads_allowed) {
3712     for (i = 0; i < _mapping_from.length(); i++) {
3713       for (j = i + 1; j < _mapping_from.length(); j++) {
3714         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3715       }
3716     }
3717   }
3718 
3719   for (i = 0; i < _mapping_to.length(); i++) {
3720     for (j = i + 1; j < _mapping_to.length(); j++) {
3721       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3722     }
3723   }
3724 
3725 
3726   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3727   used_regs.clear();
3728   if (!_multiple_reads_allowed) {
3729     for (i = 0; i < _mapping_from.length(); i++) {
3730       Interval* it = _mapping_from.at(i);
3731       if (it != NULL) {
3732         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3733         used_regs.set_bit(it->assigned_reg());
3734 
3735         if (it->assigned_regHi() != LinearScan::any_reg) {
3736           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3737           used_regs.set_bit(it->assigned_regHi());
3738         }
3739       }
3740     }
3741   }
3742 
3743   used_regs.clear();
3744   for (i = 0; i < _mapping_to.length(); i++) {
3745     Interval* it = _mapping_to.at(i);
3746     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3747     used_regs.set_bit(it->assigned_reg());
3748 
3749     if (it->assigned_regHi() != LinearScan::any_reg) {
3750       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3751       used_regs.set_bit(it->assigned_regHi());
3752     }
3753   }
3754 
3755   used_regs.clear();
3756   for (i = 0; i < _mapping_from.length(); i++) {
3757     Interval* it = _mapping_from.at(i);
3758     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3759       used_regs.set_bit(it->assigned_reg());
3760     }
3761   }
3762   for (i = 0; i < _mapping_to.length(); i++) {
3763     Interval* it = _mapping_to.at(i);
3764     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3765   }
3766 }
3767 
3768 #endif // ASSERT
3769 
3770 
3771 // mark assigned_reg and assigned_regHi of the interval as blocked
3772 void MoveResolver::block_registers(Interval* it) {
3773   int reg = it->assigned_reg();
3774   if (reg < LinearScan::nof_regs) {
3775     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3776     set_register_blocked(reg, 1);
3777   }
3778   reg = it->assigned_regHi();
3779   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3780     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3781     set_register_blocked(reg, 1);
3782   }
3783 }
3784 
3785 // mark assigned_reg and assigned_regHi of the interval as unblocked
3786 void MoveResolver::unblock_registers(Interval* it) {
3787   int reg = it->assigned_reg();
3788   if (reg < LinearScan::nof_regs) {
3789     assert(register_blocked(reg) > 0, "register already marked as unused");
3790     set_register_blocked(reg, -1);
3791   }
3792   reg = it->assigned_regHi();
3793   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3794     assert(register_blocked(reg) > 0, "register already marked as unused");
3795     set_register_blocked(reg, -1);
3796   }
3797 }
3798 
3799 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3800 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3801   int from_reg = -1;
3802   int from_regHi = -1;
3803   if (from != NULL) {
3804     from_reg = from->assigned_reg();
3805     from_regHi = from->assigned_regHi();
3806   }
3807 
3808   int reg = to->assigned_reg();
3809   if (reg < LinearScan::nof_regs) {
3810     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3811       return false;
3812     }
3813   }
3814   reg = to->assigned_regHi();
3815   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3816     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3817       return false;
3818     }
3819   }
3820 
3821   return true;
3822 }
3823 
3824 
3825 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3826   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3827   _insertion_buffer.init(list);
3828 }
3829 
3830 void MoveResolver::append_insertion_buffer() {
3831   if (_insertion_buffer.initialized()) {
3832     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3833   }
3834   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3835 
3836   _insert_list = NULL;
3837   _insert_idx = -1;
3838 }
3839 
3840 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3841   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3842   assert(from_interval->type() == to_interval->type(), "move between different types");
3843   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3844   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3845 
3846   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3847   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3848 
3849   if (!_multiple_reads_allowed) {
3850     // the last_use flag is an optimization for FPU stack allocation. When the same
3851     // input interval is used in more than one move, then it is too difficult to determine
3852     // if this move is really the last use.
3853     from_opr = from_opr->make_last_use();
3854   }
3855   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3856 
3857   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3858 }
3859 
3860 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3861   assert(from_opr->type() == to_interval->type(), "move between different types");
3862   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3863   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3864 
3865   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3866   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3867 
3868   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3869 }
3870 
3871 
3872 void MoveResolver::resolve_mappings() {
3873   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3874   DEBUG_ONLY(verify_before_resolve());
3875 
3876   // Block all registers that are used as input operands of a move.
3877   // When a register is blocked, no move to this register is emitted.
3878   // This is necessary for detecting cycles in moves.
3879   int i;
3880   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3881     Interval* from_interval = _mapping_from.at(i);
3882     if (from_interval != NULL) {
3883       block_registers(from_interval);
3884     }
3885   }
3886 
3887   int spill_candidate = -1;
3888   while (_mapping_from.length() > 0) {
3889     bool processed_interval = false;
3890 
3891     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3892       Interval* from_interval = _mapping_from.at(i);
3893       Interval* to_interval = _mapping_to.at(i);
3894 
3895       if (save_to_process_move(from_interval, to_interval)) {
3896         // this inverval can be processed because target is free
3897         if (from_interval != NULL) {
3898           insert_move(from_interval, to_interval);
3899           unblock_registers(from_interval);
3900         } else {
3901           insert_move(_mapping_from_opr.at(i), to_interval);
3902         }
3903         _mapping_from.remove_at(i);
3904         _mapping_from_opr.remove_at(i);
3905         _mapping_to.remove_at(i);
3906 
3907         processed_interval = true;
3908       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3909         // this interval cannot be processed now because target is not free
3910         // it starts in a register, so it is a possible candidate for spilling
3911         spill_candidate = i;
3912       }
3913     }
3914 
3915     if (!processed_interval) {
3916       // no move could be processed because there is a cycle in the move list
3917       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3918       assert(spill_candidate != -1, "no interval in register for spilling found");
3919 
3920       // create a new spill interval and assign a stack slot to it
3921       Interval* from_interval = _mapping_from.at(spill_candidate);
3922       Interval* spill_interval = new Interval(-1);
3923       spill_interval->set_type(from_interval->type());
3924 
3925       // add a dummy range because real position is difficult to calculate
3926       // Note: this range is a special case when the integrity of the allocation is checked
3927       spill_interval->add_range(1, 2);
3928 
3929       //       do not allocate a new spill slot for temporary interval, but
3930       //       use spill slot assigned to from_interval. Otherwise moves from
3931       //       one stack slot to another can happen (not allowed by LIR_Assembler
3932       int spill_slot = from_interval->canonical_spill_slot();
3933       if (spill_slot < 0) {
3934         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3935         from_interval->set_canonical_spill_slot(spill_slot);
3936       }
3937       spill_interval->assign_reg(spill_slot);
3938       allocator()->append_interval(spill_interval);
3939 
3940       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3941 
3942       // insert a move from register to stack and update the mapping
3943       insert_move(from_interval, spill_interval);
3944       _mapping_from.at_put(spill_candidate, spill_interval);
3945       unblock_registers(from_interval);
3946     }
3947   }
3948 
3949   // reset to default value
3950   _multiple_reads_allowed = false;
3951 
3952   // check that all intervals have been processed
3953   DEBUG_ONLY(check_empty());
3954 }
3955 
3956 
3957 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3958   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3959   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3960 
3961   create_insertion_buffer(insert_list);
3962   _insert_list = insert_list;
3963   _insert_idx = insert_idx;
3964 }
3965 
3966 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3967   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3968 
3969   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3970     // insert position changed -> resolve current mappings
3971     resolve_mappings();
3972   }
3973 
3974   if (insert_list != _insert_list) {
3975     // block changed -> append insertion_buffer because it is
3976     // bound to a specific block and create a new insertion_buffer
3977     append_insertion_buffer();
3978     create_insertion_buffer(insert_list);
3979   }
3980 
3981   _insert_list = insert_list;
3982   _insert_idx = insert_idx;
3983 }
3984 
3985 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3986   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3987 
3988   _mapping_from.append(from_interval);
3989   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3990   _mapping_to.append(to_interval);
3991 }
3992 
3993 
3994 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3995   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3996   assert(from_opr->is_constant(), "only for constants");
3997 
3998   _mapping_from.append(NULL);
3999   _mapping_from_opr.append(from_opr);
4000   _mapping_to.append(to_interval);
4001 }
4002 
4003 void MoveResolver::resolve_and_append_moves() {
4004   if (has_mappings()) {
4005     resolve_mappings();
4006   }
4007   append_insertion_buffer();
4008 }
4009 
4010 
4011 
4012 // **** Implementation of Range *************************************
4013 
4014 Range::Range(int from, int to, Range* next) :
4015   _from(from),
4016   _to(to),
4017   _next(next)
4018 {
4019 }
4020 
4021 // initialize sentinel
4022 Range* Range::_end = NULL;
4023 void Range::initialize(Arena* arena) {
4024   _end = new (arena) Range(max_jint, max_jint, NULL);
4025 }
4026 
4027 int Range::intersects_at(Range* r2) const {
4028   const Range* r1 = this;
4029 
4030   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4031   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4032 
4033   do {
4034     if (r1->from() < r2->from()) {
4035       if (r1->to() <= r2->from()) {
4036         r1 = r1->next(); if (r1 == _end) return -1;
4037       } else {
4038         return r2->from();
4039       }
4040     } else if (r2->from() < r1->from()) {
4041       if (r2->to() <= r1->from()) {
4042         r2 = r2->next(); if (r2 == _end) return -1;
4043       } else {
4044         return r1->from();
4045       }
4046     } else { // r1->from() == r2->from()
4047       if (r1->from() == r1->to()) {
4048         r1 = r1->next(); if (r1 == _end) return -1;
4049       } else if (r2->from() == r2->to()) {
4050         r2 = r2->next(); if (r2 == _end) return -1;
4051       } else {
4052         return r1->from();
4053       }
4054     }
4055   } while (true);
4056 }
4057 
4058 #ifndef PRODUCT
4059 void Range::print(outputStream* out) const {
4060   out->print("[%d, %d[ ", _from, _to);
4061 }
4062 #endif
4063 
4064 
4065 
4066 // **** Implementation of Interval **********************************
4067 
4068 // initialize sentinel
4069 Interval* Interval::_end = NULL;
4070 void Interval::initialize(Arena* arena) {
4071   Range::initialize(arena);
4072   _end = new (arena) Interval(-1);
4073 }
4074 
4075 Interval::Interval(int reg_num) :
4076   _reg_num(reg_num),
4077   _type(T_ILLEGAL),
4078   _first(Range::end()),
4079   _use_pos_and_kinds(12),
4080   _current(Range::end()),
4081   _next(_end),
4082   _state(invalidState),
4083   _assigned_reg(LinearScan::any_reg),
4084   _assigned_regHi(LinearScan::any_reg),
4085   _cached_to(-1),
4086   _cached_opr(LIR_OprFact::illegalOpr),
4087   _cached_vm_reg(VMRegImpl::Bad()),
4088   _split_children(0),
4089   _canonical_spill_slot(-1),
4090   _insert_move_when_activated(false),
4091   _register_hint(NULL),
4092   _spill_state(noDefinitionFound),
4093   _spill_definition_pos(-1)
4094 {
4095   _split_parent = this;
4096   _current_split_child = this;
4097 }
4098 
4099 int Interval::calc_to() {
4100   assert(_first != Range::end(), "interval has no range");
4101 
4102   Range* r = _first;
4103   while (r->next() != Range::end()) {
4104     r = r->next();
4105   }
4106   return r->to();
4107 }
4108 
4109 
4110 #ifdef ASSERT
4111 // consistency check of split-children
4112 void Interval::check_split_children() {
4113   if (_split_children.length() > 0) {
4114     assert(is_split_parent(), "only split parents can have children");
4115 
4116     for (int i = 0; i < _split_children.length(); i++) {
4117       Interval* i1 = _split_children.at(i);
4118 
4119       assert(i1->split_parent() == this, "not a split child of this interval");
4120       assert(i1->type() == type(), "must be equal for all split children");
4121       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4122 
4123       for (int j = i + 1; j < _split_children.length(); j++) {
4124         Interval* i2 = _split_children.at(j);
4125 
4126         assert(i1->reg_num() != i2->reg_num(), "same register number");
4127 
4128         if (i1->from() < i2->from()) {
4129           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4130         } else {
4131           assert(i2->from() < i1->from(), "intervals start at same op_id");
4132           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4133         }
4134       }
4135     }
4136   }
4137 }
4138 #endif // ASSERT
4139 
4140 Interval* Interval::register_hint(bool search_split_child) const {
4141   if (!search_split_child) {
4142     return _register_hint;
4143   }
4144 
4145   if (_register_hint != NULL) {
4146     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4147 
4148     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4149       return _register_hint;
4150 
4151     } else if (_register_hint->_split_children.length() > 0) {
4152       // search the first split child that has a register assigned
4153       int len = _register_hint->_split_children.length();
4154       for (int i = 0; i < len; i++) {
4155         Interval* cur = _register_hint->_split_children.at(i);
4156 
4157         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4158           return cur;
4159         }
4160       }
4161     }
4162   }
4163 
4164   // no hint interval found that has a register assigned
4165   return NULL;
4166 }
4167 
4168 
4169 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4170   assert(is_split_parent(), "can only be called for split parents");
4171   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4172 
4173   Interval* result;
4174   if (_split_children.length() == 0) {
4175     result = this;
4176   } else {
4177     result = NULL;
4178     int len = _split_children.length();
4179 
4180     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4181     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4182 
4183     int i;
4184     for (i = 0; i < len; i++) {
4185       Interval* cur = _split_children.at(i);
4186       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4187         if (i > 0) {
4188           // exchange current split child to start of list (faster access for next call)
4189           _split_children.at_put(i, _split_children.at(0));
4190           _split_children.at_put(0, cur);
4191         }
4192 
4193         // interval found
4194         result = cur;
4195         break;
4196       }
4197     }
4198 
4199 #ifdef ASSERT
4200     for (i = 0; i < len; i++) {
4201       Interval* tmp = _split_children.at(i);
4202       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4203         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4204         result->print();
4205         tmp->print();
4206         assert(false, "two valid result intervals found");
4207       }
4208     }
4209 #endif
4210   }
4211 
4212   assert(result != NULL, "no matching interval found");
4213   assert(result->covers(op_id, mode), "op_id not covered by interval");
4214 
4215   return result;
4216 }
4217 
4218 
4219 // returns the last split child that ends before the given op_id
4220 Interval* Interval::split_child_before_op_id(int op_id) {
4221   assert(op_id >= 0, "invalid op_id");
4222 
4223   Interval* parent = split_parent();
4224   Interval* result = NULL;
4225 
4226   int len = parent->_split_children.length();
4227   assert(len > 0, "no split children available");
4228 
4229   for (int i = len - 1; i >= 0; i--) {
4230     Interval* cur = parent->_split_children.at(i);
4231     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4232       result = cur;
4233     }
4234   }
4235 
4236   assert(result != NULL, "no split child found");
4237   return result;
4238 }
4239 
4240 
4241 // checks if op_id is covered by any split child
4242 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4243   assert(is_split_parent(), "can only be called for split parents");
4244   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4245 
4246   if (_split_children.length() == 0) {
4247     // simple case if interval was not split
4248     return covers(op_id, mode);
4249 
4250   } else {
4251     // extended case: check all split children
4252     int len = _split_children.length();
4253     for (int i = 0; i < len; i++) {
4254       Interval* cur = _split_children.at(i);
4255       if (cur->covers(op_id, mode)) {
4256         return true;
4257       }
4258     }
4259     return false;
4260   }
4261 }
4262 
4263 
4264 // Note: use positions are sorted descending -> first use has highest index
4265 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4266   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4267 
4268   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4269     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4270       return _use_pos_and_kinds.at(i);
4271     }
4272   }
4273   return max_jint;
4274 }
4275 
4276 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4277   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4278 
4279   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4280     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4281       return _use_pos_and_kinds.at(i);
4282     }
4283   }
4284   return max_jint;
4285 }
4286 
4287 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4288   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4289 
4290   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4291     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4292       return _use_pos_and_kinds.at(i);
4293     }
4294   }
4295   return max_jint;
4296 }
4297 
4298 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4299   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4300 
4301   int prev = 0;
4302   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4303     if (_use_pos_and_kinds.at(i) > from) {
4304       return prev;
4305     }
4306     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4307       prev = _use_pos_and_kinds.at(i);
4308     }
4309   }
4310   return prev;
4311 }
4312 
4313 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4314   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4315 
4316   // do not add use positions for precolored intervals because
4317   // they are never used
4318   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4319 #ifdef ASSERT
4320     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4321     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4322       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4323       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4324       if (i > 0) {
4325         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4326       }
4327     }
4328 #endif
4329 
4330     // Note: add_use is called in descending order, so list gets sorted
4331     //       automatically by just appending new use positions
4332     int len = _use_pos_and_kinds.length();
4333     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4334       _use_pos_and_kinds.append(pos);
4335       _use_pos_and_kinds.append(use_kind);
4336     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4337       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4338       _use_pos_and_kinds.at_put(len - 1, use_kind);
4339     }
4340   }
4341 }
4342 
4343 void Interval::add_range(int from, int to) {
4344   assert(from < to, "invalid range");
4345   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4346   assert(from <= first()->to(), "not inserting at begin of interval");
4347 
4348   if (first()->from() <= to) {
4349     // join intersecting ranges
4350     first()->set_from(MIN2(from, first()->from()));
4351     first()->set_to  (MAX2(to,   first()->to()));
4352   } else {
4353     // insert new range
4354     _first = new Range(from, to, first());
4355   }
4356 }
4357 
4358 Interval* Interval::new_split_child() {
4359   // allocate new interval
4360   Interval* result = new Interval(-1);
4361   result->set_type(type());
4362 
4363   Interval* parent = split_parent();
4364   result->_split_parent = parent;
4365   result->set_register_hint(parent);
4366 
4367   // insert new interval in children-list of parent
4368   if (parent->_split_children.length() == 0) {
4369     assert(is_split_parent(), "list must be initialized at first split");
4370 
4371     parent->_split_children = IntervalList(4);
4372     parent->_split_children.append(this);
4373   }
4374   parent->_split_children.append(result);
4375 
4376   return result;
4377 }
4378 
4379 // split this interval at the specified position and return
4380 // the remainder as a new interval.
4381 //
4382 // when an interval is split, a bi-directional link is established between the original interval
4383 // (the split parent) and the intervals that are split off this interval (the split children)
4384 // When a split child is split again, the new created interval is also a direct child
4385 // of the original parent (there is no tree of split children stored, but a flat list)
4386 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4387 //
4388 // Note: The new interval has no valid reg_num
4389 Interval* Interval::split(int split_pos) {
4390   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4391 
4392   // allocate new interval
4393   Interval* result = new_split_child();
4394 
4395   // split the ranges
4396   Range* prev = NULL;
4397   Range* cur = _first;
4398   while (cur != Range::end() && cur->to() <= split_pos) {
4399     prev = cur;
4400     cur = cur->next();
4401   }
4402   assert(cur != Range::end(), "split interval after end of last range");
4403 
4404   if (cur->from() < split_pos) {
4405     result->_first = new Range(split_pos, cur->to(), cur->next());
4406     cur->set_to(split_pos);
4407     cur->set_next(Range::end());
4408 
4409   } else {
4410     assert(prev != NULL, "split before start of first range");
4411     result->_first = cur;
4412     prev->set_next(Range::end());
4413   }
4414   result->_current = result->_first;
4415   _cached_to = -1; // clear cached value
4416 
4417   // split list of use positions
4418   int total_len = _use_pos_and_kinds.length();
4419   int start_idx = total_len - 2;
4420   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4421     start_idx -= 2;
4422   }
4423 
4424   intStack new_use_pos_and_kinds(total_len - start_idx);
4425   int i;
4426   for (i = start_idx + 2; i < total_len; i++) {
4427     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4428   }
4429 
4430   _use_pos_and_kinds.truncate(start_idx + 2);
4431   result->_use_pos_and_kinds = _use_pos_and_kinds;
4432   _use_pos_and_kinds = new_use_pos_and_kinds;
4433 
4434 #ifdef ASSERT
4435   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4436   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4437   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4438 
4439   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4440     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4441     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4442   }
4443   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4444     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4445     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4446   }
4447 #endif
4448 
4449   return result;
4450 }
4451 
4452 // split this interval at the specified position and return
4453 // the head as a new interval (the original interval is the tail)
4454 //
4455 // Currently, only the first range can be split, and the new interval
4456 // must not have split positions
4457 Interval* Interval::split_from_start(int split_pos) {
4458   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4459   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4460   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4461   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4462 
4463   // allocate new interval
4464   Interval* result = new_split_child();
4465 
4466   // the new created interval has only one range (checked by assertion above),
4467   // so the splitting of the ranges is very simple
4468   result->add_range(_first->from(), split_pos);
4469 
4470   if (split_pos == _first->to()) {
4471     assert(_first->next() != Range::end(), "must not be at end");
4472     _first = _first->next();
4473   } else {
4474     _first->set_from(split_pos);
4475   }
4476 
4477   return result;
4478 }
4479 
4480 
4481 // returns true if the op_id is inside the interval
4482 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4483   Range* cur  = _first;
4484 
4485   while (cur != Range::end() && cur->to() < op_id) {
4486     cur = cur->next();
4487   }
4488   if (cur != Range::end()) {
4489     assert(cur->to() != cur->next()->from(), "ranges not separated");
4490 
4491     if (mode == LIR_OpVisitState::outputMode) {
4492       return cur->from() <= op_id && op_id < cur->to();
4493     } else {
4494       return cur->from() <= op_id && op_id <= cur->to();
4495     }
4496   }
4497   return false;
4498 }
4499 
4500 // returns true if the interval has any hole between hole_from and hole_to
4501 // (even if the hole has only the length 1)
4502 bool Interval::has_hole_between(int hole_from, int hole_to) {
4503   assert(hole_from < hole_to, "check");
4504   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4505 
4506   Range* cur  = _first;
4507   while (cur != Range::end()) {
4508     assert(cur->to() < cur->next()->from(), "no space between ranges");
4509 
4510     // hole-range starts before this range -> hole
4511     if (hole_from < cur->from()) {
4512       return true;
4513 
4514     // hole-range completely inside this range -> no hole
4515     } else if (hole_to <= cur->to()) {
4516       return false;
4517 
4518     // overlapping of hole-range with this range -> hole
4519     } else if (hole_from <= cur->to()) {
4520       return true;
4521     }
4522 
4523     cur = cur->next();
4524   }
4525 
4526   return false;
4527 }
4528 
4529 
4530 #ifndef PRODUCT
4531 void Interval::print(outputStream* out) const {
4532   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4533   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4534 
4535   const char* type_name;
4536   LIR_Opr opr = LIR_OprFact::illegal();
4537   if (reg_num() < LIR_OprDesc::vreg_base) {
4538     type_name = "fixed";
4539     // need a temporary operand for fixed intervals because type() cannot be called
4540     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4541       opr = LIR_OprFact::single_cpu(assigned_reg());
4542     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4543       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4544 #ifdef X86
4545     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4546       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4547 #endif
4548     } else {
4549       ShouldNotReachHere();
4550     }
4551   } else {
4552     type_name = type2name(type());
4553     if (assigned_reg() != -1 &&
4554         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4555       opr = LinearScan::calc_operand_for_interval(this);
4556     }
4557   }
4558 
4559   out->print("%d %s ", reg_num(), type_name);
4560   if (opr->is_valid()) {
4561     out->print("\"");
4562     opr->print(out);
4563     out->print("\" ");
4564   }
4565   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4566 
4567   // print ranges
4568   Range* cur = _first;
4569   while (cur != Range::end()) {
4570     cur->print(out);
4571     cur = cur->next();
4572     assert(cur != NULL, "range list not closed with range sentinel");
4573   }
4574 
4575   // print use positions
4576   int prev = 0;
4577   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4578   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4579     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4580     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4581 
4582     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4583     prev = _use_pos_and_kinds.at(i);
4584   }
4585 
4586   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4587   out->cr();
4588 }
4589 #endif
4590 
4591 
4592 
4593 // **** Implementation of IntervalWalker ****************************
4594 
4595 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4596  : _compilation(allocator->compilation())
4597  , _allocator(allocator)
4598 {
4599   _unhandled_first[fixedKind] = unhandled_fixed_first;
4600   _unhandled_first[anyKind]   = unhandled_any_first;
4601   _active_first[fixedKind]    = Interval::end();
4602   _inactive_first[fixedKind]  = Interval::end();
4603   _active_first[anyKind]      = Interval::end();
4604   _inactive_first[anyKind]    = Interval::end();
4605   _current_position = -1;
4606   _current = NULL;
4607   next_interval();
4608 }
4609 
4610 
4611 // append interval at top of list
4612 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4613   interval->set_next(*list); *list = interval;
4614 }
4615 
4616 
4617 // append interval in order of current range from()
4618 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4619   Interval* prev = NULL;
4620   Interval* cur  = *list;
4621   while (cur->current_from() < interval->current_from()) {
4622     prev = cur; cur = cur->next();
4623   }
4624   if (prev == NULL) {
4625     *list = interval;
4626   } else {
4627     prev->set_next(interval);
4628   }
4629   interval->set_next(cur);
4630 }
4631 
4632 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4633   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4634 
4635   Interval* prev = NULL;
4636   Interval* cur  = *list;
4637   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4638     prev = cur; cur = cur->next();
4639   }
4640   if (prev == NULL) {
4641     *list = interval;
4642   } else {
4643     prev->set_next(interval);
4644   }
4645   interval->set_next(cur);
4646 }
4647 
4648 
4649 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4650   while (*list != Interval::end() && *list != i) {
4651     list = (*list)->next_addr();
4652   }
4653   if (*list != Interval::end()) {
4654     assert(*list == i, "check");
4655     *list = (*list)->next();
4656     return true;
4657   } else {
4658     return false;
4659   }
4660 }
4661 
4662 void IntervalWalker::remove_from_list(Interval* i) {
4663   bool deleted;
4664 
4665   if (i->state() == activeState) {
4666     deleted = remove_from_list(active_first_addr(anyKind), i);
4667   } else {
4668     assert(i->state() == inactiveState, "invalid state");
4669     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4670   }
4671 
4672   assert(deleted, "interval has not been found in list");
4673 }
4674 
4675 
4676 void IntervalWalker::walk_to(IntervalState state, int from) {
4677   assert (state == activeState || state == inactiveState, "wrong state");
4678   for_each_interval_kind(kind) {
4679     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4680     Interval* next   = *prev;
4681     while (next->current_from() <= from) {
4682       Interval* cur = next;
4683       next = cur->next();
4684 
4685       bool range_has_changed = false;
4686       while (cur->current_to() <= from) {
4687         cur->next_range();
4688         range_has_changed = true;
4689       }
4690 
4691       // also handle move from inactive list to active list
4692       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4693 
4694       if (range_has_changed) {
4695         // remove cur from list
4696         *prev = next;
4697         if (cur->current_at_end()) {
4698           // move to handled state (not maintained as a list)
4699           cur->set_state(handledState);
4700           interval_moved(cur, kind, state, handledState);
4701         } else if (cur->current_from() <= from){
4702           // sort into active list
4703           append_sorted(active_first_addr(kind), cur);
4704           cur->set_state(activeState);
4705           if (*prev == cur) {
4706             assert(state == activeState, "check");
4707             prev = cur->next_addr();
4708           }
4709           interval_moved(cur, kind, state, activeState);
4710         } else {
4711           // sort into inactive list
4712           append_sorted(inactive_first_addr(kind), cur);
4713           cur->set_state(inactiveState);
4714           if (*prev == cur) {
4715             assert(state == inactiveState, "check");
4716             prev = cur->next_addr();
4717           }
4718           interval_moved(cur, kind, state, inactiveState);
4719         }
4720       } else {
4721         prev = cur->next_addr();
4722         continue;
4723       }
4724     }
4725   }
4726 }
4727 
4728 
4729 void IntervalWalker::next_interval() {
4730   IntervalKind kind;
4731   Interval* any   = _unhandled_first[anyKind];
4732   Interval* fixed = _unhandled_first[fixedKind];
4733 
4734   if (any != Interval::end()) {
4735     // intervals may start at same position -> prefer fixed interval
4736     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4737 
4738     assert (kind == fixedKind && fixed->from() <= any->from() ||
4739             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4740     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4741 
4742   } else if (fixed != Interval::end()) {
4743     kind = fixedKind;
4744   } else {
4745     _current = NULL; return;
4746   }
4747   _current_kind = kind;
4748   _current = _unhandled_first[kind];
4749   _unhandled_first[kind] = _current->next();
4750   _current->set_next(Interval::end());
4751   _current->rewind_range();
4752 }
4753 
4754 
4755 void IntervalWalker::walk_to(int lir_op_id) {
4756   assert(_current_position <= lir_op_id, "can not walk backwards");
4757   while (current() != NULL) {
4758     bool is_active = current()->from() <= lir_op_id;
4759     int id = is_active ? current()->from() : lir_op_id;
4760 
4761     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4762 
4763     // set _current_position prior to call of walk_to
4764     _current_position = id;
4765 
4766     // call walk_to even if _current_position == id
4767     walk_to(activeState, id);
4768     walk_to(inactiveState, id);
4769 
4770     if (is_active) {
4771       current()->set_state(activeState);
4772       if (activate_current()) {
4773         append_sorted(active_first_addr(current_kind()), current());
4774         interval_moved(current(), current_kind(), unhandledState, activeState);
4775       }
4776 
4777       next_interval();
4778     } else {
4779       return;
4780     }
4781   }
4782 }
4783 
4784 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4785 #ifndef PRODUCT
4786   if (TraceLinearScanLevel >= 4) {
4787     #define print_state(state) \
4788     switch(state) {\
4789       case unhandledState: tty->print("unhandled"); break;\
4790       case activeState: tty->print("active"); break;\
4791       case inactiveState: tty->print("inactive"); break;\
4792       case handledState: tty->print("handled"); break;\
4793       default: ShouldNotReachHere(); \
4794     }
4795 
4796     print_state(from); tty->print(" to "); print_state(to);
4797     tty->fill_to(23);
4798     interval->print();
4799 
4800     #undef print_state
4801   }
4802 #endif
4803 }
4804 
4805 
4806 
4807 // **** Implementation of LinearScanWalker **************************
4808 
4809 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4810   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4811   , _move_resolver(allocator)
4812 {
4813   for (int i = 0; i < LinearScan::nof_regs; i++) {
4814     _spill_intervals[i] = new IntervalList(2);
4815   }
4816 }
4817 
4818 
4819 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4820   for (int i = _first_reg; i <= _last_reg; i++) {
4821     _use_pos[i] = max_jint;
4822 
4823     if (!only_process_use_pos) {
4824       _block_pos[i] = max_jint;
4825       _spill_intervals[i]->clear();
4826     }
4827   }
4828 }
4829 
4830 inline void LinearScanWalker::exclude_from_use(int reg) {
4831   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4832   if (reg >= _first_reg && reg <= _last_reg) {
4833     _use_pos[reg] = 0;
4834   }
4835 }
4836 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4837   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4838 
4839   exclude_from_use(i->assigned_reg());
4840   exclude_from_use(i->assigned_regHi());
4841 }
4842 
4843 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4844   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4845 
4846   if (reg >= _first_reg && reg <= _last_reg) {
4847     if (_use_pos[reg] > use_pos) {
4848       _use_pos[reg] = use_pos;
4849     }
4850     if (!only_process_use_pos) {
4851       _spill_intervals[reg]->append(i);
4852     }
4853   }
4854 }
4855 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4856   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4857   if (use_pos != -1) {
4858     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4859     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4860   }
4861 }
4862 
4863 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4864   if (reg >= _first_reg && reg <= _last_reg) {
4865     if (_block_pos[reg] > block_pos) {
4866       _block_pos[reg] = block_pos;
4867     }
4868     if (_use_pos[reg] > block_pos) {
4869       _use_pos[reg] = block_pos;
4870     }
4871   }
4872 }
4873 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4874   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4875   if (block_pos != -1) {
4876     set_block_pos(i->assigned_reg(), i, block_pos);
4877     set_block_pos(i->assigned_regHi(), i, block_pos);
4878   }
4879 }
4880 
4881 
4882 void LinearScanWalker::free_exclude_active_fixed() {
4883   Interval* list = active_first(fixedKind);
4884   while (list != Interval::end()) {
4885     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4886     exclude_from_use(list);
4887     list = list->next();
4888   }
4889 }
4890 
4891 void LinearScanWalker::free_exclude_active_any() {
4892   Interval* list = active_first(anyKind);
4893   while (list != Interval::end()) {
4894     exclude_from_use(list);
4895     list = list->next();
4896   }
4897 }
4898 
4899 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4900   Interval* list = inactive_first(fixedKind);
4901   while (list != Interval::end()) {
4902     if (cur->to() <= list->current_from()) {
4903       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4904       set_use_pos(list, list->current_from(), true);
4905     } else {
4906       set_use_pos(list, list->current_intersects_at(cur), true);
4907     }
4908     list = list->next();
4909   }
4910 }
4911 
4912 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4913   Interval* list = inactive_first(anyKind);
4914   while (list != Interval::end()) {
4915     set_use_pos(list, list->current_intersects_at(cur), true);
4916     list = list->next();
4917   }
4918 }
4919 
4920 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4921   Interval* list = unhandled_first(kind);
4922   while (list != Interval::end()) {
4923     set_use_pos(list, list->intersects_at(cur), true);
4924     if (kind == fixedKind && cur->to() <= list->from()) {
4925       set_use_pos(list, list->from(), true);
4926     }
4927     list = list->next();
4928   }
4929 }
4930 
4931 void LinearScanWalker::spill_exclude_active_fixed() {
4932   Interval* list = active_first(fixedKind);
4933   while (list != Interval::end()) {
4934     exclude_from_use(list);
4935     list = list->next();
4936   }
4937 }
4938 
4939 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4940   Interval* list = unhandled_first(fixedKind);
4941   while (list != Interval::end()) {
4942     set_block_pos(list, list->intersects_at(cur));
4943     list = list->next();
4944   }
4945 }
4946 
4947 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4948   Interval* list = inactive_first(fixedKind);
4949   while (list != Interval::end()) {
4950     if (cur->to() > list->current_from()) {
4951       set_block_pos(list, list->current_intersects_at(cur));
4952     } else {
4953       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4954     }
4955 
4956     list = list->next();
4957   }
4958 }
4959 
4960 void LinearScanWalker::spill_collect_active_any() {
4961   Interval* list = active_first(anyKind);
4962   while (list != Interval::end()) {
4963     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4964     list = list->next();
4965   }
4966 }
4967 
4968 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4969   Interval* list = inactive_first(anyKind);
4970   while (list != Interval::end()) {
4971     if (list->current_intersects(cur)) {
4972       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4973     }
4974     list = list->next();
4975   }
4976 }
4977 
4978 
4979 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4980   // output all moves here. When source and target are equal, the move is
4981   // optimized away later in assign_reg_nums
4982 
4983   op_id = (op_id + 1) & ~1;
4984   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4985   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4986 
4987   // calculate index of instruction inside instruction list of current block
4988   // the minimal index (for a block with no spill moves) can be calculated because the
4989   // numbering of instructions is known.
4990   // When the block already contains spill moves, the index must be increased until the
4991   // correct index is reached.
4992   LIR_OpList* list = op_block->lir()->instructions_list();
4993   int index = (op_id - list->at(0)->id()) / 2;
4994   assert(list->at(index)->id() <= op_id, "error in calculation");
4995 
4996   while (list->at(index)->id() != op_id) {
4997     index++;
4998     assert(0 <= index && index < list->length(), "index out of bounds");
4999   }
5000   assert(1 <= index && index < list->length(), "index out of bounds");
5001   assert(list->at(index)->id() == op_id, "error in calculation");
5002 
5003   // insert new instruction before instruction at position index
5004   _move_resolver.move_insert_position(op_block->lir(), index - 1);
5005   _move_resolver.add_mapping(src_it, dst_it);
5006 }
5007 
5008 
5009 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5010   int from_block_nr = min_block->linear_scan_number();
5011   int to_block_nr = max_block->linear_scan_number();
5012 
5013   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5014   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5015   assert(from_block_nr < to_block_nr, "must cross block boundary");
5016 
5017   // Try to split at end of max_block. If this would be after
5018   // max_split_pos, then use the begin of max_block
5019   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5020   if (optimal_split_pos > max_split_pos) {
5021     optimal_split_pos = max_block->first_lir_instruction_id();
5022   }
5023 
5024   int min_loop_depth = max_block->loop_depth();
5025   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5026     BlockBegin* cur = block_at(i);
5027 
5028     if (cur->loop_depth() < min_loop_depth) {
5029       // block with lower loop-depth found -> split at the end of this block
5030       min_loop_depth = cur->loop_depth();
5031       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5032     }
5033   }
5034   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5035 
5036   return optimal_split_pos;
5037 }
5038 
5039 
5040 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5041   int optimal_split_pos = -1;
5042   if (min_split_pos == max_split_pos) {
5043     // trivial case, no optimization of split position possible
5044     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5045     optimal_split_pos = min_split_pos;
5046 
5047   } else {
5048     assert(min_split_pos < max_split_pos, "must be true then");
5049     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5050 
5051     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5052     // beginning of a block, then min_split_pos is also a possible split position.
5053     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5054     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5055 
5056     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5057     // when an interval ends at the end of the last block of the method
5058     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5059     // block at this op_id)
5060     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5061 
5062     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5063     if (min_block == max_block) {
5064       // split position cannot be moved to block boundary, so split as late as possible
5065       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5066       optimal_split_pos = max_split_pos;
5067 
5068     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5069       // Do not move split position if the interval has a hole before max_split_pos.
5070       // Intervals resulting from Phi-Functions have more than one definition (marked
5071       // as mustHaveRegister) with a hole before each definition. When the register is needed
5072       // for the second definition, an earlier reloading is unnecessary.
5073       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5074       optimal_split_pos = max_split_pos;
5075 
5076     } else {
5077       // seach optimal block boundary between min_split_pos and max_split_pos
5078       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5079 
5080       if (do_loop_optimization) {
5081         // Loop optimization: if a loop-end marker is found between min- and max-position,
5082         // then split before this loop
5083         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5084         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5085 
5086         assert(loop_end_pos > min_split_pos, "invalid order");
5087         if (loop_end_pos < max_split_pos) {
5088           // loop-end marker found between min- and max-position
5089           // if it is not the end marker for the same loop as the min-position, then move
5090           // the max-position to this loop block.
5091           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5092           // of the interval (normally, only mustHaveRegister causes a reloading)
5093           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5094 
5095           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5096           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5097 
5098           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5099           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5100             optimal_split_pos = -1;
5101             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5102           } else {
5103             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5104           }
5105         }
5106       }
5107 
5108       if (optimal_split_pos == -1) {
5109         // not calculated by loop optimization
5110         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5111       }
5112     }
5113   }
5114   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5115 
5116   return optimal_split_pos;
5117 }
5118 
5119 
5120 /*
5121   split an interval at the optimal position between min_split_pos and
5122   max_split_pos in two parts:
5123   1) the left part has already a location assigned
5124   2) the right part is sorted into to the unhandled-list
5125 */
5126 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5127   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5128   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5129 
5130   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5131   assert(current_position() < min_split_pos, "cannot split before current position");
5132   assert(min_split_pos <= max_split_pos,     "invalid order");
5133   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5134 
5135   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5136 
5137   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5138   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5139   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5140 
5141   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5142     // the split position would be just before the end of the interval
5143     // -> no split at all necessary
5144     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5145     return;
5146   }
5147 
5148   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5149   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5150 
5151   if (!allocator()->is_block_begin(optimal_split_pos)) {
5152     // move position before actual instruction (odd op_id)
5153     optimal_split_pos = (optimal_split_pos - 1) | 1;
5154   }
5155 
5156   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5157   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5158   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5159 
5160   Interval* split_part = it->split(optimal_split_pos);
5161 
5162   allocator()->append_interval(split_part);
5163   allocator()->copy_register_flags(it, split_part);
5164   split_part->set_insert_move_when_activated(move_necessary);
5165   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5166 
5167   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5168   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5169   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5170 }
5171 
5172 /*
5173   split an interval at the optimal position between min_split_pos and
5174   max_split_pos in two parts:
5175   1) the left part has already a location assigned
5176   2) the right part is always on the stack and therefore ignored in further processing
5177 */
5178 void LinearScanWalker::split_for_spilling(Interval* it) {
5179   // calculate allowed range of splitting position
5180   int max_split_pos = current_position();
5181   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5182 
5183   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5184   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5185 
5186   assert(it->state() == activeState,     "why spill interval that is not active?");
5187   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5188   assert(min_split_pos <= max_split_pos, "invalid order");
5189   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5190   assert(current_position() < it->to(),  "interval must not end before current position");
5191 
5192   if (min_split_pos == it->from()) {
5193     // the whole interval is never used, so spill it entirely to memory
5194     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5195     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5196 
5197     allocator()->assign_spill_slot(it);
5198     allocator()->change_spill_state(it, min_split_pos);
5199 
5200     // Also kick parent intervals out of register to memory when they have no use
5201     // position. This avoids short interval in register surrounded by intervals in
5202     // memory -> avoid useless moves from memory to register and back
5203     Interval* parent = it;
5204     while (parent != NULL && parent->is_split_child()) {
5205       parent = parent->split_child_before_op_id(parent->from());
5206 
5207       if (parent->assigned_reg() < LinearScan::nof_regs) {
5208         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5209           // parent is never used, so kick it out of its assigned register
5210           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5211           allocator()->assign_spill_slot(parent);
5212         } else {
5213           // do not go further back because the register is actually used by the interval
5214           parent = NULL;
5215         }
5216       }
5217     }
5218 
5219   } else {
5220     // search optimal split pos, split interval and spill only the right hand part
5221     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5222 
5223     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5224     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5225     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5226 
5227     if (!allocator()->is_block_begin(optimal_split_pos)) {
5228       // move position before actual instruction (odd op_id)
5229       optimal_split_pos = (optimal_split_pos - 1) | 1;
5230     }
5231 
5232     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5233     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5234     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5235 
5236     Interval* spilled_part = it->split(optimal_split_pos);
5237     allocator()->append_interval(spilled_part);
5238     allocator()->assign_spill_slot(spilled_part);
5239     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5240 
5241     if (!allocator()->is_block_begin(optimal_split_pos)) {
5242       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5243       insert_move(optimal_split_pos, it, spilled_part);
5244     }
5245 
5246     // the current_split_child is needed later when moves are inserted for reloading
5247     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5248     spilled_part->make_current_split_child();
5249 
5250     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5251     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5252     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5253   }
5254 }
5255 
5256 
5257 void LinearScanWalker::split_stack_interval(Interval* it) {
5258   int min_split_pos = current_position() + 1;
5259   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5260 
5261   split_before_usage(it, min_split_pos, max_split_pos);
5262 }
5263 
5264 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5265   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5266   int max_split_pos = register_available_until;
5267 
5268   split_before_usage(it, min_split_pos, max_split_pos);
5269 }
5270 
5271 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5272   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5273 
5274   int current_pos = current_position();
5275   if (it->state() == inactiveState) {
5276     // the interval is currently inactive, so no spill slot is needed for now.
5277     // when the split part is activated, the interval has a new chance to get a register,
5278     // so in the best case no stack slot is necessary
5279     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5280     split_before_usage(it, current_pos + 1, current_pos + 1);
5281 
5282   } else {
5283     // search the position where the interval must have a register and split
5284     // at the optimal position before.
5285     // The new created part is added to the unhandled list and will get a register
5286     // when it is activated
5287     int min_split_pos = current_pos + 1;
5288     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5289 
5290     split_before_usage(it, min_split_pos, max_split_pos);
5291 
5292     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5293     split_for_spilling(it);
5294   }
5295 }
5296 
5297 
5298 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5299   int min_full_reg = any_reg;
5300   int max_partial_reg = any_reg;
5301 
5302   for (int i = _first_reg; i <= _last_reg; i++) {
5303     if (i == ignore_reg) {
5304       // this register must be ignored
5305 
5306     } else if (_use_pos[i] >= interval_to) {
5307       // this register is free for the full interval
5308       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5309         min_full_reg = i;
5310       }
5311     } else if (_use_pos[i] > reg_needed_until) {
5312       // this register is at least free until reg_needed_until
5313       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5314         max_partial_reg = i;
5315       }
5316     }
5317   }
5318 
5319   if (min_full_reg != any_reg) {
5320     return min_full_reg;
5321   } else if (max_partial_reg != any_reg) {
5322     *need_split = true;
5323     return max_partial_reg;
5324   } else {
5325     return any_reg;
5326   }
5327 }
5328 
5329 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5330   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5331 
5332   int min_full_reg = any_reg;
5333   int max_partial_reg = any_reg;
5334 
5335   for (int i = _first_reg; i < _last_reg; i+=2) {
5336     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5337       // this register is free for the full interval
5338       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5339         min_full_reg = i;
5340       }
5341     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5342       // this register is at least free until reg_needed_until
5343       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5344         max_partial_reg = i;
5345       }
5346     }
5347   }
5348 
5349   if (min_full_reg != any_reg) {
5350     return min_full_reg;
5351   } else if (max_partial_reg != any_reg) {
5352     *need_split = true;
5353     return max_partial_reg;
5354   } else {
5355     return any_reg;
5356   }
5357 }
5358 
5359 
5360 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5361   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5362 
5363   init_use_lists(true);
5364   free_exclude_active_fixed();
5365   free_exclude_active_any();
5366   free_collect_inactive_fixed(cur);
5367   free_collect_inactive_any(cur);
5368 //  free_collect_unhandled(fixedKind, cur);
5369   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5370 
5371   // _use_pos contains the start of the next interval that has this register assigned
5372   // (either as a fixed register or a normal allocated register in the past)
5373   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5374   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5375   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5376 
5377   int hint_reg, hint_regHi;
5378   Interval* register_hint = cur->register_hint();
5379   if (register_hint != NULL) {
5380     hint_reg = register_hint->assigned_reg();
5381     hint_regHi = register_hint->assigned_regHi();
5382 
5383     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5384       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5385       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5386     }
5387     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5388 
5389   } else {
5390     hint_reg = any_reg;
5391     hint_regHi = any_reg;
5392   }
5393   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5394   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5395 
5396   // the register must be free at least until this position
5397   int reg_needed_until = cur->from() + 1;
5398   int interval_to = cur->to();
5399 
5400   bool need_split = false;
5401   int split_pos = -1;
5402   int reg = any_reg;
5403   int regHi = any_reg;
5404 
5405   if (_adjacent_regs) {
5406     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5407     regHi = reg + 1;
5408     if (reg == any_reg) {
5409       return false;
5410     }
5411     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5412 
5413   } else {
5414     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5415     if (reg == any_reg) {
5416       return false;
5417     }
5418     split_pos = _use_pos[reg];
5419 
5420     if (_num_phys_regs == 2) {
5421       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5422 
5423       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5424         // do not split interval if only one register can be assigned until the split pos
5425         // (when one register is found for the whole interval, split&spill is only
5426         // performed for the hi register)
5427         return false;
5428 
5429       } else if (regHi != any_reg) {
5430         split_pos = MIN2(split_pos, _use_pos[regHi]);
5431 
5432         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5433         if (reg > regHi) {
5434           int temp = reg;
5435           reg = regHi;
5436           regHi = temp;
5437         }
5438       }
5439     }
5440   }
5441 
5442   cur->assign_reg(reg, regHi);
5443   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5444 
5445   assert(split_pos > 0, "invalid split_pos");
5446   if (need_split) {
5447     // register not available for full interval, so split it
5448     split_when_partial_register_available(cur, split_pos);
5449   }
5450 
5451   // only return true if interval is completely assigned
5452   return _num_phys_regs == 1 || regHi != any_reg;
5453 }
5454 
5455 
5456 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5457   int max_reg = any_reg;
5458 
5459   for (int i = _first_reg; i <= _last_reg; i++) {
5460     if (i == ignore_reg) {
5461       // this register must be ignored
5462 
5463     } else if (_use_pos[i] > reg_needed_until) {
5464       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5465         max_reg = i;
5466       }
5467     }
5468   }
5469 
5470   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5471     *need_split = true;
5472   }
5473 
5474   return max_reg;
5475 }
5476 
5477 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5478   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5479 
5480   int max_reg = any_reg;
5481 
5482   for (int i = _first_reg; i < _last_reg; i+=2) {
5483     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5484       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5485         max_reg = i;
5486       }
5487     }
5488   }
5489 
5490   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5491     *need_split = true;
5492   }
5493 
5494   return max_reg;
5495 }
5496 
5497 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5498   assert(reg != any_reg, "no register assigned");
5499 
5500   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5501     Interval* it = _spill_intervals[reg]->at(i);
5502     remove_from_list(it);
5503     split_and_spill_interval(it);
5504   }
5505 
5506   if (regHi != any_reg) {
5507     IntervalList* processed = _spill_intervals[reg];
5508     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5509       Interval* it = _spill_intervals[regHi]->at(i);
5510       if (processed->index_of(it) == -1) {
5511         remove_from_list(it);
5512         split_and_spill_interval(it);
5513       }
5514     }
5515   }
5516 }
5517 
5518 
5519 // Split an Interval and spill it to memory so that cur can be placed in a register
5520 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5521   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5522 
5523   // collect current usage of registers
5524   init_use_lists(false);
5525   spill_exclude_active_fixed();
5526 //  spill_block_unhandled_fixed(cur);
5527   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5528   spill_block_inactive_fixed(cur);
5529   spill_collect_active_any();
5530   spill_collect_inactive_any(cur);
5531 
5532 #ifndef PRODUCT
5533   if (TraceLinearScanLevel >= 4) {
5534     tty->print_cr("      state of registers:");
5535     for (int i = _first_reg; i <= _last_reg; i++) {
5536       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5537       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5538         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5539       }
5540       tty->cr();
5541     }
5542   }
5543 #endif
5544 
5545   // the register must be free at least until this position
5546   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5547   int interval_to = cur->to();
5548   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5549 
5550   int split_pos = 0;
5551   int use_pos = 0;
5552   bool need_split = false;
5553   int reg, regHi;
5554 
5555   if (_adjacent_regs) {
5556     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5557     regHi = reg + 1;
5558 
5559     if (reg != any_reg) {
5560       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5561       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5562     }
5563   } else {
5564     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5565     regHi = any_reg;
5566 
5567     if (reg != any_reg) {
5568       use_pos = _use_pos[reg];
5569       split_pos = _block_pos[reg];
5570 
5571       if (_num_phys_regs == 2) {
5572         if (cur->assigned_reg() != any_reg) {
5573           regHi = reg;
5574           reg = cur->assigned_reg();
5575         } else {
5576           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5577           if (regHi != any_reg) {
5578             use_pos = MIN2(use_pos, _use_pos[regHi]);
5579             split_pos = MIN2(split_pos, _block_pos[regHi]);
5580           }
5581         }
5582 
5583         if (regHi != any_reg && reg > regHi) {
5584           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5585           int temp = reg;
5586           reg = regHi;
5587           regHi = temp;
5588         }
5589       }
5590     }
5591   }
5592 
5593   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5594     // the first use of cur is later than the spilling position -> spill cur
5595     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5596 
5597     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5598       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5599       // assign a reasonable register and do a bailout in product mode to avoid errors
5600       allocator()->assign_spill_slot(cur);
5601       BAILOUT("LinearScan: no register found");
5602     }
5603 
5604     split_and_spill_interval(cur);
5605   } else {
5606     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5607     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5608     assert(split_pos > 0, "invalid split_pos");
5609     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5610 
5611     cur->assign_reg(reg, regHi);
5612     if (need_split) {
5613       // register not available for full interval, so split it
5614       split_when_partial_register_available(cur, split_pos);
5615     }
5616 
5617     // perform splitting and spilling for all affected intervalls
5618     split_and_spill_intersecting_intervals(reg, regHi);
5619   }
5620 }
5621 
5622 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5623 #ifdef X86
5624   // fast calculation of intervals that can never get a register because the
5625   // the next instruction is a call that blocks all registers
5626   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5627 
5628   // check if this interval is the result of a split operation
5629   // (an interval got a register until this position)
5630   int pos = cur->from();
5631   if ((pos & 1) == 1) {
5632     // the current instruction is a call that blocks all registers
5633     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5634       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5635 
5636       // safety check that there is really no register available
5637       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5638       return true;
5639     }
5640 
5641   }
5642 #endif
5643   return false;
5644 }
5645 
5646 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5647   BasicType type = cur->type();
5648   _num_phys_regs = LinearScan::num_physical_regs(type);
5649   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5650 
5651   if (pd_init_regs_for_alloc(cur)) {
5652     // the appropriate register range was selected.
5653   } else if (type == T_FLOAT || type == T_DOUBLE) {
5654     _first_reg = pd_first_fpu_reg;
5655     _last_reg = pd_last_fpu_reg;
5656   } else {
5657     _first_reg = pd_first_cpu_reg;
5658     _last_reg = FrameMap::last_cpu_reg();
5659   }
5660 
5661   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5662   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5663 }
5664 
5665 
5666 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5667   if (op->code() != lir_move) {
5668     return false;
5669   }
5670   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5671 
5672   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5673   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5674   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5675 }
5676 
5677 // optimization (especially for phi functions of nested loops):
5678 // assign same spill slot to non-intersecting intervals
5679 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5680   if (cur->is_split_child()) {
5681     // optimization is only suitable for split parents
5682     return;
5683   }
5684 
5685   Interval* register_hint = cur->register_hint(false);
5686   if (register_hint == NULL) {
5687     // cur is not the target of a move, otherwise register_hint would be set
5688     return;
5689   }
5690   assert(register_hint->is_split_parent(), "register hint must be split parent");
5691 
5692   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5693     // combining the stack slots for intervals where spill move optimization is applied
5694     // is not benefitial and would cause problems
5695     return;
5696   }
5697 
5698   int begin_pos = cur->from();
5699   int end_pos = cur->to();
5700   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5701     // safety check that lir_op_with_id is allowed
5702     return;
5703   }
5704 
5705   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5706     // cur and register_hint are not connected with two moves
5707     return;
5708   }
5709 
5710   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5711   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5712   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5713     // register_hint must be split, otherwise the re-writing of use positions does not work
5714     return;
5715   }
5716 
5717   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5718   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5719   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5720   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5721 
5722   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5723     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5724     return;
5725   }
5726   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5727 
5728   // modify intervals such that cur gets the same stack slot as register_hint
5729   // delete use positions to prevent the intervals to get a register at beginning
5730   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5731   cur->remove_first_use_pos();
5732   end_hint->remove_first_use_pos();
5733 }
5734 
5735 
5736 // allocate a physical register or memory location to an interval
5737 bool LinearScanWalker::activate_current() {
5738   Interval* cur = current();
5739   bool result = true;
5740 
5741   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5742   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5743 
5744   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5745     // activating an interval that has a stack slot assigned -> split it at first use position
5746     // used for method parameters
5747     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5748 
5749     split_stack_interval(cur);
5750     result = false;
5751 
5752   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5753     // activating an interval that must start in a stack slot, but may get a register later
5754     // used for lir_roundfp: rounding is done by store to stack and reload later
5755     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5756     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5757 
5758     allocator()->assign_spill_slot(cur);
5759     split_stack_interval(cur);
5760     result = false;
5761 
5762   } else if (cur->assigned_reg() == any_reg) {
5763     // interval has not assigned register -> normal allocation
5764     // (this is the normal case for most intervals)
5765     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5766 
5767     // assign same spill slot to non-intersecting intervals
5768     combine_spilled_intervals(cur);
5769 
5770     init_vars_for_alloc(cur);
5771     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5772       // no empty register available.
5773       // split and spill another interval so that this interval gets a register
5774       alloc_locked_reg(cur);
5775     }
5776 
5777     // spilled intervals need not be move to active-list
5778     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5779       result = false;
5780     }
5781   }
5782 
5783   // load spilled values that become active from stack slot to register
5784   if (cur->insert_move_when_activated()) {
5785     assert(cur->is_split_child(), "must be");
5786     assert(cur->current_split_child() != NULL, "must be");
5787     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5788     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5789 
5790     insert_move(cur->from(), cur->current_split_child(), cur);
5791   }
5792   cur->make_current_split_child();
5793 
5794   return result; // true = interval is moved to active list
5795 }
5796 
5797 
5798 // Implementation of EdgeMoveOptimizer
5799 
5800 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5801   _edge_instructions(4),
5802   _edge_instructions_idx(4)
5803 {
5804 }
5805 
5806 void EdgeMoveOptimizer::optimize(BlockList* code) {
5807   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5808 
5809   // ignore the first block in the list (index 0 is not processed)
5810   for (int i = code->length() - 1; i >= 1; i--) {
5811     BlockBegin* block = code->at(i);
5812 
5813     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5814       optimizer.optimize_moves_at_block_end(block);
5815     }
5816     if (block->number_of_sux() == 2) {
5817       optimizer.optimize_moves_at_block_begin(block);
5818     }
5819   }
5820 }
5821 
5822 
5823 // clear all internal data structures
5824 void EdgeMoveOptimizer::init_instructions() {
5825   _edge_instructions.clear();
5826   _edge_instructions_idx.clear();
5827 }
5828 
5829 // append a lir-instruction-list and the index of the current operation in to the list
5830 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5831   _edge_instructions.append(instructions);
5832   _edge_instructions_idx.append(instructions_idx);
5833 }
5834 
5835 // return the current operation of the given edge (predecessor or successor)
5836 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5837   LIR_OpList* instructions = _edge_instructions.at(edge);
5838   int idx = _edge_instructions_idx.at(edge);
5839 
5840   if (idx < instructions->length()) {
5841     return instructions->at(idx);
5842   } else {
5843     return NULL;
5844   }
5845 }
5846 
5847 // removes the current operation of the given edge (predecessor or successor)
5848 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5849   LIR_OpList* instructions = _edge_instructions.at(edge);
5850   int idx = _edge_instructions_idx.at(edge);
5851   instructions->remove_at(idx);
5852 
5853   if (decrement_index) {
5854     _edge_instructions_idx.at_put(edge, idx - 1);
5855   }
5856 }
5857 
5858 
5859 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5860   if (op1 == NULL || op2 == NULL) {
5861     // at least one block is already empty -> no optimization possible
5862     return true;
5863   }
5864 
5865   if (op1->code() == lir_move && op2->code() == lir_move) {
5866     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5867     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5868     LIR_Op1* move1 = (LIR_Op1*)op1;
5869     LIR_Op1* move2 = (LIR_Op1*)op2;
5870     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5871       // these moves are exactly equal and can be optimized
5872       return false;
5873     }
5874 
5875   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5876     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5877     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5878     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5879     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5880     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5881       // equal FPU stack operations can be optimized
5882       return false;
5883     }
5884 
5885   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5886     // equal FPU stack operations can be optimized
5887     return false;
5888   }
5889 
5890   // no optimization possible
5891   return true;
5892 }
5893 
5894 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5895   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5896 
5897   if (block->is_predecessor(block)) {
5898     // currently we can't handle this correctly.
5899     return;
5900   }
5901 
5902   init_instructions();
5903   int num_preds = block->number_of_preds();
5904   assert(num_preds > 1, "do not call otherwise");
5905   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5906 
5907   // setup a list with the lir-instructions of all predecessors
5908   int i;
5909   for (i = 0; i < num_preds; i++) {
5910     BlockBegin* pred = block->pred_at(i);
5911     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5912 
5913     if (pred->number_of_sux() != 1) {
5914       // this can happen with switch-statements where multiple edges are between
5915       // the same blocks.
5916       return;
5917     }
5918 
5919     assert(pred->number_of_sux() == 1, "can handle only one successor");
5920     assert(pred->sux_at(0) == block, "invalid control flow");
5921     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5922     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5923     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5924 
5925     if (pred_instructions->last()->info() != NULL) {
5926       // can not optimize instructions when debug info is needed
5927       return;
5928     }
5929 
5930     // ignore the unconditional branch at the end of the block
5931     append_instructions(pred_instructions, pred_instructions->length() - 2);
5932   }
5933 
5934 
5935   // process lir-instructions while all predecessors end with the same instruction
5936   while (true) {
5937     LIR_Op* op = instruction_at(0);
5938     for (i = 1; i < num_preds; i++) {
5939       if (operations_different(op, instruction_at(i))) {
5940         // these instructions are different and cannot be optimized ->
5941         // no further optimization possible
5942         return;
5943       }
5944     }
5945 
5946     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5947 
5948     // insert the instruction at the beginning of the current block
5949     block->lir()->insert_before(1, op);
5950 
5951     // delete the instruction at the end of all predecessors
5952     for (i = 0; i < num_preds; i++) {
5953       remove_cur_instruction(i, true);
5954     }
5955   }
5956 }
5957 
5958 
5959 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5960   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5961 
5962   init_instructions();
5963   int num_sux = block->number_of_sux();
5964 
5965   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5966 
5967   assert(num_sux == 2, "method should not be called otherwise");
5968   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5969   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5970   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5971 
5972   if (cur_instructions->last()->info() != NULL) {
5973     // can no optimize instructions when debug info is needed
5974     return;
5975   }
5976 
5977   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5978   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5979     // not a valid case for optimization
5980     // currently, only blocks that end with two branches (conditional branch followed
5981     // by unconditional branch) are optimized
5982     return;
5983   }
5984 
5985   // now it is guaranteed that the block ends with two branch instructions.
5986   // the instructions are inserted at the end of the block before these two branches
5987   int insert_idx = cur_instructions->length() - 2;
5988 
5989   int i;
5990 #ifdef ASSERT
5991   for (i = insert_idx - 1; i >= 0; i--) {
5992     LIR_Op* op = cur_instructions->at(i);
5993     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5994       assert(false, "block with two successors can have only two branch instructions");
5995     }
5996   }
5997 #endif
5998 
5999   // setup a list with the lir-instructions of all successors
6000   for (i = 0; i < num_sux; i++) {
6001     BlockBegin* sux = block->sux_at(i);
6002     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6003 
6004     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6005 
6006     if (sux->number_of_preds() != 1) {
6007       // this can happen with switch-statements where multiple edges are between
6008       // the same blocks.
6009       return;
6010     }
6011     assert(sux->pred_at(0) == block, "invalid control flow");
6012     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6013 
6014     // ignore the label at the beginning of the block
6015     append_instructions(sux_instructions, 1);
6016   }
6017 
6018   // process lir-instructions while all successors begin with the same instruction
6019   while (true) {
6020     LIR_Op* op = instruction_at(0);
6021     for (i = 1; i < num_sux; i++) {
6022       if (operations_different(op, instruction_at(i))) {
6023         // these instructions are different and cannot be optimized ->
6024         // no further optimization possible
6025         return;
6026       }
6027     }
6028 
6029     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6030 
6031     // insert instruction at end of current block
6032     block->lir()->insert_before(insert_idx, op);
6033     insert_idx++;
6034 
6035     // delete the instructions at the beginning of all successors
6036     for (i = 0; i < num_sux; i++) {
6037       remove_cur_instruction(i, false);
6038     }
6039   }
6040 }
6041 
6042 
6043 // Implementation of ControlFlowOptimizer
6044 
6045 ControlFlowOptimizer::ControlFlowOptimizer() :
6046   _original_preds(4)
6047 {
6048 }
6049 
6050 void ControlFlowOptimizer::optimize(BlockList* code) {
6051   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6052 
6053   // push the OSR entry block to the end so that we're not jumping over it.
6054   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6055   if (osr_entry) {
6056     int index = osr_entry->linear_scan_number();
6057     assert(code->at(index) == osr_entry, "wrong index");
6058     code->remove_at(index);
6059     code->append(osr_entry);
6060   }
6061 
6062   optimizer.reorder_short_loops(code);
6063   optimizer.delete_empty_blocks(code);
6064   optimizer.delete_unnecessary_jumps(code);
6065   optimizer.delete_jumps_to_return(code);
6066 }
6067 
6068 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6069   int i = header_idx + 1;
6070   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6071   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6072     i++;
6073   }
6074 
6075   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6076     int end_idx = i - 1;
6077     BlockBegin* end_block = code->at(end_idx);
6078 
6079     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6080       // short loop from header_idx to end_idx found -> reorder blocks such that
6081       // the header_block is the last block instead of the first block of the loop
6082       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6083                                          end_idx - header_idx + 1,
6084                                          header_block->block_id(), end_block->block_id()));
6085 
6086       for (int j = header_idx; j < end_idx; j++) {
6087         code->at_put(j, code->at(j + 1));
6088       }
6089       code->at_put(end_idx, header_block);
6090 
6091       // correct the flags so that any loop alignment occurs in the right place.
6092       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6093       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6094       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6095     }
6096   }
6097 }
6098 
6099 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6100   for (int i = code->length() - 1; i >= 0; i--) {
6101     BlockBegin* block = code->at(i);
6102 
6103     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6104       reorder_short_loop(code, block, i);
6105     }
6106   }
6107 
6108   DEBUG_ONLY(verify(code));
6109 }
6110 
6111 // only blocks with exactly one successor can be deleted. Such blocks
6112 // must always end with an unconditional branch to this successor
6113 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6114   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6115     return false;
6116   }
6117 
6118   LIR_OpList* instructions = block->lir()->instructions_list();
6119 
6120   assert(instructions->length() >= 2, "block must have label and branch");
6121   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6122   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6123   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6124   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6125 
6126   // block must have exactly one successor
6127 
6128   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6129     return true;
6130   }
6131   return false;
6132 }
6133 
6134 // substitute branch targets in all branch-instructions of this blocks
6135 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6136   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6137 
6138   LIR_OpList* instructions = block->lir()->instructions_list();
6139 
6140   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6141   for (int i = instructions->length() - 1; i >= 1; i--) {
6142     LIR_Op* op = instructions->at(i);
6143 
6144     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6145       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6146       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6147 
6148       if (branch->block() == target_from) {
6149         branch->change_block(target_to);
6150       }
6151       if (branch->ublock() == target_from) {
6152         branch->change_ublock(target_to);
6153       }
6154     }
6155   }
6156 }
6157 
6158 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6159   int old_pos = 0;
6160   int new_pos = 0;
6161   int num_blocks = code->length();
6162 
6163   while (old_pos < num_blocks) {
6164     BlockBegin* block = code->at(old_pos);
6165 
6166     if (can_delete_block(block)) {
6167       BlockBegin* new_target = block->sux_at(0);
6168 
6169       // propagate backward branch target flag for correct code alignment
6170       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6171         new_target->set(BlockBegin::backward_branch_target_flag);
6172       }
6173 
6174       // collect a list with all predecessors that contains each predecessor only once
6175       // the predecessors of cur are changed during the substitution, so a copy of the
6176       // predecessor list is necessary
6177       int j;
6178       _original_preds.clear();
6179       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6180         BlockBegin* pred = block->pred_at(j);
6181         if (_original_preds.index_of(pred) == -1) {
6182           _original_preds.append(pred);
6183         }
6184       }
6185 
6186       for (j = _original_preds.length() - 1; j >= 0; j--) {
6187         BlockBegin* pred = _original_preds.at(j);
6188         substitute_branch_target(pred, block, new_target);
6189         pred->substitute_sux(block, new_target);
6190       }
6191     } else {
6192       // adjust position of this block in the block list if blocks before
6193       // have been deleted
6194       if (new_pos != old_pos) {
6195         code->at_put(new_pos, code->at(old_pos));
6196       }
6197       new_pos++;
6198     }
6199     old_pos++;
6200   }
6201   code->truncate(new_pos);
6202 
6203   DEBUG_ONLY(verify(code));
6204 }
6205 
6206 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6207   // skip the last block because there a branch is always necessary
6208   for (int i = code->length() - 2; i >= 0; i--) {
6209     BlockBegin* block = code->at(i);
6210     LIR_OpList* instructions = block->lir()->instructions_list();
6211 
6212     LIR_Op* last_op = instructions->last();
6213     if (last_op->code() == lir_branch) {
6214       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6215       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6216 
6217       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6218       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6219 
6220       if (last_branch->info() == NULL) {
6221         if (last_branch->block() == code->at(i + 1)) {
6222 
6223           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6224 
6225           // delete last branch instruction
6226           instructions->truncate(instructions->length() - 1);
6227 
6228         } else {
6229           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6230           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6231             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6232             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6233 
6234             if (prev_branch->stub() == NULL) {
6235 
6236               LIR_Op2* prev_cmp = NULL;
6237 
6238               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6239                 prev_op = instructions->at(j);
6240                 if (prev_op->code() == lir_cmp) {
6241                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6242                   prev_cmp = (LIR_Op2*)prev_op;
6243                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6244                 }
6245               }
6246               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6247               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6248 
6249                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6250 
6251                 // eliminate a conditional branch to the immediate successor
6252                 prev_branch->change_block(last_branch->block());
6253                 prev_branch->negate_cond();
6254                 prev_cmp->set_condition(prev_branch->cond());
6255                 instructions->truncate(instructions->length() - 1);
6256               }
6257             }
6258           }
6259         }
6260       }
6261     }
6262   }
6263 
6264   DEBUG_ONLY(verify(code));
6265 }
6266 
6267 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6268 #ifdef ASSERT
6269   BitMap return_converted(BlockBegin::number_of_blocks());
6270   return_converted.clear();
6271 #endif
6272 
6273   for (int i = code->length() - 1; i >= 0; i--) {
6274     BlockBegin* block = code->at(i);
6275     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6276     LIR_Op*     cur_last_op = cur_instructions->last();
6277 
6278     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6279     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6280       // the block contains only a label and a return
6281       // if a predecessor ends with an unconditional jump to this block, then the jump
6282       // can be replaced with a return instruction
6283       //
6284       // Note: the original block with only a return statement cannot be deleted completely
6285       //       because the predecessors might have other (conditional) jumps to this block
6286       //       -> this may lead to unnecesary return instructions in the final code
6287 
6288       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6289       assert(block->number_of_sux() == 0 ||
6290              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6291              "blocks that end with return must not have successors");
6292 
6293       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6294       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6295 
6296       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6297         BlockBegin* pred = block->pred_at(j);
6298         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6299         LIR_Op*     pred_last_op = pred_instructions->last();
6300 
6301         if (pred_last_op->code() == lir_branch) {
6302           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6303           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6304 
6305           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6306             // replace the jump to a return with a direct return
6307             // Note: currently the edge between the blocks is not deleted
6308             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6309 #ifdef ASSERT
6310             return_converted.set_bit(pred->block_id());
6311 #endif
6312           }
6313         }
6314       }
6315     }
6316   }
6317 }
6318 
6319 
6320 #ifdef ASSERT
6321 void ControlFlowOptimizer::verify(BlockList* code) {
6322   for (int i = 0; i < code->length(); i++) {
6323     BlockBegin* block = code->at(i);
6324     LIR_OpList* instructions = block->lir()->instructions_list();
6325 
6326     int j;
6327     for (j = 0; j < instructions->length(); j++) {
6328       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6329 
6330       if (op_branch != NULL) {
6331         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6332         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6333       }
6334     }
6335 
6336     for (j = 0; j < block->number_of_sux() - 1; j++) {
6337       BlockBegin* sux = block->sux_at(j);
6338       assert(code->index_of(sux) != -1, "successor not valid");
6339     }
6340 
6341     for (j = 0; j < block->number_of_preds() - 1; j++) {
6342       BlockBegin* pred = block->pred_at(j);
6343       assert(code->index_of(pred) != -1, "successor not valid");
6344     }
6345   }
6346 }
6347 #endif
6348 
6349 
6350 #ifndef PRODUCT
6351 
6352 // Implementation of LinearStatistic
6353 
6354 const char* LinearScanStatistic::counter_name(int counter_idx) {
6355   switch (counter_idx) {
6356     case counter_method:          return "compiled methods";
6357     case counter_fpu_method:      return "methods using fpu";
6358     case counter_loop_method:     return "methods with loops";
6359     case counter_exception_method:return "methods with xhandler";
6360 
6361     case counter_loop:            return "loops";
6362     case counter_block:           return "blocks";
6363     case counter_loop_block:      return "blocks inside loop";
6364     case counter_exception_block: return "exception handler entries";
6365     case counter_interval:        return "intervals";
6366     case counter_fixed_interval:  return "fixed intervals";
6367     case counter_range:           return "ranges";
6368     case counter_fixed_range:     return "fixed ranges";
6369     case counter_use_pos:         return "use positions";
6370     case counter_fixed_use_pos:   return "fixed use positions";
6371     case counter_spill_slots:     return "spill slots";
6372 
6373     // counter for classes of lir instructions
6374     case counter_instruction:     return "total instructions";
6375     case counter_label:           return "labels";
6376     case counter_entry:           return "method entries";
6377     case counter_return:          return "method returns";
6378     case counter_call:            return "method calls";
6379     case counter_move:            return "moves";
6380     case counter_cmp:             return "compare";
6381     case counter_cond_branch:     return "conditional branches";
6382     case counter_uncond_branch:   return "unconditional branches";
6383     case counter_stub_branch:     return "branches to stub";
6384     case counter_alu:             return "artithmetic + logic";
6385     case counter_alloc:           return "allocations";
6386     case counter_sync:            return "synchronisation";
6387     case counter_throw:           return "throw";
6388     case counter_unwind:          return "unwind";
6389     case counter_typecheck:       return "type+null-checks";
6390     case counter_fpu_stack:       return "fpu-stack";
6391     case counter_misc_inst:       return "other instructions";
6392     case counter_other_inst:      return "misc. instructions";
6393 
6394     // counter for different types of moves
6395     case counter_move_total:      return "total moves";
6396     case counter_move_reg_reg:    return "register->register";
6397     case counter_move_reg_stack:  return "register->stack";
6398     case counter_move_stack_reg:  return "stack->register";
6399     case counter_move_stack_stack:return "stack->stack";
6400     case counter_move_reg_mem:    return "register->memory";
6401     case counter_move_mem_reg:    return "memory->register";
6402     case counter_move_const_any:  return "constant->any";
6403 
6404     case blank_line_1:            return "";
6405     case blank_line_2:            return "";
6406 
6407     default: ShouldNotReachHere(); return "";
6408   }
6409 }
6410 
6411 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6412   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6413     return counter_method;
6414   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6415     return counter_block;
6416   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6417     return counter_instruction;
6418   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6419     return counter_move_total;
6420   }
6421   return invalid_counter;
6422 }
6423 
6424 LinearScanStatistic::LinearScanStatistic() {
6425   for (int i = 0; i < number_of_counters; i++) {
6426     _counters_sum[i] = 0;
6427     _counters_max[i] = -1;
6428   }
6429 
6430 }
6431 
6432 // add the method-local numbers to the total sum
6433 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6434   for (int i = 0; i < number_of_counters; i++) {
6435     _counters_sum[i] += method_statistic._counters_sum[i];
6436     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6437   }
6438 }
6439 
6440 void LinearScanStatistic::print(const char* title) {
6441   if (CountLinearScan || TraceLinearScanLevel > 0) {
6442     tty->cr();
6443     tty->print_cr("***** LinearScan statistic - %s *****", title);
6444 
6445     for (int i = 0; i < number_of_counters; i++) {
6446       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6447         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6448 
6449         if (base_counter(i) != invalid_counter) {
6450           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6451         } else {
6452           tty->print("           ");
6453         }
6454 
6455         if (_counters_max[i] >= 0) {
6456           tty->print("%8d", _counters_max[i]);
6457         }
6458       }
6459       tty->cr();
6460     }
6461   }
6462 }
6463 
6464 void LinearScanStatistic::collect(LinearScan* allocator) {
6465   inc_counter(counter_method);
6466   if (allocator->has_fpu_registers()) {
6467     inc_counter(counter_fpu_method);
6468   }
6469   if (allocator->num_loops() > 0) {
6470     inc_counter(counter_loop_method);
6471   }
6472   inc_counter(counter_loop, allocator->num_loops());
6473   inc_counter(counter_spill_slots, allocator->max_spills());
6474 
6475   int i;
6476   for (i = 0; i < allocator->interval_count(); i++) {
6477     Interval* cur = allocator->interval_at(i);
6478 
6479     if (cur != NULL) {
6480       inc_counter(counter_interval);
6481       inc_counter(counter_use_pos, cur->num_use_positions());
6482       if (LinearScan::is_precolored_interval(cur)) {
6483         inc_counter(counter_fixed_interval);
6484         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6485       }
6486 
6487       Range* range = cur->first();
6488       while (range != Range::end()) {
6489         inc_counter(counter_range);
6490         if (LinearScan::is_precolored_interval(cur)) {
6491           inc_counter(counter_fixed_range);
6492         }
6493         range = range->next();
6494       }
6495     }
6496   }
6497 
6498   bool has_xhandlers = false;
6499   // Note: only count blocks that are in code-emit order
6500   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6501     BlockBegin* cur = allocator->ir()->code()->at(i);
6502 
6503     inc_counter(counter_block);
6504     if (cur->loop_depth() > 0) {
6505       inc_counter(counter_loop_block);
6506     }
6507     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6508       inc_counter(counter_exception_block);
6509       has_xhandlers = true;
6510     }
6511 
6512     LIR_OpList* instructions = cur->lir()->instructions_list();
6513     for (int j = 0; j < instructions->length(); j++) {
6514       LIR_Op* op = instructions->at(j);
6515 
6516       inc_counter(counter_instruction);
6517 
6518       switch (op->code()) {
6519         case lir_label:           inc_counter(counter_label); break;
6520         case lir_std_entry:
6521         case lir_osr_entry:       inc_counter(counter_entry); break;
6522         case lir_return:          inc_counter(counter_return); break;
6523 
6524         case lir_rtcall:
6525         case lir_static_call:
6526         case lir_optvirtual_call:
6527         case lir_virtual_call:    inc_counter(counter_call); break;
6528 
6529         case lir_move: {
6530           inc_counter(counter_move);
6531           inc_counter(counter_move_total);
6532 
6533           LIR_Opr in = op->as_Op1()->in_opr();
6534           LIR_Opr res = op->as_Op1()->result_opr();
6535           if (in->is_register()) {
6536             if (res->is_register()) {
6537               inc_counter(counter_move_reg_reg);
6538             } else if (res->is_stack()) {
6539               inc_counter(counter_move_reg_stack);
6540             } else if (res->is_address()) {
6541               inc_counter(counter_move_reg_mem);
6542             } else {
6543               ShouldNotReachHere();
6544             }
6545           } else if (in->is_stack()) {
6546             if (res->is_register()) {
6547               inc_counter(counter_move_stack_reg);
6548             } else {
6549               inc_counter(counter_move_stack_stack);
6550             }
6551           } else if (in->is_address()) {
6552             assert(res->is_register(), "must be");
6553             inc_counter(counter_move_mem_reg);
6554           } else if (in->is_constant()) {
6555             inc_counter(counter_move_const_any);
6556           } else {
6557             ShouldNotReachHere();
6558           }
6559           break;
6560         }
6561 
6562         case lir_cmp:             inc_counter(counter_cmp); break;
6563 
6564         case lir_branch:
6565         case lir_cond_float_branch: {
6566           LIR_OpBranch* branch = op->as_OpBranch();
6567           if (branch->block() == NULL) {
6568             inc_counter(counter_stub_branch);
6569           } else if (branch->cond() == lir_cond_always) {
6570             inc_counter(counter_uncond_branch);
6571           } else {
6572             inc_counter(counter_cond_branch);
6573           }
6574           break;
6575         }
6576 
6577         case lir_neg:
6578         case lir_add:
6579         case lir_sub:
6580         case lir_mul:
6581         case lir_mul_strictfp:
6582         case lir_div:
6583         case lir_div_strictfp:
6584         case lir_rem:
6585         case lir_sqrt:
6586         case lir_sin:
6587         case lir_cos:
6588         case lir_abs:
6589         case lir_log10:
6590         case lir_log:
6591         case lir_pow:
6592         case lir_exp:
6593         case lir_logic_and:
6594         case lir_logic_or:
6595         case lir_logic_xor:
6596         case lir_shl:
6597         case lir_shr:
6598         case lir_ushr:            inc_counter(counter_alu); break;
6599 
6600         case lir_alloc_object:
6601         case lir_alloc_array:     inc_counter(counter_alloc); break;
6602 
6603         case lir_monaddr:
6604         case lir_lock:
6605         case lir_unlock:          inc_counter(counter_sync); break;
6606 
6607         case lir_throw:           inc_counter(counter_throw); break;
6608 
6609         case lir_unwind:          inc_counter(counter_unwind); break;
6610 
6611         case lir_null_check:
6612         case lir_leal:
6613         case lir_instanceof:
6614         case lir_checkcast:
6615         case lir_store_check:     inc_counter(counter_typecheck); break;
6616 
6617         case lir_fpop_raw:
6618         case lir_fxch:
6619         case lir_fld:             inc_counter(counter_fpu_stack); break;
6620 
6621         case lir_nop:
6622         case lir_push:
6623         case lir_pop:
6624         case lir_convert:
6625         case lir_roundfp:
6626         case lir_cmove:           inc_counter(counter_misc_inst); break;
6627 
6628         default:                  inc_counter(counter_other_inst); break;
6629       }
6630     }
6631   }
6632 
6633   if (has_xhandlers) {
6634     inc_counter(counter_exception_method);
6635   }
6636 }
6637 
6638 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6639   if (CountLinearScan || TraceLinearScanLevel > 0) {
6640 
6641     LinearScanStatistic local_statistic = LinearScanStatistic();
6642 
6643     local_statistic.collect(allocator);
6644     global_statistic.sum_up(local_statistic);
6645 
6646     if (TraceLinearScanLevel > 2) {
6647       local_statistic.print("current local statistic");
6648     }
6649   }
6650 }
6651 
6652 
6653 // Implementation of LinearTimers
6654 
6655 LinearScanTimers::LinearScanTimers() {
6656   for (int i = 0; i < number_of_timers; i++) {
6657     timer(i)->reset();
6658   }
6659 }
6660 
6661 const char* LinearScanTimers::timer_name(int idx) {
6662   switch (idx) {
6663     case timer_do_nothing:               return "Nothing (Time Check)";
6664     case timer_number_instructions:      return "Number Instructions";
6665     case timer_compute_local_live_sets:  return "Local Live Sets";
6666     case timer_compute_global_live_sets: return "Global Live Sets";
6667     case timer_build_intervals:          return "Build Intervals";
6668     case timer_sort_intervals_before:    return "Sort Intervals Before";
6669     case timer_allocate_registers:       return "Allocate Registers";
6670     case timer_resolve_data_flow:        return "Resolve Data Flow";
6671     case timer_sort_intervals_after:     return "Sort Intervals After";
6672     case timer_eliminate_spill_moves:    return "Spill optimization";
6673     case timer_assign_reg_num:           return "Assign Reg Num";
6674     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6675     case timer_optimize_lir:             return "Optimize LIR";
6676     default: ShouldNotReachHere();       return "";
6677   }
6678 }
6679 
6680 void LinearScanTimers::begin_method() {
6681   if (TimeEachLinearScan) {
6682     // reset all timers to measure only current method
6683     for (int i = 0; i < number_of_timers; i++) {
6684       timer(i)->reset();
6685     }
6686   }
6687 }
6688 
6689 void LinearScanTimers::end_method(LinearScan* allocator) {
6690   if (TimeEachLinearScan) {
6691 
6692     double c = timer(timer_do_nothing)->seconds();
6693     double total = 0;
6694     for (int i = 1; i < number_of_timers; i++) {
6695       total += timer(i)->seconds() - c;
6696     }
6697 
6698     if (total >= 0.0005) {
6699       // print all information in one line for automatic processing
6700       tty->print("@"); allocator->compilation()->method()->print_name();
6701 
6702       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6703       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6704       tty->print("@ %d ", allocator->block_count());
6705       tty->print("@ %d ", allocator->num_virtual_regs());
6706       tty->print("@ %d ", allocator->interval_count());
6707       tty->print("@ %d ", allocator->_num_calls);
6708       tty->print("@ %d ", allocator->num_loops());
6709 
6710       tty->print("@ %6.6f ", total);
6711       for (int i = 1; i < number_of_timers; i++) {
6712         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6713       }
6714       tty->cr();
6715     }
6716   }
6717 }
6718 
6719 void LinearScanTimers::print(double total_time) {
6720   if (TimeLinearScan) {
6721     // correction value: sum of dummy-timer that only measures the time that
6722     // is necesary to start and stop itself
6723     double c = timer(timer_do_nothing)->seconds();
6724 
6725     for (int i = 0; i < number_of_timers; i++) {
6726       double t = timer(i)->seconds();
6727       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6728     }
6729   }
6730 }
6731 
6732 #endif // #ifndef PRODUCT