1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VM_VERSION_X86_HPP
  27 
  28 #include "runtime/globals_extension.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32 public:
  33   // cpuid result register layouts.  These are all unions of a uint32_t
  34   // (in case anyone wants access to the register as a whole) and a bitfield.
  35 
  36   union StdCpuid1Eax {
  37     uint32_t value;
  38     struct {
  39       uint32_t stepping   : 4,
  40                model      : 4,
  41                family     : 4,
  42                proc_type  : 2,
  43                           : 2,
  44                ext_model  : 4,
  45                ext_family : 8,
  46                           : 4;
  47     } bits;
  48   };
  49 
  50   union StdCpuid1Ebx { // example, unused
  51     uint32_t value;
  52     struct {
  53       uint32_t brand_id         : 8,
  54                clflush_size     : 8,
  55                threads_per_cpu  : 8,
  56                apic_id          : 8;
  57     } bits;
  58   };
  59 
  60   union StdCpuid1Ecx {
  61     uint32_t value;
  62     struct {
  63       uint32_t sse3     : 1,
  64                clmul    : 1,
  65                         : 1,
  66                monitor  : 1,
  67                         : 1,
  68                vmx      : 1,
  69                         : 1,
  70                est      : 1,
  71                         : 1,
  72                ssse3    : 1,
  73                cid      : 1,
  74                         : 2,
  75                cmpxchg16: 1,
  76                         : 4,
  77                dca      : 1,
  78                sse4_1   : 1,
  79                sse4_2   : 1,
  80                         : 2,
  81                popcnt   : 1,
  82                         : 1,
  83                aes      : 1,
  84                         : 1,
  85                osxsave  : 1,
  86                avx      : 1,
  87                         : 3;
  88     } bits;
  89   };
  90 
  91   union StdCpuid1Edx {
  92     uint32_t value;
  93     struct {
  94       uint32_t          : 4,
  95                tsc      : 1,
  96                         : 3,
  97                cmpxchg8 : 1,
  98                         : 6,
  99                cmov     : 1,
 100                         : 3,
 101                clflush  : 1,
 102                         : 3,
 103                mmx      : 1,
 104                fxsr     : 1,
 105                sse      : 1,
 106                sse2     : 1,
 107                         : 1,
 108                ht       : 1,
 109                         : 3;
 110     } bits;
 111   };
 112 
 113   union DcpCpuid4Eax {
 114     uint32_t value;
 115     struct {
 116       uint32_t cache_type    : 5,
 117                              : 21,
 118                cores_per_cpu : 6;
 119     } bits;
 120   };
 121 
 122   union DcpCpuid4Ebx {
 123     uint32_t value;
 124     struct {
 125       uint32_t L1_line_size  : 12,
 126                partitions    : 10,
 127                associativity : 10;
 128     } bits;
 129   };
 130 
 131   union TplCpuidBEbx {
 132     uint32_t value;
 133     struct {
 134       uint32_t logical_cpus : 16,
 135                             : 16;
 136     } bits;
 137   };
 138 
 139   union ExtCpuid1Ecx {
 140     uint32_t value;
 141     struct {
 142       uint32_t LahfSahf     : 1,
 143                CmpLegacy    : 1,
 144                             : 3,
 145                lzcnt_intel  : 1,
 146                lzcnt        : 1,
 147                sse4a        : 1,
 148                misalignsse  : 1,
 149                prefetchw    : 1,
 150                             : 22;
 151     } bits;
 152   };
 153 
 154   union ExtCpuid1Edx {
 155     uint32_t value;
 156     struct {
 157       uint32_t           : 22,
 158                mmx_amd   : 1,
 159                mmx       : 1,
 160                fxsr      : 1,
 161                          : 4,
 162                long_mode : 1,
 163                tdnow2    : 1,
 164                tdnow     : 1;
 165     } bits;
 166   };
 167 
 168   union ExtCpuid5Ex {
 169     uint32_t value;
 170     struct {
 171       uint32_t L1_line_size : 8,
 172                L1_tag_lines : 8,
 173                L1_assoc     : 8,
 174                L1_size      : 8;
 175     } bits;
 176   };
 177 
 178   union ExtCpuid7Edx {
 179     uint32_t value;
 180     struct {
 181       uint32_t               : 8,
 182               tsc_invariance : 1,
 183                              : 23;
 184     } bits;
 185   };
 186 
 187   union ExtCpuid8Ecx {
 188     uint32_t value;
 189     struct {
 190       uint32_t cores_per_cpu : 8,
 191                              : 24;
 192     } bits;
 193   };
 194 
 195   union SefCpuid7Eax {
 196     uint32_t value;
 197   };
 198 
 199   union SefCpuid7Ebx {
 200     uint32_t value;
 201     struct {
 202       uint32_t fsgsbase : 1,
 203                         : 2,
 204                    bmi1 : 1,
 205                         : 1,
 206                    avx2 : 1,
 207                         : 2,
 208                    bmi2 : 1,
 209                    erms : 1,
 210                         : 22;
 211     } bits;
 212   };
 213 
 214   union XemXcr0Eax {
 215     uint32_t value;
 216     struct {
 217       uint32_t x87 : 1,
 218                sse : 1,
 219                ymm : 1,
 220                    : 29;
 221     } bits;
 222   };
 223 
 224 protected:
 225   static int _cpu;
 226   static int _model;
 227   static int _stepping;
 228   static int _cpuFeatures;     // features returned by the "cpuid" instruction
 229                                // 0 if this instruction is not available
 230   static const char* _features_str;
 231 
 232   enum {
 233     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
 234     CPU_CMOV   = (1 << 1),
 235     CPU_FXSR   = (1 << 2),
 236     CPU_HT     = (1 << 3),
 237     CPU_MMX    = (1 << 4),
 238     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 239                                     // may not necessarily support other 3dnow instructions
 240     CPU_SSE    = (1 << 6),
 241     CPU_SSE2   = (1 << 7),
 242     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
 243     CPU_SSSE3  = (1 << 9),
 244     CPU_SSE4A  = (1 << 10),
 245     CPU_SSE4_1 = (1 << 11),
 246     CPU_SSE4_2 = (1 << 12),
 247     CPU_POPCNT = (1 << 13),
 248     CPU_LZCNT  = (1 << 14),
 249     CPU_TSC    = (1 << 15),
 250     CPU_TSCINV = (1 << 16),
 251     CPU_AVX    = (1 << 17),
 252     CPU_AVX2   = (1 << 18),
 253     CPU_AES    = (1 << 19),
 254     CPU_ERMS   = (1 << 20), // enhanced 'rep movsb/stosb' instructions
 255     CPU_CLMUL  = (1 << 21), // carryless multiply for CRC
 256     CPU_BMI1   = (1 << 22),
 257     CPU_BMI2   = (1 << 23)
 258   } cpuFeatureFlags;
 259 
 260   enum {
 261     // AMD
 262     CPU_FAMILY_AMD_11H       = 0x11,
 263     // Intel
 264     CPU_FAMILY_INTEL_CORE    = 6,
 265     CPU_MODEL_NEHALEM        = 0x1e,
 266     CPU_MODEL_NEHALEM_EP     = 0x1a,
 267     CPU_MODEL_NEHALEM_EX     = 0x2e,
 268     CPU_MODEL_WESTMERE       = 0x25,
 269     CPU_MODEL_WESTMERE_EP    = 0x2c,
 270     CPU_MODEL_WESTMERE_EX    = 0x2f,
 271     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 272     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 273     CPU_MODEL_IVYBRIDGE_EP   = 0x3a
 274   } cpuExtendedFamily;
 275 
 276   // cpuid information block.  All info derived from executing cpuid with
 277   // various function numbers is stored here.  Intel and AMD info is
 278   // merged in this block: accessor methods disentangle it.
 279   //
 280   // The info block is laid out in subblocks of 4 dwords corresponding to
 281   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 282   struct CpuidInfo {
 283     // cpuid function 0
 284     uint32_t std_max_function;
 285     uint32_t std_vendor_name_0;
 286     uint32_t std_vendor_name_1;
 287     uint32_t std_vendor_name_2;
 288 
 289     // cpuid function 1
 290     StdCpuid1Eax std_cpuid1_eax;
 291     StdCpuid1Ebx std_cpuid1_ebx;
 292     StdCpuid1Ecx std_cpuid1_ecx;
 293     StdCpuid1Edx std_cpuid1_edx;
 294 
 295     // cpuid function 4 (deterministic cache parameters)
 296     DcpCpuid4Eax dcp_cpuid4_eax;
 297     DcpCpuid4Ebx dcp_cpuid4_ebx;
 298     uint32_t     dcp_cpuid4_ecx; // unused currently
 299     uint32_t     dcp_cpuid4_edx; // unused currently
 300 
 301     // cpuid function 7 (structured extended features)
 302     SefCpuid7Eax sef_cpuid7_eax;
 303     SefCpuid7Ebx sef_cpuid7_ebx;
 304     uint32_t     sef_cpuid7_ecx; // unused currently
 305     uint32_t     sef_cpuid7_edx; // unused currently
 306 
 307     // cpuid function 0xB (processor topology)
 308     // ecx = 0
 309     uint32_t     tpl_cpuidB0_eax;
 310     TplCpuidBEbx tpl_cpuidB0_ebx;
 311     uint32_t     tpl_cpuidB0_ecx; // unused currently
 312     uint32_t     tpl_cpuidB0_edx; // unused currently
 313 
 314     // ecx = 1
 315     uint32_t     tpl_cpuidB1_eax;
 316     TplCpuidBEbx tpl_cpuidB1_ebx;
 317     uint32_t     tpl_cpuidB1_ecx; // unused currently
 318     uint32_t     tpl_cpuidB1_edx; // unused currently
 319 
 320     // ecx = 2
 321     uint32_t     tpl_cpuidB2_eax;
 322     TplCpuidBEbx tpl_cpuidB2_ebx;
 323     uint32_t     tpl_cpuidB2_ecx; // unused currently
 324     uint32_t     tpl_cpuidB2_edx; // unused currently
 325 
 326     // cpuid function 0x80000000 // example, unused
 327     uint32_t ext_max_function;
 328     uint32_t ext_vendor_name_0;
 329     uint32_t ext_vendor_name_1;
 330     uint32_t ext_vendor_name_2;
 331 
 332     // cpuid function 0x80000001
 333     uint32_t     ext_cpuid1_eax; // reserved
 334     uint32_t     ext_cpuid1_ebx; // reserved
 335     ExtCpuid1Ecx ext_cpuid1_ecx;
 336     ExtCpuid1Edx ext_cpuid1_edx;
 337 
 338     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 339     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 340     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 341     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 342 
 343     // cpuid function 0x80000005 // AMD L1, Intel reserved
 344     uint32_t     ext_cpuid5_eax; // unused currently
 345     uint32_t     ext_cpuid5_ebx; // reserved
 346     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 347     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 348 
 349     // cpuid function 0x80000007
 350     uint32_t     ext_cpuid7_eax; // reserved
 351     uint32_t     ext_cpuid7_ebx; // reserved
 352     uint32_t     ext_cpuid7_ecx; // reserved
 353     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 354 
 355     // cpuid function 0x80000008
 356     uint32_t     ext_cpuid8_eax; // unused currently
 357     uint32_t     ext_cpuid8_ebx; // reserved
 358     ExtCpuid8Ecx ext_cpuid8_ecx;
 359     uint32_t     ext_cpuid8_edx; // reserved
 360 
 361     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 362     XemXcr0Eax   xem_xcr0_eax;
 363     uint32_t     xem_xcr0_edx; // reserved
 364   };
 365 
 366   // The actual cpuid info block
 367   static CpuidInfo _cpuid_info;
 368 
 369   // Extractors and predicates
 370   static uint32_t extended_cpu_family() {
 371     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 372     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 373     return result;
 374   }
 375 
 376   static uint32_t extended_cpu_model() {
 377     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 378     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 379     return result;
 380   }
 381 
 382   static uint32_t cpu_stepping() {
 383     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 384     return result;
 385   }
 386 
 387   static uint logical_processor_count() {
 388     uint result = threads_per_core();
 389     return result;
 390   }
 391 
 392   static uint32_t feature_flags() {
 393     uint32_t result = 0;
 394     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 395       result |= CPU_CX8;
 396     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 397       result |= CPU_CMOV;
 398     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 399         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 400       result |= CPU_FXSR;
 401     // HT flag is set for multi-core processors also.
 402     if (threads_per_core() > 1)
 403       result |= CPU_HT;
 404     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 405         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 406       result |= CPU_MMX;
 407     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 408       result |= CPU_SSE;
 409     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 410       result |= CPU_SSE2;
 411     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 412       result |= CPU_SSE3;
 413     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 414       result |= CPU_SSSE3;
 415     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 416       result |= CPU_SSE4_1;
 417     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 418       result |= CPU_SSE4_2;
 419     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 420       result |= CPU_POPCNT;
 421     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 422         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 423         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 424         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 425       result |= CPU_AVX;
 426       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 427         result |= CPU_AVX2;
 428     }
 429     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
 430       result |= CPU_BMI1;
 431     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 432       result |= CPU_TSC;
 433     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 434       result |= CPU_TSCINV;
 435     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
 436       result |= CPU_AES;
 437     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
 438       result |= CPU_ERMS;
 439     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
 440       result |= CPU_CLMUL;
 441 
 442     // AMD features.
 443     if (is_amd()) {
 444       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 445           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 446         result |= CPU_3DNOW_PREFETCH;
 447       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 448         result |= CPU_LZCNT;
 449       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 450         result |= CPU_SSE4A;
 451     }
 452     // Intel features.
 453     if(is_intel()) {
 454       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
 455         result |= CPU_BMI2;
 456       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 457         result |= CPU_LZCNT;
 458     }
 459 
 460     return result;
 461   }
 462 
 463   static void get_processor_features();
 464 
 465 public:
 466   // Offsets for cpuid asm stub
 467   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 468   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 469   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 470   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 471   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 472   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 473   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 474   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 475   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 476   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 477   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 478   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 479 
 480   // Initialization
 481   static void initialize();
 482 
 483   // Asserts
 484   static void assert_is_initialized() {
 485     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 486   }
 487 
 488   //
 489   // Processor family:
 490   //       3   -  386
 491   //       4   -  486
 492   //       5   -  Pentium
 493   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 494   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 495   //    family 6 model:   9,        13,       14,        15
 496   //    0x0f   -  Pentium 4, Opteron
 497   //
 498   // Note: The cpu family should be used to select between
 499   //       instruction sequences which are valid on all Intel
 500   //       processors.  Use the feature test functions below to
 501   //       determine whether a particular instruction is supported.
 502   //
 503   static int  cpu_family()        { return _cpu;}
 504   static bool is_P6()             { return cpu_family() >= 6; }
 505   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 506   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 507 
 508   static bool supports_processor_topology() {
 509     return (_cpuid_info.std_max_function >= 0xB) &&
 510            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 511            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 512            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 513   }
 514 
 515   static uint cores_per_cpu()  {
 516     uint result = 1;
 517     if (is_intel()) {
 518       if (supports_processor_topology()) {
 519         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 520                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 521       } else {
 522         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 523       }
 524     } else if (is_amd()) {
 525       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 526     }
 527     return result;
 528   }
 529 
 530   static uint threads_per_core()  {
 531     uint result = 1;
 532     if (is_intel() && supports_processor_topology()) {
 533       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 534     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 535       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 536                cores_per_cpu();
 537     }
 538     return result;
 539   }
 540 
 541   static intx prefetch_data_size()  {
 542     intx result = 0;
 543     if (is_intel()) {
 544       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 545     } else if (is_amd()) {
 546       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 547     }
 548     if (result < 32) // not defined ?
 549       result = 32;   // 32 bytes by default on x86 and other x64
 550     return result;
 551   }
 552 
 553   //
 554   // Feature identification
 555   //
 556   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
 557   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
 558   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
 559   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 560   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 561   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 562   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 563   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 564   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 565   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 566   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 567   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 568   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 569   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
 570   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
 571   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
 572   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
 573   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
 574   static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
 575   static bool supports_bmi1()     { return (_cpuFeatures & CPU_BMI1) != 0; }
 576   static bool supports_bmi2()     { return (_cpuFeatures & CPU_BMI2) != 0; }
 577   // Intel features
 578   static bool is_intel_family_core() { return is_intel() &&
 579                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 580 
 581   static bool is_intel_tsc_synched_at_init()  {
 582     if (is_intel_family_core()) {
 583       uint32_t ext_model = extended_cpu_model();
 584       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 585           ext_model == CPU_MODEL_WESTMERE_EP    ||
 586           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 587           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 588         // <= 2-socket invariant tsc support. EX versions are usually used
 589         // in > 2-socket systems and likely don't synchronize tscs at
 590         // initialization.
 591         // Code that uses tsc values must be prepared for them to arbitrarily
 592         // jump forward or backward.
 593         return true;
 594       }
 595     }
 596     return false;
 597   }
 598 
 599   // AMD features
 600   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
 601   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 602   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
 603   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
 604 
 605   static bool is_amd_Barcelona()  { return is_amd() &&
 606                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
 607 
 608   // Intel and AMD newer cores support fast timestamps well
 609   static bool supports_tscinv_bit() {
 610     return (_cpuFeatures & CPU_TSCINV) != 0;
 611   }
 612   static bool supports_tscinv() {
 613     return supports_tscinv_bit() &&
 614            ( (is_amd() && !is_amd_Barcelona()) ||
 615              is_intel_tsc_synched_at_init() );
 616   }
 617 
 618   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 619   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 620                                            supports_sse3() && _model != 0x1C; }
 621 
 622   static bool supports_compare_and_exchange() { return true; }
 623 
 624   static const char* cpu_features()           { return _features_str; }
 625 
 626   static intx allocate_prefetch_distance() {
 627     // This method should be called before allocate_prefetch_style().
 628     //
 629     // Hardware prefetching (distance/size in bytes):
 630     // Pentium 3 -  64 /  32
 631     // Pentium 4 - 256 / 128
 632     // Athlon    -  64 /  32 ????
 633     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 634     // Core      - 128 /  64
 635     //
 636     // Software prefetching (distance in bytes / instruction with best score):
 637     // Pentium 3 - 128 / prefetchnta
 638     // Pentium 4 - 512 / prefetchnta
 639     // Athlon    - 128 / prefetchnta
 640     // Opteron   - 256 / prefetchnta
 641     // Core      - 256 / prefetchnta
 642     // It will be used only when AllocatePrefetchStyle > 0
 643 
 644     intx count = AllocatePrefetchDistance;
 645     if (count < 0) {   // default ?
 646       if (is_amd()) {  // AMD
 647         if (supports_sse2())
 648           count = 256; // Opteron
 649         else
 650           count = 128; // Athlon
 651       } else {         // Intel
 652         if (supports_sse2())
 653           if (cpu_family() == 6) {
 654             count = 256; // Pentium M, Core, Core2
 655           } else {
 656             count = 512; // Pentium 4
 657           }
 658         else
 659           count = 128; // Pentium 3 (and all other old CPUs)
 660       }
 661     }
 662     return count;
 663   }
 664   static intx allocate_prefetch_style() {
 665     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 666     // Return 0 if AllocatePrefetchDistance was not defined.
 667     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 668   }
 669 
 670   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 671   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 672   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 673   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 674 
 675   // gc copy/scan is disabled if prefetchw isn't supported, because
 676   // Prefetch::write emits an inlined prefetchw on Linux.
 677   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 678   // The used prefetcht0 instruction works for both amd64 and em64t.
 679   static intx prefetch_copy_interval_in_bytes() {
 680     intx interval = PrefetchCopyIntervalInBytes;
 681     return interval >= 0 ? interval : 576;
 682   }
 683   static intx prefetch_scan_interval_in_bytes() {
 684     intx interval = PrefetchScanIntervalInBytes;
 685     return interval >= 0 ? interval : 576;
 686   }
 687   static intx prefetch_fields_ahead() {
 688     intx count = PrefetchFieldsAhead;
 689     return count >= 0 ? count : 1;
 690   }
 691 };
 692 
 693 #endif // CPU_X86_VM_VM_VERSION_X86_HPP