1 //
   2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for all registers
 127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 128 // Class for general registers
 129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 130 // Class for general registers which may be used for implicit null checks on win95
 131 // Also safe for use by tailjump. We don't want to allocate in rbp,
 132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 133 // Class of "X" registers
 134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 135 // Class of registers that can appear in an address with no offset.
 136 // EBP and ESP require an extra instruction byte for zero offset.
 137 // Used in fast-unlock
 138 reg_class p_reg(EDX, EDI, ESI, EBX);
 139 // Class for general registers not including ECX
 140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 141 // Class for general registers not including EAX
 142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 143 // Class for general registers not including EAX or EBX.
 144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 145 // Class of EAX (for multiply and divide operations)
 146 reg_class eax_reg(EAX);
 147 // Class of EBX (for atomic add)
 148 reg_class ebx_reg(EBX);
 149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 150 reg_class ecx_reg(ECX);
 151 // Class of EDX (for multiply and divide operations)
 152 reg_class edx_reg(EDX);
 153 // Class of EDI (for synchronization)
 154 reg_class edi_reg(EDI);
 155 // Class of ESI (for synchronization)
 156 reg_class esi_reg(ESI);
 157 // Singleton class for interpreter's stack pointer
 158 reg_class ebp_reg(EBP);
 159 // Singleton class for stack pointer
 160 reg_class sp_reg(ESP);
 161 // Singleton class for instruction pointer
 162 // reg_class ip_reg(EIP);
 163 // Class of integer register pairs
 164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 165 // Class of integer register pairs that aligns with calling convention
 166 reg_class eadx_reg( EAX,EDX );
 167 reg_class ebcx_reg( ECX,EBX );
 168 // Not AX or DX, used in divides
 169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 170 
 171 // Floating point registers.  Notice FPR0 is not a choice.
 172 // FPR0 is not ever allocated; we use clever encodings to fake
 173 // a 2-address instructions out of Intels FP stack.
 174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 175 
 176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 178                       FPR7L,FPR7H );
 179 
 180 reg_class fp_flt_reg0( FPR1L );
 181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 185 
 186 %}
 187 
 188 
 189 //----------SOURCE BLOCK-------------------------------------------------------
 190 // This is a block of C++ code which provides values, functions, and
 191 // definitions necessary in the rest of the architecture description
 192 source_hpp %{
 193 // Must be visible to the DFA in dfa_x86_32.cpp
 194 extern bool is_operand_hi32_zero(Node* n);
 195 %}
 196 
 197 source %{
 198 #define   RELOC_IMM32    Assembler::imm_operand
 199 #define   RELOC_DISP32   Assembler::disp32_operand
 200 
 201 #define __ _masm.
 202 
 203 // How to find the high register of a Long pair, given the low register
 204 #define   HIGH_FROM_LOW(x) ((x)+2)
 205 
 206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 208 // fast versions of NegF/NegD and AbsF/AbsD.
 209 
 210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 213   // of 128-bits operands for SSE instructions.
 214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 215   // Store the value to a 128-bits operand.
 216   operand[0] = lo;
 217   operand[1] = hi;
 218   return operand;
 219 }
 220 
 221 // Buffer for 128-bits masks used by SSE instructions.
 222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 223 
 224 // Static initialization during VM startup.
 225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 229 
 230 // Offset hacking within calls.
 231 static int pre_call_resets_size() {
 232   int size = 0;
 233   Compile* C = Compile::current();
 234   if (C->in_24_bit_fp_mode()) {
 235     size += 6; // fldcw
 236   }
 237   if (C->max_vector_size() > 16) {
 238     size += 3; // vzeroupper
 239   }
 240   return size;
 241 }
 242 
 243 static int preserve_SP_size() {
 244   return 2;  // op, rm(reg/reg)
 245 }
 246 
 247 // !!!!! Special hack to get all type of calls to specify the byte offset
 248 //       from the start of the call to the point where the return address
 249 //       will point.
 250 int MachCallStaticJavaNode::ret_addr_offset() {
 251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
 252   if (_method_handle_invoke)
 253     offset += preserve_SP_size();
 254   return offset;
 255 }
 256 
 257 int MachCallDynamicJavaNode::ret_addr_offset() {
 258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
 259 }
 260 
 261 static int sizeof_FFree_Float_Stack_All = -1;
 262 
 263 int MachCallRuntimeNode::ret_addr_offset() {
 264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
 266 }
 267 
 268 // Indicate if the safepoint node needs the polling page as an input.
 269 // Since x86 does have absolute addressing, it doesn't.
 270 bool SafePointNode::needs_polling_address_input() {
 271   return false;
 272 }
 273 
 274 //
 275 // Compute padding required for nodes which need alignment
 276 //
 277 
 278 // The address of the call instruction needs to be 4-byte aligned to
 279 // ensure that it does not span a cache line so that it can be patched.
 280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 281   current_offset += pre_call_resets_size();  // skip fldcw, if any
 282   current_offset += 1;      // skip call opcode byte
 283   return round_to(current_offset, alignment_required()) - current_offset;
 284 }
 285 
 286 // The address of the call instruction needs to be 4-byte aligned to
 287 // ensure that it does not span a cache line so that it can be patched.
 288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 289   current_offset += pre_call_resets_size();  // skip fldcw, if any
 290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 291   current_offset += 1;      // skip call opcode byte
 292   return round_to(current_offset, alignment_required()) - current_offset;
 293 }
 294 
 295 // The address of the call instruction needs to be 4-byte aligned to
 296 // ensure that it does not span a cache line so that it can be patched.
 297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 298   current_offset += pre_call_resets_size();  // skip fldcw, if any
 299   current_offset += 5;      // skip MOV instruction
 300   current_offset += 1;      // skip call opcode byte
 301   return round_to(current_offset, alignment_required()) - current_offset;
 302 }
 303 
 304 // EMIT_RM()
 305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 307   cbuf.insts()->emit_int8(c);
 308 }
 309 
 310 // EMIT_CC()
 311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 312   unsigned char c = (unsigned char)( f1 | f2 );
 313   cbuf.insts()->emit_int8(c);
 314 }
 315 
 316 // EMIT_OPCODE()
 317 void emit_opcode(CodeBuffer &cbuf, int code) {
 318   cbuf.insts()->emit_int8((unsigned char) code);
 319 }
 320 
 321 // EMIT_OPCODE() w/ relocation information
 322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 324   emit_opcode(cbuf, code);
 325 }
 326 
 327 // EMIT_D8()
 328 void emit_d8(CodeBuffer &cbuf, int d8) {
 329   cbuf.insts()->emit_int8((unsigned char) d8);
 330 }
 331 
 332 // EMIT_D16()
 333 void emit_d16(CodeBuffer &cbuf, int d16) {
 334   cbuf.insts()->emit_int16(d16);
 335 }
 336 
 337 // EMIT_D32()
 338 void emit_d32(CodeBuffer &cbuf, int d32) {
 339   cbuf.insts()->emit_int32(d32);
 340 }
 341 
 342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 344         int format) {
 345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 346   cbuf.insts()->emit_int32(d32);
 347 }
 348 
 349 // emit 32 bit value and construct relocation entry from RelocationHolder
 350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 351         int format) {
 352 #ifdef ASSERT
 353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 355   }
 356 #endif
 357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 358   cbuf.insts()->emit_int32(d32);
 359 }
 360 
 361 // Access stack slot for load or store
 362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 364   if( -128 <= disp && disp <= 127 ) {
 365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 368   } else {
 369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 372   }
 373 }
 374 
 375    // rRegI ereg, memory mem) %{    // emit_reg_mem
 376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
 377   // There is no index & no scale, use form without SIB byte
 378   if ((index == 0x4) &&
 379       (scale == 0) && (base != ESP_enc)) {
 380     // If no displacement, mode is 0x0; unless base is [EBP]
 381     if ( (displace == 0) && (base != EBP_enc) ) {
 382       emit_rm(cbuf, 0x0, reg_encoding, base);
 383     }
 384     else {                    // If 8-bit displacement, mode 0x1
 385       if ((displace >= -128) && (displace <= 127)
 386           && (disp_reloc == relocInfo::none) ) {
 387         emit_rm(cbuf, 0x1, reg_encoding, base);
 388         emit_d8(cbuf, displace);
 389       }
 390       else {                  // If 32-bit displacement
 391         if (base == -1) { // Special flag for absolute address
 392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 393           // (manual lies; no SIB needed here)
 394           if ( disp_reloc != relocInfo::none ) {
 395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 396           } else {
 397             emit_d32      (cbuf, displace);
 398           }
 399         }
 400         else {                // Normal base + offset
 401           emit_rm(cbuf, 0x2, reg_encoding, base);
 402           if ( disp_reloc != relocInfo::none ) {
 403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 404           } else {
 405             emit_d32      (cbuf, displace);
 406           }
 407         }
 408       }
 409     }
 410   }
 411   else {                      // Else, encode with the SIB byte
 412     // If no displacement, mode is 0x0; unless base is [EBP]
 413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 415       emit_rm(cbuf, scale, index, base);
 416     }
 417     else {                    // If 8-bit displacement, mode 0x1
 418       if ((displace >= -128) && (displace <= 127)
 419           && (disp_reloc == relocInfo::none) ) {
 420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 421         emit_rm(cbuf, scale, index, base);
 422         emit_d8(cbuf, displace);
 423       }
 424       else {                  // If 32-bit displacement
 425         if (base == 0x04 ) {
 426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 427           emit_rm(cbuf, scale, index, 0x04);
 428         } else {
 429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 430           emit_rm(cbuf, scale, index, base);
 431         }
 432         if ( disp_reloc != relocInfo::none ) {
 433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 434         } else {
 435           emit_d32      (cbuf, displace);
 436         }
 437       }
 438     }
 439   }
 440 }
 441 
 442 
 443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 444   if( dst_encoding == src_encoding ) {
 445     // reg-reg copy, use an empty encoding
 446   } else {
 447     emit_opcode( cbuf, 0x8B );
 448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 449   }
 450 }
 451 
 452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 453   Label exit;
 454   __ jccb(Assembler::noParity, exit);
 455   __ pushf();
 456   //
 457   // comiss/ucomiss instructions set ZF,PF,CF flags and
 458   // zero OF,AF,SF for NaN values.
 459   // Fixup flags by zeroing ZF,PF so that compare of NaN
 460   // values returns 'less than' result (CF is set).
 461   // Leave the rest of flags unchanged.
 462   //
 463   //    7 6 5 4 3 2 1 0
 464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 465   //    0 0 1 0 1 0 1 1   (0x2B)
 466   //
 467   __ andl(Address(rsp, 0), 0xffffff2b);
 468   __ popf();
 469   __ bind(exit);
 470 }
 471 
 472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 473   Label done;
 474   __ movl(dst, -1);
 475   __ jcc(Assembler::parity, done);
 476   __ jcc(Assembler::below, done);
 477   __ setb(Assembler::notEqual, dst);
 478   __ movzbl(dst, dst);
 479   __ bind(done);
 480 }
 481 
 482 
 483 //=============================================================================
 484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 485 
 486 int Compile::ConstantTable::calculate_table_base_offset() const {
 487   return 0;  // absolute addressing, no offset
 488 }
 489 
 490 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 491 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 492   ShouldNotReachHere();
 493 }
 494 
 495 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 496   // Empty encoding
 497 }
 498 
 499 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 500   return 0;
 501 }
 502 
 503 #ifndef PRODUCT
 504 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 505   st->print("# MachConstantBaseNode (empty encoding)");
 506 }
 507 #endif
 508 
 509 
 510 //=============================================================================
 511 #ifndef PRODUCT
 512 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 513   Compile* C = ra_->C;
 514 
 515   int framesize = C->frame_slots() << LogBytesPerInt;
 516   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 517   // Remove wordSize for return addr which is already pushed.
 518   framesize -= wordSize;
 519 
 520   if (C->need_stack_bang(framesize)) {
 521     framesize -= wordSize;
 522     st->print("# stack bang");
 523     st->print("\n\t");
 524     st->print("PUSH   EBP\t# Save EBP");
 525     if (framesize) {
 526       st->print("\n\t");
 527       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 528     }
 529   } else {
 530     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 531     st->print("\n\t");
 532     framesize -= wordSize;
 533     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 534   }
 535 
 536   if (VerifyStackAtCalls) {
 537     st->print("\n\t");
 538     framesize -= wordSize;
 539     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 540   }
 541 
 542   if( C->in_24_bit_fp_mode() ) {
 543     st->print("\n\t");
 544     st->print("FLDCW  \t# load 24 bit fpu control word");
 545   }
 546   if (UseSSE >= 2 && VerifyFPU) {
 547     st->print("\n\t");
 548     st->print("# verify FPU stack (must be clean on entry)");
 549   }
 550 
 551 #ifdef ASSERT
 552   if (VerifyStackAtCalls) {
 553     st->print("\n\t");
 554     st->print("# stack alignment check");
 555   }
 556 #endif
 557   st->cr();
 558 }
 559 #endif
 560 
 561 
 562 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 563   Compile* C = ra_->C;
 564   MacroAssembler _masm(&cbuf);
 565 
 566   int framesize = C->frame_slots() << LogBytesPerInt;
 567 
 568   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
 569 
 570   C->set_frame_complete(cbuf.insts_size());
 571 
 572   if (C->has_mach_constant_base_node()) {
 573     // NOTE: We set the table base offset here because users might be
 574     // emitted before MachConstantBaseNode.
 575     Compile::ConstantTable& constant_table = C->constant_table();
 576     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 577   }
 578 }
 579 
 580 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 581   return MachNode::size(ra_); // too many variables; just compute it the hard way
 582 }
 583 
 584 int MachPrologNode::reloc() const {
 585   return 0; // a large enough number
 586 }
 587 
 588 //=============================================================================
 589 #ifndef PRODUCT
 590 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 591   Compile *C = ra_->C;
 592   int framesize = C->frame_slots() << LogBytesPerInt;
 593   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 594   // Remove two words for return addr and rbp,
 595   framesize -= 2*wordSize;
 596 
 597   if (C->max_vector_size() > 16) {
 598     st->print("VZEROUPPER");
 599     st->cr(); st->print("\t");
 600   }
 601   if (C->in_24_bit_fp_mode()) {
 602     st->print("FLDCW  standard control word");
 603     st->cr(); st->print("\t");
 604   }
 605   if (framesize) {
 606     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 607     st->cr(); st->print("\t");
 608   }
 609   st->print_cr("POPL   EBP"); st->print("\t");
 610   if (do_polling() && C->is_method_compilation()) {
 611     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 612     st->cr(); st->print("\t");
 613   }
 614 }
 615 #endif
 616 
 617 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 618   Compile *C = ra_->C;
 619 
 620   if (C->max_vector_size() > 16) {
 621     // Clear upper bits of YMM registers when current compiled code uses
 622     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 623     MacroAssembler masm(&cbuf);
 624     masm.vzeroupper();
 625   }
 626   // If method set FPU control word, restore to standard control word
 627   if (C->in_24_bit_fp_mode()) {
 628     MacroAssembler masm(&cbuf);
 629     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 630   }
 631 
 632   int framesize = C->frame_slots() << LogBytesPerInt;
 633   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 634   // Remove two words for return addr and rbp,
 635   framesize -= 2*wordSize;
 636 
 637   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 638 
 639   if (framesize >= 128) {
 640     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 641     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 642     emit_d32(cbuf, framesize);
 643   } else if (framesize) {
 644     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 645     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 646     emit_d8(cbuf, framesize);
 647   }
 648 
 649   emit_opcode(cbuf, 0x58 | EBP_enc);
 650 
 651   if (do_polling() && C->is_method_compilation()) {
 652     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 653     emit_opcode(cbuf,0x85);
 654     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 655     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 656   }
 657 }
 658 
 659 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 660   Compile *C = ra_->C;
 661   // If method set FPU control word, restore to standard control word
 662   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 663   if (C->max_vector_size() > 16) size += 3; // vzeroupper
 664   if (do_polling() && C->is_method_compilation()) size += 6;
 665 
 666   int framesize = C->frame_slots() << LogBytesPerInt;
 667   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 668   // Remove two words for return addr and rbp,
 669   framesize -= 2*wordSize;
 670 
 671   size++; // popl rbp,
 672 
 673   if (framesize >= 128) {
 674     size += 6;
 675   } else {
 676     size += framesize ? 3 : 0;
 677   }
 678   return size;
 679 }
 680 
 681 int MachEpilogNode::reloc() const {
 682   return 0; // a large enough number
 683 }
 684 
 685 const Pipeline * MachEpilogNode::pipeline() const {
 686   return MachNode::pipeline_class();
 687 }
 688 
 689 int MachEpilogNode::safepoint_offset() const { return 0; }
 690 
 691 //=============================================================================
 692 
 693 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 694 static enum RC rc_class( OptoReg::Name reg ) {
 695 
 696   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 697   if (OptoReg::is_stack(reg)) return rc_stack;
 698 
 699   VMReg r = OptoReg::as_VMReg(reg);
 700   if (r->is_Register()) return rc_int;
 701   if (r->is_FloatRegister()) {
 702     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 703     return rc_float;
 704   }
 705   assert(r->is_XMMRegister(), "must be");
 706   return rc_xmm;
 707 }
 708 
 709 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 710                         int opcode, const char *op_str, int size, outputStream* st ) {
 711   if( cbuf ) {
 712     emit_opcode  (*cbuf, opcode );
 713     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
 714 #ifndef PRODUCT
 715   } else if( !do_size ) {
 716     if( size != 0 ) st->print("\n\t");
 717     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 718       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 719       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 720     } else { // FLD, FST, PUSH, POP
 721       st->print("%s [ESP + #%d]",op_str,offset);
 722     }
 723 #endif
 724   }
 725   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 726   return size+3+offset_size;
 727 }
 728 
 729 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 730 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 731                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 732   if (cbuf) {
 733     MacroAssembler _masm(cbuf);
 734     if (reg_lo+1 == reg_hi) { // double move?
 735       if (is_load) {
 736         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 737       } else {
 738         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 739       }
 740     } else {
 741       if (is_load) {
 742         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 743       } else {
 744         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 745       }
 746     }
 747 #ifndef PRODUCT
 748   } else if (!do_size) {
 749     if (size != 0) st->print("\n\t");
 750     if (reg_lo+1 == reg_hi) { // double move?
 751       if (is_load) st->print("%s %s,[ESP + #%d]",
 752                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 753                               Matcher::regName[reg_lo], offset);
 754       else         st->print("MOVSD  [ESP + #%d],%s",
 755                               offset, Matcher::regName[reg_lo]);
 756     } else {
 757       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 758                               Matcher::regName[reg_lo], offset);
 759       else         st->print("MOVSS  [ESP + #%d],%s",
 760                               offset, Matcher::regName[reg_lo]);
 761     }
 762 #endif
 763   }
 764   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 765   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 766   return size+5+offset_size;
 767 }
 768 
 769 
 770 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 771                             int src_hi, int dst_hi, int size, outputStream* st ) {
 772   if (cbuf) {
 773     MacroAssembler _masm(cbuf);
 774     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 775       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 776                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 777     } else {
 778       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 779                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 780     }
 781 #ifndef PRODUCT
 782   } else if (!do_size) {
 783     if (size != 0) st->print("\n\t");
 784     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 785       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 786         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 787       } else {
 788         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 789       }
 790     } else {
 791       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 792         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 793       } else {
 794         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 795       }
 796     }
 797 #endif
 798   }
 799   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 800   // Only MOVAPS SSE prefix uses 1 byte.
 801   int sz = 4;
 802   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 803       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 804   return size + sz;
 805 }
 806 
 807 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 808                             int src_hi, int dst_hi, int size, outputStream* st ) {
 809   // 32-bit
 810   if (cbuf) {
 811     MacroAssembler _masm(cbuf);
 812     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 813              as_Register(Matcher::_regEncode[src_lo]));
 814 #ifndef PRODUCT
 815   } else if (!do_size) {
 816     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 817 #endif
 818   }
 819   return 4;
 820 }
 821 
 822 
 823 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 824                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 825   // 32-bit
 826   if (cbuf) {
 827     MacroAssembler _masm(cbuf);
 828     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 829              as_XMMRegister(Matcher::_regEncode[src_lo]));
 830 #ifndef PRODUCT
 831   } else if (!do_size) {
 832     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 833 #endif
 834   }
 835   return 4;
 836 }
 837 
 838 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 839   if( cbuf ) {
 840     emit_opcode(*cbuf, 0x8B );
 841     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 842 #ifndef PRODUCT
 843   } else if( !do_size ) {
 844     if( size != 0 ) st->print("\n\t");
 845     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 846 #endif
 847   }
 848   return size+2;
 849 }
 850 
 851 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 852                                  int offset, int size, outputStream* st ) {
 853   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 854     if( cbuf ) {
 855       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 856       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 857 #ifndef PRODUCT
 858     } else if( !do_size ) {
 859       if( size != 0 ) st->print("\n\t");
 860       st->print("FLD    %s",Matcher::regName[src_lo]);
 861 #endif
 862     }
 863     size += 2;
 864   }
 865 
 866   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 867   const char *op_str;
 868   int op;
 869   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 870     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 871     op = 0xDD;
 872   } else {                   // 32-bit store
 873     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 874     op = 0xD9;
 875     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 876   }
 877 
 878   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 879 }
 880 
 881 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 882 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 883                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 884 
 885 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 886                             int stack_offset, int reg, uint ireg, outputStream* st);
 887 
 888 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 889                                      int dst_offset, uint ireg, outputStream* st) {
 890   int calc_size = 0;
 891   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 892   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 893   switch (ireg) {
 894   case Op_VecS:
 895     calc_size = 3+src_offset_size + 3+dst_offset_size;
 896     break;
 897   case Op_VecD:
 898     calc_size = 3+src_offset_size + 3+dst_offset_size;
 899     src_offset += 4;
 900     dst_offset += 4;
 901     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 902     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 903     calc_size += 3+src_offset_size + 3+dst_offset_size;
 904     break;
 905   case Op_VecX:
 906     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 907     break;
 908   case Op_VecY:
 909     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 910     break;
 911   default:
 912     ShouldNotReachHere();
 913   }
 914   if (cbuf) {
 915     MacroAssembler _masm(cbuf);
 916     int offset = __ offset();
 917     switch (ireg) {
 918     case Op_VecS:
 919       __ pushl(Address(rsp, src_offset));
 920       __ popl (Address(rsp, dst_offset));
 921       break;
 922     case Op_VecD:
 923       __ pushl(Address(rsp, src_offset));
 924       __ popl (Address(rsp, dst_offset));
 925       __ pushl(Address(rsp, src_offset+4));
 926       __ popl (Address(rsp, dst_offset+4));
 927       break;
 928     case Op_VecX:
 929       __ movdqu(Address(rsp, -16), xmm0);
 930       __ movdqu(xmm0, Address(rsp, src_offset));
 931       __ movdqu(Address(rsp, dst_offset), xmm0);
 932       __ movdqu(xmm0, Address(rsp, -16));
 933       break;
 934     case Op_VecY:
 935       __ vmovdqu(Address(rsp, -32), xmm0);
 936       __ vmovdqu(xmm0, Address(rsp, src_offset));
 937       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 938       __ vmovdqu(xmm0, Address(rsp, -32));
 939       break;
 940     default:
 941       ShouldNotReachHere();
 942     }
 943     int size = __ offset() - offset;
 944     assert(size == calc_size, "incorrect size calculattion");
 945     return size;
 946 #ifndef PRODUCT
 947   } else if (!do_size) {
 948     switch (ireg) {
 949     case Op_VecS:
 950       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 951                 "popl    [rsp + #%d]",
 952                 src_offset, dst_offset);
 953       break;
 954     case Op_VecD:
 955       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 956                 "popq    [rsp + #%d]\n\t"
 957                 "pushl   [rsp + #%d]\n\t"
 958                 "popq    [rsp + #%d]",
 959                 src_offset, dst_offset, src_offset+4, dst_offset+4);
 960       break;
 961      case Op_VecX:
 962       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
 963                 "movdqu  xmm0, [rsp + #%d]\n\t"
 964                 "movdqu  [rsp + #%d], xmm0\n\t"
 965                 "movdqu  xmm0, [rsp - #16]",
 966                 src_offset, dst_offset);
 967       break;
 968     case Op_VecY:
 969       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 970                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 971                 "vmovdqu [rsp + #%d], xmm0\n\t"
 972                 "vmovdqu xmm0, [rsp - #32]",
 973                 src_offset, dst_offset);
 974       break;
 975     default:
 976       ShouldNotReachHere();
 977     }
 978 #endif
 979   }
 980   return calc_size;
 981 }
 982 
 983 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 984   // Get registers to move
 985   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 986   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 987   OptoReg::Name dst_second = ra_->get_reg_second(this );
 988   OptoReg::Name dst_first = ra_->get_reg_first(this );
 989 
 990   enum RC src_second_rc = rc_class(src_second);
 991   enum RC src_first_rc = rc_class(src_first);
 992   enum RC dst_second_rc = rc_class(dst_second);
 993   enum RC dst_first_rc = rc_class(dst_first);
 994 
 995   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 996 
 997   // Generate spill code!
 998   int size = 0;
 999 
1000   if( src_first == dst_first && src_second == dst_second )
1001     return size;            // Self copy, no move
1002 
1003   if (bottom_type()->isa_vect() != NULL) {
1004     uint ireg = ideal_reg();
1005     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1006     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
1007     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1008     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1009       // mem -> mem
1010       int src_offset = ra_->reg2offset(src_first);
1011       int dst_offset = ra_->reg2offset(dst_first);
1012       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
1013     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1014       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
1015     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1016       int stack_offset = ra_->reg2offset(dst_first);
1017       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
1018     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
1019       int stack_offset = ra_->reg2offset(src_first);
1020       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1021     } else {
1022       ShouldNotReachHere();
1023     }
1024   }
1025 
1026   // --------------------------------------
1027   // Check for mem-mem move.  push/pop to move.
1028   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1029     if( src_second == dst_first ) { // overlapping stack copy ranges
1030       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1031       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1032       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1033       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1034     }
1035     // move low bits
1036     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1037     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1038     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1039       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1040       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1041     }
1042     return size;
1043   }
1044 
1045   // --------------------------------------
1046   // Check for integer reg-reg copy
1047   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1048     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1049 
1050   // Check for integer store
1051   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1052     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1053 
1054   // Check for integer load
1055   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1056     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1057 
1058   // Check for integer reg-xmm reg copy
1059   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1060     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1061             "no 64 bit integer-float reg moves" );
1062     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1063   }
1064   // --------------------------------------
1065   // Check for float reg-reg copy
1066   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1067     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1068             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1069     if( cbuf ) {
1070 
1071       // Note the mucking with the register encode to compensate for the 0/1
1072       // indexing issue mentioned in a comment in the reg_def sections
1073       // for FPR registers many lines above here.
1074 
1075       if( src_first != FPR1L_num ) {
1076         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1077         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1078         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1079         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1080      } else {
1081         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1082         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1083      }
1084 #ifndef PRODUCT
1085     } else if( !do_size ) {
1086       if( size != 0 ) st->print("\n\t");
1087       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1088       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1089 #endif
1090     }
1091     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1092   }
1093 
1094   // Check for float store
1095   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1096     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1097   }
1098 
1099   // Check for float load
1100   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1101     int offset = ra_->reg2offset(src_first);
1102     const char *op_str;
1103     int op;
1104     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1105       op_str = "FLD_D";
1106       op = 0xDD;
1107     } else {                   // 32-bit load
1108       op_str = "FLD_S";
1109       op = 0xD9;
1110       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1111     }
1112     if( cbuf ) {
1113       emit_opcode  (*cbuf, op );
1114       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1115       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1116       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1117 #ifndef PRODUCT
1118     } else if( !do_size ) {
1119       if( size != 0 ) st->print("\n\t");
1120       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1121 #endif
1122     }
1123     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1124     return size + 3+offset_size+2;
1125   }
1126 
1127   // Check for xmm reg-reg copy
1128   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1129     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1130             (src_first+1 == src_second && dst_first+1 == dst_second),
1131             "no non-adjacent float-moves" );
1132     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1133   }
1134 
1135   // Check for xmm reg-integer reg copy
1136   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1137     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1138             "no 64 bit float-integer reg moves" );
1139     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1140   }
1141 
1142   // Check for xmm store
1143   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1144     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1145   }
1146 
1147   // Check for float xmm load
1148   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1149     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1150   }
1151 
1152   // Copy from float reg to xmm reg
1153   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1154     // copy to the top of stack from floating point reg
1155     // and use LEA to preserve flags
1156     if( cbuf ) {
1157       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1158       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1159       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1160       emit_d8(*cbuf,0xF8);
1161 #ifndef PRODUCT
1162     } else if( !do_size ) {
1163       if( size != 0 ) st->print("\n\t");
1164       st->print("LEA    ESP,[ESP-8]");
1165 #endif
1166     }
1167     size += 4;
1168 
1169     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1170 
1171     // Copy from the temp memory to the xmm reg.
1172     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1173 
1174     if( cbuf ) {
1175       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1176       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1177       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1178       emit_d8(*cbuf,0x08);
1179 #ifndef PRODUCT
1180     } else if( !do_size ) {
1181       if( size != 0 ) st->print("\n\t");
1182       st->print("LEA    ESP,[ESP+8]");
1183 #endif
1184     }
1185     size += 4;
1186     return size;
1187   }
1188 
1189   assert( size > 0, "missed a case" );
1190 
1191   // --------------------------------------------------------------------
1192   // Check for second bits still needing moving.
1193   if( src_second == dst_second )
1194     return size;               // Self copy; no move
1195   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1196 
1197   // Check for second word int-int move
1198   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1199     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1200 
1201   // Check for second word integer store
1202   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1203     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1204 
1205   // Check for second word integer load
1206   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1207     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1208 
1209 
1210   Unimplemented();
1211 }
1212 
1213 #ifndef PRODUCT
1214 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1215   implementation( NULL, ra_, false, st );
1216 }
1217 #endif
1218 
1219 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1220   implementation( &cbuf, ra_, false, NULL );
1221 }
1222 
1223 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1224   return implementation( NULL, ra_, true, NULL );
1225 }
1226 
1227 
1228 //=============================================================================
1229 #ifndef PRODUCT
1230 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1231   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1232   int reg = ra_->get_reg_first(this);
1233   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1234 }
1235 #endif
1236 
1237 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1238   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1239   int reg = ra_->get_encode(this);
1240   if( offset >= 128 ) {
1241     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1242     emit_rm(cbuf, 0x2, reg, 0x04);
1243     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1244     emit_d32(cbuf, offset);
1245   }
1246   else {
1247     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1248     emit_rm(cbuf, 0x1, reg, 0x04);
1249     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1250     emit_d8(cbuf, offset);
1251   }
1252 }
1253 
1254 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1255   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1256   if( offset >= 128 ) {
1257     return 7;
1258   }
1259   else {
1260     return 4;
1261   }
1262 }
1263 
1264 //=============================================================================
1265 #ifndef PRODUCT
1266 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1267   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1268   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1269   st->print_cr("\tNOP");
1270   st->print_cr("\tNOP");
1271   if( !OptoBreakpoint )
1272     st->print_cr("\tNOP");
1273 }
1274 #endif
1275 
1276 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1277   MacroAssembler masm(&cbuf);
1278 #ifdef ASSERT
1279   uint insts_size = cbuf.insts_size();
1280 #endif
1281   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1282   masm.jump_cc(Assembler::notEqual,
1283                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1284   /* WARNING these NOPs are critical so that verified entry point is properly
1285      aligned for patching by NativeJump::patch_verified_entry() */
1286   int nops_cnt = 2;
1287   if( !OptoBreakpoint ) // Leave space for int3
1288      nops_cnt += 1;
1289   masm.nop(nops_cnt);
1290 
1291   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1292 }
1293 
1294 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1295   return OptoBreakpoint ? 11 : 12;
1296 }
1297 
1298 
1299 //=============================================================================
1300 uint size_exception_handler() {
1301   // NativeCall instruction size is the same as NativeJump.
1302   // exception handler starts out as jump and can be patched to
1303   // a call be deoptimization.  (4932387)
1304   // Note that this value is also credited (in output.cpp) to
1305   // the size of the code section.
1306   return NativeJump::instruction_size;
1307 }
1308 
1309 // Emit exception handler code.  Stuff framesize into a register
1310 // and call a VM stub routine.
1311 int emit_exception_handler(CodeBuffer& cbuf) {
1312 
1313   // Note that the code buffer's insts_mark is always relative to insts.
1314   // That's why we must use the macroassembler to generate a handler.
1315   MacroAssembler _masm(&cbuf);
1316   address base =
1317   __ start_a_stub(size_exception_handler());
1318   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1319   int offset = __ offset();
1320   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1321   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1322   __ end_a_stub();
1323   return offset;
1324 }
1325 
1326 uint size_deopt_handler() {
1327   // NativeCall instruction size is the same as NativeJump.
1328   // exception handler starts out as jump and can be patched to
1329   // a call be deoptimization.  (4932387)
1330   // Note that this value is also credited (in output.cpp) to
1331   // the size of the code section.
1332   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1333 }
1334 
1335 // Emit deopt handler code.
1336 int emit_deopt_handler(CodeBuffer& cbuf) {
1337 
1338   // Note that the code buffer's insts_mark is always relative to insts.
1339   // That's why we must use the macroassembler to generate a handler.
1340   MacroAssembler _masm(&cbuf);
1341   address base =
1342   __ start_a_stub(size_exception_handler());
1343   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1344   int offset = __ offset();
1345   InternalAddress here(__ pc());
1346   __ pushptr(here.addr());
1347 
1348   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1349   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1350   __ end_a_stub();
1351   return offset;
1352 }
1353 
1354 int Matcher::regnum_to_fpu_offset(int regnum) {
1355   return regnum - 32; // The FP registers are in the second chunk
1356 }
1357 
1358 // This is UltraSparc specific, true just means we have fast l2f conversion
1359 const bool Matcher::convL2FSupported(void) {
1360   return true;
1361 }
1362 
1363 // Is this branch offset short enough that a short branch can be used?
1364 //
1365 // NOTE: If the platform does not provide any short branch variants, then
1366 //       this method should return false for offset 0.
1367 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1368   // The passed offset is relative to address of the branch.
1369   // On 86 a branch displacement is calculated relative to address
1370   // of a next instruction.
1371   offset -= br_size;
1372 
1373   // the short version of jmpConUCF2 contains multiple branches,
1374   // making the reach slightly less
1375   if (rule == jmpConUCF2_rule)
1376     return (-126 <= offset && offset <= 125);
1377   return (-128 <= offset && offset <= 127);
1378 }
1379 
1380 const bool Matcher::isSimpleConstant64(jlong value) {
1381   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1382   return false;
1383 }
1384 
1385 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1386 const bool Matcher::init_array_count_is_in_bytes = false;
1387 
1388 // Threshold size for cleararray.
1389 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1390 
1391 // Needs 2 CMOV's for longs.
1392 const int Matcher::long_cmove_cost() { return 1; }
1393 
1394 // No CMOVF/CMOVD with SSE/SSE2
1395 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1396 
1397 // Does the CPU require late expand (see block.cpp for description of late expand)?
1398 const bool Matcher::require_postalloc_expand = false;
1399 
1400 // Should the Matcher clone shifts on addressing modes, expecting them to
1401 // be subsumed into complex addressing expressions or compute them into
1402 // registers?  True for Intel but false for most RISCs
1403 const bool Matcher::clone_shift_expressions = true;
1404 
1405 // Do we need to mask the count passed to shift instructions or does
1406 // the cpu only look at the lower 5/6 bits anyway?
1407 const bool Matcher::need_masked_shift_count = false;
1408 
1409 bool Matcher::narrow_oop_use_complex_address() {
1410   ShouldNotCallThis();
1411   return true;
1412 }
1413 
1414 bool Matcher::narrow_klass_use_complex_address() {
1415   ShouldNotCallThis();
1416   return true;
1417 }
1418 
1419 
1420 // Is it better to copy float constants, or load them directly from memory?
1421 // Intel can load a float constant from a direct address, requiring no
1422 // extra registers.  Most RISCs will have to materialize an address into a
1423 // register first, so they would do better to copy the constant from stack.
1424 const bool Matcher::rematerialize_float_constants = true;
1425 
1426 // If CPU can load and store mis-aligned doubles directly then no fixup is
1427 // needed.  Else we split the double into 2 integer pieces and move it
1428 // piece-by-piece.  Only happens when passing doubles into C code as the
1429 // Java calling convention forces doubles to be aligned.
1430 const bool Matcher::misaligned_doubles_ok = true;
1431 
1432 
1433 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1434   // Get the memory operand from the node
1435   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1436   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1437   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1438   uint opcnt     = 1;                 // First operand
1439   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1440   while( idx >= skipped+num_edges ) {
1441     skipped += num_edges;
1442     opcnt++;                          // Bump operand count
1443     assert( opcnt < numopnds, "Accessing non-existent operand" );
1444     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1445   }
1446 
1447   MachOper *memory = node->_opnds[opcnt];
1448   MachOper *new_memory = NULL;
1449   switch (memory->opcode()) {
1450   case DIRECT:
1451   case INDOFFSET32X:
1452     // No transformation necessary.
1453     return;
1454   case INDIRECT:
1455     new_memory = new (C) indirect_win95_safeOper( );
1456     break;
1457   case INDOFFSET8:
1458     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1459     break;
1460   case INDOFFSET32:
1461     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1462     break;
1463   case INDINDEXOFFSET:
1464     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1465     break;
1466   case INDINDEXSCALE:
1467     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1468     break;
1469   case INDINDEXSCALEOFFSET:
1470     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1471     break;
1472   case LOAD_LONG_INDIRECT:
1473   case LOAD_LONG_INDOFFSET32:
1474     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1475     return;
1476   default:
1477     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1478     return;
1479   }
1480   node->_opnds[opcnt] = new_memory;
1481 }
1482 
1483 // Advertise here if the CPU requires explicit rounding operations
1484 // to implement the UseStrictFP mode.
1485 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1486 
1487 // Are floats conerted to double when stored to stack during deoptimization?
1488 // On x32 it is stored with convertion only when FPU is used for floats.
1489 bool Matcher::float_in_double() { return (UseSSE == 0); }
1490 
1491 // Do ints take an entire long register or just half?
1492 const bool Matcher::int_in_long = false;
1493 
1494 // Return whether or not this register is ever used as an argument.  This
1495 // function is used on startup to build the trampoline stubs in generateOptoStub.
1496 // Registers not mentioned will be killed by the VM call in the trampoline, and
1497 // arguments in those registers not be available to the callee.
1498 bool Matcher::can_be_java_arg( int reg ) {
1499   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1500   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1501   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1502   return false;
1503 }
1504 
1505 bool Matcher::is_spillable_arg( int reg ) {
1506   return can_be_java_arg(reg);
1507 }
1508 
1509 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1510   // Use hardware integer DIV instruction when
1511   // it is faster than a code which use multiply.
1512   // Only when constant divisor fits into 32 bit
1513   // (min_jint is excluded to get only correct
1514   // positive 32 bit values from negative).
1515   return VM_Version::has_fast_idiv() &&
1516          (divisor == (int)divisor && divisor != min_jint);
1517 }
1518 
1519 // Register for DIVI projection of divmodI
1520 RegMask Matcher::divI_proj_mask() {
1521   return EAX_REG_mask();
1522 }
1523 
1524 // Register for MODI projection of divmodI
1525 RegMask Matcher::modI_proj_mask() {
1526   return EDX_REG_mask();
1527 }
1528 
1529 // Register for DIVL projection of divmodL
1530 RegMask Matcher::divL_proj_mask() {
1531   ShouldNotReachHere();
1532   return RegMask();
1533 }
1534 
1535 // Register for MODL projection of divmodL
1536 RegMask Matcher::modL_proj_mask() {
1537   ShouldNotReachHere();
1538   return RegMask();
1539 }
1540 
1541 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1542   return EBP_REG_mask();
1543 }
1544 
1545 const RegMask Matcher::mathExactI_result_proj_mask() {
1546   return EAX_REG_mask();
1547 }
1548 
1549 const RegMask Matcher::mathExactL_result_proj_mask() {
1550   ShouldNotReachHere();
1551   return RegMask();
1552 }
1553 
1554 const RegMask Matcher::mathExactI_flags_proj_mask() {
1555   return INT_FLAGS_mask();
1556 }
1557 
1558 // Returns true if the high 32 bits of the value is known to be zero.
1559 bool is_operand_hi32_zero(Node* n) {
1560   int opc = n->Opcode();
1561   if (opc == Op_AndL) {
1562     Node* o2 = n->in(2);
1563     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1564       return true;
1565     }
1566   }
1567   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1568     return true;
1569   }
1570   return false;
1571 }
1572 
1573 %}
1574 
1575 //----------ENCODING BLOCK-----------------------------------------------------
1576 // This block specifies the encoding classes used by the compiler to output
1577 // byte streams.  Encoding classes generate functions which are called by
1578 // Machine Instruction Nodes in order to generate the bit encoding of the
1579 // instruction.  Operands specify their base encoding interface with the
1580 // interface keyword.  There are currently supported four interfaces,
1581 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1582 // operand to generate a function which returns its register number when
1583 // queried.   CONST_INTER causes an operand to generate a function which
1584 // returns the value of the constant when queried.  MEMORY_INTER causes an
1585 // operand to generate four functions which return the Base Register, the
1586 // Index Register, the Scale Value, and the Offset Value of the operand when
1587 // queried.  COND_INTER causes an operand to generate six functions which
1588 // return the encoding code (ie - encoding bits for the instruction)
1589 // associated with each basic boolean condition for a conditional instruction.
1590 // Instructions specify two basic values for encoding.  They use the
1591 // ins_encode keyword to specify their encoding class (which must be one of
1592 // the class names specified in the encoding block), and they use the
1593 // opcode keyword to specify, in order, their primary, secondary, and
1594 // tertiary opcode.  Only the opcode sections which a particular instruction
1595 // needs for encoding need to be specified.
1596 encode %{
1597   // Build emit functions for each basic byte or larger field in the intel
1598   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1599   // code in the enc_class source block.  Emit functions will live in the
1600   // main source block for now.  In future, we can generalize this by
1601   // adding a syntax that specifies the sizes of fields in an order,
1602   // so that the adlc can build the emit functions automagically
1603 
1604   // Emit primary opcode
1605   enc_class OpcP %{
1606     emit_opcode(cbuf, $primary);
1607   %}
1608 
1609   // Emit secondary opcode
1610   enc_class OpcS %{
1611     emit_opcode(cbuf, $secondary);
1612   %}
1613 
1614   // Emit opcode directly
1615   enc_class Opcode(immI d8) %{
1616     emit_opcode(cbuf, $d8$$constant);
1617   %}
1618 
1619   enc_class SizePrefix %{
1620     emit_opcode(cbuf,0x66);
1621   %}
1622 
1623   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1624     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1625   %}
1626 
1627   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1628     emit_opcode(cbuf,$opcode$$constant);
1629     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1630   %}
1631 
1632   enc_class mov_r32_imm0( rRegI dst ) %{
1633     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1634     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1635   %}
1636 
1637   enc_class cdq_enc %{
1638     // Full implementation of Java idiv and irem; checks for
1639     // special case as described in JVM spec., p.243 & p.271.
1640     //
1641     //         normal case                           special case
1642     //
1643     // input : rax,: dividend                         min_int
1644     //         reg: divisor                          -1
1645     //
1646     // output: rax,: quotient  (= rax, idiv reg)       min_int
1647     //         rdx: remainder (= rax, irem reg)       0
1648     //
1649     //  Code sequnce:
1650     //
1651     //  81 F8 00 00 00 80    cmp         rax,80000000h
1652     //  0F 85 0B 00 00 00    jne         normal_case
1653     //  33 D2                xor         rdx,edx
1654     //  83 F9 FF             cmp         rcx,0FFh
1655     //  0F 84 03 00 00 00    je          done
1656     //                  normal_case:
1657     //  99                   cdq
1658     //  F7 F9                idiv        rax,ecx
1659     //                  done:
1660     //
1661     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1662     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1663     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1664     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1665     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1666     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1667     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1668     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1669     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1670     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1671     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1672     // normal_case:
1673     emit_opcode(cbuf,0x99);                                         // cdq
1674     // idiv (note: must be emitted by the user of this rule)
1675     // normal:
1676   %}
1677 
1678   // Dense encoding for older common ops
1679   enc_class Opc_plus(immI opcode, rRegI reg) %{
1680     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1681   %}
1682 
1683 
1684   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1685   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1686     // Check for 8-bit immediate, and set sign extend bit in opcode
1687     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1688       emit_opcode(cbuf, $primary | 0x02);
1689     }
1690     else {                          // If 32-bit immediate
1691       emit_opcode(cbuf, $primary);
1692     }
1693   %}
1694 
1695   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1696     // Emit primary opcode and set sign-extend bit
1697     // Check for 8-bit immediate, and set sign extend bit in opcode
1698     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1699       emit_opcode(cbuf, $primary | 0x02);    }
1700     else {                          // If 32-bit immediate
1701       emit_opcode(cbuf, $primary);
1702     }
1703     // Emit r/m byte with secondary opcode, after primary opcode.
1704     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1705   %}
1706 
1707   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1708     // Check for 8-bit immediate, and set sign extend bit in opcode
1709     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1710       $$$emit8$imm$$constant;
1711     }
1712     else {                          // If 32-bit immediate
1713       // Output immediate
1714       $$$emit32$imm$$constant;
1715     }
1716   %}
1717 
1718   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1719     // Emit primary opcode and set sign-extend bit
1720     // Check for 8-bit immediate, and set sign extend bit in opcode
1721     int con = (int)$imm$$constant; // Throw away top bits
1722     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1723     // Emit r/m byte with secondary opcode, after primary opcode.
1724     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1725     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1726     else                               emit_d32(cbuf,con);
1727   %}
1728 
1729   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1730     // Emit primary opcode and set sign-extend bit
1731     // Check for 8-bit immediate, and set sign extend bit in opcode
1732     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1733     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1734     // Emit r/m byte with tertiary opcode, after primary opcode.
1735     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1736     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1737     else                               emit_d32(cbuf,con);
1738   %}
1739 
1740   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1741     emit_cc(cbuf, $secondary, $dst$$reg );
1742   %}
1743 
1744   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1745     int destlo = $dst$$reg;
1746     int desthi = HIGH_FROM_LOW(destlo);
1747     // bswap lo
1748     emit_opcode(cbuf, 0x0F);
1749     emit_cc(cbuf, 0xC8, destlo);
1750     // bswap hi
1751     emit_opcode(cbuf, 0x0F);
1752     emit_cc(cbuf, 0xC8, desthi);
1753     // xchg lo and hi
1754     emit_opcode(cbuf, 0x87);
1755     emit_rm(cbuf, 0x3, destlo, desthi);
1756   %}
1757 
1758   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1759     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1760   %}
1761 
1762   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1763     $$$emit8$primary;
1764     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1765   %}
1766 
1767   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1768     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1769     emit_d8(cbuf, op >> 8 );
1770     emit_d8(cbuf, op & 255);
1771   %}
1772 
1773   // emulate a CMOV with a conditional branch around a MOV
1774   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1775     // Invert sense of branch from sense of CMOV
1776     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1777     emit_d8( cbuf, $brOffs$$constant );
1778   %}
1779 
1780   enc_class enc_PartialSubtypeCheck( ) %{
1781     Register Redi = as_Register(EDI_enc); // result register
1782     Register Reax = as_Register(EAX_enc); // super class
1783     Register Recx = as_Register(ECX_enc); // killed
1784     Register Resi = as_Register(ESI_enc); // sub class
1785     Label miss;
1786 
1787     MacroAssembler _masm(&cbuf);
1788     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1789                                      NULL, &miss,
1790                                      /*set_cond_codes:*/ true);
1791     if ($primary) {
1792       __ xorptr(Redi, Redi);
1793     }
1794     __ bind(miss);
1795   %}
1796 
1797   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1798     MacroAssembler masm(&cbuf);
1799     int start = masm.offset();
1800     if (UseSSE >= 2) {
1801       if (VerifyFPU) {
1802         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1803       }
1804     } else {
1805       // External c_calling_convention expects the FPU stack to be 'clean'.
1806       // Compiled code leaves it dirty.  Do cleanup now.
1807       masm.empty_FPU_stack();
1808     }
1809     if (sizeof_FFree_Float_Stack_All == -1) {
1810       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1811     } else {
1812       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1813     }
1814   %}
1815 
1816   enc_class Verify_FPU_For_Leaf %{
1817     if( VerifyFPU ) {
1818       MacroAssembler masm(&cbuf);
1819       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1820     }
1821   %}
1822 
1823   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1824     // This is the instruction starting address for relocation info.
1825     cbuf.set_insts_mark();
1826     $$$emit8$primary;
1827     // CALL directly to the runtime
1828     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1829                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1830 
1831     if (UseSSE >= 2) {
1832       MacroAssembler _masm(&cbuf);
1833       BasicType rt = tf()->return_type();
1834 
1835       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1836         // A C runtime call where the return value is unused.  In SSE2+
1837         // mode the result needs to be removed from the FPU stack.  It's
1838         // likely that this function call could be removed by the
1839         // optimizer if the C function is a pure function.
1840         __ ffree(0);
1841       } else if (rt == T_FLOAT) {
1842         __ lea(rsp, Address(rsp, -4));
1843         __ fstp_s(Address(rsp, 0));
1844         __ movflt(xmm0, Address(rsp, 0));
1845         __ lea(rsp, Address(rsp,  4));
1846       } else if (rt == T_DOUBLE) {
1847         __ lea(rsp, Address(rsp, -8));
1848         __ fstp_d(Address(rsp, 0));
1849         __ movdbl(xmm0, Address(rsp, 0));
1850         __ lea(rsp, Address(rsp,  8));
1851       }
1852     }
1853   %}
1854 
1855 
1856   enc_class pre_call_resets %{
1857     // If method sets FPU control word restore it here
1858     debug_only(int off0 = cbuf.insts_size());
1859     if (ra_->C->in_24_bit_fp_mode()) {
1860       MacroAssembler _masm(&cbuf);
1861       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1862     }
1863     if (ra_->C->max_vector_size() > 16) {
1864       // Clear upper bits of YMM registers when current compiled code uses
1865       // wide vectors to avoid AVX <-> SSE transition penalty during call.
1866       MacroAssembler _masm(&cbuf);
1867       __ vzeroupper();
1868     }
1869     debug_only(int off1 = cbuf.insts_size());
1870     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
1871   %}
1872 
1873   enc_class post_call_FPU %{
1874     // If method sets FPU control word do it here also
1875     if (Compile::current()->in_24_bit_fp_mode()) {
1876       MacroAssembler masm(&cbuf);
1877       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1878     }
1879   %}
1880 
1881   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1882     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1883     // who we intended to call.
1884     cbuf.set_insts_mark();
1885     $$$emit8$primary;
1886     if (!_method) {
1887       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1888                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1889     } else if (_optimized_virtual) {
1890       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1891                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1892     } else {
1893       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1894                      static_call_Relocation::spec(), RELOC_IMM32 );
1895     }
1896     if (_method) {  // Emit stub for static call.
1897       CompiledStaticCall::emit_to_interp_stub(cbuf);
1898     }
1899   %}
1900 
1901   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1902     MacroAssembler _masm(&cbuf);
1903     __ ic_call((address)$meth$$method);
1904   %}
1905 
1906   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1907     int disp = in_bytes(Method::from_compiled_offset());
1908     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1909 
1910     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1911     cbuf.set_insts_mark();
1912     $$$emit8$primary;
1913     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1914     emit_d8(cbuf, disp);             // Displacement
1915 
1916   %}
1917 
1918 //   Following encoding is no longer used, but may be restored if calling
1919 //   convention changes significantly.
1920 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1921 //
1922 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1923 //     // int ic_reg     = Matcher::inline_cache_reg();
1924 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1925 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1926 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1927 //
1928 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1929 //     // // so we load it immediately before the call
1930 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1931 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1932 //
1933 //     // xor rbp,ebp
1934 //     emit_opcode(cbuf, 0x33);
1935 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1936 //
1937 //     // CALL to interpreter.
1938 //     cbuf.set_insts_mark();
1939 //     $$$emit8$primary;
1940 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1941 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1942 //   %}
1943 
1944   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1945     $$$emit8$primary;
1946     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1947     $$$emit8$shift$$constant;
1948   %}
1949 
1950   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1951     // Load immediate does not have a zero or sign extended version
1952     // for 8-bit immediates
1953     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1954     $$$emit32$src$$constant;
1955   %}
1956 
1957   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1958     // Load immediate does not have a zero or sign extended version
1959     // for 8-bit immediates
1960     emit_opcode(cbuf, $primary + $dst$$reg);
1961     $$$emit32$src$$constant;
1962   %}
1963 
1964   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1965     // Load immediate does not have a zero or sign extended version
1966     // for 8-bit immediates
1967     int dst_enc = $dst$$reg;
1968     int src_con = $src$$constant & 0x0FFFFFFFFL;
1969     if (src_con == 0) {
1970       // xor dst, dst
1971       emit_opcode(cbuf, 0x33);
1972       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1973     } else {
1974       emit_opcode(cbuf, $primary + dst_enc);
1975       emit_d32(cbuf, src_con);
1976     }
1977   %}
1978 
1979   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1980     // Load immediate does not have a zero or sign extended version
1981     // for 8-bit immediates
1982     int dst_enc = $dst$$reg + 2;
1983     int src_con = ((julong)($src$$constant)) >> 32;
1984     if (src_con == 0) {
1985       // xor dst, dst
1986       emit_opcode(cbuf, 0x33);
1987       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1988     } else {
1989       emit_opcode(cbuf, $primary + dst_enc);
1990       emit_d32(cbuf, src_con);
1991     }
1992   %}
1993 
1994 
1995   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1996   enc_class enc_Copy( rRegI dst, rRegI src ) %{
1997     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1998   %}
1999 
2000   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
2001     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2002   %}
2003 
2004   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
2005     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2006   %}
2007 
2008   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2009     $$$emit8$primary;
2010     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2011   %}
2012 
2013   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2014     $$$emit8$secondary;
2015     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2016   %}
2017 
2018   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2019     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2020   %}
2021 
2022   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2023     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2024   %}
2025 
2026   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2027     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2028   %}
2029 
2030   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2031     // Output immediate
2032     $$$emit32$src$$constant;
2033   %}
2034 
2035   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2036     // Output Float immediate bits
2037     jfloat jf = $src$$constant;
2038     int    jf_as_bits = jint_cast( jf );
2039     emit_d32(cbuf, jf_as_bits);
2040   %}
2041 
2042   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2043     // Output Float immediate bits
2044     jfloat jf = $src$$constant;
2045     int    jf_as_bits = jint_cast( jf );
2046     emit_d32(cbuf, jf_as_bits);
2047   %}
2048 
2049   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2050     // Output immediate
2051     $$$emit16$src$$constant;
2052   %}
2053 
2054   enc_class Con_d32(immI src) %{
2055     emit_d32(cbuf,$src$$constant);
2056   %}
2057 
2058   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2059     // Output immediate memory reference
2060     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2061     emit_d32(cbuf, 0x00);
2062   %}
2063 
2064   enc_class lock_prefix( ) %{
2065     if( os::is_MP() )
2066       emit_opcode(cbuf,0xF0);         // [Lock]
2067   %}
2068 
2069   // Cmp-xchg long value.
2070   // Note: we need to swap rbx, and rcx before and after the
2071   //       cmpxchg8 instruction because the instruction uses
2072   //       rcx as the high order word of the new value to store but
2073   //       our register encoding uses rbx,.
2074   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2075 
2076     // XCHG  rbx,ecx
2077     emit_opcode(cbuf,0x87);
2078     emit_opcode(cbuf,0xD9);
2079     // [Lock]
2080     if( os::is_MP() )
2081       emit_opcode(cbuf,0xF0);
2082     // CMPXCHG8 [Eptr]
2083     emit_opcode(cbuf,0x0F);
2084     emit_opcode(cbuf,0xC7);
2085     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2086     // XCHG  rbx,ecx
2087     emit_opcode(cbuf,0x87);
2088     emit_opcode(cbuf,0xD9);
2089   %}
2090 
2091   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2092     // [Lock]
2093     if( os::is_MP() )
2094       emit_opcode(cbuf,0xF0);
2095 
2096     // CMPXCHG [Eptr]
2097     emit_opcode(cbuf,0x0F);
2098     emit_opcode(cbuf,0xB1);
2099     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2100   %}
2101 
2102   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2103     int res_encoding = $res$$reg;
2104 
2105     // MOV  res,0
2106     emit_opcode( cbuf, 0xB8 + res_encoding);
2107     emit_d32( cbuf, 0 );
2108     // JNE,s  fail
2109     emit_opcode(cbuf,0x75);
2110     emit_d8(cbuf, 5 );
2111     // MOV  res,1
2112     emit_opcode( cbuf, 0xB8 + res_encoding);
2113     emit_d32( cbuf, 1 );
2114     // fail:
2115   %}
2116 
2117   enc_class set_instruction_start( ) %{
2118     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2119   %}
2120 
2121   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2122     int reg_encoding = $ereg$$reg;
2123     int base  = $mem$$base;
2124     int index = $mem$$index;
2125     int scale = $mem$$scale;
2126     int displace = $mem$$disp;
2127     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2128     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2129   %}
2130 
2131   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2132     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2133     int base  = $mem$$base;
2134     int index = $mem$$index;
2135     int scale = $mem$$scale;
2136     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2137     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2138     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2139   %}
2140 
2141   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2142     int r1, r2;
2143     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2144     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2145     emit_opcode(cbuf,0x0F);
2146     emit_opcode(cbuf,$tertiary);
2147     emit_rm(cbuf, 0x3, r1, r2);
2148     emit_d8(cbuf,$cnt$$constant);
2149     emit_d8(cbuf,$primary);
2150     emit_rm(cbuf, 0x3, $secondary, r1);
2151     emit_d8(cbuf,$cnt$$constant);
2152   %}
2153 
2154   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2155     emit_opcode( cbuf, 0x8B ); // Move
2156     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2157     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2158       emit_d8(cbuf,$primary);
2159       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2160       emit_d8(cbuf,$cnt$$constant-32);
2161     }
2162     emit_d8(cbuf,$primary);
2163     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2164     emit_d8(cbuf,31);
2165   %}
2166 
2167   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2168     int r1, r2;
2169     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2170     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2171 
2172     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2173     emit_rm(cbuf, 0x3, r1, r2);
2174     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2175       emit_opcode(cbuf,$primary);
2176       emit_rm(cbuf, 0x3, $secondary, r1);
2177       emit_d8(cbuf,$cnt$$constant-32);
2178     }
2179     emit_opcode(cbuf,0x33);  // XOR r2,r2
2180     emit_rm(cbuf, 0x3, r2, r2);
2181   %}
2182 
2183   // Clone of RegMem but accepts an extra parameter to access each
2184   // half of a double in memory; it never needs relocation info.
2185   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2186     emit_opcode(cbuf,$opcode$$constant);
2187     int reg_encoding = $rm_reg$$reg;
2188     int base     = $mem$$base;
2189     int index    = $mem$$index;
2190     int scale    = $mem$$scale;
2191     int displace = $mem$$disp + $disp_for_half$$constant;
2192     relocInfo::relocType disp_reloc = relocInfo::none;
2193     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2194   %}
2195 
2196   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2197   //
2198   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2199   // and it never needs relocation information.
2200   // Frequently used to move data between FPU's Stack Top and memory.
2201   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2202     int rm_byte_opcode = $rm_opcode$$constant;
2203     int base     = $mem$$base;
2204     int index    = $mem$$index;
2205     int scale    = $mem$$scale;
2206     int displace = $mem$$disp;
2207     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2208     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2209   %}
2210 
2211   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2212     int rm_byte_opcode = $rm_opcode$$constant;
2213     int base     = $mem$$base;
2214     int index    = $mem$$index;
2215     int scale    = $mem$$scale;
2216     int displace = $mem$$disp;
2217     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2218     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2219   %}
2220 
2221   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2222     int reg_encoding = $dst$$reg;
2223     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2224     int index        = 0x04;            // 0x04 indicates no index
2225     int scale        = 0x00;            // 0x00 indicates no scale
2226     int displace     = $src1$$constant; // 0x00 indicates no displacement
2227     relocInfo::relocType disp_reloc = relocInfo::none;
2228     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2229   %}
2230 
2231   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2232     // Compare dst,src
2233     emit_opcode(cbuf,0x3B);
2234     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2235     // jmp dst < src around move
2236     emit_opcode(cbuf,0x7C);
2237     emit_d8(cbuf,2);
2238     // move dst,src
2239     emit_opcode(cbuf,0x8B);
2240     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2241   %}
2242 
2243   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2244     // Compare dst,src
2245     emit_opcode(cbuf,0x3B);
2246     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2247     // jmp dst > src around move
2248     emit_opcode(cbuf,0x7F);
2249     emit_d8(cbuf,2);
2250     // move dst,src
2251     emit_opcode(cbuf,0x8B);
2252     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2253   %}
2254 
2255   enc_class enc_FPR_store(memory mem, regDPR src) %{
2256     // If src is FPR1, we can just FST to store it.
2257     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2258     int reg_encoding = 0x2; // Just store
2259     int base  = $mem$$base;
2260     int index = $mem$$index;
2261     int scale = $mem$$scale;
2262     int displace = $mem$$disp;
2263     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2264     if( $src$$reg != FPR1L_enc ) {
2265       reg_encoding = 0x3;  // Store & pop
2266       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2267       emit_d8( cbuf, 0xC0-1+$src$$reg );
2268     }
2269     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2270     emit_opcode(cbuf,$primary);
2271     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2272   %}
2273 
2274   enc_class neg_reg(rRegI dst) %{
2275     // NEG $dst
2276     emit_opcode(cbuf,0xF7);
2277     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2278   %}
2279 
2280   enc_class setLT_reg(eCXRegI dst) %{
2281     // SETLT $dst
2282     emit_opcode(cbuf,0x0F);
2283     emit_opcode(cbuf,0x9C);
2284     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2285   %}
2286 
2287   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2288     int tmpReg = $tmp$$reg;
2289 
2290     // SUB $p,$q
2291     emit_opcode(cbuf,0x2B);
2292     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2293     // SBB $tmp,$tmp
2294     emit_opcode(cbuf,0x1B);
2295     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2296     // AND $tmp,$y
2297     emit_opcode(cbuf,0x23);
2298     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2299     // ADD $p,$tmp
2300     emit_opcode(cbuf,0x03);
2301     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2302   %}
2303 
2304   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2305     // TEST shift,32
2306     emit_opcode(cbuf,0xF7);
2307     emit_rm(cbuf, 0x3, 0, ECX_enc);
2308     emit_d32(cbuf,0x20);
2309     // JEQ,s small
2310     emit_opcode(cbuf, 0x74);
2311     emit_d8(cbuf, 0x04);
2312     // MOV    $dst.hi,$dst.lo
2313     emit_opcode( cbuf, 0x8B );
2314     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2315     // CLR    $dst.lo
2316     emit_opcode(cbuf, 0x33);
2317     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2318 // small:
2319     // SHLD   $dst.hi,$dst.lo,$shift
2320     emit_opcode(cbuf,0x0F);
2321     emit_opcode(cbuf,0xA5);
2322     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2323     // SHL    $dst.lo,$shift"
2324     emit_opcode(cbuf,0xD3);
2325     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2326   %}
2327 
2328   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2329     // TEST shift,32
2330     emit_opcode(cbuf,0xF7);
2331     emit_rm(cbuf, 0x3, 0, ECX_enc);
2332     emit_d32(cbuf,0x20);
2333     // JEQ,s small
2334     emit_opcode(cbuf, 0x74);
2335     emit_d8(cbuf, 0x04);
2336     // MOV    $dst.lo,$dst.hi
2337     emit_opcode( cbuf, 0x8B );
2338     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2339     // CLR    $dst.hi
2340     emit_opcode(cbuf, 0x33);
2341     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2342 // small:
2343     // SHRD   $dst.lo,$dst.hi,$shift
2344     emit_opcode(cbuf,0x0F);
2345     emit_opcode(cbuf,0xAD);
2346     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2347     // SHR    $dst.hi,$shift"
2348     emit_opcode(cbuf,0xD3);
2349     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2350   %}
2351 
2352   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2353     // TEST shift,32
2354     emit_opcode(cbuf,0xF7);
2355     emit_rm(cbuf, 0x3, 0, ECX_enc);
2356     emit_d32(cbuf,0x20);
2357     // JEQ,s small
2358     emit_opcode(cbuf, 0x74);
2359     emit_d8(cbuf, 0x05);
2360     // MOV    $dst.lo,$dst.hi
2361     emit_opcode( cbuf, 0x8B );
2362     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2363     // SAR    $dst.hi,31
2364     emit_opcode(cbuf, 0xC1);
2365     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2366     emit_d8(cbuf, 0x1F );
2367 // small:
2368     // SHRD   $dst.lo,$dst.hi,$shift
2369     emit_opcode(cbuf,0x0F);
2370     emit_opcode(cbuf,0xAD);
2371     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2372     // SAR    $dst.hi,$shift"
2373     emit_opcode(cbuf,0xD3);
2374     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2375   %}
2376 
2377 
2378   // ----------------- Encodings for floating point unit -----------------
2379   // May leave result in FPU-TOS or FPU reg depending on opcodes
2380   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2381     $$$emit8$primary;
2382     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2383   %}
2384 
2385   // Pop argument in FPR0 with FSTP ST(0)
2386   enc_class PopFPU() %{
2387     emit_opcode( cbuf, 0xDD );
2388     emit_d8( cbuf, 0xD8 );
2389   %}
2390 
2391   // !!!!! equivalent to Pop_Reg_F
2392   enc_class Pop_Reg_DPR( regDPR dst ) %{
2393     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2394     emit_d8( cbuf, 0xD8+$dst$$reg );
2395   %}
2396 
2397   enc_class Push_Reg_DPR( regDPR dst ) %{
2398     emit_opcode( cbuf, 0xD9 );
2399     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2400   %}
2401 
2402   enc_class strictfp_bias1( regDPR dst ) %{
2403     emit_opcode( cbuf, 0xDB );           // FLD m80real
2404     emit_opcode( cbuf, 0x2D );
2405     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2406     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2407     emit_opcode( cbuf, 0xC8+$dst$$reg );
2408   %}
2409 
2410   enc_class strictfp_bias2( regDPR dst ) %{
2411     emit_opcode( cbuf, 0xDB );           // FLD m80real
2412     emit_opcode( cbuf, 0x2D );
2413     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2414     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2415     emit_opcode( cbuf, 0xC8+$dst$$reg );
2416   %}
2417 
2418   // Special case for moving an integer register to a stack slot.
2419   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2420     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2421   %}
2422 
2423   // Special case for moving a register to a stack slot.
2424   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2425     // Opcode already emitted
2426     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2427     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2428     emit_d32(cbuf, $dst$$disp);   // Displacement
2429   %}
2430 
2431   // Push the integer in stackSlot 'src' onto FP-stack
2432   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2433     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2434   %}
2435 
2436   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2437   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2438     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2439   %}
2440 
2441   // Same as Pop_Mem_F except for opcode
2442   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2443   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2444     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2445   %}
2446 
2447   enc_class Pop_Reg_FPR( regFPR dst ) %{
2448     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2449     emit_d8( cbuf, 0xD8+$dst$$reg );
2450   %}
2451 
2452   enc_class Push_Reg_FPR( regFPR dst ) %{
2453     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2454     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2455   %}
2456 
2457   // Push FPU's float to a stack-slot, and pop FPU-stack
2458   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2459     int pop = 0x02;
2460     if ($src$$reg != FPR1L_enc) {
2461       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2462       emit_d8( cbuf, 0xC0-1+$src$$reg );
2463       pop = 0x03;
2464     }
2465     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2466   %}
2467 
2468   // Push FPU's double to a stack-slot, and pop FPU-stack
2469   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2470     int pop = 0x02;
2471     if ($src$$reg != FPR1L_enc) {
2472       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2473       emit_d8( cbuf, 0xC0-1+$src$$reg );
2474       pop = 0x03;
2475     }
2476     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2477   %}
2478 
2479   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2480   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2481     int pop = 0xD0 - 1; // -1 since we skip FLD
2482     if ($src$$reg != FPR1L_enc) {
2483       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2484       emit_d8( cbuf, 0xC0-1+$src$$reg );
2485       pop = 0xD8;
2486     }
2487     emit_opcode( cbuf, 0xDD );
2488     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2489   %}
2490 
2491 
2492   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2493     // load dst in FPR0
2494     emit_opcode( cbuf, 0xD9 );
2495     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2496     if ($src$$reg != FPR1L_enc) {
2497       // fincstp
2498       emit_opcode (cbuf, 0xD9);
2499       emit_opcode (cbuf, 0xF7);
2500       // swap src with FPR1:
2501       // FXCH FPR1 with src
2502       emit_opcode(cbuf, 0xD9);
2503       emit_d8(cbuf, 0xC8-1+$src$$reg );
2504       // fdecstp
2505       emit_opcode (cbuf, 0xD9);
2506       emit_opcode (cbuf, 0xF6);
2507     }
2508   %}
2509 
2510   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2511     MacroAssembler _masm(&cbuf);
2512     __ subptr(rsp, 8);
2513     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2514     __ fld_d(Address(rsp, 0));
2515     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2516     __ fld_d(Address(rsp, 0));
2517   %}
2518 
2519   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2520     MacroAssembler _masm(&cbuf);
2521     __ subptr(rsp, 4);
2522     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2523     __ fld_s(Address(rsp, 0));
2524     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2525     __ fld_s(Address(rsp, 0));
2526   %}
2527 
2528   enc_class Push_ResultD(regD dst) %{
2529     MacroAssembler _masm(&cbuf);
2530     __ fstp_d(Address(rsp, 0));
2531     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2532     __ addptr(rsp, 8);
2533   %}
2534 
2535   enc_class Push_ResultF(regF dst, immI d8) %{
2536     MacroAssembler _masm(&cbuf);
2537     __ fstp_s(Address(rsp, 0));
2538     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2539     __ addptr(rsp, $d8$$constant);
2540   %}
2541 
2542   enc_class Push_SrcD(regD src) %{
2543     MacroAssembler _masm(&cbuf);
2544     __ subptr(rsp, 8);
2545     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2546     __ fld_d(Address(rsp, 0));
2547   %}
2548 
2549   enc_class push_stack_temp_qword() %{
2550     MacroAssembler _masm(&cbuf);
2551     __ subptr(rsp, 8);
2552   %}
2553 
2554   enc_class pop_stack_temp_qword() %{
2555     MacroAssembler _masm(&cbuf);
2556     __ addptr(rsp, 8);
2557   %}
2558 
2559   enc_class push_xmm_to_fpr1(regD src) %{
2560     MacroAssembler _masm(&cbuf);
2561     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2562     __ fld_d(Address(rsp, 0));
2563   %}
2564 
2565   enc_class Push_Result_Mod_DPR( regDPR src) %{
2566     if ($src$$reg != FPR1L_enc) {
2567       // fincstp
2568       emit_opcode (cbuf, 0xD9);
2569       emit_opcode (cbuf, 0xF7);
2570       // FXCH FPR1 with src
2571       emit_opcode(cbuf, 0xD9);
2572       emit_d8(cbuf, 0xC8-1+$src$$reg );
2573       // fdecstp
2574       emit_opcode (cbuf, 0xD9);
2575       emit_opcode (cbuf, 0xF6);
2576     }
2577     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2578     // // FSTP   FPR$dst$$reg
2579     // emit_opcode( cbuf, 0xDD );
2580     // emit_d8( cbuf, 0xD8+$dst$$reg );
2581   %}
2582 
2583   enc_class fnstsw_sahf_skip_parity() %{
2584     // fnstsw ax
2585     emit_opcode( cbuf, 0xDF );
2586     emit_opcode( cbuf, 0xE0 );
2587     // sahf
2588     emit_opcode( cbuf, 0x9E );
2589     // jnp  ::skip
2590     emit_opcode( cbuf, 0x7B );
2591     emit_opcode( cbuf, 0x05 );
2592   %}
2593 
2594   enc_class emitModDPR() %{
2595     // fprem must be iterative
2596     // :: loop
2597     // fprem
2598     emit_opcode( cbuf, 0xD9 );
2599     emit_opcode( cbuf, 0xF8 );
2600     // wait
2601     emit_opcode( cbuf, 0x9b );
2602     // fnstsw ax
2603     emit_opcode( cbuf, 0xDF );
2604     emit_opcode( cbuf, 0xE0 );
2605     // sahf
2606     emit_opcode( cbuf, 0x9E );
2607     // jp  ::loop
2608     emit_opcode( cbuf, 0x0F );
2609     emit_opcode( cbuf, 0x8A );
2610     emit_opcode( cbuf, 0xF4 );
2611     emit_opcode( cbuf, 0xFF );
2612     emit_opcode( cbuf, 0xFF );
2613     emit_opcode( cbuf, 0xFF );
2614   %}
2615 
2616   enc_class fpu_flags() %{
2617     // fnstsw_ax
2618     emit_opcode( cbuf, 0xDF);
2619     emit_opcode( cbuf, 0xE0);
2620     // test ax,0x0400
2621     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2622     emit_opcode( cbuf, 0xA9 );
2623     emit_d16   ( cbuf, 0x0400 );
2624     // // // This sequence works, but stalls for 12-16 cycles on PPro
2625     // // test rax,0x0400
2626     // emit_opcode( cbuf, 0xA9 );
2627     // emit_d32   ( cbuf, 0x00000400 );
2628     //
2629     // jz exit (no unordered comparison)
2630     emit_opcode( cbuf, 0x74 );
2631     emit_d8    ( cbuf, 0x02 );
2632     // mov ah,1 - treat as LT case (set carry flag)
2633     emit_opcode( cbuf, 0xB4 );
2634     emit_d8    ( cbuf, 0x01 );
2635     // sahf
2636     emit_opcode( cbuf, 0x9E);
2637   %}
2638 
2639   enc_class cmpF_P6_fixup() %{
2640     // Fixup the integer flags in case comparison involved a NaN
2641     //
2642     // JNP exit (no unordered comparison, P-flag is set by NaN)
2643     emit_opcode( cbuf, 0x7B );
2644     emit_d8    ( cbuf, 0x03 );
2645     // MOV AH,1 - treat as LT case (set carry flag)
2646     emit_opcode( cbuf, 0xB4 );
2647     emit_d8    ( cbuf, 0x01 );
2648     // SAHF
2649     emit_opcode( cbuf, 0x9E);
2650     // NOP     // target for branch to avoid branch to branch
2651     emit_opcode( cbuf, 0x90);
2652   %}
2653 
2654 //     fnstsw_ax();
2655 //     sahf();
2656 //     movl(dst, nan_result);
2657 //     jcc(Assembler::parity, exit);
2658 //     movl(dst, less_result);
2659 //     jcc(Assembler::below, exit);
2660 //     movl(dst, equal_result);
2661 //     jcc(Assembler::equal, exit);
2662 //     movl(dst, greater_result);
2663 
2664 // less_result     =  1;
2665 // greater_result  = -1;
2666 // equal_result    = 0;
2667 // nan_result      = -1;
2668 
2669   enc_class CmpF_Result(rRegI dst) %{
2670     // fnstsw_ax();
2671     emit_opcode( cbuf, 0xDF);
2672     emit_opcode( cbuf, 0xE0);
2673     // sahf
2674     emit_opcode( cbuf, 0x9E);
2675     // movl(dst, nan_result);
2676     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2677     emit_d32( cbuf, -1 );
2678     // jcc(Assembler::parity, exit);
2679     emit_opcode( cbuf, 0x7A );
2680     emit_d8    ( cbuf, 0x13 );
2681     // movl(dst, less_result);
2682     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2683     emit_d32( cbuf, -1 );
2684     // jcc(Assembler::below, exit);
2685     emit_opcode( cbuf, 0x72 );
2686     emit_d8    ( cbuf, 0x0C );
2687     // movl(dst, equal_result);
2688     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2689     emit_d32( cbuf, 0 );
2690     // jcc(Assembler::equal, exit);
2691     emit_opcode( cbuf, 0x74 );
2692     emit_d8    ( cbuf, 0x05 );
2693     // movl(dst, greater_result);
2694     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2695     emit_d32( cbuf, 1 );
2696   %}
2697 
2698 
2699   // Compare the longs and set flags
2700   // BROKEN!  Do Not use as-is
2701   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2702     // CMP    $src1.hi,$src2.hi
2703     emit_opcode( cbuf, 0x3B );
2704     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2705     // JNE,s  done
2706     emit_opcode(cbuf,0x75);
2707     emit_d8(cbuf, 2 );
2708     // CMP    $src1.lo,$src2.lo
2709     emit_opcode( cbuf, 0x3B );
2710     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2711 // done:
2712   %}
2713 
2714   enc_class convert_int_long( regL dst, rRegI src ) %{
2715     // mov $dst.lo,$src
2716     int dst_encoding = $dst$$reg;
2717     int src_encoding = $src$$reg;
2718     encode_Copy( cbuf, dst_encoding  , src_encoding );
2719     // mov $dst.hi,$src
2720     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2721     // sar $dst.hi,31
2722     emit_opcode( cbuf, 0xC1 );
2723     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2724     emit_d8(cbuf, 0x1F );
2725   %}
2726 
2727   enc_class convert_long_double( eRegL src ) %{
2728     // push $src.hi
2729     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2730     // push $src.lo
2731     emit_opcode(cbuf, 0x50+$src$$reg  );
2732     // fild 64-bits at [SP]
2733     emit_opcode(cbuf,0xdf);
2734     emit_d8(cbuf, 0x6C);
2735     emit_d8(cbuf, 0x24);
2736     emit_d8(cbuf, 0x00);
2737     // pop stack
2738     emit_opcode(cbuf, 0x83); // add  SP, #8
2739     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2740     emit_d8(cbuf, 0x8);
2741   %}
2742 
2743   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2744     // IMUL   EDX:EAX,$src1
2745     emit_opcode( cbuf, 0xF7 );
2746     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2747     // SAR    EDX,$cnt-32
2748     int shift_count = ((int)$cnt$$constant) - 32;
2749     if (shift_count > 0) {
2750       emit_opcode(cbuf, 0xC1);
2751       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2752       emit_d8(cbuf, shift_count);
2753     }
2754   %}
2755 
2756   // this version doesn't have add sp, 8
2757   enc_class convert_long_double2( eRegL src ) %{
2758     // push $src.hi
2759     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2760     // push $src.lo
2761     emit_opcode(cbuf, 0x50+$src$$reg  );
2762     // fild 64-bits at [SP]
2763     emit_opcode(cbuf,0xdf);
2764     emit_d8(cbuf, 0x6C);
2765     emit_d8(cbuf, 0x24);
2766     emit_d8(cbuf, 0x00);
2767   %}
2768 
2769   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2770     // Basic idea: long = (long)int * (long)int
2771     // IMUL EDX:EAX, src
2772     emit_opcode( cbuf, 0xF7 );
2773     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2774   %}
2775 
2776   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2777     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2778     // MUL EDX:EAX, src
2779     emit_opcode( cbuf, 0xF7 );
2780     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2781   %}
2782 
2783   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2784     // Basic idea: lo(result) = lo(x_lo * y_lo)
2785     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2786     // MOV    $tmp,$src.lo
2787     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2788     // IMUL   $tmp,EDX
2789     emit_opcode( cbuf, 0x0F );
2790     emit_opcode( cbuf, 0xAF );
2791     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2792     // MOV    EDX,$src.hi
2793     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2794     // IMUL   EDX,EAX
2795     emit_opcode( cbuf, 0x0F );
2796     emit_opcode( cbuf, 0xAF );
2797     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2798     // ADD    $tmp,EDX
2799     emit_opcode( cbuf, 0x03 );
2800     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2801     // MUL   EDX:EAX,$src.lo
2802     emit_opcode( cbuf, 0xF7 );
2803     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2804     // ADD    EDX,ESI
2805     emit_opcode( cbuf, 0x03 );
2806     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2807   %}
2808 
2809   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2810     // Basic idea: lo(result) = lo(src * y_lo)
2811     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2812     // IMUL   $tmp,EDX,$src
2813     emit_opcode( cbuf, 0x6B );
2814     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2815     emit_d8( cbuf, (int)$src$$constant );
2816     // MOV    EDX,$src
2817     emit_opcode(cbuf, 0xB8 + EDX_enc);
2818     emit_d32( cbuf, (int)$src$$constant );
2819     // MUL   EDX:EAX,EDX
2820     emit_opcode( cbuf, 0xF7 );
2821     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2822     // ADD    EDX,ESI
2823     emit_opcode( cbuf, 0x03 );
2824     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2825   %}
2826 
2827   enc_class long_div( eRegL src1, eRegL src2 ) %{
2828     // PUSH src1.hi
2829     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2830     // PUSH src1.lo
2831     emit_opcode(cbuf,               0x50+$src1$$reg  );
2832     // PUSH src2.hi
2833     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2834     // PUSH src2.lo
2835     emit_opcode(cbuf,               0x50+$src2$$reg  );
2836     // CALL directly to the runtime
2837     cbuf.set_insts_mark();
2838     emit_opcode(cbuf,0xE8);       // Call into runtime
2839     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2840     // Restore stack
2841     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2842     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2843     emit_d8(cbuf, 4*4);
2844   %}
2845 
2846   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2847     // PUSH src1.hi
2848     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2849     // PUSH src1.lo
2850     emit_opcode(cbuf,               0x50+$src1$$reg  );
2851     // PUSH src2.hi
2852     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2853     // PUSH src2.lo
2854     emit_opcode(cbuf,               0x50+$src2$$reg  );
2855     // CALL directly to the runtime
2856     cbuf.set_insts_mark();
2857     emit_opcode(cbuf,0xE8);       // Call into runtime
2858     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2859     // Restore stack
2860     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2861     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2862     emit_d8(cbuf, 4*4);
2863   %}
2864 
2865   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2866     // MOV   $tmp,$src.lo
2867     emit_opcode(cbuf, 0x8B);
2868     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2869     // OR    $tmp,$src.hi
2870     emit_opcode(cbuf, 0x0B);
2871     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2872   %}
2873 
2874   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2875     // CMP    $src1.lo,$src2.lo
2876     emit_opcode( cbuf, 0x3B );
2877     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2878     // JNE,s  skip
2879     emit_cc(cbuf, 0x70, 0x5);
2880     emit_d8(cbuf,2);
2881     // CMP    $src1.hi,$src2.hi
2882     emit_opcode( cbuf, 0x3B );
2883     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2884   %}
2885 
2886   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2887     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2888     emit_opcode( cbuf, 0x3B );
2889     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2890     // MOV    $tmp,$src1.hi
2891     emit_opcode( cbuf, 0x8B );
2892     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2893     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2894     emit_opcode( cbuf, 0x1B );
2895     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2896   %}
2897 
2898   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2899     // XOR    $tmp,$tmp
2900     emit_opcode(cbuf,0x33);  // XOR
2901     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2902     // CMP    $tmp,$src.lo
2903     emit_opcode( cbuf, 0x3B );
2904     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2905     // SBB    $tmp,$src.hi
2906     emit_opcode( cbuf, 0x1B );
2907     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2908   %}
2909 
2910  // Sniff, sniff... smells like Gnu Superoptimizer
2911   enc_class neg_long( eRegL dst ) %{
2912     emit_opcode(cbuf,0xF7);    // NEG hi
2913     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2914     emit_opcode(cbuf,0xF7);    // NEG lo
2915     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2916     emit_opcode(cbuf,0x83);    // SBB hi,0
2917     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2918     emit_d8    (cbuf,0 );
2919   %}
2920 
2921 
2922   // Because the transitions from emitted code to the runtime
2923   // monitorenter/exit helper stubs are so slow it's critical that
2924   // we inline both the stack-locking fast-path and the inflated fast path.
2925   //
2926   // See also: cmpFastLock and cmpFastUnlock.
2927   //
2928   // What follows is a specialized inline transliteration of the code
2929   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
2930   // another option would be to emit TrySlowEnter and TrySlowExit methods
2931   // at startup-time.  These methods would accept arguments as
2932   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
2933   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
2934   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
2935   // In practice, however, the # of lock sites is bounded and is usually small.
2936   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
2937   // if the processor uses simple bimodal branch predictors keyed by EIP
2938   // Since the helper routines would be called from multiple synchronization
2939   // sites.
2940   //
2941   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
2942   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
2943   // to those specialized methods.  That'd give us a mostly platform-independent
2944   // implementation that the JITs could optimize and inline at their pleasure.
2945   // Done correctly, the only time we'd need to cross to native could would be
2946   // to park() or unpark() threads.  We'd also need a few more unsafe operators
2947   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
2948   // (b) explicit barriers or fence operations.
2949   //
2950   // TODO:
2951   //
2952   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
2953   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
2954   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
2955   //    the lock operators would typically be faster than reifying Self.
2956   //
2957   // *  Ideally I'd define the primitives as:
2958   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
2959   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
2960   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
2961   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
2962   //    Furthermore the register assignments are overconstrained, possibly resulting in
2963   //    sub-optimal code near the synchronization site.
2964   //
2965   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
2966   //    Alternately, use a better sp-proximity test.
2967   //
2968   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
2969   //    Either one is sufficient to uniquely identify a thread.
2970   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
2971   //
2972   // *  Intrinsify notify() and notifyAll() for the common cases where the
2973   //    object is locked by the calling thread but the waitlist is empty.
2974   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
2975   //
2976   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
2977   //    But beware of excessive branch density on AMD Opterons.
2978   //
2979   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
2980   //    or failure of the fast-path.  If the fast-path fails then we pass
2981   //    control to the slow-path, typically in C.  In Fast_Lock and
2982   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
2983   //    will emit a conditional branch immediately after the node.
2984   //    So we have branches to branches and lots of ICC.ZF games.
2985   //    Instead, it might be better to have C2 pass a "FailureLabel"
2986   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
2987   //    will drop through the node.  ICC.ZF is undefined at exit.
2988   //    In the case of failure, the node will branch directly to the
2989   //    FailureLabel
2990 
2991 
2992   // obj: object to lock
2993   // box: on-stack box address (displaced header location) - KILLED
2994   // rax,: tmp -- KILLED
2995   // scr: tmp -- KILLED
2996   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
2997 
2998     Register objReg = as_Register($obj$$reg);
2999     Register boxReg = as_Register($box$$reg);
3000     Register tmpReg = as_Register($tmp$$reg);
3001     Register scrReg = as_Register($scr$$reg);
3002 
3003     // Ensure the register assignents are disjoint
3004     guarantee (objReg != boxReg, "") ;
3005     guarantee (objReg != tmpReg, "") ;
3006     guarantee (objReg != scrReg, "") ;
3007     guarantee (boxReg != tmpReg, "") ;
3008     guarantee (boxReg != scrReg, "") ;
3009     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3010 
3011     MacroAssembler masm(&cbuf);
3012 
3013     if (_counters != NULL) {
3014       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3015     }
3016     if (EmitSync & 1) {
3017         // set box->dhw = unused_mark (3)
3018         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3019         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3020         masm.cmpptr (rsp, (int32_t)0) ;                        
3021     } else 
3022     if (EmitSync & 2) { 
3023         Label DONE_LABEL ;           
3024         if (UseBiasedLocking) {
3025            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3026            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3027         }
3028 
3029         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3030         masm.orptr (tmpReg, 0x1);
3031         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3032         if (os::is_MP()) { masm.lock();  }
3033         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3034         masm.jcc(Assembler::equal, DONE_LABEL);
3035         // Recursive locking
3036         masm.subptr(tmpReg, rsp);
3037         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3038         masm.movptr(Address(boxReg, 0), tmpReg);
3039         masm.bind(DONE_LABEL) ; 
3040     } else {  
3041       // Possible cases that we'll encounter in fast_lock 
3042       // ------------------------------------------------
3043       // * Inflated
3044       //    -- unlocked
3045       //    -- Locked
3046       //       = by self
3047       //       = by other
3048       // * biased
3049       //    -- by Self
3050       //    -- by other
3051       // * neutral
3052       // * stack-locked
3053       //    -- by self
3054       //       = sp-proximity test hits
3055       //       = sp-proximity test generates false-negative
3056       //    -- by other
3057       //
3058 
3059       Label IsInflated, DONE_LABEL, PopDone ;
3060 
3061       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3062       // order to reduce the number of conditional branches in the most common cases.
3063       // Beware -- there's a subtle invariant that fetch of the markword
3064       // at [FETCH], below, will never observe a biased encoding (*101b).
3065       // If this invariant is not held we risk exclusion (safety) failure.
3066       if (UseBiasedLocking && !UseOptoBiasInlining) {
3067         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3068       }
3069 
3070       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3071       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3072       masm.jccb  (Assembler::notZero, IsInflated) ;
3073 
3074       // Attempt stack-locking ...
3075       masm.orptr (tmpReg, 0x1);
3076       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3077       if (os::is_MP()) { masm.lock();  }
3078       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3079       if (_counters != NULL) {
3080         masm.cond_inc32(Assembler::equal,
3081                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3082       }
3083       masm.jccb (Assembler::equal, DONE_LABEL);
3084 
3085       // Recursive locking
3086       masm.subptr(tmpReg, rsp);
3087       masm.andptr(tmpReg, 0xFFFFF003 );
3088       masm.movptr(Address(boxReg, 0), tmpReg);
3089       if (_counters != NULL) {
3090         masm.cond_inc32(Assembler::equal,
3091                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3092       }
3093       masm.jmp  (DONE_LABEL) ;
3094 
3095       masm.bind (IsInflated) ;
3096 
3097       // The object is inflated.
3098       //
3099       // TODO-FIXME: eliminate the ugly use of manifest constants:
3100       //   Use markOopDesc::monitor_value instead of "2".
3101       //   use markOop::unused_mark() instead of "3".
3102       // The tmpReg value is an objectMonitor reference ORed with
3103       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3104       // objectmonitor pointer by masking off the "2" bit or we can just
3105       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3106       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3107       //
3108       // I use the latter as it avoids AGI stalls.
3109       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3110       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3111       //
3112       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3113 
3114       // boxReg refers to the on-stack BasicLock in the current frame.
3115       // We'd like to write:
3116       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3117       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3118       // additional latency as we have another ST in the store buffer that must drain.
3119 
3120       if (EmitSync & 8192) { 
3121          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3122          masm.get_thread (scrReg) ; 
3123          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3124          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3125          if (os::is_MP()) { masm.lock(); } 
3126          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3127       } else 
3128       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3129          masm.movptr(scrReg, boxReg) ; 
3130          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3131 
3132          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3133          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3134             // prefetchw [eax + Offset(_owner)-2]
3135             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3136          }
3137 
3138          if ((EmitSync & 64) == 0) {
3139            // Optimistic form: consider XORL tmpReg,tmpReg
3140            masm.movptr(tmpReg, NULL_WORD) ; 
3141          } else { 
3142            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3143            // Test-And-CAS instead of CAS
3144            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3145            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3146            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3147          }
3148 
3149          // Appears unlocked - try to swing _owner from null to non-null.
3150          // Ideally, I'd manifest "Self" with get_thread and then attempt
3151          // to CAS the register containing Self into m->Owner.
3152          // But we don't have enough registers, so instead we can either try to CAS
3153          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3154          // we later store "Self" into m->Owner.  Transiently storing a stack address
3155          // (rsp or the address of the box) into  m->owner is harmless.
3156          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3157          if (os::is_MP()) { masm.lock();  }
3158          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3159          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3160          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3161          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3162          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3163          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3164                        
3165          // If the CAS fails we can either retry or pass control to the slow-path.  
3166          // We use the latter tactic.  
3167          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3168          // If the CAS was successful ...
3169          //   Self has acquired the lock
3170          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3171          // Intentional fall-through into DONE_LABEL ...
3172       } else {
3173          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3174          masm.movptr(boxReg, tmpReg) ; 
3175 
3176          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3177          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3178             // prefetchw [eax + Offset(_owner)-2]
3179             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3180          }
3181 
3182          if ((EmitSync & 64) == 0) {
3183            // Optimistic form
3184            masm.xorptr  (tmpReg, tmpReg) ; 
3185          } else { 
3186            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3187            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3188            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3189            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3190          }
3191 
3192          // Appears unlocked - try to swing _owner from null to non-null.
3193          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3194          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3195          masm.get_thread (scrReg) ;
3196          if (os::is_MP()) { masm.lock(); }
3197          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3198 
3199          // If the CAS fails we can either retry or pass control to the slow-path.
3200          // We use the latter tactic.
3201          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3202          // If the CAS was successful ...
3203          //   Self has acquired the lock
3204          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3205          // Intentional fall-through into DONE_LABEL ...
3206       }
3207 
3208       // DONE_LABEL is a hot target - we'd really like to place it at the
3209       // start of cache line by padding with NOPs.
3210       // See the AMD and Intel software optimization manuals for the
3211       // most efficient "long" NOP encodings.
3212       // Unfortunately none of our alignment mechanisms suffice.
3213       masm.bind(DONE_LABEL);
3214 
3215       // Avoid branch-to-branch on AMD processors
3216       // This appears to be superstition.
3217       if (EmitSync & 32) masm.nop() ;
3218 
3219 
3220       // At DONE_LABEL the icc ZFlag is set as follows ...
3221       // Fast_Unlock uses the same protocol.
3222       // ZFlag == 1 -> Success
3223       // ZFlag == 0 -> Failure - force control through the slow-path
3224     }
3225   %}
3226 
3227   // obj: object to unlock
3228   // box: box address (displaced header location), killed.  Must be EAX.
3229   // rbx,: killed tmp; cannot be obj nor box.
3230   //
3231   // Some commentary on balanced locking:
3232   //
3233   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3234   // Methods that don't have provably balanced locking are forced to run in the
3235   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3236   // The interpreter provides two properties:
3237   // I1:  At return-time the interpreter automatically and quietly unlocks any
3238   //      objects acquired the current activation (frame).  Recall that the
3239   //      interpreter maintains an on-stack list of locks currently held by
3240   //      a frame.
3241   // I2:  If a method attempts to unlock an object that is not held by the
3242   //      the frame the interpreter throws IMSX.
3243   //
3244   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3245   // B() doesn't have provably balanced locking so it runs in the interpreter.
3246   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3247   // is still locked by A().
3248   //
3249   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3250   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3251   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3252   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3253 
3254   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3255 
3256     Register objReg = as_Register($obj$$reg);
3257     Register boxReg = as_Register($box$$reg);
3258     Register tmpReg = as_Register($tmp$$reg);
3259 
3260     guarantee (objReg != boxReg, "") ;
3261     guarantee (objReg != tmpReg, "") ;
3262     guarantee (boxReg != tmpReg, "") ;
3263     guarantee (boxReg == as_Register(EAX_enc), "") ;
3264     MacroAssembler masm(&cbuf);
3265 
3266     if (EmitSync & 4) {
3267       // Disable - inhibit all inlining.  Force control through the slow-path
3268       masm.cmpptr (rsp, 0) ; 
3269     } else 
3270     if (EmitSync & 8) {
3271       Label DONE_LABEL ;
3272       if (UseBiasedLocking) {
3273          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3274       }
3275       // classic stack-locking code ...
3276       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3277       masm.testptr(tmpReg, tmpReg) ;
3278       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3279       if (os::is_MP()) { masm.lock(); }
3280       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3281       masm.bind(DONE_LABEL);
3282     } else {
3283       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3284 
3285       // Critically, the biased locking test must have precedence over
3286       // and appear before the (box->dhw == 0) recursive stack-lock test.
3287       if (UseBiasedLocking && !UseOptoBiasInlining) {
3288          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3289       }
3290       
3291       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3292       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3293       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3294 
3295       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3296       masm.jccb  (Assembler::zero, Stacked) ;
3297 
3298       masm.bind  (Inflated) ;
3299       // It's inflated.
3300       // Despite our balanced locking property we still check that m->_owner == Self
3301       // as java routines or native JNI code called by this thread might
3302       // have released the lock.
3303       // Refer to the comments in synchronizer.cpp for how we might encode extra
3304       // state in _succ so we can avoid fetching EntryList|cxq.
3305       //
3306       // I'd like to add more cases in fast_lock() and fast_unlock() --
3307       // such as recursive enter and exit -- but we have to be wary of
3308       // I$ bloat, T$ effects and BP$ effects.
3309       //
3310       // If there's no contention try a 1-0 exit.  That is, exit without
3311       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3312       // we detect and recover from the race that the 1-0 exit admits.
3313       //
3314       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3315       // before it STs null into _owner, releasing the lock.  Updates
3316       // to data protected by the critical section must be visible before
3317       // we drop the lock (and thus before any other thread could acquire
3318       // the lock and observe the fields protected by the lock).
3319       // IA32's memory-model is SPO, so STs are ordered with respect to
3320       // each other and there's no need for an explicit barrier (fence).
3321       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3322 
3323       masm.get_thread (boxReg) ;
3324       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3325         // prefetchw [ebx + Offset(_owner)-2]
3326         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3327       }
3328 
3329       // Note that we could employ various encoding schemes to reduce
3330       // the number of loads below (currently 4) to just 2 or 3.
3331       // Refer to the comments in synchronizer.cpp.
3332       // In practice the chain of fetches doesn't seem to impact performance, however.
3333       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3334          // Attempt to reduce branch density - AMD's branch predictor.
3335          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3336          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3337          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3338          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3339          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3340          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3341          masm.jmpb  (DONE_LABEL) ; 
3342       } else { 
3343          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3344          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3345          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3346          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3347          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3348          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3349          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3350          masm.jmpb  (DONE_LABEL) ; 
3351       }
3352 
3353       // The Following code fragment (EmitSync & 65536) improves the performance of
3354       // contended applications and contended synchronization microbenchmarks.
3355       // Unfortunately the emission of the code - even though not executed - causes regressions
3356       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3357       // with an equal number of never-executed NOPs results in the same regression.
3358       // We leave it off by default.
3359 
3360       if ((EmitSync & 65536) != 0) {
3361          Label LSuccess, LGoSlowPath ;
3362 
3363          masm.bind  (CheckSucc) ;
3364 
3365          // Optional pre-test ... it's safe to elide this
3366          if ((EmitSync & 16) == 0) { 
3367             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3368             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3369          }
3370 
3371          // We have a classic Dekker-style idiom:
3372          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3373          // There are a number of ways to implement the barrier:
3374          // (1) lock:andl &m->_owner, 0
3375          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3376          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3377          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3378          // (2) If supported, an explicit MFENCE is appealing.
3379          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3380          //     particularly if the write-buffer is full as might be the case if
3381          //     if stores closely precede the fence or fence-equivalent instruction.
3382          //     In more modern implementations MFENCE appears faster, however.
3383          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3384          //     The $lines underlying the top-of-stack should be in M-state.
3385          //     The locked add instruction is serializing, of course.
3386          // (4) Use xchg, which is serializing
3387          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3388          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3389          //     The integer condition codes will tell us if succ was 0.
3390          //     Since _succ and _owner should reside in the same $line and
3391          //     we just stored into _owner, it's likely that the $line
3392          //     remains in M-state for the lock:orl.
3393          //
3394          // We currently use (3), although it's likely that switching to (2)
3395          // is correct for the future.
3396             
3397          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3398          if (os::is_MP()) { 
3399             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3400               masm.mfence();
3401             } else { 
3402               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3403             }
3404          }
3405          // Ratify _succ remains non-null
3406          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3407          masm.jccb  (Assembler::notZero, LSuccess) ; 
3408 
3409          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3410          if (os::is_MP()) { masm.lock(); }
3411          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3412          masm.jccb  (Assembler::notEqual, LSuccess) ;
3413          // Since we're low on registers we installed rsp as a placeholding in _owner.
3414          // Now install Self over rsp.  This is safe as we're transitioning from
3415          // non-null to non=null
3416          masm.get_thread (boxReg) ;
3417          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3418          // Intentional fall-through into LGoSlowPath ...
3419 
3420          masm.bind  (LGoSlowPath) ; 
3421          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3422          masm.jmpb  (DONE_LABEL) ; 
3423 
3424          masm.bind  (LSuccess) ; 
3425          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3426          masm.jmpb  (DONE_LABEL) ; 
3427       }
3428 
3429       masm.bind (Stacked) ;
3430       // It's not inflated and it's not recursively stack-locked and it's not biased.
3431       // It must be stack-locked.
3432       // Try to reset the header to displaced header.
3433       // The "box" value on the stack is stable, so we can reload
3434       // and be assured we observe the same value as above.
3435       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3436       if (os::is_MP()) {   masm.lock();    }
3437       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3438       // Intention fall-thru into DONE_LABEL
3439 
3440 
3441       // DONE_LABEL is a hot target - we'd really like to place it at the
3442       // start of cache line by padding with NOPs.
3443       // See the AMD and Intel software optimization manuals for the
3444       // most efficient "long" NOP encodings.
3445       // Unfortunately none of our alignment mechanisms suffice.
3446       if ((EmitSync & 65536) == 0) {
3447          masm.bind (CheckSucc) ;
3448       }
3449       masm.bind(DONE_LABEL);
3450 
3451       // Avoid branch to branch on AMD processors
3452       if (EmitSync & 32768) { masm.nop() ; }
3453     }
3454   %}
3455 
3456 
3457   enc_class enc_pop_rdx() %{
3458     emit_opcode(cbuf,0x5A);
3459   %}
3460 
3461   enc_class enc_rethrow() %{
3462     cbuf.set_insts_mark();
3463     emit_opcode(cbuf, 0xE9);        // jmp    entry
3464     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3465                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3466   %}
3467 
3468 
3469   // Convert a double to an int.  Java semantics require we do complex
3470   // manglelations in the corner cases.  So we set the rounding mode to
3471   // 'zero', store the darned double down as an int, and reset the
3472   // rounding mode to 'nearest'.  The hardware throws an exception which
3473   // patches up the correct value directly to the stack.
3474   enc_class DPR2I_encoding( regDPR src ) %{
3475     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3476     // exceptions here, so that a NAN or other corner-case value will
3477     // thrown an exception (but normal values get converted at full speed).
3478     // However, I2C adapters and other float-stack manglers leave pending
3479     // invalid-op exceptions hanging.  We would have to clear them before
3480     // enabling them and that is more expensive than just testing for the
3481     // invalid value Intel stores down in the corner cases.
3482     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3483     emit_opcode(cbuf,0x2D);
3484     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3485     // Allocate a word
3486     emit_opcode(cbuf,0x83);            // SUB ESP,4
3487     emit_opcode(cbuf,0xEC);
3488     emit_d8(cbuf,0x04);
3489     // Encoding assumes a double has been pushed into FPR0.
3490     // Store down the double as an int, popping the FPU stack
3491     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3492     emit_opcode(cbuf,0x1C);
3493     emit_d8(cbuf,0x24);
3494     // Restore the rounding mode; mask the exception
3495     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3496     emit_opcode(cbuf,0x2D);
3497     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3498         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3499         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3500 
3501     // Load the converted int; adjust CPU stack
3502     emit_opcode(cbuf,0x58);       // POP EAX
3503     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3504     emit_d32   (cbuf,0x80000000); //         0x80000000
3505     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3506     emit_d8    (cbuf,0x07);       // Size of slow_call
3507     // Push src onto stack slow-path
3508     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3509     emit_d8    (cbuf,0xC0-1+$src$$reg );
3510     // CALL directly to the runtime
3511     cbuf.set_insts_mark();
3512     emit_opcode(cbuf,0xE8);       // Call into runtime
3513     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3514     // Carry on here...
3515   %}
3516 
3517   enc_class DPR2L_encoding( regDPR src ) %{
3518     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3519     emit_opcode(cbuf,0x2D);
3520     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3521     // Allocate a word
3522     emit_opcode(cbuf,0x83);            // SUB ESP,8
3523     emit_opcode(cbuf,0xEC);
3524     emit_d8(cbuf,0x08);
3525     // Encoding assumes a double has been pushed into FPR0.
3526     // Store down the double as a long, popping the FPU stack
3527     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3528     emit_opcode(cbuf,0x3C);
3529     emit_d8(cbuf,0x24);
3530     // Restore the rounding mode; mask the exception
3531     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3532     emit_opcode(cbuf,0x2D);
3533     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3534         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3535         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3536 
3537     // Load the converted int; adjust CPU stack
3538     emit_opcode(cbuf,0x58);       // POP EAX
3539     emit_opcode(cbuf,0x5A);       // POP EDX
3540     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3541     emit_d8    (cbuf,0xFA);       // rdx
3542     emit_d32   (cbuf,0x80000000); //         0x80000000
3543     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3544     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3545     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3546     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3547     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3548     emit_d8    (cbuf,0x07);       // Size of slow_call
3549     // Push src onto stack slow-path
3550     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3551     emit_d8    (cbuf,0xC0-1+$src$$reg );
3552     // CALL directly to the runtime
3553     cbuf.set_insts_mark();
3554     emit_opcode(cbuf,0xE8);       // Call into runtime
3555     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3556     // Carry on here...
3557   %}
3558 
3559   enc_class FMul_ST_reg( eRegFPR src1 ) %{
3560     // Operand was loaded from memory into fp ST (stack top)
3561     // FMUL   ST,$src  /* D8 C8+i */
3562     emit_opcode(cbuf, 0xD8);
3563     emit_opcode(cbuf, 0xC8 + $src1$$reg);
3564   %}
3565 
3566   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3567     // FADDP  ST,src2  /* D8 C0+i */
3568     emit_opcode(cbuf, 0xD8);
3569     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3570     //could use FADDP  src2,fpST  /* DE C0+i */
3571   %}
3572 
3573   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3574     // FADDP  src2,ST  /* DE C0+i */
3575     emit_opcode(cbuf, 0xDE);
3576     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3577   %}
3578 
3579   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3580     // Operand has been loaded into fp ST (stack top)
3581       // FSUB   ST,$src1
3582       emit_opcode(cbuf, 0xD8);
3583       emit_opcode(cbuf, 0xE0 + $src1$$reg);
3584 
3585       // FDIV
3586       emit_opcode(cbuf, 0xD8);
3587       emit_opcode(cbuf, 0xF0 + $src2$$reg);
3588   %}
3589 
3590   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3591     // Operand was loaded from memory into fp ST (stack top)
3592     // FADD   ST,$src  /* D8 C0+i */
3593     emit_opcode(cbuf, 0xD8);
3594     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3595 
3596     // FMUL  ST,src2  /* D8 C*+i */
3597     emit_opcode(cbuf, 0xD8);
3598     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3599   %}
3600 
3601 
3602   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3603     // Operand was loaded from memory into fp ST (stack top)
3604     // FADD   ST,$src  /* D8 C0+i */
3605     emit_opcode(cbuf, 0xD8);
3606     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3607 
3608     // FMULP  src2,ST  /* DE C8+i */
3609     emit_opcode(cbuf, 0xDE);
3610     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3611   %}
3612 
3613   // Atomically load the volatile long
3614   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3615     emit_opcode(cbuf,0xDF);
3616     int rm_byte_opcode = 0x05;
3617     int base     = $mem$$base;
3618     int index    = $mem$$index;
3619     int scale    = $mem$$scale;
3620     int displace = $mem$$disp;
3621     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3622     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3623     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3624   %}
3625 
3626   // Volatile Store Long.  Must be atomic, so move it into
3627   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3628   // target address before the store (for null-ptr checks)
3629   // so the memory operand is used twice in the encoding.
3630   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3631     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3632     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3633     emit_opcode(cbuf,0xDF);
3634     int rm_byte_opcode = 0x07;
3635     int base     = $mem$$base;
3636     int index    = $mem$$index;
3637     int scale    = $mem$$scale;
3638     int displace = $mem$$disp;
3639     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3640     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3641   %}
3642 
3643   // Safepoint Poll.  This polls the safepoint page, and causes an
3644   // exception if it is not readable. Unfortunately, it kills the condition code
3645   // in the process
3646   // We current use TESTL [spp],EDI
3647   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3648 
3649   enc_class Safepoint_Poll() %{
3650     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3651     emit_opcode(cbuf,0x85);
3652     emit_rm (cbuf, 0x0, 0x7, 0x5);
3653     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3654   %}
3655 %}
3656 
3657 
3658 //----------FRAME--------------------------------------------------------------
3659 // Definition of frame structure and management information.
3660 //
3661 //  S T A C K   L A Y O U T    Allocators stack-slot number
3662 //                             |   (to get allocators register number
3663 //  G  Owned by    |        |  v    add OptoReg::stack0())
3664 //  r   CALLER     |        |
3665 //  o     |        +--------+      pad to even-align allocators stack-slot
3666 //  w     V        |  pad0  |        numbers; owned by CALLER
3667 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3668 //  h     ^        |   in   |  5
3669 //        |        |  args  |  4   Holes in incoming args owned by SELF
3670 //  |     |        |        |  3
3671 //  |     |        +--------+
3672 //  V     |        | old out|      Empty on Intel, window on Sparc
3673 //        |    old |preserve|      Must be even aligned.
3674 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3675 //        |        |   in   |  3   area for Intel ret address
3676 //     Owned by    |preserve|      Empty on Sparc.
3677 //       SELF      +--------+
3678 //        |        |  pad2  |  2   pad to align old SP
3679 //        |        +--------+  1
3680 //        |        | locks  |  0
3681 //        |        +--------+----> OptoReg::stack0(), even aligned
3682 //        |        |  pad1  | 11   pad to align new SP
3683 //        |        +--------+
3684 //        |        |        | 10
3685 //        |        | spills |  9   spills
3686 //        V        |        |  8   (pad0 slot for callee)
3687 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3688 //        ^        |  out   |  7
3689 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3690 //     Owned by    +--------+
3691 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3692 //        |    new |preserve|      Must be even-aligned.
3693 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3694 //        |        |        |
3695 //
3696 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3697 //         known from SELF's arguments and the Java calling convention.
3698 //         Region 6-7 is determined per call site.
3699 // Note 2: If the calling convention leaves holes in the incoming argument
3700 //         area, those holes are owned by SELF.  Holes in the outgoing area
3701 //         are owned by the CALLEE.  Holes should not be nessecary in the
3702 //         incoming area, as the Java calling convention is completely under
3703 //         the control of the AD file.  Doubles can be sorted and packed to
3704 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3705 //         varargs C calling conventions.
3706 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3707 //         even aligned with pad0 as needed.
3708 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3709 //         region 6-11 is even aligned; it may be padded out more so that
3710 //         the region from SP to FP meets the minimum stack alignment.
3711 
3712 frame %{
3713   // What direction does stack grow in (assumed to be same for C & Java)
3714   stack_direction(TOWARDS_LOW);
3715 
3716   // These three registers define part of the calling convention
3717   // between compiled code and the interpreter.
3718   inline_cache_reg(EAX);                // Inline Cache Register
3719   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3720 
3721   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3722   cisc_spilling_operand_name(indOffset32);
3723 
3724   // Number of stack slots consumed by locking an object
3725   sync_stack_slots(1);
3726 
3727   // Compiled code's Frame Pointer
3728   frame_pointer(ESP);
3729   // Interpreter stores its frame pointer in a register which is
3730   // stored to the stack by I2CAdaptors.
3731   // I2CAdaptors convert from interpreted java to compiled java.
3732   interpreter_frame_pointer(EBP);
3733 
3734   // Stack alignment requirement
3735   // Alignment size in bytes (128-bit -> 16 bytes)
3736   stack_alignment(StackAlignmentInBytes);
3737 
3738   // Number of stack slots between incoming argument block and the start of
3739   // a new frame.  The PROLOG must add this many slots to the stack.  The
3740   // EPILOG must remove this many slots.  Intel needs one slot for
3741   // return address and one for rbp, (must save rbp)
3742   in_preserve_stack_slots(2+VerifyStackAtCalls);
3743 
3744   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3745   // for calls to C.  Supports the var-args backing area for register parms.
3746   varargs_C_out_slots_killed(0);
3747 
3748   // The after-PROLOG location of the return address.  Location of
3749   // return address specifies a type (REG or STACK) and a number
3750   // representing the register number (i.e. - use a register name) or
3751   // stack slot.
3752   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3753   // Otherwise, it is above the locks and verification slot and alignment word
3754   return_addr(STACK - 1 +
3755               round_to((Compile::current()->in_preserve_stack_slots() +
3756                         Compile::current()->fixed_slots()),
3757                        stack_alignment_in_slots()));
3758 
3759   // Body of function which returns an integer array locating
3760   // arguments either in registers or in stack slots.  Passed an array
3761   // of ideal registers called "sig" and a "length" count.  Stack-slot
3762   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3763   // arguments for a CALLEE.  Incoming stack arguments are
3764   // automatically biased by the preserve_stack_slots field above.
3765   calling_convention %{
3766     // No difference between ingoing/outgoing just pass false
3767     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3768   %}
3769 
3770 
3771   // Body of function which returns an integer array locating
3772   // arguments either in registers or in stack slots.  Passed an array
3773   // of ideal registers called "sig" and a "length" count.  Stack-slot
3774   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3775   // arguments for a CALLEE.  Incoming stack arguments are
3776   // automatically biased by the preserve_stack_slots field above.
3777   c_calling_convention %{
3778     // This is obviously always outgoing
3779     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3780   %}
3781 
3782   // Location of C & interpreter return values
3783   c_return_value %{
3784     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3785     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3786     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3787 
3788     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3789     // that C functions return float and double results in XMM0.
3790     if( ideal_reg == Op_RegD && UseSSE>=2 )
3791       return OptoRegPair(XMM0b_num,XMM0_num);
3792     if( ideal_reg == Op_RegF && UseSSE>=2 )
3793       return OptoRegPair(OptoReg::Bad,XMM0_num);
3794 
3795     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3796   %}
3797 
3798   // Location of return values
3799   return_value %{
3800     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3801     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3802     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3803     if( ideal_reg == Op_RegD && UseSSE>=2 )
3804       return OptoRegPair(XMM0b_num,XMM0_num);
3805     if( ideal_reg == Op_RegF && UseSSE>=1 )
3806       return OptoRegPair(OptoReg::Bad,XMM0_num);
3807     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3808   %}
3809 
3810 %}
3811 
3812 //----------ATTRIBUTES---------------------------------------------------------
3813 //----------Operand Attributes-------------------------------------------------
3814 op_attrib op_cost(0);        // Required cost attribute
3815 
3816 //----------Instruction Attributes---------------------------------------------
3817 ins_attrib ins_cost(100);       // Required cost attribute
3818 ins_attrib ins_size(8);         // Required size attribute (in bits)
3819 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3820                                 // non-matching short branch variant of some
3821                                                             // long branch?
3822 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3823                                 // specifies the alignment that some part of the instruction (not
3824                                 // necessarily the start) requires.  If > 1, a compute_padding()
3825                                 // function must be provided for the instruction
3826 
3827 //----------OPERANDS-----------------------------------------------------------
3828 // Operand definitions must precede instruction definitions for correct parsing
3829 // in the ADLC because operands constitute user defined types which are used in
3830 // instruction definitions.
3831 
3832 //----------Simple Operands----------------------------------------------------
3833 // Immediate Operands
3834 // Integer Immediate
3835 operand immI() %{
3836   match(ConI);
3837 
3838   op_cost(10);
3839   format %{ %}
3840   interface(CONST_INTER);
3841 %}
3842 
3843 // Constant for test vs zero
3844 operand immI0() %{
3845   predicate(n->get_int() == 0);
3846   match(ConI);
3847 
3848   op_cost(0);
3849   format %{ %}
3850   interface(CONST_INTER);
3851 %}
3852 
3853 // Constant for increment
3854 operand immI1() %{
3855   predicate(n->get_int() == 1);
3856   match(ConI);
3857 
3858   op_cost(0);
3859   format %{ %}
3860   interface(CONST_INTER);
3861 %}
3862 
3863 // Constant for decrement
3864 operand immI_M1() %{
3865   predicate(n->get_int() == -1);
3866   match(ConI);
3867 
3868   op_cost(0);
3869   format %{ %}
3870   interface(CONST_INTER);
3871 %}
3872 
3873 // Valid scale values for addressing modes
3874 operand immI2() %{
3875   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3876   match(ConI);
3877 
3878   format %{ %}
3879   interface(CONST_INTER);
3880 %}
3881 
3882 operand immI8() %{
3883   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3884   match(ConI);
3885 
3886   op_cost(5);
3887   format %{ %}
3888   interface(CONST_INTER);
3889 %}
3890 
3891 operand immI16() %{
3892   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3893   match(ConI);
3894 
3895   op_cost(10);
3896   format %{ %}
3897   interface(CONST_INTER);
3898 %}
3899 
3900 // Int Immediate non-negative
3901 operand immU31()
3902 %{
3903   predicate(n->get_int() >= 0);
3904   match(ConI);
3905 
3906   op_cost(0);
3907   format %{ %}
3908   interface(CONST_INTER);
3909 %}
3910 
3911 // Constant for long shifts
3912 operand immI_32() %{
3913   predicate( n->get_int() == 32 );
3914   match(ConI);
3915 
3916   op_cost(0);
3917   format %{ %}
3918   interface(CONST_INTER);
3919 %}
3920 
3921 operand immI_1_31() %{
3922   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3923   match(ConI);
3924 
3925   op_cost(0);
3926   format %{ %}
3927   interface(CONST_INTER);
3928 %}
3929 
3930 operand immI_32_63() %{
3931   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3932   match(ConI);
3933   op_cost(0);
3934 
3935   format %{ %}
3936   interface(CONST_INTER);
3937 %}
3938 
3939 operand immI_1() %{
3940   predicate( n->get_int() == 1 );
3941   match(ConI);
3942 
3943   op_cost(0);
3944   format %{ %}
3945   interface(CONST_INTER);
3946 %}
3947 
3948 operand immI_2() %{
3949   predicate( n->get_int() == 2 );
3950   match(ConI);
3951 
3952   op_cost(0);
3953   format %{ %}
3954   interface(CONST_INTER);
3955 %}
3956 
3957 operand immI_3() %{
3958   predicate( n->get_int() == 3 );
3959   match(ConI);
3960 
3961   op_cost(0);
3962   format %{ %}
3963   interface(CONST_INTER);
3964 %}
3965 
3966 // Pointer Immediate
3967 operand immP() %{
3968   match(ConP);
3969 
3970   op_cost(10);
3971   format %{ %}
3972   interface(CONST_INTER);
3973 %}
3974 
3975 // NULL Pointer Immediate
3976 operand immP0() %{
3977   predicate( n->get_ptr() == 0 );
3978   match(ConP);
3979   op_cost(0);
3980 
3981   format %{ %}
3982   interface(CONST_INTER);
3983 %}
3984 
3985 // Long Immediate
3986 operand immL() %{
3987   match(ConL);
3988 
3989   op_cost(20);
3990   format %{ %}
3991   interface(CONST_INTER);
3992 %}
3993 
3994 // Long Immediate zero
3995 operand immL0() %{
3996   predicate( n->get_long() == 0L );
3997   match(ConL);
3998   op_cost(0);
3999 
4000   format %{ %}
4001   interface(CONST_INTER);
4002 %}
4003 
4004 // Long Immediate zero
4005 operand immL_M1() %{
4006   predicate( n->get_long() == -1L );
4007   match(ConL);
4008   op_cost(0);
4009 
4010   format %{ %}
4011   interface(CONST_INTER);
4012 %}
4013 
4014 // Long immediate from 0 to 127.
4015 // Used for a shorter form of long mul by 10.
4016 operand immL_127() %{
4017   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4018   match(ConL);
4019   op_cost(0);
4020 
4021   format %{ %}
4022   interface(CONST_INTER);
4023 %}
4024 
4025 // Long Immediate: low 32-bit mask
4026 operand immL_32bits() %{
4027   predicate(n->get_long() == 0xFFFFFFFFL);
4028   match(ConL);
4029   op_cost(0);
4030 
4031   format %{ %}
4032   interface(CONST_INTER);
4033 %}
4034 
4035 // Long Immediate: low 32-bit mask
4036 operand immL32() %{
4037   predicate(n->get_long() == (int)(n->get_long()));
4038   match(ConL);
4039   op_cost(20);
4040 
4041   format %{ %}
4042   interface(CONST_INTER);
4043 %}
4044 
4045 //Double Immediate zero
4046 operand immDPR0() %{
4047   // Do additional (and counter-intuitive) test against NaN to work around VC++
4048   // bug that generates code such that NaNs compare equal to 0.0
4049   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4050   match(ConD);
4051 
4052   op_cost(5);
4053   format %{ %}
4054   interface(CONST_INTER);
4055 %}
4056 
4057 // Double Immediate one
4058 operand immDPR1() %{
4059   predicate( UseSSE<=1 && n->getd() == 1.0 );
4060   match(ConD);
4061 
4062   op_cost(5);
4063   format %{ %}
4064   interface(CONST_INTER);
4065 %}
4066 
4067 // Double Immediate
4068 operand immDPR() %{
4069   predicate(UseSSE<=1);
4070   match(ConD);
4071 
4072   op_cost(5);
4073   format %{ %}
4074   interface(CONST_INTER);
4075 %}
4076 
4077 operand immD() %{
4078   predicate(UseSSE>=2);
4079   match(ConD);
4080 
4081   op_cost(5);
4082   format %{ %}
4083   interface(CONST_INTER);
4084 %}
4085 
4086 // Double Immediate zero
4087 operand immD0() %{
4088   // Do additional (and counter-intuitive) test against NaN to work around VC++
4089   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4090   // compare equal to -0.0.
4091   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4092   match(ConD);
4093 
4094   format %{ %}
4095   interface(CONST_INTER);
4096 %}
4097 
4098 // Float Immediate zero
4099 operand immFPR0() %{
4100   predicate(UseSSE == 0 && n->getf() == 0.0F);
4101   match(ConF);
4102 
4103   op_cost(5);
4104   format %{ %}
4105   interface(CONST_INTER);
4106 %}
4107 
4108 // Float Immediate one
4109 operand immFPR1() %{
4110   predicate(UseSSE == 0 && n->getf() == 1.0F);
4111   match(ConF);
4112 
4113   op_cost(5);
4114   format %{ %}
4115   interface(CONST_INTER);
4116 %}
4117 
4118 // Float Immediate
4119 operand immFPR() %{
4120   predicate( UseSSE == 0 );
4121   match(ConF);
4122 
4123   op_cost(5);
4124   format %{ %}
4125   interface(CONST_INTER);
4126 %}
4127 
4128 // Float Immediate
4129 operand immF() %{
4130   predicate(UseSSE >= 1);
4131   match(ConF);
4132 
4133   op_cost(5);
4134   format %{ %}
4135   interface(CONST_INTER);
4136 %}
4137 
4138 // Float Immediate zero.  Zero and not -0.0
4139 operand immF0() %{
4140   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4141   match(ConF);
4142 
4143   op_cost(5);
4144   format %{ %}
4145   interface(CONST_INTER);
4146 %}
4147 
4148 // Immediates for special shifts (sign extend)
4149 
4150 // Constants for increment
4151 operand immI_16() %{
4152   predicate( n->get_int() == 16 );
4153   match(ConI);
4154 
4155   format %{ %}
4156   interface(CONST_INTER);
4157 %}
4158 
4159 operand immI_24() %{
4160   predicate( n->get_int() == 24 );
4161   match(ConI);
4162 
4163   format %{ %}
4164   interface(CONST_INTER);
4165 %}
4166 
4167 // Constant for byte-wide masking
4168 operand immI_255() %{
4169   predicate( n->get_int() == 255 );
4170   match(ConI);
4171 
4172   format %{ %}
4173   interface(CONST_INTER);
4174 %}
4175 
4176 // Constant for short-wide masking
4177 operand immI_65535() %{
4178   predicate(n->get_int() == 65535);
4179   match(ConI);
4180 
4181   format %{ %}
4182   interface(CONST_INTER);
4183 %}
4184 
4185 // Register Operands
4186 // Integer Register
4187 operand rRegI() %{
4188   constraint(ALLOC_IN_RC(int_reg));
4189   match(RegI);
4190   match(xRegI);
4191   match(eAXRegI);
4192   match(eBXRegI);
4193   match(eCXRegI);
4194   match(eDXRegI);
4195   match(eDIRegI);
4196   match(eSIRegI);
4197 
4198   format %{ %}
4199   interface(REG_INTER);
4200 %}
4201 
4202 // Subset of Integer Register
4203 operand xRegI(rRegI reg) %{
4204   constraint(ALLOC_IN_RC(int_x_reg));
4205   match(reg);
4206   match(eAXRegI);
4207   match(eBXRegI);
4208   match(eCXRegI);
4209   match(eDXRegI);
4210 
4211   format %{ %}
4212   interface(REG_INTER);
4213 %}
4214 
4215 // Special Registers
4216 operand eAXRegI(xRegI reg) %{
4217   constraint(ALLOC_IN_RC(eax_reg));
4218   match(reg);
4219   match(rRegI);
4220 
4221   format %{ "EAX" %}
4222   interface(REG_INTER);
4223 %}
4224 
4225 // Special Registers
4226 operand eBXRegI(xRegI reg) %{
4227   constraint(ALLOC_IN_RC(ebx_reg));
4228   match(reg);
4229   match(rRegI);
4230 
4231   format %{ "EBX" %}
4232   interface(REG_INTER);
4233 %}
4234 
4235 operand eCXRegI(xRegI reg) %{
4236   constraint(ALLOC_IN_RC(ecx_reg));
4237   match(reg);
4238   match(rRegI);
4239 
4240   format %{ "ECX" %}
4241   interface(REG_INTER);
4242 %}
4243 
4244 operand eDXRegI(xRegI reg) %{
4245   constraint(ALLOC_IN_RC(edx_reg));
4246   match(reg);
4247   match(rRegI);
4248 
4249   format %{ "EDX" %}
4250   interface(REG_INTER);
4251 %}
4252 
4253 operand eDIRegI(xRegI reg) %{
4254   constraint(ALLOC_IN_RC(edi_reg));
4255   match(reg);
4256   match(rRegI);
4257 
4258   format %{ "EDI" %}
4259   interface(REG_INTER);
4260 %}
4261 
4262 operand naxRegI() %{
4263   constraint(ALLOC_IN_RC(nax_reg));
4264   match(RegI);
4265   match(eCXRegI);
4266   match(eDXRegI);
4267   match(eSIRegI);
4268   match(eDIRegI);
4269 
4270   format %{ %}
4271   interface(REG_INTER);
4272 %}
4273 
4274 operand nadxRegI() %{
4275   constraint(ALLOC_IN_RC(nadx_reg));
4276   match(RegI);
4277   match(eBXRegI);
4278   match(eCXRegI);
4279   match(eSIRegI);
4280   match(eDIRegI);
4281 
4282   format %{ %}
4283   interface(REG_INTER);
4284 %}
4285 
4286 operand ncxRegI() %{
4287   constraint(ALLOC_IN_RC(ncx_reg));
4288   match(RegI);
4289   match(eAXRegI);
4290   match(eDXRegI);
4291   match(eSIRegI);
4292   match(eDIRegI);
4293 
4294   format %{ %}
4295   interface(REG_INTER);
4296 %}
4297 
4298 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4299 // //
4300 operand eSIRegI(xRegI reg) %{
4301    constraint(ALLOC_IN_RC(esi_reg));
4302    match(reg);
4303    match(rRegI);
4304 
4305    format %{ "ESI" %}
4306    interface(REG_INTER);
4307 %}
4308 
4309 // Pointer Register
4310 operand anyRegP() %{
4311   constraint(ALLOC_IN_RC(any_reg));
4312   match(RegP);
4313   match(eAXRegP);
4314   match(eBXRegP);
4315   match(eCXRegP);
4316   match(eDIRegP);
4317   match(eRegP);
4318 
4319   format %{ %}
4320   interface(REG_INTER);
4321 %}
4322 
4323 operand eRegP() %{
4324   constraint(ALLOC_IN_RC(int_reg));
4325   match(RegP);
4326   match(eAXRegP);
4327   match(eBXRegP);
4328   match(eCXRegP);
4329   match(eDIRegP);
4330 
4331   format %{ %}
4332   interface(REG_INTER);
4333 %}
4334 
4335 // On windows95, EBP is not safe to use for implicit null tests.
4336 operand eRegP_no_EBP() %{
4337   constraint(ALLOC_IN_RC(int_reg_no_rbp));
4338   match(RegP);
4339   match(eAXRegP);
4340   match(eBXRegP);
4341   match(eCXRegP);
4342   match(eDIRegP);
4343 
4344   op_cost(100);
4345   format %{ %}
4346   interface(REG_INTER);
4347 %}
4348 
4349 operand naxRegP() %{
4350   constraint(ALLOC_IN_RC(nax_reg));
4351   match(RegP);
4352   match(eBXRegP);
4353   match(eDXRegP);
4354   match(eCXRegP);
4355   match(eSIRegP);
4356   match(eDIRegP);
4357 
4358   format %{ %}
4359   interface(REG_INTER);
4360 %}
4361 
4362 operand nabxRegP() %{
4363   constraint(ALLOC_IN_RC(nabx_reg));
4364   match(RegP);
4365   match(eCXRegP);
4366   match(eDXRegP);
4367   match(eSIRegP);
4368   match(eDIRegP);
4369 
4370   format %{ %}
4371   interface(REG_INTER);
4372 %}
4373 
4374 operand pRegP() %{
4375   constraint(ALLOC_IN_RC(p_reg));
4376   match(RegP);
4377   match(eBXRegP);
4378   match(eDXRegP);
4379   match(eSIRegP);
4380   match(eDIRegP);
4381 
4382   format %{ %}
4383   interface(REG_INTER);
4384 %}
4385 
4386 // Special Registers
4387 // Return a pointer value
4388 operand eAXRegP(eRegP reg) %{
4389   constraint(ALLOC_IN_RC(eax_reg));
4390   match(reg);
4391   format %{ "EAX" %}
4392   interface(REG_INTER);
4393 %}
4394 
4395 // Used in AtomicAdd
4396 operand eBXRegP(eRegP reg) %{
4397   constraint(ALLOC_IN_RC(ebx_reg));
4398   match(reg);
4399   format %{ "EBX" %}
4400   interface(REG_INTER);
4401 %}
4402 
4403 // Tail-call (interprocedural jump) to interpreter
4404 operand eCXRegP(eRegP reg) %{
4405   constraint(ALLOC_IN_RC(ecx_reg));
4406   match(reg);
4407   format %{ "ECX" %}
4408   interface(REG_INTER);
4409 %}
4410 
4411 operand eSIRegP(eRegP reg) %{
4412   constraint(ALLOC_IN_RC(esi_reg));
4413   match(reg);
4414   format %{ "ESI" %}
4415   interface(REG_INTER);
4416 %}
4417 
4418 // Used in rep stosw
4419 operand eDIRegP(eRegP reg) %{
4420   constraint(ALLOC_IN_RC(edi_reg));
4421   match(reg);
4422   format %{ "EDI" %}
4423   interface(REG_INTER);
4424 %}
4425 
4426 operand eBPRegP() %{
4427   constraint(ALLOC_IN_RC(ebp_reg));
4428   match(RegP);
4429   format %{ "EBP" %}
4430   interface(REG_INTER);
4431 %}
4432 
4433 operand eRegL() %{
4434   constraint(ALLOC_IN_RC(long_reg));
4435   match(RegL);
4436   match(eADXRegL);
4437 
4438   format %{ %}
4439   interface(REG_INTER);
4440 %}
4441 
4442 operand eADXRegL( eRegL reg ) %{
4443   constraint(ALLOC_IN_RC(eadx_reg));
4444   match(reg);
4445 
4446   format %{ "EDX:EAX" %}
4447   interface(REG_INTER);
4448 %}
4449 
4450 operand eBCXRegL( eRegL reg ) %{
4451   constraint(ALLOC_IN_RC(ebcx_reg));
4452   match(reg);
4453 
4454   format %{ "EBX:ECX" %}
4455   interface(REG_INTER);
4456 %}
4457 
4458 // Special case for integer high multiply
4459 operand eADXRegL_low_only() %{
4460   constraint(ALLOC_IN_RC(eadx_reg));
4461   match(RegL);
4462 
4463   format %{ "EAX" %}
4464   interface(REG_INTER);
4465 %}
4466 
4467 // Flags register, used as output of compare instructions
4468 operand eFlagsReg() %{
4469   constraint(ALLOC_IN_RC(int_flags));
4470   match(RegFlags);
4471 
4472   format %{ "EFLAGS" %}
4473   interface(REG_INTER);
4474 %}
4475 
4476 // Flags register, used as output of FLOATING POINT compare instructions
4477 operand eFlagsRegU() %{
4478   constraint(ALLOC_IN_RC(int_flags));
4479   match(RegFlags);
4480 
4481   format %{ "EFLAGS_U" %}
4482   interface(REG_INTER);
4483 %}
4484 
4485 operand eFlagsRegUCF() %{
4486   constraint(ALLOC_IN_RC(int_flags));
4487   match(RegFlags);
4488   predicate(false);
4489 
4490   format %{ "EFLAGS_U_CF" %}
4491   interface(REG_INTER);
4492 %}
4493 
4494 // Condition Code Register used by long compare
4495 operand flagsReg_long_LTGE() %{
4496   constraint(ALLOC_IN_RC(int_flags));
4497   match(RegFlags);
4498   format %{ "FLAGS_LTGE" %}
4499   interface(REG_INTER);
4500 %}
4501 operand flagsReg_long_EQNE() %{
4502   constraint(ALLOC_IN_RC(int_flags));
4503   match(RegFlags);
4504   format %{ "FLAGS_EQNE" %}
4505   interface(REG_INTER);
4506 %}
4507 operand flagsReg_long_LEGT() %{
4508   constraint(ALLOC_IN_RC(int_flags));
4509   match(RegFlags);
4510   format %{ "FLAGS_LEGT" %}
4511   interface(REG_INTER);
4512 %}
4513 
4514 // Float register operands
4515 operand regDPR() %{
4516   predicate( UseSSE < 2 );
4517   constraint(ALLOC_IN_RC(fp_dbl_reg));
4518   match(RegD);
4519   match(regDPR1);
4520   match(regDPR2);
4521   format %{ %}
4522   interface(REG_INTER);
4523 %}
4524 
4525 operand regDPR1(regDPR reg) %{
4526   predicate( UseSSE < 2 );
4527   constraint(ALLOC_IN_RC(fp_dbl_reg0));
4528   match(reg);
4529   format %{ "FPR1" %}
4530   interface(REG_INTER);
4531 %}
4532 
4533 operand regDPR2(regDPR reg) %{
4534   predicate( UseSSE < 2 );
4535   constraint(ALLOC_IN_RC(fp_dbl_reg1));
4536   match(reg);
4537   format %{ "FPR2" %}
4538   interface(REG_INTER);
4539 %}
4540 
4541 operand regnotDPR1(regDPR reg) %{
4542   predicate( UseSSE < 2 );
4543   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
4544   match(reg);
4545   format %{ %}
4546   interface(REG_INTER);
4547 %}
4548 
4549 // Float register operands
4550 operand regFPR() %{
4551   predicate( UseSSE < 2 );
4552   constraint(ALLOC_IN_RC(fp_flt_reg));
4553   match(RegF);
4554   match(regFPR1);
4555   format %{ %}
4556   interface(REG_INTER);
4557 %}
4558 
4559 // Float register operands
4560 operand regFPR1(regFPR reg) %{
4561   predicate( UseSSE < 2 );
4562   constraint(ALLOC_IN_RC(fp_flt_reg0));
4563   match(reg);
4564   format %{ "FPR1" %}
4565   interface(REG_INTER);
4566 %}
4567 
4568 // XMM Float register operands
4569 operand regF() %{
4570   predicate( UseSSE>=1 );
4571   constraint(ALLOC_IN_RC(float_reg));
4572   match(RegF);
4573   format %{ %}
4574   interface(REG_INTER);
4575 %}
4576 
4577 // XMM Double register operands
4578 operand regD() %{
4579   predicate( UseSSE>=2 );
4580   constraint(ALLOC_IN_RC(double_reg));
4581   match(RegD);
4582   format %{ %}
4583   interface(REG_INTER);
4584 %}
4585 
4586 
4587 //----------Memory Operands----------------------------------------------------
4588 // Direct Memory Operand
4589 operand direct(immP addr) %{
4590   match(addr);
4591 
4592   format %{ "[$addr]" %}
4593   interface(MEMORY_INTER) %{
4594     base(0xFFFFFFFF);
4595     index(0x4);
4596     scale(0x0);
4597     disp($addr);
4598   %}
4599 %}
4600 
4601 // Indirect Memory Operand
4602 operand indirect(eRegP reg) %{
4603   constraint(ALLOC_IN_RC(int_reg));
4604   match(reg);
4605 
4606   format %{ "[$reg]" %}
4607   interface(MEMORY_INTER) %{
4608     base($reg);
4609     index(0x4);
4610     scale(0x0);
4611     disp(0x0);
4612   %}
4613 %}
4614 
4615 // Indirect Memory Plus Short Offset Operand
4616 operand indOffset8(eRegP reg, immI8 off) %{
4617   match(AddP reg off);
4618 
4619   format %{ "[$reg + $off]" %}
4620   interface(MEMORY_INTER) %{
4621     base($reg);
4622     index(0x4);
4623     scale(0x0);
4624     disp($off);
4625   %}
4626 %}
4627 
4628 // Indirect Memory Plus Long Offset Operand
4629 operand indOffset32(eRegP reg, immI off) %{
4630   match(AddP reg off);
4631 
4632   format %{ "[$reg + $off]" %}
4633   interface(MEMORY_INTER) %{
4634     base($reg);
4635     index(0x4);
4636     scale(0x0);
4637     disp($off);
4638   %}
4639 %}
4640 
4641 // Indirect Memory Plus Long Offset Operand
4642 operand indOffset32X(rRegI reg, immP off) %{
4643   match(AddP off reg);
4644 
4645   format %{ "[$reg + $off]" %}
4646   interface(MEMORY_INTER) %{
4647     base($reg);
4648     index(0x4);
4649     scale(0x0);
4650     disp($off);
4651   %}
4652 %}
4653 
4654 // Indirect Memory Plus Index Register Plus Offset Operand
4655 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4656   match(AddP (AddP reg ireg) off);
4657 
4658   op_cost(10);
4659   format %{"[$reg + $off + $ireg]" %}
4660   interface(MEMORY_INTER) %{
4661     base($reg);
4662     index($ireg);
4663     scale(0x0);
4664     disp($off);
4665   %}
4666 %}
4667 
4668 // Indirect Memory Plus Index Register Plus Offset Operand
4669 operand indIndex(eRegP reg, rRegI ireg) %{
4670   match(AddP reg ireg);
4671 
4672   op_cost(10);
4673   format %{"[$reg + $ireg]" %}
4674   interface(MEMORY_INTER) %{
4675     base($reg);
4676     index($ireg);
4677     scale(0x0);
4678     disp(0x0);
4679   %}
4680 %}
4681 
4682 // // -------------------------------------------------------------------------
4683 // // 486 architecture doesn't support "scale * index + offset" with out a base
4684 // // -------------------------------------------------------------------------
4685 // // Scaled Memory Operands
4686 // // Indirect Memory Times Scale Plus Offset Operand
4687 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4688 //   match(AddP off (LShiftI ireg scale));
4689 //
4690 //   op_cost(10);
4691 //   format %{"[$off + $ireg << $scale]" %}
4692 //   interface(MEMORY_INTER) %{
4693 //     base(0x4);
4694 //     index($ireg);
4695 //     scale($scale);
4696 //     disp($off);
4697 //   %}
4698 // %}
4699 
4700 // Indirect Memory Times Scale Plus Index Register
4701 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4702   match(AddP reg (LShiftI ireg scale));
4703 
4704   op_cost(10);
4705   format %{"[$reg + $ireg << $scale]" %}
4706   interface(MEMORY_INTER) %{
4707     base($reg);
4708     index($ireg);
4709     scale($scale);
4710     disp(0x0);
4711   %}
4712 %}
4713 
4714 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4715 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4716   match(AddP (AddP reg (LShiftI ireg scale)) off);
4717 
4718   op_cost(10);
4719   format %{"[$reg + $off + $ireg << $scale]" %}
4720   interface(MEMORY_INTER) %{
4721     base($reg);
4722     index($ireg);
4723     scale($scale);
4724     disp($off);
4725   %}
4726 %}
4727 
4728 //----------Load Long Memory Operands------------------------------------------
4729 // The load-long idiom will use it's address expression again after loading
4730 // the first word of the long.  If the load-long destination overlaps with
4731 // registers used in the addressing expression, the 2nd half will be loaded
4732 // from a clobbered address.  Fix this by requiring that load-long use
4733 // address registers that do not overlap with the load-long target.
4734 
4735 // load-long support
4736 operand load_long_RegP() %{
4737   constraint(ALLOC_IN_RC(esi_reg));
4738   match(RegP);
4739   match(eSIRegP);
4740   op_cost(100);
4741   format %{  %}
4742   interface(REG_INTER);
4743 %}
4744 
4745 // Indirect Memory Operand Long
4746 operand load_long_indirect(load_long_RegP reg) %{
4747   constraint(ALLOC_IN_RC(esi_reg));
4748   match(reg);
4749 
4750   format %{ "[$reg]" %}
4751   interface(MEMORY_INTER) %{
4752     base($reg);
4753     index(0x4);
4754     scale(0x0);
4755     disp(0x0);
4756   %}
4757 %}
4758 
4759 // Indirect Memory Plus Long Offset Operand
4760 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4761   match(AddP reg off);
4762 
4763   format %{ "[$reg + $off]" %}
4764   interface(MEMORY_INTER) %{
4765     base($reg);
4766     index(0x4);
4767     scale(0x0);
4768     disp($off);
4769   %}
4770 %}
4771 
4772 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4773 
4774 
4775 //----------Special Memory Operands--------------------------------------------
4776 // Stack Slot Operand - This operand is used for loading and storing temporary
4777 //                      values on the stack where a match requires a value to
4778 //                      flow through memory.
4779 operand stackSlotP(sRegP reg) %{
4780   constraint(ALLOC_IN_RC(stack_slots));
4781   // No match rule because this operand is only generated in matching
4782   format %{ "[$reg]" %}
4783   interface(MEMORY_INTER) %{
4784     base(0x4);   // ESP
4785     index(0x4);  // No Index
4786     scale(0x0);  // No Scale
4787     disp($reg);  // Stack Offset
4788   %}
4789 %}
4790 
4791 operand stackSlotI(sRegI reg) %{
4792   constraint(ALLOC_IN_RC(stack_slots));
4793   // No match rule because this operand is only generated in matching
4794   format %{ "[$reg]" %}
4795   interface(MEMORY_INTER) %{
4796     base(0x4);   // ESP
4797     index(0x4);  // No Index
4798     scale(0x0);  // No Scale
4799     disp($reg);  // Stack Offset
4800   %}
4801 %}
4802 
4803 operand stackSlotF(sRegF reg) %{
4804   constraint(ALLOC_IN_RC(stack_slots));
4805   // No match rule because this operand is only generated in matching
4806   format %{ "[$reg]" %}
4807   interface(MEMORY_INTER) %{
4808     base(0x4);   // ESP
4809     index(0x4);  // No Index
4810     scale(0x0);  // No Scale
4811     disp($reg);  // Stack Offset
4812   %}
4813 %}
4814 
4815 operand stackSlotD(sRegD reg) %{
4816   constraint(ALLOC_IN_RC(stack_slots));
4817   // No match rule because this operand is only generated in matching
4818   format %{ "[$reg]" %}
4819   interface(MEMORY_INTER) %{
4820     base(0x4);   // ESP
4821     index(0x4);  // No Index
4822     scale(0x0);  // No Scale
4823     disp($reg);  // Stack Offset
4824   %}
4825 %}
4826 
4827 operand stackSlotL(sRegL reg) %{
4828   constraint(ALLOC_IN_RC(stack_slots));
4829   // No match rule because this operand is only generated in matching
4830   format %{ "[$reg]" %}
4831   interface(MEMORY_INTER) %{
4832     base(0x4);   // ESP
4833     index(0x4);  // No Index
4834     scale(0x0);  // No Scale
4835     disp($reg);  // Stack Offset
4836   %}
4837 %}
4838 
4839 //----------Memory Operands - Win95 Implicit Null Variants----------------
4840 // Indirect Memory Operand
4841 operand indirect_win95_safe(eRegP_no_EBP reg)
4842 %{
4843   constraint(ALLOC_IN_RC(int_reg));
4844   match(reg);
4845 
4846   op_cost(100);
4847   format %{ "[$reg]" %}
4848   interface(MEMORY_INTER) %{
4849     base($reg);
4850     index(0x4);
4851     scale(0x0);
4852     disp(0x0);
4853   %}
4854 %}
4855 
4856 // Indirect Memory Plus Short Offset Operand
4857 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4858 %{
4859   match(AddP reg off);
4860 
4861   op_cost(100);
4862   format %{ "[$reg + $off]" %}
4863   interface(MEMORY_INTER) %{
4864     base($reg);
4865     index(0x4);
4866     scale(0x0);
4867     disp($off);
4868   %}
4869 %}
4870 
4871 // Indirect Memory Plus Long Offset Operand
4872 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4873 %{
4874   match(AddP reg off);
4875 
4876   op_cost(100);
4877   format %{ "[$reg + $off]" %}
4878   interface(MEMORY_INTER) %{
4879     base($reg);
4880     index(0x4);
4881     scale(0x0);
4882     disp($off);
4883   %}
4884 %}
4885 
4886 // Indirect Memory Plus Index Register Plus Offset Operand
4887 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4888 %{
4889   match(AddP (AddP reg ireg) off);
4890 
4891   op_cost(100);
4892   format %{"[$reg + $off + $ireg]" %}
4893   interface(MEMORY_INTER) %{
4894     base($reg);
4895     index($ireg);
4896     scale(0x0);
4897     disp($off);
4898   %}
4899 %}
4900 
4901 // Indirect Memory Times Scale Plus Index Register
4902 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4903 %{
4904   match(AddP reg (LShiftI ireg scale));
4905 
4906   op_cost(100);
4907   format %{"[$reg + $ireg << $scale]" %}
4908   interface(MEMORY_INTER) %{
4909     base($reg);
4910     index($ireg);
4911     scale($scale);
4912     disp(0x0);
4913   %}
4914 %}
4915 
4916 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4917 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4918 %{
4919   match(AddP (AddP reg (LShiftI ireg scale)) off);
4920 
4921   op_cost(100);
4922   format %{"[$reg + $off + $ireg << $scale]" %}
4923   interface(MEMORY_INTER) %{
4924     base($reg);
4925     index($ireg);
4926     scale($scale);
4927     disp($off);
4928   %}
4929 %}
4930 
4931 //----------Conditional Branch Operands----------------------------------------
4932 // Comparison Op  - This is the operation of the comparison, and is limited to
4933 //                  the following set of codes:
4934 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4935 //
4936 // Other attributes of the comparison, such as unsignedness, are specified
4937 // by the comparison instruction that sets a condition code flags register.
4938 // That result is represented by a flags operand whose subtype is appropriate
4939 // to the unsignedness (etc.) of the comparison.
4940 //
4941 // Later, the instruction which matches both the Comparison Op (a Bool) and
4942 // the flags (produced by the Cmp) specifies the coding of the comparison op
4943 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4944 
4945 // Comparision Code
4946 operand cmpOp() %{
4947   match(Bool);
4948 
4949   format %{ "" %}
4950   interface(COND_INTER) %{
4951     equal(0x4, "e");
4952     not_equal(0x5, "ne");
4953     less(0xC, "l");
4954     greater_equal(0xD, "ge");
4955     less_equal(0xE, "le");
4956     greater(0xF, "g");
4957     overflow(0x0, "o");
4958     no_overflow(0x1, "no");
4959   %}
4960 %}
4961 
4962 // Comparison Code, unsigned compare.  Used by FP also, with
4963 // C2 (unordered) turned into GT or LT already.  The other bits
4964 // C0 and C3 are turned into Carry & Zero flags.
4965 operand cmpOpU() %{
4966   match(Bool);
4967 
4968   format %{ "" %}
4969   interface(COND_INTER) %{
4970     equal(0x4, "e");
4971     not_equal(0x5, "ne");
4972     less(0x2, "b");
4973     greater_equal(0x3, "nb");
4974     less_equal(0x6, "be");
4975     greater(0x7, "nbe");
4976     overflow(0x0, "o");
4977     no_overflow(0x1, "no");
4978   %}
4979 %}
4980 
4981 // Floating comparisons that don't require any fixup for the unordered case
4982 operand cmpOpUCF() %{
4983   match(Bool);
4984   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4985             n->as_Bool()->_test._test == BoolTest::ge ||
4986             n->as_Bool()->_test._test == BoolTest::le ||
4987             n->as_Bool()->_test._test == BoolTest::gt);
4988   format %{ "" %}
4989   interface(COND_INTER) %{
4990     equal(0x4, "e");
4991     not_equal(0x5, "ne");
4992     less(0x2, "b");
4993     greater_equal(0x3, "nb");
4994     less_equal(0x6, "be");
4995     greater(0x7, "nbe");
4996     overflow(0x0, "o");
4997     no_overflow(0x1, "no");
4998   %}
4999 %}
5000 
5001 
5002 // Floating comparisons that can be fixed up with extra conditional jumps
5003 operand cmpOpUCF2() %{
5004   match(Bool);
5005   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5006             n->as_Bool()->_test._test == BoolTest::eq);
5007   format %{ "" %}
5008   interface(COND_INTER) %{
5009     equal(0x4, "e");
5010     not_equal(0x5, "ne");
5011     less(0x2, "b");
5012     greater_equal(0x3, "nb");
5013     less_equal(0x6, "be");
5014     greater(0x7, "nbe");
5015     overflow(0x0, "o");
5016     no_overflow(0x1, "no");
5017   %}
5018 %}
5019 
5020 // Comparison Code for FP conditional move
5021 operand cmpOp_fcmov() %{
5022   match(Bool);
5023 
5024   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
5025             n->as_Bool()->_test._test != BoolTest::no_overflow);
5026   format %{ "" %}
5027   interface(COND_INTER) %{
5028     equal        (0x0C8);
5029     not_equal    (0x1C8);
5030     less         (0x0C0);
5031     greater_equal(0x1C0);
5032     less_equal   (0x0D0);
5033     greater      (0x1D0);
5034     overflow(0x0, "o"); // not really supported by the instruction
5035     no_overflow(0x1, "no"); // not really supported by the instruction
5036   %}
5037 %}
5038 
5039 // Comparision Code used in long compares
5040 operand cmpOp_commute() %{
5041   match(Bool);
5042 
5043   format %{ "" %}
5044   interface(COND_INTER) %{
5045     equal(0x4, "e");
5046     not_equal(0x5, "ne");
5047     less(0xF, "g");
5048     greater_equal(0xE, "le");
5049     less_equal(0xD, "ge");
5050     greater(0xC, "l");
5051     overflow(0x0, "o");
5052     no_overflow(0x1, "no");
5053   %}
5054 %}
5055 
5056 //----------OPERAND CLASSES----------------------------------------------------
5057 // Operand Classes are groups of operands that are used as to simplify
5058 // instruction definitions by not requiring the AD writer to specify separate
5059 // instructions for every form of operand when the instruction accepts
5060 // multiple operand types with the same basic encoding and format.  The classic
5061 // case of this is memory operands.
5062 
5063 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5064                indIndex, indIndexScale, indIndexScaleOffset);
5065 
5066 // Long memory operations are encoded in 2 instructions and a +4 offset.
5067 // This means some kind of offset is always required and you cannot use
5068 // an oop as the offset (done when working on static globals).
5069 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5070                     indIndex, indIndexScale, indIndexScaleOffset);
5071 
5072 
5073 //----------PIPELINE-----------------------------------------------------------
5074 // Rules which define the behavior of the target architectures pipeline.
5075 pipeline %{
5076 
5077 //----------ATTRIBUTES---------------------------------------------------------
5078 attributes %{
5079   variable_size_instructions;        // Fixed size instructions
5080   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5081   instruction_unit_size = 1;         // An instruction is 1 bytes long
5082   instruction_fetch_unit_size = 16;  // The processor fetches one line
5083   instruction_fetch_units = 1;       // of 16 bytes
5084 
5085   // List of nop instructions
5086   nops( MachNop );
5087 %}
5088 
5089 //----------RESOURCES----------------------------------------------------------
5090 // Resources are the functional units available to the machine
5091 
5092 // Generic P2/P3 pipeline
5093 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5094 // 3 instructions decoded per cycle.
5095 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5096 // 2 ALU op, only ALU0 handles mul/div instructions.
5097 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5098            MS0, MS1, MEM = MS0 | MS1,
5099            BR, FPU,
5100            ALU0, ALU1, ALU = ALU0 | ALU1 );
5101 
5102 //----------PIPELINE DESCRIPTION-----------------------------------------------
5103 // Pipeline Description specifies the stages in the machine's pipeline
5104 
5105 // Generic P2/P3 pipeline
5106 pipe_desc(S0, S1, S2, S3, S4, S5);
5107 
5108 //----------PIPELINE CLASSES---------------------------------------------------
5109 // Pipeline Classes describe the stages in which input and output are
5110 // referenced by the hardware pipeline.
5111 
5112 // Naming convention: ialu or fpu
5113 // Then: _reg
5114 // Then: _reg if there is a 2nd register
5115 // Then: _long if it's a pair of instructions implementing a long
5116 // Then: _fat if it requires the big decoder
5117 //   Or: _mem if it requires the big decoder and a memory unit.
5118 
5119 // Integer ALU reg operation
5120 pipe_class ialu_reg(rRegI dst) %{
5121     single_instruction;
5122     dst    : S4(write);
5123     dst    : S3(read);
5124     DECODE : S0;        // any decoder
5125     ALU    : S3;        // any alu
5126 %}
5127 
5128 // Long ALU reg operation
5129 pipe_class ialu_reg_long(eRegL dst) %{
5130     instruction_count(2);
5131     dst    : S4(write);
5132     dst    : S3(read);
5133     DECODE : S0(2);     // any 2 decoders
5134     ALU    : S3(2);     // both alus
5135 %}
5136 
5137 // Integer ALU reg operation using big decoder
5138 pipe_class ialu_reg_fat(rRegI dst) %{
5139     single_instruction;
5140     dst    : S4(write);
5141     dst    : S3(read);
5142     D0     : S0;        // big decoder only
5143     ALU    : S3;        // any alu
5144 %}
5145 
5146 // Long ALU reg operation using big decoder
5147 pipe_class ialu_reg_long_fat(eRegL dst) %{
5148     instruction_count(2);
5149     dst    : S4(write);
5150     dst    : S3(read);
5151     D0     : S0(2);     // big decoder only; twice
5152     ALU    : S3(2);     // any 2 alus
5153 %}
5154 
5155 // Integer ALU reg-reg operation
5156 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
5157     single_instruction;
5158     dst    : S4(write);
5159     src    : S3(read);
5160     DECODE : S0;        // any decoder
5161     ALU    : S3;        // any alu
5162 %}
5163 
5164 // Long ALU reg-reg operation
5165 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5166     instruction_count(2);
5167     dst    : S4(write);
5168     src    : S3(read);
5169     DECODE : S0(2);     // any 2 decoders
5170     ALU    : S3(2);     // both alus
5171 %}
5172 
5173 // Integer ALU reg-reg operation
5174 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
5175     single_instruction;
5176     dst    : S4(write);
5177     src    : S3(read);
5178     D0     : S0;        // big decoder only
5179     ALU    : S3;        // any alu
5180 %}
5181 
5182 // Long ALU reg-reg operation
5183 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5184     instruction_count(2);
5185     dst    : S4(write);
5186     src    : S3(read);
5187     D0     : S0(2);     // big decoder only; twice
5188     ALU    : S3(2);     // both alus
5189 %}
5190 
5191 // Integer ALU reg-mem operation
5192 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
5193     single_instruction;
5194     dst    : S5(write);
5195     mem    : S3(read);
5196     D0     : S0;        // big decoder only
5197     ALU    : S4;        // any alu
5198     MEM    : S3;        // any mem
5199 %}
5200 
5201 // Long ALU reg-mem operation
5202 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5203     instruction_count(2);
5204     dst    : S5(write);
5205     mem    : S3(read);
5206     D0     : S0(2);     // big decoder only; twice
5207     ALU    : S4(2);     // any 2 alus
5208     MEM    : S3(2);     // both mems
5209 %}
5210 
5211 // Integer mem operation (prefetch)
5212 pipe_class ialu_mem(memory mem)
5213 %{
5214     single_instruction;
5215     mem    : S3(read);
5216     D0     : S0;        // big decoder only
5217     MEM    : S3;        // any mem
5218 %}
5219 
5220 // Integer Store to Memory
5221 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
5222     single_instruction;
5223     mem    : S3(read);
5224     src    : S5(read);
5225     D0     : S0;        // big decoder only
5226     ALU    : S4;        // any alu
5227     MEM    : S3;
5228 %}
5229 
5230 // Long Store to Memory
5231 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5232     instruction_count(2);
5233     mem    : S3(read);
5234     src    : S5(read);
5235     D0     : S0(2);     // big decoder only; twice
5236     ALU    : S4(2);     // any 2 alus
5237     MEM    : S3(2);     // Both mems
5238 %}
5239 
5240 // Integer Store to Memory
5241 pipe_class ialu_mem_imm(memory mem) %{
5242     single_instruction;
5243     mem    : S3(read);
5244     D0     : S0;        // big decoder only
5245     ALU    : S4;        // any alu
5246     MEM    : S3;
5247 %}
5248 
5249 // Integer ALU0 reg-reg operation
5250 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
5251     single_instruction;
5252     dst    : S4(write);
5253     src    : S3(read);
5254     D0     : S0;        // Big decoder only
5255     ALU0   : S3;        // only alu0
5256 %}
5257 
5258 // Integer ALU0 reg-mem operation
5259 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
5260     single_instruction;
5261     dst    : S5(write);
5262     mem    : S3(read);
5263     D0     : S0;        // big decoder only
5264     ALU0   : S4;        // ALU0 only
5265     MEM    : S3;        // any mem
5266 %}
5267 
5268 // Integer ALU reg-reg operation
5269 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
5270     single_instruction;
5271     cr     : S4(write);
5272     src1   : S3(read);
5273     src2   : S3(read);
5274     DECODE : S0;        // any decoder
5275     ALU    : S3;        // any alu
5276 %}
5277 
5278 // Integer ALU reg-imm operation
5279 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
5280     single_instruction;
5281     cr     : S4(write);
5282     src1   : S3(read);
5283     DECODE : S0;        // any decoder
5284     ALU    : S3;        // any alu
5285 %}
5286 
5287 // Integer ALU reg-mem operation
5288 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
5289     single_instruction;
5290     cr     : S4(write);
5291     src1   : S3(read);
5292     src2   : S3(read);
5293     D0     : S0;        // big decoder only
5294     ALU    : S4;        // any alu
5295     MEM    : S3;
5296 %}
5297 
5298 // Conditional move reg-reg
5299 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
5300     instruction_count(4);
5301     y      : S4(read);
5302     q      : S3(read);
5303     p      : S3(read);
5304     DECODE : S0(4);     // any decoder
5305 %}
5306 
5307 // Conditional move reg-reg
5308 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
5309     single_instruction;
5310     dst    : S4(write);
5311     src    : S3(read);
5312     cr     : S3(read);
5313     DECODE : S0;        // any decoder
5314 %}
5315 
5316 // Conditional move reg-mem
5317 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
5318     single_instruction;
5319     dst    : S4(write);
5320     src    : S3(read);
5321     cr     : S3(read);
5322     DECODE : S0;        // any decoder
5323     MEM    : S3;
5324 %}
5325 
5326 // Conditional move reg-reg long
5327 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5328     single_instruction;
5329     dst    : S4(write);
5330     src    : S3(read);
5331     cr     : S3(read);
5332     DECODE : S0(2);     // any 2 decoders
5333 %}
5334 
5335 // Conditional move double reg-reg
5336 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
5337     single_instruction;
5338     dst    : S4(write);
5339     src    : S3(read);
5340     cr     : S3(read);
5341     DECODE : S0;        // any decoder
5342 %}
5343 
5344 // Float reg-reg operation
5345 pipe_class fpu_reg(regDPR dst) %{
5346     instruction_count(2);
5347     dst    : S3(read);
5348     DECODE : S0(2);     // any 2 decoders
5349     FPU    : S3;
5350 %}
5351 
5352 // Float reg-reg operation
5353 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
5354     instruction_count(2);
5355     dst    : S4(write);
5356     src    : S3(read);
5357     DECODE : S0(2);     // any 2 decoders
5358     FPU    : S3;
5359 %}
5360 
5361 // Float reg-reg operation
5362 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
5363     instruction_count(3);
5364     dst    : S4(write);
5365     src1   : S3(read);
5366     src2   : S3(read);
5367     DECODE : S0(3);     // any 3 decoders
5368     FPU    : S3(2);
5369 %}
5370 
5371 // Float reg-reg operation
5372 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
5373     instruction_count(4);
5374     dst    : S4(write);
5375     src1   : S3(read);
5376     src2   : S3(read);
5377     src3   : S3(read);
5378     DECODE : S0(4);     // any 3 decoders
5379     FPU    : S3(2);
5380 %}
5381 
5382 // Float reg-reg operation
5383 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
5384     instruction_count(4);
5385     dst    : S4(write);
5386     src1   : S3(read);
5387     src2   : S3(read);
5388     src3   : S3(read);
5389     DECODE : S1(3);     // any 3 decoders
5390     D0     : S0;        // Big decoder only
5391     FPU    : S3(2);
5392     MEM    : S3;
5393 %}
5394 
5395 // Float reg-mem operation
5396 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
5397     instruction_count(2);
5398     dst    : S5(write);
5399     mem    : S3(read);
5400     D0     : S0;        // big decoder only
5401     DECODE : S1;        // any decoder for FPU POP
5402     FPU    : S4;
5403     MEM    : S3;        // any mem
5404 %}
5405 
5406 // Float reg-mem operation
5407 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
5408     instruction_count(3);
5409     dst    : S5(write);
5410     src1   : S3(read);
5411     mem    : S3(read);
5412     D0     : S0;        // big decoder only
5413     DECODE : S1(2);     // any decoder for FPU POP
5414     FPU    : S4;
5415     MEM    : S3;        // any mem
5416 %}
5417 
5418 // Float mem-reg operation
5419 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
5420     instruction_count(2);
5421     src    : S5(read);
5422     mem    : S3(read);
5423     DECODE : S0;        // any decoder for FPU PUSH
5424     D0     : S1;        // big decoder only
5425     FPU    : S4;
5426     MEM    : S3;        // any mem
5427 %}
5428 
5429 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
5430     instruction_count(3);
5431     src1   : S3(read);
5432     src2   : S3(read);
5433     mem    : S3(read);
5434     DECODE : S0(2);     // any decoder for FPU PUSH
5435     D0     : S1;        // big decoder only
5436     FPU    : S4;
5437     MEM    : S3;        // any mem
5438 %}
5439 
5440 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
5441     instruction_count(3);
5442     src1   : S3(read);
5443     src2   : S3(read);
5444     mem    : S4(read);
5445     DECODE : S0;        // any decoder for FPU PUSH
5446     D0     : S0(2);     // big decoder only
5447     FPU    : S4;
5448     MEM    : S3(2);     // any mem
5449 %}
5450 
5451 pipe_class fpu_mem_mem(memory dst, memory src1) %{
5452     instruction_count(2);
5453     src1   : S3(read);
5454     dst    : S4(read);
5455     D0     : S0(2);     // big decoder only
5456     MEM    : S3(2);     // any mem
5457 %}
5458 
5459 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
5460     instruction_count(3);
5461     src1   : S3(read);
5462     src2   : S3(read);
5463     dst    : S4(read);
5464     D0     : S0(3);     // big decoder only
5465     FPU    : S4;
5466     MEM    : S3(3);     // any mem
5467 %}
5468 
5469 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
5470     instruction_count(3);
5471     src1   : S4(read);
5472     mem    : S4(read);
5473     DECODE : S0;        // any decoder for FPU PUSH
5474     D0     : S0(2);     // big decoder only
5475     FPU    : S4;
5476     MEM    : S3(2);     // any mem
5477 %}
5478 
5479 // Float load constant
5480 pipe_class fpu_reg_con(regDPR dst) %{
5481     instruction_count(2);
5482     dst    : S5(write);
5483     D0     : S0;        // big decoder only for the load
5484     DECODE : S1;        // any decoder for FPU POP
5485     FPU    : S4;
5486     MEM    : S3;        // any mem
5487 %}
5488 
5489 // Float load constant
5490 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
5491     instruction_count(3);
5492     dst    : S5(write);
5493     src    : S3(read);
5494     D0     : S0;        // big decoder only for the load
5495     DECODE : S1(2);     // any decoder for FPU POP
5496     FPU    : S4;
5497     MEM    : S3;        // any mem
5498 %}
5499 
5500 // UnConditional branch
5501 pipe_class pipe_jmp( label labl ) %{
5502     single_instruction;
5503     BR   : S3;
5504 %}
5505 
5506 // Conditional branch
5507 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
5508     single_instruction;
5509     cr    : S1(read);
5510     BR    : S3;
5511 %}
5512 
5513 // Allocation idiom
5514 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
5515     instruction_count(1); force_serialization;
5516     fixed_latency(6);
5517     heap_ptr : S3(read);
5518     DECODE   : S0(3);
5519     D0       : S2;
5520     MEM      : S3;
5521     ALU      : S3(2);
5522     dst      : S5(write);
5523     BR       : S5;
5524 %}
5525 
5526 // Generic big/slow expanded idiom
5527 pipe_class pipe_slow(  ) %{
5528     instruction_count(10); multiple_bundles; force_serialization;
5529     fixed_latency(100);
5530     D0  : S0(2);
5531     MEM : S3(2);
5532 %}
5533 
5534 // The real do-nothing guy
5535 pipe_class empty( ) %{
5536     instruction_count(0);
5537 %}
5538 
5539 // Define the class for the Nop node
5540 define %{
5541    MachNop = empty;
5542 %}
5543 
5544 %}
5545 
5546 //----------INSTRUCTIONS-------------------------------------------------------
5547 //
5548 // match      -- States which machine-independent subtree may be replaced
5549 //               by this instruction.
5550 // ins_cost   -- The estimated cost of this instruction is used by instruction
5551 //               selection to identify a minimum cost tree of machine
5552 //               instructions that matches a tree of machine-independent
5553 //               instructions.
5554 // format     -- A string providing the disassembly for this instruction.
5555 //               The value of an instruction's operand may be inserted
5556 //               by referring to it with a '$' prefix.
5557 // opcode     -- Three instruction opcodes may be provided.  These are referred
5558 //               to within an encode class as $primary, $secondary, and $tertiary
5559 //               respectively.  The primary opcode is commonly used to
5560 //               indicate the type of machine instruction, while secondary
5561 //               and tertiary are often used for prefix options or addressing
5562 //               modes.
5563 // ins_encode -- A list of encode classes with parameters. The encode class
5564 //               name must have been defined in an 'enc_class' specification
5565 //               in the encode section of the architecture description.
5566 
5567 //----------BSWAP-Instruction--------------------------------------------------
5568 instruct bytes_reverse_int(rRegI dst) %{
5569   match(Set dst (ReverseBytesI dst));
5570 
5571   format %{ "BSWAP  $dst" %}
5572   opcode(0x0F, 0xC8);
5573   ins_encode( OpcP, OpcSReg(dst) );
5574   ins_pipe( ialu_reg );
5575 %}
5576 
5577 instruct bytes_reverse_long(eRegL dst) %{
5578   match(Set dst (ReverseBytesL dst));
5579 
5580   format %{ "BSWAP  $dst.lo\n\t"
5581             "BSWAP  $dst.hi\n\t"
5582             "XCHG   $dst.lo $dst.hi" %}
5583 
5584   ins_cost(125);
5585   ins_encode( bswap_long_bytes(dst) );
5586   ins_pipe( ialu_reg_reg);
5587 %}
5588 
5589 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5590   match(Set dst (ReverseBytesUS dst));
5591   effect(KILL cr);
5592 
5593   format %{ "BSWAP  $dst\n\t" 
5594             "SHR    $dst,16\n\t" %}
5595   ins_encode %{
5596     __ bswapl($dst$$Register);
5597     __ shrl($dst$$Register, 16); 
5598   %}
5599   ins_pipe( ialu_reg );
5600 %}
5601 
5602 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5603   match(Set dst (ReverseBytesS dst));
5604   effect(KILL cr);
5605 
5606   format %{ "BSWAP  $dst\n\t" 
5607             "SAR    $dst,16\n\t" %}
5608   ins_encode %{
5609     __ bswapl($dst$$Register);
5610     __ sarl($dst$$Register, 16); 
5611   %}
5612   ins_pipe( ialu_reg );
5613 %}
5614 
5615 
5616 //---------- Zeros Count Instructions ------------------------------------------
5617 
5618 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5619   predicate(UseCountLeadingZerosInstruction);
5620   match(Set dst (CountLeadingZerosI src));
5621   effect(KILL cr);
5622 
5623   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5624   ins_encode %{
5625     __ lzcntl($dst$$Register, $src$$Register);
5626   %}
5627   ins_pipe(ialu_reg);
5628 %}
5629 
5630 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5631   predicate(!UseCountLeadingZerosInstruction);
5632   match(Set dst (CountLeadingZerosI src));
5633   effect(KILL cr);
5634 
5635   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5636             "JNZ    skip\n\t"
5637             "MOV    $dst, -1\n"
5638       "skip:\n\t"
5639             "NEG    $dst\n\t"
5640             "ADD    $dst, 31" %}
5641   ins_encode %{
5642     Register Rdst = $dst$$Register;
5643     Register Rsrc = $src$$Register;
5644     Label skip;
5645     __ bsrl(Rdst, Rsrc);
5646     __ jccb(Assembler::notZero, skip);
5647     __ movl(Rdst, -1);
5648     __ bind(skip);
5649     __ negl(Rdst);
5650     __ addl(Rdst, BitsPerInt - 1);
5651   %}
5652   ins_pipe(ialu_reg);
5653 %}
5654 
5655 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5656   predicate(UseCountLeadingZerosInstruction);
5657   match(Set dst (CountLeadingZerosL src));
5658   effect(TEMP dst, KILL cr);
5659 
5660   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5661             "JNC    done\n\t"
5662             "LZCNT  $dst, $src.lo\n\t"
5663             "ADD    $dst, 32\n"
5664       "done:" %}
5665   ins_encode %{
5666     Register Rdst = $dst$$Register;
5667     Register Rsrc = $src$$Register;
5668     Label done;
5669     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5670     __ jccb(Assembler::carryClear, done);
5671     __ lzcntl(Rdst, Rsrc);
5672     __ addl(Rdst, BitsPerInt);
5673     __ bind(done);
5674   %}
5675   ins_pipe(ialu_reg);
5676 %}
5677 
5678 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5679   predicate(!UseCountLeadingZerosInstruction);
5680   match(Set dst (CountLeadingZerosL src));
5681   effect(TEMP dst, KILL cr);
5682 
5683   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5684             "JZ     msw_is_zero\n\t"
5685             "ADD    $dst, 32\n\t"
5686             "JMP    not_zero\n"
5687       "msw_is_zero:\n\t"
5688             "BSR    $dst, $src.lo\n\t"
5689             "JNZ    not_zero\n\t"
5690             "MOV    $dst, -1\n"
5691       "not_zero:\n\t"
5692             "NEG    $dst\n\t"
5693             "ADD    $dst, 63\n" %}
5694  ins_encode %{
5695     Register Rdst = $dst$$Register;
5696     Register Rsrc = $src$$Register;
5697     Label msw_is_zero;
5698     Label not_zero;
5699     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5700     __ jccb(Assembler::zero, msw_is_zero);
5701     __ addl(Rdst, BitsPerInt);
5702     __ jmpb(not_zero);
5703     __ bind(msw_is_zero);
5704     __ bsrl(Rdst, Rsrc);
5705     __ jccb(Assembler::notZero, not_zero);
5706     __ movl(Rdst, -1);
5707     __ bind(not_zero);
5708     __ negl(Rdst);
5709     __ addl(Rdst, BitsPerLong - 1);
5710   %}
5711   ins_pipe(ialu_reg);
5712 %}
5713 
5714 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5715   predicate(UseCountTrailingZerosInstruction);
5716   match(Set dst (CountTrailingZerosI src));
5717   effect(KILL cr);
5718 
5719   format %{ "TZCNT    $dst, $src\t# count trailing zeros (int)\n\t" %}
5720   ins_encode %{
5721     __ tzcntl($dst$$Register, $src$$Register);
5722   %}
5723   ins_pipe(ialu_reg);
5724 %}
5725 
5726 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, eFlagsReg cr) %{
5727   predicate(!UseCountTrailingZerosInstruction);
5728   match(Set dst (CountTrailingZerosI src));
5729   effect(KILL cr);
5730 
5731   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5732             "JNZ    done\n\t"
5733             "MOV    $dst, 32\n"
5734       "done:" %}
5735   ins_encode %{
5736     Register Rdst = $dst$$Register;
5737     Label done;
5738     __ bsfl(Rdst, $src$$Register);
5739     __ jccb(Assembler::notZero, done);
5740     __ movl(Rdst, BitsPerInt);
5741     __ bind(done);
5742   %}
5743   ins_pipe(ialu_reg);
5744 %}
5745 
5746 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5747   predicate(UseCountTrailingZerosInstruction);
5748   match(Set dst (CountTrailingZerosL src));
5749   effect(TEMP dst, KILL cr);
5750 
5751   format %{ "TZCNT  $dst, $src.lo\t# count trailing zeros (long) \n\t"
5752             "JNC    done\n\t"
5753             "TZCNT  $dst, $src.hi\n\t"
5754             "ADD    $dst, 32\n"
5755             "done:" %}
5756   ins_encode %{
5757     Register Rdst = $dst$$Register;
5758     Register Rsrc = $src$$Register;
5759     Label done;
5760     __ tzcntl(Rdst, Rsrc);
5761     __ jccb(Assembler::carryClear, done);
5762     __ tzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5763     __ addl(Rdst, BitsPerInt);
5764     __ bind(done);
5765   %}
5766   ins_pipe(ialu_reg);
5767 %}
5768 
5769 instruct countTrailingZerosL_bsf(rRegI dst, eRegL src, eFlagsReg cr) %{
5770   predicate(!UseCountTrailingZerosInstruction);
5771   match(Set dst (CountTrailingZerosL src));
5772   effect(TEMP dst, KILL cr);
5773 
5774   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5775             "JNZ    done\n\t"
5776             "BSF    $dst, $src.hi\n\t"
5777             "JNZ    msw_not_zero\n\t"
5778             "MOV    $dst, 32\n"
5779       "msw_not_zero:\n\t"
5780             "ADD    $dst, 32\n"
5781       "done:" %}
5782   ins_encode %{
5783     Register Rdst = $dst$$Register;
5784     Register Rsrc = $src$$Register;
5785     Label msw_not_zero;
5786     Label done;
5787     __ bsfl(Rdst, Rsrc);
5788     __ jccb(Assembler::notZero, done);
5789     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5790     __ jccb(Assembler::notZero, msw_not_zero);
5791     __ movl(Rdst, BitsPerInt);
5792     __ bind(msw_not_zero);
5793     __ addl(Rdst, BitsPerInt);
5794     __ bind(done);
5795   %}
5796   ins_pipe(ialu_reg);
5797 %}
5798 
5799 
5800 //---------- Population Count Instructions -------------------------------------
5801 
5802 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5803   predicate(UsePopCountInstruction);
5804   match(Set dst (PopCountI src));
5805   effect(KILL cr);
5806 
5807   format %{ "POPCNT $dst, $src" %}
5808   ins_encode %{
5809     __ popcntl($dst$$Register, $src$$Register);
5810   %}
5811   ins_pipe(ialu_reg);
5812 %}
5813 
5814 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5815   predicate(UsePopCountInstruction);
5816   match(Set dst (PopCountI (LoadI mem)));
5817   effect(KILL cr);
5818 
5819   format %{ "POPCNT $dst, $mem" %}
5820   ins_encode %{
5821     __ popcntl($dst$$Register, $mem$$Address);
5822   %}
5823   ins_pipe(ialu_reg);
5824 %}
5825 
5826 // Note: Long.bitCount(long) returns an int.
5827 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5828   predicate(UsePopCountInstruction);
5829   match(Set dst (PopCountL src));
5830   effect(KILL cr, TEMP tmp, TEMP dst);
5831 
5832   format %{ "POPCNT $dst, $src.lo\n\t"
5833             "POPCNT $tmp, $src.hi\n\t"
5834             "ADD    $dst, $tmp" %}
5835   ins_encode %{
5836     __ popcntl($dst$$Register, $src$$Register);
5837     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5838     __ addl($dst$$Register, $tmp$$Register);
5839   %}
5840   ins_pipe(ialu_reg);
5841 %}
5842 
5843 // Note: Long.bitCount(long) returns an int.
5844 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5845   predicate(UsePopCountInstruction);
5846   match(Set dst (PopCountL (LoadL mem)));
5847   effect(KILL cr, TEMP tmp, TEMP dst);
5848 
5849   format %{ "POPCNT $dst, $mem\n\t"
5850             "POPCNT $tmp, $mem+4\n\t"
5851             "ADD    $dst, $tmp" %}
5852   ins_encode %{
5853     //__ popcntl($dst$$Register, $mem$$Address$$first);
5854     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5855     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5856     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5857     __ addl($dst$$Register, $tmp$$Register);
5858   %}
5859   ins_pipe(ialu_reg);
5860 %}
5861 
5862 
5863 //----------Load/Store/Move Instructions---------------------------------------
5864 //----------Load Instructions--------------------------------------------------
5865 // Load Byte (8bit signed)
5866 instruct loadB(xRegI dst, memory mem) %{
5867   match(Set dst (LoadB mem));
5868 
5869   ins_cost(125);
5870   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5871 
5872   ins_encode %{
5873     __ movsbl($dst$$Register, $mem$$Address);
5874   %}
5875 
5876   ins_pipe(ialu_reg_mem);
5877 %}
5878 
5879 // Load Byte (8bit signed) into Long Register
5880 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5881   match(Set dst (ConvI2L (LoadB mem)));
5882   effect(KILL cr);
5883 
5884   ins_cost(375);
5885   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5886             "MOV    $dst.hi,$dst.lo\n\t"
5887             "SAR    $dst.hi,7" %}
5888 
5889   ins_encode %{
5890     __ movsbl($dst$$Register, $mem$$Address);
5891     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5892     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5893   %}
5894 
5895   ins_pipe(ialu_reg_mem);
5896 %}
5897 
5898 // Load Unsigned Byte (8bit UNsigned)
5899 instruct loadUB(xRegI dst, memory mem) %{
5900   match(Set dst (LoadUB mem));
5901 
5902   ins_cost(125);
5903   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5904 
5905   ins_encode %{
5906     __ movzbl($dst$$Register, $mem$$Address);
5907   %}
5908 
5909   ins_pipe(ialu_reg_mem);
5910 %}
5911 
5912 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5913 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5914   match(Set dst (ConvI2L (LoadUB mem)));
5915   effect(KILL cr);
5916 
5917   ins_cost(250);
5918   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5919             "XOR    $dst.hi,$dst.hi" %}
5920 
5921   ins_encode %{
5922     Register Rdst = $dst$$Register;
5923     __ movzbl(Rdst, $mem$$Address);
5924     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5925   %}
5926 
5927   ins_pipe(ialu_reg_mem);
5928 %}
5929 
5930 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5931 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5932   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5933   effect(KILL cr);
5934 
5935   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5936             "XOR    $dst.hi,$dst.hi\n\t"
5937             "AND    $dst.lo,$mask" %}
5938   ins_encode %{
5939     Register Rdst = $dst$$Register;
5940     __ movzbl(Rdst, $mem$$Address);
5941     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5942     __ andl(Rdst, $mask$$constant);
5943   %}
5944   ins_pipe(ialu_reg_mem);
5945 %}
5946 
5947 // Load Short (16bit signed)
5948 instruct loadS(rRegI dst, memory mem) %{
5949   match(Set dst (LoadS mem));
5950 
5951   ins_cost(125);
5952   format %{ "MOVSX  $dst,$mem\t# short" %}
5953 
5954   ins_encode %{
5955     __ movswl($dst$$Register, $mem$$Address);
5956   %}
5957 
5958   ins_pipe(ialu_reg_mem);
5959 %}
5960 
5961 // Load Short (16 bit signed) to Byte (8 bit signed)
5962 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5963   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5964 
5965   ins_cost(125);
5966   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5967   ins_encode %{
5968     __ movsbl($dst$$Register, $mem$$Address);
5969   %}
5970   ins_pipe(ialu_reg_mem);
5971 %}
5972 
5973 // Load Short (16bit signed) into Long Register
5974 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5975   match(Set dst (ConvI2L (LoadS mem)));
5976   effect(KILL cr);
5977 
5978   ins_cost(375);
5979   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5980             "MOV    $dst.hi,$dst.lo\n\t"
5981             "SAR    $dst.hi,15" %}
5982 
5983   ins_encode %{
5984     __ movswl($dst$$Register, $mem$$Address);
5985     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5986     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5987   %}
5988 
5989   ins_pipe(ialu_reg_mem);
5990 %}
5991 
5992 // Load Unsigned Short/Char (16bit unsigned)
5993 instruct loadUS(rRegI dst, memory mem) %{
5994   match(Set dst (LoadUS mem));
5995 
5996   ins_cost(125);
5997   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5998 
5999   ins_encode %{
6000     __ movzwl($dst$$Register, $mem$$Address);
6001   %}
6002 
6003   ins_pipe(ialu_reg_mem);
6004 %}
6005 
6006 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
6007 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
6008   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
6009 
6010   ins_cost(125);
6011   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
6012   ins_encode %{
6013     __ movsbl($dst$$Register, $mem$$Address);
6014   %}
6015   ins_pipe(ialu_reg_mem);
6016 %}
6017 
6018 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
6019 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6020   match(Set dst (ConvI2L (LoadUS mem)));
6021   effect(KILL cr);
6022 
6023   ins_cost(250);
6024   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6025             "XOR    $dst.hi,$dst.hi" %}
6026 
6027   ins_encode %{
6028     __ movzwl($dst$$Register, $mem$$Address);
6029     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6030   %}
6031 
6032   ins_pipe(ialu_reg_mem);
6033 %}
6034 
6035 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6036 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6037   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6038   effect(KILL cr);
6039 
6040   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6041             "XOR    $dst.hi,$dst.hi" %}
6042   ins_encode %{
6043     Register Rdst = $dst$$Register;
6044     __ movzbl(Rdst, $mem$$Address);
6045     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6046   %}
6047   ins_pipe(ialu_reg_mem);
6048 %}
6049 
6050 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6051 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6052   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6053   effect(KILL cr);
6054 
6055   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6056             "XOR    $dst.hi,$dst.hi\n\t"
6057             "AND    $dst.lo,$mask" %}
6058   ins_encode %{
6059     Register Rdst = $dst$$Register;
6060     __ movzwl(Rdst, $mem$$Address);
6061     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6062     __ andl(Rdst, $mask$$constant);
6063   %}
6064   ins_pipe(ialu_reg_mem);
6065 %}
6066 
6067 // Load Integer
6068 instruct loadI(rRegI dst, memory mem) %{
6069   match(Set dst (LoadI mem));
6070 
6071   ins_cost(125);
6072   format %{ "MOV    $dst,$mem\t# int" %}
6073 
6074   ins_encode %{
6075     __ movl($dst$$Register, $mem$$Address);
6076   %}
6077 
6078   ins_pipe(ialu_reg_mem);
6079 %}
6080 
6081 // Load Integer (32 bit signed) to Byte (8 bit signed)
6082 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
6083   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6084 
6085   ins_cost(125);
6086   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6087   ins_encode %{
6088     __ movsbl($dst$$Register, $mem$$Address);
6089   %}
6090   ins_pipe(ialu_reg_mem);
6091 %}
6092 
6093 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6094 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
6095   match(Set dst (AndI (LoadI mem) mask));
6096 
6097   ins_cost(125);
6098   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6099   ins_encode %{
6100     __ movzbl($dst$$Register, $mem$$Address);
6101   %}
6102   ins_pipe(ialu_reg_mem);
6103 %}
6104 
6105 // Load Integer (32 bit signed) to Short (16 bit signed)
6106 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
6107   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6108 
6109   ins_cost(125);
6110   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6111   ins_encode %{
6112     __ movswl($dst$$Register, $mem$$Address);
6113   %}
6114   ins_pipe(ialu_reg_mem);
6115 %}
6116 
6117 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6118 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
6119   match(Set dst (AndI (LoadI mem) mask));
6120 
6121   ins_cost(125);
6122   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6123   ins_encode %{
6124     __ movzwl($dst$$Register, $mem$$Address);
6125   %}
6126   ins_pipe(ialu_reg_mem);
6127 %}
6128 
6129 // Load Integer into Long Register
6130 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6131   match(Set dst (ConvI2L (LoadI mem)));
6132   effect(KILL cr);
6133 
6134   ins_cost(375);
6135   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6136             "MOV    $dst.hi,$dst.lo\n\t"
6137             "SAR    $dst.hi,31" %}
6138 
6139   ins_encode %{
6140     __ movl($dst$$Register, $mem$$Address);
6141     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6142     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6143   %}
6144 
6145   ins_pipe(ialu_reg_mem);
6146 %}
6147 
6148 // Load Integer with mask 0xFF into Long Register
6149 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6150   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6151   effect(KILL cr);
6152 
6153   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6154             "XOR    $dst.hi,$dst.hi" %}
6155   ins_encode %{
6156     Register Rdst = $dst$$Register;
6157     __ movzbl(Rdst, $mem$$Address);
6158     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6159   %}
6160   ins_pipe(ialu_reg_mem);
6161 %}
6162 
6163 // Load Integer with mask 0xFFFF into Long Register
6164 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6165   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6166   effect(KILL cr);
6167 
6168   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6169             "XOR    $dst.hi,$dst.hi" %}
6170   ins_encode %{
6171     Register Rdst = $dst$$Register;
6172     __ movzwl(Rdst, $mem$$Address);
6173     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6174   %}
6175   ins_pipe(ialu_reg_mem);
6176 %}
6177 
6178 // Load Integer with 31-bit mask into Long Register
6179 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
6180   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6181   effect(KILL cr);
6182 
6183   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
6184             "XOR    $dst.hi,$dst.hi\n\t"
6185             "AND    $dst.lo,$mask" %}
6186   ins_encode %{
6187     Register Rdst = $dst$$Register;
6188     __ movl(Rdst, $mem$$Address);
6189     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6190     __ andl(Rdst, $mask$$constant);
6191   %}
6192   ins_pipe(ialu_reg_mem);
6193 %}
6194 
6195 // Load Unsigned Integer into Long Register
6196 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
6197   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
6198   effect(KILL cr);
6199 
6200   ins_cost(250);
6201   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6202             "XOR    $dst.hi,$dst.hi" %}
6203 
6204   ins_encode %{
6205     __ movl($dst$$Register, $mem$$Address);
6206     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6207   %}
6208 
6209   ins_pipe(ialu_reg_mem);
6210 %}
6211 
6212 // Load Long.  Cannot clobber address while loading, so restrict address
6213 // register to ESI
6214 instruct loadL(eRegL dst, load_long_memory mem) %{
6215   predicate(!((LoadLNode*)n)->require_atomic_access());
6216   match(Set dst (LoadL mem));
6217 
6218   ins_cost(250);
6219   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6220             "MOV    $dst.hi,$mem+4" %}
6221 
6222   ins_encode %{
6223     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
6224     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
6225     __ movl($dst$$Register, Amemlo);
6226     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6227   %}
6228 
6229   ins_pipe(ialu_reg_long_mem);
6230 %}
6231 
6232 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6233 // then store it down to the stack and reload on the int
6234 // side.
6235 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6236   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6237   match(Set dst (LoadL mem));
6238 
6239   ins_cost(200);
6240   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6241             "FISTp  $dst" %}
6242   ins_encode(enc_loadL_volatile(mem,dst));
6243   ins_pipe( fpu_reg_mem );
6244 %}
6245 
6246 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
6247   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6248   match(Set dst (LoadL mem));
6249   effect(TEMP tmp);
6250   ins_cost(180);
6251   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6252             "MOVSD  $dst,$tmp" %}
6253   ins_encode %{
6254     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6255     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
6256   %}
6257   ins_pipe( pipe_slow );
6258 %}
6259 
6260 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
6261   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6262   match(Set dst (LoadL mem));
6263   effect(TEMP tmp);
6264   ins_cost(160);
6265   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6266             "MOVD   $dst.lo,$tmp\n\t"
6267             "PSRLQ  $tmp,32\n\t"
6268             "MOVD   $dst.hi,$tmp" %}
6269   ins_encode %{
6270     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6271     __ movdl($dst$$Register, $tmp$$XMMRegister);
6272     __ psrlq($tmp$$XMMRegister, 32);
6273     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
6274   %}
6275   ins_pipe( pipe_slow );
6276 %}
6277 
6278 // Load Range
6279 instruct loadRange(rRegI dst, memory mem) %{
6280   match(Set dst (LoadRange mem));
6281 
6282   ins_cost(125);
6283   format %{ "MOV    $dst,$mem" %}
6284   opcode(0x8B);
6285   ins_encode( OpcP, RegMem(dst,mem));
6286   ins_pipe( ialu_reg_mem );
6287 %}
6288 
6289 
6290 // Load Pointer
6291 instruct loadP(eRegP dst, memory mem) %{
6292   match(Set dst (LoadP mem));
6293 
6294   ins_cost(125);
6295   format %{ "MOV    $dst,$mem" %}
6296   opcode(0x8B);
6297   ins_encode( OpcP, RegMem(dst,mem));
6298   ins_pipe( ialu_reg_mem );
6299 %}
6300 
6301 // Load Klass Pointer
6302 instruct loadKlass(eRegP dst, memory mem) %{
6303   match(Set dst (LoadKlass mem));
6304 
6305   ins_cost(125);
6306   format %{ "MOV    $dst,$mem" %}
6307   opcode(0x8B);
6308   ins_encode( OpcP, RegMem(dst,mem));
6309   ins_pipe( ialu_reg_mem );
6310 %}
6311 
6312 // Load Double
6313 instruct loadDPR(regDPR dst, memory mem) %{
6314   predicate(UseSSE<=1);
6315   match(Set dst (LoadD mem));
6316 
6317   ins_cost(150);
6318   format %{ "FLD_D  ST,$mem\n\t"
6319             "FSTP   $dst" %}
6320   opcode(0xDD);               /* DD /0 */
6321   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6322               Pop_Reg_DPR(dst) );
6323   ins_pipe( fpu_reg_mem );
6324 %}
6325 
6326 // Load Double to XMM
6327 instruct loadD(regD dst, memory mem) %{
6328   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6329   match(Set dst (LoadD mem));
6330   ins_cost(145);
6331   format %{ "MOVSD  $dst,$mem" %}
6332   ins_encode %{
6333     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6334   %}
6335   ins_pipe( pipe_slow );
6336 %}
6337 
6338 instruct loadD_partial(regD dst, memory mem) %{
6339   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6340   match(Set dst (LoadD mem));
6341   ins_cost(145);
6342   format %{ "MOVLPD $dst,$mem" %}
6343   ins_encode %{
6344     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6345   %}
6346   ins_pipe( pipe_slow );
6347 %}
6348 
6349 // Load to XMM register (single-precision floating point)
6350 // MOVSS instruction
6351 instruct loadF(regF dst, memory mem) %{
6352   predicate(UseSSE>=1);
6353   match(Set dst (LoadF mem));
6354   ins_cost(145);
6355   format %{ "MOVSS  $dst,$mem" %}
6356   ins_encode %{
6357     __ movflt ($dst$$XMMRegister, $mem$$Address);
6358   %}
6359   ins_pipe( pipe_slow );
6360 %}
6361 
6362 // Load Float
6363 instruct loadFPR(regFPR dst, memory mem) %{
6364   predicate(UseSSE==0);
6365   match(Set dst (LoadF mem));
6366 
6367   ins_cost(150);
6368   format %{ "FLD_S  ST,$mem\n\t"
6369             "FSTP   $dst" %}
6370   opcode(0xD9);               /* D9 /0 */
6371   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6372               Pop_Reg_FPR(dst) );
6373   ins_pipe( fpu_reg_mem );
6374 %}
6375 
6376 // Load Effective Address
6377 instruct leaP8(eRegP dst, indOffset8 mem) %{
6378   match(Set dst mem);
6379 
6380   ins_cost(110);
6381   format %{ "LEA    $dst,$mem" %}
6382   opcode(0x8D);
6383   ins_encode( OpcP, RegMem(dst,mem));
6384   ins_pipe( ialu_reg_reg_fat );
6385 %}
6386 
6387 instruct leaP32(eRegP dst, indOffset32 mem) %{
6388   match(Set dst mem);
6389 
6390   ins_cost(110);
6391   format %{ "LEA    $dst,$mem" %}
6392   opcode(0x8D);
6393   ins_encode( OpcP, RegMem(dst,mem));
6394   ins_pipe( ialu_reg_reg_fat );
6395 %}
6396 
6397 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6398   match(Set dst mem);
6399 
6400   ins_cost(110);
6401   format %{ "LEA    $dst,$mem" %}
6402   opcode(0x8D);
6403   ins_encode( OpcP, RegMem(dst,mem));
6404   ins_pipe( ialu_reg_reg_fat );
6405 %}
6406 
6407 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6408   match(Set dst mem);
6409 
6410   ins_cost(110);
6411   format %{ "LEA    $dst,$mem" %}
6412   opcode(0x8D);
6413   ins_encode( OpcP, RegMem(dst,mem));
6414   ins_pipe( ialu_reg_reg_fat );
6415 %}
6416 
6417 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6418   match(Set dst mem);
6419 
6420   ins_cost(110);
6421   format %{ "LEA    $dst,$mem" %}
6422   opcode(0x8D);
6423   ins_encode( OpcP, RegMem(dst,mem));
6424   ins_pipe( ialu_reg_reg_fat );
6425 %}
6426 
6427 // Load Constant
6428 instruct loadConI(rRegI dst, immI src) %{
6429   match(Set dst src);
6430 
6431   format %{ "MOV    $dst,$src" %}
6432   ins_encode( LdImmI(dst, src) );
6433   ins_pipe( ialu_reg_fat );
6434 %}
6435 
6436 // Load Constant zero
6437 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
6438   match(Set dst src);
6439   effect(KILL cr);
6440 
6441   ins_cost(50);
6442   format %{ "XOR    $dst,$dst" %}
6443   opcode(0x33);  /* + rd */
6444   ins_encode( OpcP, RegReg( dst, dst ) );
6445   ins_pipe( ialu_reg );
6446 %}
6447 
6448 instruct loadConP(eRegP dst, immP src) %{
6449   match(Set dst src);
6450 
6451   format %{ "MOV    $dst,$src" %}
6452   opcode(0xB8);  /* + rd */
6453   ins_encode( LdImmP(dst, src) );
6454   ins_pipe( ialu_reg_fat );
6455 %}
6456 
6457 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6458   match(Set dst src);
6459   effect(KILL cr);
6460   ins_cost(200);
6461   format %{ "MOV    $dst.lo,$src.lo\n\t"
6462             "MOV    $dst.hi,$src.hi" %}
6463   opcode(0xB8);
6464   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6465   ins_pipe( ialu_reg_long_fat );
6466 %}
6467 
6468 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6469   match(Set dst src);
6470   effect(KILL cr);
6471   ins_cost(150);
6472   format %{ "XOR    $dst.lo,$dst.lo\n\t"
6473             "XOR    $dst.hi,$dst.hi" %}
6474   opcode(0x33,0x33);
6475   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6476   ins_pipe( ialu_reg_long );
6477 %}
6478 
6479 // The instruction usage is guarded by predicate in operand immFPR().
6480 instruct loadConFPR(regFPR dst, immFPR con) %{
6481   match(Set dst con);
6482   ins_cost(125);
6483   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
6484             "FSTP   $dst" %}
6485   ins_encode %{
6486     __ fld_s($constantaddress($con));
6487     __ fstp_d($dst$$reg);
6488   %}
6489   ins_pipe(fpu_reg_con);
6490 %}
6491 
6492 // The instruction usage is guarded by predicate in operand immFPR0().
6493 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
6494   match(Set dst con);
6495   ins_cost(125);
6496   format %{ "FLDZ   ST\n\t"
6497             "FSTP   $dst" %}
6498   ins_encode %{
6499     __ fldz();
6500     __ fstp_d($dst$$reg);
6501   %}
6502   ins_pipe(fpu_reg_con);
6503 %}
6504 
6505 // The instruction usage is guarded by predicate in operand immFPR1().
6506 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
6507   match(Set dst con);
6508   ins_cost(125);
6509   format %{ "FLD1   ST\n\t"
6510             "FSTP   $dst" %}
6511   ins_encode %{
6512     __ fld1();
6513     __ fstp_d($dst$$reg);
6514   %}
6515   ins_pipe(fpu_reg_con);
6516 %}
6517 
6518 // The instruction usage is guarded by predicate in operand immF().
6519 instruct loadConF(regF dst, immF con) %{
6520   match(Set dst con);
6521   ins_cost(125);
6522   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
6523   ins_encode %{
6524     __ movflt($dst$$XMMRegister, $constantaddress($con));
6525   %}
6526   ins_pipe(pipe_slow);
6527 %}
6528 
6529 // The instruction usage is guarded by predicate in operand immF0().
6530 instruct loadConF0(regF dst, immF0 src) %{
6531   match(Set dst src);
6532   ins_cost(100);
6533   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6534   ins_encode %{
6535     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
6536   %}
6537   ins_pipe(pipe_slow);
6538 %}
6539 
6540 // The instruction usage is guarded by predicate in operand immDPR().
6541 instruct loadConDPR(regDPR dst, immDPR con) %{
6542   match(Set dst con);
6543   ins_cost(125);
6544 
6545   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
6546             "FSTP   $dst" %}
6547   ins_encode %{
6548     __ fld_d($constantaddress($con));
6549     __ fstp_d($dst$$reg);
6550   %}
6551   ins_pipe(fpu_reg_con);
6552 %}
6553 
6554 // The instruction usage is guarded by predicate in operand immDPR0().
6555 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
6556   match(Set dst con);
6557   ins_cost(125);
6558 
6559   format %{ "FLDZ   ST\n\t"
6560             "FSTP   $dst" %}
6561   ins_encode %{
6562     __ fldz();
6563     __ fstp_d($dst$$reg);
6564   %}
6565   ins_pipe(fpu_reg_con);
6566 %}
6567 
6568 // The instruction usage is guarded by predicate in operand immDPR1().
6569 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6570   match(Set dst con);
6571   ins_cost(125);
6572 
6573   format %{ "FLD1   ST\n\t"
6574             "FSTP   $dst" %}
6575   ins_encode %{
6576     __ fld1();
6577     __ fstp_d($dst$$reg);
6578   %}
6579   ins_pipe(fpu_reg_con);
6580 %}
6581 
6582 // The instruction usage is guarded by predicate in operand immD().
6583 instruct loadConD(regD dst, immD con) %{
6584   match(Set dst con);
6585   ins_cost(125);
6586   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6587   ins_encode %{
6588     __ movdbl($dst$$XMMRegister, $constantaddress($con));
6589   %}
6590   ins_pipe(pipe_slow);
6591 %}
6592 
6593 // The instruction usage is guarded by predicate in operand immD0().
6594 instruct loadConD0(regD dst, immD0 src) %{
6595   match(Set dst src);
6596   ins_cost(100);
6597   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6598   ins_encode %{
6599     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6600   %}
6601   ins_pipe( pipe_slow );
6602 %}
6603 
6604 // Load Stack Slot
6605 instruct loadSSI(rRegI dst, stackSlotI src) %{
6606   match(Set dst src);
6607   ins_cost(125);
6608 
6609   format %{ "MOV    $dst,$src" %}
6610   opcode(0x8B);
6611   ins_encode( OpcP, RegMem(dst,src));
6612   ins_pipe( ialu_reg_mem );
6613 %}
6614 
6615 instruct loadSSL(eRegL dst, stackSlotL src) %{
6616   match(Set dst src);
6617 
6618   ins_cost(200);
6619   format %{ "MOV    $dst,$src.lo\n\t"
6620             "MOV    $dst+4,$src.hi" %}
6621   opcode(0x8B, 0x8B);
6622   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6623   ins_pipe( ialu_mem_long_reg );
6624 %}
6625 
6626 // Load Stack Slot
6627 instruct loadSSP(eRegP dst, stackSlotP src) %{
6628   match(Set dst src);
6629   ins_cost(125);
6630 
6631   format %{ "MOV    $dst,$src" %}
6632   opcode(0x8B);
6633   ins_encode( OpcP, RegMem(dst,src));
6634   ins_pipe( ialu_reg_mem );
6635 %}
6636 
6637 // Load Stack Slot
6638 instruct loadSSF(regFPR dst, stackSlotF src) %{
6639   match(Set dst src);
6640   ins_cost(125);
6641 
6642   format %{ "FLD_S  $src\n\t"
6643             "FSTP   $dst" %}
6644   opcode(0xD9);               /* D9 /0, FLD m32real */
6645   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6646               Pop_Reg_FPR(dst) );
6647   ins_pipe( fpu_reg_mem );
6648 %}
6649 
6650 // Load Stack Slot
6651 instruct loadSSD(regDPR dst, stackSlotD src) %{
6652   match(Set dst src);
6653   ins_cost(125);
6654 
6655   format %{ "FLD_D  $src\n\t"
6656             "FSTP   $dst" %}
6657   opcode(0xDD);               /* DD /0, FLD m64real */
6658   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6659               Pop_Reg_DPR(dst) );
6660   ins_pipe( fpu_reg_mem );
6661 %}
6662 
6663 // Prefetch instructions.
6664 // Must be safe to execute with invalid address (cannot fault).
6665 
6666 instruct prefetchr0( memory mem ) %{
6667   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6668   match(PrefetchRead mem);
6669   ins_cost(0);
6670   size(0);
6671   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6672   ins_encode();
6673   ins_pipe(empty);
6674 %}
6675 
6676 instruct prefetchr( memory mem ) %{
6677   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6678   match(PrefetchRead mem);
6679   ins_cost(100);
6680 
6681   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6682   ins_encode %{
6683     __ prefetchr($mem$$Address);
6684   %}
6685   ins_pipe(ialu_mem);
6686 %}
6687 
6688 instruct prefetchrNTA( memory mem ) %{
6689   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6690   match(PrefetchRead mem);
6691   ins_cost(100);
6692 
6693   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6694   ins_encode %{
6695     __ prefetchnta($mem$$Address);
6696   %}
6697   ins_pipe(ialu_mem);
6698 %}
6699 
6700 instruct prefetchrT0( memory mem ) %{
6701   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6702   match(PrefetchRead mem);
6703   ins_cost(100);
6704 
6705   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6706   ins_encode %{
6707     __ prefetcht0($mem$$Address);
6708   %}
6709   ins_pipe(ialu_mem);
6710 %}
6711 
6712 instruct prefetchrT2( memory mem ) %{
6713   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6714   match(PrefetchRead mem);
6715   ins_cost(100);
6716 
6717   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6718   ins_encode %{
6719     __ prefetcht2($mem$$Address);
6720   %}
6721   ins_pipe(ialu_mem);
6722 %}
6723 
6724 instruct prefetchw0( memory mem ) %{
6725   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6726   match(PrefetchWrite mem);
6727   ins_cost(0);
6728   size(0);
6729   format %{ "Prefetch (non-SSE is empty encoding)" %}
6730   ins_encode();
6731   ins_pipe(empty);
6732 %}
6733 
6734 instruct prefetchw( memory mem ) %{
6735   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6736   match( PrefetchWrite mem );
6737   ins_cost(100);
6738 
6739   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6740   ins_encode %{
6741     __ prefetchw($mem$$Address);
6742   %}
6743   ins_pipe(ialu_mem);
6744 %}
6745 
6746 instruct prefetchwNTA( memory mem ) %{
6747   predicate(UseSSE>=1);
6748   match(PrefetchWrite mem);
6749   ins_cost(100);
6750 
6751   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6752   ins_encode %{
6753     __ prefetchnta($mem$$Address);
6754   %}
6755   ins_pipe(ialu_mem);
6756 %}
6757 
6758 // Prefetch instructions for allocation.
6759 
6760 instruct prefetchAlloc0( memory mem ) %{
6761   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6762   match(PrefetchAllocation mem);
6763   ins_cost(0);
6764   size(0);
6765   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6766   ins_encode();
6767   ins_pipe(empty);
6768 %}
6769 
6770 instruct prefetchAlloc( memory mem ) %{
6771   predicate(AllocatePrefetchInstr==3);
6772   match( PrefetchAllocation mem );
6773   ins_cost(100);
6774 
6775   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6776   ins_encode %{
6777     __ prefetchw($mem$$Address);
6778   %}
6779   ins_pipe(ialu_mem);
6780 %}
6781 
6782 instruct prefetchAllocNTA( memory mem ) %{
6783   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6784   match(PrefetchAllocation mem);
6785   ins_cost(100);
6786 
6787   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6788   ins_encode %{
6789     __ prefetchnta($mem$$Address);
6790   %}
6791   ins_pipe(ialu_mem);
6792 %}
6793 
6794 instruct prefetchAllocT0( memory mem ) %{
6795   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6796   match(PrefetchAllocation mem);
6797   ins_cost(100);
6798 
6799   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6800   ins_encode %{
6801     __ prefetcht0($mem$$Address);
6802   %}
6803   ins_pipe(ialu_mem);
6804 %}
6805 
6806 instruct prefetchAllocT2( memory mem ) %{
6807   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6808   match(PrefetchAllocation mem);
6809   ins_cost(100);
6810 
6811   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6812   ins_encode %{
6813     __ prefetcht2($mem$$Address);
6814   %}
6815   ins_pipe(ialu_mem);
6816 %}
6817 
6818 //----------Store Instructions-------------------------------------------------
6819 
6820 // Store Byte
6821 instruct storeB(memory mem, xRegI src) %{
6822   match(Set mem (StoreB mem src));
6823 
6824   ins_cost(125);
6825   format %{ "MOV8   $mem,$src" %}
6826   opcode(0x88);
6827   ins_encode( OpcP, RegMem( src, mem ) );
6828   ins_pipe( ialu_mem_reg );
6829 %}
6830 
6831 // Store Char/Short
6832 instruct storeC(memory mem, rRegI src) %{
6833   match(Set mem (StoreC mem src));
6834 
6835   ins_cost(125);
6836   format %{ "MOV16  $mem,$src" %}
6837   opcode(0x89, 0x66);
6838   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6839   ins_pipe( ialu_mem_reg );
6840 %}
6841 
6842 // Store Integer
6843 instruct storeI(memory mem, rRegI src) %{
6844   match(Set mem (StoreI mem src));
6845 
6846   ins_cost(125);
6847   format %{ "MOV    $mem,$src" %}
6848   opcode(0x89);
6849   ins_encode( OpcP, RegMem( src, mem ) );
6850   ins_pipe( ialu_mem_reg );
6851 %}
6852 
6853 // Store Long
6854 instruct storeL(long_memory mem, eRegL src) %{
6855   predicate(!((StoreLNode*)n)->require_atomic_access());
6856   match(Set mem (StoreL mem src));
6857 
6858   ins_cost(200);
6859   format %{ "MOV    $mem,$src.lo\n\t"
6860             "MOV    $mem+4,$src.hi" %}
6861   opcode(0x89, 0x89);
6862   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6863   ins_pipe( ialu_mem_long_reg );
6864 %}
6865 
6866 // Store Long to Integer
6867 instruct storeL2I(memory mem, eRegL src) %{
6868   match(Set mem (StoreI mem (ConvL2I src)));
6869 
6870   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6871   ins_encode %{
6872     __ movl($mem$$Address, $src$$Register);
6873   %}
6874   ins_pipe(ialu_mem_reg);
6875 %}
6876 
6877 // Volatile Store Long.  Must be atomic, so move it into
6878 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6879 // target address before the store (for null-ptr checks)
6880 // so the memory operand is used twice in the encoding.
6881 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6882   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6883   match(Set mem (StoreL mem src));
6884   effect( KILL cr );
6885   ins_cost(400);
6886   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6887             "FILD   $src\n\t"
6888             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6889   opcode(0x3B);
6890   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6891   ins_pipe( fpu_reg_mem );
6892 %}
6893 
6894 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6895   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6896   match(Set mem (StoreL mem src));
6897   effect( TEMP tmp, KILL cr );
6898   ins_cost(380);
6899   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6900             "MOVSD  $tmp,$src\n\t"
6901             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6902   ins_encode %{
6903     __ cmpl(rax, $mem$$Address);
6904     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6905     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6906   %}
6907   ins_pipe( pipe_slow );
6908 %}
6909 
6910 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6911   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6912   match(Set mem (StoreL mem src));
6913   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6914   ins_cost(360);
6915   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6916             "MOVD   $tmp,$src.lo\n\t"
6917             "MOVD   $tmp2,$src.hi\n\t"
6918             "PUNPCKLDQ $tmp,$tmp2\n\t"
6919             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6920   ins_encode %{
6921     __ cmpl(rax, $mem$$Address);
6922     __ movdl($tmp$$XMMRegister, $src$$Register);
6923     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6924     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6925     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6926   %}
6927   ins_pipe( pipe_slow );
6928 %}
6929 
6930 // Store Pointer; for storing unknown oops and raw pointers
6931 instruct storeP(memory mem, anyRegP src) %{
6932   match(Set mem (StoreP mem src));
6933 
6934   ins_cost(125);
6935   format %{ "MOV    $mem,$src" %}
6936   opcode(0x89);
6937   ins_encode( OpcP, RegMem( src, mem ) );
6938   ins_pipe( ialu_mem_reg );
6939 %}
6940 
6941 // Store Integer Immediate
6942 instruct storeImmI(memory mem, immI src) %{
6943   match(Set mem (StoreI mem src));
6944 
6945   ins_cost(150);
6946   format %{ "MOV    $mem,$src" %}
6947   opcode(0xC7);               /* C7 /0 */
6948   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6949   ins_pipe( ialu_mem_imm );
6950 %}
6951 
6952 // Store Short/Char Immediate
6953 instruct storeImmI16(memory mem, immI16 src) %{
6954   predicate(UseStoreImmI16);
6955   match(Set mem (StoreC mem src));
6956 
6957   ins_cost(150);
6958   format %{ "MOV16  $mem,$src" %}
6959   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6960   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6961   ins_pipe( ialu_mem_imm );
6962 %}
6963 
6964 // Store Pointer Immediate; null pointers or constant oops that do not
6965 // need card-mark barriers.
6966 instruct storeImmP(memory mem, immP src) %{
6967   match(Set mem (StoreP mem src));
6968 
6969   ins_cost(150);
6970   format %{ "MOV    $mem,$src" %}
6971   opcode(0xC7);               /* C7 /0 */
6972   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6973   ins_pipe( ialu_mem_imm );
6974 %}
6975 
6976 // Store Byte Immediate
6977 instruct storeImmB(memory mem, immI8 src) %{
6978   match(Set mem (StoreB mem src));
6979 
6980   ins_cost(150);
6981   format %{ "MOV8   $mem,$src" %}
6982   opcode(0xC6);               /* C6 /0 */
6983   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6984   ins_pipe( ialu_mem_imm );
6985 %}
6986 
6987 // Store CMS card-mark Immediate
6988 instruct storeImmCM(memory mem, immI8 src) %{
6989   match(Set mem (StoreCM mem src));
6990 
6991   ins_cost(150);
6992   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6993   opcode(0xC6);               /* C6 /0 */
6994   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6995   ins_pipe( ialu_mem_imm );
6996 %}
6997 
6998 // Store Double
6999 instruct storeDPR( memory mem, regDPR1 src) %{
7000   predicate(UseSSE<=1);
7001   match(Set mem (StoreD mem src));
7002 
7003   ins_cost(100);
7004   format %{ "FST_D  $mem,$src" %}
7005   opcode(0xDD);       /* DD /2 */
7006   ins_encode( enc_FPR_store(mem,src) );
7007   ins_pipe( fpu_mem_reg );
7008 %}
7009 
7010 // Store double does rounding on x86
7011 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
7012   predicate(UseSSE<=1);
7013   match(Set mem (StoreD mem (RoundDouble src)));
7014 
7015   ins_cost(100);
7016   format %{ "FST_D  $mem,$src\t# round" %}
7017   opcode(0xDD);       /* DD /2 */
7018   ins_encode( enc_FPR_store(mem,src) );
7019   ins_pipe( fpu_mem_reg );
7020 %}
7021 
7022 // Store XMM register to memory (double-precision floating points)
7023 // MOVSD instruction
7024 instruct storeD(memory mem, regD src) %{
7025   predicate(UseSSE>=2);
7026   match(Set mem (StoreD mem src));
7027   ins_cost(95);
7028   format %{ "MOVSD  $mem,$src" %}
7029   ins_encode %{
7030     __ movdbl($mem$$Address, $src$$XMMRegister);
7031   %}
7032   ins_pipe( pipe_slow );
7033 %}
7034 
7035 // Store XMM register to memory (single-precision floating point)
7036 // MOVSS instruction
7037 instruct storeF(memory mem, regF src) %{
7038   predicate(UseSSE>=1);
7039   match(Set mem (StoreF mem src));
7040   ins_cost(95);
7041   format %{ "MOVSS  $mem,$src" %}
7042   ins_encode %{
7043     __ movflt($mem$$Address, $src$$XMMRegister);
7044   %}
7045   ins_pipe( pipe_slow );
7046 %}
7047 
7048 // Store Float
7049 instruct storeFPR( memory mem, regFPR1 src) %{
7050   predicate(UseSSE==0);
7051   match(Set mem (StoreF mem src));
7052 
7053   ins_cost(100);
7054   format %{ "FST_S  $mem,$src" %}
7055   opcode(0xD9);       /* D9 /2 */
7056   ins_encode( enc_FPR_store(mem,src) );
7057   ins_pipe( fpu_mem_reg );
7058 %}
7059 
7060 // Store Float does rounding on x86
7061 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
7062   predicate(UseSSE==0);
7063   match(Set mem (StoreF mem (RoundFloat src)));
7064 
7065   ins_cost(100);
7066   format %{ "FST_S  $mem,$src\t# round" %}
7067   opcode(0xD9);       /* D9 /2 */
7068   ins_encode( enc_FPR_store(mem,src) );
7069   ins_pipe( fpu_mem_reg );
7070 %}
7071 
7072 // Store Float does rounding on x86
7073 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
7074   predicate(UseSSE<=1);
7075   match(Set mem (StoreF mem (ConvD2F src)));
7076 
7077   ins_cost(100);
7078   format %{ "FST_S  $mem,$src\t# D-round" %}
7079   opcode(0xD9);       /* D9 /2 */
7080   ins_encode( enc_FPR_store(mem,src) );
7081   ins_pipe( fpu_mem_reg );
7082 %}
7083 
7084 // Store immediate Float value (it is faster than store from FPU register)
7085 // The instruction usage is guarded by predicate in operand immFPR().
7086 instruct storeFPR_imm( memory mem, immFPR src) %{
7087   match(Set mem (StoreF mem src));
7088 
7089   ins_cost(50);
7090   format %{ "MOV    $mem,$src\t# store float" %}
7091   opcode(0xC7);               /* C7 /0 */
7092   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
7093   ins_pipe( ialu_mem_imm );
7094 %}
7095 
7096 // Store immediate Float value (it is faster than store from XMM register)
7097 // The instruction usage is guarded by predicate in operand immF().
7098 instruct storeF_imm( memory mem, immF src) %{
7099   match(Set mem (StoreF mem src));
7100 
7101   ins_cost(50);
7102   format %{ "MOV    $mem,$src\t# store float" %}
7103   opcode(0xC7);               /* C7 /0 */
7104   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7105   ins_pipe( ialu_mem_imm );
7106 %}
7107 
7108 // Store Integer to stack slot
7109 instruct storeSSI(stackSlotI dst, rRegI src) %{
7110   match(Set dst src);
7111 
7112   ins_cost(100);
7113   format %{ "MOV    $dst,$src" %}
7114   opcode(0x89);
7115   ins_encode( OpcPRegSS( dst, src ) );
7116   ins_pipe( ialu_mem_reg );
7117 %}
7118 
7119 // Store Integer to stack slot
7120 instruct storeSSP(stackSlotP dst, eRegP src) %{
7121   match(Set dst src);
7122 
7123   ins_cost(100);
7124   format %{ "MOV    $dst,$src" %}
7125   opcode(0x89);
7126   ins_encode( OpcPRegSS( dst, src ) );
7127   ins_pipe( ialu_mem_reg );
7128 %}
7129 
7130 // Store Long to stack slot
7131 instruct storeSSL(stackSlotL dst, eRegL src) %{
7132   match(Set dst src);
7133 
7134   ins_cost(200);
7135   format %{ "MOV    $dst,$src.lo\n\t"
7136             "MOV    $dst+4,$src.hi" %}
7137   opcode(0x89, 0x89);
7138   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7139   ins_pipe( ialu_mem_long_reg );
7140 %}
7141 
7142 //----------MemBar Instructions-----------------------------------------------
7143 // Memory barrier flavors
7144 
7145 instruct membar_acquire() %{
7146   match(MemBarAcquire);
7147   match(LoadFence);
7148   ins_cost(400);
7149 
7150   size(0);
7151   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7152   ins_encode();
7153   ins_pipe(empty);
7154 %}
7155 
7156 instruct membar_acquire_lock() %{
7157   match(MemBarAcquireLock);
7158   ins_cost(0);
7159 
7160   size(0);
7161   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7162   ins_encode( );
7163   ins_pipe(empty);
7164 %}
7165 
7166 instruct membar_release() %{
7167   match(MemBarRelease);
7168   match(StoreFence);
7169   ins_cost(400);
7170 
7171   size(0);
7172   format %{ "MEMBAR-release ! (empty encoding)" %}
7173   ins_encode( );
7174   ins_pipe(empty);
7175 %}
7176 
7177 instruct membar_release_lock() %{
7178   match(MemBarReleaseLock);
7179   ins_cost(0);
7180 
7181   size(0);
7182   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7183   ins_encode( );
7184   ins_pipe(empty);
7185 %}
7186 
7187 instruct membar_volatile(eFlagsReg cr) %{
7188   match(MemBarVolatile);
7189   effect(KILL cr);
7190   ins_cost(400);
7191 
7192   format %{ 
7193     $$template
7194     if (os::is_MP()) {
7195       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7196     } else {
7197       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7198     }
7199   %}
7200   ins_encode %{
7201     __ membar(Assembler::StoreLoad);
7202   %}
7203   ins_pipe(pipe_slow);
7204 %}
7205 
7206 instruct unnecessary_membar_volatile() %{
7207   match(MemBarVolatile);
7208   predicate(Matcher::post_store_load_barrier(n));
7209   ins_cost(0);
7210 
7211   size(0);
7212   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7213   ins_encode( );
7214   ins_pipe(empty);
7215 %}
7216 
7217 instruct membar_storestore() %{
7218   match(MemBarStoreStore);
7219   ins_cost(0);
7220 
7221   size(0);
7222   format %{ "MEMBAR-storestore (empty encoding)" %}
7223   ins_encode( );
7224   ins_pipe(empty);
7225 %}
7226 
7227 //----------Move Instructions--------------------------------------------------
7228 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7229   match(Set dst (CastX2P src));
7230   format %{ "# X2P  $dst, $src" %}
7231   ins_encode( /*empty encoding*/ );
7232   ins_cost(0);
7233   ins_pipe(empty);
7234 %}
7235 
7236 instruct castP2X(rRegI dst, eRegP src ) %{
7237   match(Set dst (CastP2X src));
7238   ins_cost(50);
7239   format %{ "MOV    $dst, $src\t# CastP2X" %}
7240   ins_encode( enc_Copy( dst, src) );
7241   ins_pipe( ialu_reg_reg );
7242 %}
7243 
7244 //----------Conditional Move---------------------------------------------------
7245 // Conditional move
7246 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
7247   predicate(!VM_Version::supports_cmov() );
7248   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7249   ins_cost(200);
7250   format %{ "J$cop,us skip\t# signed cmove\n\t"
7251             "MOV    $dst,$src\n"
7252       "skip:" %}
7253   ins_encode %{
7254     Label Lskip;
7255     // Invert sense of branch from sense of CMOV
7256     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7257     __ movl($dst$$Register, $src$$Register);
7258     __ bind(Lskip);
7259   %}
7260   ins_pipe( pipe_cmov_reg );
7261 %}
7262 
7263 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
7264   predicate(!VM_Version::supports_cmov() );
7265   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7266   ins_cost(200);
7267   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
7268             "MOV    $dst,$src\n"
7269       "skip:" %}
7270   ins_encode %{
7271     Label Lskip;
7272     // Invert sense of branch from sense of CMOV
7273     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7274     __ movl($dst$$Register, $src$$Register);
7275     __ bind(Lskip);
7276   %}
7277   ins_pipe( pipe_cmov_reg );
7278 %}
7279 
7280 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
7281   predicate(VM_Version::supports_cmov() );
7282   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7283   ins_cost(200);
7284   format %{ "CMOV$cop $dst,$src" %}
7285   opcode(0x0F,0x40);
7286   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7287   ins_pipe( pipe_cmov_reg );
7288 %}
7289 
7290 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
7291   predicate(VM_Version::supports_cmov() );
7292   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7293   ins_cost(200);
7294   format %{ "CMOV$cop $dst,$src" %}
7295   opcode(0x0F,0x40);
7296   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7297   ins_pipe( pipe_cmov_reg );
7298 %}
7299 
7300 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
7301   predicate(VM_Version::supports_cmov() );
7302   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7303   ins_cost(200);
7304   expand %{
7305     cmovI_regU(cop, cr, dst, src);
7306   %}
7307 %}
7308 
7309 // Conditional move
7310 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
7311   predicate(VM_Version::supports_cmov() );
7312   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7313   ins_cost(250);
7314   format %{ "CMOV$cop $dst,$src" %}
7315   opcode(0x0F,0x40);
7316   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7317   ins_pipe( pipe_cmov_mem );
7318 %}
7319 
7320 // Conditional move
7321 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
7322   predicate(VM_Version::supports_cmov() );
7323   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7324   ins_cost(250);
7325   format %{ "CMOV$cop $dst,$src" %}
7326   opcode(0x0F,0x40);
7327   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7328   ins_pipe( pipe_cmov_mem );
7329 %}
7330 
7331 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
7332   predicate(VM_Version::supports_cmov() );
7333   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7334   ins_cost(250);
7335   expand %{
7336     cmovI_memU(cop, cr, dst, src);
7337   %}
7338 %}
7339 
7340 // Conditional move
7341 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7342   predicate(VM_Version::supports_cmov() );
7343   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7344   ins_cost(200);
7345   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7346   opcode(0x0F,0x40);
7347   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7348   ins_pipe( pipe_cmov_reg );
7349 %}
7350 
7351 // Conditional move (non-P6 version)
7352 // Note:  a CMoveP is generated for  stubs and native wrappers
7353 //        regardless of whether we are on a P6, so we
7354 //        emulate a cmov here
7355 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7356   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7357   ins_cost(300);
7358   format %{ "Jn$cop   skip\n\t"
7359           "MOV    $dst,$src\t# pointer\n"
7360       "skip:" %}
7361   opcode(0x8b);
7362   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7363   ins_pipe( pipe_cmov_reg );
7364 %}
7365 
7366 // Conditional move
7367 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7368   predicate(VM_Version::supports_cmov() );
7369   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7370   ins_cost(200);
7371   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7372   opcode(0x0F,0x40);
7373   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7374   ins_pipe( pipe_cmov_reg );
7375 %}
7376 
7377 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7378   predicate(VM_Version::supports_cmov() );
7379   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7380   ins_cost(200);
7381   expand %{
7382     cmovP_regU(cop, cr, dst, src);
7383   %}
7384 %}
7385 
7386 // DISABLED: Requires the ADLC to emit a bottom_type call that
7387 // correctly meets the two pointer arguments; one is an incoming
7388 // register but the other is a memory operand.  ALSO appears to
7389 // be buggy with implicit null checks.
7390 //
7391 //// Conditional move
7392 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7393 //  predicate(VM_Version::supports_cmov() );
7394 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7395 //  ins_cost(250);
7396 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7397 //  opcode(0x0F,0x40);
7398 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7399 //  ins_pipe( pipe_cmov_mem );
7400 //%}
7401 //
7402 //// Conditional move
7403 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7404 //  predicate(VM_Version::supports_cmov() );
7405 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7406 //  ins_cost(250);
7407 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7408 //  opcode(0x0F,0x40);
7409 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7410 //  ins_pipe( pipe_cmov_mem );
7411 //%}
7412 
7413 // Conditional move
7414 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
7415   predicate(UseSSE<=1);
7416   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7417   ins_cost(200);
7418   format %{ "FCMOV$cop $dst,$src\t# double" %}
7419   opcode(0xDA);
7420   ins_encode( enc_cmov_dpr(cop,src) );
7421   ins_pipe( pipe_cmovDPR_reg );
7422 %}
7423 
7424 // Conditional move
7425 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
7426   predicate(UseSSE==0);
7427   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7428   ins_cost(200);
7429   format %{ "FCMOV$cop $dst,$src\t# float" %}
7430   opcode(0xDA);
7431   ins_encode( enc_cmov_dpr(cop,src) );
7432   ins_pipe( pipe_cmovDPR_reg );
7433 %}
7434 
7435 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7436 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
7437   predicate(UseSSE<=1);
7438   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7439   ins_cost(200);
7440   format %{ "Jn$cop   skip\n\t"
7441             "MOV    $dst,$src\t# double\n"
7442       "skip:" %}
7443   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7444   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
7445   ins_pipe( pipe_cmovDPR_reg );
7446 %}
7447 
7448 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7449 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
7450   predicate(UseSSE==0);
7451   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7452   ins_cost(200);
7453   format %{ "Jn$cop    skip\n\t"
7454             "MOV    $dst,$src\t# float\n"
7455       "skip:" %}
7456   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7457   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
7458   ins_pipe( pipe_cmovDPR_reg );
7459 %}
7460 
7461 // No CMOVE with SSE/SSE2
7462 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7463   predicate (UseSSE>=1);
7464   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7465   ins_cost(200);
7466   format %{ "Jn$cop   skip\n\t"
7467             "MOVSS  $dst,$src\t# float\n"
7468       "skip:" %}
7469   ins_encode %{
7470     Label skip;
7471     // Invert sense of branch from sense of CMOV
7472     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7473     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7474     __ bind(skip);
7475   %}
7476   ins_pipe( pipe_slow );
7477 %}
7478 
7479 // No CMOVE with SSE/SSE2
7480 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7481   predicate (UseSSE>=2);
7482   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7483   ins_cost(200);
7484   format %{ "Jn$cop   skip\n\t"
7485             "MOVSD  $dst,$src\t# float\n"
7486       "skip:" %}
7487   ins_encode %{
7488     Label skip;
7489     // Invert sense of branch from sense of CMOV
7490     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7491     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7492     __ bind(skip);
7493   %}
7494   ins_pipe( pipe_slow );
7495 %}
7496 
7497 // unsigned version
7498 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
7499   predicate (UseSSE>=1);
7500   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7501   ins_cost(200);
7502   format %{ "Jn$cop   skip\n\t"
7503             "MOVSS  $dst,$src\t# float\n"
7504       "skip:" %}
7505   ins_encode %{
7506     Label skip;
7507     // Invert sense of branch from sense of CMOV
7508     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7509     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7510     __ bind(skip);
7511   %}
7512   ins_pipe( pipe_slow );
7513 %}
7514 
7515 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
7516   predicate (UseSSE>=1);
7517   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7518   ins_cost(200);
7519   expand %{
7520     fcmovF_regU(cop, cr, dst, src);
7521   %}
7522 %}
7523 
7524 // unsigned version
7525 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
7526   predicate (UseSSE>=2);
7527   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7528   ins_cost(200);
7529   format %{ "Jn$cop   skip\n\t"
7530             "MOVSD  $dst,$src\t# float\n"
7531       "skip:" %}
7532   ins_encode %{
7533     Label skip;
7534     // Invert sense of branch from sense of CMOV
7535     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7536     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7537     __ bind(skip);
7538   %}
7539   ins_pipe( pipe_slow );
7540 %}
7541 
7542 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
7543   predicate (UseSSE>=2);
7544   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7545   ins_cost(200);
7546   expand %{
7547     fcmovD_regU(cop, cr, dst, src);
7548   %}
7549 %}
7550 
7551 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7552   predicate(VM_Version::supports_cmov() );
7553   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7554   ins_cost(200);
7555   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7556             "CMOV$cop $dst.hi,$src.hi" %}
7557   opcode(0x0F,0x40);
7558   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7559   ins_pipe( pipe_cmov_reg_long );
7560 %}
7561 
7562 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7563   predicate(VM_Version::supports_cmov() );
7564   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7565   ins_cost(200);
7566   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7567             "CMOV$cop $dst.hi,$src.hi" %}
7568   opcode(0x0F,0x40);
7569   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7570   ins_pipe( pipe_cmov_reg_long );
7571 %}
7572 
7573 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7574   predicate(VM_Version::supports_cmov() );
7575   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7576   ins_cost(200);
7577   expand %{
7578     cmovL_regU(cop, cr, dst, src);
7579   %}
7580 %}
7581 
7582 //----------Arithmetic Instructions--------------------------------------------
7583 //----------Addition Instructions----------------------------------------------
7584 
7585 instruct addExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
7586 %{
7587   match(AddExactI dst src);
7588   effect(DEF cr);
7589 
7590   format %{ "ADD    $dst, $src\t# addExact int" %}
7591   ins_encode %{
7592     __ addl($dst$$Register, $src$$Register);
7593   %}
7594   ins_pipe(ialu_reg_reg);
7595 %}
7596 
7597 instruct addExactI_eReg_imm(eAXRegI dst, immI src, eFlagsReg cr)
7598 %{
7599   match(AddExactI dst src);
7600   effect(DEF cr);
7601 
7602   format %{ "ADD    $dst, $src\t# addExact int" %}
7603   ins_encode %{
7604     __ addl($dst$$Register, $src$$constant);
7605   %}
7606   ins_pipe(ialu_reg_reg);
7607 %}
7608 
7609 instruct addExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
7610 %{
7611   match(AddExactI dst (LoadI src));
7612   effect(DEF cr);
7613 
7614   ins_cost(125);
7615   format %{ "ADD    $dst,$src\t# addExact int" %}
7616   ins_encode %{
7617     __ addl($dst$$Register, $src$$Address);
7618   %}
7619   ins_pipe( ialu_reg_mem );
7620 %}
7621 
7622 
7623 // Integer Addition Instructions
7624 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7625   match(Set dst (AddI dst src));
7626   effect(KILL cr);
7627 
7628   size(2);
7629   format %{ "ADD    $dst,$src" %}
7630   opcode(0x03);
7631   ins_encode( OpcP, RegReg( dst, src) );
7632   ins_pipe( ialu_reg_reg );
7633 %}
7634 
7635 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7636   match(Set dst (AddI dst src));
7637   effect(KILL cr);
7638 
7639   format %{ "ADD    $dst,$src" %}
7640   opcode(0x81, 0x00); /* /0 id */
7641   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7642   ins_pipe( ialu_reg );
7643 %}
7644 
7645 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7646   predicate(UseIncDec);
7647   match(Set dst (AddI dst src));
7648   effect(KILL cr);
7649 
7650   size(1);
7651   format %{ "INC    $dst" %}
7652   opcode(0x40); /*  */
7653   ins_encode( Opc_plus( primary, dst ) );
7654   ins_pipe( ialu_reg );
7655 %}
7656 
7657 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7658   match(Set dst (AddI src0 src1));
7659   ins_cost(110);
7660 
7661   format %{ "LEA    $dst,[$src0 + $src1]" %}
7662   opcode(0x8D); /* 0x8D /r */
7663   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7664   ins_pipe( ialu_reg_reg );
7665 %}
7666 
7667 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7668   match(Set dst (AddP src0 src1));
7669   ins_cost(110);
7670 
7671   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7672   opcode(0x8D); /* 0x8D /r */
7673   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7674   ins_pipe( ialu_reg_reg );
7675 %}
7676 
7677 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7678   predicate(UseIncDec);
7679   match(Set dst (AddI dst src));
7680   effect(KILL cr);
7681 
7682   size(1);
7683   format %{ "DEC    $dst" %}
7684   opcode(0x48); /*  */
7685   ins_encode( Opc_plus( primary, dst ) );
7686   ins_pipe( ialu_reg );
7687 %}
7688 
7689 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7690   match(Set dst (AddP dst src));
7691   effect(KILL cr);
7692 
7693   size(2);
7694   format %{ "ADD    $dst,$src" %}
7695   opcode(0x03);
7696   ins_encode( OpcP, RegReg( dst, src) );
7697   ins_pipe( ialu_reg_reg );
7698 %}
7699 
7700 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7701   match(Set dst (AddP dst src));
7702   effect(KILL cr);
7703 
7704   format %{ "ADD    $dst,$src" %}
7705   opcode(0x81,0x00); /* Opcode 81 /0 id */
7706   // ins_encode( RegImm( dst, src) );
7707   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7708   ins_pipe( ialu_reg );
7709 %}
7710 
7711 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7712   match(Set dst (AddI dst (LoadI src)));
7713   effect(KILL cr);
7714 
7715   ins_cost(125);
7716   format %{ "ADD    $dst,$src" %}
7717   opcode(0x03);
7718   ins_encode( OpcP, RegMem( dst, src) );
7719   ins_pipe( ialu_reg_mem );
7720 %}
7721 
7722 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7723   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7724   effect(KILL cr);
7725 
7726   ins_cost(150);
7727   format %{ "ADD    $dst,$src" %}
7728   opcode(0x01);  /* Opcode 01 /r */
7729   ins_encode( OpcP, RegMem( src, dst ) );
7730   ins_pipe( ialu_mem_reg );
7731 %}
7732 
7733 // Add Memory with Immediate
7734 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7735   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7736   effect(KILL cr);
7737 
7738   ins_cost(125);
7739   format %{ "ADD    $dst,$src" %}
7740   opcode(0x81);               /* Opcode 81 /0 id */
7741   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7742   ins_pipe( ialu_mem_imm );
7743 %}
7744 
7745 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7746   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7747   effect(KILL cr);
7748 
7749   ins_cost(125);
7750   format %{ "INC    $dst" %}
7751   opcode(0xFF);               /* Opcode FF /0 */
7752   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7753   ins_pipe( ialu_mem_imm );
7754 %}
7755 
7756 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7757   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7758   effect(KILL cr);
7759 
7760   ins_cost(125);
7761   format %{ "DEC    $dst" %}
7762   opcode(0xFF);               /* Opcode FF /1 */
7763   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7764   ins_pipe( ialu_mem_imm );
7765 %}
7766 
7767 
7768 instruct checkCastPP( eRegP dst ) %{
7769   match(Set dst (CheckCastPP dst));
7770 
7771   size(0);
7772   format %{ "#checkcastPP of $dst" %}
7773   ins_encode( /*empty encoding*/ );
7774   ins_pipe( empty );
7775 %}
7776 
7777 instruct castPP( eRegP dst ) %{
7778   match(Set dst (CastPP dst));
7779   format %{ "#castPP of $dst" %}
7780   ins_encode( /*empty encoding*/ );
7781   ins_pipe( empty );
7782 %}
7783 
7784 instruct castII( rRegI dst ) %{
7785   match(Set dst (CastII dst));
7786   format %{ "#castII of $dst" %}
7787   ins_encode( /*empty encoding*/ );
7788   ins_cost(0);
7789   ins_pipe( empty );
7790 %}
7791 
7792 
7793 // Load-locked - same as a regular pointer load when used with compare-swap
7794 instruct loadPLocked(eRegP dst, memory mem) %{
7795   match(Set dst (LoadPLocked mem));
7796 
7797   ins_cost(125);
7798   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7799   opcode(0x8B);
7800   ins_encode( OpcP, RegMem(dst,mem));
7801   ins_pipe( ialu_reg_mem );
7802 %}
7803 
7804 // Conditional-store of the updated heap-top.
7805 // Used during allocation of the shared heap.
7806 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7807 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7808   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7809   // EAX is killed if there is contention, but then it's also unused.
7810   // In the common case of no contention, EAX holds the new oop address.
7811   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7812   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7813   ins_pipe( pipe_cmpxchg );
7814 %}
7815 
7816 // Conditional-store of an int value.
7817 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7818 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7819   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7820   effect(KILL oldval);
7821   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7822   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7823   ins_pipe( pipe_cmpxchg );
7824 %}
7825 
7826 // Conditional-store of a long value.
7827 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7828 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7829   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7830   effect(KILL oldval);
7831   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7832             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7833             "XCHG   EBX,ECX"
7834   %}
7835   ins_encode %{
7836     // Note: we need to swap rbx, and rcx before and after the
7837     //       cmpxchg8 instruction because the instruction uses
7838     //       rcx as the high order word of the new value to store but
7839     //       our register encoding uses rbx.
7840     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7841     if( os::is_MP() )
7842       __ lock();
7843     __ cmpxchg8($mem$$Address);
7844     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7845   %}
7846   ins_pipe( pipe_cmpxchg );
7847 %}
7848 
7849 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7850 
7851 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7852   predicate(VM_Version::supports_cx8());
7853   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7854   effect(KILL cr, KILL oldval);
7855   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7856             "MOV    $res,0\n\t"
7857             "JNE,s  fail\n\t"
7858             "MOV    $res,1\n"
7859           "fail:" %}
7860   ins_encode( enc_cmpxchg8(mem_ptr),
7861               enc_flags_ne_to_boolean(res) );
7862   ins_pipe( pipe_cmpxchg );
7863 %}
7864 
7865 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7866   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7867   effect(KILL cr, KILL oldval);
7868   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7869             "MOV    $res,0\n\t"
7870             "JNE,s  fail\n\t"
7871             "MOV    $res,1\n"
7872           "fail:" %}
7873   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7874   ins_pipe( pipe_cmpxchg );
7875 %}
7876 
7877 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7878   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7879   effect(KILL cr, KILL oldval);
7880   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7881             "MOV    $res,0\n\t"
7882             "JNE,s  fail\n\t"
7883             "MOV    $res,1\n"
7884           "fail:" %}
7885   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7886   ins_pipe( pipe_cmpxchg );
7887 %}
7888 
7889 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7890   predicate(n->as_LoadStore()->result_not_used());
7891   match(Set dummy (GetAndAddI mem add));
7892   effect(KILL cr);
7893   format %{ "ADDL  [$mem],$add" %}
7894   ins_encode %{
7895     if (os::is_MP()) { __ lock(); }
7896     __ addl($mem$$Address, $add$$constant);
7897   %}
7898   ins_pipe( pipe_cmpxchg );
7899 %}
7900 
7901 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7902   match(Set newval (GetAndAddI mem newval));
7903   effect(KILL cr);
7904   format %{ "XADDL  [$mem],$newval" %}
7905   ins_encode %{
7906     if (os::is_MP()) { __ lock(); }
7907     __ xaddl($mem$$Address, $newval$$Register);
7908   %}
7909   ins_pipe( pipe_cmpxchg );
7910 %}
7911 
7912 instruct xchgI( memory mem, rRegI newval) %{
7913   match(Set newval (GetAndSetI mem newval));
7914   format %{ "XCHGL  $newval,[$mem]" %}
7915   ins_encode %{
7916     __ xchgl($newval$$Register, $mem$$Address);
7917   %}
7918   ins_pipe( pipe_cmpxchg );
7919 %}
7920 
7921 instruct xchgP( memory mem, pRegP newval) %{
7922   match(Set newval (GetAndSetP mem newval));
7923   format %{ "XCHGL  $newval,[$mem]" %}
7924   ins_encode %{
7925     __ xchgl($newval$$Register, $mem$$Address);
7926   %}
7927   ins_pipe( pipe_cmpxchg );
7928 %}
7929 
7930 //----------Subtraction Instructions-------------------------------------------
7931 
7932 instruct subExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
7933 %{
7934   match(SubExactI dst src);
7935   effect(DEF cr);
7936 
7937   format %{ "SUB    $dst, $src\t# subExact int" %}
7938   ins_encode %{
7939     __ subl($dst$$Register, $src$$Register);
7940   %}
7941   ins_pipe(ialu_reg_reg);
7942 %}
7943 
7944 instruct subExactI_eReg_imm(eAXRegI dst, immI src, eFlagsReg cr)
7945 %{
7946   match(SubExactI dst src);
7947   effect(DEF cr);
7948 
7949   format %{ "SUB    $dst, $src\t# subExact int" %}
7950   ins_encode %{
7951     __ subl($dst$$Register, $src$$constant);
7952   %}
7953   ins_pipe(ialu_reg_reg);
7954 %}
7955 
7956 instruct subExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
7957 %{
7958   match(SubExactI dst (LoadI src));
7959   effect(DEF cr);
7960 
7961   ins_cost(125);
7962   format %{ "SUB    $dst,$src\t# subExact int" %}
7963   ins_encode %{
7964     __ subl($dst$$Register, $src$$Address);
7965   %}
7966   ins_pipe( ialu_reg_mem );
7967 %}
7968 
7969 // Integer Subtraction Instructions
7970 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7971   match(Set dst (SubI dst src));
7972   effect(KILL cr);
7973 
7974   size(2);
7975   format %{ "SUB    $dst,$src" %}
7976   opcode(0x2B);
7977   ins_encode( OpcP, RegReg( dst, src) );
7978   ins_pipe( ialu_reg_reg );
7979 %}
7980 
7981 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7982   match(Set dst (SubI dst src));
7983   effect(KILL cr);
7984 
7985   format %{ "SUB    $dst,$src" %}
7986   opcode(0x81,0x05);  /* Opcode 81 /5 */
7987   // ins_encode( RegImm( dst, src) );
7988   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7989   ins_pipe( ialu_reg );
7990 %}
7991 
7992 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7993   match(Set dst (SubI dst (LoadI src)));
7994   effect(KILL cr);
7995 
7996   ins_cost(125);
7997   format %{ "SUB    $dst,$src" %}
7998   opcode(0x2B);
7999   ins_encode( OpcP, RegMem( dst, src) );
8000   ins_pipe( ialu_reg_mem );
8001 %}
8002 
8003 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8004   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8005   effect(KILL cr);
8006 
8007   ins_cost(150);
8008   format %{ "SUB    $dst,$src" %}
8009   opcode(0x29);  /* Opcode 29 /r */
8010   ins_encode( OpcP, RegMem( src, dst ) );
8011   ins_pipe( ialu_mem_reg );
8012 %}
8013 
8014 // Subtract from a pointer
8015 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
8016   match(Set dst (AddP dst (SubI zero src)));
8017   effect(KILL cr);
8018 
8019   size(2);
8020   format %{ "SUB    $dst,$src" %}
8021   opcode(0x2B);
8022   ins_encode( OpcP, RegReg( dst, src) );
8023   ins_pipe( ialu_reg_reg );
8024 %}
8025 
8026 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
8027   match(Set dst (SubI zero dst));
8028   effect(KILL cr);
8029 
8030   size(2);
8031   format %{ "NEG    $dst" %}
8032   opcode(0xF7,0x03);  // Opcode F7 /3
8033   ins_encode( OpcP, RegOpc( dst ) );
8034   ins_pipe( ialu_reg );
8035 %}
8036 
8037 instruct negExactI_eReg(eAXRegI dst, eFlagsReg cr) %{
8038   match(NegExactI dst);
8039   effect(DEF cr);
8040 
8041   format %{ "NEG    $dst\t# negExact int"%}
8042   ins_encode %{
8043     __ negl($dst$$Register);
8044   %}
8045   ins_pipe(ialu_reg);
8046 %}
8047 
8048 //----------Multiplication/Division Instructions-------------------------------
8049 // Integer Multiplication Instructions
8050 // Multiply Register
8051 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8052   match(Set dst (MulI dst src));
8053   effect(KILL cr);
8054 
8055   size(3);
8056   ins_cost(300);
8057   format %{ "IMUL   $dst,$src" %}
8058   opcode(0xAF, 0x0F);
8059   ins_encode( OpcS, OpcP, RegReg( dst, src) );
8060   ins_pipe( ialu_reg_reg_alu0 );
8061 %}
8062 
8063 // Multiply 32-bit Immediate
8064 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
8065   match(Set dst (MulI src imm));
8066   effect(KILL cr);
8067 
8068   ins_cost(300);
8069   format %{ "IMUL   $dst,$src,$imm" %}
8070   opcode(0x69);  /* 69 /r id */
8071   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8072   ins_pipe( ialu_reg_reg_alu0 );
8073 %}
8074 
8075 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8076   match(Set dst src);
8077   effect(KILL cr);
8078 
8079   // Note that this is artificially increased to make it more expensive than loadConL
8080   ins_cost(250);
8081   format %{ "MOV    EAX,$src\t// low word only" %}
8082   opcode(0xB8);
8083   ins_encode( LdImmL_Lo(dst, src) );
8084   ins_pipe( ialu_reg_fat );
8085 %}
8086 
8087 // Multiply by 32-bit Immediate, taking the shifted high order results
8088 //  (special case for shift by 32)
8089 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8090   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8091   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8092              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8093              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8094   effect(USE src1, KILL cr);
8095 
8096   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8097   ins_cost(0*100 + 1*400 - 150);
8098   format %{ "IMUL   EDX:EAX,$src1" %}
8099   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8100   ins_pipe( pipe_slow );
8101 %}
8102 
8103 // Multiply by 32-bit Immediate, taking the shifted high order results
8104 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8105   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8106   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8107              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8108              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8109   effect(USE src1, KILL cr);
8110 
8111   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8112   ins_cost(1*100 + 1*400 - 150);
8113   format %{ "IMUL   EDX:EAX,$src1\n\t"
8114             "SAR    EDX,$cnt-32" %}
8115   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8116   ins_pipe( pipe_slow );
8117 %}
8118 
8119 // Multiply Memory 32-bit Immediate
8120 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
8121   match(Set dst (MulI (LoadI src) imm));
8122   effect(KILL cr);
8123 
8124   ins_cost(300);
8125   format %{ "IMUL   $dst,$src,$imm" %}
8126   opcode(0x69);  /* 69 /r id */
8127   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8128   ins_pipe( ialu_reg_mem_alu0 );
8129 %}
8130 
8131 // Multiply Memory
8132 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
8133   match(Set dst (MulI dst (LoadI src)));
8134   effect(KILL cr);
8135 
8136   ins_cost(350);
8137   format %{ "IMUL   $dst,$src" %}
8138   opcode(0xAF, 0x0F);
8139   ins_encode( OpcS, OpcP, RegMem( dst, src) );
8140   ins_pipe( ialu_reg_mem_alu0 );
8141 %}
8142 
8143 // Multiply Register Int to Long
8144 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8145   // Basic Idea: long = (long)int * (long)int
8146   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8147   effect(DEF dst, USE src, USE src1, KILL flags);
8148 
8149   ins_cost(300);
8150   format %{ "IMUL   $dst,$src1" %}
8151 
8152   ins_encode( long_int_multiply( dst, src1 ) );
8153   ins_pipe( ialu_reg_reg_alu0 );
8154 %}
8155 
8156 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8157   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8158   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8159   effect(KILL flags);
8160 
8161   ins_cost(300);
8162   format %{ "MUL    $dst,$src1" %}
8163 
8164   ins_encode( long_uint_multiply(dst, src1) );
8165   ins_pipe( ialu_reg_reg_alu0 );
8166 %}
8167 
8168 // Multiply Register Long
8169 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8170   match(Set dst (MulL dst src));
8171   effect(KILL cr, TEMP tmp);
8172   ins_cost(4*100+3*400);
8173 // Basic idea: lo(result) = lo(x_lo * y_lo)
8174 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8175   format %{ "MOV    $tmp,$src.lo\n\t"
8176             "IMUL   $tmp,EDX\n\t"
8177             "MOV    EDX,$src.hi\n\t"
8178             "IMUL   EDX,EAX\n\t"
8179             "ADD    $tmp,EDX\n\t"
8180             "MUL    EDX:EAX,$src.lo\n\t"
8181             "ADD    EDX,$tmp" %}
8182   ins_encode( long_multiply( dst, src, tmp ) );
8183   ins_pipe( pipe_slow );
8184 %}
8185 
8186 // Multiply Register Long where the left operand's high 32 bits are zero
8187 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8188   predicate(is_operand_hi32_zero(n->in(1)));
8189   match(Set dst (MulL dst src));
8190   effect(KILL cr, TEMP tmp);
8191   ins_cost(2*100+2*400);
8192 // Basic idea: lo(result) = lo(x_lo * y_lo)
8193 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8194   format %{ "MOV    $tmp,$src.hi\n\t"
8195             "IMUL   $tmp,EAX\n\t"
8196             "MUL    EDX:EAX,$src.lo\n\t"
8197             "ADD    EDX,$tmp" %}
8198   ins_encode %{
8199     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8200     __ imull($tmp$$Register, rax);
8201     __ mull($src$$Register);
8202     __ addl(rdx, $tmp$$Register);
8203   %}
8204   ins_pipe( pipe_slow );
8205 %}
8206 
8207 // Multiply Register Long where the right operand's high 32 bits are zero
8208 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8209   predicate(is_operand_hi32_zero(n->in(2)));
8210   match(Set dst (MulL dst src));
8211   effect(KILL cr, TEMP tmp);
8212   ins_cost(2*100+2*400);
8213 // Basic idea: lo(result) = lo(x_lo * y_lo)
8214 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8215   format %{ "MOV    $tmp,$src.lo\n\t"
8216             "IMUL   $tmp,EDX\n\t"
8217             "MUL    EDX:EAX,$src.lo\n\t"
8218             "ADD    EDX,$tmp" %}
8219   ins_encode %{
8220     __ movl($tmp$$Register, $src$$Register);
8221     __ imull($tmp$$Register, rdx);
8222     __ mull($src$$Register);
8223     __ addl(rdx, $tmp$$Register);
8224   %}
8225   ins_pipe( pipe_slow );
8226 %}
8227 
8228 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8229 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8230   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8231   match(Set dst (MulL dst src));
8232   effect(KILL cr);
8233   ins_cost(1*400);
8234 // Basic idea: lo(result) = lo(x_lo * y_lo)
8235 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8236   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8237   ins_encode %{
8238     __ mull($src$$Register);
8239   %}
8240   ins_pipe( pipe_slow );
8241 %}
8242 
8243 // Multiply Register Long by small constant
8244 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
8245   match(Set dst (MulL dst src));
8246   effect(KILL cr, TEMP tmp);
8247   ins_cost(2*100+2*400);
8248   size(12);
8249 // Basic idea: lo(result) = lo(src * EAX)
8250 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8251   format %{ "IMUL   $tmp,EDX,$src\n\t"
8252             "MOV    EDX,$src\n\t"
8253             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8254             "ADD    EDX,$tmp" %}
8255   ins_encode( long_multiply_con( dst, src, tmp ) );
8256   ins_pipe( pipe_slow );
8257 %}
8258 
8259 instruct mulExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
8260 %{
8261   match(MulExactI dst src);
8262   effect(DEF cr);
8263 
8264   ins_cost(300);
8265   format %{ "IMUL   $dst, $src\t# mulExact int" %}
8266   ins_encode %{
8267     __ imull($dst$$Register, $src$$Register);
8268   %}
8269   ins_pipe(ialu_reg_reg_alu0);
8270 %}
8271 
8272 instruct mulExactI_eReg_imm(eAXRegI dst, rRegI src, immI imm, eFlagsReg cr)
8273 %{
8274   match(MulExactI src imm);
8275   effect(DEF cr);
8276 
8277   ins_cost(300);
8278   format %{ "IMUL   $dst, $src, $imm\t# mulExact int" %}
8279   ins_encode %{
8280     __ imull($dst$$Register, $src$$Register, $imm$$constant);
8281   %}
8282   ins_pipe(ialu_reg_reg_alu0);
8283 %}
8284 
8285 instruct mulExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
8286 %{
8287   match(MulExactI dst (LoadI src));
8288   effect(DEF cr);
8289 
8290   ins_cost(350);
8291   format %{ "IMUL   $dst, $src\t# mulExact int" %}
8292   ins_encode %{
8293     __ imull($dst$$Register, $src$$Address);
8294   %}
8295   ins_pipe(ialu_reg_mem_alu0);
8296 %}
8297 
8298 
8299 // Integer DIV with Register
8300 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8301   match(Set rax (DivI rax div));
8302   effect(KILL rdx, KILL cr);
8303   size(26);
8304   ins_cost(30*100+10*100);
8305   format %{ "CMP    EAX,0x80000000\n\t"
8306             "JNE,s  normal\n\t"
8307             "XOR    EDX,EDX\n\t"
8308             "CMP    ECX,-1\n\t"
8309             "JE,s   done\n"
8310     "normal: CDQ\n\t"
8311             "IDIV   $div\n\t"
8312     "done:"        %}
8313   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8314   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8315   ins_pipe( ialu_reg_reg_alu0 );
8316 %}
8317 
8318 // Divide Register Long
8319 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8320   match(Set dst (DivL src1 src2));
8321   effect( KILL cr, KILL cx, KILL bx );
8322   ins_cost(10000);
8323   format %{ "PUSH   $src1.hi\n\t"
8324             "PUSH   $src1.lo\n\t"
8325             "PUSH   $src2.hi\n\t"
8326             "PUSH   $src2.lo\n\t"
8327             "CALL   SharedRuntime::ldiv\n\t"
8328             "ADD    ESP,16" %}
8329   ins_encode( long_div(src1,src2) );
8330   ins_pipe( pipe_slow );
8331 %}
8332 
8333 // Integer DIVMOD with Register, both quotient and mod results
8334 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8335   match(DivModI rax div);
8336   effect(KILL cr);
8337   size(26);
8338   ins_cost(30*100+10*100);
8339   format %{ "CMP    EAX,0x80000000\n\t"
8340             "JNE,s  normal\n\t"
8341             "XOR    EDX,EDX\n\t"
8342             "CMP    ECX,-1\n\t"
8343             "JE,s   done\n"
8344     "normal: CDQ\n\t"
8345             "IDIV   $div\n\t"
8346     "done:"        %}
8347   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8348   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8349   ins_pipe( pipe_slow );
8350 %}
8351 
8352 // Integer MOD with Register
8353 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8354   match(Set rdx (ModI rax div));
8355   effect(KILL rax, KILL cr);
8356 
8357   size(26);
8358   ins_cost(300);
8359   format %{ "CDQ\n\t"
8360             "IDIV   $div" %}
8361   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8362   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8363   ins_pipe( ialu_reg_reg_alu0 );
8364 %}
8365 
8366 // Remainder Register Long
8367 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8368   match(Set dst (ModL src1 src2));
8369   effect( KILL cr, KILL cx, KILL bx );
8370   ins_cost(10000);
8371   format %{ "PUSH   $src1.hi\n\t"
8372             "PUSH   $src1.lo\n\t"
8373             "PUSH   $src2.hi\n\t"
8374             "PUSH   $src2.lo\n\t"
8375             "CALL   SharedRuntime::lrem\n\t"
8376             "ADD    ESP,16" %}
8377   ins_encode( long_mod(src1,src2) );
8378   ins_pipe( pipe_slow );
8379 %}
8380 
8381 // Divide Register Long (no special case since divisor != -1)
8382 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8383   match(Set dst (DivL dst imm));
8384   effect( TEMP tmp, TEMP tmp2, KILL cr );
8385   ins_cost(1000);
8386   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8387             "XOR    $tmp2,$tmp2\n\t"
8388             "CMP    $tmp,EDX\n\t"
8389             "JA,s   fast\n\t"
8390             "MOV    $tmp2,EAX\n\t"
8391             "MOV    EAX,EDX\n\t"
8392             "MOV    EDX,0\n\t"
8393             "JLE,s  pos\n\t"
8394             "LNEG   EAX : $tmp2\n\t"
8395             "DIV    $tmp # unsigned division\n\t"
8396             "XCHG   EAX,$tmp2\n\t"
8397             "DIV    $tmp\n\t"
8398             "LNEG   $tmp2 : EAX\n\t"
8399             "JMP,s  done\n"
8400     "pos:\n\t"
8401             "DIV    $tmp\n\t"
8402             "XCHG   EAX,$tmp2\n"
8403     "fast:\n\t"
8404             "DIV    $tmp\n"
8405     "done:\n\t"
8406             "MOV    EDX,$tmp2\n\t"
8407             "NEG    EDX:EAX # if $imm < 0" %}
8408   ins_encode %{
8409     int con = (int)$imm$$constant;
8410     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8411     int pcon = (con > 0) ? con : -con;
8412     Label Lfast, Lpos, Ldone;
8413 
8414     __ movl($tmp$$Register, pcon);
8415     __ xorl($tmp2$$Register,$tmp2$$Register);
8416     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8417     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8418 
8419     __ movl($tmp2$$Register, $dst$$Register); // save
8420     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8421     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8422     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8423 
8424     // Negative dividend.
8425     // convert value to positive to use unsigned division
8426     __ lneg($dst$$Register, $tmp2$$Register);
8427     __ divl($tmp$$Register);
8428     __ xchgl($dst$$Register, $tmp2$$Register);
8429     __ divl($tmp$$Register);
8430     // revert result back to negative
8431     __ lneg($tmp2$$Register, $dst$$Register);
8432     __ jmpb(Ldone);
8433 
8434     __ bind(Lpos);
8435     __ divl($tmp$$Register); // Use unsigned division
8436     __ xchgl($dst$$Register, $tmp2$$Register);
8437     // Fallthrow for final divide, tmp2 has 32 bit hi result
8438 
8439     __ bind(Lfast);
8440     // fast path: src is positive
8441     __ divl($tmp$$Register); // Use unsigned division
8442 
8443     __ bind(Ldone);
8444     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8445     if (con < 0) {
8446       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8447     }
8448   %}
8449   ins_pipe( pipe_slow );
8450 %}
8451 
8452 // Remainder Register Long (remainder fit into 32 bits)
8453 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8454   match(Set dst (ModL dst imm));
8455   effect( TEMP tmp, TEMP tmp2, KILL cr );
8456   ins_cost(1000);
8457   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8458             "CMP    $tmp,EDX\n\t"
8459             "JA,s   fast\n\t"
8460             "MOV    $tmp2,EAX\n\t"
8461             "MOV    EAX,EDX\n\t"
8462             "MOV    EDX,0\n\t"
8463             "JLE,s  pos\n\t"
8464             "LNEG   EAX : $tmp2\n\t"
8465             "DIV    $tmp # unsigned division\n\t"
8466             "MOV    EAX,$tmp2\n\t"
8467             "DIV    $tmp\n\t"
8468             "NEG    EDX\n\t"
8469             "JMP,s  done\n"
8470     "pos:\n\t"
8471             "DIV    $tmp\n\t"
8472             "MOV    EAX,$tmp2\n"
8473     "fast:\n\t"
8474             "DIV    $tmp\n"
8475     "done:\n\t"
8476             "MOV    EAX,EDX\n\t"
8477             "SAR    EDX,31\n\t" %}
8478   ins_encode %{
8479     int con = (int)$imm$$constant;
8480     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8481     int pcon = (con > 0) ? con : -con;
8482     Label  Lfast, Lpos, Ldone;
8483 
8484     __ movl($tmp$$Register, pcon);
8485     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8486     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8487 
8488     __ movl($tmp2$$Register, $dst$$Register); // save
8489     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8490     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8491     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8492 
8493     // Negative dividend.
8494     // convert value to positive to use unsigned division
8495     __ lneg($dst$$Register, $tmp2$$Register);
8496     __ divl($tmp$$Register);
8497     __ movl($dst$$Register, $tmp2$$Register);
8498     __ divl($tmp$$Register);
8499     // revert remainder back to negative
8500     __ negl(HIGH_FROM_LOW($dst$$Register));
8501     __ jmpb(Ldone);
8502 
8503     __ bind(Lpos);
8504     __ divl($tmp$$Register);
8505     __ movl($dst$$Register, $tmp2$$Register);
8506 
8507     __ bind(Lfast);
8508     // fast path: src is positive
8509     __ divl($tmp$$Register);
8510 
8511     __ bind(Ldone);
8512     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8513     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8514 
8515   %}
8516   ins_pipe( pipe_slow );
8517 %}
8518 
8519 // Integer Shift Instructions
8520 // Shift Left by one
8521 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8522   match(Set dst (LShiftI dst shift));
8523   effect(KILL cr);
8524 
8525   size(2);
8526   format %{ "SHL    $dst,$shift" %}
8527   opcode(0xD1, 0x4);  /* D1 /4 */
8528   ins_encode( OpcP, RegOpc( dst ) );
8529   ins_pipe( ialu_reg );
8530 %}
8531 
8532 // Shift Left by 8-bit immediate
8533 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8534   match(Set dst (LShiftI dst shift));
8535   effect(KILL cr);
8536 
8537   size(3);
8538   format %{ "SHL    $dst,$shift" %}
8539   opcode(0xC1, 0x4);  /* C1 /4 ib */
8540   ins_encode( RegOpcImm( dst, shift) );
8541   ins_pipe( ialu_reg );
8542 %}
8543 
8544 // Shift Left by variable
8545 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8546   match(Set dst (LShiftI dst shift));
8547   effect(KILL cr);
8548 
8549   size(2);
8550   format %{ "SHL    $dst,$shift" %}
8551   opcode(0xD3, 0x4);  /* D3 /4 */
8552   ins_encode( OpcP, RegOpc( dst ) );
8553   ins_pipe( ialu_reg_reg );
8554 %}
8555 
8556 // Arithmetic shift right by one
8557 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8558   match(Set dst (RShiftI dst shift));
8559   effect(KILL cr);
8560 
8561   size(2);
8562   format %{ "SAR    $dst,$shift" %}
8563   opcode(0xD1, 0x7);  /* D1 /7 */
8564   ins_encode( OpcP, RegOpc( dst ) );
8565   ins_pipe( ialu_reg );
8566 %}
8567 
8568 // Arithmetic shift right by one
8569 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8570   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8571   effect(KILL cr);
8572   format %{ "SAR    $dst,$shift" %}
8573   opcode(0xD1, 0x7);  /* D1 /7 */
8574   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8575   ins_pipe( ialu_mem_imm );
8576 %}
8577 
8578 // Arithmetic Shift Right by 8-bit immediate
8579 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8580   match(Set dst (RShiftI dst shift));
8581   effect(KILL cr);
8582 
8583   size(3);
8584   format %{ "SAR    $dst,$shift" %}
8585   opcode(0xC1, 0x7);  /* C1 /7 ib */
8586   ins_encode( RegOpcImm( dst, shift ) );
8587   ins_pipe( ialu_mem_imm );
8588 %}
8589 
8590 // Arithmetic Shift Right by 8-bit immediate
8591 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8592   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8593   effect(KILL cr);
8594 
8595   format %{ "SAR    $dst,$shift" %}
8596   opcode(0xC1, 0x7);  /* C1 /7 ib */
8597   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8598   ins_pipe( ialu_mem_imm );
8599 %}
8600 
8601 // Arithmetic Shift Right by variable
8602 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8603   match(Set dst (RShiftI dst shift));
8604   effect(KILL cr);
8605 
8606   size(2);
8607   format %{ "SAR    $dst,$shift" %}
8608   opcode(0xD3, 0x7);  /* D3 /7 */
8609   ins_encode( OpcP, RegOpc( dst ) );
8610   ins_pipe( ialu_reg_reg );
8611 %}
8612 
8613 // Logical shift right by one
8614 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8615   match(Set dst (URShiftI dst shift));
8616   effect(KILL cr);
8617 
8618   size(2);
8619   format %{ "SHR    $dst,$shift" %}
8620   opcode(0xD1, 0x5);  /* D1 /5 */
8621   ins_encode( OpcP, RegOpc( dst ) );
8622   ins_pipe( ialu_reg );
8623 %}
8624 
8625 // Logical Shift Right by 8-bit immediate
8626 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8627   match(Set dst (URShiftI dst shift));
8628   effect(KILL cr);
8629 
8630   size(3);
8631   format %{ "SHR    $dst,$shift" %}
8632   opcode(0xC1, 0x5);  /* C1 /5 ib */
8633   ins_encode( RegOpcImm( dst, shift) );
8634   ins_pipe( ialu_reg );
8635 %}
8636 
8637 
8638 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8639 // This idiom is used by the compiler for the i2b bytecode.
8640 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
8641   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8642 
8643   size(3);
8644   format %{ "MOVSX  $dst,$src :8" %}
8645   ins_encode %{
8646     __ movsbl($dst$$Register, $src$$Register);
8647   %}
8648   ins_pipe(ialu_reg_reg);
8649 %}
8650 
8651 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8652 // This idiom is used by the compiler the i2s bytecode.
8653 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
8654   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8655 
8656   size(3);
8657   format %{ "MOVSX  $dst,$src :16" %}
8658   ins_encode %{
8659     __ movswl($dst$$Register, $src$$Register);
8660   %}
8661   ins_pipe(ialu_reg_reg);
8662 %}
8663 
8664 
8665 // Logical Shift Right by variable
8666 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8667   match(Set dst (URShiftI dst shift));
8668   effect(KILL cr);
8669 
8670   size(2);
8671   format %{ "SHR    $dst,$shift" %}
8672   opcode(0xD3, 0x5);  /* D3 /5 */
8673   ins_encode( OpcP, RegOpc( dst ) );
8674   ins_pipe( ialu_reg_reg );
8675 %}
8676 
8677 
8678 //----------Logical Instructions-----------------------------------------------
8679 //----------Integer Logical Instructions---------------------------------------
8680 // And Instructions
8681 // And Register with Register
8682 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8683   match(Set dst (AndI dst src));
8684   effect(KILL cr);
8685 
8686   size(2);
8687   format %{ "AND    $dst,$src" %}
8688   opcode(0x23);
8689   ins_encode( OpcP, RegReg( dst, src) );
8690   ins_pipe( ialu_reg_reg );
8691 %}
8692 
8693 // And Register with Immediate
8694 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8695   match(Set dst (AndI dst src));
8696   effect(KILL cr);
8697 
8698   format %{ "AND    $dst,$src" %}
8699   opcode(0x81,0x04);  /* Opcode 81 /4 */
8700   // ins_encode( RegImm( dst, src) );
8701   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8702   ins_pipe( ialu_reg );
8703 %}
8704 
8705 // And Register with Memory
8706 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8707   match(Set dst (AndI dst (LoadI src)));
8708   effect(KILL cr);
8709 
8710   ins_cost(125);
8711   format %{ "AND    $dst,$src" %}
8712   opcode(0x23);
8713   ins_encode( OpcP, RegMem( dst, src) );
8714   ins_pipe( ialu_reg_mem );
8715 %}
8716 
8717 // And Memory with Register
8718 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8719   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8720   effect(KILL cr);
8721 
8722   ins_cost(150);
8723   format %{ "AND    $dst,$src" %}
8724   opcode(0x21);  /* Opcode 21 /r */
8725   ins_encode( OpcP, RegMem( src, dst ) );
8726   ins_pipe( ialu_mem_reg );
8727 %}
8728 
8729 // And Memory with Immediate
8730 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8731   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8732   effect(KILL cr);
8733 
8734   ins_cost(125);
8735   format %{ "AND    $dst,$src" %}
8736   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8737   // ins_encode( MemImm( dst, src) );
8738   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8739   ins_pipe( ialu_mem_imm );
8740 %}
8741 
8742 // BMI1 instructions
8743 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, eFlagsReg cr) %{
8744   match(Set dst (AndI (XorI src1 minus_1) src2));
8745   predicate(UseBMI1Instructions);
8746   effect(KILL cr);
8747 
8748   format %{ "ANDNL  $dst, $src1, $src2" %}
8749 
8750   ins_encode %{
8751     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
8752   %}
8753   ins_pipe(ialu_reg);
8754 %}
8755 
8756 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, eFlagsReg cr) %{
8757   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2) ));
8758   predicate(UseBMI1Instructions);
8759   effect(KILL cr);
8760 
8761   ins_cost(125);
8762   format %{ "ANDNL  $dst, $src1, $src2" %}
8763 
8764   ins_encode %{
8765     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
8766   %}
8767   ins_pipe(ialu_reg_mem);
8768 %}
8769 
8770 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, eFlagsReg cr) %{
8771   match(Set dst (AndI (SubI imm_zero src) src));
8772   predicate(UseBMI1Instructions);
8773   effect(KILL cr);
8774 
8775   format %{ "BLSIL  $dst, $src" %}
8776 
8777   ins_encode %{
8778     __ blsil($dst$$Register, $src$$Register);
8779   %}
8780   ins_pipe(ialu_reg);
8781 %}
8782 
8783 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, eFlagsReg cr) %{
8784   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
8785   predicate(UseBMI1Instructions);
8786   effect(KILL cr);
8787 
8788   ins_cost(125);
8789   format %{ "BLSIL  $dst, $src" %}
8790 
8791   ins_encode %{
8792     __ blsil($dst$$Register, $src$$Address);
8793   %}
8794   ins_pipe(ialu_reg_mem);
8795 %}
8796 
8797 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
8798 %{
8799   match(Set dst (XorI (AddI src minus_1) src));
8800   predicate(UseBMI1Instructions);
8801   effect(KILL cr);
8802 
8803   format %{ "BLSMSKL $dst, $src" %}
8804 
8805   ins_encode %{
8806     __ blsmskl($dst$$Register, $src$$Register);
8807   %}
8808 
8809   ins_pipe(ialu_reg);
8810 %}
8811 
8812 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
8813 %{
8814   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ));
8815   predicate(UseBMI1Instructions);
8816   effect(KILL cr);
8817 
8818   ins_cost(125);
8819   format %{ "BLSMSKL $dst, $src" %}
8820 
8821   ins_encode %{
8822     __ blsmskl($dst$$Register, $src$$Address);
8823   %}
8824 
8825   ins_pipe(ialu_reg_mem);
8826 %}
8827 
8828 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
8829 %{
8830   match(Set dst (AndI (AddI src minus_1) src) );
8831   predicate(UseBMI1Instructions);
8832   effect(KILL cr);
8833 
8834   format %{ "BLSRL  $dst, $src" %}
8835 
8836   ins_encode %{
8837     __ blsrl($dst$$Register, $src$$Register);
8838   %}
8839 
8840   ins_pipe(ialu_reg);
8841 %}
8842 
8843 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
8844 %{
8845   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ));
8846   predicate(UseBMI1Instructions);
8847   effect(KILL cr);
8848 
8849   ins_cost(125);
8850   format %{ "BLSRL  $dst, $src" %}
8851 
8852   ins_encode %{
8853     __ blsrl($dst$$Register, $src$$Address);
8854   %}
8855 
8856   ins_pipe(ialu_reg_mem);
8857 %}
8858 
8859 // Or Instructions
8860 // Or Register with Register
8861 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8862   match(Set dst (OrI dst src));
8863   effect(KILL cr);
8864 
8865   size(2);
8866   format %{ "OR     $dst,$src" %}
8867   opcode(0x0B);
8868   ins_encode( OpcP, RegReg( dst, src) );
8869   ins_pipe( ialu_reg_reg );
8870 %}
8871 
8872 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8873   match(Set dst (OrI dst (CastP2X src)));
8874   effect(KILL cr);
8875 
8876   size(2);
8877   format %{ "OR     $dst,$src" %}
8878   opcode(0x0B);
8879   ins_encode( OpcP, RegReg( dst, src) );
8880   ins_pipe( ialu_reg_reg );
8881 %}
8882 
8883 
8884 // Or Register with Immediate
8885 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8886   match(Set dst (OrI dst src));
8887   effect(KILL cr);
8888 
8889   format %{ "OR     $dst,$src" %}
8890   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8891   // ins_encode( RegImm( dst, src) );
8892   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8893   ins_pipe( ialu_reg );
8894 %}
8895 
8896 // Or Register with Memory
8897 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8898   match(Set dst (OrI dst (LoadI src)));
8899   effect(KILL cr);
8900 
8901   ins_cost(125);
8902   format %{ "OR     $dst,$src" %}
8903   opcode(0x0B);
8904   ins_encode( OpcP, RegMem( dst, src) );
8905   ins_pipe( ialu_reg_mem );
8906 %}
8907 
8908 // Or Memory with Register
8909 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8910   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8911   effect(KILL cr);
8912 
8913   ins_cost(150);
8914   format %{ "OR     $dst,$src" %}
8915   opcode(0x09);  /* Opcode 09 /r */
8916   ins_encode( OpcP, RegMem( src, dst ) );
8917   ins_pipe( ialu_mem_reg );
8918 %}
8919 
8920 // Or Memory with Immediate
8921 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8922   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8923   effect(KILL cr);
8924 
8925   ins_cost(125);
8926   format %{ "OR     $dst,$src" %}
8927   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8928   // ins_encode( MemImm( dst, src) );
8929   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8930   ins_pipe( ialu_mem_imm );
8931 %}
8932 
8933 // ROL/ROR
8934 // ROL expand
8935 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8936   effect(USE_DEF dst, USE shift, KILL cr);
8937 
8938   format %{ "ROL    $dst, $shift" %}
8939   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8940   ins_encode( OpcP, RegOpc( dst ));
8941   ins_pipe( ialu_reg );
8942 %}
8943 
8944 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8945   effect(USE_DEF dst, USE shift, KILL cr);
8946 
8947   format %{ "ROL    $dst, $shift" %}
8948   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8949   ins_encode( RegOpcImm(dst, shift) );
8950   ins_pipe(ialu_reg);
8951 %}
8952 
8953 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8954   effect(USE_DEF dst, USE shift, KILL cr);
8955 
8956   format %{ "ROL    $dst, $shift" %}
8957   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8958   ins_encode(OpcP, RegOpc(dst));
8959   ins_pipe( ialu_reg_reg );
8960 %}
8961 // end of ROL expand
8962 
8963 // ROL 32bit by one once
8964 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8965   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8966 
8967   expand %{
8968     rolI_eReg_imm1(dst, lshift, cr);
8969   %}
8970 %}
8971 
8972 // ROL 32bit var by imm8 once
8973 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8974   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8975   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8976 
8977   expand %{
8978     rolI_eReg_imm8(dst, lshift, cr);
8979   %}
8980 %}
8981 
8982 // ROL 32bit var by var once
8983 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8984   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8985 
8986   expand %{
8987     rolI_eReg_CL(dst, shift, cr);
8988   %}
8989 %}
8990 
8991 // ROL 32bit var by var once
8992 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8993   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8994 
8995   expand %{
8996     rolI_eReg_CL(dst, shift, cr);
8997   %}
8998 %}
8999 
9000 // ROR expand
9001 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
9002   effect(USE_DEF dst, USE shift, KILL cr);
9003 
9004   format %{ "ROR    $dst, $shift" %}
9005   opcode(0xD1,0x1);  /* Opcode D1 /1 */
9006   ins_encode( OpcP, RegOpc( dst ) );
9007   ins_pipe( ialu_reg );
9008 %}
9009 
9010 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
9011   effect (USE_DEF dst, USE shift, KILL cr);
9012 
9013   format %{ "ROR    $dst, $shift" %}
9014   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
9015   ins_encode( RegOpcImm(dst, shift) );
9016   ins_pipe( ialu_reg );
9017 %}
9018 
9019 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
9020   effect(USE_DEF dst, USE shift, KILL cr);
9021 
9022   format %{ "ROR    $dst, $shift" %}
9023   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
9024   ins_encode(OpcP, RegOpc(dst));
9025   ins_pipe( ialu_reg_reg );
9026 %}
9027 // end of ROR expand
9028 
9029 // ROR right once
9030 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
9031   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9032 
9033   expand %{
9034     rorI_eReg_imm1(dst, rshift, cr);
9035   %}
9036 %}
9037 
9038 // ROR 32bit by immI8 once
9039 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
9040   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9041   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9042 
9043   expand %{
9044     rorI_eReg_imm8(dst, rshift, cr);
9045   %}
9046 %}
9047 
9048 // ROR 32bit var by var once
9049 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9050   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9051 
9052   expand %{
9053     rorI_eReg_CL(dst, shift, cr);
9054   %}
9055 %}
9056 
9057 // ROR 32bit var by var once
9058 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9059   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9060 
9061   expand %{
9062     rorI_eReg_CL(dst, shift, cr);
9063   %}
9064 %}
9065 
9066 // Xor Instructions
9067 // Xor Register with Register
9068 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
9069   match(Set dst (XorI dst src));
9070   effect(KILL cr);
9071 
9072   size(2);
9073   format %{ "XOR    $dst,$src" %}
9074   opcode(0x33);
9075   ins_encode( OpcP, RegReg( dst, src) );
9076   ins_pipe( ialu_reg_reg );
9077 %}
9078 
9079 // Xor Register with Immediate -1
9080 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
9081   match(Set dst (XorI dst imm));  
9082 
9083   size(2);
9084   format %{ "NOT    $dst" %}  
9085   ins_encode %{
9086      __ notl($dst$$Register);
9087   %}
9088   ins_pipe( ialu_reg );
9089 %}
9090 
9091 // Xor Register with Immediate
9092 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
9093   match(Set dst (XorI dst src));
9094   effect(KILL cr);
9095 
9096   format %{ "XOR    $dst,$src" %}
9097   opcode(0x81,0x06);  /* Opcode 81 /6 id */
9098   // ins_encode( RegImm( dst, src) );
9099   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9100   ins_pipe( ialu_reg );
9101 %}
9102 
9103 // Xor Register with Memory
9104 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
9105   match(Set dst (XorI dst (LoadI src)));
9106   effect(KILL cr);
9107 
9108   ins_cost(125);
9109   format %{ "XOR    $dst,$src" %}
9110   opcode(0x33);
9111   ins_encode( OpcP, RegMem(dst, src) );
9112   ins_pipe( ialu_reg_mem );
9113 %}
9114 
9115 // Xor Memory with Register
9116 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
9117   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9118   effect(KILL cr);
9119 
9120   ins_cost(150);
9121   format %{ "XOR    $dst,$src" %}
9122   opcode(0x31);  /* Opcode 31 /r */
9123   ins_encode( OpcP, RegMem( src, dst ) );
9124   ins_pipe( ialu_mem_reg );
9125 %}
9126 
9127 // Xor Memory with Immediate
9128 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9129   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9130   effect(KILL cr);
9131 
9132   ins_cost(125);
9133   format %{ "XOR    $dst,$src" %}
9134   opcode(0x81,0x6);  /* Opcode 81 /6 id */
9135   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9136   ins_pipe( ialu_mem_imm );
9137 %}
9138 
9139 //----------Convert Int to Boolean---------------------------------------------
9140 
9141 instruct movI_nocopy(rRegI dst, rRegI src) %{
9142   effect( DEF dst, USE src );
9143   format %{ "MOV    $dst,$src" %}
9144   ins_encode( enc_Copy( dst, src) );
9145   ins_pipe( ialu_reg_reg );
9146 %}
9147 
9148 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
9149   effect( USE_DEF dst, USE src, KILL cr );
9150 
9151   size(4);
9152   format %{ "NEG    $dst\n\t"
9153             "ADC    $dst,$src" %}
9154   ins_encode( neg_reg(dst),
9155               OpcRegReg(0x13,dst,src) );
9156   ins_pipe( ialu_reg_reg_long );
9157 %}
9158 
9159 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
9160   match(Set dst (Conv2B src));
9161 
9162   expand %{
9163     movI_nocopy(dst,src);
9164     ci2b(dst,src,cr);
9165   %}
9166 %}
9167 
9168 instruct movP_nocopy(rRegI dst, eRegP src) %{
9169   effect( DEF dst, USE src );
9170   format %{ "MOV    $dst,$src" %}
9171   ins_encode( enc_Copy( dst, src) );
9172   ins_pipe( ialu_reg_reg );
9173 %}
9174 
9175 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
9176   effect( USE_DEF dst, USE src, KILL cr );
9177   format %{ "NEG    $dst\n\t"
9178             "ADC    $dst,$src" %}
9179   ins_encode( neg_reg(dst),
9180               OpcRegReg(0x13,dst,src) );
9181   ins_pipe( ialu_reg_reg_long );
9182 %}
9183 
9184 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
9185   match(Set dst (Conv2B src));
9186 
9187   expand %{
9188     movP_nocopy(dst,src);
9189     cp2b(dst,src,cr);
9190   %}
9191 %}
9192 
9193 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
9194   match(Set dst (CmpLTMask p q));
9195   effect(KILL cr);
9196   ins_cost(400);
9197 
9198   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9199   format %{ "XOR    $dst,$dst\n\t"
9200             "CMP    $p,$q\n\t"
9201             "SETlt  $dst\n\t"
9202             "NEG    $dst" %}
9203   ins_encode %{
9204     Register Rp = $p$$Register;
9205     Register Rq = $q$$Register;
9206     Register Rd = $dst$$Register;
9207     Label done;
9208     __ xorl(Rd, Rd);
9209     __ cmpl(Rp, Rq);
9210     __ setb(Assembler::less, Rd);
9211     __ negl(Rd);
9212   %}
9213 
9214   ins_pipe(pipe_slow);
9215 %}
9216 
9217 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
9218   match(Set dst (CmpLTMask dst zero));
9219   effect(DEF dst, KILL cr);
9220   ins_cost(100);
9221 
9222   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
9223   ins_encode %{
9224   __ sarl($dst$$Register, 31);
9225   %}
9226   ins_pipe(ialu_reg);
9227 %}
9228 
9229 /* better to save a register than avoid a branch */
9230 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
9231   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9232   effect(KILL cr);
9233   ins_cost(400);
9234   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
9235             "JGE    done\n\t"
9236             "ADD    $p,$y\n"
9237             "done:  " %}
9238   ins_encode %{
9239     Register Rp = $p$$Register;
9240     Register Rq = $q$$Register;
9241     Register Ry = $y$$Register;
9242     Label done;
9243     __ subl(Rp, Rq);
9244     __ jccb(Assembler::greaterEqual, done);
9245     __ addl(Rp, Ry);
9246     __ bind(done);
9247   %}
9248 
9249   ins_pipe(pipe_cmplt);
9250 %}
9251 
9252 /* better to save a register than avoid a branch */
9253 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
9254   match(Set y (AndI (CmpLTMask p q) y));
9255   effect(KILL cr);
9256 
9257   ins_cost(300);
9258 
9259   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
9260             "JLT      done\n\t"
9261             "XORL     $y, $y\n"
9262             "done:  " %}
9263   ins_encode %{
9264     Register Rp = $p$$Register;
9265     Register Rq = $q$$Register;
9266     Register Ry = $y$$Register;
9267     Label done;
9268     __ cmpl(Rp, Rq);
9269     __ jccb(Assembler::less, done);
9270     __ xorl(Ry, Ry);
9271     __ bind(done);
9272   %}
9273 
9274   ins_pipe(pipe_cmplt);
9275 %}
9276 
9277 /* If I enable this, I encourage spilling in the inner loop of compress.
9278 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
9279   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9280 */
9281 
9282 //----------Long Instructions------------------------------------------------
9283 // Add Long Register with Register
9284 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9285   match(Set dst (AddL dst src));
9286   effect(KILL cr);
9287   ins_cost(200);
9288   format %{ "ADD    $dst.lo,$src.lo\n\t"
9289             "ADC    $dst.hi,$src.hi" %}
9290   opcode(0x03, 0x13);
9291   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9292   ins_pipe( ialu_reg_reg_long );
9293 %}
9294 
9295 // Add Long Register with Immediate
9296 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9297   match(Set dst (AddL dst src));
9298   effect(KILL cr);
9299   format %{ "ADD    $dst.lo,$src.lo\n\t"
9300             "ADC    $dst.hi,$src.hi" %}
9301   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9302   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9303   ins_pipe( ialu_reg_long );
9304 %}
9305 
9306 // Add Long Register with Memory
9307 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9308   match(Set dst (AddL dst (LoadL mem)));
9309   effect(KILL cr);
9310   ins_cost(125);
9311   format %{ "ADD    $dst.lo,$mem\n\t"
9312             "ADC    $dst.hi,$mem+4" %}
9313   opcode(0x03, 0x13);
9314   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9315   ins_pipe( ialu_reg_long_mem );
9316 %}
9317 
9318 // Subtract Long Register with Register.
9319 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9320   match(Set dst (SubL dst src));
9321   effect(KILL cr);
9322   ins_cost(200);
9323   format %{ "SUB    $dst.lo,$src.lo\n\t"
9324             "SBB    $dst.hi,$src.hi" %}
9325   opcode(0x2B, 0x1B);
9326   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9327   ins_pipe( ialu_reg_reg_long );
9328 %}
9329 
9330 // Subtract Long Register with Immediate
9331 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9332   match(Set dst (SubL dst src));
9333   effect(KILL cr);
9334   format %{ "SUB    $dst.lo,$src.lo\n\t"
9335             "SBB    $dst.hi,$src.hi" %}
9336   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9337   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9338   ins_pipe( ialu_reg_long );
9339 %}
9340 
9341 // Subtract Long Register with Memory
9342 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9343   match(Set dst (SubL dst (LoadL mem)));
9344   effect(KILL cr);
9345   ins_cost(125);
9346   format %{ "SUB    $dst.lo,$mem\n\t"
9347             "SBB    $dst.hi,$mem+4" %}
9348   opcode(0x2B, 0x1B);
9349   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9350   ins_pipe( ialu_reg_long_mem );
9351 %}
9352 
9353 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9354   match(Set dst (SubL zero dst));
9355   effect(KILL cr);
9356   ins_cost(300);
9357   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9358   ins_encode( neg_long(dst) );
9359   ins_pipe( ialu_reg_reg_long );
9360 %}
9361 
9362 // And Long Register with Register
9363 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9364   match(Set dst (AndL dst src));
9365   effect(KILL cr);
9366   format %{ "AND    $dst.lo,$src.lo\n\t"
9367             "AND    $dst.hi,$src.hi" %}
9368   opcode(0x23,0x23);
9369   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9370   ins_pipe( ialu_reg_reg_long );
9371 %}
9372 
9373 // And Long Register with Immediate
9374 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9375   match(Set dst (AndL dst src));
9376   effect(KILL cr);
9377   format %{ "AND    $dst.lo,$src.lo\n\t"
9378             "AND    $dst.hi,$src.hi" %}
9379   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9380   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9381   ins_pipe( ialu_reg_long );
9382 %}
9383 
9384 // And Long Register with Memory
9385 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9386   match(Set dst (AndL dst (LoadL mem)));
9387   effect(KILL cr);
9388   ins_cost(125);
9389   format %{ "AND    $dst.lo,$mem\n\t"
9390             "AND    $dst.hi,$mem+4" %}
9391   opcode(0x23, 0x23);
9392   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9393   ins_pipe( ialu_reg_long_mem );
9394 %}
9395 
9396 // BMI1 instructions
9397 instruct andnL_eReg_eReg_eReg(eRegL dst, eRegL src1, eRegL src2, immL_M1 minus_1, eFlagsReg cr) %{
9398   match(Set dst (AndL (XorL src1 minus_1) src2));
9399   predicate(UseBMI1Instructions);
9400   effect(KILL cr, TEMP dst);
9401 
9402   format %{ "ANDNL  $dst.lo, $src1.lo, $src2.lo\n\t"
9403             "ANDNL  $dst.hi, $src1.hi, $src2.hi"
9404          %}
9405 
9406   ins_encode %{
9407     Register Rdst = $dst$$Register;
9408     Register Rsrc1 = $src1$$Register;
9409     Register Rsrc2 = $src2$$Register;
9410     __ andnl(Rdst, Rsrc1, Rsrc2);
9411     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), HIGH_FROM_LOW(Rsrc2));
9412   %}
9413   ins_pipe(ialu_reg_reg_long);
9414 %}
9415 
9416 instruct andnL_eReg_eReg_mem(eRegL dst, eRegL src1, memory src2, immL_M1 minus_1, eFlagsReg cr) %{
9417   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2) ));
9418   predicate(UseBMI1Instructions);
9419   effect(KILL cr, TEMP dst);
9420 
9421   ins_cost(125);
9422   format %{ "ANDNL  $dst.lo, $src1.lo, $src2\n\t"
9423             "ANDNL  $dst.hi, $src1.hi, $src2+4"
9424          %}
9425 
9426   ins_encode %{
9427     Register Rdst = $dst$$Register;
9428     Register Rsrc1 = $src1$$Register;
9429     Address src2_hi = Address::make_raw($src2$$base, $src2$$index, $src2$$scale, $src2$$disp + 4, relocInfo::none);
9430 
9431     __ andnl(Rdst, Rsrc1, $src2$$Address);
9432     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), src2_hi);
9433   %}
9434   ins_pipe(ialu_reg_mem);
9435 %}
9436 
9437 instruct blsiL_eReg_eReg(eRegL dst, eRegL src, immL0 imm_zero, eFlagsReg cr) %{
9438   match(Set dst (AndL (SubL imm_zero src) src));
9439   predicate(UseBMI1Instructions);
9440   effect(KILL cr, TEMP dst);
9441 
9442   format %{ "MOVL   $dst.hi, 0\n\t"
9443             "BLSIL  $dst.lo, $src.lo\n\t"
9444             "JNZ    done\n\t"
9445             "BLSIL  $dst.hi, $src.hi\n"
9446             "done:"
9447          %}
9448 
9449   ins_encode %{
9450     Label done;
9451     Register Rdst = $dst$$Register;
9452     Register Rsrc = $src$$Register;
9453     __ movl(HIGH_FROM_LOW(Rdst), 0);
9454     __ blsil(Rdst, Rsrc);
9455     __ jccb(Assembler::notZero, done);
9456     __ blsil(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
9457     __ bind(done);
9458   %}
9459   ins_pipe(ialu_reg);
9460 %}
9461 
9462 instruct blsiL_eReg_mem(eRegL dst, memory src, immL0 imm_zero, eFlagsReg cr) %{
9463   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
9464   predicate(UseBMI1Instructions);
9465   effect(KILL cr, TEMP dst);
9466 
9467   ins_cost(125);
9468   format %{ "MOVL   $dst.hi, 0\n\t"
9469             "BLSIL  $dst.lo, $src\n\t"
9470             "JNZ    done\n\t"
9471             "BLSIL  $dst.hi, $src+4\n"
9472             "done:"
9473          %}
9474 
9475   ins_encode %{
9476     Label done;
9477     Register Rdst = $dst$$Register;
9478     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
9479 
9480     __ movl(HIGH_FROM_LOW(Rdst), 0);
9481     __ blsil(Rdst, $src$$Address);
9482     __ jccb(Assembler::notZero, done);
9483     __ blsil(HIGH_FROM_LOW(Rdst), src_hi);
9484     __ bind(done);
9485   %}
9486   ins_pipe(ialu_reg_mem);
9487 %}
9488 
9489 instruct blsmskL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
9490 %{
9491   match(Set dst (XorL (AddL src minus_1) src));
9492   predicate(UseBMI1Instructions);
9493   effect(KILL cr, TEMP dst);
9494 
9495   format %{ "MOVL    $dst.hi, 0\n\t"
9496             "BLSMSKL $dst.lo, $src.lo\n\t"
9497             "JNC     done\n\t"
9498             "BLSMSKL $dst.hi, $src.hi\n"
9499             "done:"
9500          %}
9501 
9502   ins_encode %{
9503     Label done;
9504     Register Rdst = $dst$$Register;
9505     Register Rsrc = $src$$Register;
9506     __ movl(HIGH_FROM_LOW(Rdst), 0);
9507     __ blsmskl(Rdst, Rsrc);
9508     __ jccb(Assembler::carryClear, done);
9509     __ blsmskl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
9510     __ bind(done);
9511   %}
9512 
9513   ins_pipe(ialu_reg);
9514 %}
9515 
9516 instruct blsmskL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
9517 %{
9518   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ));
9519   predicate(UseBMI1Instructions);
9520   effect(KILL cr, TEMP dst);
9521 
9522   ins_cost(125);
9523   format %{ "MOVL    $dst.hi, 0\n\t"
9524             "BLSMSKL $dst.lo, $src\n\t"
9525             "JNC     done\n\t"
9526             "BLSMSKL $dst.hi, $src+4\n"
9527             "done:"
9528          %}
9529 
9530   ins_encode %{
9531     Label done;
9532     Register Rdst = $dst$$Register;
9533     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
9534 
9535     __ movl(HIGH_FROM_LOW(Rdst), 0);
9536     __ blsmskl(Rdst, $src$$Address);
9537     __ jccb(Assembler::carryClear, done);
9538     __ blsmskl(HIGH_FROM_LOW(Rdst), src_hi);
9539     __ bind(done);
9540   %}
9541 
9542   ins_pipe(ialu_reg_mem);
9543 %}
9544 
9545 instruct blsrL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
9546 %{
9547   match(Set dst (AndL (AddL src minus_1) src) );
9548   predicate(UseBMI1Instructions);
9549   effect(KILL cr, TEMP dst);
9550 
9551   format %{ "MOVL   $dst.hi, $src.hi\n\t"
9552             "BLSRL  $dst.lo, $src.lo\n\t"
9553             "JNC    done\n\t"
9554             "BLSRL  $dst.hi, $src.hi\n"
9555             "done:"
9556   %}
9557 
9558   ins_encode %{
9559     Label done;
9560     Register Rdst = $dst$$Register;
9561     Register Rsrc = $src$$Register;
9562     __ movl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
9563     __ blsrl(Rdst, Rsrc);
9564     __ jccb(Assembler::carryClear, done);
9565     __ blsrl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
9566     __ bind(done);
9567   %}
9568 
9569   ins_pipe(ialu_reg);
9570 %}
9571 
9572 instruct blsrL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
9573 %{
9574   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src) ));
9575   predicate(UseBMI1Instructions);
9576   effect(KILL cr, TEMP dst);
9577 
9578   ins_cost(125);
9579   format %{ "MOVL   $dst.hi, $src+4\n\t"
9580             "BLSRL  $dst.lo, $src\n\t"
9581             "JNC    done\n\t"
9582             "BLSRL  $dst.hi, $src+4\n"
9583             "done:"
9584   %}
9585 
9586   ins_encode %{
9587     Label done;
9588     Register Rdst = $dst$$Register;
9589     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
9590     __ movl(HIGH_FROM_LOW(Rdst), src_hi);
9591     __ blsrl(Rdst, $src$$Address);
9592     __ jccb(Assembler::carryClear, done);
9593     __ blsrl(HIGH_FROM_LOW(Rdst), src_hi);
9594     __ bind(done);
9595   %}
9596 
9597   ins_pipe(ialu_reg_mem);
9598 %}
9599 
9600 // Or Long Register with Register
9601 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9602   match(Set dst (OrL dst src));
9603   effect(KILL cr);
9604   format %{ "OR     $dst.lo,$src.lo\n\t"
9605             "OR     $dst.hi,$src.hi" %}
9606   opcode(0x0B,0x0B);
9607   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9608   ins_pipe( ialu_reg_reg_long );
9609 %}
9610 
9611 // Or Long Register with Immediate
9612 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9613   match(Set dst (OrL dst src));
9614   effect(KILL cr);
9615   format %{ "OR     $dst.lo,$src.lo\n\t"
9616             "OR     $dst.hi,$src.hi" %}
9617   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9618   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9619   ins_pipe( ialu_reg_long );
9620 %}
9621 
9622 // Or Long Register with Memory
9623 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9624   match(Set dst (OrL dst (LoadL mem)));
9625   effect(KILL cr);
9626   ins_cost(125);
9627   format %{ "OR     $dst.lo,$mem\n\t"
9628             "OR     $dst.hi,$mem+4" %}
9629   opcode(0x0B,0x0B);
9630   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9631   ins_pipe( ialu_reg_long_mem );
9632 %}
9633 
9634 // Xor Long Register with Register
9635 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9636   match(Set dst (XorL dst src));
9637   effect(KILL cr);
9638   format %{ "XOR    $dst.lo,$src.lo\n\t"
9639             "XOR    $dst.hi,$src.hi" %}
9640   opcode(0x33,0x33);
9641   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9642   ins_pipe( ialu_reg_reg_long );
9643 %}
9644 
9645 // Xor Long Register with Immediate -1
9646 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9647   match(Set dst (XorL dst imm));  
9648   format %{ "NOT    $dst.lo\n\t"
9649             "NOT    $dst.hi" %}
9650   ins_encode %{
9651      __ notl($dst$$Register);
9652      __ notl(HIGH_FROM_LOW($dst$$Register));
9653   %}
9654   ins_pipe( ialu_reg_long );
9655 %}
9656 
9657 // Xor Long Register with Immediate
9658 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9659   match(Set dst (XorL dst src));
9660   effect(KILL cr);
9661   format %{ "XOR    $dst.lo,$src.lo\n\t"
9662             "XOR    $dst.hi,$src.hi" %}
9663   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9664   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9665   ins_pipe( ialu_reg_long );
9666 %}
9667 
9668 // Xor Long Register with Memory
9669 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9670   match(Set dst (XorL dst (LoadL mem)));
9671   effect(KILL cr);
9672   ins_cost(125);
9673   format %{ "XOR    $dst.lo,$mem\n\t"
9674             "XOR    $dst.hi,$mem+4" %}
9675   opcode(0x33,0x33);
9676   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9677   ins_pipe( ialu_reg_long_mem );
9678 %}
9679 
9680 // Shift Left Long by 1
9681 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9682   predicate(UseNewLongLShift);
9683   match(Set dst (LShiftL dst cnt));
9684   effect(KILL cr);
9685   ins_cost(100);
9686   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9687             "ADC    $dst.hi,$dst.hi" %}
9688   ins_encode %{
9689     __ addl($dst$$Register,$dst$$Register);
9690     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9691   %}
9692   ins_pipe( ialu_reg_long );
9693 %}
9694 
9695 // Shift Left Long by 2
9696 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9697   predicate(UseNewLongLShift);
9698   match(Set dst (LShiftL dst cnt));
9699   effect(KILL cr);
9700   ins_cost(100);
9701   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9702             "ADC    $dst.hi,$dst.hi\n\t" 
9703             "ADD    $dst.lo,$dst.lo\n\t"
9704             "ADC    $dst.hi,$dst.hi" %}
9705   ins_encode %{
9706     __ addl($dst$$Register,$dst$$Register);
9707     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9708     __ addl($dst$$Register,$dst$$Register);
9709     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9710   %}
9711   ins_pipe( ialu_reg_long );
9712 %}
9713 
9714 // Shift Left Long by 3
9715 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9716   predicate(UseNewLongLShift);
9717   match(Set dst (LShiftL dst cnt));
9718   effect(KILL cr);
9719   ins_cost(100);
9720   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9721             "ADC    $dst.hi,$dst.hi\n\t" 
9722             "ADD    $dst.lo,$dst.lo\n\t"
9723             "ADC    $dst.hi,$dst.hi\n\t" 
9724             "ADD    $dst.lo,$dst.lo\n\t"
9725             "ADC    $dst.hi,$dst.hi" %}
9726   ins_encode %{
9727     __ addl($dst$$Register,$dst$$Register);
9728     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9729     __ addl($dst$$Register,$dst$$Register);
9730     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9731     __ addl($dst$$Register,$dst$$Register);
9732     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9733   %}
9734   ins_pipe( ialu_reg_long );
9735 %}
9736 
9737 // Shift Left Long by 1-31
9738 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9739   match(Set dst (LShiftL dst cnt));
9740   effect(KILL cr);
9741   ins_cost(200);
9742   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9743             "SHL    $dst.lo,$cnt" %}
9744   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9745   ins_encode( move_long_small_shift(dst,cnt) );
9746   ins_pipe( ialu_reg_long );
9747 %}
9748 
9749 // Shift Left Long by 32-63
9750 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9751   match(Set dst (LShiftL dst cnt));
9752   effect(KILL cr);
9753   ins_cost(300);
9754   format %{ "MOV    $dst.hi,$dst.lo\n"
9755           "\tSHL    $dst.hi,$cnt-32\n"
9756           "\tXOR    $dst.lo,$dst.lo" %}
9757   opcode(0xC1, 0x4);  /* C1 /4 ib */
9758   ins_encode( move_long_big_shift_clr(dst,cnt) );
9759   ins_pipe( ialu_reg_long );
9760 %}
9761 
9762 // Shift Left Long by variable
9763 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9764   match(Set dst (LShiftL dst shift));
9765   effect(KILL cr);
9766   ins_cost(500+200);
9767   size(17);
9768   format %{ "TEST   $shift,32\n\t"
9769             "JEQ,s  small\n\t"
9770             "MOV    $dst.hi,$dst.lo\n\t"
9771             "XOR    $dst.lo,$dst.lo\n"
9772     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9773             "SHL    $dst.lo,$shift" %}
9774   ins_encode( shift_left_long( dst, shift ) );
9775   ins_pipe( pipe_slow );
9776 %}
9777 
9778 // Shift Right Long by 1-31
9779 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9780   match(Set dst (URShiftL dst cnt));
9781   effect(KILL cr);
9782   ins_cost(200);
9783   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9784             "SHR    $dst.hi,$cnt" %}
9785   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9786   ins_encode( move_long_small_shift(dst,cnt) );
9787   ins_pipe( ialu_reg_long );
9788 %}
9789 
9790 // Shift Right Long by 32-63
9791 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9792   match(Set dst (URShiftL dst cnt));
9793   effect(KILL cr);
9794   ins_cost(300);
9795   format %{ "MOV    $dst.lo,$dst.hi\n"
9796           "\tSHR    $dst.lo,$cnt-32\n"
9797           "\tXOR    $dst.hi,$dst.hi" %}
9798   opcode(0xC1, 0x5);  /* C1 /5 ib */
9799   ins_encode( move_long_big_shift_clr(dst,cnt) );
9800   ins_pipe( ialu_reg_long );
9801 %}
9802 
9803 // Shift Right Long by variable
9804 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9805   match(Set dst (URShiftL dst shift));
9806   effect(KILL cr);
9807   ins_cost(600);
9808   size(17);
9809   format %{ "TEST   $shift,32\n\t"
9810             "JEQ,s  small\n\t"
9811             "MOV    $dst.lo,$dst.hi\n\t"
9812             "XOR    $dst.hi,$dst.hi\n"
9813     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9814             "SHR    $dst.hi,$shift" %}
9815   ins_encode( shift_right_long( dst, shift ) );
9816   ins_pipe( pipe_slow );
9817 %}
9818 
9819 // Shift Right Long by 1-31
9820 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9821   match(Set dst (RShiftL dst cnt));
9822   effect(KILL cr);
9823   ins_cost(200);
9824   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9825             "SAR    $dst.hi,$cnt" %}
9826   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9827   ins_encode( move_long_small_shift(dst,cnt) );
9828   ins_pipe( ialu_reg_long );
9829 %}
9830 
9831 // Shift Right Long by 32-63
9832 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9833   match(Set dst (RShiftL dst cnt));
9834   effect(KILL cr);
9835   ins_cost(300);
9836   format %{ "MOV    $dst.lo,$dst.hi\n"
9837           "\tSAR    $dst.lo,$cnt-32\n"
9838           "\tSAR    $dst.hi,31" %}
9839   opcode(0xC1, 0x7);  /* C1 /7 ib */
9840   ins_encode( move_long_big_shift_sign(dst,cnt) );
9841   ins_pipe( ialu_reg_long );
9842 %}
9843 
9844 // Shift Right arithmetic Long by variable
9845 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9846   match(Set dst (RShiftL dst shift));
9847   effect(KILL cr);
9848   ins_cost(600);
9849   size(18);
9850   format %{ "TEST   $shift,32\n\t"
9851             "JEQ,s  small\n\t"
9852             "MOV    $dst.lo,$dst.hi\n\t"
9853             "SAR    $dst.hi,31\n"
9854     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9855             "SAR    $dst.hi,$shift" %}
9856   ins_encode( shift_right_arith_long( dst, shift ) );
9857   ins_pipe( pipe_slow );
9858 %}
9859 
9860 
9861 //----------Double Instructions------------------------------------------------
9862 // Double Math
9863 
9864 // Compare & branch
9865 
9866 // P6 version of float compare, sets condition codes in EFLAGS
9867 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9868   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9869   match(Set cr (CmpD src1 src2));
9870   effect(KILL rax);
9871   ins_cost(150);
9872   format %{ "FLD    $src1\n\t"
9873             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9874             "JNP    exit\n\t"
9875             "MOV    ah,1       // saw a NaN, set CF\n\t"
9876             "SAHF\n"
9877      "exit:\tNOP               // avoid branch to branch" %}
9878   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9879   ins_encode( Push_Reg_DPR(src1),
9880               OpcP, RegOpc(src2),
9881               cmpF_P6_fixup );
9882   ins_pipe( pipe_slow );
9883 %}
9884 
9885 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9886   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9887   match(Set cr (CmpD src1 src2));
9888   ins_cost(150);
9889   format %{ "FLD    $src1\n\t"
9890             "FUCOMIP ST,$src2  // P6 instruction" %}
9891   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9892   ins_encode( Push_Reg_DPR(src1),
9893               OpcP, RegOpc(src2));
9894   ins_pipe( pipe_slow );
9895 %}
9896 
9897 // Compare & branch
9898 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9899   predicate(UseSSE<=1);
9900   match(Set cr (CmpD src1 src2));
9901   effect(KILL rax);
9902   ins_cost(200);
9903   format %{ "FLD    $src1\n\t"
9904             "FCOMp  $src2\n\t"
9905             "FNSTSW AX\n\t"
9906             "TEST   AX,0x400\n\t"
9907             "JZ,s   flags\n\t"
9908             "MOV    AH,1\t# unordered treat as LT\n"
9909     "flags:\tSAHF" %}
9910   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9911   ins_encode( Push_Reg_DPR(src1),
9912               OpcP, RegOpc(src2),
9913               fpu_flags);
9914   ins_pipe( pipe_slow );
9915 %}
9916 
9917 // Compare vs zero into -1,0,1
9918 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9919   predicate(UseSSE<=1);
9920   match(Set dst (CmpD3 src1 zero));
9921   effect(KILL cr, KILL rax);
9922   ins_cost(280);
9923   format %{ "FTSTD  $dst,$src1" %}
9924   opcode(0xE4, 0xD9);
9925   ins_encode( Push_Reg_DPR(src1),
9926               OpcS, OpcP, PopFPU,
9927               CmpF_Result(dst));
9928   ins_pipe( pipe_slow );
9929 %}
9930 
9931 // Compare into -1,0,1
9932 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9933   predicate(UseSSE<=1);
9934   match(Set dst (CmpD3 src1 src2));
9935   effect(KILL cr, KILL rax);
9936   ins_cost(300);
9937   format %{ "FCMPD  $dst,$src1,$src2" %}
9938   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9939   ins_encode( Push_Reg_DPR(src1),
9940               OpcP, RegOpc(src2),
9941               CmpF_Result(dst));
9942   ins_pipe( pipe_slow );
9943 %}
9944 
9945 // float compare and set condition codes in EFLAGS by XMM regs
9946 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9947   predicate(UseSSE>=2);
9948   match(Set cr (CmpD src1 src2));
9949   ins_cost(145);
9950   format %{ "UCOMISD $src1,$src2\n\t"
9951             "JNP,s   exit\n\t"
9952             "PUSHF\t# saw NaN, set CF\n\t"
9953             "AND     [rsp], #0xffffff2b\n\t"
9954             "POPF\n"
9955     "exit:" %}
9956   ins_encode %{
9957     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9958     emit_cmpfp_fixup(_masm);
9959   %}
9960   ins_pipe( pipe_slow );
9961 %}
9962 
9963 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9964   predicate(UseSSE>=2);
9965   match(Set cr (CmpD src1 src2));
9966   ins_cost(100);
9967   format %{ "UCOMISD $src1,$src2" %}
9968   ins_encode %{
9969     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9970   %}
9971   ins_pipe( pipe_slow );
9972 %}
9973 
9974 // float compare and set condition codes in EFLAGS by XMM regs
9975 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9976   predicate(UseSSE>=2);
9977   match(Set cr (CmpD src1 (LoadD src2)));
9978   ins_cost(145);
9979   format %{ "UCOMISD $src1,$src2\n\t"
9980             "JNP,s   exit\n\t"
9981             "PUSHF\t# saw NaN, set CF\n\t"
9982             "AND     [rsp], #0xffffff2b\n\t"
9983             "POPF\n"
9984     "exit:" %}
9985   ins_encode %{
9986     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9987     emit_cmpfp_fixup(_masm);
9988   %}
9989   ins_pipe( pipe_slow );
9990 %}
9991 
9992 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9993   predicate(UseSSE>=2);
9994   match(Set cr (CmpD src1 (LoadD src2)));
9995   ins_cost(100);
9996   format %{ "UCOMISD $src1,$src2" %}
9997   ins_encode %{
9998     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9999   %}
10000   ins_pipe( pipe_slow );
10001 %}
10002 
10003 // Compare into -1,0,1 in XMM
10004 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
10005   predicate(UseSSE>=2);
10006   match(Set dst (CmpD3 src1 src2));
10007   effect(KILL cr);
10008   ins_cost(255);
10009   format %{ "UCOMISD $src1, $src2\n\t"
10010             "MOV     $dst, #-1\n\t"
10011             "JP,s    done\n\t"
10012             "JB,s    done\n\t"
10013             "SETNE   $dst\n\t"
10014             "MOVZB   $dst, $dst\n"
10015     "done:" %}
10016   ins_encode %{
10017     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10018     emit_cmpfp3(_masm, $dst$$Register);
10019   %}
10020   ins_pipe( pipe_slow );
10021 %}
10022 
10023 // Compare into -1,0,1 in XMM and memory
10024 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
10025   predicate(UseSSE>=2);
10026   match(Set dst (CmpD3 src1 (LoadD src2)));
10027   effect(KILL cr);
10028   ins_cost(275);
10029   format %{ "UCOMISD $src1, $src2\n\t"
10030             "MOV     $dst, #-1\n\t"
10031             "JP,s    done\n\t"
10032             "JB,s    done\n\t"
10033             "SETNE   $dst\n\t"
10034             "MOVZB   $dst, $dst\n"
10035     "done:" %}
10036   ins_encode %{
10037     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10038     emit_cmpfp3(_masm, $dst$$Register);
10039   %}
10040   ins_pipe( pipe_slow );
10041 %}
10042 
10043 
10044 instruct subDPR_reg(regDPR dst, regDPR src) %{
10045   predicate (UseSSE <=1);
10046   match(Set dst (SubD dst src));
10047 
10048   format %{ "FLD    $src\n\t"
10049             "DSUBp  $dst,ST" %}
10050   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10051   ins_cost(150);
10052   ins_encode( Push_Reg_DPR(src),
10053               OpcP, RegOpc(dst) );
10054   ins_pipe( fpu_reg_reg );
10055 %}
10056 
10057 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
10058   predicate (UseSSE <=1);
10059   match(Set dst (RoundDouble (SubD src1 src2)));
10060   ins_cost(250);
10061 
10062   format %{ "FLD    $src2\n\t"
10063             "DSUB   ST,$src1\n\t"
10064             "FSTP_D $dst\t# D-round" %}
10065   opcode(0xD8, 0x5);
10066   ins_encode( Push_Reg_DPR(src2),
10067               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
10068   ins_pipe( fpu_mem_reg_reg );
10069 %}
10070 
10071 
10072 instruct subDPR_reg_mem(regDPR dst, memory src) %{
10073   predicate (UseSSE <=1);
10074   match(Set dst (SubD dst (LoadD src)));
10075   ins_cost(150);
10076 
10077   format %{ "FLD    $src\n\t"
10078             "DSUBp  $dst,ST" %}
10079   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10080   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10081               OpcP, RegOpc(dst) );
10082   ins_pipe( fpu_reg_mem );
10083 %}
10084 
10085 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
10086   predicate (UseSSE<=1);
10087   match(Set dst (AbsD src));
10088   ins_cost(100);
10089   format %{ "FABS" %}
10090   opcode(0xE1, 0xD9);
10091   ins_encode( OpcS, OpcP );
10092   ins_pipe( fpu_reg_reg );
10093 %}
10094 
10095 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
10096   predicate(UseSSE<=1);
10097   match(Set dst (NegD src));
10098   ins_cost(100);
10099   format %{ "FCHS" %}
10100   opcode(0xE0, 0xD9);
10101   ins_encode( OpcS, OpcP );
10102   ins_pipe( fpu_reg_reg );
10103 %}
10104 
10105 instruct addDPR_reg(regDPR dst, regDPR src) %{
10106   predicate(UseSSE<=1);
10107   match(Set dst (AddD dst src));
10108   format %{ "FLD    $src\n\t"
10109             "DADD   $dst,ST" %}
10110   size(4);
10111   ins_cost(150);
10112   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10113   ins_encode( Push_Reg_DPR(src),
10114               OpcP, RegOpc(dst) );
10115   ins_pipe( fpu_reg_reg );
10116 %}
10117 
10118 
10119 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
10120   predicate(UseSSE<=1);
10121   match(Set dst (RoundDouble (AddD src1 src2)));
10122   ins_cost(250);
10123 
10124   format %{ "FLD    $src2\n\t"
10125             "DADD   ST,$src1\n\t"
10126             "FSTP_D $dst\t# D-round" %}
10127   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
10128   ins_encode( Push_Reg_DPR(src2),
10129               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
10130   ins_pipe( fpu_mem_reg_reg );
10131 %}
10132 
10133 
10134 instruct addDPR_reg_mem(regDPR dst, memory src) %{
10135   predicate(UseSSE<=1);
10136   match(Set dst (AddD dst (LoadD src)));
10137   ins_cost(150);
10138 
10139   format %{ "FLD    $src\n\t"
10140             "DADDp  $dst,ST" %}
10141   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10142   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10143               OpcP, RegOpc(dst) );
10144   ins_pipe( fpu_reg_mem );
10145 %}
10146 
10147 // add-to-memory
10148 instruct addDPR_mem_reg(memory dst, regDPR src) %{
10149   predicate(UseSSE<=1);
10150   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
10151   ins_cost(150);
10152 
10153   format %{ "FLD_D  $dst\n\t"
10154             "DADD   ST,$src\n\t"
10155             "FST_D  $dst" %}
10156   opcode(0xDD, 0x0);
10157   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
10158               Opcode(0xD8), RegOpc(src),
10159               set_instruction_start,
10160               Opcode(0xDD), RMopc_Mem(0x03,dst) );
10161   ins_pipe( fpu_reg_mem );
10162 %}
10163 
10164 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
10165   predicate(UseSSE<=1);
10166   match(Set dst (AddD dst con));
10167   ins_cost(125);
10168   format %{ "FLD1\n\t"
10169             "DADDp  $dst,ST" %}
10170   ins_encode %{
10171     __ fld1();
10172     __ faddp($dst$$reg);
10173   %}
10174   ins_pipe(fpu_reg);
10175 %}
10176 
10177 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
10178   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10179   match(Set dst (AddD dst con));
10180   ins_cost(200);
10181   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10182             "DADDp  $dst,ST" %}
10183   ins_encode %{
10184     __ fld_d($constantaddress($con));
10185     __ faddp($dst$$reg);
10186   %}
10187   ins_pipe(fpu_reg_mem);
10188 %}
10189 
10190 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
10191   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
10192   match(Set dst (RoundDouble (AddD src con)));
10193   ins_cost(200);
10194   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10195             "DADD   ST,$src\n\t"
10196             "FSTP_D $dst\t# D-round" %}
10197   ins_encode %{
10198     __ fld_d($constantaddress($con));
10199     __ fadd($src$$reg);
10200     __ fstp_d(Address(rsp, $dst$$disp));
10201   %}
10202   ins_pipe(fpu_mem_reg_con);
10203 %}
10204 
10205 instruct mulDPR_reg(regDPR dst, regDPR src) %{
10206   predicate(UseSSE<=1);
10207   match(Set dst (MulD dst src));
10208   format %{ "FLD    $src\n\t"
10209             "DMULp  $dst,ST" %}
10210   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10211   ins_cost(150);
10212   ins_encode( Push_Reg_DPR(src),
10213               OpcP, RegOpc(dst) );
10214   ins_pipe( fpu_reg_reg );
10215 %}
10216 
10217 // Strict FP instruction biases argument before multiply then
10218 // biases result to avoid double rounding of subnormals.
10219 //
10220 // scale arg1 by multiplying arg1 by 2^(-15360)
10221 // load arg2
10222 // multiply scaled arg1 by arg2
10223 // rescale product by 2^(15360)
10224 //
10225 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
10226   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10227   match(Set dst (MulD dst src));
10228   ins_cost(1);   // Select this instruction for all strict FP double multiplies
10229 
10230   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10231             "DMULp  $dst,ST\n\t"
10232             "FLD    $src\n\t"
10233             "DMULp  $dst,ST\n\t"
10234             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10235             "DMULp  $dst,ST\n\t" %}
10236   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10237   ins_encode( strictfp_bias1(dst),
10238               Push_Reg_DPR(src),
10239               OpcP, RegOpc(dst),
10240               strictfp_bias2(dst) );
10241   ins_pipe( fpu_reg_reg );
10242 %}
10243 
10244 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
10245   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10246   match(Set dst (MulD dst con));
10247   ins_cost(200);
10248   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10249             "DMULp  $dst,ST" %}
10250   ins_encode %{
10251     __ fld_d($constantaddress($con));
10252     __ fmulp($dst$$reg);
10253   %}
10254   ins_pipe(fpu_reg_mem);
10255 %}
10256 
10257 
10258 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
10259   predicate( UseSSE<=1 );
10260   match(Set dst (MulD dst (LoadD src)));
10261   ins_cost(200);
10262   format %{ "FLD_D  $src\n\t"
10263             "DMULp  $dst,ST" %}
10264   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
10265   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10266               OpcP, RegOpc(dst) );
10267   ins_pipe( fpu_reg_mem );
10268 %}
10269 
10270 //
10271 // Cisc-alternate to reg-reg multiply
10272 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
10273   predicate( UseSSE<=1 );
10274   match(Set dst (MulD src (LoadD mem)));
10275   ins_cost(250);
10276   format %{ "FLD_D  $mem\n\t"
10277             "DMUL   ST,$src\n\t"
10278             "FSTP_D $dst" %}
10279   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
10280   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
10281               OpcReg_FPR(src),
10282               Pop_Reg_DPR(dst) );
10283   ins_pipe( fpu_reg_reg_mem );
10284 %}
10285 
10286 
10287 // MACRO3 -- addDPR a mulDPR
10288 // This instruction is a '2-address' instruction in that the result goes
10289 // back to src2.  This eliminates a move from the macro; possibly the
10290 // register allocator will have to add it back (and maybe not).
10291 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
10292   predicate( UseSSE<=1 );
10293   match(Set src2 (AddD (MulD src0 src1) src2));
10294   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10295             "DMUL   ST,$src1\n\t"
10296             "DADDp  $src2,ST" %}
10297   ins_cost(250);
10298   opcode(0xDD); /* LoadD DD /0 */
10299   ins_encode( Push_Reg_FPR(src0),
10300               FMul_ST_reg(src1),
10301               FAddP_reg_ST(src2) );
10302   ins_pipe( fpu_reg_reg_reg );
10303 %}
10304 
10305 
10306 // MACRO3 -- subDPR a mulDPR
10307 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
10308   predicate( UseSSE<=1 );
10309   match(Set src2 (SubD (MulD src0 src1) src2));
10310   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10311             "DMUL   ST,$src1\n\t"
10312             "DSUBRp $src2,ST" %}
10313   ins_cost(250);
10314   ins_encode( Push_Reg_FPR(src0),
10315               FMul_ST_reg(src1),
10316               Opcode(0xDE), Opc_plus(0xE0,src2));
10317   ins_pipe( fpu_reg_reg_reg );
10318 %}
10319 
10320 
10321 instruct divDPR_reg(regDPR dst, regDPR src) %{
10322   predicate( UseSSE<=1 );
10323   match(Set dst (DivD dst src));
10324 
10325   format %{ "FLD    $src\n\t"
10326             "FDIVp  $dst,ST" %}
10327   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10328   ins_cost(150);
10329   ins_encode( Push_Reg_DPR(src),
10330               OpcP, RegOpc(dst) );
10331   ins_pipe( fpu_reg_reg );
10332 %}
10333 
10334 // Strict FP instruction biases argument before division then
10335 // biases result, to avoid double rounding of subnormals.
10336 //
10337 // scale dividend by multiplying dividend by 2^(-15360)
10338 // load divisor
10339 // divide scaled dividend by divisor
10340 // rescale quotient by 2^(15360)
10341 //
10342 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
10343   predicate (UseSSE<=1);
10344   match(Set dst (DivD dst src));
10345   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10346   ins_cost(01);
10347 
10348   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10349             "DMULp  $dst,ST\n\t"
10350             "FLD    $src\n\t"
10351             "FDIVp  $dst,ST\n\t"
10352             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10353             "DMULp  $dst,ST\n\t" %}
10354   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10355   ins_encode( strictfp_bias1(dst),
10356               Push_Reg_DPR(src),
10357               OpcP, RegOpc(dst),
10358               strictfp_bias2(dst) );
10359   ins_pipe( fpu_reg_reg );
10360 %}
10361 
10362 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
10363   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
10364   match(Set dst (RoundDouble (DivD src1 src2)));
10365 
10366   format %{ "FLD    $src1\n\t"
10367             "FDIV   ST,$src2\n\t"
10368             "FSTP_D $dst\t# D-round" %}
10369   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10370   ins_encode( Push_Reg_DPR(src1),
10371               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
10372   ins_pipe( fpu_mem_reg_reg );
10373 %}
10374 
10375 
10376 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
10377   predicate(UseSSE<=1);
10378   match(Set dst (ModD dst src));
10379   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10380 
10381   format %{ "DMOD   $dst,$src" %}
10382   ins_cost(250);
10383   ins_encode(Push_Reg_Mod_DPR(dst, src),
10384               emitModDPR(),
10385               Push_Result_Mod_DPR(src),
10386               Pop_Reg_DPR(dst));
10387   ins_pipe( pipe_slow );
10388 %}
10389 
10390 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
10391   predicate(UseSSE>=2);
10392   match(Set dst (ModD src0 src1));
10393   effect(KILL rax, KILL cr);
10394 
10395   format %{ "SUB    ESP,8\t # DMOD\n"
10396           "\tMOVSD  [ESP+0],$src1\n"
10397           "\tFLD_D  [ESP+0]\n"
10398           "\tMOVSD  [ESP+0],$src0\n"
10399           "\tFLD_D  [ESP+0]\n"
10400      "loop:\tFPREM\n"
10401           "\tFWAIT\n"
10402           "\tFNSTSW AX\n"
10403           "\tSAHF\n"
10404           "\tJP     loop\n"
10405           "\tFSTP_D [ESP+0]\n"
10406           "\tMOVSD  $dst,[ESP+0]\n"
10407           "\tADD    ESP,8\n"
10408           "\tFSTP   ST0\t # Restore FPU Stack"
10409     %}
10410   ins_cost(250);
10411   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
10412   ins_pipe( pipe_slow );
10413 %}
10414 
10415 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
10416   predicate (UseSSE<=1);
10417   match(Set dst (SinD src));
10418   ins_cost(1800);
10419   format %{ "DSIN   $dst" %}
10420   opcode(0xD9, 0xFE);
10421   ins_encode( OpcP, OpcS );
10422   ins_pipe( pipe_slow );
10423 %}
10424 
10425 instruct sinD_reg(regD dst, eFlagsReg cr) %{
10426   predicate (UseSSE>=2);
10427   match(Set dst (SinD dst));
10428   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10429   ins_cost(1800);
10430   format %{ "DSIN   $dst" %}
10431   opcode(0xD9, 0xFE);
10432   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
10433   ins_pipe( pipe_slow );
10434 %}
10435 
10436 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
10437   predicate (UseSSE<=1);
10438   match(Set dst (CosD src));
10439   ins_cost(1800);
10440   format %{ "DCOS   $dst" %}
10441   opcode(0xD9, 0xFF);
10442   ins_encode( OpcP, OpcS );
10443   ins_pipe( pipe_slow );
10444 %}
10445 
10446 instruct cosD_reg(regD dst, eFlagsReg cr) %{
10447   predicate (UseSSE>=2);
10448   match(Set dst (CosD dst));
10449   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10450   ins_cost(1800);
10451   format %{ "DCOS   $dst" %}
10452   opcode(0xD9, 0xFF);
10453   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
10454   ins_pipe( pipe_slow );
10455 %}
10456 
10457 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
10458   predicate (UseSSE<=1);
10459   match(Set dst(TanD src));
10460   format %{ "DTAN   $dst" %}
10461   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10462               Opcode(0xDD), Opcode(0xD8));   // fstp st
10463   ins_pipe( pipe_slow );
10464 %}
10465 
10466 instruct tanD_reg(regD dst, eFlagsReg cr) %{
10467   predicate (UseSSE>=2);
10468   match(Set dst(TanD dst));
10469   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10470   format %{ "DTAN   $dst" %}
10471   ins_encode( Push_SrcD(dst),
10472               Opcode(0xD9), Opcode(0xF2),    // fptan
10473               Opcode(0xDD), Opcode(0xD8),   // fstp st
10474               Push_ResultD(dst) );
10475   ins_pipe( pipe_slow );
10476 %}
10477 
10478 instruct atanDPR_reg(regDPR dst, regDPR src) %{
10479   predicate (UseSSE<=1);
10480   match(Set dst(AtanD dst src));
10481   format %{ "DATA   $dst,$src" %}
10482   opcode(0xD9, 0xF3);
10483   ins_encode( Push_Reg_DPR(src),
10484               OpcP, OpcS, RegOpc(dst) );
10485   ins_pipe( pipe_slow );
10486 %}
10487 
10488 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
10489   predicate (UseSSE>=2);
10490   match(Set dst(AtanD dst src));
10491   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10492   format %{ "DATA   $dst,$src" %}
10493   opcode(0xD9, 0xF3);
10494   ins_encode( Push_SrcD(src),
10495               OpcP, OpcS, Push_ResultD(dst) );
10496   ins_pipe( pipe_slow );
10497 %}
10498 
10499 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
10500   predicate (UseSSE<=1);
10501   match(Set dst (SqrtD src));
10502   format %{ "DSQRT  $dst,$src" %}
10503   opcode(0xFA, 0xD9);
10504   ins_encode( Push_Reg_DPR(src),
10505               OpcS, OpcP, Pop_Reg_DPR(dst) );
10506   ins_pipe( pipe_slow );
10507 %}
10508 
10509 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10510   predicate (UseSSE<=1);
10511   match(Set Y (PowD X Y));  // Raise X to the Yth power
10512   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10513   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
10514   ins_encode %{
10515     __ subptr(rsp, 8);
10516     __ fld_s($X$$reg - 1);
10517     __ fast_pow();
10518     __ addptr(rsp, 8);
10519   %}
10520   ins_pipe( pipe_slow );
10521 %}
10522 
10523 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10524   predicate (UseSSE>=2);
10525   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10526   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10527   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
10528   ins_encode %{
10529     __ subptr(rsp, 8);
10530     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
10531     __ fld_d(Address(rsp, 0));
10532     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
10533     __ fld_d(Address(rsp, 0));
10534     __ fast_pow();
10535     __ fstp_d(Address(rsp, 0));
10536     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10537     __ addptr(rsp, 8);
10538   %}
10539   ins_pipe( pipe_slow );
10540 %}
10541 
10542 
10543 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10544   predicate (UseSSE<=1);
10545   match(Set dpr1 (ExpD dpr1));
10546   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10547   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
10548   ins_encode %{
10549     __ fast_exp();
10550   %}
10551   ins_pipe( pipe_slow );
10552 %}
10553 
10554 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10555   predicate (UseSSE>=2);
10556   match(Set dst (ExpD src));
10557   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10558   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
10559   ins_encode %{
10560     __ subptr(rsp, 8);
10561     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10562     __ fld_d(Address(rsp, 0));
10563     __ fast_exp();
10564     __ fstp_d(Address(rsp, 0));
10565     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10566     __ addptr(rsp, 8);
10567   %}
10568   ins_pipe( pipe_slow );
10569 %}
10570 
10571 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
10572   predicate (UseSSE<=1);
10573   // The source Double operand on FPU stack
10574   match(Set dst (Log10D src));
10575   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10576   // fxch         ; swap ST(0) with ST(1)
10577   // fyl2x        ; compute log_10(2) * log_2(x)
10578   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10579             "FXCH   \n\t"
10580             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10581          %}
10582   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10583               Opcode(0xD9), Opcode(0xC9),   // fxch
10584               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10585 
10586   ins_pipe( pipe_slow );
10587 %}
10588 
10589 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
10590   predicate (UseSSE>=2);
10591   effect(KILL cr);
10592   match(Set dst (Log10D src));
10593   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10594   // fyl2x        ; compute log_10(2) * log_2(x)
10595   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10596             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10597          %}
10598   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10599               Push_SrcD(src),
10600               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10601               Push_ResultD(dst));
10602 
10603   ins_pipe( pipe_slow );
10604 %}
10605 
10606 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
10607   predicate (UseSSE<=1);
10608   // The source Double operand on FPU stack
10609   match(Set dst (LogD src));
10610   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10611   // fxch         ; swap ST(0) with ST(1)
10612   // fyl2x        ; compute log_e(2) * log_2(x)
10613   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10614             "FXCH   \n\t"
10615             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10616          %}
10617   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10618               Opcode(0xD9), Opcode(0xC9),   // fxch
10619               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10620 
10621   ins_pipe( pipe_slow );
10622 %}
10623 
10624 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10625   predicate (UseSSE>=2);
10626   effect(KILL cr);
10627   // The source and result Double operands in XMM registers
10628   match(Set dst (LogD src));
10629   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10630   // fyl2x        ; compute log_e(2) * log_2(x)
10631   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10632             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10633          %}
10634   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10635               Push_SrcD(src),
10636               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10637               Push_ResultD(dst));
10638   ins_pipe( pipe_slow );
10639 %}
10640 
10641 //-------------Float Instructions-------------------------------
10642 // Float Math
10643 
10644 // Code for float compare:
10645 //     fcompp();
10646 //     fwait(); fnstsw_ax();
10647 //     sahf();
10648 //     movl(dst, unordered_result);
10649 //     jcc(Assembler::parity, exit);
10650 //     movl(dst, less_result);
10651 //     jcc(Assembler::below, exit);
10652 //     movl(dst, equal_result);
10653 //     jcc(Assembler::equal, exit);
10654 //     movl(dst, greater_result);
10655 //   exit:
10656 
10657 // P6 version of float compare, sets condition codes in EFLAGS
10658 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10659   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10660   match(Set cr (CmpF src1 src2));
10661   effect(KILL rax);
10662   ins_cost(150);
10663   format %{ "FLD    $src1\n\t"
10664             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10665             "JNP    exit\n\t"
10666             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10667             "SAHF\n"
10668      "exit:\tNOP               // avoid branch to branch" %}
10669   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10670   ins_encode( Push_Reg_DPR(src1),
10671               OpcP, RegOpc(src2),
10672               cmpF_P6_fixup );
10673   ins_pipe( pipe_slow );
10674 %}
10675 
10676 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10677   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10678   match(Set cr (CmpF src1 src2));
10679   ins_cost(100);
10680   format %{ "FLD    $src1\n\t"
10681             "FUCOMIP ST,$src2  // P6 instruction" %}
10682   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10683   ins_encode( Push_Reg_DPR(src1),
10684               OpcP, RegOpc(src2));
10685   ins_pipe( pipe_slow );
10686 %}
10687 
10688 
10689 // Compare & branch
10690 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10691   predicate(UseSSE == 0);
10692   match(Set cr (CmpF src1 src2));
10693   effect(KILL rax);
10694   ins_cost(200);
10695   format %{ "FLD    $src1\n\t"
10696             "FCOMp  $src2\n\t"
10697             "FNSTSW AX\n\t"
10698             "TEST   AX,0x400\n\t"
10699             "JZ,s   flags\n\t"
10700             "MOV    AH,1\t# unordered treat as LT\n"
10701     "flags:\tSAHF" %}
10702   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10703   ins_encode( Push_Reg_DPR(src1),
10704               OpcP, RegOpc(src2),
10705               fpu_flags);
10706   ins_pipe( pipe_slow );
10707 %}
10708 
10709 // Compare vs zero into -1,0,1
10710 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10711   predicate(UseSSE == 0);
10712   match(Set dst (CmpF3 src1 zero));
10713   effect(KILL cr, KILL rax);
10714   ins_cost(280);
10715   format %{ "FTSTF  $dst,$src1" %}
10716   opcode(0xE4, 0xD9);
10717   ins_encode( Push_Reg_DPR(src1),
10718               OpcS, OpcP, PopFPU,
10719               CmpF_Result(dst));
10720   ins_pipe( pipe_slow );
10721 %}
10722 
10723 // Compare into -1,0,1
10724 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10725   predicate(UseSSE == 0);
10726   match(Set dst (CmpF3 src1 src2));
10727   effect(KILL cr, KILL rax);
10728   ins_cost(300);
10729   format %{ "FCMPF  $dst,$src1,$src2" %}
10730   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10731   ins_encode( Push_Reg_DPR(src1),
10732               OpcP, RegOpc(src2),
10733               CmpF_Result(dst));
10734   ins_pipe( pipe_slow );
10735 %}
10736 
10737 // float compare and set condition codes in EFLAGS by XMM regs
10738 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10739   predicate(UseSSE>=1);
10740   match(Set cr (CmpF src1 src2));
10741   ins_cost(145);
10742   format %{ "UCOMISS $src1,$src2\n\t"
10743             "JNP,s   exit\n\t"
10744             "PUSHF\t# saw NaN, set CF\n\t"
10745             "AND     [rsp], #0xffffff2b\n\t"
10746             "POPF\n"
10747     "exit:" %}
10748   ins_encode %{
10749     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10750     emit_cmpfp_fixup(_masm);
10751   %}
10752   ins_pipe( pipe_slow );
10753 %}
10754 
10755 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10756   predicate(UseSSE>=1);
10757   match(Set cr (CmpF src1 src2));
10758   ins_cost(100);
10759   format %{ "UCOMISS $src1,$src2" %}
10760   ins_encode %{
10761     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10762   %}
10763   ins_pipe( pipe_slow );
10764 %}
10765 
10766 // float compare and set condition codes in EFLAGS by XMM regs
10767 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10768   predicate(UseSSE>=1);
10769   match(Set cr (CmpF src1 (LoadF src2)));
10770   ins_cost(165);
10771   format %{ "UCOMISS $src1,$src2\n\t"
10772             "JNP,s   exit\n\t"
10773             "PUSHF\t# saw NaN, set CF\n\t"
10774             "AND     [rsp], #0xffffff2b\n\t"
10775             "POPF\n"
10776     "exit:" %}
10777   ins_encode %{
10778     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10779     emit_cmpfp_fixup(_masm);
10780   %}
10781   ins_pipe( pipe_slow );
10782 %}
10783 
10784 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10785   predicate(UseSSE>=1);
10786   match(Set cr (CmpF src1 (LoadF src2)));
10787   ins_cost(100);
10788   format %{ "UCOMISS $src1,$src2" %}
10789   ins_encode %{
10790     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10791   %}
10792   ins_pipe( pipe_slow );
10793 %}
10794 
10795 // Compare into -1,0,1 in XMM
10796 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10797   predicate(UseSSE>=1);
10798   match(Set dst (CmpF3 src1 src2));
10799   effect(KILL cr);
10800   ins_cost(255);
10801   format %{ "UCOMISS $src1, $src2\n\t"
10802             "MOV     $dst, #-1\n\t"
10803             "JP,s    done\n\t"
10804             "JB,s    done\n\t"
10805             "SETNE   $dst\n\t"
10806             "MOVZB   $dst, $dst\n"
10807     "done:" %}
10808   ins_encode %{
10809     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10810     emit_cmpfp3(_masm, $dst$$Register);
10811   %}
10812   ins_pipe( pipe_slow );
10813 %}
10814 
10815 // Compare into -1,0,1 in XMM and memory
10816 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10817   predicate(UseSSE>=1);
10818   match(Set dst (CmpF3 src1 (LoadF src2)));
10819   effect(KILL cr);
10820   ins_cost(275);
10821   format %{ "UCOMISS $src1, $src2\n\t"
10822             "MOV     $dst, #-1\n\t"
10823             "JP,s    done\n\t"
10824             "JB,s    done\n\t"
10825             "SETNE   $dst\n\t"
10826             "MOVZB   $dst, $dst\n"
10827     "done:" %}
10828   ins_encode %{
10829     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10830     emit_cmpfp3(_masm, $dst$$Register);
10831   %}
10832   ins_pipe( pipe_slow );
10833 %}
10834 
10835 // Spill to obtain 24-bit precision
10836 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10837   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10838   match(Set dst (SubF src1 src2));
10839 
10840   format %{ "FSUB   $dst,$src1 - $src2" %}
10841   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10842   ins_encode( Push_Reg_FPR(src1),
10843               OpcReg_FPR(src2),
10844               Pop_Mem_FPR(dst) );
10845   ins_pipe( fpu_mem_reg_reg );
10846 %}
10847 //
10848 // This instruction does not round to 24-bits
10849 instruct subFPR_reg(regFPR dst, regFPR src) %{
10850   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10851   match(Set dst (SubF dst src));
10852 
10853   format %{ "FSUB   $dst,$src" %}
10854   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10855   ins_encode( Push_Reg_FPR(src),
10856               OpcP, RegOpc(dst) );
10857   ins_pipe( fpu_reg_reg );
10858 %}
10859 
10860 // Spill to obtain 24-bit precision
10861 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10862   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10863   match(Set dst (AddF src1 src2));
10864 
10865   format %{ "FADD   $dst,$src1,$src2" %}
10866   opcode(0xD8, 0x0); /* D8 C0+i */
10867   ins_encode( Push_Reg_FPR(src2),
10868               OpcReg_FPR(src1),
10869               Pop_Mem_FPR(dst) );
10870   ins_pipe( fpu_mem_reg_reg );
10871 %}
10872 //
10873 // This instruction does not round to 24-bits
10874 instruct addFPR_reg(regFPR dst, regFPR src) %{
10875   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10876   match(Set dst (AddF dst src));
10877 
10878   format %{ "FLD    $src\n\t"
10879             "FADDp  $dst,ST" %}
10880   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10881   ins_encode( Push_Reg_FPR(src),
10882               OpcP, RegOpc(dst) );
10883   ins_pipe( fpu_reg_reg );
10884 %}
10885 
10886 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10887   predicate(UseSSE==0);
10888   match(Set dst (AbsF src));
10889   ins_cost(100);
10890   format %{ "FABS" %}
10891   opcode(0xE1, 0xD9);
10892   ins_encode( OpcS, OpcP );
10893   ins_pipe( fpu_reg_reg );
10894 %}
10895 
10896 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10897   predicate(UseSSE==0);
10898   match(Set dst (NegF src));
10899   ins_cost(100);
10900   format %{ "FCHS" %}
10901   opcode(0xE0, 0xD9);
10902   ins_encode( OpcS, OpcP );
10903   ins_pipe( fpu_reg_reg );
10904 %}
10905 
10906 // Cisc-alternate to addFPR_reg
10907 // Spill to obtain 24-bit precision
10908 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10909   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10910   match(Set dst (AddF src1 (LoadF src2)));
10911 
10912   format %{ "FLD    $src2\n\t"
10913             "FADD   ST,$src1\n\t"
10914             "FSTP_S $dst" %}
10915   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10916   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10917               OpcReg_FPR(src1),
10918               Pop_Mem_FPR(dst) );
10919   ins_pipe( fpu_mem_reg_mem );
10920 %}
10921 //
10922 // Cisc-alternate to addFPR_reg
10923 // This instruction does not round to 24-bits
10924 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10925   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10926   match(Set dst (AddF dst (LoadF src)));
10927 
10928   format %{ "FADD   $dst,$src" %}
10929   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10930   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10931               OpcP, RegOpc(dst) );
10932   ins_pipe( fpu_reg_mem );
10933 %}
10934 
10935 // // Following two instructions for _222_mpegaudio
10936 // Spill to obtain 24-bit precision
10937 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10938   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10939   match(Set dst (AddF src1 src2));
10940 
10941   format %{ "FADD   $dst,$src1,$src2" %}
10942   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10943   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10944               OpcReg_FPR(src2),
10945               Pop_Mem_FPR(dst) );
10946   ins_pipe( fpu_mem_reg_mem );
10947 %}
10948 
10949 // Cisc-spill variant
10950 // Spill to obtain 24-bit precision
10951 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10952   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10953   match(Set dst (AddF src1 (LoadF src2)));
10954 
10955   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10956   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10957   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10958               set_instruction_start,
10959               OpcP, RMopc_Mem(secondary,src1),
10960               Pop_Mem_FPR(dst) );
10961   ins_pipe( fpu_mem_mem_mem );
10962 %}
10963 
10964 // Spill to obtain 24-bit precision
10965 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10966   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10967   match(Set dst (AddF src1 src2));
10968 
10969   format %{ "FADD   $dst,$src1,$src2" %}
10970   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10971   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10972               set_instruction_start,
10973               OpcP, RMopc_Mem(secondary,src1),
10974               Pop_Mem_FPR(dst) );
10975   ins_pipe( fpu_mem_mem_mem );
10976 %}
10977 
10978 
10979 // Spill to obtain 24-bit precision
10980 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10981   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10982   match(Set dst (AddF src con));
10983   format %{ "FLD    $src\n\t"
10984             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10985             "FSTP_S $dst"  %}
10986   ins_encode %{
10987     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10988     __ fadd_s($constantaddress($con));
10989     __ fstp_s(Address(rsp, $dst$$disp));
10990   %}
10991   ins_pipe(fpu_mem_reg_con);
10992 %}
10993 //
10994 // This instruction does not round to 24-bits
10995 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10996   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10997   match(Set dst (AddF src con));
10998   format %{ "FLD    $src\n\t"
10999             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11000             "FSTP   $dst"  %}
11001   ins_encode %{
11002     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11003     __ fadd_s($constantaddress($con));
11004     __ fstp_d($dst$$reg);
11005   %}
11006   ins_pipe(fpu_reg_reg_con);
11007 %}
11008 
11009 // Spill to obtain 24-bit precision
11010 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
11011   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11012   match(Set dst (MulF src1 src2));
11013 
11014   format %{ "FLD    $src1\n\t"
11015             "FMUL   $src2\n\t"
11016             "FSTP_S $dst"  %}
11017   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
11018   ins_encode( Push_Reg_FPR(src1),
11019               OpcReg_FPR(src2),
11020               Pop_Mem_FPR(dst) );
11021   ins_pipe( fpu_mem_reg_reg );
11022 %}
11023 //
11024 // This instruction does not round to 24-bits
11025 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
11026   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11027   match(Set dst (MulF src1 src2));
11028 
11029   format %{ "FLD    $src1\n\t"
11030             "FMUL   $src2\n\t"
11031             "FSTP_S $dst"  %}
11032   opcode(0xD8, 0x1); /* D8 C8+i */
11033   ins_encode( Push_Reg_FPR(src2),
11034               OpcReg_FPR(src1),
11035               Pop_Reg_FPR(dst) );
11036   ins_pipe( fpu_reg_reg_reg );
11037 %}
11038 
11039 
11040 // Spill to obtain 24-bit precision
11041 // Cisc-alternate to reg-reg multiply
11042 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
11043   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11044   match(Set dst (MulF src1 (LoadF src2)));
11045 
11046   format %{ "FLD_S  $src2\n\t"
11047             "FMUL   $src1\n\t"
11048             "FSTP_S $dst"  %}
11049   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
11050   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11051               OpcReg_FPR(src1),
11052               Pop_Mem_FPR(dst) );
11053   ins_pipe( fpu_mem_reg_mem );
11054 %}
11055 //
11056 // This instruction does not round to 24-bits
11057 // Cisc-alternate to reg-reg multiply
11058 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
11059   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11060   match(Set dst (MulF src1 (LoadF src2)));
11061 
11062   format %{ "FMUL   $dst,$src1,$src2" %}
11063   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
11064   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11065               OpcReg_FPR(src1),
11066               Pop_Reg_FPR(dst) );
11067   ins_pipe( fpu_reg_reg_mem );
11068 %}
11069 
11070 // Spill to obtain 24-bit precision
11071 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11072   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11073   match(Set dst (MulF src1 src2));
11074 
11075   format %{ "FMUL   $dst,$src1,$src2" %}
11076   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
11077   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11078               set_instruction_start,
11079               OpcP, RMopc_Mem(secondary,src1),
11080               Pop_Mem_FPR(dst) );
11081   ins_pipe( fpu_mem_mem_mem );
11082 %}
11083 
11084 // Spill to obtain 24-bit precision
11085 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
11086   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11087   match(Set dst (MulF src con));
11088 
11089   format %{ "FLD    $src\n\t"
11090             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11091             "FSTP_S $dst"  %}
11092   ins_encode %{
11093     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11094     __ fmul_s($constantaddress($con));
11095     __ fstp_s(Address(rsp, $dst$$disp));
11096   %}
11097   ins_pipe(fpu_mem_reg_con);
11098 %}
11099 //
11100 // This instruction does not round to 24-bits
11101 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
11102   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11103   match(Set dst (MulF src con));
11104 
11105   format %{ "FLD    $src\n\t"
11106             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11107             "FSTP   $dst"  %}
11108   ins_encode %{
11109     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11110     __ fmul_s($constantaddress($con));
11111     __ fstp_d($dst$$reg);
11112   %}
11113   ins_pipe(fpu_reg_reg_con);
11114 %}
11115 
11116 
11117 //
11118 // MACRO1 -- subsume unshared load into mulFPR
11119 // This instruction does not round to 24-bits
11120 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
11121   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11122   match(Set dst (MulF (LoadF mem1) src));
11123 
11124   format %{ "FLD    $mem1    ===MACRO1===\n\t"
11125             "FMUL   ST,$src\n\t"
11126             "FSTP   $dst" %}
11127   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
11128   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
11129               OpcReg_FPR(src),
11130               Pop_Reg_FPR(dst) );
11131   ins_pipe( fpu_reg_reg_mem );
11132 %}
11133 //
11134 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
11135 // This instruction does not round to 24-bits
11136 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
11137   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11138   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
11139   ins_cost(95);
11140 
11141   format %{ "FLD    $mem1     ===MACRO2===\n\t"
11142             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
11143             "FADD   ST,$src2\n\t"
11144             "FSTP   $dst" %}
11145   opcode(0xD9); /* LoadF D9 /0 */
11146   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
11147               FMul_ST_reg(src1),
11148               FAdd_ST_reg(src2),
11149               Pop_Reg_FPR(dst) );
11150   ins_pipe( fpu_reg_mem_reg_reg );
11151 %}
11152 
11153 // MACRO3 -- addFPR a mulFPR
11154 // This instruction does not round to 24-bits.  It is a '2-address'
11155 // instruction in that the result goes back to src2.  This eliminates
11156 // a move from the macro; possibly the register allocator will have
11157 // to add it back (and maybe not).
11158 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
11159   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11160   match(Set src2 (AddF (MulF src0 src1) src2));
11161 
11162   format %{ "FLD    $src0     ===MACRO3===\n\t"
11163             "FMUL   ST,$src1\n\t"
11164             "FADDP  $src2,ST" %}
11165   opcode(0xD9); /* LoadF D9 /0 */
11166   ins_encode( Push_Reg_FPR(src0),
11167               FMul_ST_reg(src1),
11168               FAddP_reg_ST(src2) );
11169   ins_pipe( fpu_reg_reg_reg );
11170 %}
11171 
11172 // MACRO4 -- divFPR subFPR
11173 // This instruction does not round to 24-bits
11174 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
11175   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11176   match(Set dst (DivF (SubF src2 src1) src3));
11177 
11178   format %{ "FLD    $src2   ===MACRO4===\n\t"
11179             "FSUB   ST,$src1\n\t"
11180             "FDIV   ST,$src3\n\t"
11181             "FSTP  $dst" %}
11182   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11183   ins_encode( Push_Reg_FPR(src2),
11184               subFPR_divFPR_encode(src1,src3),
11185               Pop_Reg_FPR(dst) );
11186   ins_pipe( fpu_reg_reg_reg_reg );
11187 %}
11188 
11189 // Spill to obtain 24-bit precision
11190 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
11191   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11192   match(Set dst (DivF src1 src2));
11193 
11194   format %{ "FDIV   $dst,$src1,$src2" %}
11195   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
11196   ins_encode( Push_Reg_FPR(src1),
11197               OpcReg_FPR(src2),
11198               Pop_Mem_FPR(dst) );
11199   ins_pipe( fpu_mem_reg_reg );
11200 %}
11201 //
11202 // This instruction does not round to 24-bits
11203 instruct divFPR_reg(regFPR dst, regFPR src) %{
11204   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11205   match(Set dst (DivF dst src));
11206 
11207   format %{ "FDIV   $dst,$src" %}
11208   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11209   ins_encode( Push_Reg_FPR(src),
11210               OpcP, RegOpc(dst) );
11211   ins_pipe( fpu_reg_reg );
11212 %}
11213 
11214 
11215 // Spill to obtain 24-bit precision
11216 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
11217   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11218   match(Set dst (ModF src1 src2));
11219   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
11220 
11221   format %{ "FMOD   $dst,$src1,$src2" %}
11222   ins_encode( Push_Reg_Mod_DPR(src1, src2),
11223               emitModDPR(),
11224               Push_Result_Mod_DPR(src2),
11225               Pop_Mem_FPR(dst));
11226   ins_pipe( pipe_slow );
11227 %}
11228 //
11229 // This instruction does not round to 24-bits
11230 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
11231   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11232   match(Set dst (ModF dst src));
11233   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
11234 
11235   format %{ "FMOD   $dst,$src" %}
11236   ins_encode(Push_Reg_Mod_DPR(dst, src),
11237               emitModDPR(),
11238               Push_Result_Mod_DPR(src),
11239               Pop_Reg_FPR(dst));
11240   ins_pipe( pipe_slow );
11241 %}
11242 
11243 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
11244   predicate(UseSSE>=1);
11245   match(Set dst (ModF src0 src1));
11246   effect(KILL rax, KILL cr);
11247   format %{ "SUB    ESP,4\t # FMOD\n"
11248           "\tMOVSS  [ESP+0],$src1\n"
11249           "\tFLD_S  [ESP+0]\n"
11250           "\tMOVSS  [ESP+0],$src0\n"
11251           "\tFLD_S  [ESP+0]\n"
11252      "loop:\tFPREM\n"
11253           "\tFWAIT\n"
11254           "\tFNSTSW AX\n"
11255           "\tSAHF\n"
11256           "\tJP     loop\n"
11257           "\tFSTP_S [ESP+0]\n"
11258           "\tMOVSS  $dst,[ESP+0]\n"
11259           "\tADD    ESP,4\n"
11260           "\tFSTP   ST0\t # Restore FPU Stack"
11261     %}
11262   ins_cost(250);
11263   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
11264   ins_pipe( pipe_slow );
11265 %}
11266 
11267 
11268 //----------Arithmetic Conversion Instructions---------------------------------
11269 // The conversions operations are all Alpha sorted.  Please keep it that way!
11270 
11271 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
11272   predicate(UseSSE==0);
11273   match(Set dst (RoundFloat src));
11274   ins_cost(125);
11275   format %{ "FST_S  $dst,$src\t# F-round" %}
11276   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11277   ins_pipe( fpu_mem_reg );
11278 %}
11279 
11280 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
11281   predicate(UseSSE<=1);
11282   match(Set dst (RoundDouble src));
11283   ins_cost(125);
11284   format %{ "FST_D  $dst,$src\t# D-round" %}
11285   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11286   ins_pipe( fpu_mem_reg );
11287 %}
11288 
11289 // Force rounding to 24-bit precision and 6-bit exponent
11290 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
11291   predicate(UseSSE==0);
11292   match(Set dst (ConvD2F src));
11293   format %{ "FST_S  $dst,$src\t# F-round" %}
11294   expand %{
11295     roundFloat_mem_reg(dst,src);
11296   %}
11297 %}
11298 
11299 // Force rounding to 24-bit precision and 6-bit exponent
11300 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
11301   predicate(UseSSE==1);
11302   match(Set dst (ConvD2F src));
11303   effect( KILL cr );
11304   format %{ "SUB    ESP,4\n\t"
11305             "FST_S  [ESP],$src\t# F-round\n\t"
11306             "MOVSS  $dst,[ESP]\n\t"
11307             "ADD ESP,4" %}
11308   ins_encode %{
11309     __ subptr(rsp, 4);
11310     if ($src$$reg != FPR1L_enc) {
11311       __ fld_s($src$$reg-1);
11312       __ fstp_s(Address(rsp, 0));
11313     } else {
11314       __ fst_s(Address(rsp, 0));
11315     }
11316     __ movflt($dst$$XMMRegister, Address(rsp, 0));
11317     __ addptr(rsp, 4);
11318   %}
11319   ins_pipe( pipe_slow );
11320 %}
11321 
11322 // Force rounding double precision to single precision
11323 instruct convD2F_reg(regF dst, regD src) %{
11324   predicate(UseSSE>=2);
11325   match(Set dst (ConvD2F src));
11326   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11327   ins_encode %{
11328     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
11329   %}
11330   ins_pipe( pipe_slow );
11331 %}
11332 
11333 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
11334   predicate(UseSSE==0);
11335   match(Set dst (ConvF2D src));
11336   format %{ "FST_S  $dst,$src\t# D-round" %}
11337   ins_encode( Pop_Reg_Reg_DPR(dst, src));
11338   ins_pipe( fpu_reg_reg );
11339 %}
11340 
11341 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
11342   predicate(UseSSE==1);
11343   match(Set dst (ConvF2D src));
11344   format %{ "FST_D  $dst,$src\t# D-round" %}
11345   expand %{
11346     roundDouble_mem_reg(dst,src);
11347   %}
11348 %}
11349 
11350 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
11351   predicate(UseSSE==1);
11352   match(Set dst (ConvF2D src));
11353   effect( KILL cr );
11354   format %{ "SUB    ESP,4\n\t"
11355             "MOVSS  [ESP] $src\n\t"
11356             "FLD_S  [ESP]\n\t"
11357             "ADD    ESP,4\n\t"
11358             "FSTP   $dst\t# D-round" %}
11359   ins_encode %{
11360     __ subptr(rsp, 4);
11361     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11362     __ fld_s(Address(rsp, 0));
11363     __ addptr(rsp, 4);
11364     __ fstp_d($dst$$reg);
11365   %}
11366   ins_pipe( pipe_slow );
11367 %}
11368 
11369 instruct convF2D_reg(regD dst, regF src) %{
11370   predicate(UseSSE>=2);
11371   match(Set dst (ConvF2D src));
11372   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11373   ins_encode %{
11374     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
11375   %}
11376   ins_pipe( pipe_slow );
11377 %}
11378 
11379 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11380 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
11381   predicate(UseSSE<=1);
11382   match(Set dst (ConvD2I src));
11383   effect( KILL tmp, KILL cr );
11384   format %{ "FLD    $src\t# Convert double to int \n\t"
11385             "FLDCW  trunc mode\n\t"
11386             "SUB    ESP,4\n\t"
11387             "FISTp  [ESP + #0]\n\t"
11388             "FLDCW  std/24-bit mode\n\t"
11389             "POP    EAX\n\t"
11390             "CMP    EAX,0x80000000\n\t"
11391             "JNE,s  fast\n\t"
11392             "FLD_D  $src\n\t"
11393             "CALL   d2i_wrapper\n"
11394       "fast:" %}
11395   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
11396   ins_pipe( pipe_slow );
11397 %}
11398 
11399 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11400 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11401   predicate(UseSSE>=2);
11402   match(Set dst (ConvD2I src));
11403   effect( KILL tmp, KILL cr );
11404   format %{ "CVTTSD2SI $dst, $src\n\t"
11405             "CMP    $dst,0x80000000\n\t"
11406             "JNE,s  fast\n\t"
11407             "SUB    ESP, 8\n\t"
11408             "MOVSD  [ESP], $src\n\t"
11409             "FLD_D  [ESP]\n\t"
11410             "ADD    ESP, 8\n\t"
11411             "CALL   d2i_wrapper\n"
11412       "fast:" %}
11413   ins_encode %{
11414     Label fast;
11415     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
11416     __ cmpl($dst$$Register, 0x80000000);
11417     __ jccb(Assembler::notEqual, fast);
11418     __ subptr(rsp, 8);
11419     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11420     __ fld_d(Address(rsp, 0));
11421     __ addptr(rsp, 8);
11422     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11423     __ bind(fast);
11424   %}
11425   ins_pipe( pipe_slow );
11426 %}
11427 
11428 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
11429   predicate(UseSSE<=1);
11430   match(Set dst (ConvD2L src));
11431   effect( KILL cr );
11432   format %{ "FLD    $src\t# Convert double to long\n\t"
11433             "FLDCW  trunc mode\n\t"
11434             "SUB    ESP,8\n\t"
11435             "FISTp  [ESP + #0]\n\t"
11436             "FLDCW  std/24-bit mode\n\t"
11437             "POP    EAX\n\t"
11438             "POP    EDX\n\t"
11439             "CMP    EDX,0x80000000\n\t"
11440             "JNE,s  fast\n\t"
11441             "TEST   EAX,EAX\n\t"
11442             "JNE,s  fast\n\t"
11443             "FLD    $src\n\t"
11444             "CALL   d2l_wrapper\n"
11445       "fast:" %}
11446   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
11447   ins_pipe( pipe_slow );
11448 %}
11449 
11450 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11451 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11452   predicate (UseSSE>=2);
11453   match(Set dst (ConvD2L src));
11454   effect( KILL cr );
11455   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11456             "MOVSD  [ESP],$src\n\t"
11457             "FLD_D  [ESP]\n\t"
11458             "FLDCW  trunc mode\n\t"
11459             "FISTp  [ESP + #0]\n\t"
11460             "FLDCW  std/24-bit mode\n\t"
11461             "POP    EAX\n\t"
11462             "POP    EDX\n\t"
11463             "CMP    EDX,0x80000000\n\t"
11464             "JNE,s  fast\n\t"
11465             "TEST   EAX,EAX\n\t"
11466             "JNE,s  fast\n\t"
11467             "SUB    ESP,8\n\t"
11468             "MOVSD  [ESP],$src\n\t"
11469             "FLD_D  [ESP]\n\t"
11470             "ADD    ESP,8\n\t"
11471             "CALL   d2l_wrapper\n"
11472       "fast:" %}
11473   ins_encode %{
11474     Label fast;
11475     __ subptr(rsp, 8);
11476     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11477     __ fld_d(Address(rsp, 0));
11478     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11479     __ fistp_d(Address(rsp, 0));
11480     // Restore the rounding mode, mask the exception
11481     if (Compile::current()->in_24_bit_fp_mode()) {
11482       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11483     } else {
11484       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11485     }
11486     // Load the converted long, adjust CPU stack
11487     __ pop(rax);
11488     __ pop(rdx);
11489     __ cmpl(rdx, 0x80000000);
11490     __ jccb(Assembler::notEqual, fast);
11491     __ testl(rax, rax);
11492     __ jccb(Assembler::notEqual, fast);
11493     __ subptr(rsp, 8);
11494     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11495     __ fld_d(Address(rsp, 0));
11496     __ addptr(rsp, 8);
11497     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11498     __ bind(fast);
11499   %}
11500   ins_pipe( pipe_slow );
11501 %}
11502 
11503 // Convert a double to an int.  Java semantics require we do complex
11504 // manglations in the corner cases.  So we set the rounding mode to
11505 // 'zero', store the darned double down as an int, and reset the
11506 // rounding mode to 'nearest'.  The hardware stores a flag value down
11507 // if we would overflow or converted a NAN; we check for this and
11508 // and go the slow path if needed.
11509 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
11510   predicate(UseSSE==0);
11511   match(Set dst (ConvF2I src));
11512   effect( KILL tmp, KILL cr );
11513   format %{ "FLD    $src\t# Convert float to int \n\t"
11514             "FLDCW  trunc mode\n\t"
11515             "SUB    ESP,4\n\t"
11516             "FISTp  [ESP + #0]\n\t"
11517             "FLDCW  std/24-bit mode\n\t"
11518             "POP    EAX\n\t"
11519             "CMP    EAX,0x80000000\n\t"
11520             "JNE,s  fast\n\t"
11521             "FLD    $src\n\t"
11522             "CALL   d2i_wrapper\n"
11523       "fast:" %}
11524   // DPR2I_encoding works for FPR2I
11525   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
11526   ins_pipe( pipe_slow );
11527 %}
11528 
11529 // Convert a float in xmm to an int reg.
11530 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11531   predicate(UseSSE>=1);
11532   match(Set dst (ConvF2I src));
11533   effect( KILL tmp, KILL cr );
11534   format %{ "CVTTSS2SI $dst, $src\n\t"
11535             "CMP    $dst,0x80000000\n\t"
11536             "JNE,s  fast\n\t"
11537             "SUB    ESP, 4\n\t"
11538             "MOVSS  [ESP], $src\n\t"
11539             "FLD    [ESP]\n\t"
11540             "ADD    ESP, 4\n\t"
11541             "CALL   d2i_wrapper\n"
11542       "fast:" %}
11543   ins_encode %{
11544     Label fast;
11545     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
11546     __ cmpl($dst$$Register, 0x80000000);
11547     __ jccb(Assembler::notEqual, fast);
11548     __ subptr(rsp, 4);
11549     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11550     __ fld_s(Address(rsp, 0));
11551     __ addptr(rsp, 4);
11552     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11553     __ bind(fast);
11554   %}
11555   ins_pipe( pipe_slow );
11556 %}
11557 
11558 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
11559   predicate(UseSSE==0);
11560   match(Set dst (ConvF2L src));
11561   effect( KILL cr );
11562   format %{ "FLD    $src\t# Convert float to long\n\t"
11563             "FLDCW  trunc mode\n\t"
11564             "SUB    ESP,8\n\t"
11565             "FISTp  [ESP + #0]\n\t"
11566             "FLDCW  std/24-bit mode\n\t"
11567             "POP    EAX\n\t"
11568             "POP    EDX\n\t"
11569             "CMP    EDX,0x80000000\n\t"
11570             "JNE,s  fast\n\t"
11571             "TEST   EAX,EAX\n\t"
11572             "JNE,s  fast\n\t"
11573             "FLD    $src\n\t"
11574             "CALL   d2l_wrapper\n"
11575       "fast:" %}
11576   // DPR2L_encoding works for FPR2L
11577   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
11578   ins_pipe( pipe_slow );
11579 %}
11580 
11581 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11582 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11583   predicate (UseSSE>=1);
11584   match(Set dst (ConvF2L src));
11585   effect( KILL cr );
11586   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11587             "MOVSS  [ESP],$src\n\t"
11588             "FLD_S  [ESP]\n\t"
11589             "FLDCW  trunc mode\n\t"
11590             "FISTp  [ESP + #0]\n\t"
11591             "FLDCW  std/24-bit mode\n\t"
11592             "POP    EAX\n\t"
11593             "POP    EDX\n\t"
11594             "CMP    EDX,0x80000000\n\t"
11595             "JNE,s  fast\n\t"
11596             "TEST   EAX,EAX\n\t"
11597             "JNE,s  fast\n\t"
11598             "SUB    ESP,4\t# Convert float to long\n\t"
11599             "MOVSS  [ESP],$src\n\t"
11600             "FLD_S  [ESP]\n\t"
11601             "ADD    ESP,4\n\t"
11602             "CALL   d2l_wrapper\n"
11603       "fast:" %}
11604   ins_encode %{
11605     Label fast;
11606     __ subptr(rsp, 8);
11607     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11608     __ fld_s(Address(rsp, 0));
11609     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11610     __ fistp_d(Address(rsp, 0));
11611     // Restore the rounding mode, mask the exception
11612     if (Compile::current()->in_24_bit_fp_mode()) {
11613       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11614     } else {
11615       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11616     }
11617     // Load the converted long, adjust CPU stack
11618     __ pop(rax);
11619     __ pop(rdx);
11620     __ cmpl(rdx, 0x80000000);
11621     __ jccb(Assembler::notEqual, fast);
11622     __ testl(rax, rax);
11623     __ jccb(Assembler::notEqual, fast);
11624     __ subptr(rsp, 4);
11625     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11626     __ fld_s(Address(rsp, 0));
11627     __ addptr(rsp, 4);
11628     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11629     __ bind(fast);
11630   %}
11631   ins_pipe( pipe_slow );
11632 %}
11633 
11634 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11635   predicate( UseSSE<=1 );
11636   match(Set dst (ConvI2D src));
11637   format %{ "FILD   $src\n\t"
11638             "FSTP   $dst" %}
11639   opcode(0xDB, 0x0);  /* DB /0 */
11640   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11641   ins_pipe( fpu_reg_mem );
11642 %}
11643 
11644 instruct convI2D_reg(regD dst, rRegI src) %{
11645   predicate( UseSSE>=2 && !UseXmmI2D );
11646   match(Set dst (ConvI2D src));
11647   format %{ "CVTSI2SD $dst,$src" %}
11648   ins_encode %{
11649     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11650   %}
11651   ins_pipe( pipe_slow );
11652 %}
11653 
11654 instruct convI2D_mem(regD dst, memory mem) %{
11655   predicate( UseSSE>=2 );
11656   match(Set dst (ConvI2D (LoadI mem)));
11657   format %{ "CVTSI2SD $dst,$mem" %}
11658   ins_encode %{
11659     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11660   %}
11661   ins_pipe( pipe_slow );
11662 %}
11663 
11664 instruct convXI2D_reg(regD dst, rRegI src)
11665 %{
11666   predicate( UseSSE>=2 && UseXmmI2D );
11667   match(Set dst (ConvI2D src));
11668 
11669   format %{ "MOVD  $dst,$src\n\t"
11670             "CVTDQ2PD $dst,$dst\t# i2d" %}
11671   ins_encode %{
11672     __ movdl($dst$$XMMRegister, $src$$Register);
11673     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11674   %}
11675   ins_pipe(pipe_slow); // XXX
11676 %}
11677 
11678 instruct convI2DPR_mem(regDPR dst, memory mem) %{
11679   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11680   match(Set dst (ConvI2D (LoadI mem)));
11681   format %{ "FILD   $mem\n\t"
11682             "FSTP   $dst" %}
11683   opcode(0xDB);      /* DB /0 */
11684   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11685               Pop_Reg_DPR(dst));
11686   ins_pipe( fpu_reg_mem );
11687 %}
11688 
11689 // Convert a byte to a float; no rounding step needed.
11690 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11691   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11692   match(Set dst (ConvI2F src));
11693   format %{ "FILD   $src\n\t"
11694             "FSTP   $dst" %}
11695 
11696   opcode(0xDB, 0x0);  /* DB /0 */
11697   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11698   ins_pipe( fpu_reg_mem );
11699 %}
11700 
11701 // In 24-bit mode, force exponent rounding by storing back out
11702 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11703   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11704   match(Set dst (ConvI2F src));
11705   ins_cost(200);
11706   format %{ "FILD   $src\n\t"
11707             "FSTP_S $dst" %}
11708   opcode(0xDB, 0x0);  /* DB /0 */
11709   ins_encode( Push_Mem_I(src),
11710               Pop_Mem_FPR(dst));
11711   ins_pipe( fpu_mem_mem );
11712 %}
11713 
11714 // In 24-bit mode, force exponent rounding by storing back out
11715 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11716   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11717   match(Set dst (ConvI2F (LoadI mem)));
11718   ins_cost(200);
11719   format %{ "FILD   $mem\n\t"
11720             "FSTP_S $dst" %}
11721   opcode(0xDB);  /* DB /0 */
11722   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11723               Pop_Mem_FPR(dst));
11724   ins_pipe( fpu_mem_mem );
11725 %}
11726 
11727 // This instruction does not round to 24-bits
11728 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11729   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11730   match(Set dst (ConvI2F src));
11731   format %{ "FILD   $src\n\t"
11732             "FSTP   $dst" %}
11733   opcode(0xDB, 0x0);  /* DB /0 */
11734   ins_encode( Push_Mem_I(src),
11735               Pop_Reg_FPR(dst));
11736   ins_pipe( fpu_reg_mem );
11737 %}
11738 
11739 // This instruction does not round to 24-bits
11740 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11741   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11742   match(Set dst (ConvI2F (LoadI mem)));
11743   format %{ "FILD   $mem\n\t"
11744             "FSTP   $dst" %}
11745   opcode(0xDB);      /* DB /0 */
11746   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11747               Pop_Reg_FPR(dst));
11748   ins_pipe( fpu_reg_mem );
11749 %}
11750 
11751 // Convert an int to a float in xmm; no rounding step needed.
11752 instruct convI2F_reg(regF dst, rRegI src) %{
11753   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11754   match(Set dst (ConvI2F src));
11755   format %{ "CVTSI2SS $dst, $src" %}
11756   ins_encode %{
11757     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11758   %}
11759   ins_pipe( pipe_slow );
11760 %}
11761 
11762  instruct convXI2F_reg(regF dst, rRegI src)
11763 %{
11764   predicate( UseSSE>=2 && UseXmmI2F );
11765   match(Set dst (ConvI2F src));
11766 
11767   format %{ "MOVD  $dst,$src\n\t"
11768             "CVTDQ2PS $dst,$dst\t# i2f" %}
11769   ins_encode %{
11770     __ movdl($dst$$XMMRegister, $src$$Register);
11771     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11772   %}
11773   ins_pipe(pipe_slow); // XXX
11774 %}
11775 
11776 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11777   match(Set dst (ConvI2L src));
11778   effect(KILL cr);
11779   ins_cost(375);
11780   format %{ "MOV    $dst.lo,$src\n\t"
11781             "MOV    $dst.hi,$src\n\t"
11782             "SAR    $dst.hi,31" %}
11783   ins_encode(convert_int_long(dst,src));
11784   ins_pipe( ialu_reg_reg_long );
11785 %}
11786 
11787 // Zero-extend convert int to long
11788 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11789   match(Set dst (AndL (ConvI2L src) mask) );
11790   effect( KILL flags );
11791   ins_cost(250);
11792   format %{ "MOV    $dst.lo,$src\n\t"
11793             "XOR    $dst.hi,$dst.hi" %}
11794   opcode(0x33); // XOR
11795   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11796   ins_pipe( ialu_reg_reg_long );
11797 %}
11798 
11799 // Zero-extend long
11800 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11801   match(Set dst (AndL src mask) );
11802   effect( KILL flags );
11803   ins_cost(250);
11804   format %{ "MOV    $dst.lo,$src.lo\n\t"
11805             "XOR    $dst.hi,$dst.hi\n\t" %}
11806   opcode(0x33); // XOR
11807   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11808   ins_pipe( ialu_reg_reg_long );
11809 %}
11810 
11811 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11812   predicate (UseSSE<=1);
11813   match(Set dst (ConvL2D src));
11814   effect( KILL cr );
11815   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11816             "PUSH   $src.lo\n\t"
11817             "FILD   ST,[ESP + #0]\n\t"
11818             "ADD    ESP,8\n\t"
11819             "FSTP_D $dst\t# D-round" %}
11820   opcode(0xDF, 0x5);  /* DF /5 */
11821   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11822   ins_pipe( pipe_slow );
11823 %}
11824 
11825 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11826   predicate (UseSSE>=2);
11827   match(Set dst (ConvL2D src));
11828   effect( KILL cr );
11829   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11830             "PUSH   $src.lo\n\t"
11831             "FILD_D [ESP]\n\t"
11832             "FSTP_D [ESP]\n\t"
11833             "MOVSD  $dst,[ESP]\n\t"
11834             "ADD    ESP,8" %}
11835   opcode(0xDF, 0x5);  /* DF /5 */
11836   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11837   ins_pipe( pipe_slow );
11838 %}
11839 
11840 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11841   predicate (UseSSE>=1);
11842   match(Set dst (ConvL2F src));
11843   effect( KILL cr );
11844   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11845             "PUSH   $src.lo\n\t"
11846             "FILD_D [ESP]\n\t"
11847             "FSTP_S [ESP]\n\t"
11848             "MOVSS  $dst,[ESP]\n\t"
11849             "ADD    ESP,8" %}
11850   opcode(0xDF, 0x5);  /* DF /5 */
11851   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11852   ins_pipe( pipe_slow );
11853 %}
11854 
11855 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11856   match(Set dst (ConvL2F src));
11857   effect( KILL cr );
11858   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11859             "PUSH   $src.lo\n\t"
11860             "FILD   ST,[ESP + #0]\n\t"
11861             "ADD    ESP,8\n\t"
11862             "FSTP_S $dst\t# F-round" %}
11863   opcode(0xDF, 0x5);  /* DF /5 */
11864   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11865   ins_pipe( pipe_slow );
11866 %}
11867 
11868 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11869   match(Set dst (ConvL2I src));
11870   effect( DEF dst, USE src );
11871   format %{ "MOV    $dst,$src.lo" %}
11872   ins_encode(enc_CopyL_Lo(dst,src));
11873   ins_pipe( ialu_reg_reg );
11874 %}
11875 
11876 
11877 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11878   match(Set dst (MoveF2I src));
11879   effect( DEF dst, USE src );
11880   ins_cost(100);
11881   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11882   ins_encode %{
11883     __ movl($dst$$Register, Address(rsp, $src$$disp));
11884   %}
11885   ins_pipe( ialu_reg_mem );
11886 %}
11887 
11888 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11889   predicate(UseSSE==0);
11890   match(Set dst (MoveF2I src));
11891   effect( DEF dst, USE src );
11892 
11893   ins_cost(125);
11894   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11895   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11896   ins_pipe( fpu_mem_reg );
11897 %}
11898 
11899 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11900   predicate(UseSSE>=1);
11901   match(Set dst (MoveF2I src));
11902   effect( DEF dst, USE src );
11903 
11904   ins_cost(95);
11905   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11906   ins_encode %{
11907     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11908   %}
11909   ins_pipe( pipe_slow );
11910 %}
11911 
11912 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11913   predicate(UseSSE>=2);
11914   match(Set dst (MoveF2I src));
11915   effect( DEF dst, USE src );
11916   ins_cost(85);
11917   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11918   ins_encode %{
11919     __ movdl($dst$$Register, $src$$XMMRegister);
11920   %}
11921   ins_pipe( pipe_slow );
11922 %}
11923 
11924 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11925   match(Set dst (MoveI2F src));
11926   effect( DEF dst, USE src );
11927 
11928   ins_cost(100);
11929   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11930   ins_encode %{
11931     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11932   %}
11933   ins_pipe( ialu_mem_reg );
11934 %}
11935 
11936 
11937 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11938   predicate(UseSSE==0);
11939   match(Set dst (MoveI2F src));
11940   effect(DEF dst, USE src);
11941 
11942   ins_cost(125);
11943   format %{ "FLD_S  $src\n\t"
11944             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11945   opcode(0xD9);               /* D9 /0, FLD m32real */
11946   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11947               Pop_Reg_FPR(dst) );
11948   ins_pipe( fpu_reg_mem );
11949 %}
11950 
11951 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11952   predicate(UseSSE>=1);
11953   match(Set dst (MoveI2F src));
11954   effect( DEF dst, USE src );
11955 
11956   ins_cost(95);
11957   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11958   ins_encode %{
11959     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11960   %}
11961   ins_pipe( pipe_slow );
11962 %}
11963 
11964 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11965   predicate(UseSSE>=2);
11966   match(Set dst (MoveI2F src));
11967   effect( DEF dst, USE src );
11968 
11969   ins_cost(85);
11970   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11971   ins_encode %{
11972     __ movdl($dst$$XMMRegister, $src$$Register);
11973   %}
11974   ins_pipe( pipe_slow );
11975 %}
11976 
11977 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11978   match(Set dst (MoveD2L src));
11979   effect(DEF dst, USE src);
11980 
11981   ins_cost(250);
11982   format %{ "MOV    $dst.lo,$src\n\t"
11983             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11984   opcode(0x8B, 0x8B);
11985   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11986   ins_pipe( ialu_mem_long_reg );
11987 %}
11988 
11989 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11990   predicate(UseSSE<=1);
11991   match(Set dst (MoveD2L src));
11992   effect(DEF dst, USE src);
11993 
11994   ins_cost(125);
11995   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11996   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11997   ins_pipe( fpu_mem_reg );
11998 %}
11999 
12000 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
12001   predicate(UseSSE>=2);
12002   match(Set dst (MoveD2L src));
12003   effect(DEF dst, USE src);
12004   ins_cost(95);
12005   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
12006   ins_encode %{
12007     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
12008   %}
12009   ins_pipe( pipe_slow );
12010 %}
12011 
12012 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
12013   predicate(UseSSE>=2);
12014   match(Set dst (MoveD2L src));
12015   effect(DEF dst, USE src, TEMP tmp);
12016   ins_cost(85);
12017   format %{ "MOVD   $dst.lo,$src\n\t"
12018             "PSHUFLW $tmp,$src,0x4E\n\t"
12019             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
12020   ins_encode %{
12021     __ movdl($dst$$Register, $src$$XMMRegister);
12022     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
12023     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
12024   %}
12025   ins_pipe( pipe_slow );
12026 %}
12027 
12028 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
12029   match(Set dst (MoveL2D src));
12030   effect(DEF dst, USE src);
12031 
12032   ins_cost(200);
12033   format %{ "MOV    $dst,$src.lo\n\t"
12034             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
12035   opcode(0x89, 0x89);
12036   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
12037   ins_pipe( ialu_mem_long_reg );
12038 %}
12039 
12040 
12041 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
12042   predicate(UseSSE<=1);
12043   match(Set dst (MoveL2D src));
12044   effect(DEF dst, USE src);
12045   ins_cost(125);
12046 
12047   format %{ "FLD_D  $src\n\t"
12048             "FSTP   $dst\t# MoveL2D_stack_reg" %}
12049   opcode(0xDD);               /* DD /0, FLD m64real */
12050   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12051               Pop_Reg_DPR(dst) );
12052   ins_pipe( fpu_reg_mem );
12053 %}
12054 
12055 
12056 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
12057   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
12058   match(Set dst (MoveL2D src));
12059   effect(DEF dst, USE src);
12060 
12061   ins_cost(95);
12062   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
12063   ins_encode %{
12064     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
12065   %}
12066   ins_pipe( pipe_slow );
12067 %}
12068 
12069 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
12070   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
12071   match(Set dst (MoveL2D src));
12072   effect(DEF dst, USE src);
12073 
12074   ins_cost(95);
12075   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
12076   ins_encode %{
12077     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
12078   %}
12079   ins_pipe( pipe_slow );
12080 %}
12081 
12082 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
12083   predicate(UseSSE>=2);
12084   match(Set dst (MoveL2D src));
12085   effect(TEMP dst, USE src, TEMP tmp);
12086   ins_cost(85);
12087   format %{ "MOVD   $dst,$src.lo\n\t"
12088             "MOVD   $tmp,$src.hi\n\t"
12089             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
12090   ins_encode %{
12091     __ movdl($dst$$XMMRegister, $src$$Register);
12092     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
12093     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
12094   %}
12095   ins_pipe( pipe_slow );
12096 %}
12097 
12098 
12099 // =======================================================================
12100 // fast clearing of an array
12101 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12102   predicate(!UseFastStosb);
12103   match(Set dummy (ClearArray cnt base));
12104   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12105   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
12106             "SHL    ECX,1\t# Convert doublewords to words\n\t"
12107             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
12108   ins_encode %{ 
12109     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
12110   %}
12111   ins_pipe( pipe_slow );
12112 %}
12113 
12114 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12115   predicate(UseFastStosb);
12116   match(Set dummy (ClearArray cnt base));
12117   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12118   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
12119             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
12120             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
12121   ins_encode %{ 
12122     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
12123   %}
12124   ins_pipe( pipe_slow );
12125 %}
12126 
12127 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
12128                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
12129   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
12130   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
12131 
12132   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
12133   ins_encode %{
12134     __ string_compare($str1$$Register, $str2$$Register,
12135                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
12136                       $tmp1$$XMMRegister);
12137   %}
12138   ins_pipe( pipe_slow );
12139 %}
12140 
12141 // fast string equals
12142 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
12143                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
12144   match(Set result (StrEquals (Binary str1 str2) cnt));
12145   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
12146 
12147   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
12148   ins_encode %{
12149     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
12150                           $cnt$$Register, $result$$Register, $tmp3$$Register,
12151                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12152   %}
12153   ins_pipe( pipe_slow );
12154 %}
12155 
12156 // fast search of substring with known size.
12157 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
12158                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
12159   predicate(UseSSE42Intrinsics);
12160   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
12161   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
12162 
12163   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
12164   ins_encode %{
12165     int icnt2 = (int)$int_cnt2$$constant;
12166     if (icnt2 >= 8) {
12167       // IndexOf for constant substrings with size >= 8 elements
12168       // which don't need to be loaded through stack.
12169       __ string_indexofC8($str1$$Register, $str2$$Register,
12170                           $cnt1$$Register, $cnt2$$Register,
12171                           icnt2, $result$$Register,
12172                           $vec$$XMMRegister, $tmp$$Register);
12173     } else {
12174       // Small strings are loaded through stack if they cross page boundary.
12175       __ string_indexof($str1$$Register, $str2$$Register,
12176                         $cnt1$$Register, $cnt2$$Register,
12177                         icnt2, $result$$Register,
12178                         $vec$$XMMRegister, $tmp$$Register);
12179     }
12180   %}
12181   ins_pipe( pipe_slow );
12182 %}
12183 
12184 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
12185                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
12186   predicate(UseSSE42Intrinsics);
12187   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
12188   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
12189 
12190   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
12191   ins_encode %{
12192     __ string_indexof($str1$$Register, $str2$$Register,
12193                       $cnt1$$Register, $cnt2$$Register,
12194                       (-1), $result$$Register,
12195                       $vec$$XMMRegister, $tmp$$Register);
12196   %}
12197   ins_pipe( pipe_slow );
12198 %}
12199 
12200 // fast array equals
12201 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
12202                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
12203 %{
12204   match(Set result (AryEq ary1 ary2));
12205   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12206   //ins_cost(300);
12207 
12208   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
12209   ins_encode %{
12210     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
12211                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
12212                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12213   %}
12214   ins_pipe( pipe_slow );
12215 %}
12216 
12217 // encode char[] to byte[] in ISO_8859_1
12218 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
12219                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
12220                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
12221   match(Set result (EncodeISOArray src (Binary dst len)));
12222   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
12223 
12224   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
12225   ins_encode %{
12226     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
12227                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
12228                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
12229   %}
12230   ins_pipe( pipe_slow );
12231 %}
12232 
12233 
12234 //----------Control Flow Instructions------------------------------------------
12235 // Signed compare Instructions
12236 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
12237   match(Set cr (CmpI op1 op2));
12238   effect( DEF cr, USE op1, USE op2 );
12239   format %{ "CMP    $op1,$op2" %}
12240   opcode(0x3B);  /* Opcode 3B /r */
12241   ins_encode( OpcP, RegReg( op1, op2) );
12242   ins_pipe( ialu_cr_reg_reg );
12243 %}
12244 
12245 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
12246   match(Set cr (CmpI op1 op2));
12247   effect( DEF cr, USE op1 );
12248   format %{ "CMP    $op1,$op2" %}
12249   opcode(0x81,0x07);  /* Opcode 81 /7 */
12250   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
12251   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12252   ins_pipe( ialu_cr_reg_imm );
12253 %}
12254 
12255 // Cisc-spilled version of cmpI_eReg
12256 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
12257   match(Set cr (CmpI op1 (LoadI op2)));
12258 
12259   format %{ "CMP    $op1,$op2" %}
12260   ins_cost(500);
12261   opcode(0x3B);  /* Opcode 3B /r */
12262   ins_encode( OpcP, RegMem( op1, op2) );
12263   ins_pipe( ialu_cr_reg_mem );
12264 %}
12265 
12266 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
12267   match(Set cr (CmpI src zero));
12268   effect( DEF cr, USE src );
12269 
12270   format %{ "TEST   $src,$src" %}
12271   opcode(0x85);
12272   ins_encode( OpcP, RegReg( src, src ) );
12273   ins_pipe( ialu_cr_reg_imm );
12274 %}
12275 
12276 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
12277   match(Set cr (CmpI (AndI src con) zero));
12278 
12279   format %{ "TEST   $src,$con" %}
12280   opcode(0xF7,0x00);
12281   ins_encode( OpcP, RegOpc(src), Con32(con) );
12282   ins_pipe( ialu_cr_reg_imm );
12283 %}
12284 
12285 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
12286   match(Set cr (CmpI (AndI src mem) zero));
12287 
12288   format %{ "TEST   $src,$mem" %}
12289   opcode(0x85);
12290   ins_encode( OpcP, RegMem( src, mem ) );
12291   ins_pipe( ialu_cr_reg_mem );
12292 %}
12293 
12294 // Unsigned compare Instructions; really, same as signed except they
12295 // produce an eFlagsRegU instead of eFlagsReg.
12296 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
12297   match(Set cr (CmpU op1 op2));
12298 
12299   format %{ "CMPu   $op1,$op2" %}
12300   opcode(0x3B);  /* Opcode 3B /r */
12301   ins_encode( OpcP, RegReg( op1, op2) );
12302   ins_pipe( ialu_cr_reg_reg );
12303 %}
12304 
12305 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
12306   match(Set cr (CmpU op1 op2));
12307 
12308   format %{ "CMPu   $op1,$op2" %}
12309   opcode(0x81,0x07);  /* Opcode 81 /7 */
12310   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12311   ins_pipe( ialu_cr_reg_imm );
12312 %}
12313 
12314 // // Cisc-spilled version of cmpU_eReg
12315 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
12316   match(Set cr (CmpU op1 (LoadI op2)));
12317 
12318   format %{ "CMPu   $op1,$op2" %}
12319   ins_cost(500);
12320   opcode(0x3B);  /* Opcode 3B /r */
12321   ins_encode( OpcP, RegMem( op1, op2) );
12322   ins_pipe( ialu_cr_reg_mem );
12323 %}
12324 
12325 // // Cisc-spilled version of cmpU_eReg
12326 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
12327 //  match(Set cr (CmpU (LoadI op1) op2));
12328 //
12329 //  format %{ "CMPu   $op1,$op2" %}
12330 //  ins_cost(500);
12331 //  opcode(0x39);  /* Opcode 39 /r */
12332 //  ins_encode( OpcP, RegMem( op1, op2) );
12333 //%}
12334 
12335 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
12336   match(Set cr (CmpU src zero));
12337 
12338   format %{ "TESTu  $src,$src" %}
12339   opcode(0x85);
12340   ins_encode( OpcP, RegReg( src, src ) );
12341   ins_pipe( ialu_cr_reg_imm );
12342 %}
12343 
12344 // Unsigned pointer compare Instructions
12345 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12346   match(Set cr (CmpP op1 op2));
12347 
12348   format %{ "CMPu   $op1,$op2" %}
12349   opcode(0x3B);  /* Opcode 3B /r */
12350   ins_encode( OpcP, RegReg( op1, op2) );
12351   ins_pipe( ialu_cr_reg_reg );
12352 %}
12353 
12354 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12355   match(Set cr (CmpP op1 op2));
12356 
12357   format %{ "CMPu   $op1,$op2" %}
12358   opcode(0x81,0x07);  /* Opcode 81 /7 */
12359   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12360   ins_pipe( ialu_cr_reg_imm );
12361 %}
12362 
12363 // // Cisc-spilled version of cmpP_eReg
12364 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12365   match(Set cr (CmpP op1 (LoadP op2)));
12366 
12367   format %{ "CMPu   $op1,$op2" %}
12368   ins_cost(500);
12369   opcode(0x3B);  /* Opcode 3B /r */
12370   ins_encode( OpcP, RegMem( op1, op2) );
12371   ins_pipe( ialu_cr_reg_mem );
12372 %}
12373 
12374 // // Cisc-spilled version of cmpP_eReg
12375 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12376 //  match(Set cr (CmpP (LoadP op1) op2));
12377 //
12378 //  format %{ "CMPu   $op1,$op2" %}
12379 //  ins_cost(500);
12380 //  opcode(0x39);  /* Opcode 39 /r */
12381 //  ins_encode( OpcP, RegMem( op1, op2) );
12382 //%}
12383 
12384 // Compare raw pointer (used in out-of-heap check).
12385 // Only works because non-oop pointers must be raw pointers
12386 // and raw pointers have no anti-dependencies.
12387 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12388   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
12389   match(Set cr (CmpP op1 (LoadP op2)));
12390 
12391   format %{ "CMPu   $op1,$op2" %}
12392   opcode(0x3B);  /* Opcode 3B /r */
12393   ins_encode( OpcP, RegMem( op1, op2) );
12394   ins_pipe( ialu_cr_reg_mem );
12395 %}
12396 
12397 //
12398 // This will generate a signed flags result. This should be ok
12399 // since any compare to a zero should be eq/neq.
12400 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12401   match(Set cr (CmpP src zero));
12402 
12403   format %{ "TEST   $src,$src" %}
12404   opcode(0x85);
12405   ins_encode( OpcP, RegReg( src, src ) );
12406   ins_pipe( ialu_cr_reg_imm );
12407 %}
12408 
12409 // Cisc-spilled version of testP_reg
12410 // This will generate a signed flags result. This should be ok
12411 // since any compare to a zero should be eq/neq.
12412 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12413   match(Set cr (CmpP (LoadP op) zero));
12414 
12415   format %{ "TEST   $op,0xFFFFFFFF" %}
12416   ins_cost(500);
12417   opcode(0xF7);               /* Opcode F7 /0 */
12418   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12419   ins_pipe( ialu_cr_reg_imm );
12420 %}
12421 
12422 // Yanked all unsigned pointer compare operations.
12423 // Pointer compares are done with CmpP which is already unsigned.
12424 
12425 //----------Max and Min--------------------------------------------------------
12426 // Min Instructions
12427 ////
12428 //   *** Min and Max using the conditional move are slower than the
12429 //   *** branch version on a Pentium III.
12430 // // Conditional move for min
12431 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
12432 //  effect( USE_DEF op2, USE op1, USE cr );
12433 //  format %{ "CMOVlt $op2,$op1\t! min" %}
12434 //  opcode(0x4C,0x0F);
12435 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12436 //  ins_pipe( pipe_cmov_reg );
12437 //%}
12438 //
12439 //// Min Register with Register (P6 version)
12440 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
12441 //  predicate(VM_Version::supports_cmov() );
12442 //  match(Set op2 (MinI op1 op2));
12443 //  ins_cost(200);
12444 //  expand %{
12445 //    eFlagsReg cr;
12446 //    compI_eReg(cr,op1,op2);
12447 //    cmovI_reg_lt(op2,op1,cr);
12448 //  %}
12449 //%}
12450 
12451 // Min Register with Register (generic version)
12452 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
12453   match(Set dst (MinI dst src));
12454   effect(KILL flags);
12455   ins_cost(300);
12456 
12457   format %{ "MIN    $dst,$src" %}
12458   opcode(0xCC);
12459   ins_encode( min_enc(dst,src) );
12460   ins_pipe( pipe_slow );
12461 %}
12462 
12463 // Max Register with Register
12464 //   *** Min and Max using the conditional move are slower than the
12465 //   *** branch version on a Pentium III.
12466 // // Conditional move for max
12467 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
12468 //  effect( USE_DEF op2, USE op1, USE cr );
12469 //  format %{ "CMOVgt $op2,$op1\t! max" %}
12470 //  opcode(0x4F,0x0F);
12471 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12472 //  ins_pipe( pipe_cmov_reg );
12473 //%}
12474 //
12475 // // Max Register with Register (P6 version)
12476 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
12477 //  predicate(VM_Version::supports_cmov() );
12478 //  match(Set op2 (MaxI op1 op2));
12479 //  ins_cost(200);
12480 //  expand %{
12481 //    eFlagsReg cr;
12482 //    compI_eReg(cr,op1,op2);
12483 //    cmovI_reg_gt(op2,op1,cr);
12484 //  %}
12485 //%}
12486 
12487 // Max Register with Register (generic version)
12488 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
12489   match(Set dst (MaxI dst src));
12490   effect(KILL flags);
12491   ins_cost(300);
12492 
12493   format %{ "MAX    $dst,$src" %}
12494   opcode(0xCC);
12495   ins_encode( max_enc(dst,src) );
12496   ins_pipe( pipe_slow );
12497 %}
12498 
12499 // ============================================================================
12500 // Counted Loop limit node which represents exact final iterator value.
12501 // Note: the resulting value should fit into integer range since
12502 // counted loops have limit check on overflow.
12503 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
12504   match(Set limit (LoopLimit (Binary init limit) stride));
12505   effect(TEMP limit_hi, TEMP tmp, KILL flags);
12506   ins_cost(300);
12507 
12508   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
12509   ins_encode %{
12510     int strd = (int)$stride$$constant;
12511     assert(strd != 1 && strd != -1, "sanity");
12512     int m1 = (strd > 0) ? 1 : -1;
12513     // Convert limit to long (EAX:EDX)
12514     __ cdql();
12515     // Convert init to long (init:tmp)
12516     __ movl($tmp$$Register, $init$$Register);
12517     __ sarl($tmp$$Register, 31);
12518     // $limit - $init
12519     __ subl($limit$$Register, $init$$Register);
12520     __ sbbl($limit_hi$$Register, $tmp$$Register);
12521     // + ($stride - 1)
12522     if (strd > 0) {
12523       __ addl($limit$$Register, (strd - 1));
12524       __ adcl($limit_hi$$Register, 0);
12525       __ movl($tmp$$Register, strd);
12526     } else {
12527       __ addl($limit$$Register, (strd + 1));
12528       __ adcl($limit_hi$$Register, -1);
12529       __ lneg($limit_hi$$Register, $limit$$Register);
12530       __ movl($tmp$$Register, -strd);
12531     }
12532     // signed devision: (EAX:EDX) / pos_stride
12533     __ idivl($tmp$$Register);
12534     if (strd < 0) {
12535       // restore sign
12536       __ negl($tmp$$Register);
12537     }
12538     // (EAX) * stride
12539     __ mull($tmp$$Register);
12540     // + init (ignore upper bits)
12541     __ addl($limit$$Register, $init$$Register);
12542   %}
12543   ins_pipe( pipe_slow );
12544 %}
12545 
12546 // ============================================================================
12547 // Branch Instructions
12548 // Jump Table
12549 instruct jumpXtnd(rRegI switch_val) %{
12550   match(Jump switch_val);
12551   ins_cost(350);
12552   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
12553   ins_encode %{
12554     // Jump to Address(table_base + switch_reg)
12555     Address index(noreg, $switch_val$$Register, Address::times_1);
12556     __ jump(ArrayAddress($constantaddress, index));
12557   %}
12558   ins_pipe(pipe_jmp);
12559 %}
12560 
12561 // Jump Direct - Label defines a relative address from JMP+1
12562 instruct jmpDir(label labl) %{
12563   match(Goto);
12564   effect(USE labl);
12565 
12566   ins_cost(300);
12567   format %{ "JMP    $labl" %}
12568   size(5);
12569   ins_encode %{
12570     Label* L = $labl$$label;
12571     __ jmp(*L, false); // Always long jump
12572   %}
12573   ins_pipe( pipe_jmp );
12574 %}
12575 
12576 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12577 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12578   match(If cop cr);
12579   effect(USE labl);
12580 
12581   ins_cost(300);
12582   format %{ "J$cop    $labl" %}
12583   size(6);
12584   ins_encode %{
12585     Label* L = $labl$$label;
12586     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12587   %}
12588   ins_pipe( pipe_jcc );
12589 %}
12590 
12591 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12592 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12593   match(CountedLoopEnd cop cr);
12594   effect(USE labl);
12595 
12596   ins_cost(300);
12597   format %{ "J$cop    $labl\t# Loop end" %}
12598   size(6);
12599   ins_encode %{
12600     Label* L = $labl$$label;
12601     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12602   %}
12603   ins_pipe( pipe_jcc );
12604 %}
12605 
12606 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12607 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12608   match(CountedLoopEnd cop cmp);
12609   effect(USE labl);
12610 
12611   ins_cost(300);
12612   format %{ "J$cop,u  $labl\t# Loop end" %}
12613   size(6);
12614   ins_encode %{
12615     Label* L = $labl$$label;
12616     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12617   %}
12618   ins_pipe( pipe_jcc );
12619 %}
12620 
12621 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12622   match(CountedLoopEnd cop cmp);
12623   effect(USE labl);
12624 
12625   ins_cost(200);
12626   format %{ "J$cop,u  $labl\t# Loop end" %}
12627   size(6);
12628   ins_encode %{
12629     Label* L = $labl$$label;
12630     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12631   %}
12632   ins_pipe( pipe_jcc );
12633 %}
12634 
12635 // Jump Direct Conditional - using unsigned comparison
12636 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12637   match(If cop cmp);
12638   effect(USE labl);
12639 
12640   ins_cost(300);
12641   format %{ "J$cop,u  $labl" %}
12642   size(6);
12643   ins_encode %{
12644     Label* L = $labl$$label;
12645     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12646   %}
12647   ins_pipe(pipe_jcc);
12648 %}
12649 
12650 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12651   match(If cop cmp);
12652   effect(USE labl);
12653 
12654   ins_cost(200);
12655   format %{ "J$cop,u  $labl" %}
12656   size(6);
12657   ins_encode %{
12658     Label* L = $labl$$label;
12659     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12660   %}
12661   ins_pipe(pipe_jcc);
12662 %}
12663 
12664 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12665   match(If cop cmp);
12666   effect(USE labl);
12667 
12668   ins_cost(200);
12669   format %{ $$template
12670     if ($cop$$cmpcode == Assembler::notEqual) {
12671       $$emit$$"JP,u   $labl\n\t"
12672       $$emit$$"J$cop,u   $labl"
12673     } else {
12674       $$emit$$"JP,u   done\n\t"
12675       $$emit$$"J$cop,u   $labl\n\t"
12676       $$emit$$"done:"
12677     }
12678   %}
12679   ins_encode %{
12680     Label* l = $labl$$label;
12681     if ($cop$$cmpcode == Assembler::notEqual) {
12682       __ jcc(Assembler::parity, *l, false);
12683       __ jcc(Assembler::notEqual, *l, false);
12684     } else if ($cop$$cmpcode == Assembler::equal) {
12685       Label done;
12686       __ jccb(Assembler::parity, done);
12687       __ jcc(Assembler::equal, *l, false);
12688       __ bind(done);
12689     } else {
12690        ShouldNotReachHere();
12691     }
12692   %}
12693   ins_pipe(pipe_jcc);
12694 %}
12695 
12696 // ============================================================================
12697 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12698 // array for an instance of the superklass.  Set a hidden internal cache on a
12699 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12700 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12701 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12702   match(Set result (PartialSubtypeCheck sub super));
12703   effect( KILL rcx, KILL cr );
12704 
12705   ins_cost(1100);  // slightly larger than the next version
12706   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12707             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12708             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12709             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12710             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12711             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12712             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12713      "miss:\t" %}
12714 
12715   opcode(0x1); // Force a XOR of EDI
12716   ins_encode( enc_PartialSubtypeCheck() );
12717   ins_pipe( pipe_slow );
12718 %}
12719 
12720 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12721   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12722   effect( KILL rcx, KILL result );
12723 
12724   ins_cost(1000);
12725   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12726             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12727             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12728             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12729             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12730             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12731      "miss:\t" %}
12732 
12733   opcode(0x0);  // No need to XOR EDI
12734   ins_encode( enc_PartialSubtypeCheck() );
12735   ins_pipe( pipe_slow );
12736 %}
12737 
12738 // ============================================================================
12739 // Branch Instructions -- short offset versions
12740 //
12741 // These instructions are used to replace jumps of a long offset (the default
12742 // match) with jumps of a shorter offset.  These instructions are all tagged
12743 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12744 // match rules in general matching.  Instead, the ADLC generates a conversion
12745 // method in the MachNode which can be used to do in-place replacement of the
12746 // long variant with the shorter variant.  The compiler will determine if a
12747 // branch can be taken by the is_short_branch_offset() predicate in the machine
12748 // specific code section of the file.
12749 
12750 // Jump Direct - Label defines a relative address from JMP+1
12751 instruct jmpDir_short(label labl) %{
12752   match(Goto);
12753   effect(USE labl);
12754 
12755   ins_cost(300);
12756   format %{ "JMP,s  $labl" %}
12757   size(2);
12758   ins_encode %{
12759     Label* L = $labl$$label;
12760     __ jmpb(*L);
12761   %}
12762   ins_pipe( pipe_jmp );
12763   ins_short_branch(1);
12764 %}
12765 
12766 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12767 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12768   match(If cop cr);
12769   effect(USE labl);
12770 
12771   ins_cost(300);
12772   format %{ "J$cop,s  $labl" %}
12773   size(2);
12774   ins_encode %{
12775     Label* L = $labl$$label;
12776     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12777   %}
12778   ins_pipe( pipe_jcc );
12779   ins_short_branch(1);
12780 %}
12781 
12782 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12783 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12784   match(CountedLoopEnd cop cr);
12785   effect(USE labl);
12786 
12787   ins_cost(300);
12788   format %{ "J$cop,s  $labl\t# Loop end" %}
12789   size(2);
12790   ins_encode %{
12791     Label* L = $labl$$label;
12792     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12793   %}
12794   ins_pipe( pipe_jcc );
12795   ins_short_branch(1);
12796 %}
12797 
12798 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12799 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12800   match(CountedLoopEnd cop cmp);
12801   effect(USE labl);
12802 
12803   ins_cost(300);
12804   format %{ "J$cop,us $labl\t# Loop end" %}
12805   size(2);
12806   ins_encode %{
12807     Label* L = $labl$$label;
12808     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12809   %}
12810   ins_pipe( pipe_jcc );
12811   ins_short_branch(1);
12812 %}
12813 
12814 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12815   match(CountedLoopEnd cop cmp);
12816   effect(USE labl);
12817 
12818   ins_cost(300);
12819   format %{ "J$cop,us $labl\t# Loop end" %}
12820   size(2);
12821   ins_encode %{
12822     Label* L = $labl$$label;
12823     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12824   %}
12825   ins_pipe( pipe_jcc );
12826   ins_short_branch(1);
12827 %}
12828 
12829 // Jump Direct Conditional - using unsigned comparison
12830 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12831   match(If cop cmp);
12832   effect(USE labl);
12833 
12834   ins_cost(300);
12835   format %{ "J$cop,us $labl" %}
12836   size(2);
12837   ins_encode %{
12838     Label* L = $labl$$label;
12839     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12840   %}
12841   ins_pipe( pipe_jcc );
12842   ins_short_branch(1);
12843 %}
12844 
12845 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12846   match(If cop cmp);
12847   effect(USE labl);
12848 
12849   ins_cost(300);
12850   format %{ "J$cop,us $labl" %}
12851   size(2);
12852   ins_encode %{
12853     Label* L = $labl$$label;
12854     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12855   %}
12856   ins_pipe( pipe_jcc );
12857   ins_short_branch(1);
12858 %}
12859 
12860 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12861   match(If cop cmp);
12862   effect(USE labl);
12863 
12864   ins_cost(300);
12865   format %{ $$template
12866     if ($cop$$cmpcode == Assembler::notEqual) {
12867       $$emit$$"JP,u,s   $labl\n\t"
12868       $$emit$$"J$cop,u,s   $labl"
12869     } else {
12870       $$emit$$"JP,u,s   done\n\t"
12871       $$emit$$"J$cop,u,s  $labl\n\t"
12872       $$emit$$"done:"
12873     }
12874   %}
12875   size(4);
12876   ins_encode %{
12877     Label* l = $labl$$label;
12878     if ($cop$$cmpcode == Assembler::notEqual) {
12879       __ jccb(Assembler::parity, *l);
12880       __ jccb(Assembler::notEqual, *l);
12881     } else if ($cop$$cmpcode == Assembler::equal) {
12882       Label done;
12883       __ jccb(Assembler::parity, done);
12884       __ jccb(Assembler::equal, *l);
12885       __ bind(done);
12886     } else {
12887        ShouldNotReachHere();
12888     }
12889   %}
12890   ins_pipe(pipe_jcc);
12891   ins_short_branch(1);
12892 %}
12893 
12894 // ============================================================================
12895 // Long Compare
12896 //
12897 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12898 // is tricky.  The flavor of compare used depends on whether we are testing
12899 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12900 // The GE test is the negated LT test.  The LE test can be had by commuting
12901 // the operands (yielding a GE test) and then negating; negate again for the
12902 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12903 // NE test is negated from that.
12904 
12905 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12906 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12907 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12908 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12909 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12910 // foo match ends up with the wrong leaf.  One fix is to not match both
12911 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12912 // both forms beat the trinary form of long-compare and both are very useful
12913 // on Intel which has so few registers.
12914 
12915 // Manifest a CmpL result in an integer register.  Very painful.
12916 // This is the test to avoid.
12917 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12918   match(Set dst (CmpL3 src1 src2));
12919   effect( KILL flags );
12920   ins_cost(1000);
12921   format %{ "XOR    $dst,$dst\n\t"
12922             "CMP    $src1.hi,$src2.hi\n\t"
12923             "JLT,s  m_one\n\t"
12924             "JGT,s  p_one\n\t"
12925             "CMP    $src1.lo,$src2.lo\n\t"
12926             "JB,s   m_one\n\t"
12927             "JEQ,s  done\n"
12928     "p_one:\tINC    $dst\n\t"
12929             "JMP,s  done\n"
12930     "m_one:\tDEC    $dst\n"
12931      "done:" %}
12932   ins_encode %{
12933     Label p_one, m_one, done;
12934     __ xorptr($dst$$Register, $dst$$Register);
12935     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12936     __ jccb(Assembler::less,    m_one);
12937     __ jccb(Assembler::greater, p_one);
12938     __ cmpl($src1$$Register, $src2$$Register);
12939     __ jccb(Assembler::below,   m_one);
12940     __ jccb(Assembler::equal,   done);
12941     __ bind(p_one);
12942     __ incrementl($dst$$Register);
12943     __ jmpb(done);
12944     __ bind(m_one);
12945     __ decrementl($dst$$Register);
12946     __ bind(done);
12947   %}
12948   ins_pipe( pipe_slow );
12949 %}
12950 
12951 //======
12952 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12953 // compares.  Can be used for LE or GT compares by reversing arguments.
12954 // NOT GOOD FOR EQ/NE tests.
12955 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12956   match( Set flags (CmpL src zero ));
12957   ins_cost(100);
12958   format %{ "TEST   $src.hi,$src.hi" %}
12959   opcode(0x85);
12960   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12961   ins_pipe( ialu_cr_reg_reg );
12962 %}
12963 
12964 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12965 // compares.  Can be used for LE or GT compares by reversing arguments.
12966 // NOT GOOD FOR EQ/NE tests.
12967 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12968   match( Set flags (CmpL src1 src2 ));
12969   effect( TEMP tmp );
12970   ins_cost(300);
12971   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12972             "MOV    $tmp,$src1.hi\n\t"
12973             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12974   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12975   ins_pipe( ialu_cr_reg_reg );
12976 %}
12977 
12978 // Long compares reg < zero/req OR reg >= zero/req.
12979 // Just a wrapper for a normal branch, plus the predicate test.
12980 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12981   match(If cmp flags);
12982   effect(USE labl);
12983   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12984   expand %{
12985     jmpCon(cmp,flags,labl);    // JLT or JGE...
12986   %}
12987 %}
12988 
12989 // Compare 2 longs and CMOVE longs.
12990 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12991   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12992   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12993   ins_cost(400);
12994   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12995             "CMOV$cmp $dst.hi,$src.hi" %}
12996   opcode(0x0F,0x40);
12997   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12998   ins_pipe( pipe_cmov_reg_long );
12999 %}
13000 
13001 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
13002   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13003   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13004   ins_cost(500);
13005   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13006             "CMOV$cmp $dst.hi,$src.hi" %}
13007   opcode(0x0F,0x40);
13008   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13009   ins_pipe( pipe_cmov_reg_long );
13010 %}
13011 
13012 // Compare 2 longs and CMOVE ints.
13013 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
13014   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13015   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13016   ins_cost(200);
13017   format %{ "CMOV$cmp $dst,$src" %}
13018   opcode(0x0F,0x40);
13019   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13020   ins_pipe( pipe_cmov_reg );
13021 %}
13022 
13023 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
13024   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13025   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13026   ins_cost(250);
13027   format %{ "CMOV$cmp $dst,$src" %}
13028   opcode(0x0F,0x40);
13029   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13030   ins_pipe( pipe_cmov_mem );
13031 %}
13032 
13033 // Compare 2 longs and CMOVE ints.
13034 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
13035   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13036   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13037   ins_cost(200);
13038   format %{ "CMOV$cmp $dst,$src" %}
13039   opcode(0x0F,0x40);
13040   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13041   ins_pipe( pipe_cmov_reg );
13042 %}
13043 
13044 // Compare 2 longs and CMOVE doubles
13045 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
13046   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13047   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13048   ins_cost(200);
13049   expand %{
13050     fcmovDPR_regS(cmp,flags,dst,src);
13051   %}
13052 %}
13053 
13054 // Compare 2 longs and CMOVE doubles
13055 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
13056   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13057   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13058   ins_cost(200);
13059   expand %{
13060     fcmovD_regS(cmp,flags,dst,src);
13061   %}
13062 %}
13063 
13064 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
13065   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13066   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13067   ins_cost(200);
13068   expand %{
13069     fcmovFPR_regS(cmp,flags,dst,src);
13070   %}
13071 %}
13072 
13073 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
13074   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13075   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13076   ins_cost(200);
13077   expand %{
13078     fcmovF_regS(cmp,flags,dst,src);
13079   %}
13080 %}
13081 
13082 //======
13083 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13084 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
13085   match( Set flags (CmpL src zero ));
13086   effect(TEMP tmp);
13087   ins_cost(200);
13088   format %{ "MOV    $tmp,$src.lo\n\t"
13089             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
13090   ins_encode( long_cmp_flags0( src, tmp ) );
13091   ins_pipe( ialu_reg_reg_long );
13092 %}
13093 
13094 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13095 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
13096   match( Set flags (CmpL src1 src2 ));
13097   ins_cost(200+300);
13098   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13099             "JNE,s  skip\n\t"
13100             "CMP    $src1.hi,$src2.hi\n\t"
13101      "skip:\t" %}
13102   ins_encode( long_cmp_flags1( src1, src2 ) );
13103   ins_pipe( ialu_cr_reg_reg );
13104 %}
13105 
13106 // Long compare reg == zero/reg OR reg != zero/reg
13107 // Just a wrapper for a normal branch, plus the predicate test.
13108 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
13109   match(If cmp flags);
13110   effect(USE labl);
13111   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13112   expand %{
13113     jmpCon(cmp,flags,labl);    // JEQ or JNE...
13114   %}
13115 %}
13116 
13117 // Compare 2 longs and CMOVE longs.
13118 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
13119   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13120   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13121   ins_cost(400);
13122   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13123             "CMOV$cmp $dst.hi,$src.hi" %}
13124   opcode(0x0F,0x40);
13125   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13126   ins_pipe( pipe_cmov_reg_long );
13127 %}
13128 
13129 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
13130   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13131   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13132   ins_cost(500);
13133   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13134             "CMOV$cmp $dst.hi,$src.hi" %}
13135   opcode(0x0F,0x40);
13136   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13137   ins_pipe( pipe_cmov_reg_long );
13138 %}
13139 
13140 // Compare 2 longs and CMOVE ints.
13141 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
13142   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13143   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13144   ins_cost(200);
13145   format %{ "CMOV$cmp $dst,$src" %}
13146   opcode(0x0F,0x40);
13147   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13148   ins_pipe( pipe_cmov_reg );
13149 %}
13150 
13151 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
13152   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13153   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13154   ins_cost(250);
13155   format %{ "CMOV$cmp $dst,$src" %}
13156   opcode(0x0F,0x40);
13157   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13158   ins_pipe( pipe_cmov_mem );
13159 %}
13160 
13161 // Compare 2 longs and CMOVE ints.
13162 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
13163   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13164   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13165   ins_cost(200);
13166   format %{ "CMOV$cmp $dst,$src" %}
13167   opcode(0x0F,0x40);
13168   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13169   ins_pipe( pipe_cmov_reg );
13170 %}
13171 
13172 // Compare 2 longs and CMOVE doubles
13173 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
13174   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13175   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13176   ins_cost(200);
13177   expand %{
13178     fcmovDPR_regS(cmp,flags,dst,src);
13179   %}
13180 %}
13181 
13182 // Compare 2 longs and CMOVE doubles
13183 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
13184   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13185   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13186   ins_cost(200);
13187   expand %{
13188     fcmovD_regS(cmp,flags,dst,src);
13189   %}
13190 %}
13191 
13192 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
13193   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13194   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13195   ins_cost(200);
13196   expand %{
13197     fcmovFPR_regS(cmp,flags,dst,src);
13198   %}
13199 %}
13200 
13201 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
13202   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13203   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13204   ins_cost(200);
13205   expand %{
13206     fcmovF_regS(cmp,flags,dst,src);
13207   %}
13208 %}
13209 
13210 //======
13211 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13212 // Same as cmpL_reg_flags_LEGT except must negate src
13213 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
13214   match( Set flags (CmpL src zero ));
13215   effect( TEMP tmp );
13216   ins_cost(300);
13217   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
13218             "CMP    $tmp,$src.lo\n\t"
13219             "SBB    $tmp,$src.hi\n\t" %}
13220   ins_encode( long_cmp_flags3(src, tmp) );
13221   ins_pipe( ialu_reg_reg_long );
13222 %}
13223 
13224 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13225 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
13226 // requires a commuted test to get the same result.
13227 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
13228   match( Set flags (CmpL src1 src2 ));
13229   effect( TEMP tmp );
13230   ins_cost(300);
13231   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
13232             "MOV    $tmp,$src2.hi\n\t"
13233             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
13234   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
13235   ins_pipe( ialu_cr_reg_reg );
13236 %}
13237 
13238 // Long compares reg < zero/req OR reg >= zero/req.
13239 // Just a wrapper for a normal branch, plus the predicate test
13240 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
13241   match(If cmp flags);
13242   effect(USE labl);
13243   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
13244   ins_cost(300);
13245   expand %{
13246     jmpCon(cmp,flags,labl);    // JGT or JLE...
13247   %}
13248 %}
13249 
13250 // Compare 2 longs and CMOVE longs.
13251 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
13252   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13253   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13254   ins_cost(400);
13255   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13256             "CMOV$cmp $dst.hi,$src.hi" %}
13257   opcode(0x0F,0x40);
13258   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13259   ins_pipe( pipe_cmov_reg_long );
13260 %}
13261 
13262 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
13263   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13264   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13265   ins_cost(500);
13266   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13267             "CMOV$cmp $dst.hi,$src.hi+4" %}
13268   opcode(0x0F,0x40);
13269   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13270   ins_pipe( pipe_cmov_reg_long );
13271 %}
13272 
13273 // Compare 2 longs and CMOVE ints.
13274 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
13275   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13276   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13277   ins_cost(200);
13278   format %{ "CMOV$cmp $dst,$src" %}
13279   opcode(0x0F,0x40);
13280   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13281   ins_pipe( pipe_cmov_reg );
13282 %}
13283 
13284 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
13285   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13286   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13287   ins_cost(250);
13288   format %{ "CMOV$cmp $dst,$src" %}
13289   opcode(0x0F,0x40);
13290   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13291   ins_pipe( pipe_cmov_mem );
13292 %}
13293 
13294 // Compare 2 longs and CMOVE ptrs.
13295 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
13296   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13297   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13298   ins_cost(200);
13299   format %{ "CMOV$cmp $dst,$src" %}
13300   opcode(0x0F,0x40);
13301   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13302   ins_pipe( pipe_cmov_reg );
13303 %}
13304 
13305 // Compare 2 longs and CMOVE doubles
13306 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
13307   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13308   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13309   ins_cost(200);
13310   expand %{
13311     fcmovDPR_regS(cmp,flags,dst,src);
13312   %}
13313 %}
13314 
13315 // Compare 2 longs and CMOVE doubles
13316 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
13317   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13318   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13319   ins_cost(200);
13320   expand %{
13321     fcmovD_regS(cmp,flags,dst,src);
13322   %}
13323 %}
13324 
13325 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
13326   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13327   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13328   ins_cost(200);
13329   expand %{
13330     fcmovFPR_regS(cmp,flags,dst,src);
13331   %}
13332 %}
13333 
13334 
13335 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13336   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13337   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13338   ins_cost(200);
13339   expand %{
13340     fcmovF_regS(cmp,flags,dst,src);
13341   %}
13342 %}
13343 
13344 
13345 // ============================================================================
13346 // Procedure Call/Return Instructions
13347 // Call Java Static Instruction
13348 // Note: If this code changes, the corresponding ret_addr_offset() and
13349 //       compute_padding() functions will have to be adjusted.
13350 instruct CallStaticJavaDirect(method meth) %{
13351   match(CallStaticJava);
13352   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
13353   effect(USE meth);
13354 
13355   ins_cost(300);
13356   format %{ "CALL,static " %}
13357   opcode(0xE8); /* E8 cd */
13358   ins_encode( pre_call_resets,
13359               Java_Static_Call( meth ),
13360               call_epilog,
13361               post_call_FPU );
13362   ins_pipe( pipe_slow );
13363   ins_alignment(4);
13364 %}
13365 
13366 // Call Java Static Instruction (method handle version)
13367 // Note: If this code changes, the corresponding ret_addr_offset() and
13368 //       compute_padding() functions will have to be adjusted.
13369 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
13370   match(CallStaticJava);
13371   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
13372   effect(USE meth);
13373   // EBP is saved by all callees (for interpreter stack correction).
13374   // We use it here for a similar purpose, in {preserve,restore}_SP.
13375 
13376   ins_cost(300);
13377   format %{ "CALL,static/MethodHandle " %}
13378   opcode(0xE8); /* E8 cd */
13379   ins_encode( pre_call_resets,
13380               preserve_SP,
13381               Java_Static_Call( meth ),
13382               restore_SP,
13383               call_epilog,
13384               post_call_FPU );
13385   ins_pipe( pipe_slow );
13386   ins_alignment(4);
13387 %}
13388 
13389 // Call Java Dynamic Instruction
13390 // Note: If this code changes, the corresponding ret_addr_offset() and
13391 //       compute_padding() functions will have to be adjusted.
13392 instruct CallDynamicJavaDirect(method meth) %{
13393   match(CallDynamicJava);
13394   effect(USE meth);
13395 
13396   ins_cost(300);
13397   format %{ "MOV    EAX,(oop)-1\n\t"
13398             "CALL,dynamic" %}
13399   opcode(0xE8); /* E8 cd */
13400   ins_encode( pre_call_resets,
13401               Java_Dynamic_Call( meth ),
13402               call_epilog,
13403               post_call_FPU );
13404   ins_pipe( pipe_slow );
13405   ins_alignment(4);
13406 %}
13407 
13408 // Call Runtime Instruction
13409 instruct CallRuntimeDirect(method meth) %{
13410   match(CallRuntime );
13411   effect(USE meth);
13412 
13413   ins_cost(300);
13414   format %{ "CALL,runtime " %}
13415   opcode(0xE8); /* E8 cd */
13416   // Use FFREEs to clear entries in float stack
13417   ins_encode( pre_call_resets,
13418               FFree_Float_Stack_All,
13419               Java_To_Runtime( meth ),
13420               post_call_FPU );
13421   ins_pipe( pipe_slow );
13422 %}
13423 
13424 // Call runtime without safepoint
13425 instruct CallLeafDirect(method meth) %{
13426   match(CallLeaf);
13427   effect(USE meth);
13428 
13429   ins_cost(300);
13430   format %{ "CALL_LEAF,runtime " %}
13431   opcode(0xE8); /* E8 cd */
13432   ins_encode( pre_call_resets,
13433               FFree_Float_Stack_All,
13434               Java_To_Runtime( meth ),
13435               Verify_FPU_For_Leaf, post_call_FPU );
13436   ins_pipe( pipe_slow );
13437 %}
13438 
13439 instruct CallLeafNoFPDirect(method meth) %{
13440   match(CallLeafNoFP);
13441   effect(USE meth);
13442 
13443   ins_cost(300);
13444   format %{ "CALL_LEAF_NOFP,runtime " %}
13445   opcode(0xE8); /* E8 cd */
13446   ins_encode(Java_To_Runtime(meth));
13447   ins_pipe( pipe_slow );
13448 %}
13449 
13450 
13451 // Return Instruction
13452 // Remove the return address & jump to it.
13453 instruct Ret() %{
13454   match(Return);
13455   format %{ "RET" %}
13456   opcode(0xC3);
13457   ins_encode(OpcP);
13458   ins_pipe( pipe_jmp );
13459 %}
13460 
13461 // Tail Call; Jump from runtime stub to Java code.
13462 // Also known as an 'interprocedural jump'.
13463 // Target of jump will eventually return to caller.
13464 // TailJump below removes the return address.
13465 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13466   match(TailCall jump_target method_oop );
13467   ins_cost(300);
13468   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13469   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13470   ins_encode( OpcP, RegOpc(jump_target) );
13471   ins_pipe( pipe_jmp );
13472 %}
13473 
13474 
13475 // Tail Jump; remove the return address; jump to target.
13476 // TailCall above leaves the return address around.
13477 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13478   match( TailJump jump_target ex_oop );
13479   ins_cost(300);
13480   format %{ "POP    EDX\t# pop return address into dummy\n\t"
13481             "JMP    $jump_target " %}
13482   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13483   ins_encode( enc_pop_rdx,
13484               OpcP, RegOpc(jump_target) );
13485   ins_pipe( pipe_jmp );
13486 %}
13487 
13488 // Create exception oop: created by stack-crawling runtime code.
13489 // Created exception is now available to this handler, and is setup
13490 // just prior to jumping to this handler.  No code emitted.
13491 instruct CreateException( eAXRegP ex_oop )
13492 %{
13493   match(Set ex_oop (CreateEx));
13494 
13495   size(0);
13496   // use the following format syntax
13497   format %{ "# exception oop is in EAX; no code emitted" %}
13498   ins_encode();
13499   ins_pipe( empty );
13500 %}
13501 
13502 
13503 // Rethrow exception:
13504 // The exception oop will come in the first argument position.
13505 // Then JUMP (not call) to the rethrow stub code.
13506 instruct RethrowException()
13507 %{
13508   match(Rethrow);
13509 
13510   // use the following format syntax
13511   format %{ "JMP    rethrow_stub" %}
13512   ins_encode(enc_rethrow);
13513   ins_pipe( pipe_jmp );
13514 %}
13515 
13516 // inlined locking and unlocking
13517 
13518 
13519 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
13520   match( Set cr (FastLock object box) );
13521   effect( TEMP tmp, TEMP scr, USE_KILL box );
13522   ins_cost(300);
13523   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
13524   ins_encode( Fast_Lock(object,box,tmp,scr) );
13525   ins_pipe( pipe_slow );
13526 %}
13527 
13528 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13529   match( Set cr (FastUnlock object box) );
13530   effect( TEMP tmp, USE_KILL box );
13531   ins_cost(300);
13532   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
13533   ins_encode( Fast_Unlock(object,box,tmp) );
13534   ins_pipe( pipe_slow );
13535 %}
13536 
13537 
13538 
13539 // ============================================================================
13540 // Safepoint Instruction
13541 instruct safePoint_poll(eFlagsReg cr) %{
13542   match(SafePoint);
13543   effect(KILL cr);
13544 
13545   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13546   // On SPARC that might be acceptable as we can generate the address with
13547   // just a sethi, saving an or.  By polling at offset 0 we can end up
13548   // putting additional pressure on the index-0 in the D$.  Because of
13549   // alignment (just like the situation at hand) the lower indices tend
13550   // to see more traffic.  It'd be better to change the polling address
13551   // to offset 0 of the last $line in the polling page.
13552 
13553   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13554   ins_cost(125);
13555   size(6) ;
13556   ins_encode( Safepoint_Poll() );
13557   ins_pipe( ialu_reg_mem );
13558 %}
13559 
13560 
13561 // ============================================================================
13562 // This name is KNOWN by the ADLC and cannot be changed.
13563 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
13564 // for this guy.
13565 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
13566   match(Set dst (ThreadLocal));
13567   effect(DEF dst, KILL cr);
13568 
13569   format %{ "MOV    $dst, Thread::current()" %}
13570   ins_encode %{
13571     Register dstReg = as_Register($dst$$reg);
13572     __ get_thread(dstReg);
13573   %}
13574   ins_pipe( ialu_reg_fat );
13575 %}
13576 
13577 
13578 
13579 //----------PEEPHOLE RULES-----------------------------------------------------
13580 // These must follow all instruction definitions as they use the names
13581 // defined in the instructions definitions.
13582 //
13583 // peepmatch ( root_instr_name [preceding_instruction]* );
13584 //
13585 // peepconstraint %{
13586 // (instruction_number.operand_name relational_op instruction_number.operand_name
13587 //  [, ...] );
13588 // // instruction numbers are zero-based using left to right order in peepmatch
13589 //
13590 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13591 // // provide an instruction_number.operand_name for each operand that appears
13592 // // in the replacement instruction's match rule
13593 //
13594 // ---------VM FLAGS---------------------------------------------------------
13595 //
13596 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13597 //
13598 // Each peephole rule is given an identifying number starting with zero and
13599 // increasing by one in the order seen by the parser.  An individual peephole
13600 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13601 // on the command-line.
13602 //
13603 // ---------CURRENT LIMITATIONS----------------------------------------------
13604 //
13605 // Only match adjacent instructions in same basic block
13606 // Only equality constraints
13607 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13608 // Only one replacement instruction
13609 //
13610 // ---------EXAMPLE----------------------------------------------------------
13611 //
13612 // // pertinent parts of existing instructions in architecture description
13613 // instruct movI(rRegI dst, rRegI src) %{
13614 //   match(Set dst (CopyI src));
13615 // %}
13616 //
13617 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13618 //   match(Set dst (AddI dst src));
13619 //   effect(KILL cr);
13620 // %}
13621 //
13622 // // Change (inc mov) to lea
13623 // peephole %{
13624 //   // increment preceeded by register-register move
13625 //   peepmatch ( incI_eReg movI );
13626 //   // require that the destination register of the increment
13627 //   // match the destination register of the move
13628 //   peepconstraint ( 0.dst == 1.dst );
13629 //   // construct a replacement instruction that sets
13630 //   // the destination to ( move's source register + one )
13631 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13632 // %}
13633 //
13634 // Implementation no longer uses movX instructions since
13635 // machine-independent system no longer uses CopyX nodes.
13636 //
13637 // peephole %{
13638 //   peepmatch ( incI_eReg movI );
13639 //   peepconstraint ( 0.dst == 1.dst );
13640 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13641 // %}
13642 //
13643 // peephole %{
13644 //   peepmatch ( decI_eReg movI );
13645 //   peepconstraint ( 0.dst == 1.dst );
13646 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13647 // %}
13648 //
13649 // peephole %{
13650 //   peepmatch ( addI_eReg_imm movI );
13651 //   peepconstraint ( 0.dst == 1.dst );
13652 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13653 // %}
13654 //
13655 // peephole %{
13656 //   peepmatch ( addP_eReg_imm movP );
13657 //   peepconstraint ( 0.dst == 1.dst );
13658 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13659 // %}
13660 
13661 // // Change load of spilled value to only a spill
13662 // instruct storeI(memory mem, rRegI src) %{
13663 //   match(Set mem (StoreI mem src));
13664 // %}
13665 //
13666 // instruct loadI(rRegI dst, memory mem) %{
13667 //   match(Set dst (LoadI mem));
13668 // %}
13669 //
13670 peephole %{
13671   peepmatch ( loadI storeI );
13672   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13673   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13674 %}
13675 
13676 //----------SMARTSPILL RULES---------------------------------------------------
13677 // These must follow all instruction definitions as they use the names
13678 // defined in the instructions definitions.