1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 #ifdef ASSERT
 163   // One type is interface, the other is oop
 164   virtual bool interface_vs_oop_helper(const Type *t) const;
 165 #endif
 166 
 167   const Type *meet_helper(const Type *t, bool include_speculative) const;
 168 
 169 protected:
 170   // Each class of type is also identified by its base.
 171   const TYPES _base;            // Enum of Types type
 172 
 173   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 174   // ~Type();                   // Use fast deallocation
 175   const Type *hashcons();       // Hash-cons the type
 176   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 177   const Type *join_helper(const Type *t, bool include_speculative) const {
 178     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 179   }
 180 
 181 public:
 182 
 183   inline void* operator new( size_t x ) throw() {
 184     Compile* compile = Compile::current();
 185     compile->set_type_last_size(x);
 186     void *temp = compile->type_arena()->Amalloc_D(x);
 187     compile->set_type_hwm(temp);
 188     return temp;
 189   }
 190   inline void operator delete( void* ptr ) {
 191     Compile* compile = Compile::current();
 192     compile->type_arena()->Afree(ptr,compile->type_last_size());
 193   }
 194 
 195   // Initialize the type system for a particular compilation.
 196   static void Initialize(Compile* compile);
 197 
 198   // Initialize the types shared by all compilations.
 199   static void Initialize_shared(Compile* compile);
 200 
 201   TYPES base() const {
 202     assert(_base > Bad && _base < lastype, "sanity");
 203     return _base;
 204   }
 205 
 206   // Create a new hash-consd type
 207   static const Type *make(enum TYPES);
 208   // Test for equivalence of types
 209   static int cmp( const Type *const t1, const Type *const t2 );
 210   // Test for higher or equal in lattice
 211   // Variant that drops the speculative part of the types
 212   int higher_equal(const Type *t) const {
 213     return !cmp(meet(t),t->remove_speculative());
 214   }
 215   // Variant that keeps the speculative part of the types
 216   int higher_equal_speculative(const Type *t) const {
 217     return !cmp(meet_speculative(t),t);
 218   }
 219 
 220   // MEET operation; lower in lattice.
 221   // Variant that drops the speculative part of the types
 222   const Type *meet(const Type *t) const {
 223     return meet_helper(t, false);
 224   }
 225   // Variant that keeps the speculative part of the types
 226   const Type *meet_speculative(const Type *t) const {
 227     return meet_helper(t, true);
 228   }
 229   // WIDEN: 'widens' for Ints and other range types
 230   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 231   // NARROW: complement for widen, used by pessimistic phases
 232   virtual const Type *narrow( const Type *old ) const { return this; }
 233 
 234   // DUAL operation: reflect around lattice centerline.  Used instead of
 235   // join to ensure my lattice is symmetric up and down.
 236   const Type *dual() const { return _dual; }
 237 
 238   // Compute meet dependent on base type
 239   virtual const Type *xmeet( const Type *t ) const;
 240   virtual const Type *xdual() const;    // Compute dual right now.
 241 
 242   // JOIN operation; higher in lattice.  Done by finding the dual of the
 243   // meet of the dual of the 2 inputs.
 244   // Variant that drops the speculative part of the types
 245   const Type *join(const Type *t) const {
 246     return join_helper(t, false);
 247   }
 248   // Variant that keeps the speculative part of the types
 249   const Type *join_speculative(const Type *t) const {
 250     return join_helper(t, true);
 251   }
 252 
 253   // Modified version of JOIN adapted to the needs Node::Value.
 254   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 255   // Currently, it also works around limitations involving interface types.
 256   // Variant that drops the speculative part of the types
 257   const Type *filter(const Type *kills) const {
 258     return filter_helper(kills, false);
 259   }
 260   // Variant that keeps the speculative part of the types
 261   const Type *filter_speculative(const Type *kills) const {
 262     return filter_helper(kills, true);
 263   }
 264 
 265 #ifdef ASSERT
 266   // One type is interface, the other is oop
 267   virtual bool interface_vs_oop(const Type *t) const;
 268 #endif
 269 
 270   // Returns true if this pointer points at memory which contains a
 271   // compressed oop references.
 272   bool is_ptr_to_narrowoop() const;
 273   bool is_ptr_to_narrowklass() const;
 274 
 275   bool is_ptr_to_boxing_obj() const;
 276 
 277 
 278   // Convenience access
 279   float getf() const;
 280   double getd() const;
 281 
 282   const TypeInt    *is_int() const;
 283   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 284   const TypeLong   *is_long() const;
 285   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 286   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 287   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 288   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 289   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 290   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 291   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 292   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 293   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 294   const TypeVect   *is_vect() const;             // Vector
 295   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 296   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 297   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 298   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 299   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 300   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 301   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 302   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 303   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 304   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 305   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 306   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 307   const TypeInstPtr  *is_instptr() const;        // Instance
 308   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 309   const TypeAryPtr   *is_aryptr() const;         // Array oop
 310 
 311   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 312   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 313   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 314   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 315 
 316   virtual bool      is_finite() const;           // Has a finite value
 317   virtual bool      is_nan()    const;           // Is not a number (NaN)
 318 
 319   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 320   const TypePtr* make_ptr() const;
 321 
 322   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 323   // Asserts if the underlying type is not an oopptr or narrowoop.
 324   const TypeOopPtr* make_oopptr() const;
 325 
 326   // Returns this compressed pointer or the equivalent compressed version
 327   // of this pointer type.
 328   const TypeNarrowOop* make_narrowoop() const;
 329 
 330   // Returns this compressed klass pointer or the equivalent
 331   // compressed version of this pointer type.
 332   const TypeNarrowKlass* make_narrowklass() const;
 333 
 334   // Special test for register pressure heuristic
 335   bool is_floatingpoint() const;        // True if Float or Double base type
 336 
 337   // Do you have memory, directly or through a tuple?
 338   bool has_memory( ) const;
 339 
 340   // TRUE if type is a singleton
 341   virtual bool singleton(void) const;
 342 
 343   // TRUE if type is above the lattice centerline, and is therefore vacuous
 344   virtual bool empty(void) const;
 345 
 346   // Return a hash for this type.  The hash function is public so ConNode
 347   // (constants) can hash on their constant, which is represented by a Type.
 348   virtual int hash() const;
 349 
 350   // Map ideal registers (machine types) to ideal types
 351   static const Type *mreg2type[];
 352 
 353   // Printing, statistics
 354 #ifndef PRODUCT
 355   void         dump_on(outputStream *st) const;
 356   void         dump() const {
 357     dump_on(tty);
 358   }
 359   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 360   static  void dump_stats();
 361 #endif
 362   void typerr(const Type *t) const; // Mixing types error
 363 
 364   // Create basic type
 365   static const Type* get_const_basic_type(BasicType type) {
 366     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 367     return _const_basic_type[type];
 368   }
 369 
 370   // Mapping to the array element's basic type.
 371   BasicType array_element_basic_type() const;
 372 
 373   // Create standard type for a ciType:
 374   static const Type* get_const_type(ciType* type);
 375 
 376   // Create standard zero value:
 377   static const Type* get_zero_type(BasicType type) {
 378     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 379     return _zero_type[type];
 380   }
 381 
 382   // Report if this is a zero value (not top).
 383   bool is_zero_type() const {
 384     BasicType type = basic_type();
 385     if (type == T_VOID || type >= T_CONFLICT)
 386       return false;
 387     else
 388       return (this == _zero_type[type]);
 389   }
 390 
 391   // Convenience common pre-built types.
 392   static const Type *ABIO;
 393   static const Type *BOTTOM;
 394   static const Type *CONTROL;
 395   static const Type *DOUBLE;
 396   static const Type *FLOAT;
 397   static const Type *HALF;
 398   static const Type *MEMORY;
 399   static const Type *MULTI;
 400   static const Type *RETURN_ADDRESS;
 401   static const Type *TOP;
 402 
 403   // Mapping from compiler type to VM BasicType
 404   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 405   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 406   const char* msg() const            { return _type_info[_base].msg; }
 407   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 408   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 409 
 410   // Mapping from CI type system to compiler type:
 411   static const Type* get_typeflow_type(ciType* type);
 412 
 413   static const Type* make_from_constant(ciConstant constant,
 414                                         bool require_constant = false,
 415                                         bool is_autobox_cache = false);
 416 
 417   // Speculative type. See TypeInstPtr
 418   virtual ciKlass* speculative_type() const { return NULL; }
 419   const Type* maybe_remove_speculative(bool include_speculative) const;
 420   virtual const Type* remove_speculative() const { return this; }
 421 
 422 private:
 423   // support arrays
 424   static const BasicType _basic_type[];
 425   static const Type*        _zero_type[T_CONFLICT+1];
 426   static const Type* _const_basic_type[T_CONFLICT+1];
 427 };
 428 
 429 //------------------------------TypeF------------------------------------------
 430 // Class of Float-Constant Types.
 431 class TypeF : public Type {
 432   TypeF( float f ) : Type(FloatCon), _f(f) {};
 433 public:
 434   virtual bool eq( const Type *t ) const;
 435   virtual int  hash() const;             // Type specific hashing
 436   virtual bool singleton(void) const;    // TRUE if type is a singleton
 437   virtual bool empty(void) const;        // TRUE if type is vacuous
 438 public:
 439   const float _f;               // Float constant
 440 
 441   static const TypeF *make(float f);
 442 
 443   virtual bool        is_finite() const;  // Has a finite value
 444   virtual bool        is_nan()    const;  // Is not a number (NaN)
 445 
 446   virtual const Type *xmeet( const Type *t ) const;
 447   virtual const Type *xdual() const;    // Compute dual right now.
 448   // Convenience common pre-built types.
 449   static const TypeF *ZERO; // positive zero only
 450   static const TypeF *ONE;
 451 #ifndef PRODUCT
 452   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 453 #endif
 454 };
 455 
 456 //------------------------------TypeD------------------------------------------
 457 // Class of Double-Constant Types.
 458 class TypeD : public Type {
 459   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 460 public:
 461   virtual bool eq( const Type *t ) const;
 462   virtual int  hash() const;             // Type specific hashing
 463   virtual bool singleton(void) const;    // TRUE if type is a singleton
 464   virtual bool empty(void) const;        // TRUE if type is vacuous
 465 public:
 466   const double _d;              // Double constant
 467 
 468   static const TypeD *make(double d);
 469 
 470   virtual bool        is_finite() const;  // Has a finite value
 471   virtual bool        is_nan()    const;  // Is not a number (NaN)
 472 
 473   virtual const Type *xmeet( const Type *t ) const;
 474   virtual const Type *xdual() const;    // Compute dual right now.
 475   // Convenience common pre-built types.
 476   static const TypeD *ZERO; // positive zero only
 477   static const TypeD *ONE;
 478 #ifndef PRODUCT
 479   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 480 #endif
 481 };
 482 
 483 //------------------------------TypeInt----------------------------------------
 484 // Class of integer ranges, the set of integers between a lower bound and an
 485 // upper bound, inclusive.
 486 class TypeInt : public Type {
 487   TypeInt( jint lo, jint hi, int w );
 488 protected:
 489   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 490 
 491 public:
 492   typedef jint NativeType;
 493   virtual bool eq( const Type *t ) const;
 494   virtual int  hash() const;             // Type specific hashing
 495   virtual bool singleton(void) const;    // TRUE if type is a singleton
 496   virtual bool empty(void) const;        // TRUE if type is vacuous
 497   const jint _lo, _hi;          // Lower bound, upper bound
 498   const short _widen;           // Limit on times we widen this sucker
 499 
 500   static const TypeInt *make(jint lo);
 501   // must always specify w
 502   static const TypeInt *make(jint lo, jint hi, int w);
 503 
 504   // Check for single integer
 505   int is_con() const { return _lo==_hi; }
 506   bool is_con(int i) const { return is_con() && _lo == i; }
 507   jint get_con() const { assert( is_con(), "" );  return _lo; }
 508 
 509   virtual bool        is_finite() const;  // Has a finite value
 510 
 511   virtual const Type *xmeet( const Type *t ) const;
 512   virtual const Type *xdual() const;    // Compute dual right now.
 513   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 514   virtual const Type *narrow( const Type *t ) const;
 515   // Do not kill _widen bits.
 516   // Convenience common pre-built types.
 517   static const TypeInt *MINUS_1;
 518   static const TypeInt *ZERO;
 519   static const TypeInt *ONE;
 520   static const TypeInt *BOOL;
 521   static const TypeInt *CC;
 522   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 523   static const TypeInt *CC_GT;  // [1]   == ONE
 524   static const TypeInt *CC_EQ;  // [0]   == ZERO
 525   static const TypeInt *CC_LE;  // [-1,0]
 526   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 527   static const TypeInt *BYTE;
 528   static const TypeInt *UBYTE;
 529   static const TypeInt *CHAR;
 530   static const TypeInt *SHORT;
 531   static const TypeInt *POS;
 532   static const TypeInt *POS1;
 533   static const TypeInt *INT;
 534   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 535   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 536 #ifndef PRODUCT
 537   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 538 #endif
 539 };
 540 
 541 
 542 //------------------------------TypeLong---------------------------------------
 543 // Class of long integer ranges, the set of integers between a lower bound and
 544 // an upper bound, inclusive.
 545 class TypeLong : public Type {
 546   TypeLong( jlong lo, jlong hi, int w );
 547 protected:
 548   // Do not kill _widen bits.
 549   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 550 public:
 551   virtual bool eq( const Type *t ) const;
 552   virtual int  hash() const;             // Type specific hashing
 553   virtual bool singleton(void) const;    // TRUE if type is a singleton
 554   virtual bool empty(void) const;        // TRUE if type is vacuous
 555 public:
 556   typedef jlong NativeType;
 557   const jlong _lo, _hi;         // Lower bound, upper bound
 558   const short _widen;           // Limit on times we widen this sucker
 559 
 560   static const TypeLong *make(jlong lo);
 561   // must always specify w
 562   static const TypeLong *make(jlong lo, jlong hi, int w);
 563 
 564   // Check for single integer
 565   int is_con() const { return _lo==_hi; }
 566   bool is_con(int i) const { return is_con() && _lo == i; }
 567   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 568 
 569   // Check for positive 32-bit value.
 570   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 571 
 572   virtual bool        is_finite() const;  // Has a finite value
 573 
 574   virtual const Type *xmeet( const Type *t ) const;
 575   virtual const Type *xdual() const;    // Compute dual right now.
 576   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 577   virtual const Type *narrow( const Type *t ) const;
 578   // Convenience common pre-built types.
 579   static const TypeLong *MINUS_1;
 580   static const TypeLong *ZERO;
 581   static const TypeLong *ONE;
 582   static const TypeLong *POS;
 583   static const TypeLong *LONG;
 584   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 585   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 586   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 587 #ifndef PRODUCT
 588   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 589 #endif
 590 };
 591 
 592 //------------------------------TypeTuple--------------------------------------
 593 // Class of Tuple Types, essentially type collections for function signatures
 594 // and class layouts.  It happens to also be a fast cache for the HotSpot
 595 // signature types.
 596 class TypeTuple : public Type {
 597   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 598 public:
 599   virtual bool eq( const Type *t ) const;
 600   virtual int  hash() const;             // Type specific hashing
 601   virtual bool singleton(void) const;    // TRUE if type is a singleton
 602   virtual bool empty(void) const;        // TRUE if type is vacuous
 603 
 604 public:
 605   const uint          _cnt;              // Count of fields
 606   const Type ** const _fields;           // Array of field types
 607 
 608   // Accessors:
 609   uint cnt() const { return _cnt; }
 610   const Type* field_at(uint i) const {
 611     assert(i < _cnt, "oob");
 612     return _fields[i];
 613   }
 614   void set_field_at(uint i, const Type* t) {
 615     assert(i < _cnt, "oob");
 616     _fields[i] = t;
 617   }
 618 
 619   static const TypeTuple *make( uint cnt, const Type **fields );
 620   static const TypeTuple *make_range(ciSignature *sig);
 621   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 622 
 623   // Subroutine call type with space allocated for argument types
 624   static const Type **fields( uint arg_cnt );
 625 
 626   virtual const Type *xmeet( const Type *t ) const;
 627   virtual const Type *xdual() const;    // Compute dual right now.
 628   // Convenience common pre-built types.
 629   static const TypeTuple *IFBOTH;
 630   static const TypeTuple *IFFALSE;
 631   static const TypeTuple *IFTRUE;
 632   static const TypeTuple *IFNEITHER;
 633   static const TypeTuple *LOOPBODY;
 634   static const TypeTuple *MEMBAR;
 635   static const TypeTuple *STORECONDITIONAL;
 636   static const TypeTuple *START_I2C;
 637   static const TypeTuple *INT_PAIR;
 638   static const TypeTuple *LONG_PAIR;
 639   static const TypeTuple *INT_CC_PAIR;
 640   static const TypeTuple *LONG_CC_PAIR;
 641 #ifndef PRODUCT
 642   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 643 #endif
 644 };
 645 
 646 //------------------------------TypeAry----------------------------------------
 647 // Class of Array Types
 648 class TypeAry : public Type {
 649   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 650       _elem(elem), _size(size), _stable(stable) {}
 651 public:
 652   virtual bool eq( const Type *t ) const;
 653   virtual int  hash() const;             // Type specific hashing
 654   virtual bool singleton(void) const;    // TRUE if type is a singleton
 655   virtual bool empty(void) const;        // TRUE if type is vacuous
 656 
 657 private:
 658   const Type *_elem;            // Element type of array
 659   const TypeInt *_size;         // Elements in array
 660   const bool _stable;           // Are elements @Stable?
 661   friend class TypeAryPtr;
 662 
 663 public:
 664   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 665 
 666   virtual const Type *xmeet( const Type *t ) const;
 667   virtual const Type *xdual() const;    // Compute dual right now.
 668   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 669   virtual const Type* remove_speculative() const;
 670 #ifdef ASSERT
 671   // One type is interface, the other is oop
 672   virtual bool interface_vs_oop(const Type *t) const;
 673 #endif
 674 #ifndef PRODUCT
 675   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 676 #endif
 677 };
 678 
 679 //------------------------------TypeVect---------------------------------------
 680 // Class of Vector Types
 681 class TypeVect : public Type {
 682   const Type*   _elem;  // Vector's element type
 683   const uint  _length;  // Elements in vector (power of 2)
 684 
 685 protected:
 686   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 687     _elem(elem), _length(length) {}
 688 
 689 public:
 690   const Type* element_type() const { return _elem; }
 691   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 692   uint length() const { return _length; }
 693   uint length_in_bytes() const {
 694    return _length * type2aelembytes(element_basic_type());
 695   }
 696 
 697   virtual bool eq(const Type *t) const;
 698   virtual int  hash() const;             // Type specific hashing
 699   virtual bool singleton(void) const;    // TRUE if type is a singleton
 700   virtual bool empty(void) const;        // TRUE if type is vacuous
 701 
 702   static const TypeVect *make(const BasicType elem_bt, uint length) {
 703     // Use bottom primitive type.
 704     return make(get_const_basic_type(elem_bt), length);
 705   }
 706   // Used directly by Replicate nodes to construct singleton vector.
 707   static const TypeVect *make(const Type* elem, uint length);
 708 
 709   virtual const Type *xmeet( const Type *t) const;
 710   virtual const Type *xdual() const;     // Compute dual right now.
 711 
 712   static const TypeVect *VECTS;
 713   static const TypeVect *VECTD;
 714   static const TypeVect *VECTX;
 715   static const TypeVect *VECTY;
 716 
 717 #ifndef PRODUCT
 718   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 719 #endif
 720 };
 721 
 722 class TypeVectS : public TypeVect {
 723   friend class TypeVect;
 724   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 725 };
 726 
 727 class TypeVectD : public TypeVect {
 728   friend class TypeVect;
 729   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 730 };
 731 
 732 class TypeVectX : public TypeVect {
 733   friend class TypeVect;
 734   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 735 };
 736 
 737 class TypeVectY : public TypeVect {
 738   friend class TypeVect;
 739   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 740 };
 741 
 742 //------------------------------TypePtr----------------------------------------
 743 // Class of machine Pointer Types: raw data, instances or arrays.
 744 // If the _base enum is AnyPtr, then this refers to all of the above.
 745 // Otherwise the _base will indicate which subset of pointers is affected,
 746 // and the class will be inherited from.
 747 class TypePtr : public Type {
 748   friend class TypeNarrowPtr;
 749 public:
 750   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 751 protected:
 752   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 753   virtual bool eq( const Type *t ) const;
 754   virtual int  hash() const;             // Type specific hashing
 755   static const PTR ptr_meet[lastPTR][lastPTR];
 756   static const PTR ptr_dual[lastPTR];
 757   static const char * const ptr_msg[lastPTR];
 758 
 759 public:
 760   const int _offset;            // Offset into oop, with TOP & BOT
 761   const PTR _ptr;               // Pointer equivalence class
 762 
 763   const int offset() const { return _offset; }
 764   const PTR ptr()    const { return _ptr; }
 765 
 766   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 767 
 768   // Return a 'ptr' version of this type
 769   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 770 
 771   virtual intptr_t get_con() const;
 772 
 773   int xadd_offset( intptr_t offset ) const;
 774   virtual const TypePtr *add_offset( intptr_t offset ) const;
 775 
 776   virtual bool singleton(void) const;    // TRUE if type is a singleton
 777   virtual bool empty(void) const;        // TRUE if type is vacuous
 778   virtual const Type *xmeet( const Type *t ) const;
 779   int meet_offset( int offset ) const;
 780   int dual_offset( ) const;
 781   virtual const Type *xdual() const;    // Compute dual right now.
 782 
 783   // meet, dual and join over pointer equivalence sets
 784   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 785   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 786 
 787   // This is textually confusing unless one recalls that
 788   // join(t) == dual()->meet(t->dual())->dual().
 789   PTR join_ptr( const PTR in_ptr ) const {
 790     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 791   }
 792 
 793   // Tests for relation to centerline of type lattice:
 794   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 795   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 796   // Convenience common pre-built types.
 797   static const TypePtr *NULL_PTR;
 798   static const TypePtr *NOTNULL;
 799   static const TypePtr *BOTTOM;
 800 #ifndef PRODUCT
 801   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 802 #endif
 803 };
 804 
 805 //------------------------------TypeRawPtr-------------------------------------
 806 // Class of raw pointers, pointers to things other than Oops.  Examples
 807 // include the stack pointer, top of heap, card-marking area, handles, etc.
 808 class TypeRawPtr : public TypePtr {
 809 protected:
 810   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 811 public:
 812   virtual bool eq( const Type *t ) const;
 813   virtual int  hash() const;     // Type specific hashing
 814 
 815   const address _bits;          // Constant value, if applicable
 816 
 817   static const TypeRawPtr *make( PTR ptr );
 818   static const TypeRawPtr *make( address bits );
 819 
 820   // Return a 'ptr' version of this type
 821   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 822 
 823   virtual intptr_t get_con() const;
 824 
 825   virtual const TypePtr *add_offset( intptr_t offset ) const;
 826 
 827   virtual const Type *xmeet( const Type *t ) const;
 828   virtual const Type *xdual() const;    // Compute dual right now.
 829   // Convenience common pre-built types.
 830   static const TypeRawPtr *BOTTOM;
 831   static const TypeRawPtr *NOTNULL;
 832 #ifndef PRODUCT
 833   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 834 #endif
 835 };
 836 
 837 //------------------------------TypeOopPtr-------------------------------------
 838 // Some kind of oop (Java pointer), either klass or instance or array.
 839 class TypeOopPtr : public TypePtr {
 840 protected:
 841   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
 842 public:
 843   virtual bool eq( const Type *t ) const;
 844   virtual int  hash() const;             // Type specific hashing
 845   virtual bool singleton(void) const;    // TRUE if type is a singleton
 846   enum {
 847    InstanceTop = -1,   // undefined instance
 848    InstanceBot = 0     // any possible instance
 849   };
 850 protected:
 851 
 852   // Oop is NULL, unless this is a constant oop.
 853   ciObject*     _const_oop;   // Constant oop
 854   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 855   ciKlass*      _klass;       // Klass object
 856   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 857   bool          _klass_is_exact;
 858   bool          _is_ptr_to_narrowoop;
 859   bool          _is_ptr_to_narrowklass;
 860   bool          _is_ptr_to_boxed_value;
 861 
 862   // If not InstanceTop or InstanceBot, indicates that this is
 863   // a particular instance of this type which is distinct.
 864   // This is the the node index of the allocation node creating this instance.
 865   int           _instance_id;
 866 
 867   // Extra type information profiling gave us. We propagate it the
 868   // same way the rest of the type info is propagated. If we want to
 869   // use it, then we have to emit a guard: this part of the type is
 870   // not something we know but something we speculate about the type.
 871   const TypeOopPtr*   _speculative;
 872 
 873   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 874 
 875   int dual_instance_id() const;
 876   int meet_instance_id(int uid) const;
 877 
 878   // utility methods to work on the speculative part of the type
 879   const TypeOopPtr* dual_speculative() const;
 880   const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
 881   bool eq_speculative(const TypeOopPtr* other) const;
 882   int hash_speculative() const;
 883   const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
 884 #ifndef PRODUCT
 885   void dump_speculative(outputStream *st) const;
 886 #endif
 887 
 888   // Do not allow interface-vs.-noninterface joins to collapse to top.
 889   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 890 
 891 public:
 892   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 893   // Respects UseUniqueSubclasses.
 894   // If the klass is final, the resulting type will be exact.
 895   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 896     return make_from_klass_common(klass, true, false);
 897   }
 898   // Same as before, but will produce an exact type, even if
 899   // the klass is not final, as long as it has exactly one implementation.
 900   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 901     return make_from_klass_common(klass, true, true);
 902   }
 903   // Same as before, but does not respects UseUniqueSubclasses.
 904   // Use this only for creating array element types.
 905   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 906     return make_from_klass_common(klass, false, false);
 907   }
 908   // Creates a singleton type given an object.
 909   // If the object cannot be rendered as a constant,
 910   // may return a non-singleton type.
 911   // If require_constant, produce a NULL if a singleton is not possible.
 912   static const TypeOopPtr* make_from_constant(ciObject* o,
 913                                               bool require_constant = false,
 914                                               bool not_null_elements = false);
 915 
 916   // Make a generic (unclassed) pointer to an oop.
 917   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative);
 918 
 919   ciObject* const_oop()    const { return _const_oop; }
 920   virtual ciKlass* klass() const { return _klass;     }
 921   bool klass_is_exact()    const { return _klass_is_exact; }
 922 
 923   // Returns true if this pointer points at memory which contains a
 924   // compressed oop references.
 925   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 926   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 927   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
 928   bool is_known_instance()       const { return _instance_id > 0; }
 929   int  instance_id()             const { return _instance_id; }
 930   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 931   const TypeOopPtr* speculative() const { return _speculative; }
 932 
 933   virtual intptr_t get_con() const;
 934 
 935   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 936 
 937   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 938 
 939   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 940 
 941   // corresponding pointer to klass, for a given instance
 942   const TypeKlassPtr* as_klass_type() const;
 943 
 944   virtual const TypePtr *add_offset( intptr_t offset ) const;
 945   // Return same type without a speculative part
 946   virtual const Type* remove_speculative() const;
 947 
 948   virtual const Type *xmeet(const Type *t) const;
 949   virtual const Type *xdual() const;    // Compute dual right now.
 950   // the core of the computation of the meet for TypeOopPtr and for its subclasses
 951   virtual const Type *xmeet_helper(const Type *t) const;
 952 
 953   // Convenience common pre-built type.
 954   static const TypeOopPtr *BOTTOM;
 955 #ifndef PRODUCT
 956   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 957 #endif
 958 
 959   // Return the speculative type if any
 960   ciKlass* speculative_type() const {
 961     if (_speculative != NULL) {
 962       const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
 963       if (speculative->klass_is_exact()) {
 964        return speculative->klass();
 965       }
 966     }
 967     return NULL;
 968   }
 969 };
 970 
 971 //------------------------------TypeInstPtr------------------------------------
 972 // Class of Java object pointers, pointing either to non-array Java instances
 973 // or to a Klass* (including array klasses).
 974 class TypeInstPtr : public TypeOopPtr {
 975   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
 976   virtual bool eq( const Type *t ) const;
 977   virtual int  hash() const;             // Type specific hashing
 978 
 979   ciSymbol*  _name;        // class name
 980 
 981  public:
 982   ciSymbol* name()         const { return _name; }
 983 
 984   bool  is_loaded() const { return _klass->is_loaded(); }
 985 
 986   // Make a pointer to a constant oop.
 987   static const TypeInstPtr *make(ciObject* o) {
 988     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
 989   }
 990   // Make a pointer to a constant oop with offset.
 991   static const TypeInstPtr *make(ciObject* o, int offset) {
 992     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
 993   }
 994 
 995   // Make a pointer to some value of type klass.
 996   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
 997     return make(ptr, klass, false, NULL, 0, InstanceBot);
 998   }
 999 
1000   // Make a pointer to some non-polymorphic value of exactly type klass.
1001   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1002     return make(ptr, klass, true, NULL, 0, InstanceBot);
1003   }
1004 
1005   // Make a pointer to some value of type klass with offset.
1006   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1007     return make(ptr, klass, false, NULL, offset, InstanceBot);
1008   }
1009 
1010   // Make a pointer to an oop.
1011   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
1012 
1013   /** Create constant type for a constant boxed value */
1014   const Type* get_const_boxed_value() const;
1015 
1016   // If this is a java.lang.Class constant, return the type for it or NULL.
1017   // Pass to Type::get_const_type to turn it to a type, which will usually
1018   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1019   ciType* java_mirror_type() const;
1020 
1021   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1022 
1023   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1024 
1025   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1026 
1027   virtual const TypePtr *add_offset( intptr_t offset ) const;
1028   // Return same type without a speculative part
1029   virtual const Type* remove_speculative() const;
1030 
1031   // the core of the computation of the meet of 2 types
1032   virtual const Type *xmeet_helper(const Type *t) const;
1033   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1034   virtual const Type *xdual() const;    // Compute dual right now.
1035 
1036   // Convenience common pre-built types.
1037   static const TypeInstPtr *NOTNULL;
1038   static const TypeInstPtr *BOTTOM;
1039   static const TypeInstPtr *MIRROR;
1040   static const TypeInstPtr *MARK;
1041   static const TypeInstPtr *KLASS;
1042 #ifndef PRODUCT
1043   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1044 #endif
1045 };
1046 
1047 //------------------------------TypeAryPtr-------------------------------------
1048 // Class of Java array pointers
1049 class TypeAryPtr : public TypeOopPtr {
1050   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1051               int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative)
1052     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative),
1053     _ary(ary),
1054     _is_autobox_cache(is_autobox_cache)
1055  {
1056 #ifdef ASSERT
1057     if (k != NULL) {
1058       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1059       ciKlass* ck = compute_klass(true);
1060       if (k != ck) {
1061         this->dump(); tty->cr();
1062         tty->print(" k: ");
1063         k->print(); tty->cr();
1064         tty->print("ck: ");
1065         if (ck != NULL) ck->print();
1066         else tty->print("<NULL>");
1067         tty->cr();
1068         assert(false, "unexpected TypeAryPtr::_klass");
1069       }
1070     }
1071 #endif
1072   }
1073   virtual bool eq( const Type *t ) const;
1074   virtual int hash() const;     // Type specific hashing
1075   const TypeAry *_ary;          // Array we point into
1076   const bool     _is_autobox_cache;
1077 
1078   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1079 
1080 public:
1081   // Accessors
1082   ciKlass* klass() const;
1083   const TypeAry* ary() const  { return _ary; }
1084   const Type*    elem() const { return _ary->_elem; }
1085   const TypeInt* size() const { return _ary->_size; }
1086   bool      is_stable() const { return _ary->_stable; }
1087 
1088   bool is_autobox_cache() const { return _is_autobox_cache; }
1089 
1090   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
1091   // Constant pointer to array
1092   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, bool is_autobox_cache = false);
1093 
1094   // Return a 'ptr' version of this type
1095   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1096 
1097   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1098 
1099   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1100 
1101   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1102   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1103 
1104   virtual bool empty(void) const;        // TRUE if type is vacuous
1105   virtual const TypePtr *add_offset( intptr_t offset ) const;
1106   // Return same type without a speculative part
1107   virtual const Type* remove_speculative() const;
1108 
1109   // the core of the computation of the meet of 2 types
1110   virtual const Type *xmeet_helper(const Type *t) const;
1111   virtual const Type *xdual() const;    // Compute dual right now.
1112 
1113   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1114   int stable_dimension() const;
1115 
1116   // Convenience common pre-built types.
1117   static const TypeAryPtr *RANGE;
1118   static const TypeAryPtr *OOPS;
1119   static const TypeAryPtr *NARROWOOPS;
1120   static const TypeAryPtr *BYTES;
1121   static const TypeAryPtr *SHORTS;
1122   static const TypeAryPtr *CHARS;
1123   static const TypeAryPtr *INTS;
1124   static const TypeAryPtr *LONGS;
1125   static const TypeAryPtr *FLOATS;
1126   static const TypeAryPtr *DOUBLES;
1127   // selects one of the above:
1128   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1129     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1130     return _array_body_type[elem];
1131   }
1132   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1133   // sharpen the type of an int which is used as an array size
1134 #ifdef ASSERT
1135   // One type is interface, the other is oop
1136   virtual bool interface_vs_oop(const Type *t) const;
1137 #endif
1138 #ifndef PRODUCT
1139   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1140 #endif
1141 };
1142 
1143 //------------------------------TypeMetadataPtr-------------------------------------
1144 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1145 class TypeMetadataPtr : public TypePtr {
1146 protected:
1147   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1148   // Do not allow interface-vs.-noninterface joins to collapse to top.
1149   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1150 public:
1151   virtual bool eq( const Type *t ) const;
1152   virtual int  hash() const;             // Type specific hashing
1153   virtual bool singleton(void) const;    // TRUE if type is a singleton
1154 
1155 private:
1156   ciMetadata*   _metadata;
1157 
1158 public:
1159   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1160 
1161   static const TypeMetadataPtr* make(ciMethod* m);
1162   static const TypeMetadataPtr* make(ciMethodData* m);
1163 
1164   ciMetadata* metadata() const { return _metadata; }
1165 
1166   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1167 
1168   virtual const TypePtr *add_offset( intptr_t offset ) const;
1169 
1170   virtual const Type *xmeet( const Type *t ) const;
1171   virtual const Type *xdual() const;    // Compute dual right now.
1172 
1173   virtual intptr_t get_con() const;
1174 
1175   // Convenience common pre-built types.
1176   static const TypeMetadataPtr *BOTTOM;
1177 
1178 #ifndef PRODUCT
1179   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1180 #endif
1181 };
1182 
1183 //------------------------------TypeKlassPtr-----------------------------------
1184 // Class of Java Klass pointers
1185 class TypeKlassPtr : public TypePtr {
1186   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1187 
1188 protected:
1189   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1190  public:
1191   virtual bool eq( const Type *t ) const;
1192   virtual int hash() const;             // Type specific hashing
1193   virtual bool singleton(void) const;    // TRUE if type is a singleton
1194  private:
1195 
1196   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1197 
1198   ciKlass* _klass;
1199 
1200   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1201   bool          _klass_is_exact;
1202 
1203 public:
1204   ciSymbol* name()  const { return klass()->name(); }
1205 
1206   ciKlass* klass() const { return  _klass; }
1207   bool klass_is_exact()    const { return _klass_is_exact; }
1208 
1209   bool  is_loaded() const { return klass()->is_loaded(); }
1210 
1211   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1212   // Respects UseUniqueSubclasses.
1213   // If the klass is final, the resulting type will be exact.
1214   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1215     return make_from_klass_common(klass, true, false);
1216   }
1217   // Same as before, but will produce an exact type, even if
1218   // the klass is not final, as long as it has exactly one implementation.
1219   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1220     return make_from_klass_common(klass, true, true);
1221   }
1222   // Same as before, but does not respects UseUniqueSubclasses.
1223   // Use this only for creating array element types.
1224   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1225     return make_from_klass_common(klass, false, false);
1226   }
1227 
1228   // Make a generic (unclassed) pointer to metadata.
1229   static const TypeKlassPtr* make(PTR ptr, int offset);
1230 
1231   // ptr to klass 'k'
1232   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1233   // ptr to klass 'k' with offset
1234   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1235   // ptr to klass 'k' or sub-klass
1236   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1237 
1238   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1239 
1240   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1241 
1242   // corresponding pointer to instance, for a given class
1243   const TypeOopPtr* as_instance_type() const;
1244 
1245   virtual const TypePtr *add_offset( intptr_t offset ) const;
1246   virtual const Type    *xmeet( const Type *t ) const;
1247   virtual const Type    *xdual() const;      // Compute dual right now.
1248 
1249   virtual intptr_t get_con() const;
1250 
1251   // Convenience common pre-built types.
1252   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1253   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1254 #ifndef PRODUCT
1255   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1256 #endif
1257 };
1258 
1259 class TypeNarrowPtr : public Type {
1260 protected:
1261   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1262 
1263   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1264                                                   Type(t) {
1265     assert(ptrtype->offset() == 0 ||
1266            ptrtype->offset() == OffsetBot ||
1267            ptrtype->offset() == OffsetTop, "no real offsets");
1268   }
1269 
1270   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1271   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1272   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1273   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1274   // Do not allow interface-vs.-noninterface joins to collapse to top.
1275   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1276 public:
1277   virtual bool eq( const Type *t ) const;
1278   virtual int  hash() const;             // Type specific hashing
1279   virtual bool singleton(void) const;    // TRUE if type is a singleton
1280 
1281   virtual const Type *xmeet( const Type *t ) const;
1282   virtual const Type *xdual() const;    // Compute dual right now.
1283 
1284   virtual intptr_t get_con() const;
1285 
1286   virtual bool empty(void) const;        // TRUE if type is vacuous
1287 
1288   // returns the equivalent ptr type for this compressed pointer
1289   const TypePtr *get_ptrtype() const {
1290     return _ptrtype;
1291   }
1292 
1293 #ifndef PRODUCT
1294   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1295 #endif
1296 };
1297 
1298 //------------------------------TypeNarrowOop----------------------------------
1299 // A compressed reference to some kind of Oop.  This type wraps around
1300 // a preexisting TypeOopPtr and forwards most of it's operations to
1301 // the underlying type.  It's only real purpose is to track the
1302 // oopness of the compressed oop value when we expose the conversion
1303 // between the normal and the compressed form.
1304 class TypeNarrowOop : public TypeNarrowPtr {
1305 protected:
1306   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1307   }
1308 
1309   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1310     return t->isa_narrowoop();
1311   }
1312 
1313   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1314     return t->is_narrowoop();
1315   }
1316 
1317   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1318     return new TypeNarrowOop(t);
1319   }
1320 
1321   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1322     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1323   }
1324 
1325 public:
1326 
1327   static const TypeNarrowOop *make( const TypePtr* type);
1328 
1329   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1330     return make(TypeOopPtr::make_from_constant(con, require_constant));
1331   }
1332 
1333   static const TypeNarrowOop *BOTTOM;
1334   static const TypeNarrowOop *NULL_PTR;
1335 
1336   virtual const Type* remove_speculative() const {
1337     return make(_ptrtype->remove_speculative()->is_ptr());
1338   }
1339 
1340 #ifndef PRODUCT
1341   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1342 #endif
1343 };
1344 
1345 //------------------------------TypeNarrowKlass----------------------------------
1346 // A compressed reference to klass pointer.  This type wraps around a
1347 // preexisting TypeKlassPtr and forwards most of it's operations to
1348 // the underlying type.
1349 class TypeNarrowKlass : public TypeNarrowPtr {
1350 protected:
1351   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1352   }
1353 
1354   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1355     return t->isa_narrowklass();
1356   }
1357 
1358   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1359     return t->is_narrowklass();
1360   }
1361 
1362   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1363     return new TypeNarrowKlass(t);
1364   }
1365 
1366   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1367     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1368   }
1369 
1370 public:
1371   static const TypeNarrowKlass *make( const TypePtr* type);
1372 
1373   // static const TypeNarrowKlass *BOTTOM;
1374   static const TypeNarrowKlass *NULL_PTR;
1375 
1376 #ifndef PRODUCT
1377   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1378 #endif
1379 };
1380 
1381 //------------------------------TypeFunc---------------------------------------
1382 // Class of Array Types
1383 class TypeFunc : public Type {
1384   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1385   virtual bool eq( const Type *t ) const;
1386   virtual int  hash() const;             // Type specific hashing
1387   virtual bool singleton(void) const;    // TRUE if type is a singleton
1388   virtual bool empty(void) const;        // TRUE if type is vacuous
1389 public:
1390   // Constants are shared among ADLC and VM
1391   enum { Control    = AdlcVMDeps::Control,
1392          I_O        = AdlcVMDeps::I_O,
1393          Memory     = AdlcVMDeps::Memory,
1394          FramePtr   = AdlcVMDeps::FramePtr,
1395          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1396          Parms      = AdlcVMDeps::Parms
1397   };
1398 
1399   const TypeTuple* const _domain;     // Domain of inputs
1400   const TypeTuple* const _range;      // Range of results
1401 
1402   // Accessors:
1403   const TypeTuple* domain() const { return _domain; }
1404   const TypeTuple* range()  const { return _range; }
1405 
1406   static const TypeFunc *make(ciMethod* method);
1407   static const TypeFunc *make(ciSignature signature, const Type* extra);
1408   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1409 
1410   virtual const Type *xmeet( const Type *t ) const;
1411   virtual const Type *xdual() const;    // Compute dual right now.
1412 
1413   BasicType return_type() const;
1414 
1415 #ifndef PRODUCT
1416   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1417 #endif
1418   // Convenience common pre-built types.
1419 };
1420 
1421 //------------------------------accessors--------------------------------------
1422 inline bool Type::is_ptr_to_narrowoop() const {
1423 #ifdef _LP64
1424   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1425 #else
1426   return false;
1427 #endif
1428 }
1429 
1430 inline bool Type::is_ptr_to_narrowklass() const {
1431 #ifdef _LP64
1432   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1433 #else
1434   return false;
1435 #endif
1436 }
1437 
1438 inline float Type::getf() const {
1439   assert( _base == FloatCon, "Not a FloatCon" );
1440   return ((TypeF*)this)->_f;
1441 }
1442 
1443 inline double Type::getd() const {
1444   assert( _base == DoubleCon, "Not a DoubleCon" );
1445   return ((TypeD*)this)->_d;
1446 }
1447 
1448 inline const TypeInt *Type::is_int() const {
1449   assert( _base == Int, "Not an Int" );
1450   return (TypeInt*)this;
1451 }
1452 
1453 inline const TypeInt *Type::isa_int() const {
1454   return ( _base == Int ? (TypeInt*)this : NULL);
1455 }
1456 
1457 inline const TypeLong *Type::is_long() const {
1458   assert( _base == Long, "Not a Long" );
1459   return (TypeLong*)this;
1460 }
1461 
1462 inline const TypeLong *Type::isa_long() const {
1463   return ( _base == Long ? (TypeLong*)this : NULL);
1464 }
1465 
1466 inline const TypeF *Type::isa_float() const {
1467   return ((_base == FloatTop ||
1468            _base == FloatCon ||
1469            _base == FloatBot) ? (TypeF*)this : NULL);
1470 }
1471 
1472 inline const TypeF *Type::is_float_constant() const {
1473   assert( _base == FloatCon, "Not a Float" );
1474   return (TypeF*)this;
1475 }
1476 
1477 inline const TypeF *Type::isa_float_constant() const {
1478   return ( _base == FloatCon ? (TypeF*)this : NULL);
1479 }
1480 
1481 inline const TypeD *Type::isa_double() const {
1482   return ((_base == DoubleTop ||
1483            _base == DoubleCon ||
1484            _base == DoubleBot) ? (TypeD*)this : NULL);
1485 }
1486 
1487 inline const TypeD *Type::is_double_constant() const {
1488   assert( _base == DoubleCon, "Not a Double" );
1489   return (TypeD*)this;
1490 }
1491 
1492 inline const TypeD *Type::isa_double_constant() const {
1493   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1494 }
1495 
1496 inline const TypeTuple *Type::is_tuple() const {
1497   assert( _base == Tuple, "Not a Tuple" );
1498   return (TypeTuple*)this;
1499 }
1500 
1501 inline const TypeAry *Type::is_ary() const {
1502   assert( _base == Array , "Not an Array" );
1503   return (TypeAry*)this;
1504 }
1505 
1506 inline const TypeVect *Type::is_vect() const {
1507   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1508   return (TypeVect*)this;
1509 }
1510 
1511 inline const TypeVect *Type::isa_vect() const {
1512   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1513 }
1514 
1515 inline const TypePtr *Type::is_ptr() const {
1516   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1517   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1518   return (TypePtr*)this;
1519 }
1520 
1521 inline const TypePtr *Type::isa_ptr() const {
1522   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1523   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1524 }
1525 
1526 inline const TypeOopPtr *Type::is_oopptr() const {
1527   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1528   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1529   return (TypeOopPtr*)this;
1530 }
1531 
1532 inline const TypeOopPtr *Type::isa_oopptr() const {
1533   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1534   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1535 }
1536 
1537 inline const TypeRawPtr *Type::isa_rawptr() const {
1538   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1539 }
1540 
1541 inline const TypeRawPtr *Type::is_rawptr() const {
1542   assert( _base == RawPtr, "Not a raw pointer" );
1543   return (TypeRawPtr*)this;
1544 }
1545 
1546 inline const TypeInstPtr *Type::isa_instptr() const {
1547   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1548 }
1549 
1550 inline const TypeInstPtr *Type::is_instptr() const {
1551   assert( _base == InstPtr, "Not an object pointer" );
1552   return (TypeInstPtr*)this;
1553 }
1554 
1555 inline const TypeAryPtr *Type::isa_aryptr() const {
1556   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1557 }
1558 
1559 inline const TypeAryPtr *Type::is_aryptr() const {
1560   assert( _base == AryPtr, "Not an array pointer" );
1561   return (TypeAryPtr*)this;
1562 }
1563 
1564 inline const TypeNarrowOop *Type::is_narrowoop() const {
1565   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1566   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1567   return (TypeNarrowOop*)this;
1568 }
1569 
1570 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1571   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1572   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1573 }
1574 
1575 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1576   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1577   return (TypeNarrowKlass*)this;
1578 }
1579 
1580 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1581   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1582 }
1583 
1584 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1585   // MetadataPtr is the first and CPCachePtr the last
1586   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1587   return (TypeMetadataPtr*)this;
1588 }
1589 
1590 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1591   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1592 }
1593 
1594 inline const TypeKlassPtr *Type::isa_klassptr() const {
1595   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1596 }
1597 
1598 inline const TypeKlassPtr *Type::is_klassptr() const {
1599   assert( _base == KlassPtr, "Not a klass pointer" );
1600   return (TypeKlassPtr*)this;
1601 }
1602 
1603 inline const TypePtr* Type::make_ptr() const {
1604   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1605     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1606      (isa_ptr() ? is_ptr() : NULL));
1607 }
1608 
1609 inline const TypeOopPtr* Type::make_oopptr() const {
1610   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1611 }
1612 
1613 inline const TypeNarrowOop* Type::make_narrowoop() const {
1614   return (_base == NarrowOop) ? is_narrowoop() :
1615                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1616 }
1617 
1618 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1619   return (_base == NarrowKlass) ? is_narrowklass() :
1620                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1621 }
1622 
1623 inline bool Type::is_floatingpoint() const {
1624   if( (_base == FloatCon)  || (_base == FloatBot) ||
1625       (_base == DoubleCon) || (_base == DoubleBot) )
1626     return true;
1627   return false;
1628 }
1629 
1630 inline bool Type::is_ptr_to_boxing_obj() const {
1631   const TypeInstPtr* tp = isa_instptr();
1632   return (tp != NULL) && (tp->offset() == 0) &&
1633          tp->klass()->is_instance_klass()  &&
1634          tp->klass()->as_instance_klass()->is_box_klass();
1635 }
1636 
1637 
1638 // ===============================================================
1639 // Things that need to be 64-bits in the 64-bit build but
1640 // 32-bits in the 32-bit build.  Done this way to get full
1641 // optimization AND strong typing.
1642 #ifdef _LP64
1643 
1644 // For type queries and asserts
1645 #define is_intptr_t  is_long
1646 #define isa_intptr_t isa_long
1647 #define find_intptr_t_type find_long_type
1648 #define find_intptr_t_con  find_long_con
1649 #define TypeX        TypeLong
1650 #define Type_X       Type::Long
1651 #define TypeX_X      TypeLong::LONG
1652 #define TypeX_ZERO   TypeLong::ZERO
1653 // For 'ideal_reg' machine registers
1654 #define Op_RegX      Op_RegL
1655 // For phase->intcon variants
1656 #define MakeConX     longcon
1657 #define ConXNode     ConLNode
1658 // For array index arithmetic
1659 #define MulXNode     MulLNode
1660 #define AndXNode     AndLNode
1661 #define OrXNode      OrLNode
1662 #define CmpXNode     CmpLNode
1663 #define SubXNode     SubLNode
1664 #define LShiftXNode  LShiftLNode
1665 // For object size computation:
1666 #define AddXNode     AddLNode
1667 #define RShiftXNode  RShiftLNode
1668 // For card marks and hashcodes
1669 #define URShiftXNode URShiftLNode
1670 // UseOptoBiasInlining
1671 #define XorXNode     XorLNode
1672 #define StoreXConditionalNode StoreLConditionalNode
1673 // Opcodes
1674 #define Op_LShiftX   Op_LShiftL
1675 #define Op_AndX      Op_AndL
1676 #define Op_AddX      Op_AddL
1677 #define Op_SubX      Op_SubL
1678 #define Op_XorX      Op_XorL
1679 #define Op_URShiftX  Op_URShiftL
1680 // conversions
1681 #define ConvI2X(x)   ConvI2L(x)
1682 #define ConvL2X(x)   (x)
1683 #define ConvX2I(x)   ConvL2I(x)
1684 #define ConvX2L(x)   (x)
1685 
1686 #else
1687 
1688 // For type queries and asserts
1689 #define is_intptr_t  is_int
1690 #define isa_intptr_t isa_int
1691 #define find_intptr_t_type find_int_type
1692 #define find_intptr_t_con  find_int_con
1693 #define TypeX        TypeInt
1694 #define Type_X       Type::Int
1695 #define TypeX_X      TypeInt::INT
1696 #define TypeX_ZERO   TypeInt::ZERO
1697 // For 'ideal_reg' machine registers
1698 #define Op_RegX      Op_RegI
1699 // For phase->intcon variants
1700 #define MakeConX     intcon
1701 #define ConXNode     ConINode
1702 // For array index arithmetic
1703 #define MulXNode     MulINode
1704 #define AndXNode     AndINode
1705 #define OrXNode      OrINode
1706 #define CmpXNode     CmpINode
1707 #define SubXNode     SubINode
1708 #define LShiftXNode  LShiftINode
1709 // For object size computation:
1710 #define AddXNode     AddINode
1711 #define RShiftXNode  RShiftINode
1712 // For card marks and hashcodes
1713 #define URShiftXNode URShiftINode
1714 // UseOptoBiasInlining
1715 #define XorXNode     XorINode
1716 #define StoreXConditionalNode StoreIConditionalNode
1717 // Opcodes
1718 #define Op_LShiftX   Op_LShiftI
1719 #define Op_AndX      Op_AndI
1720 #define Op_AddX      Op_AddI
1721 #define Op_SubX      Op_SubI
1722 #define Op_XorX      Op_XorI
1723 #define Op_URShiftX  Op_URShiftI
1724 // conversions
1725 #define ConvI2X(x)   (x)
1726 #define ConvL2X(x)   ConvL2I(x)
1727 #define ConvX2I(x)   (x)
1728 #define ConvX2L(x)   ConvI2L(x)
1729 
1730 #endif
1731 
1732 #endif // SHARE_VM_OPTO_TYPE_HPP