1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  58   _is_lval = false;
  59   _target = target;
  60   switch (rtype) {
  61   case relocInfo::oop_type:
  62   case relocInfo::metadata_type:
  63     // Oops are a special case. Normally they would be their own section
  64     // but in cases like icBuffer they are literals in the code stream that
  65     // we don't have a section for. We use none so that we get a literal address
  66     // which is always patchable.
  67     break;
  68   case relocInfo::external_word_type:
  69     _rspec = external_word_Relocation::spec(target);
  70     break;
  71   case relocInfo::internal_word_type:
  72     _rspec = internal_word_Relocation::spec(target);
  73     break;
  74   case relocInfo::opt_virtual_call_type:
  75     _rspec = opt_virtual_call_Relocation::spec();
  76     break;
  77   case relocInfo::static_call_type:
  78     _rspec = static_call_Relocation::spec();
  79     break;
  80   case relocInfo::runtime_call_type:
  81     _rspec = runtime_call_Relocation::spec();
  82     break;
  83   case relocInfo::poll_type:
  84   case relocInfo::poll_return_type:
  85     _rspec = Relocation::spec_simple(rtype);
  86     break;
  87   case relocInfo::none:
  88     break;
  89   default:
  90     ShouldNotReachHere();
  91     break;
  92   }
  93 }
  94 
  95 // Implementation of Address
  96 
  97 #ifdef _LP64
  98 
  99 Address Address::make_array(ArrayAddress adr) {
 100   // Not implementable on 64bit machines
 101   // Should have been handled higher up the call chain.
 102   ShouldNotReachHere();
 103   return Address();
 104 }
 105 
 106 // exceedingly dangerous constructor
 107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 108   _base  = noreg;
 109   _index = noreg;
 110   _scale = no_scale;
 111   _disp  = disp;
 112   switch (rtype) {
 113     case relocInfo::external_word_type:
 114       _rspec = external_word_Relocation::spec(loc);
 115       break;
 116     case relocInfo::internal_word_type:
 117       _rspec = internal_word_Relocation::spec(loc);
 118       break;
 119     case relocInfo::runtime_call_type:
 120       // HMM
 121       _rspec = runtime_call_Relocation::spec();
 122       break;
 123     case relocInfo::poll_type:
 124     case relocInfo::poll_return_type:
 125       _rspec = Relocation::spec_simple(rtype);
 126       break;
 127     case relocInfo::none:
 128       break;
 129     default:
 130       ShouldNotReachHere();
 131   }
 132 }
 133 #else // LP64
 134 
 135 Address Address::make_array(ArrayAddress adr) {
 136   AddressLiteral base = adr.base();
 137   Address index = adr.index();
 138   assert(index._disp == 0, "must not have disp"); // maybe it can?
 139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 140   array._rspec = base._rspec;
 141   return array;
 142 }
 143 
 144 // exceedingly dangerous constructor
 145 Address::Address(address loc, RelocationHolder spec) {
 146   _base  = noreg;
 147   _index = noreg;
 148   _scale = no_scale;
 149   _disp  = (intptr_t) loc;
 150   _rspec = spec;
 151 }
 152 
 153 #endif // _LP64
 154 
 155 
 156 
 157 // Convert the raw encoding form into the form expected by the constructor for
 158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 159 // that to noreg for the Address constructor.
 160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 161   RelocationHolder rspec;
 162   if (disp_reloc != relocInfo::none) {
 163     rspec = Relocation::spec_simple(disp_reloc);
 164   }
 165   bool valid_index = index != rsp->encoding();
 166   if (valid_index) {
 167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 168     madr._rspec = rspec;
 169     return madr;
 170   } else {
 171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 172     madr._rspec = rspec;
 173     return madr;
 174   }
 175 }
 176 
 177 // Implementation of Assembler
 178 
 179 int AbstractAssembler::code_fill_byte() {
 180   return (u_char)'\xF4'; // hlt
 181 }
 182 
 183 // make this go away someday
 184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 185   if (rtype == relocInfo::none)
 186         emit_int32(data);
 187   else  emit_data(data, Relocation::spec_simple(rtype), format);
 188 }
 189 
 190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 191   assert(imm_operand == 0, "default format must be immediate in this file");
 192   assert(inst_mark() != NULL, "must be inside InstructionMark");
 193   if (rspec.type() !=  relocInfo::none) {
 194     #ifdef ASSERT
 195       check_relocation(rspec, format);
 196     #endif
 197     // Do not use AbstractAssembler::relocate, which is not intended for
 198     // embedded words.  Instead, relocate to the enclosing instruction.
 199 
 200     // hack. call32 is too wide for mask so use disp32
 201     if (format == call32_operand)
 202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 203     else
 204       code_section()->relocate(inst_mark(), rspec, format);
 205   }
 206   emit_int32(data);
 207 }
 208 
 209 static int encode(Register r) {
 210   int enc = r->encoding();
 211   if (enc >= 8) {
 212     enc -= 8;
 213   }
 214   return enc;
 215 }
 216 
 217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 218   assert(dst->has_byte_register(), "must have byte register");
 219   assert(isByte(op1) && isByte(op2), "wrong opcode");
 220   assert(isByte(imm8), "not a byte");
 221   assert((op1 & 0x01) == 0, "should be 8bit operation");
 222   emit_int8(op1);
 223   emit_int8(op2 | encode(dst));
 224   emit_int8(imm8);
 225 }
 226 
 227 
 228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 229   assert(isByte(op1) && isByte(op2), "wrong opcode");
 230   assert((op1 & 0x01) == 1, "should be 32bit operation");
 231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 232   if (is8bit(imm32)) {
 233     emit_int8(op1 | 0x02); // set sign bit
 234     emit_int8(op2 | encode(dst));
 235     emit_int8(imm32 & 0xFF);
 236   } else {
 237     emit_int8(op1);
 238     emit_int8(op2 | encode(dst));
 239     emit_int32(imm32);
 240   }
 241 }
 242 
 243 // Force generation of a 4 byte immediate value even if it fits into 8bit
 244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 245   assert(isByte(op1) && isByte(op2), "wrong opcode");
 246   assert((op1 & 0x01) == 1, "should be 32bit operation");
 247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 248   emit_int8(op1);
 249   emit_int8(op2 | encode(dst));
 250   emit_int32(imm32);
 251 }
 252 
 253 // immediate-to-memory forms
 254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 255   assert((op1 & 0x01) == 1, "should be 32bit operation");
 256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 257   if (is8bit(imm32)) {
 258     emit_int8(op1 | 0x02); // set sign bit
 259     emit_operand(rm, adr, 1);
 260     emit_int8(imm32 & 0xFF);
 261   } else {
 262     emit_int8(op1);
 263     emit_operand(rm, adr, 4);
 264     emit_int32(imm32);
 265   }
 266 }
 267 
 268 
 269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 270   assert(isByte(op1) && isByte(op2), "wrong opcode");
 271   emit_int8(op1);
 272   emit_int8(op2 | encode(dst) << 3 | encode(src));
 273 }
 274 
 275 
 276 void Assembler::emit_operand(Register reg, Register base, Register index,
 277                              Address::ScaleFactor scale, int disp,
 278                              RelocationHolder const& rspec,
 279                              int rip_relative_correction) {
 280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 281 
 282   // Encode the registers as needed in the fields they are used in
 283 
 284   int regenc = encode(reg) << 3;
 285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 286   int baseenc = base->is_valid() ? encode(base) : 0;
 287 
 288   if (base->is_valid()) {
 289     if (index->is_valid()) {
 290       assert(scale != Address::no_scale, "inconsistent address");
 291       // [base + index*scale + disp]
 292       if (disp == 0 && rtype == relocInfo::none  &&
 293           base != rbp LP64_ONLY(&& base != r13)) {
 294         // [base + index*scale]
 295         // [00 reg 100][ss index base]
 296         assert(index != rsp, "illegal addressing mode");
 297         emit_int8(0x04 | regenc);
 298         emit_int8(scale << 6 | indexenc | baseenc);
 299       } else if (is8bit(disp) && rtype == relocInfo::none) {
 300         // [base + index*scale + imm8]
 301         // [01 reg 100][ss index base] imm8
 302         assert(index != rsp, "illegal addressing mode");
 303         emit_int8(0x44 | regenc);
 304         emit_int8(scale << 6 | indexenc | baseenc);
 305         emit_int8(disp & 0xFF);
 306       } else {
 307         // [base + index*scale + disp32]
 308         // [10 reg 100][ss index base] disp32
 309         assert(index != rsp, "illegal addressing mode");
 310         emit_int8(0x84 | regenc);
 311         emit_int8(scale << 6 | indexenc | baseenc);
 312         emit_data(disp, rspec, disp32_operand);
 313       }
 314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 315       // [rsp + disp]
 316       if (disp == 0 && rtype == relocInfo::none) {
 317         // [rsp]
 318         // [00 reg 100][00 100 100]
 319         emit_int8(0x04 | regenc);
 320         emit_int8(0x24);
 321       } else if (is8bit(disp) && rtype == relocInfo::none) {
 322         // [rsp + imm8]
 323         // [01 reg 100][00 100 100] disp8
 324         emit_int8(0x44 | regenc);
 325         emit_int8(0x24);
 326         emit_int8(disp & 0xFF);
 327       } else {
 328         // [rsp + imm32]
 329         // [10 reg 100][00 100 100] disp32
 330         emit_int8(0x84 | regenc);
 331         emit_int8(0x24);
 332         emit_data(disp, rspec, disp32_operand);
 333       }
 334     } else {
 335       // [base + disp]
 336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 337       if (disp == 0 && rtype == relocInfo::none &&
 338           base != rbp LP64_ONLY(&& base != r13)) {
 339         // [base]
 340         // [00 reg base]
 341         emit_int8(0x00 | regenc | baseenc);
 342       } else if (is8bit(disp) && rtype == relocInfo::none) {
 343         // [base + disp8]
 344         // [01 reg base] disp8
 345         emit_int8(0x40 | regenc | baseenc);
 346         emit_int8(disp & 0xFF);
 347       } else {
 348         // [base + disp32]
 349         // [10 reg base] disp32
 350         emit_int8(0x80 | regenc | baseenc);
 351         emit_data(disp, rspec, disp32_operand);
 352       }
 353     }
 354   } else {
 355     if (index->is_valid()) {
 356       assert(scale != Address::no_scale, "inconsistent address");
 357       // [index*scale + disp]
 358       // [00 reg 100][ss index 101] disp32
 359       assert(index != rsp, "illegal addressing mode");
 360       emit_int8(0x04 | regenc);
 361       emit_int8(scale << 6 | indexenc | 0x05);
 362       emit_data(disp, rspec, disp32_operand);
 363     } else if (rtype != relocInfo::none ) {
 364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 365       // [00 000 101] disp32
 366 
 367       emit_int8(0x05 | regenc);
 368       // Note that the RIP-rel. correction applies to the generated
 369       // disp field, but _not_ to the target address in the rspec.
 370 
 371       // disp was created by converting the target address minus the pc
 372       // at the start of the instruction. That needs more correction here.
 373       // intptr_t disp = target - next_ip;
 374       assert(inst_mark() != NULL, "must be inside InstructionMark");
 375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 376       int64_t adjusted = disp;
 377       // Do rip-rel adjustment for 64bit
 378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 379       assert(is_simm32(adjusted),
 380              "must be 32bit offset (RIP relative address)");
 381       emit_data((int32_t) adjusted, rspec, disp32_operand);
 382 
 383     } else {
 384       // 32bit never did this, did everything as the rip-rel/disp code above
 385       // [disp] ABSOLUTE
 386       // [00 reg 100][00 100 101] disp32
 387       emit_int8(0x04 | regenc);
 388       emit_int8(0x25);
 389       emit_data(disp, rspec, disp32_operand);
 390     }
 391   }
 392 }
 393 
 394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 395                              Address::ScaleFactor scale, int disp,
 396                              RelocationHolder const& rspec) {
 397   emit_operand((Register)reg, base, index, scale, disp, rspec);
 398 }
 399 
 400 // Secret local extension to Assembler::WhichOperand:
 401 #define end_pc_operand (_WhichOperand_limit)
 402 
 403 address Assembler::locate_operand(address inst, WhichOperand which) {
 404   // Decode the given instruction, and return the address of
 405   // an embedded 32-bit operand word.
 406 
 407   // If "which" is disp32_operand, selects the displacement portion
 408   // of an effective address specifier.
 409   // If "which" is imm64_operand, selects the trailing immediate constant.
 410   // If "which" is call32_operand, selects the displacement of a call or jump.
 411   // Caller is responsible for ensuring that there is such an operand,
 412   // and that it is 32/64 bits wide.
 413 
 414   // If "which" is end_pc_operand, find the end of the instruction.
 415 
 416   address ip = inst;
 417   bool is_64bit = false;
 418 
 419   debug_only(bool has_disp32 = false);
 420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 421 
 422   again_after_prefix:
 423   switch (0xFF & *ip++) {
 424 
 425   // These convenience macros generate groups of "case" labels for the switch.
 426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 429 #define REP16(x) REP8((x)+0): \
 430               case REP8((x)+8)
 431 
 432   case CS_segment:
 433   case SS_segment:
 434   case DS_segment:
 435   case ES_segment:
 436   case FS_segment:
 437   case GS_segment:
 438     // Seems dubious
 439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 440     assert(ip == inst+1, "only one prefix allowed");
 441     goto again_after_prefix;
 442 
 443   case 0x67:
 444   case REX:
 445   case REX_B:
 446   case REX_X:
 447   case REX_XB:
 448   case REX_R:
 449   case REX_RB:
 450   case REX_RX:
 451   case REX_RXB:
 452     NOT_LP64(assert(false, "64bit prefixes"));
 453     goto again_after_prefix;
 454 
 455   case REX_W:
 456   case REX_WB:
 457   case REX_WX:
 458   case REX_WXB:
 459   case REX_WR:
 460   case REX_WRB:
 461   case REX_WRX:
 462   case REX_WRXB:
 463     NOT_LP64(assert(false, "64bit prefixes"));
 464     is_64bit = true;
 465     goto again_after_prefix;
 466 
 467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 468   case 0x88: // movb a, r
 469   case 0x89: // movl a, r
 470   case 0x8A: // movb r, a
 471   case 0x8B: // movl r, a
 472   case 0x8F: // popl a
 473     debug_only(has_disp32 = true);
 474     break;
 475 
 476   case 0x68: // pushq #32
 477     if (which == end_pc_operand) {
 478       return ip + 4;
 479     }
 480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 481     return ip;                  // not produced by emit_operand
 482 
 483   case 0x66: // movw ... (size prefix)
 484     again_after_size_prefix2:
 485     switch (0xFF & *ip++) {
 486     case REX:
 487     case REX_B:
 488     case REX_X:
 489     case REX_XB:
 490     case REX_R:
 491     case REX_RB:
 492     case REX_RX:
 493     case REX_RXB:
 494     case REX_W:
 495     case REX_WB:
 496     case REX_WX:
 497     case REX_WXB:
 498     case REX_WR:
 499     case REX_WRB:
 500     case REX_WRX:
 501     case REX_WRXB:
 502       NOT_LP64(assert(false, "64bit prefix found"));
 503       goto again_after_size_prefix2;
 504     case 0x8B: // movw r, a
 505     case 0x89: // movw a, r
 506       debug_only(has_disp32 = true);
 507       break;
 508     case 0xC7: // movw a, #16
 509       debug_only(has_disp32 = true);
 510       tail_size = 2;  // the imm16
 511       break;
 512     case 0x0F: // several SSE/SSE2 variants
 513       ip--;    // reparse the 0x0F
 514       goto again_after_prefix;
 515     default:
 516       ShouldNotReachHere();
 517     }
 518     break;
 519 
 520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 522     // these asserts are somewhat nonsensical
 523 #ifndef _LP64
 524     assert(which == imm_operand || which == disp32_operand,
 525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
 526 #else
 527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 528            which == narrow_oop_operand && !is_64bit,
 529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
 530 #endif // _LP64
 531     return ip;
 532 
 533   case 0x69: // imul r, a, #32
 534   case 0xC7: // movl a, #32(oop?)
 535     tail_size = 4;
 536     debug_only(has_disp32 = true); // has both kinds of operands!
 537     break;
 538 
 539   case 0x0F: // movx..., etc.
 540     switch (0xFF & *ip++) {
 541     case 0x3A: // pcmpestri
 542       tail_size = 1;
 543     case 0x38: // ptest, pmovzxbw
 544       ip++; // skip opcode
 545       debug_only(has_disp32 = true); // has both kinds of operands!
 546       break;
 547 
 548     case 0x70: // pshufd r, r/a, #8
 549       debug_only(has_disp32 = true); // has both kinds of operands!
 550     case 0x73: // psrldq r, #8
 551       tail_size = 1;
 552       break;
 553 
 554     case 0x12: // movlps
 555     case 0x28: // movaps
 556     case 0x2E: // ucomiss
 557     case 0x2F: // comiss
 558     case 0x54: // andps
 559     case 0x55: // andnps
 560     case 0x56: // orps
 561     case 0x57: // xorps
 562     case 0x6E: // movd
 563     case 0x7E: // movd
 564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 565       debug_only(has_disp32 = true);
 566       break;
 567 
 568     case 0xAD: // shrd r, a, %cl
 569     case 0xAF: // imul r, a
 570     case 0xBE: // movsbl r, a (movsxb)
 571     case 0xBF: // movswl r, a (movsxw)
 572     case 0xB6: // movzbl r, a (movzxb)
 573     case 0xB7: // movzwl r, a (movzxw)
 574     case REP16(0x40): // cmovl cc, r, a
 575     case 0xB0: // cmpxchgb
 576     case 0xB1: // cmpxchg
 577     case 0xC1: // xaddl
 578     case 0xC7: // cmpxchg8
 579     case REP16(0x90): // setcc a
 580       debug_only(has_disp32 = true);
 581       // fall out of the switch to decode the address
 582       break;
 583 
 584     case 0xC4: // pinsrw r, a, #8
 585       debug_only(has_disp32 = true);
 586     case 0xC5: // pextrw r, r, #8
 587       tail_size = 1;  // the imm8
 588       break;
 589 
 590     case 0xAC: // shrd r, a, #8
 591       debug_only(has_disp32 = true);
 592       tail_size = 1;  // the imm8
 593       break;
 594 
 595     case REP16(0x80): // jcc rdisp32
 596       if (which == end_pc_operand)  return ip + 4;
 597       assert(which == call32_operand, "jcc has no disp32 or imm");
 598       return ip;
 599     default:
 600       ShouldNotReachHere();
 601     }
 602     break;
 603 
 604   case 0x81: // addl a, #32; addl r, #32
 605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 606     // on 32bit in the case of cmpl, the imm might be an oop
 607     tail_size = 4;
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     break;
 610 
 611   case 0x83: // addl a, #8; addl r, #8
 612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 613     debug_only(has_disp32 = true); // has both kinds of operands!
 614     tail_size = 1;
 615     break;
 616 
 617   case 0x9B:
 618     switch (0xFF & *ip++) {
 619     case 0xD9: // fnstcw a
 620       debug_only(has_disp32 = true);
 621       break;
 622     default:
 623       ShouldNotReachHere();
 624     }
 625     break;
 626 
 627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 628   case REP4(0x10): // adc...
 629   case REP4(0x20): // and...
 630   case REP4(0x30): // xor...
 631   case REP4(0x08): // or...
 632   case REP4(0x18): // sbb...
 633   case REP4(0x28): // sub...
 634   case 0xF7: // mull a
 635   case 0x8D: // lea r, a
 636   case 0x87: // xchg r, a
 637   case REP4(0x38): // cmp...
 638   case 0x85: // test r, a
 639     debug_only(has_disp32 = true); // has both kinds of operands!
 640     break;
 641 
 642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 643   case 0xC6: // movb a, #8
 644   case 0x80: // cmpb a, #8
 645   case 0x6B: // imul r, a, #8
 646     debug_only(has_disp32 = true); // has both kinds of operands!
 647     tail_size = 1; // the imm8
 648     break;
 649 
 650   case 0xC4: // VEX_3bytes
 651   case 0xC5: // VEX_2bytes
 652     assert((UseAVX > 0), "shouldn't have VEX prefix");
 653     assert(ip == inst+1, "no prefixes allowed");
 654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 655     // but they have prefix 0x0F and processed when 0x0F processed above.
 656     //
 657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 658     // instructions (these instructions are not supported in 64-bit mode).
 659     // To distinguish them bits [7:6] are set in the VEX second byte since
 660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 661     // those VEX bits REX and vvvv bits are inverted.
 662     //
 663     // Fortunately C2 doesn't generate these instructions so we don't need
 664     // to check for them in product version.
 665 
 666     // Check second byte
 667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 668 
 669     // First byte
 670     if ((0xFF & *inst) == VEX_3bytes) {
 671       ip++; // third byte
 672       is_64bit = ((VEX_W & *ip) == VEX_W);
 673     }
 674     ip++; // opcode
 675     // To find the end of instruction (which == end_pc_operand).
 676     switch (0xFF & *ip) {
 677     case 0x61: // pcmpestri r, r/a, #8
 678     case 0x70: // pshufd r, r/a, #8
 679     case 0x73: // psrldq r, #8
 680       tail_size = 1;  // the imm8
 681       break;
 682     default:
 683       break;
 684     }
 685     ip++; // skip opcode
 686     debug_only(has_disp32 = true); // has both kinds of operands!
 687     break;
 688 
 689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 692   case 0xDD: // fld_d a; fst_d a; fstp_d a
 693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 694   case 0xDF: // fild_d a; fistp_d a
 695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 698     debug_only(has_disp32 = true);
 699     break;
 700 
 701   case 0xE8: // call rdisp32
 702   case 0xE9: // jmp  rdisp32
 703     if (which == end_pc_operand)  return ip + 4;
 704     assert(which == call32_operand, "call has no disp32 or imm");
 705     return ip;
 706 
 707   case 0xF0:                    // Lock
 708     assert(os::is_MP(), "only on MP");
 709     goto again_after_prefix;
 710 
 711   case 0xF3:                    // For SSE
 712   case 0xF2:                    // For SSE2
 713     switch (0xFF & *ip++) {
 714     case REX:
 715     case REX_B:
 716     case REX_X:
 717     case REX_XB:
 718     case REX_R:
 719     case REX_RB:
 720     case REX_RX:
 721     case REX_RXB:
 722     case REX_W:
 723     case REX_WB:
 724     case REX_WX:
 725     case REX_WXB:
 726     case REX_WR:
 727     case REX_WRB:
 728     case REX_WRX:
 729     case REX_WRXB:
 730       NOT_LP64(assert(false, "found 64bit prefix"));
 731       ip++;
 732     default:
 733       ip++;
 734     }
 735     debug_only(has_disp32 = true); // has both kinds of operands!
 736     break;
 737 
 738   default:
 739     ShouldNotReachHere();
 740 
 741 #undef REP8
 742 #undef REP16
 743   }
 744 
 745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 746 #ifdef _LP64
 747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 748 #else
 749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 751 #endif // LP64
 752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 753 
 754   // parse the output of emit_operand
 755   int op2 = 0xFF & *ip++;
 756   int base = op2 & 0x07;
 757   int op3 = -1;
 758   const int b100 = 4;
 759   const int b101 = 5;
 760   if (base == b100 && (op2 >> 6) != 3) {
 761     op3 = 0xFF & *ip++;
 762     base = op3 & 0x07;   // refetch the base
 763   }
 764   // now ip points at the disp (if any)
 765 
 766   switch (op2 >> 6) {
 767   case 0:
 768     // [00 reg  100][ss index base]
 769     // [00 reg  100][00   100  esp]
 770     // [00 reg base]
 771     // [00 reg  100][ss index  101][disp32]
 772     // [00 reg  101]               [disp32]
 773 
 774     if (base == b101) {
 775       if (which == disp32_operand)
 776         return ip;              // caller wants the disp32
 777       ip += 4;                  // skip the disp32
 778     }
 779     break;
 780 
 781   case 1:
 782     // [01 reg  100][ss index base][disp8]
 783     // [01 reg  100][00   100  esp][disp8]
 784     // [01 reg base]               [disp8]
 785     ip += 1;                    // skip the disp8
 786     break;
 787 
 788   case 2:
 789     // [10 reg  100][ss index base][disp32]
 790     // [10 reg  100][00   100  esp][disp32]
 791     // [10 reg base]               [disp32]
 792     if (which == disp32_operand)
 793       return ip;                // caller wants the disp32
 794     ip += 4;                    // skip the disp32
 795     break;
 796 
 797   case 3:
 798     // [11 reg base]  (not a memory addressing mode)
 799     break;
 800   }
 801 
 802   if (which == end_pc_operand) {
 803     return ip + tail_size;
 804   }
 805 
 806 #ifdef _LP64
 807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 808 #else
 809   assert(which == imm_operand, "instruction has only an imm field");
 810 #endif // LP64
 811   return ip;
 812 }
 813 
 814 address Assembler::locate_next_instruction(address inst) {
 815   // Secretly share code with locate_operand:
 816   return locate_operand(inst, end_pc_operand);
 817 }
 818 
 819 
 820 #ifdef ASSERT
 821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 822   address inst = inst_mark();
 823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 824   address opnd;
 825 
 826   Relocation* r = rspec.reloc();
 827   if (r->type() == relocInfo::none) {
 828     return;
 829   } else if (r->is_call() || format == call32_operand) {
 830     // assert(format == imm32_operand, "cannot specify a nonzero format");
 831     opnd = locate_operand(inst, call32_operand);
 832   } else if (r->is_data()) {
 833     assert(format == imm_operand || format == disp32_operand
 834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 835     opnd = locate_operand(inst, (WhichOperand)format);
 836   } else {
 837     assert(format == imm_operand, "cannot specify a format");
 838     return;
 839   }
 840   assert(opnd == pc(), "must put operand where relocs can find it");
 841 }
 842 #endif // ASSERT
 843 
 844 void Assembler::emit_operand32(Register reg, Address adr) {
 845   assert(reg->encoding() < 8, "no extended registers");
 846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 848                adr._rspec);
 849 }
 850 
 851 void Assembler::emit_operand(Register reg, Address adr,
 852                              int rip_relative_correction) {
 853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 854                adr._rspec,
 855                rip_relative_correction);
 856 }
 857 
 858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 860                adr._rspec);
 861 }
 862 
 863 // MMX operations
 864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 867 }
 868 
 869 // work around gcc (3.2.1-7a) bug
 870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 873 }
 874 
 875 
 876 void Assembler::emit_farith(int b1, int b2, int i) {
 877   assert(isByte(b1) && isByte(b2), "wrong opcode");
 878   assert(0 <= i &&  i < 8, "illegal stack offset");
 879   emit_int8(b1);
 880   emit_int8(b2 + i);
 881 }
 882 
 883 
 884 // Now the Assembler instructions (identical for 32/64 bits)
 885 
 886 void Assembler::adcl(Address dst, int32_t imm32) {
 887   InstructionMark im(this);
 888   prefix(dst);
 889   emit_arith_operand(0x81, rdx, dst, imm32);
 890 }
 891 
 892 void Assembler::adcl(Address dst, Register src) {
 893   InstructionMark im(this);
 894   prefix(dst, src);
 895   emit_int8(0x11);
 896   emit_operand(src, dst);
 897 }
 898 
 899 void Assembler::adcl(Register dst, int32_t imm32) {
 900   prefix(dst);
 901   emit_arith(0x81, 0xD0, dst, imm32);
 902 }
 903 
 904 void Assembler::adcl(Register dst, Address src) {
 905   InstructionMark im(this);
 906   prefix(src, dst);
 907   emit_int8(0x13);
 908   emit_operand(dst, src);
 909 }
 910 
 911 void Assembler::adcl(Register dst, Register src) {
 912   (void) prefix_and_encode(dst->encoding(), src->encoding());
 913   emit_arith(0x13, 0xC0, dst, src);
 914 }
 915 
 916 void Assembler::addl(Address dst, int32_t imm32) {
 917   InstructionMark im(this);
 918   prefix(dst);
 919   emit_arith_operand(0x81, rax, dst, imm32);
 920 }
 921 
 922 void Assembler::addl(Address dst, Register src) {
 923   InstructionMark im(this);
 924   prefix(dst, src);
 925   emit_int8(0x01);
 926   emit_operand(src, dst);
 927 }
 928 
 929 void Assembler::addl(Register dst, int32_t imm32) {
 930   prefix(dst);
 931   emit_arith(0x81, 0xC0, dst, imm32);
 932 }
 933 
 934 void Assembler::addl(Register dst, Address src) {
 935   InstructionMark im(this);
 936   prefix(src, dst);
 937   emit_int8(0x03);
 938   emit_operand(dst, src);
 939 }
 940 
 941 void Assembler::addl(Register dst, Register src) {
 942   (void) prefix_and_encode(dst->encoding(), src->encoding());
 943   emit_arith(0x03, 0xC0, dst, src);
 944 }
 945 
 946 void Assembler::addr_nop_4() {
 947   assert(UseAddressNop, "no CPU support");
 948   // 4 bytes: NOP DWORD PTR [EAX+0]
 949   emit_int8(0x0F);
 950   emit_int8(0x1F);
 951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 952   emit_int8(0);    // 8-bits offset (1 byte)
 953 }
 954 
 955 void Assembler::addr_nop_5() {
 956   assert(UseAddressNop, "no CPU support");
 957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 958   emit_int8(0x0F);
 959   emit_int8(0x1F);
 960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 962   emit_int8(0);    // 8-bits offset (1 byte)
 963 }
 964 
 965 void Assembler::addr_nop_7() {
 966   assert(UseAddressNop, "no CPU support");
 967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 968   emit_int8(0x0F);
 969   emit_int8(0x1F);
 970   emit_int8((unsigned char)0x80);
 971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 972   emit_int32(0);   // 32-bits offset (4 bytes)
 973 }
 974 
 975 void Assembler::addr_nop_8() {
 976   assert(UseAddressNop, "no CPU support");
 977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 978   emit_int8(0x0F);
 979   emit_int8(0x1F);
 980   emit_int8((unsigned char)0x84);
 981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 983   emit_int32(0);   // 32-bits offset (4 bytes)
 984 }
 985 
 986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 989 }
 990 
 991 void Assembler::addsd(XMMRegister dst, Address src) {
 992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 994 }
 995 
 996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
 999 }
1000 
1001 void Assembler::addss(XMMRegister dst, Address src) {
1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 }
1005 
1006 void Assembler::aesdec(XMMRegister dst, Address src) {
1007   assert(VM_Version::supports_aes(), "");
1008   InstructionMark im(this);
1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1010   emit_int8((unsigned char)0xDE);
1011   emit_operand(dst, src);
1012 }
1013 
1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1015   assert(VM_Version::supports_aes(), "");
1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1017   emit_int8((unsigned char)0xDE);
1018   emit_int8(0xC0 | encode);
1019 }
1020 
1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1022   assert(VM_Version::supports_aes(), "");
1023   InstructionMark im(this);
1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025   emit_int8((unsigned char)0xDF);
1026   emit_operand(dst, src);
1027 }
1028 
1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1030   assert(VM_Version::supports_aes(), "");
1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1032   emit_int8((unsigned char)0xDF);
1033   emit_int8((unsigned char)(0xC0 | encode));
1034 }
1035 
1036 void Assembler::aesenc(XMMRegister dst, Address src) {
1037   assert(VM_Version::supports_aes(), "");
1038   InstructionMark im(this);
1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040   emit_int8((unsigned char)0xDC);
1041   emit_operand(dst, src);
1042 }
1043 
1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1045   assert(VM_Version::supports_aes(), "");
1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1047   emit_int8((unsigned char)0xDC);
1048   emit_int8(0xC0 | encode);
1049 }
1050 
1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
1052   assert(VM_Version::supports_aes(), "");
1053   InstructionMark im(this);
1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055   emit_int8((unsigned char)0xDD);
1056   emit_operand(dst, src);
1057 }
1058 
1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1060   assert(VM_Version::supports_aes(), "");
1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1062   emit_int8((unsigned char)0xDD);
1063   emit_int8((unsigned char)(0xC0 | encode));
1064 }
1065 
1066 
1067 void Assembler::andl(Address dst, int32_t imm32) {
1068   InstructionMark im(this);
1069   prefix(dst);
1070   emit_int8((unsigned char)0x81);
1071   emit_operand(rsp, dst, 4);
1072   emit_int32(imm32);
1073 }
1074 
1075 void Assembler::andl(Register dst, int32_t imm32) {
1076   prefix(dst);
1077   emit_arith(0x81, 0xE0, dst, imm32);
1078 }
1079 
1080 void Assembler::andl(Register dst, Address src) {
1081   InstructionMark im(this);
1082   prefix(src, dst);
1083   emit_int8(0x23);
1084   emit_operand(dst, src);
1085 }
1086 
1087 void Assembler::andl(Register dst, Register src) {
1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
1089   emit_arith(0x23, 0xC0, dst, src);
1090 }
1091 
1092 void Assembler::andnl(Register dst, Register src1, Register src2) {
1093   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1094   int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
1095   emit_int8((unsigned char)0xF2);
1096   emit_int8((unsigned char)(0xC0 | encode));
1097 }
1098 
1099 void Assembler::andnl(Register dst, Register src1, Address src2) {
1100   InstructionMark im(this);
1101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1102   vex_prefix_0F38(dst, src1, src2);
1103   emit_int8((unsigned char)0xF2);
1104   emit_operand(dst, src2);
1105 }
1106 
1107 void Assembler::bsfl(Register dst, Register src) {
1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1109   emit_int8(0x0F);
1110   emit_int8((unsigned char)0xBC);
1111   emit_int8((unsigned char)(0xC0 | encode));
1112 }
1113 
1114 void Assembler::bsrl(Register dst, Register src) {
1115   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
1116   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1117   emit_int8(0x0F);
1118   emit_int8((unsigned char)0xBD);
1119   emit_int8((unsigned char)(0xC0 | encode));
1120 }
1121 
1122 void Assembler::bswapl(Register reg) { // bswap
1123   int encode = prefix_and_encode(reg->encoding());
1124   emit_int8(0x0F);
1125   emit_int8((unsigned char)(0xC8 | encode));
1126 }
1127 
1128 void Assembler::blsil(Register dst, Register src) {
1129   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1130   int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
1131   emit_int8((unsigned char)0xF3);
1132   emit_int8((unsigned char)(0xC0 | encode));
1133 }
1134 
1135 void Assembler::blsil(Register dst, Address src) {
1136   InstructionMark im(this);
1137   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1138   vex_prefix_0F38(rbx, dst, src);
1139   emit_int8((unsigned char)0xF3);
1140   emit_operand(rbx, src);
1141 }
1142 
1143 void Assembler::blsmskl(Register dst, Register src) {
1144   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1145   int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
1146   emit_int8((unsigned char)0xF3);
1147   emit_int8((unsigned char)(0xC0 | encode));
1148 }
1149 
1150 void Assembler::blsmskl(Register dst, Address src) {
1151   InstructionMark im(this);
1152   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1153   vex_prefix_0F38(rdx, dst, src);
1154   emit_int8((unsigned char)0xF3);
1155   emit_operand(rdx, src);
1156 }
1157 
1158 void Assembler::blsrl(Register dst, Register src) {
1159   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1160   int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
1161   emit_int8((unsigned char)0xF3);
1162   emit_int8((unsigned char)(0xC0 | encode));
1163 }
1164 
1165 void Assembler::blsrl(Register dst, Address src) {
1166   InstructionMark im(this);
1167   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1168   vex_prefix_0F38(rcx, dst, src);
1169   emit_int8((unsigned char)0xF3);
1170   emit_operand(rcx, src);
1171 }
1172 
1173 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1174   // suspect disp32 is always good
1175   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1176 
1177   if (L.is_bound()) {
1178     const int long_size = 5;
1179     int offs = (int)( target(L) - pc() );
1180     assert(offs <= 0, "assembler error");
1181     InstructionMark im(this);
1182     // 1110 1000 #32-bit disp
1183     emit_int8((unsigned char)0xE8);
1184     emit_data(offs - long_size, rtype, operand);
1185   } else {
1186     InstructionMark im(this);
1187     // 1110 1000 #32-bit disp
1188     L.add_patch_at(code(), locator());
1189 
1190     emit_int8((unsigned char)0xE8);
1191     emit_data(int(0), rtype, operand);
1192   }
1193 }
1194 
1195 void Assembler::call(Register dst) {
1196   int encode = prefix_and_encode(dst->encoding());
1197   emit_int8((unsigned char)0xFF);
1198   emit_int8((unsigned char)(0xD0 | encode));
1199 }
1200 
1201 
1202 void Assembler::call(Address adr) {
1203   InstructionMark im(this);
1204   prefix(adr);
1205   emit_int8((unsigned char)0xFF);
1206   emit_operand(rdx, adr);
1207 }
1208 
1209 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1210   assert(entry != NULL, "call most probably wrong");
1211   InstructionMark im(this);
1212   emit_int8((unsigned char)0xE8);
1213   intptr_t disp = entry - (pc() + sizeof(int32_t));
1214   assert(is_simm32(disp), "must be 32bit offset (call2)");
1215   // Technically, should use call32_operand, but this format is
1216   // implied by the fact that we're emitting a call instruction.
1217 
1218   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1219   emit_data((int) disp, rspec, operand);
1220 }
1221 
1222 void Assembler::cdql() {
1223   emit_int8((unsigned char)0x99);
1224 }
1225 
1226 void Assembler::cld() {
1227   emit_int8((unsigned char)0xFC);
1228 }
1229 
1230 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1231   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1232   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1233   emit_int8(0x0F);
1234   emit_int8(0x40 | cc);
1235   emit_int8((unsigned char)(0xC0 | encode));
1236 }
1237 
1238 
1239 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1240   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1241   prefix(src, dst);
1242   emit_int8(0x0F);
1243   emit_int8(0x40 | cc);
1244   emit_operand(dst, src);
1245 }
1246 
1247 void Assembler::cmpb(Address dst, int imm8) {
1248   InstructionMark im(this);
1249   prefix(dst);
1250   emit_int8((unsigned char)0x80);
1251   emit_operand(rdi, dst, 1);
1252   emit_int8(imm8);
1253 }
1254 
1255 void Assembler::cmpl(Address dst, int32_t imm32) {
1256   InstructionMark im(this);
1257   prefix(dst);
1258   emit_int8((unsigned char)0x81);
1259   emit_operand(rdi, dst, 4);
1260   emit_int32(imm32);
1261 }
1262 
1263 void Assembler::cmpl(Register dst, int32_t imm32) {
1264   prefix(dst);
1265   emit_arith(0x81, 0xF8, dst, imm32);
1266 }
1267 
1268 void Assembler::cmpl(Register dst, Register src) {
1269   (void) prefix_and_encode(dst->encoding(), src->encoding());
1270   emit_arith(0x3B, 0xC0, dst, src);
1271 }
1272 
1273 
1274 void Assembler::cmpl(Register dst, Address  src) {
1275   InstructionMark im(this);
1276   prefix(src, dst);
1277   emit_int8((unsigned char)0x3B);
1278   emit_operand(dst, src);
1279 }
1280 
1281 void Assembler::cmpw(Address dst, int imm16) {
1282   InstructionMark im(this);
1283   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1284   emit_int8(0x66);
1285   emit_int8((unsigned char)0x81);
1286   emit_operand(rdi, dst, 2);
1287   emit_int16(imm16);
1288 }
1289 
1290 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1291 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1292 // The ZF is set if the compared values were equal, and cleared otherwise.
1293 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1294   InstructionMark im(this);
1295   prefix(adr, reg);
1296   emit_int8(0x0F);
1297   emit_int8((unsigned char)0xB1);
1298   emit_operand(reg, adr);
1299 }
1300 
1301 void Assembler::comisd(XMMRegister dst, Address src) {
1302   // NOTE: dbx seems to decode this as comiss even though the
1303   // 0x66 is there. Strangly ucomisd comes out correct
1304   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1305   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1306 }
1307 
1308 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1309   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1310   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1311 }
1312 
1313 void Assembler::comiss(XMMRegister dst, Address src) {
1314   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1315   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1316 }
1317 
1318 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1319   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1320   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1321 }
1322 
1323 void Assembler::cpuid() {
1324   emit_int8(0x0F);
1325   emit_int8((unsigned char)0xA2);
1326 }
1327 
1328 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1330   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1331 }
1332 
1333 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1334   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1335   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1336 }
1337 
1338 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1339   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1340   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1341 }
1342 
1343 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1345   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1346 }
1347 
1348 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1350   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1351   emit_int8(0x2A);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1356   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1357   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1358 }
1359 
1360 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1361   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1362   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1363   emit_int8(0x2A);
1364   emit_int8((unsigned char)(0xC0 | encode));
1365 }
1366 
1367 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1368   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1369   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
1370 }
1371 
1372 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1373   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1374   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1375 }
1376 
1377 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1378   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1379   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1380 }
1381 
1382 
1383 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1384   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1385   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1386   emit_int8(0x2C);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1391   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1392   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1393   emit_int8(0x2C);
1394   emit_int8((unsigned char)(0xC0 | encode));
1395 }
1396 
1397 void Assembler::decl(Address dst) {
1398   // Don't use it directly. Use MacroAssembler::decrement() instead.
1399   InstructionMark im(this);
1400   prefix(dst);
1401   emit_int8((unsigned char)0xFF);
1402   emit_operand(rcx, dst);
1403 }
1404 
1405 void Assembler::divsd(XMMRegister dst, Address src) {
1406   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1407   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1408 }
1409 
1410 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1412   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1413 }
1414 
1415 void Assembler::divss(XMMRegister dst, Address src) {
1416   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1417   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1418 }
1419 
1420 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1421   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1422   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1423 }
1424 
1425 void Assembler::emms() {
1426   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1427   emit_int8(0x0F);
1428   emit_int8(0x77);
1429 }
1430 
1431 void Assembler::hlt() {
1432   emit_int8((unsigned char)0xF4);
1433 }
1434 
1435 void Assembler::idivl(Register src) {
1436   int encode = prefix_and_encode(src->encoding());
1437   emit_int8((unsigned char)0xF7);
1438   emit_int8((unsigned char)(0xF8 | encode));
1439 }
1440 
1441 void Assembler::divl(Register src) { // Unsigned
1442   int encode = prefix_and_encode(src->encoding());
1443   emit_int8((unsigned char)0xF7);
1444   emit_int8((unsigned char)(0xF0 | encode));
1445 }
1446 
1447 void Assembler::imull(Register dst, Register src) {
1448   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1449   emit_int8(0x0F);
1450   emit_int8((unsigned char)0xAF);
1451   emit_int8((unsigned char)(0xC0 | encode));
1452 }
1453 
1454 
1455 void Assembler::imull(Register dst, Register src, int value) {
1456   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1457   if (is8bit(value)) {
1458     emit_int8(0x6B);
1459     emit_int8((unsigned char)(0xC0 | encode));
1460     emit_int8(value & 0xFF);
1461   } else {
1462     emit_int8(0x69);
1463     emit_int8((unsigned char)(0xC0 | encode));
1464     emit_int32(value);
1465   }
1466 }
1467 
1468 void Assembler::imull(Register dst, Address src) {
1469   InstructionMark im(this);
1470   prefix(src, dst);
1471   emit_int8(0x0F);
1472   emit_int8((unsigned char) 0xAF);
1473   emit_operand(dst, src);
1474 }
1475 
1476 
1477 void Assembler::incl(Address dst) {
1478   // Don't use it directly. Use MacroAssembler::increment() instead.
1479   InstructionMark im(this);
1480   prefix(dst);
1481   emit_int8((unsigned char)0xFF);
1482   emit_operand(rax, dst);
1483 }
1484 
1485 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1486   InstructionMark im(this);
1487   assert((0 <= cc) && (cc < 16), "illegal cc");
1488   if (L.is_bound()) {
1489     address dst = target(L);
1490     assert(dst != NULL, "jcc most probably wrong");
1491 
1492     const int short_size = 2;
1493     const int long_size = 6;
1494     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1495     if (maybe_short && is8bit(offs - short_size)) {
1496       // 0111 tttn #8-bit disp
1497       emit_int8(0x70 | cc);
1498       emit_int8((offs - short_size) & 0xFF);
1499     } else {
1500       // 0000 1111 1000 tttn #32-bit disp
1501       assert(is_simm32(offs - long_size),
1502              "must be 32bit offset (call4)");
1503       emit_int8(0x0F);
1504       emit_int8((unsigned char)(0x80 | cc));
1505       emit_int32(offs - long_size);
1506     }
1507   } else {
1508     // Note: could eliminate cond. jumps to this jump if condition
1509     //       is the same however, seems to be rather unlikely case.
1510     // Note: use jccb() if label to be bound is very close to get
1511     //       an 8-bit displacement
1512     L.add_patch_at(code(), locator());
1513     emit_int8(0x0F);
1514     emit_int8((unsigned char)(0x80 | cc));
1515     emit_int32(0);
1516   }
1517 }
1518 
1519 void Assembler::jccb(Condition cc, Label& L) {
1520   if (L.is_bound()) {
1521     const int short_size = 2;
1522     address entry = target(L);
1523 #ifdef ASSERT
1524     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1525     intptr_t delta = short_branch_delta();
1526     if (delta != 0) {
1527       dist += (dist < 0 ? (-delta) :delta);
1528     }
1529     assert(is8bit(dist), "Dispacement too large for a short jmp");
1530 #endif
1531     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1532     // 0111 tttn #8-bit disp
1533     emit_int8(0x70 | cc);
1534     emit_int8((offs - short_size) & 0xFF);
1535   } else {
1536     InstructionMark im(this);
1537     L.add_patch_at(code(), locator());
1538     emit_int8(0x70 | cc);
1539     emit_int8(0);
1540   }
1541 }
1542 
1543 void Assembler::jmp(Address adr) {
1544   InstructionMark im(this);
1545   prefix(adr);
1546   emit_int8((unsigned char)0xFF);
1547   emit_operand(rsp, adr);
1548 }
1549 
1550 void Assembler::jmp(Label& L, bool maybe_short) {
1551   if (L.is_bound()) {
1552     address entry = target(L);
1553     assert(entry != NULL, "jmp most probably wrong");
1554     InstructionMark im(this);
1555     const int short_size = 2;
1556     const int long_size = 5;
1557     intptr_t offs = entry - pc();
1558     if (maybe_short && is8bit(offs - short_size)) {
1559       emit_int8((unsigned char)0xEB);
1560       emit_int8((offs - short_size) & 0xFF);
1561     } else {
1562       emit_int8((unsigned char)0xE9);
1563       emit_int32(offs - long_size);
1564     }
1565   } else {
1566     // By default, forward jumps are always 32-bit displacements, since
1567     // we can't yet know where the label will be bound.  If you're sure that
1568     // the forward jump will not run beyond 256 bytes, use jmpb to
1569     // force an 8-bit displacement.
1570     InstructionMark im(this);
1571     L.add_patch_at(code(), locator());
1572     emit_int8((unsigned char)0xE9);
1573     emit_int32(0);
1574   }
1575 }
1576 
1577 void Assembler::jmp(Register entry) {
1578   int encode = prefix_and_encode(entry->encoding());
1579   emit_int8((unsigned char)0xFF);
1580   emit_int8((unsigned char)(0xE0 | encode));
1581 }
1582 
1583 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1584   InstructionMark im(this);
1585   emit_int8((unsigned char)0xE9);
1586   assert(dest != NULL, "must have a target");
1587   intptr_t disp = dest - (pc() + sizeof(int32_t));
1588   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1589   emit_data(disp, rspec.reloc(), call32_operand);
1590 }
1591 
1592 void Assembler::jmpb(Label& L) {
1593   if (L.is_bound()) {
1594     const int short_size = 2;
1595     address entry = target(L);
1596     assert(entry != NULL, "jmp most probably wrong");
1597 #ifdef ASSERT
1598     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1599     intptr_t delta = short_branch_delta();
1600     if (delta != 0) {
1601       dist += (dist < 0 ? (-delta) :delta);
1602     }
1603     assert(is8bit(dist), "Dispacement too large for a short jmp");
1604 #endif
1605     intptr_t offs = entry - pc();
1606     emit_int8((unsigned char)0xEB);
1607     emit_int8((offs - short_size) & 0xFF);
1608   } else {
1609     InstructionMark im(this);
1610     L.add_patch_at(code(), locator());
1611     emit_int8((unsigned char)0xEB);
1612     emit_int8(0);
1613   }
1614 }
1615 
1616 void Assembler::ldmxcsr( Address src) {
1617   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1618   InstructionMark im(this);
1619   prefix(src);
1620   emit_int8(0x0F);
1621   emit_int8((unsigned char)0xAE);
1622   emit_operand(as_Register(2), src);
1623 }
1624 
1625 void Assembler::leal(Register dst, Address src) {
1626   InstructionMark im(this);
1627 #ifdef _LP64
1628   emit_int8(0x67); // addr32
1629   prefix(src, dst);
1630 #endif // LP64
1631   emit_int8((unsigned char)0x8D);
1632   emit_operand(dst, src);
1633 }
1634 
1635 void Assembler::lfence() {
1636   emit_int8(0x0F);
1637   emit_int8((unsigned char)0xAE);
1638   emit_int8((unsigned char)0xE8);
1639 }
1640 
1641 void Assembler::lock() {
1642   emit_int8((unsigned char)0xF0);
1643 }
1644 
1645 void Assembler::lzcntl(Register dst, Register src) {
1646   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1647   emit_int8((unsigned char)0xF3);
1648   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1649   emit_int8(0x0F);
1650   emit_int8((unsigned char)0xBD);
1651   emit_int8((unsigned char)(0xC0 | encode));
1652 }
1653 
1654 // Emit mfence instruction
1655 void Assembler::mfence() {
1656   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1657   emit_int8(0x0F);
1658   emit_int8((unsigned char)0xAE);
1659   emit_int8((unsigned char)0xF0);
1660 }
1661 
1662 void Assembler::mov(Register dst, Register src) {
1663   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1664 }
1665 
1666 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1668   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1669 }
1670 
1671 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1672   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1673   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1674 }
1675 
1676 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
1677   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1678   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1679   emit_int8(0x16);
1680   emit_int8((unsigned char)(0xC0 | encode));
1681 }
1682 
1683 void Assembler::movb(Register dst, Address src) {
1684   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1685   InstructionMark im(this);
1686   prefix(src, dst, true);
1687   emit_int8((unsigned char)0x8A);
1688   emit_operand(dst, src);
1689 }
1690 
1691 
1692 void Assembler::movb(Address dst, int imm8) {
1693   InstructionMark im(this);
1694    prefix(dst);
1695   emit_int8((unsigned char)0xC6);
1696   emit_operand(rax, dst, 1);
1697   emit_int8(imm8);
1698 }
1699 
1700 
1701 void Assembler::movb(Address dst, Register src) {
1702   assert(src->has_byte_register(), "must have byte register");
1703   InstructionMark im(this);
1704   prefix(dst, src, true);
1705   emit_int8((unsigned char)0x88);
1706   emit_operand(src, dst);
1707 }
1708 
1709 void Assembler::movdl(XMMRegister dst, Register src) {
1710   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1711   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1712   emit_int8(0x6E);
1713   emit_int8((unsigned char)(0xC0 | encode));
1714 }
1715 
1716 void Assembler::movdl(Register dst, XMMRegister src) {
1717   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1718   // swap src/dst to get correct prefix
1719   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1720   emit_int8(0x7E);
1721   emit_int8((unsigned char)(0xC0 | encode));
1722 }
1723 
1724 void Assembler::movdl(XMMRegister dst, Address src) {
1725   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1726   InstructionMark im(this);
1727   simd_prefix(dst, src, VEX_SIMD_66);
1728   emit_int8(0x6E);
1729   emit_operand(dst, src);
1730 }
1731 
1732 void Assembler::movdl(Address dst, XMMRegister src) {
1733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1734   InstructionMark im(this);
1735   simd_prefix(dst, src, VEX_SIMD_66);
1736   emit_int8(0x7E);
1737   emit_operand(src, dst);
1738 }
1739 
1740 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1742   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1743 }
1744 
1745 void Assembler::movdqa(XMMRegister dst, Address src) {
1746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1747   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1748 }
1749 
1750 void Assembler::movdqu(XMMRegister dst, Address src) {
1751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1752   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1753 }
1754 
1755 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1757   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1758 }
1759 
1760 void Assembler::movdqu(Address dst, XMMRegister src) {
1761   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1762   InstructionMark im(this);
1763   simd_prefix(dst, src, VEX_SIMD_F3);
1764   emit_int8(0x7F);
1765   emit_operand(src, dst);
1766 }
1767 
1768 // Move Unaligned 256bit Vector
1769 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
1770   assert(UseAVX, "");
1771   bool vector256 = true;
1772   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1773   emit_int8(0x6F);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 void Assembler::vmovdqu(XMMRegister dst, Address src) {
1778   assert(UseAVX, "");
1779   InstructionMark im(this);
1780   bool vector256 = true;
1781   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1782   emit_int8(0x6F);
1783   emit_operand(dst, src);
1784 }
1785 
1786 void Assembler::vmovdqu(Address dst, XMMRegister src) {
1787   assert(UseAVX, "");
1788   InstructionMark im(this);
1789   bool vector256 = true;
1790   // swap src<->dst for encoding
1791   assert(src != xnoreg, "sanity");
1792   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1793   emit_int8(0x7F);
1794   emit_operand(src, dst);
1795 }
1796 
1797 // Uses zero extension on 64bit
1798 
1799 void Assembler::movl(Register dst, int32_t imm32) {
1800   int encode = prefix_and_encode(dst->encoding());
1801   emit_int8((unsigned char)(0xB8 | encode));
1802   emit_int32(imm32);
1803 }
1804 
1805 void Assembler::movl(Register dst, Register src) {
1806   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1807   emit_int8((unsigned char)0x8B);
1808   emit_int8((unsigned char)(0xC0 | encode));
1809 }
1810 
1811 void Assembler::movl(Register dst, Address src) {
1812   InstructionMark im(this);
1813   prefix(src, dst);
1814   emit_int8((unsigned char)0x8B);
1815   emit_operand(dst, src);
1816 }
1817 
1818 void Assembler::movl(Address dst, int32_t imm32) {
1819   InstructionMark im(this);
1820   prefix(dst);
1821   emit_int8((unsigned char)0xC7);
1822   emit_operand(rax, dst, 4);
1823   emit_int32(imm32);
1824 }
1825 
1826 void Assembler::movl(Address dst, Register src) {
1827   InstructionMark im(this);
1828   prefix(dst, src);
1829   emit_int8((unsigned char)0x89);
1830   emit_operand(src, dst);
1831 }
1832 
1833 // New cpus require to use movsd and movss to avoid partial register stall
1834 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1835 // The selection is done in MacroAssembler::movdbl() and movflt().
1836 void Assembler::movlpd(XMMRegister dst, Address src) {
1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1838   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
1839 }
1840 
1841 void Assembler::movq( MMXRegister dst, Address src ) {
1842   assert( VM_Version::supports_mmx(), "" );
1843   emit_int8(0x0F);
1844   emit_int8(0x6F);
1845   emit_operand(dst, src);
1846 }
1847 
1848 void Assembler::movq( Address dst, MMXRegister src ) {
1849   assert( VM_Version::supports_mmx(), "" );
1850   emit_int8(0x0F);
1851   emit_int8(0x7F);
1852   // workaround gcc (3.2.1-7a) bug
1853   // In that version of gcc with only an emit_operand(MMX, Address)
1854   // gcc will tail jump and try and reverse the parameters completely
1855   // obliterating dst in the process. By having a version available
1856   // that doesn't need to swap the args at the tail jump the bug is
1857   // avoided.
1858   emit_operand(dst, src);
1859 }
1860 
1861 void Assembler::movq(XMMRegister dst, Address src) {
1862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1863   InstructionMark im(this);
1864   simd_prefix(dst, src, VEX_SIMD_F3);
1865   emit_int8(0x7E);
1866   emit_operand(dst, src);
1867 }
1868 
1869 void Assembler::movq(Address dst, XMMRegister src) {
1870   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1871   InstructionMark im(this);
1872   simd_prefix(dst, src, VEX_SIMD_66);
1873   emit_int8((unsigned char)0xD6);
1874   emit_operand(src, dst);
1875 }
1876 
1877 void Assembler::movsbl(Register dst, Address src) { // movsxb
1878   InstructionMark im(this);
1879   prefix(src, dst);
1880   emit_int8(0x0F);
1881   emit_int8((unsigned char)0xBE);
1882   emit_operand(dst, src);
1883 }
1884 
1885 void Assembler::movsbl(Register dst, Register src) { // movsxb
1886   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1887   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1888   emit_int8(0x0F);
1889   emit_int8((unsigned char)0xBE);
1890   emit_int8((unsigned char)(0xC0 | encode));
1891 }
1892 
1893 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1895   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
1896 }
1897 
1898 void Assembler::movsd(XMMRegister dst, Address src) {
1899   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1900   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
1901 }
1902 
1903 void Assembler::movsd(Address dst, XMMRegister src) {
1904   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1905   InstructionMark im(this);
1906   simd_prefix(dst, src, VEX_SIMD_F2);
1907   emit_int8(0x11);
1908   emit_operand(src, dst);
1909 }
1910 
1911 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1912   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1913   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
1914 }
1915 
1916 void Assembler::movss(XMMRegister dst, Address src) {
1917   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1918   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
1919 }
1920 
1921 void Assembler::movss(Address dst, XMMRegister src) {
1922   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1923   InstructionMark im(this);
1924   simd_prefix(dst, src, VEX_SIMD_F3);
1925   emit_int8(0x11);
1926   emit_operand(src, dst);
1927 }
1928 
1929 void Assembler::movswl(Register dst, Address src) { // movsxw
1930   InstructionMark im(this);
1931   prefix(src, dst);
1932   emit_int8(0x0F);
1933   emit_int8((unsigned char)0xBF);
1934   emit_operand(dst, src);
1935 }
1936 
1937 void Assembler::movswl(Register dst, Register src) { // movsxw
1938   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1939   emit_int8(0x0F);
1940   emit_int8((unsigned char)0xBF);
1941   emit_int8((unsigned char)(0xC0 | encode));
1942 }
1943 
1944 void Assembler::movw(Address dst, int imm16) {
1945   InstructionMark im(this);
1946 
1947   emit_int8(0x66); // switch to 16-bit mode
1948   prefix(dst);
1949   emit_int8((unsigned char)0xC7);
1950   emit_operand(rax, dst, 2);
1951   emit_int16(imm16);
1952 }
1953 
1954 void Assembler::movw(Register dst, Address src) {
1955   InstructionMark im(this);
1956   emit_int8(0x66);
1957   prefix(src, dst);
1958   emit_int8((unsigned char)0x8B);
1959   emit_operand(dst, src);
1960 }
1961 
1962 void Assembler::movw(Address dst, Register src) {
1963   InstructionMark im(this);
1964   emit_int8(0x66);
1965   prefix(dst, src);
1966   emit_int8((unsigned char)0x89);
1967   emit_operand(src, dst);
1968 }
1969 
1970 void Assembler::movzbl(Register dst, Address src) { // movzxb
1971   InstructionMark im(this);
1972   prefix(src, dst);
1973   emit_int8(0x0F);
1974   emit_int8((unsigned char)0xB6);
1975   emit_operand(dst, src);
1976 }
1977 
1978 void Assembler::movzbl(Register dst, Register src) { // movzxb
1979   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1980   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1981   emit_int8(0x0F);
1982   emit_int8((unsigned char)0xB6);
1983   emit_int8(0xC0 | encode);
1984 }
1985 
1986 void Assembler::movzwl(Register dst, Address src) { // movzxw
1987   InstructionMark im(this);
1988   prefix(src, dst);
1989   emit_int8(0x0F);
1990   emit_int8((unsigned char)0xB7);
1991   emit_operand(dst, src);
1992 }
1993 
1994 void Assembler::movzwl(Register dst, Register src) { // movzxw
1995   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1996   emit_int8(0x0F);
1997   emit_int8((unsigned char)0xB7);
1998   emit_int8(0xC0 | encode);
1999 }
2000 
2001 void Assembler::mull(Address src) {
2002   InstructionMark im(this);
2003   prefix(src);
2004   emit_int8((unsigned char)0xF7);
2005   emit_operand(rsp, src);
2006 }
2007 
2008 void Assembler::mull(Register src) {
2009   int encode = prefix_and_encode(src->encoding());
2010   emit_int8((unsigned char)0xF7);
2011   emit_int8((unsigned char)(0xE0 | encode));
2012 }
2013 
2014 void Assembler::mulsd(XMMRegister dst, Address src) {
2015   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2016   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2017 }
2018 
2019 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2021   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2022 }
2023 
2024 void Assembler::mulss(XMMRegister dst, Address src) {
2025   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2026   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2027 }
2028 
2029 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2030   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2031   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2032 }
2033 
2034 void Assembler::negl(Register dst) {
2035   int encode = prefix_and_encode(dst->encoding());
2036   emit_int8((unsigned char)0xF7);
2037   emit_int8((unsigned char)(0xD8 | encode));
2038 }
2039 
2040 void Assembler::nop(int i) {
2041 #ifdef ASSERT
2042   assert(i > 0, " ");
2043   // The fancy nops aren't currently recognized by debuggers making it a
2044   // pain to disassemble code while debugging. If asserts are on clearly
2045   // speed is not an issue so simply use the single byte traditional nop
2046   // to do alignment.
2047 
2048   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2049   return;
2050 
2051 #endif // ASSERT
2052 
2053   if (UseAddressNop && VM_Version::is_intel()) {
2054     //
2055     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2056     //  1: 0x90
2057     //  2: 0x66 0x90
2058     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2059     //  4: 0x0F 0x1F 0x40 0x00
2060     //  5: 0x0F 0x1F 0x44 0x00 0x00
2061     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2062     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2063     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2064     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2065     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2066     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2067 
2068     // The rest coding is Intel specific - don't use consecutive address nops
2069 
2070     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2071     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2072     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2073     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2074 
2075     while(i >= 15) {
2076       // For Intel don't generate consecutive addess nops (mix with regular nops)
2077       i -= 15;
2078       emit_int8(0x66);   // size prefix
2079       emit_int8(0x66);   // size prefix
2080       emit_int8(0x66);   // size prefix
2081       addr_nop_8();
2082       emit_int8(0x66);   // size prefix
2083       emit_int8(0x66);   // size prefix
2084       emit_int8(0x66);   // size prefix
2085       emit_int8((unsigned char)0x90);
2086                          // nop
2087     }
2088     switch (i) {
2089       case 14:
2090         emit_int8(0x66); // size prefix
2091       case 13:
2092         emit_int8(0x66); // size prefix
2093       case 12:
2094         addr_nop_8();
2095         emit_int8(0x66); // size prefix
2096         emit_int8(0x66); // size prefix
2097         emit_int8(0x66); // size prefix
2098         emit_int8((unsigned char)0x90);
2099                          // nop
2100         break;
2101       case 11:
2102         emit_int8(0x66); // size prefix
2103       case 10:
2104         emit_int8(0x66); // size prefix
2105       case 9:
2106         emit_int8(0x66); // size prefix
2107       case 8:
2108         addr_nop_8();
2109         break;
2110       case 7:
2111         addr_nop_7();
2112         break;
2113       case 6:
2114         emit_int8(0x66); // size prefix
2115       case 5:
2116         addr_nop_5();
2117         break;
2118       case 4:
2119         addr_nop_4();
2120         break;
2121       case 3:
2122         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2123         emit_int8(0x66); // size prefix
2124       case 2:
2125         emit_int8(0x66); // size prefix
2126       case 1:
2127         emit_int8((unsigned char)0x90);
2128                          // nop
2129         break;
2130       default:
2131         assert(i == 0, " ");
2132     }
2133     return;
2134   }
2135   if (UseAddressNop && VM_Version::is_amd()) {
2136     //
2137     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2138     //  1: 0x90
2139     //  2: 0x66 0x90
2140     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2141     //  4: 0x0F 0x1F 0x40 0x00
2142     //  5: 0x0F 0x1F 0x44 0x00 0x00
2143     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2144     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2145     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2146     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2147     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2148     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2149 
2150     // The rest coding is AMD specific - use consecutive address nops
2151 
2152     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2153     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2154     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2155     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2156     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2157     //     Size prefixes (0x66) are added for larger sizes
2158 
2159     while(i >= 22) {
2160       i -= 11;
2161       emit_int8(0x66); // size prefix
2162       emit_int8(0x66); // size prefix
2163       emit_int8(0x66); // size prefix
2164       addr_nop_8();
2165     }
2166     // Generate first nop for size between 21-12
2167     switch (i) {
2168       case 21:
2169         i -= 1;
2170         emit_int8(0x66); // size prefix
2171       case 20:
2172       case 19:
2173         i -= 1;
2174         emit_int8(0x66); // size prefix
2175       case 18:
2176       case 17:
2177         i -= 1;
2178         emit_int8(0x66); // size prefix
2179       case 16:
2180       case 15:
2181         i -= 8;
2182         addr_nop_8();
2183         break;
2184       case 14:
2185       case 13:
2186         i -= 7;
2187         addr_nop_7();
2188         break;
2189       case 12:
2190         i -= 6;
2191         emit_int8(0x66); // size prefix
2192         addr_nop_5();
2193         break;
2194       default:
2195         assert(i < 12, " ");
2196     }
2197 
2198     // Generate second nop for size between 11-1
2199     switch (i) {
2200       case 11:
2201         emit_int8(0x66); // size prefix
2202       case 10:
2203         emit_int8(0x66); // size prefix
2204       case 9:
2205         emit_int8(0x66); // size prefix
2206       case 8:
2207         addr_nop_8();
2208         break;
2209       case 7:
2210         addr_nop_7();
2211         break;
2212       case 6:
2213         emit_int8(0x66); // size prefix
2214       case 5:
2215         addr_nop_5();
2216         break;
2217       case 4:
2218         addr_nop_4();
2219         break;
2220       case 3:
2221         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2222         emit_int8(0x66); // size prefix
2223       case 2:
2224         emit_int8(0x66); // size prefix
2225       case 1:
2226         emit_int8((unsigned char)0x90);
2227                          // nop
2228         break;
2229       default:
2230         assert(i == 0, " ");
2231     }
2232     return;
2233   }
2234 
2235   // Using nops with size prefixes "0x66 0x90".
2236   // From AMD Optimization Guide:
2237   //  1: 0x90
2238   //  2: 0x66 0x90
2239   //  3: 0x66 0x66 0x90
2240   //  4: 0x66 0x66 0x66 0x90
2241   //  5: 0x66 0x66 0x90 0x66 0x90
2242   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2243   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2244   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2245   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2246   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2247   //
2248   while(i > 12) {
2249     i -= 4;
2250     emit_int8(0x66); // size prefix
2251     emit_int8(0x66);
2252     emit_int8(0x66);
2253     emit_int8((unsigned char)0x90);
2254                      // nop
2255   }
2256   // 1 - 12 nops
2257   if(i > 8) {
2258     if(i > 9) {
2259       i -= 1;
2260       emit_int8(0x66);
2261     }
2262     i -= 3;
2263     emit_int8(0x66);
2264     emit_int8(0x66);
2265     emit_int8((unsigned char)0x90);
2266   }
2267   // 1 - 8 nops
2268   if(i > 4) {
2269     if(i > 6) {
2270       i -= 1;
2271       emit_int8(0x66);
2272     }
2273     i -= 3;
2274     emit_int8(0x66);
2275     emit_int8(0x66);
2276     emit_int8((unsigned char)0x90);
2277   }
2278   switch (i) {
2279     case 4:
2280       emit_int8(0x66);
2281     case 3:
2282       emit_int8(0x66);
2283     case 2:
2284       emit_int8(0x66);
2285     case 1:
2286       emit_int8((unsigned char)0x90);
2287       break;
2288     default:
2289       assert(i == 0, " ");
2290   }
2291 }
2292 
2293 void Assembler::notl(Register dst) {
2294   int encode = prefix_and_encode(dst->encoding());
2295   emit_int8((unsigned char)0xF7);
2296   emit_int8((unsigned char)(0xD0 | encode));
2297 }
2298 
2299 void Assembler::orl(Address dst, int32_t imm32) {
2300   InstructionMark im(this);
2301   prefix(dst);
2302   emit_arith_operand(0x81, rcx, dst, imm32);
2303 }
2304 
2305 void Assembler::orl(Register dst, int32_t imm32) {
2306   prefix(dst);
2307   emit_arith(0x81, 0xC8, dst, imm32);
2308 }
2309 
2310 void Assembler::orl(Register dst, Address src) {
2311   InstructionMark im(this);
2312   prefix(src, dst);
2313   emit_int8(0x0B);
2314   emit_operand(dst, src);
2315 }
2316 
2317 void Assembler::orl(Register dst, Register src) {
2318   (void) prefix_and_encode(dst->encoding(), src->encoding());
2319   emit_arith(0x0B, 0xC0, dst, src);
2320 }
2321 
2322 void Assembler::packuswb(XMMRegister dst, Address src) {
2323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2324   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2325   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2326 }
2327 
2328 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2330   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2331 }
2332 
2333 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2334   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
2335   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
2336 }
2337 
2338 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2339   assert(VM_Version::supports_avx2(), "");
2340   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
2341   emit_int8(0x00);
2342   emit_int8(0xC0 | encode);
2343   emit_int8(imm8);
2344 }
2345 
2346 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2347   assert(VM_Version::supports_sse4_2(), "");
2348   InstructionMark im(this);
2349   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2350   emit_int8(0x61);
2351   emit_operand(dst, src);
2352   emit_int8(imm8);
2353 }
2354 
2355 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2356   assert(VM_Version::supports_sse4_2(), "");
2357   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2358   emit_int8(0x61);
2359   emit_int8((unsigned char)(0xC0 | encode));
2360   emit_int8(imm8);
2361 }
2362 
2363 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2364   assert(VM_Version::supports_sse4_1(), "");
2365   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2366   emit_int8(0x16);
2367   emit_int8((unsigned char)(0xC0 | encode));
2368   emit_int8(imm8);
2369 }
2370 
2371 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2372   assert(VM_Version::supports_sse4_1(), "");
2373   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2374   emit_int8(0x16);
2375   emit_int8((unsigned char)(0xC0 | encode));
2376   emit_int8(imm8);
2377 }
2378 
2379 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2380   assert(VM_Version::supports_sse4_1(), "");
2381   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2382   emit_int8(0x22);
2383   emit_int8((unsigned char)(0xC0 | encode));
2384   emit_int8(imm8);
2385 }
2386 
2387 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2388   assert(VM_Version::supports_sse4_1(), "");
2389   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2390   emit_int8(0x22);
2391   emit_int8((unsigned char)(0xC0 | encode));
2392   emit_int8(imm8);
2393 }
2394 
2395 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2396   assert(VM_Version::supports_sse4_1(), "");
2397   InstructionMark im(this);
2398   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2399   emit_int8(0x30);
2400   emit_operand(dst, src);
2401 }
2402 
2403 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2404   assert(VM_Version::supports_sse4_1(), "");
2405   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2406   emit_int8(0x30);
2407   emit_int8((unsigned char)(0xC0 | encode));
2408 }
2409 
2410 // generic
2411 void Assembler::pop(Register dst) {
2412   int encode = prefix_and_encode(dst->encoding());
2413   emit_int8(0x58 | encode);
2414 }
2415 
2416 void Assembler::popcntl(Register dst, Address src) {
2417   assert(VM_Version::supports_popcnt(), "must support");
2418   InstructionMark im(this);
2419   emit_int8((unsigned char)0xF3);
2420   prefix(src, dst);
2421   emit_int8(0x0F);
2422   emit_int8((unsigned char)0xB8);
2423   emit_operand(dst, src);
2424 }
2425 
2426 void Assembler::popcntl(Register dst, Register src) {
2427   assert(VM_Version::supports_popcnt(), "must support");
2428   emit_int8((unsigned char)0xF3);
2429   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2430   emit_int8(0x0F);
2431   emit_int8((unsigned char)0xB8);
2432   emit_int8((unsigned char)(0xC0 | encode));
2433 }
2434 
2435 void Assembler::popf() {
2436   emit_int8((unsigned char)0x9D);
2437 }
2438 
2439 #ifndef _LP64 // no 32bit push/pop on amd64
2440 void Assembler::popl(Address dst) {
2441   // NOTE: this will adjust stack by 8byte on 64bits
2442   InstructionMark im(this);
2443   prefix(dst);
2444   emit_int8((unsigned char)0x8F);
2445   emit_operand(rax, dst);
2446 }
2447 #endif
2448 
2449 void Assembler::prefetch_prefix(Address src) {
2450   prefix(src);
2451   emit_int8(0x0F);
2452 }
2453 
2454 void Assembler::prefetchnta(Address src) {
2455   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2456   InstructionMark im(this);
2457   prefetch_prefix(src);
2458   emit_int8(0x18);
2459   emit_operand(rax, src); // 0, src
2460 }
2461 
2462 void Assembler::prefetchr(Address src) {
2463   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2464   InstructionMark im(this);
2465   prefetch_prefix(src);
2466   emit_int8(0x0D);
2467   emit_operand(rax, src); // 0, src
2468 }
2469 
2470 void Assembler::prefetcht0(Address src) {
2471   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2472   InstructionMark im(this);
2473   prefetch_prefix(src);
2474   emit_int8(0x18);
2475   emit_operand(rcx, src); // 1, src
2476 }
2477 
2478 void Assembler::prefetcht1(Address src) {
2479   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2480   InstructionMark im(this);
2481   prefetch_prefix(src);
2482   emit_int8(0x18);
2483   emit_operand(rdx, src); // 2, src
2484 }
2485 
2486 void Assembler::prefetcht2(Address src) {
2487   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2488   InstructionMark im(this);
2489   prefetch_prefix(src);
2490   emit_int8(0x18);
2491   emit_operand(rbx, src); // 3, src
2492 }
2493 
2494 void Assembler::prefetchw(Address src) {
2495   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2496   InstructionMark im(this);
2497   prefetch_prefix(src);
2498   emit_int8(0x0D);
2499   emit_operand(rcx, src); // 1, src
2500 }
2501 
2502 void Assembler::prefix(Prefix p) {
2503   emit_int8(p);
2504 }
2505 
2506 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
2507   assert(VM_Version::supports_ssse3(), "");
2508   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2509   emit_int8(0x00);
2510   emit_int8((unsigned char)(0xC0 | encode));
2511 }
2512 
2513 void Assembler::pshufb(XMMRegister dst, Address src) {
2514   assert(VM_Version::supports_ssse3(), "");
2515   InstructionMark im(this);
2516   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2517   emit_int8(0x00);
2518   emit_operand(dst, src);
2519 }
2520 
2521 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2522   assert(isByte(mode), "invalid value");
2523   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2524   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2525   emit_int8(mode & 0xFF);
2526 
2527 }
2528 
2529 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2530   assert(isByte(mode), "invalid value");
2531   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2532   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2533   InstructionMark im(this);
2534   simd_prefix(dst, src, VEX_SIMD_66);
2535   emit_int8(0x70);
2536   emit_operand(dst, src);
2537   emit_int8(mode & 0xFF);
2538 }
2539 
2540 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2541   assert(isByte(mode), "invalid value");
2542   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2543   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2544   emit_int8(mode & 0xFF);
2545 }
2546 
2547 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2548   assert(isByte(mode), "invalid value");
2549   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2550   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2551   InstructionMark im(this);
2552   simd_prefix(dst, src, VEX_SIMD_F2);
2553   emit_int8(0x70);
2554   emit_operand(dst, src);
2555   emit_int8(mode & 0xFF);
2556 }
2557 
2558 void Assembler::psrldq(XMMRegister dst, int shift) {
2559   // Shift 128 bit value in xmm register by number of bytes.
2560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2561   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2562   emit_int8(0x73);
2563   emit_int8((unsigned char)(0xC0 | encode));
2564   emit_int8(shift);
2565 }
2566 
2567 void Assembler::ptest(XMMRegister dst, Address src) {
2568   assert(VM_Version::supports_sse4_1(), "");
2569   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2570   InstructionMark im(this);
2571   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2572   emit_int8(0x17);
2573   emit_operand(dst, src);
2574 }
2575 
2576 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2577   assert(VM_Version::supports_sse4_1(), "");
2578   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2579   emit_int8(0x17);
2580   emit_int8((unsigned char)(0xC0 | encode));
2581 }
2582 
2583 void Assembler::vptest(XMMRegister dst, Address src) {
2584   assert(VM_Version::supports_avx(), "");
2585   InstructionMark im(this);
2586   bool vector256 = true;
2587   assert(dst != xnoreg, "sanity");
2588   int dst_enc = dst->encoding();
2589   // swap src<->dst for encoding
2590   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2591   emit_int8(0x17);
2592   emit_operand(dst, src);
2593 }
2594 
2595 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
2596   assert(VM_Version::supports_avx(), "");
2597   bool vector256 = true;
2598   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
2599   emit_int8(0x17);
2600   emit_int8((unsigned char)(0xC0 | encode));
2601 }
2602 
2603 void Assembler::punpcklbw(XMMRegister dst, Address src) {
2604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2605   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2606   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2607 }
2608 
2609 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2610   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2611   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2612 }
2613 
2614 void Assembler::punpckldq(XMMRegister dst, Address src) {
2615   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2616   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2617   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2618 }
2619 
2620 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2622   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2623 }
2624 
2625 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
2626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2627   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
2628 }
2629 
2630 void Assembler::push(int32_t imm32) {
2631   // in 64bits we push 64bits onto the stack but only
2632   // take a 32bit immediate
2633   emit_int8(0x68);
2634   emit_int32(imm32);
2635 }
2636 
2637 void Assembler::push(Register src) {
2638   int encode = prefix_and_encode(src->encoding());
2639 
2640   emit_int8(0x50 | encode);
2641 }
2642 
2643 void Assembler::pushf() {
2644   emit_int8((unsigned char)0x9C);
2645 }
2646 
2647 #ifndef _LP64 // no 32bit push/pop on amd64
2648 void Assembler::pushl(Address src) {
2649   // Note this will push 64bit on 64bit
2650   InstructionMark im(this);
2651   prefix(src);
2652   emit_int8((unsigned char)0xFF);
2653   emit_operand(rsi, src);
2654 }
2655 #endif
2656 
2657 void Assembler::rcll(Register dst, int imm8) {
2658   assert(isShiftCount(imm8), "illegal shift count");
2659   int encode = prefix_and_encode(dst->encoding());
2660   if (imm8 == 1) {
2661     emit_int8((unsigned char)0xD1);
2662     emit_int8((unsigned char)(0xD0 | encode));
2663   } else {
2664     emit_int8((unsigned char)0xC1);
2665     emit_int8((unsigned char)0xD0 | encode);
2666     emit_int8(imm8);
2667   }
2668 }
2669 
2670 // copies data from [esi] to [edi] using rcx pointer sized words
2671 // generic
2672 void Assembler::rep_mov() {
2673   emit_int8((unsigned char)0xF3);
2674   // MOVSQ
2675   LP64_ONLY(prefix(REX_W));
2676   emit_int8((unsigned char)0xA5);
2677 }
2678 
2679 // sets rcx bytes with rax, value at [edi]
2680 void Assembler::rep_stosb() {
2681   emit_int8((unsigned char)0xF3); // REP
2682   LP64_ONLY(prefix(REX_W));
2683   emit_int8((unsigned char)0xAA); // STOSB
2684 }
2685 
2686 // sets rcx pointer sized words with rax, value at [edi]
2687 // generic
2688 void Assembler::rep_stos() {
2689   emit_int8((unsigned char)0xF3); // REP
2690   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2691   emit_int8((unsigned char)0xAB);
2692 }
2693 
2694 // scans rcx pointer sized words at [edi] for occurance of rax,
2695 // generic
2696 void Assembler::repne_scan() { // repne_scan
2697   emit_int8((unsigned char)0xF2);
2698   // SCASQ
2699   LP64_ONLY(prefix(REX_W));
2700   emit_int8((unsigned char)0xAF);
2701 }
2702 
2703 #ifdef _LP64
2704 // scans rcx 4 byte words at [edi] for occurance of rax,
2705 // generic
2706 void Assembler::repne_scanl() { // repne_scan
2707   emit_int8((unsigned char)0xF2);
2708   // SCASL
2709   emit_int8((unsigned char)0xAF);
2710 }
2711 #endif
2712 
2713 void Assembler::ret(int imm16) {
2714   if (imm16 == 0) {
2715     emit_int8((unsigned char)0xC3);
2716   } else {
2717     emit_int8((unsigned char)0xC2);
2718     emit_int16(imm16);
2719   }
2720 }
2721 
2722 void Assembler::sahf() {
2723 #ifdef _LP64
2724   // Not supported in 64bit mode
2725   ShouldNotReachHere();
2726 #endif
2727   emit_int8((unsigned char)0x9E);
2728 }
2729 
2730 void Assembler::sarl(Register dst, int imm8) {
2731   int encode = prefix_and_encode(dst->encoding());
2732   assert(isShiftCount(imm8), "illegal shift count");
2733   if (imm8 == 1) {
2734     emit_int8((unsigned char)0xD1);
2735     emit_int8((unsigned char)(0xF8 | encode));
2736   } else {
2737     emit_int8((unsigned char)0xC1);
2738     emit_int8((unsigned char)(0xF8 | encode));
2739     emit_int8(imm8);
2740   }
2741 }
2742 
2743 void Assembler::sarl(Register dst) {
2744   int encode = prefix_and_encode(dst->encoding());
2745   emit_int8((unsigned char)0xD3);
2746   emit_int8((unsigned char)(0xF8 | encode));
2747 }
2748 
2749 void Assembler::sbbl(Address dst, int32_t imm32) {
2750   InstructionMark im(this);
2751   prefix(dst);
2752   emit_arith_operand(0x81, rbx, dst, imm32);
2753 }
2754 
2755 void Assembler::sbbl(Register dst, int32_t imm32) {
2756   prefix(dst);
2757   emit_arith(0x81, 0xD8, dst, imm32);
2758 }
2759 
2760 
2761 void Assembler::sbbl(Register dst, Address src) {
2762   InstructionMark im(this);
2763   prefix(src, dst);
2764   emit_int8(0x1B);
2765   emit_operand(dst, src);
2766 }
2767 
2768 void Assembler::sbbl(Register dst, Register src) {
2769   (void) prefix_and_encode(dst->encoding(), src->encoding());
2770   emit_arith(0x1B, 0xC0, dst, src);
2771 }
2772 
2773 void Assembler::setb(Condition cc, Register dst) {
2774   assert(0 <= cc && cc < 16, "illegal cc");
2775   int encode = prefix_and_encode(dst->encoding(), true);
2776   emit_int8(0x0F);
2777   emit_int8((unsigned char)0x90 | cc);
2778   emit_int8((unsigned char)(0xC0 | encode));
2779 }
2780 
2781 void Assembler::shll(Register dst, int imm8) {
2782   assert(isShiftCount(imm8), "illegal shift count");
2783   int encode = prefix_and_encode(dst->encoding());
2784   if (imm8 == 1 ) {
2785     emit_int8((unsigned char)0xD1);
2786     emit_int8((unsigned char)(0xE0 | encode));
2787   } else {
2788     emit_int8((unsigned char)0xC1);
2789     emit_int8((unsigned char)(0xE0 | encode));
2790     emit_int8(imm8);
2791   }
2792 }
2793 
2794 void Assembler::shll(Register dst) {
2795   int encode = prefix_and_encode(dst->encoding());
2796   emit_int8((unsigned char)0xD3);
2797   emit_int8((unsigned char)(0xE0 | encode));
2798 }
2799 
2800 void Assembler::shrl(Register dst, int imm8) {
2801   assert(isShiftCount(imm8), "illegal shift count");
2802   int encode = prefix_and_encode(dst->encoding());
2803   emit_int8((unsigned char)0xC1);
2804   emit_int8((unsigned char)(0xE8 | encode));
2805   emit_int8(imm8);
2806 }
2807 
2808 void Assembler::shrl(Register dst) {
2809   int encode = prefix_and_encode(dst->encoding());
2810   emit_int8((unsigned char)0xD3);
2811   emit_int8((unsigned char)(0xE8 | encode));
2812 }
2813 
2814 // copies a single word from [esi] to [edi]
2815 void Assembler::smovl() {
2816   emit_int8((unsigned char)0xA5);
2817 }
2818 
2819 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2820   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2821   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2822 }
2823 
2824 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2825   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2826   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2827 }
2828 
2829 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2830   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2831   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2832 }
2833 
2834 void Assembler::std() {
2835   emit_int8((unsigned char)0xFD);
2836 }
2837 
2838 void Assembler::sqrtss(XMMRegister dst, Address src) {
2839   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2840   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2841 }
2842 
2843 void Assembler::stmxcsr( Address dst) {
2844   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2845   InstructionMark im(this);
2846   prefix(dst);
2847   emit_int8(0x0F);
2848   emit_int8((unsigned char)0xAE);
2849   emit_operand(as_Register(3), dst);
2850 }
2851 
2852 void Assembler::subl(Address dst, int32_t imm32) {
2853   InstructionMark im(this);
2854   prefix(dst);
2855   emit_arith_operand(0x81, rbp, dst, imm32);
2856 }
2857 
2858 void Assembler::subl(Address dst, Register src) {
2859   InstructionMark im(this);
2860   prefix(dst, src);
2861   emit_int8(0x29);
2862   emit_operand(src, dst);
2863 }
2864 
2865 void Assembler::subl(Register dst, int32_t imm32) {
2866   prefix(dst);
2867   emit_arith(0x81, 0xE8, dst, imm32);
2868 }
2869 
2870 // Force generation of a 4 byte immediate value even if it fits into 8bit
2871 void Assembler::subl_imm32(Register dst, int32_t imm32) {
2872   prefix(dst);
2873   emit_arith_imm32(0x81, 0xE8, dst, imm32);
2874 }
2875 
2876 void Assembler::subl(Register dst, Address src) {
2877   InstructionMark im(this);
2878   prefix(src, dst);
2879   emit_int8(0x2B);
2880   emit_operand(dst, src);
2881 }
2882 
2883 void Assembler::subl(Register dst, Register src) {
2884   (void) prefix_and_encode(dst->encoding(), src->encoding());
2885   emit_arith(0x2B, 0xC0, dst, src);
2886 }
2887 
2888 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2889   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2890   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2891 }
2892 
2893 void Assembler::subsd(XMMRegister dst, Address src) {
2894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2895   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2896 }
2897 
2898 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2899   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2900   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2901 }
2902 
2903 void Assembler::subss(XMMRegister dst, Address src) {
2904   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2905   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2906 }
2907 
2908 void Assembler::testb(Register dst, int imm8) {
2909   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2910   (void) prefix_and_encode(dst->encoding(), true);
2911   emit_arith_b(0xF6, 0xC0, dst, imm8);
2912 }
2913 
2914 void Assembler::testl(Register dst, int32_t imm32) {
2915   // not using emit_arith because test
2916   // doesn't support sign-extension of
2917   // 8bit operands
2918   int encode = dst->encoding();
2919   if (encode == 0) {
2920     emit_int8((unsigned char)0xA9);
2921   } else {
2922     encode = prefix_and_encode(encode);
2923     emit_int8((unsigned char)0xF7);
2924     emit_int8((unsigned char)(0xC0 | encode));
2925   }
2926   emit_int32(imm32);
2927 }
2928 
2929 void Assembler::testl(Register dst, Register src) {
2930   (void) prefix_and_encode(dst->encoding(), src->encoding());
2931   emit_arith(0x85, 0xC0, dst, src);
2932 }
2933 
2934 void Assembler::testl(Register dst, Address  src) {
2935   InstructionMark im(this);
2936   prefix(src, dst);
2937   emit_int8((unsigned char)0x85);
2938   emit_operand(dst, src);
2939 }
2940 
2941 void Assembler::tzcntl(Register dst, Register src) {
2942   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2943   emit_int8((unsigned char)0xF3);
2944   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2945   emit_int8(0x0F);
2946   emit_int8((unsigned char)0xBC);
2947   emit_int8((unsigned char)0xC0 | encode);
2948 }
2949 
2950 void Assembler::tzcntq(Register dst, Register src) {
2951   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2952   emit_int8((unsigned char)0xF3);
2953   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2954   emit_int8(0x0F);
2955   emit_int8((unsigned char)0xBC);
2956   emit_int8((unsigned char)(0xC0 | encode));
2957 }
2958 
2959 void Assembler::ucomisd(XMMRegister dst, Address src) {
2960   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2961   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2962 }
2963 
2964 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2965   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2966   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2967 }
2968 
2969 void Assembler::ucomiss(XMMRegister dst, Address src) {
2970   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2971   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2972 }
2973 
2974 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2975   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2976   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2977 }
2978 
2979 
2980 void Assembler::xaddl(Address dst, Register src) {
2981   InstructionMark im(this);
2982   prefix(dst, src);
2983   emit_int8(0x0F);
2984   emit_int8((unsigned char)0xC1);
2985   emit_operand(src, dst);
2986 }
2987 
2988 void Assembler::xchgl(Register dst, Address src) { // xchg
2989   InstructionMark im(this);
2990   prefix(src, dst);
2991   emit_int8((unsigned char)0x87);
2992   emit_operand(dst, src);
2993 }
2994 
2995 void Assembler::xchgl(Register dst, Register src) {
2996   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2997   emit_int8((unsigned char)0x87);
2998   emit_int8((unsigned char)(0xC0 | encode));
2999 }
3000 
3001 void Assembler::xgetbv() {
3002   emit_int8(0x0F);
3003   emit_int8(0x01);
3004   emit_int8((unsigned char)0xD0);
3005 }
3006 
3007 void Assembler::xorl(Register dst, int32_t imm32) {
3008   prefix(dst);
3009   emit_arith(0x81, 0xF0, dst, imm32);
3010 }
3011 
3012 void Assembler::xorl(Register dst, Address src) {
3013   InstructionMark im(this);
3014   prefix(src, dst);
3015   emit_int8(0x33);
3016   emit_operand(dst, src);
3017 }
3018 
3019 void Assembler::xorl(Register dst, Register src) {
3020   (void) prefix_and_encode(dst->encoding(), src->encoding());
3021   emit_arith(0x33, 0xC0, dst, src);
3022 }
3023 
3024 
3025 // AVX 3-operands scalar float-point arithmetic instructions
3026 
3027 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3028   assert(VM_Version::supports_avx(), "");
3029   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3030 }
3031 
3032 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3033   assert(VM_Version::supports_avx(), "");
3034   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3035 }
3036 
3037 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3038   assert(VM_Version::supports_avx(), "");
3039   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3040 }
3041 
3042 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3043   assert(VM_Version::supports_avx(), "");
3044   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3045 }
3046 
3047 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3048   assert(VM_Version::supports_avx(), "");
3049   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3050 }
3051 
3052 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3053   assert(VM_Version::supports_avx(), "");
3054   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3055 }
3056 
3057 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3058   assert(VM_Version::supports_avx(), "");
3059   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3060 }
3061 
3062 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3063   assert(VM_Version::supports_avx(), "");
3064   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3065 }
3066 
3067 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3068   assert(VM_Version::supports_avx(), "");
3069   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3070 }
3071 
3072 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3073   assert(VM_Version::supports_avx(), "");
3074   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3075 }
3076 
3077 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3078   assert(VM_Version::supports_avx(), "");
3079   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3080 }
3081 
3082 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3083   assert(VM_Version::supports_avx(), "");
3084   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3085 }
3086 
3087 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3088   assert(VM_Version::supports_avx(), "");
3089   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3090 }
3091 
3092 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3093   assert(VM_Version::supports_avx(), "");
3094   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3095 }
3096 
3097 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3098   assert(VM_Version::supports_avx(), "");
3099   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3100 }
3101 
3102 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3103   assert(VM_Version::supports_avx(), "");
3104   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3105 }
3106 
3107 //====================VECTOR ARITHMETIC=====================================
3108 
3109 // Float-point vector arithmetic
3110 
3111 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3112   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3113   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3114 }
3115 
3116 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3117   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3118   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3119 }
3120 
3121 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3122   assert(VM_Version::supports_avx(), "");
3123   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3124 }
3125 
3126 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3127   assert(VM_Version::supports_avx(), "");
3128   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3129 }
3130 
3131 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3132   assert(VM_Version::supports_avx(), "");
3133   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3134 }
3135 
3136 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3137   assert(VM_Version::supports_avx(), "");
3138   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3139 }
3140 
3141 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3142   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3143   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3144 }
3145 
3146 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3147   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3148   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3149 }
3150 
3151 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3152   assert(VM_Version::supports_avx(), "");
3153   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3154 }
3155 
3156 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3157   assert(VM_Version::supports_avx(), "");
3158   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3159 }
3160 
3161 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3162   assert(VM_Version::supports_avx(), "");
3163   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3164 }
3165 
3166 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3167   assert(VM_Version::supports_avx(), "");
3168   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3169 }
3170 
3171 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3172   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3173   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3174 }
3175 
3176 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3177   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3178   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3179 }
3180 
3181 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3182   assert(VM_Version::supports_avx(), "");
3183   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3184 }
3185 
3186 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3187   assert(VM_Version::supports_avx(), "");
3188   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3189 }
3190 
3191 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3192   assert(VM_Version::supports_avx(), "");
3193   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3194 }
3195 
3196 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3197   assert(VM_Version::supports_avx(), "");
3198   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3199 }
3200 
3201 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3202   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3203   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3204 }
3205 
3206 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3207   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3208   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3209 }
3210 
3211 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3212   assert(VM_Version::supports_avx(), "");
3213   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3214 }
3215 
3216 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3217   assert(VM_Version::supports_avx(), "");
3218   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3219 }
3220 
3221 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3222   assert(VM_Version::supports_avx(), "");
3223   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3224 }
3225 
3226 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3227   assert(VM_Version::supports_avx(), "");
3228   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3229 }
3230 
3231 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3232   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3233   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3234 }
3235 
3236 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3237   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3238   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3239 }
3240 
3241 void Assembler::andps(XMMRegister dst, Address src) {
3242   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3243   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3244 }
3245 
3246 void Assembler::andpd(XMMRegister dst, Address src) {
3247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3248   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3249 }
3250 
3251 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3252   assert(VM_Version::supports_avx(), "");
3253   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3254 }
3255 
3256 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3257   assert(VM_Version::supports_avx(), "");
3258   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3259 }
3260 
3261 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3262   assert(VM_Version::supports_avx(), "");
3263   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3264 }
3265 
3266 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3267   assert(VM_Version::supports_avx(), "");
3268   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3269 }
3270 
3271 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
3272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3273   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3274 }
3275 
3276 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
3277   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3278   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3279 }
3280 
3281 void Assembler::xorpd(XMMRegister dst, Address src) {
3282   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3283   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3284 }
3285 
3286 void Assembler::xorps(XMMRegister dst, Address src) {
3287   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3288   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3289 }
3290 
3291 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3292   assert(VM_Version::supports_avx(), "");
3293   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3294 }
3295 
3296 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3297   assert(VM_Version::supports_avx(), "");
3298   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3299 }
3300 
3301 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3302   assert(VM_Version::supports_avx(), "");
3303   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3304 }
3305 
3306 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3307   assert(VM_Version::supports_avx(), "");
3308   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3309 }
3310 
3311 
3312 // Integer vector arithmetic
3313 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
3314   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3315   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
3316 }
3317 
3318 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
3319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3320   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
3321 }
3322 
3323 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
3324   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3325   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
3326 }
3327 
3328 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
3329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3330   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
3331 }
3332 
3333 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3334   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3335   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3336 }
3337 
3338 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3339   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3340   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3341 }
3342 
3343 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3344   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3345   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3346 }
3347 
3348 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3349   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3350   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3351 }
3352 
3353 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3354   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3355   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3356 }
3357 
3358 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3359   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3360   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3361 }
3362 
3363 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3364   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3365   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3366 }
3367 
3368 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3369   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3370   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3371 }
3372 
3373 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
3374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3375   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
3376 }
3377 
3378 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
3379   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3380   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
3381 }
3382 
3383 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
3384   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3385   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
3386 }
3387 
3388 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
3389   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3390   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
3391 }
3392 
3393 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3394   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3395   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3396 }
3397 
3398 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3399   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3400   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3401 }
3402 
3403 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3404   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3405   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3406 }
3407 
3408 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3409   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3410   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3411 }
3412 
3413 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3414   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3415   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3416 }
3417 
3418 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3419   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3420   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3421 }
3422 
3423 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3424   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3425   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3426 }
3427 
3428 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3429   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3430   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3431 }
3432 
3433 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
3434   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3435   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
3436 }
3437 
3438 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
3439   assert(VM_Version::supports_sse4_1(), "");
3440   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3441   emit_int8(0x40);
3442   emit_int8((unsigned char)(0xC0 | encode));
3443 }
3444 
3445 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3446   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3447   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3448 }
3449 
3450 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3451   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3452   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3453   emit_int8(0x40);
3454   emit_int8((unsigned char)(0xC0 | encode));
3455 }
3456 
3457 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3458   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3459   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3460 }
3461 
3462 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3463   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3464   InstructionMark im(this);
3465   int dst_enc = dst->encoding();
3466   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3467   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3468   emit_int8(0x40);
3469   emit_operand(dst, src);
3470 }
3471 
3472 // Shift packed integers left by specified number of bits.
3473 void Assembler::psllw(XMMRegister dst, int shift) {
3474   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3475   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3476   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3477   emit_int8(0x71);
3478   emit_int8((unsigned char)(0xC0 | encode));
3479   emit_int8(shift & 0xFF);
3480 }
3481 
3482 void Assembler::pslld(XMMRegister dst, int shift) {
3483   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3484   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3485   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3486   emit_int8(0x72);
3487   emit_int8((unsigned char)(0xC0 | encode));
3488   emit_int8(shift & 0xFF);
3489 }
3490 
3491 void Assembler::psllq(XMMRegister dst, int shift) {
3492   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3493   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3494   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3495   emit_int8(0x73);
3496   emit_int8((unsigned char)(0xC0 | encode));
3497   emit_int8(shift & 0xFF);
3498 }
3499 
3500 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
3501   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3502   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
3503 }
3504 
3505 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
3506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3507   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
3508 }
3509 
3510 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
3511   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3512   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
3513 }
3514 
3515 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3516   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3517   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3518   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3519   emit_int8(shift & 0xFF);
3520 }
3521 
3522 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3523   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3524   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3525   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3526   emit_int8(shift & 0xFF);
3527 }
3528 
3529 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3530   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3531   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3532   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3533   emit_int8(shift & 0xFF);
3534 }
3535 
3536 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3537   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3538   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
3539 }
3540 
3541 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3542   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3543   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
3544 }
3545 
3546 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3547   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3548   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
3549 }
3550 
3551 // Shift packed integers logically right by specified number of bits.
3552 void Assembler::psrlw(XMMRegister dst, int shift) {
3553   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3554   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
3555   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3556   emit_int8(0x71);
3557   emit_int8((unsigned char)(0xC0 | encode));
3558   emit_int8(shift & 0xFF);
3559 }
3560 
3561 void Assembler::psrld(XMMRegister dst, int shift) {
3562   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3563   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
3564   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3565   emit_int8(0x72);
3566   emit_int8((unsigned char)(0xC0 | encode));
3567   emit_int8(shift & 0xFF);
3568 }
3569 
3570 void Assembler::psrlq(XMMRegister dst, int shift) {
3571   // Do not confuse it with psrldq SSE2 instruction which
3572   // shifts 128 bit value in xmm register by number of bytes.
3573   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3574   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3575   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3576   emit_int8(0x73);
3577   emit_int8((unsigned char)(0xC0 | encode));
3578   emit_int8(shift & 0xFF);
3579 }
3580 
3581 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
3582   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3583   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
3584 }
3585 
3586 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
3587   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3588   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
3589 }
3590 
3591 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
3592   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3593   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
3594 }
3595 
3596 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3597   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3598   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3599   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3600   emit_int8(shift & 0xFF);
3601 }
3602 
3603 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3604   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3605   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3606   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3607   emit_int8(shift & 0xFF);
3608 }
3609 
3610 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3611   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3612   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3613   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3614   emit_int8(shift & 0xFF);
3615 }
3616 
3617 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3618   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3619   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
3620 }
3621 
3622 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3623   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3624   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
3625 }
3626 
3627 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3628   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3629   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
3630 }
3631 
3632 // Shift packed integers arithmetically right by specified number of bits.
3633 void Assembler::psraw(XMMRegister dst, int shift) {
3634   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3635   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3636   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3637   emit_int8(0x71);
3638   emit_int8((unsigned char)(0xC0 | encode));
3639   emit_int8(shift & 0xFF);
3640 }
3641 
3642 void Assembler::psrad(XMMRegister dst, int shift) {
3643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3644   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
3645   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3646   emit_int8(0x72);
3647   emit_int8((unsigned char)(0xC0 | encode));
3648   emit_int8(shift & 0xFF);
3649 }
3650 
3651 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
3652   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3653   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
3654 }
3655 
3656 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
3657   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3658   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
3659 }
3660 
3661 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3662   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3663   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3664   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3665   emit_int8(shift & 0xFF);
3666 }
3667 
3668 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3669   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3670   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3671   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3672   emit_int8(shift & 0xFF);
3673 }
3674 
3675 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3676   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3677   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
3678 }
3679 
3680 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3681   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3682   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
3683 }
3684 
3685 
3686 // AND packed integers
3687 void Assembler::pand(XMMRegister dst, XMMRegister src) {
3688   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3689   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
3690 }
3691 
3692 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3693   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3694   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3695 }
3696 
3697 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3698   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3699   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3700 }
3701 
3702 void Assembler::por(XMMRegister dst, XMMRegister src) {
3703   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3704   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
3705 }
3706 
3707 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3708   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3709   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3710 }
3711 
3712 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3713   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3714   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3715 }
3716 
3717 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
3718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3719   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
3720 }
3721 
3722 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3723   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3724   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3725 }
3726 
3727 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3728   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3729   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3730 }
3731 
3732 
3733 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3734   assert(VM_Version::supports_avx(), "");
3735   bool vector256 = true;
3736   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3737   emit_int8(0x18);
3738   emit_int8((unsigned char)(0xC0 | encode));
3739   // 0x00 - insert into lower 128 bits
3740   // 0x01 - insert into upper 128 bits
3741   emit_int8(0x01);
3742 }
3743 
3744 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
3745   assert(VM_Version::supports_avx(), "");
3746   InstructionMark im(this);
3747   bool vector256 = true;
3748   assert(dst != xnoreg, "sanity");
3749   int dst_enc = dst->encoding();
3750   // swap src<->dst for encoding
3751   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3752   emit_int8(0x18);
3753   emit_operand(dst, src);
3754   // 0x01 - insert into upper 128 bits
3755   emit_int8(0x01);
3756 }
3757 
3758 void Assembler::vextractf128h(Address dst, XMMRegister src) {
3759   assert(VM_Version::supports_avx(), "");
3760   InstructionMark im(this);
3761   bool vector256 = true;
3762   assert(src != xnoreg, "sanity");
3763   int src_enc = src->encoding();
3764   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3765   emit_int8(0x19);
3766   emit_operand(src, dst);
3767   // 0x01 - extract from upper 128 bits
3768   emit_int8(0x01);
3769 }
3770 
3771 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3772   assert(VM_Version::supports_avx2(), "");
3773   bool vector256 = true;
3774   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3775   emit_int8(0x38);
3776   emit_int8((unsigned char)(0xC0 | encode));
3777   // 0x00 - insert into lower 128 bits
3778   // 0x01 - insert into upper 128 bits
3779   emit_int8(0x01);
3780 }
3781 
3782 void Assembler::vinserti128h(XMMRegister dst, Address src) {
3783   assert(VM_Version::supports_avx2(), "");
3784   InstructionMark im(this);
3785   bool vector256 = true;
3786   assert(dst != xnoreg, "sanity");
3787   int dst_enc = dst->encoding();
3788   // swap src<->dst for encoding
3789   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3790   emit_int8(0x38);
3791   emit_operand(dst, src);
3792   // 0x01 - insert into upper 128 bits
3793   emit_int8(0x01);
3794 }
3795 
3796 void Assembler::vextracti128h(Address dst, XMMRegister src) {
3797   assert(VM_Version::supports_avx2(), "");
3798   InstructionMark im(this);
3799   bool vector256 = true;
3800   assert(src != xnoreg, "sanity");
3801   int src_enc = src->encoding();
3802   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3803   emit_int8(0x39);
3804   emit_operand(src, dst);
3805   // 0x01 - extract from upper 128 bits
3806   emit_int8(0x01);
3807 }
3808 
3809 // duplicate 4-bytes integer data from src into 8 locations in dest
3810 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
3811   assert(VM_Version::supports_avx2(), "");
3812   bool vector256 = true;
3813   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3814   emit_int8(0x58);
3815   emit_int8((unsigned char)(0xC0 | encode));
3816 }
3817 
3818 // Carry-Less Multiplication Quadword
3819 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
3820   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
3821   bool vector256 = false;
3822   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3823   emit_int8(0x44);
3824   emit_int8((unsigned char)(0xC0 | encode));
3825   emit_int8((unsigned char)mask);
3826 }
3827 
3828 void Assembler::vzeroupper() {
3829   assert(VM_Version::supports_avx(), "");
3830   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3831   emit_int8(0x77);
3832 }
3833 
3834 
3835 #ifndef _LP64
3836 // 32bit only pieces of the assembler
3837 
3838 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3839   // NO PREFIX AS NEVER 64BIT
3840   InstructionMark im(this);
3841   emit_int8((unsigned char)0x81);
3842   emit_int8((unsigned char)(0xF8 | src1->encoding()));
3843   emit_data(imm32, rspec, 0);
3844 }
3845 
3846 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3847   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
3848   InstructionMark im(this);
3849   emit_int8((unsigned char)0x81);
3850   emit_operand(rdi, src1);
3851   emit_data(imm32, rspec, 0);
3852 }
3853 
3854 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
3855 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
3856 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
3857 void Assembler::cmpxchg8(Address adr) {
3858   InstructionMark im(this);
3859   emit_int8(0x0F);
3860   emit_int8((unsigned char)0xC7);
3861   emit_operand(rcx, adr);
3862 }
3863 
3864 void Assembler::decl(Register dst) {
3865   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3866  emit_int8(0x48 | dst->encoding());
3867 }
3868 
3869 #endif // _LP64
3870 
3871 // 64bit typically doesn't use the x87 but needs to for the trig funcs
3872 
3873 void Assembler::fabs() {
3874   emit_int8((unsigned char)0xD9);
3875   emit_int8((unsigned char)0xE1);
3876 }
3877 
3878 void Assembler::fadd(int i) {
3879   emit_farith(0xD8, 0xC0, i);
3880 }
3881 
3882 void Assembler::fadd_d(Address src) {
3883   InstructionMark im(this);
3884   emit_int8((unsigned char)0xDC);
3885   emit_operand32(rax, src);
3886 }
3887 
3888 void Assembler::fadd_s(Address src) {
3889   InstructionMark im(this);
3890   emit_int8((unsigned char)0xD8);
3891   emit_operand32(rax, src);
3892 }
3893 
3894 void Assembler::fadda(int i) {
3895   emit_farith(0xDC, 0xC0, i);
3896 }
3897 
3898 void Assembler::faddp(int i) {
3899   emit_farith(0xDE, 0xC0, i);
3900 }
3901 
3902 void Assembler::fchs() {
3903   emit_int8((unsigned char)0xD9);
3904   emit_int8((unsigned char)0xE0);
3905 }
3906 
3907 void Assembler::fcom(int i) {
3908   emit_farith(0xD8, 0xD0, i);
3909 }
3910 
3911 void Assembler::fcomp(int i) {
3912   emit_farith(0xD8, 0xD8, i);
3913 }
3914 
3915 void Assembler::fcomp_d(Address src) {
3916   InstructionMark im(this);
3917   emit_int8((unsigned char)0xDC);
3918   emit_operand32(rbx, src);
3919 }
3920 
3921 void Assembler::fcomp_s(Address src) {
3922   InstructionMark im(this);
3923   emit_int8((unsigned char)0xD8);
3924   emit_operand32(rbx, src);
3925 }
3926 
3927 void Assembler::fcompp() {
3928   emit_int8((unsigned char)0xDE);
3929   emit_int8((unsigned char)0xD9);
3930 }
3931 
3932 void Assembler::fcos() {
3933   emit_int8((unsigned char)0xD9);
3934   emit_int8((unsigned char)0xFF);
3935 }
3936 
3937 void Assembler::fdecstp() {
3938   emit_int8((unsigned char)0xD9);
3939   emit_int8((unsigned char)0xF6);
3940 }
3941 
3942 void Assembler::fdiv(int i) {
3943   emit_farith(0xD8, 0xF0, i);
3944 }
3945 
3946 void Assembler::fdiv_d(Address src) {
3947   InstructionMark im(this);
3948   emit_int8((unsigned char)0xDC);
3949   emit_operand32(rsi, src);
3950 }
3951 
3952 void Assembler::fdiv_s(Address src) {
3953   InstructionMark im(this);
3954   emit_int8((unsigned char)0xD8);
3955   emit_operand32(rsi, src);
3956 }
3957 
3958 void Assembler::fdiva(int i) {
3959   emit_farith(0xDC, 0xF8, i);
3960 }
3961 
3962 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
3963 //       is erroneous for some of the floating-point instructions below.
3964 
3965 void Assembler::fdivp(int i) {
3966   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
3967 }
3968 
3969 void Assembler::fdivr(int i) {
3970   emit_farith(0xD8, 0xF8, i);
3971 }
3972 
3973 void Assembler::fdivr_d(Address src) {
3974   InstructionMark im(this);
3975   emit_int8((unsigned char)0xDC);
3976   emit_operand32(rdi, src);
3977 }
3978 
3979 void Assembler::fdivr_s(Address src) {
3980   InstructionMark im(this);
3981   emit_int8((unsigned char)0xD8);
3982   emit_operand32(rdi, src);
3983 }
3984 
3985 void Assembler::fdivra(int i) {
3986   emit_farith(0xDC, 0xF0, i);
3987 }
3988 
3989 void Assembler::fdivrp(int i) {
3990   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
3991 }
3992 
3993 void Assembler::ffree(int i) {
3994   emit_farith(0xDD, 0xC0, i);
3995 }
3996 
3997 void Assembler::fild_d(Address adr) {
3998   InstructionMark im(this);
3999   emit_int8((unsigned char)0xDF);
4000   emit_operand32(rbp, adr);
4001 }
4002 
4003 void Assembler::fild_s(Address adr) {
4004   InstructionMark im(this);
4005   emit_int8((unsigned char)0xDB);
4006   emit_operand32(rax, adr);
4007 }
4008 
4009 void Assembler::fincstp() {
4010   emit_int8((unsigned char)0xD9);
4011   emit_int8((unsigned char)0xF7);
4012 }
4013 
4014 void Assembler::finit() {
4015   emit_int8((unsigned char)0x9B);
4016   emit_int8((unsigned char)0xDB);
4017   emit_int8((unsigned char)0xE3);
4018 }
4019 
4020 void Assembler::fist_s(Address adr) {
4021   InstructionMark im(this);
4022   emit_int8((unsigned char)0xDB);
4023   emit_operand32(rdx, adr);
4024 }
4025 
4026 void Assembler::fistp_d(Address adr) {
4027   InstructionMark im(this);
4028   emit_int8((unsigned char)0xDF);
4029   emit_operand32(rdi, adr);
4030 }
4031 
4032 void Assembler::fistp_s(Address adr) {
4033   InstructionMark im(this);
4034   emit_int8((unsigned char)0xDB);
4035   emit_operand32(rbx, adr);
4036 }
4037 
4038 void Assembler::fld1() {
4039   emit_int8((unsigned char)0xD9);
4040   emit_int8((unsigned char)0xE8);
4041 }
4042 
4043 void Assembler::fld_d(Address adr) {
4044   InstructionMark im(this);
4045   emit_int8((unsigned char)0xDD);
4046   emit_operand32(rax, adr);
4047 }
4048 
4049 void Assembler::fld_s(Address adr) {
4050   InstructionMark im(this);
4051   emit_int8((unsigned char)0xD9);
4052   emit_operand32(rax, adr);
4053 }
4054 
4055 
4056 void Assembler::fld_s(int index) {
4057   emit_farith(0xD9, 0xC0, index);
4058 }
4059 
4060 void Assembler::fld_x(Address adr) {
4061   InstructionMark im(this);
4062   emit_int8((unsigned char)0xDB);
4063   emit_operand32(rbp, adr);
4064 }
4065 
4066 void Assembler::fldcw(Address src) {
4067   InstructionMark im(this);
4068   emit_int8((unsigned char)0xD9);
4069   emit_operand32(rbp, src);
4070 }
4071 
4072 void Assembler::fldenv(Address src) {
4073   InstructionMark im(this);
4074   emit_int8((unsigned char)0xD9);
4075   emit_operand32(rsp, src);
4076 }
4077 
4078 void Assembler::fldlg2() {
4079   emit_int8((unsigned char)0xD9);
4080   emit_int8((unsigned char)0xEC);
4081 }
4082 
4083 void Assembler::fldln2() {
4084   emit_int8((unsigned char)0xD9);
4085   emit_int8((unsigned char)0xED);
4086 }
4087 
4088 void Assembler::fldz() {
4089   emit_int8((unsigned char)0xD9);
4090   emit_int8((unsigned char)0xEE);
4091 }
4092 
4093 void Assembler::flog() {
4094   fldln2();
4095   fxch();
4096   fyl2x();
4097 }
4098 
4099 void Assembler::flog10() {
4100   fldlg2();
4101   fxch();
4102   fyl2x();
4103 }
4104 
4105 void Assembler::fmul(int i) {
4106   emit_farith(0xD8, 0xC8, i);
4107 }
4108 
4109 void Assembler::fmul_d(Address src) {
4110   InstructionMark im(this);
4111   emit_int8((unsigned char)0xDC);
4112   emit_operand32(rcx, src);
4113 }
4114 
4115 void Assembler::fmul_s(Address src) {
4116   InstructionMark im(this);
4117   emit_int8((unsigned char)0xD8);
4118   emit_operand32(rcx, src);
4119 }
4120 
4121 void Assembler::fmula(int i) {
4122   emit_farith(0xDC, 0xC8, i);
4123 }
4124 
4125 void Assembler::fmulp(int i) {
4126   emit_farith(0xDE, 0xC8, i);
4127 }
4128 
4129 void Assembler::fnsave(Address dst) {
4130   InstructionMark im(this);
4131   emit_int8((unsigned char)0xDD);
4132   emit_operand32(rsi, dst);
4133 }
4134 
4135 void Assembler::fnstcw(Address src) {
4136   InstructionMark im(this);
4137   emit_int8((unsigned char)0x9B);
4138   emit_int8((unsigned char)0xD9);
4139   emit_operand32(rdi, src);
4140 }
4141 
4142 void Assembler::fnstsw_ax() {
4143   emit_int8((unsigned char)0xDF);
4144   emit_int8((unsigned char)0xE0);
4145 }
4146 
4147 void Assembler::fprem() {
4148   emit_int8((unsigned char)0xD9);
4149   emit_int8((unsigned char)0xF8);
4150 }
4151 
4152 void Assembler::fprem1() {
4153   emit_int8((unsigned char)0xD9);
4154   emit_int8((unsigned char)0xF5);
4155 }
4156 
4157 void Assembler::frstor(Address src) {
4158   InstructionMark im(this);
4159   emit_int8((unsigned char)0xDD);
4160   emit_operand32(rsp, src);
4161 }
4162 
4163 void Assembler::fsin() {
4164   emit_int8((unsigned char)0xD9);
4165   emit_int8((unsigned char)0xFE);
4166 }
4167 
4168 void Assembler::fsqrt() {
4169   emit_int8((unsigned char)0xD9);
4170   emit_int8((unsigned char)0xFA);
4171 }
4172 
4173 void Assembler::fst_d(Address adr) {
4174   InstructionMark im(this);
4175   emit_int8((unsigned char)0xDD);
4176   emit_operand32(rdx, adr);
4177 }
4178 
4179 void Assembler::fst_s(Address adr) {
4180   InstructionMark im(this);
4181   emit_int8((unsigned char)0xD9);
4182   emit_operand32(rdx, adr);
4183 }
4184 
4185 void Assembler::fstp_d(Address adr) {
4186   InstructionMark im(this);
4187   emit_int8((unsigned char)0xDD);
4188   emit_operand32(rbx, adr);
4189 }
4190 
4191 void Assembler::fstp_d(int index) {
4192   emit_farith(0xDD, 0xD8, index);
4193 }
4194 
4195 void Assembler::fstp_s(Address adr) {
4196   InstructionMark im(this);
4197   emit_int8((unsigned char)0xD9);
4198   emit_operand32(rbx, adr);
4199 }
4200 
4201 void Assembler::fstp_x(Address adr) {
4202   InstructionMark im(this);
4203   emit_int8((unsigned char)0xDB);
4204   emit_operand32(rdi, adr);
4205 }
4206 
4207 void Assembler::fsub(int i) {
4208   emit_farith(0xD8, 0xE0, i);
4209 }
4210 
4211 void Assembler::fsub_d(Address src) {
4212   InstructionMark im(this);
4213   emit_int8((unsigned char)0xDC);
4214   emit_operand32(rsp, src);
4215 }
4216 
4217 void Assembler::fsub_s(Address src) {
4218   InstructionMark im(this);
4219   emit_int8((unsigned char)0xD8);
4220   emit_operand32(rsp, src);
4221 }
4222 
4223 void Assembler::fsuba(int i) {
4224   emit_farith(0xDC, 0xE8, i);
4225 }
4226 
4227 void Assembler::fsubp(int i) {
4228   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
4229 }
4230 
4231 void Assembler::fsubr(int i) {
4232   emit_farith(0xD8, 0xE8, i);
4233 }
4234 
4235 void Assembler::fsubr_d(Address src) {
4236   InstructionMark im(this);
4237   emit_int8((unsigned char)0xDC);
4238   emit_operand32(rbp, src);
4239 }
4240 
4241 void Assembler::fsubr_s(Address src) {
4242   InstructionMark im(this);
4243   emit_int8((unsigned char)0xD8);
4244   emit_operand32(rbp, src);
4245 }
4246 
4247 void Assembler::fsubra(int i) {
4248   emit_farith(0xDC, 0xE0, i);
4249 }
4250 
4251 void Assembler::fsubrp(int i) {
4252   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
4253 }
4254 
4255 void Assembler::ftan() {
4256   emit_int8((unsigned char)0xD9);
4257   emit_int8((unsigned char)0xF2);
4258   emit_int8((unsigned char)0xDD);
4259   emit_int8((unsigned char)0xD8);
4260 }
4261 
4262 void Assembler::ftst() {
4263   emit_int8((unsigned char)0xD9);
4264   emit_int8((unsigned char)0xE4);
4265 }
4266 
4267 void Assembler::fucomi(int i) {
4268   // make sure the instruction is supported (introduced for P6, together with cmov)
4269   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4270   emit_farith(0xDB, 0xE8, i);
4271 }
4272 
4273 void Assembler::fucomip(int i) {
4274   // make sure the instruction is supported (introduced for P6, together with cmov)
4275   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4276   emit_farith(0xDF, 0xE8, i);
4277 }
4278 
4279 void Assembler::fwait() {
4280   emit_int8((unsigned char)0x9B);
4281 }
4282 
4283 void Assembler::fxch(int i) {
4284   emit_farith(0xD9, 0xC8, i);
4285 }
4286 
4287 void Assembler::fyl2x() {
4288   emit_int8((unsigned char)0xD9);
4289   emit_int8((unsigned char)0xF1);
4290 }
4291 
4292 void Assembler::frndint() {
4293   emit_int8((unsigned char)0xD9);
4294   emit_int8((unsigned char)0xFC);
4295 }
4296 
4297 void Assembler::f2xm1() {
4298   emit_int8((unsigned char)0xD9);
4299   emit_int8((unsigned char)0xF0);
4300 }
4301 
4302 void Assembler::fldl2e() {
4303   emit_int8((unsigned char)0xD9);
4304   emit_int8((unsigned char)0xEA);
4305 }
4306 
4307 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
4308 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
4309 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
4310 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
4311 
4312 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
4313 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4314   if (pre > 0) {
4315     emit_int8(simd_pre[pre]);
4316   }
4317   if (rex_w) {
4318     prefixq(adr, xreg);
4319   } else {
4320     prefix(adr, xreg);
4321   }
4322   if (opc > 0) {
4323     emit_int8(0x0F);
4324     int opc2 = simd_opc[opc];
4325     if (opc2 > 0) {
4326       emit_int8(opc2);
4327     }
4328   }
4329 }
4330 
4331 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4332   if (pre > 0) {
4333     emit_int8(simd_pre[pre]);
4334   }
4335   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
4336                           prefix_and_encode(dst_enc, src_enc);
4337   if (opc > 0) {
4338     emit_int8(0x0F);
4339     int opc2 = simd_opc[opc];
4340     if (opc2 > 0) {
4341       emit_int8(opc2);
4342     }
4343   }
4344   return encode;
4345 }
4346 
4347 
4348 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
4349   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
4350     prefix(VEX_3bytes);
4351 
4352     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
4353     byte1 = (~byte1) & 0xE0;
4354     byte1 |= opc;
4355     emit_int8(byte1);
4356 
4357     int byte2 = ((~nds_enc) & 0xf) << 3;
4358     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4359     emit_int8(byte2);
4360   } else {
4361     prefix(VEX_2bytes);
4362 
4363     int byte1 = vex_r ? VEX_R : 0;
4364     byte1 = (~byte1) & 0x80;
4365     byte1 |= ((~nds_enc) & 0xf) << 3;
4366     byte1 |= (vector256 ? 4 : 0) | pre;
4367     emit_int8(byte1);
4368   }
4369 }
4370 
4371 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
4372   bool vex_r = (xreg_enc >= 8);
4373   bool vex_b = adr.base_needs_rex();
4374   bool vex_x = adr.index_needs_rex();
4375   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4376 }
4377 
4378 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
4379   bool vex_r = (dst_enc >= 8);
4380   bool vex_b = (src_enc >= 8);
4381   bool vex_x = false;
4382   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4383   return (((dst_enc & 7) << 3) | (src_enc & 7));
4384 }
4385 
4386 
4387 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4388   if (UseAVX > 0) {
4389     int xreg_enc = xreg->encoding();
4390     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
4391     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
4392   } else {
4393     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
4394     rex_prefix(adr, xreg, pre, opc, rex_w);
4395   }
4396 }
4397 
4398 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4399   int dst_enc = dst->encoding();
4400   int src_enc = src->encoding();
4401   if (UseAVX > 0) {
4402     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4403     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
4404   } else {
4405     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
4406     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
4407   }
4408 }
4409 
4410 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4411   InstructionMark im(this);
4412   simd_prefix(dst, dst, src, pre);
4413   emit_int8(opcode);
4414   emit_operand(dst, src);
4415 }
4416 
4417 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4418   int encode = simd_prefix_and_encode(dst, dst, src, pre);
4419   emit_int8(opcode);
4420   emit_int8((unsigned char)(0xC0 | encode));
4421 }
4422 
4423 // Versions with no second source register (non-destructive source).
4424 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4425   InstructionMark im(this);
4426   simd_prefix(dst, xnoreg, src, pre);
4427   emit_int8(opcode);
4428   emit_operand(dst, src);
4429 }
4430 
4431 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4432   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4433   emit_int8(opcode);
4434   emit_int8((unsigned char)(0xC0 | encode));
4435 }
4436 
4437 // 3-operands AVX instructions
4438 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4439                                Address src, VexSimdPrefix pre, bool vector256) {
4440   InstructionMark im(this);
4441   vex_prefix(dst, nds, src, pre, vector256);
4442   emit_int8(opcode);
4443   emit_operand(dst, src);
4444 }
4445 
4446 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4447                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
4448   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4449   emit_int8(opcode);
4450   emit_int8((unsigned char)(0xC0 | encode));
4451 }
4452 
4453 #ifndef _LP64
4454 
4455 void Assembler::incl(Register dst) {
4456   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4457   emit_int8(0x40 | dst->encoding());
4458 }
4459 
4460 void Assembler::lea(Register dst, Address src) {
4461   leal(dst, src);
4462 }
4463 
4464 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4465   InstructionMark im(this);
4466   emit_int8((unsigned char)0xC7);
4467   emit_operand(rax, dst);
4468   emit_data((int)imm32, rspec, 0);
4469 }
4470 
4471 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4472   InstructionMark im(this);
4473   int encode = prefix_and_encode(dst->encoding());
4474   emit_int8((unsigned char)(0xB8 | encode));
4475   emit_data((int)imm32, rspec, 0);
4476 }
4477 
4478 void Assembler::popa() { // 32bit
4479   emit_int8(0x61);
4480 }
4481 
4482 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
4483   InstructionMark im(this);
4484   emit_int8(0x68);
4485   emit_data(imm32, rspec, 0);
4486 }
4487 
4488 void Assembler::pusha() { // 32bit
4489   emit_int8(0x60);
4490 }
4491 
4492 void Assembler::set_byte_if_not_zero(Register dst) {
4493   emit_int8(0x0F);
4494   emit_int8((unsigned char)0x95);
4495   emit_int8((unsigned char)(0xE0 | dst->encoding()));
4496 }
4497 
4498 void Assembler::shldl(Register dst, Register src) {
4499   emit_int8(0x0F);
4500   emit_int8((unsigned char)0xA5);
4501   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4502 }
4503 
4504 void Assembler::shrdl(Register dst, Register src) {
4505   emit_int8(0x0F);
4506   emit_int8((unsigned char)0xAD);
4507   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4508 }
4509 
4510 #else // LP64
4511 
4512 void Assembler::set_byte_if_not_zero(Register dst) {
4513   int enc = prefix_and_encode(dst->encoding(), true);
4514   emit_int8(0x0F);
4515   emit_int8((unsigned char)0x95);
4516   emit_int8((unsigned char)(0xE0 | enc));
4517 }
4518 
4519 // 64bit only pieces of the assembler
4520 // This should only be used by 64bit instructions that can use rip-relative
4521 // it cannot be used by instructions that want an immediate value.
4522 
4523 bool Assembler::reachable(AddressLiteral adr) {
4524   int64_t disp;
4525   // None will force a 64bit literal to the code stream. Likely a placeholder
4526   // for something that will be patched later and we need to certain it will
4527   // always be reachable.
4528   if (adr.reloc() == relocInfo::none) {
4529     return false;
4530   }
4531   if (adr.reloc() == relocInfo::internal_word_type) {
4532     // This should be rip relative and easily reachable.
4533     return true;
4534   }
4535   if (adr.reloc() == relocInfo::virtual_call_type ||
4536       adr.reloc() == relocInfo::opt_virtual_call_type ||
4537       adr.reloc() == relocInfo::static_call_type ||
4538       adr.reloc() == relocInfo::static_stub_type ) {
4539     // This should be rip relative within the code cache and easily
4540     // reachable until we get huge code caches. (At which point
4541     // ic code is going to have issues).
4542     return true;
4543   }
4544   if (adr.reloc() != relocInfo::external_word_type &&
4545       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
4546       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
4547       adr.reloc() != relocInfo::runtime_call_type ) {
4548     return false;
4549   }
4550 
4551   // Stress the correction code
4552   if (ForceUnreachable) {
4553     // Must be runtimecall reloc, see if it is in the codecache
4554     // Flipping stuff in the codecache to be unreachable causes issues
4555     // with things like inline caches where the additional instructions
4556     // are not handled.
4557     if (CodeCache::find_blob(adr._target) == NULL) {
4558       return false;
4559     }
4560   }
4561   // For external_word_type/runtime_call_type if it is reachable from where we
4562   // are now (possibly a temp buffer) and where we might end up
4563   // anywhere in the codeCache then we are always reachable.
4564   // This would have to change if we ever save/restore shared code
4565   // to be more pessimistic.
4566   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
4567   if (!is_simm32(disp)) return false;
4568   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
4569   if (!is_simm32(disp)) return false;
4570 
4571   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4572 
4573   // Because rip relative is a disp + address_of_next_instruction and we
4574   // don't know the value of address_of_next_instruction we apply a fudge factor
4575   // to make sure we will be ok no matter the size of the instruction we get placed into.
4576   // We don't have to fudge the checks above here because they are already worst case.
4577 
4578   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
4579   // + 4 because better safe than sorry.
4580   const int fudge = 12 + 4;
4581   if (disp < 0) {
4582     disp -= fudge;
4583   } else {
4584     disp += fudge;
4585   }
4586   return is_simm32(disp);
4587 }
4588 
4589 // Check if the polling page is not reachable from the code cache using rip-relative
4590 // addressing.
4591 bool Assembler::is_polling_page_far() {
4592   intptr_t addr = (intptr_t)os::get_polling_page();
4593   return ForceUnreachable ||
4594          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4595          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
4596 }
4597 
4598 void Assembler::emit_data64(jlong data,
4599                             relocInfo::relocType rtype,
4600                             int format) {
4601   if (rtype == relocInfo::none) {
4602     emit_int64(data);
4603   } else {
4604     emit_data64(data, Relocation::spec_simple(rtype), format);
4605   }
4606 }
4607 
4608 void Assembler::emit_data64(jlong data,
4609                             RelocationHolder const& rspec,
4610                             int format) {
4611   assert(imm_operand == 0, "default format must be immediate in this file");
4612   assert(imm_operand == format, "must be immediate");
4613   assert(inst_mark() != NULL, "must be inside InstructionMark");
4614   // Do not use AbstractAssembler::relocate, which is not intended for
4615   // embedded words.  Instead, relocate to the enclosing instruction.
4616   code_section()->relocate(inst_mark(), rspec, format);
4617 #ifdef ASSERT
4618   check_relocation(rspec, format);
4619 #endif
4620   emit_int64(data);
4621 }
4622 
4623 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
4624   if (reg_enc >= 8) {
4625     prefix(REX_B);
4626     reg_enc -= 8;
4627   } else if (byteinst && reg_enc >= 4) {
4628     prefix(REX);
4629   }
4630   return reg_enc;
4631 }
4632 
4633 int Assembler::prefixq_and_encode(int reg_enc) {
4634   if (reg_enc < 8) {
4635     prefix(REX_W);
4636   } else {
4637     prefix(REX_WB);
4638     reg_enc -= 8;
4639   }
4640   return reg_enc;
4641 }
4642 
4643 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
4644   if (dst_enc < 8) {
4645     if (src_enc >= 8) {
4646       prefix(REX_B);
4647       src_enc -= 8;
4648     } else if (byteinst && src_enc >= 4) {
4649       prefix(REX);
4650     }
4651   } else {
4652     if (src_enc < 8) {
4653       prefix(REX_R);
4654     } else {
4655       prefix(REX_RB);
4656       src_enc -= 8;
4657     }
4658     dst_enc -= 8;
4659   }
4660   return dst_enc << 3 | src_enc;
4661 }
4662 
4663 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
4664   if (dst_enc < 8) {
4665     if (src_enc < 8) {
4666       prefix(REX_W);
4667     } else {
4668       prefix(REX_WB);
4669       src_enc -= 8;
4670     }
4671   } else {
4672     if (src_enc < 8) {
4673       prefix(REX_WR);
4674     } else {
4675       prefix(REX_WRB);
4676       src_enc -= 8;
4677     }
4678     dst_enc -= 8;
4679   }
4680   return dst_enc << 3 | src_enc;
4681 }
4682 
4683 void Assembler::prefix(Register reg) {
4684   if (reg->encoding() >= 8) {
4685     prefix(REX_B);
4686   }
4687 }
4688 
4689 void Assembler::prefix(Address adr) {
4690   if (adr.base_needs_rex()) {
4691     if (adr.index_needs_rex()) {
4692       prefix(REX_XB);
4693     } else {
4694       prefix(REX_B);
4695     }
4696   } else {
4697     if (adr.index_needs_rex()) {
4698       prefix(REX_X);
4699     }
4700   }
4701 }
4702 
4703 void Assembler::prefixq(Address adr) {
4704   if (adr.base_needs_rex()) {
4705     if (adr.index_needs_rex()) {
4706       prefix(REX_WXB);
4707     } else {
4708       prefix(REX_WB);
4709     }
4710   } else {
4711     if (adr.index_needs_rex()) {
4712       prefix(REX_WX);
4713     } else {
4714       prefix(REX_W);
4715     }
4716   }
4717 }
4718 
4719 
4720 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
4721   if (reg->encoding() < 8) {
4722     if (adr.base_needs_rex()) {
4723       if (adr.index_needs_rex()) {
4724         prefix(REX_XB);
4725       } else {
4726         prefix(REX_B);
4727       }
4728     } else {
4729       if (adr.index_needs_rex()) {
4730         prefix(REX_X);
4731       } else if (byteinst && reg->encoding() >= 4 ) {
4732         prefix(REX);
4733       }
4734     }
4735   } else {
4736     if (adr.base_needs_rex()) {
4737       if (adr.index_needs_rex()) {
4738         prefix(REX_RXB);
4739       } else {
4740         prefix(REX_RB);
4741       }
4742     } else {
4743       if (adr.index_needs_rex()) {
4744         prefix(REX_RX);
4745       } else {
4746         prefix(REX_R);
4747       }
4748     }
4749   }
4750 }
4751 
4752 void Assembler::prefixq(Address adr, Register src) {
4753   if (src->encoding() < 8) {
4754     if (adr.base_needs_rex()) {
4755       if (adr.index_needs_rex()) {
4756         prefix(REX_WXB);
4757       } else {
4758         prefix(REX_WB);
4759       }
4760     } else {
4761       if (adr.index_needs_rex()) {
4762         prefix(REX_WX);
4763       } else {
4764         prefix(REX_W);
4765       }
4766     }
4767   } else {
4768     if (adr.base_needs_rex()) {
4769       if (adr.index_needs_rex()) {
4770         prefix(REX_WRXB);
4771       } else {
4772         prefix(REX_WRB);
4773       }
4774     } else {
4775       if (adr.index_needs_rex()) {
4776         prefix(REX_WRX);
4777       } else {
4778         prefix(REX_WR);
4779       }
4780     }
4781   }
4782 }
4783 
4784 void Assembler::prefix(Address adr, XMMRegister reg) {
4785   if (reg->encoding() < 8) {
4786     if (adr.base_needs_rex()) {
4787       if (adr.index_needs_rex()) {
4788         prefix(REX_XB);
4789       } else {
4790         prefix(REX_B);
4791       }
4792     } else {
4793       if (adr.index_needs_rex()) {
4794         prefix(REX_X);
4795       }
4796     }
4797   } else {
4798     if (adr.base_needs_rex()) {
4799       if (adr.index_needs_rex()) {
4800         prefix(REX_RXB);
4801       } else {
4802         prefix(REX_RB);
4803       }
4804     } else {
4805       if (adr.index_needs_rex()) {
4806         prefix(REX_RX);
4807       } else {
4808         prefix(REX_R);
4809       }
4810     }
4811   }
4812 }
4813 
4814 void Assembler::prefixq(Address adr, XMMRegister src) {
4815   if (src->encoding() < 8) {
4816     if (adr.base_needs_rex()) {
4817       if (adr.index_needs_rex()) {
4818         prefix(REX_WXB);
4819       } else {
4820         prefix(REX_WB);
4821       }
4822     } else {
4823       if (adr.index_needs_rex()) {
4824         prefix(REX_WX);
4825       } else {
4826         prefix(REX_W);
4827       }
4828     }
4829   } else {
4830     if (adr.base_needs_rex()) {
4831       if (adr.index_needs_rex()) {
4832         prefix(REX_WRXB);
4833       } else {
4834         prefix(REX_WRB);
4835       }
4836     } else {
4837       if (adr.index_needs_rex()) {
4838         prefix(REX_WRX);
4839       } else {
4840         prefix(REX_WR);
4841       }
4842     }
4843   }
4844 }
4845 
4846 void Assembler::adcq(Register dst, int32_t imm32) {
4847   (void) prefixq_and_encode(dst->encoding());
4848   emit_arith(0x81, 0xD0, dst, imm32);
4849 }
4850 
4851 void Assembler::adcq(Register dst, Address src) {
4852   InstructionMark im(this);
4853   prefixq(src, dst);
4854   emit_int8(0x13);
4855   emit_operand(dst, src);
4856 }
4857 
4858 void Assembler::adcq(Register dst, Register src) {
4859   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4860   emit_arith(0x13, 0xC0, dst, src);
4861 }
4862 
4863 void Assembler::addq(Address dst, int32_t imm32) {
4864   InstructionMark im(this);
4865   prefixq(dst);
4866   emit_arith_operand(0x81, rax, dst,imm32);
4867 }
4868 
4869 void Assembler::addq(Address dst, Register src) {
4870   InstructionMark im(this);
4871   prefixq(dst, src);
4872   emit_int8(0x01);
4873   emit_operand(src, dst);
4874 }
4875 
4876 void Assembler::addq(Register dst, int32_t imm32) {
4877   (void) prefixq_and_encode(dst->encoding());
4878   emit_arith(0x81, 0xC0, dst, imm32);
4879 }
4880 
4881 void Assembler::addq(Register dst, Address src) {
4882   InstructionMark im(this);
4883   prefixq(src, dst);
4884   emit_int8(0x03);
4885   emit_operand(dst, src);
4886 }
4887 
4888 void Assembler::addq(Register dst, Register src) {
4889   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4890   emit_arith(0x03, 0xC0, dst, src);
4891 }
4892 
4893 void Assembler::andq(Address dst, int32_t imm32) {
4894   InstructionMark im(this);
4895   prefixq(dst);
4896   emit_int8((unsigned char)0x81);
4897   emit_operand(rsp, dst, 4);
4898   emit_int32(imm32);
4899 }
4900 
4901 void Assembler::andq(Register dst, int32_t imm32) {
4902   (void) prefixq_and_encode(dst->encoding());
4903   emit_arith(0x81, 0xE0, dst, imm32);
4904 }
4905 
4906 void Assembler::andq(Register dst, Address src) {
4907   InstructionMark im(this);
4908   prefixq(src, dst);
4909   emit_int8(0x23);
4910   emit_operand(dst, src);
4911 }
4912 
4913 void Assembler::andq(Register dst, Register src) {
4914   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4915   emit_arith(0x23, 0xC0, dst, src);
4916 }
4917 
4918 void Assembler::andnq(Register dst, Register src1, Register src2) {
4919   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4920   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
4921   emit_int8((unsigned char)0xF2);
4922   emit_int8((unsigned char)(0xC0 | encode));
4923 }
4924 
4925 void Assembler::andnq(Register dst, Register src1, Address src2) {
4926   InstructionMark im(this);
4927   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4928   vex_prefix_0F38_q(dst, src1, src2);
4929   emit_int8((unsigned char)0xF2);
4930   emit_operand(dst, src2);
4931 }
4932 
4933 void Assembler::bsfq(Register dst, Register src) {
4934   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4935   emit_int8(0x0F);
4936   emit_int8((unsigned char)0xBC);
4937   emit_int8((unsigned char)(0xC0 | encode));
4938 }
4939 
4940 void Assembler::bsrq(Register dst, Register src) {
4941   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
4942   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4943   emit_int8(0x0F);
4944   emit_int8((unsigned char)0xBD);
4945   emit_int8((unsigned char)(0xC0 | encode));
4946 }
4947 
4948 void Assembler::bswapq(Register reg) {
4949   int encode = prefixq_and_encode(reg->encoding());
4950   emit_int8(0x0F);
4951   emit_int8((unsigned char)(0xC8 | encode));
4952 }
4953 
4954 void Assembler::blsiq(Register dst, Register src) {
4955   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4956   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
4957   emit_int8((unsigned char)0xF3);
4958   emit_int8((unsigned char)(0xC0 | encode));
4959 }
4960 
4961 void Assembler::blsiq(Register dst, Address src) {
4962   InstructionMark im(this);
4963   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4964   vex_prefix_0F38_q(rbx, dst, src);
4965   emit_int8((unsigned char)0xF3);
4966   emit_operand(rbx, src);
4967 }
4968 
4969 void Assembler::blsmskq(Register dst, Register src) {
4970   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4971   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
4972   emit_int8((unsigned char)0xF3);
4973   emit_int8((unsigned char)(0xC0 | encode));
4974 }
4975 
4976 void Assembler::blsmskq(Register dst, Address src) {
4977   InstructionMark im(this);
4978   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4979   vex_prefix_0F38_q(rdx, dst, src);
4980   emit_int8((unsigned char)0xF3);
4981   emit_operand(rdx, src);
4982 }
4983 
4984 void Assembler::blsrq(Register dst, Register src) {
4985   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4986   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
4987   emit_int8((unsigned char)0xF3);
4988   emit_int8((unsigned char)(0xC0 | encode));
4989 }
4990 
4991 void Assembler::blsrq(Register dst, Address src) {
4992   InstructionMark im(this);
4993   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4994   vex_prefix_0F38_q(rcx, dst, src);
4995   emit_int8((unsigned char)0xF3);
4996   emit_operand(rcx, src);
4997 }
4998 
4999 void Assembler::cdqq() {
5000   prefix(REX_W);
5001   emit_int8((unsigned char)0x99);
5002 }
5003 
5004 void Assembler::clflush(Address adr) {
5005   prefix(adr);
5006   emit_int8(0x0F);
5007   emit_int8((unsigned char)0xAE);
5008   emit_operand(rdi, adr);
5009 }
5010 
5011 void Assembler::cmovq(Condition cc, Register dst, Register src) {
5012   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5013   emit_int8(0x0F);
5014   emit_int8(0x40 | cc);
5015   emit_int8((unsigned char)(0xC0 | encode));
5016 }
5017 
5018 void Assembler::cmovq(Condition cc, Register dst, Address src) {
5019   InstructionMark im(this);
5020   prefixq(src, dst);
5021   emit_int8(0x0F);
5022   emit_int8(0x40 | cc);
5023   emit_operand(dst, src);
5024 }
5025 
5026 void Assembler::cmpq(Address dst, int32_t imm32) {
5027   InstructionMark im(this);
5028   prefixq(dst);
5029   emit_int8((unsigned char)0x81);
5030   emit_operand(rdi, dst, 4);
5031   emit_int32(imm32);
5032 }
5033 
5034 void Assembler::cmpq(Register dst, int32_t imm32) {
5035   (void) prefixq_and_encode(dst->encoding());
5036   emit_arith(0x81, 0xF8, dst, imm32);
5037 }
5038 
5039 void Assembler::cmpq(Address dst, Register src) {
5040   InstructionMark im(this);
5041   prefixq(dst, src);
5042   emit_int8(0x3B);
5043   emit_operand(src, dst);
5044 }
5045 
5046 void Assembler::cmpq(Register dst, Register src) {
5047   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5048   emit_arith(0x3B, 0xC0, dst, src);
5049 }
5050 
5051 void Assembler::cmpq(Register dst, Address  src) {
5052   InstructionMark im(this);
5053   prefixq(src, dst);
5054   emit_int8(0x3B);
5055   emit_operand(dst, src);
5056 }
5057 
5058 void Assembler::cmpxchgq(Register reg, Address adr) {
5059   InstructionMark im(this);
5060   prefixq(adr, reg);
5061   emit_int8(0x0F);
5062   emit_int8((unsigned char)0xB1);
5063   emit_operand(reg, adr);
5064 }
5065 
5066 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
5067   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5068   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
5069   emit_int8(0x2A);
5070   emit_int8((unsigned char)(0xC0 | encode));
5071 }
5072 
5073 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
5074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5075   InstructionMark im(this);
5076   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
5077   emit_int8(0x2A);
5078   emit_operand(dst, src);
5079 }
5080 
5081 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
5082   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5083   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
5084   emit_int8(0x2A);
5085   emit_int8((unsigned char)(0xC0 | encode));
5086 }
5087 
5088 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
5089   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5090   InstructionMark im(this);
5091   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
5092   emit_int8(0x2A);
5093   emit_operand(dst, src);
5094 }
5095 
5096 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
5097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5098   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
5099   emit_int8(0x2C);
5100   emit_int8((unsigned char)(0xC0 | encode));
5101 }
5102 
5103 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
5104   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5105   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
5106   emit_int8(0x2C);
5107   emit_int8((unsigned char)(0xC0 | encode));
5108 }
5109 
5110 void Assembler::decl(Register dst) {
5111   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5112   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
5113   int encode = prefix_and_encode(dst->encoding());
5114   emit_int8((unsigned char)0xFF);
5115   emit_int8((unsigned char)(0xC8 | encode));
5116 }
5117 
5118 void Assembler::decq(Register dst) {
5119   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5120   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5121   int encode = prefixq_and_encode(dst->encoding());
5122   emit_int8((unsigned char)0xFF);
5123   emit_int8(0xC8 | encode);
5124 }
5125 
5126 void Assembler::decq(Address dst) {
5127   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5128   InstructionMark im(this);
5129   prefixq(dst);
5130   emit_int8((unsigned char)0xFF);
5131   emit_operand(rcx, dst);
5132 }
5133 
5134 void Assembler::fxrstor(Address src) {
5135   prefixq(src);
5136   emit_int8(0x0F);
5137   emit_int8((unsigned char)0xAE);
5138   emit_operand(as_Register(1), src);
5139 }
5140 
5141 void Assembler::fxsave(Address dst) {
5142   prefixq(dst);
5143   emit_int8(0x0F);
5144   emit_int8((unsigned char)0xAE);
5145   emit_operand(as_Register(0), dst);
5146 }
5147 
5148 void Assembler::idivq(Register src) {
5149   int encode = prefixq_and_encode(src->encoding());
5150   emit_int8((unsigned char)0xF7);
5151   emit_int8((unsigned char)(0xF8 | encode));
5152 }
5153 
5154 void Assembler::imulq(Register dst, Register src) {
5155   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5156   emit_int8(0x0F);
5157   emit_int8((unsigned char)0xAF);
5158   emit_int8((unsigned char)(0xC0 | encode));
5159 }
5160 
5161 void Assembler::imulq(Register dst, Register src, int value) {
5162   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5163   if (is8bit(value)) {
5164     emit_int8(0x6B);
5165     emit_int8((unsigned char)(0xC0 | encode));
5166     emit_int8(value & 0xFF);
5167   } else {
5168     emit_int8(0x69);
5169     emit_int8((unsigned char)(0xC0 | encode));
5170     emit_int32(value);
5171   }
5172 }
5173 
5174 void Assembler::imulq(Register dst, Address src) {
5175   InstructionMark im(this);
5176   prefixq(src, dst);
5177   emit_int8(0x0F);
5178   emit_int8((unsigned char) 0xAF);
5179   emit_operand(dst, src);
5180 }
5181 
5182 void Assembler::incl(Register dst) {
5183   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5184   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5185   int encode = prefix_and_encode(dst->encoding());
5186   emit_int8((unsigned char)0xFF);
5187   emit_int8((unsigned char)(0xC0 | encode));
5188 }
5189 
5190 void Assembler::incq(Register dst) {
5191   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5192   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5193   int encode = prefixq_and_encode(dst->encoding());
5194   emit_int8((unsigned char)0xFF);
5195   emit_int8((unsigned char)(0xC0 | encode));
5196 }
5197 
5198 void Assembler::incq(Address dst) {
5199   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5200   InstructionMark im(this);
5201   prefixq(dst);
5202   emit_int8((unsigned char)0xFF);
5203   emit_operand(rax, dst);
5204 }
5205 
5206 void Assembler::lea(Register dst, Address src) {
5207   leaq(dst, src);
5208 }
5209 
5210 void Assembler::leaq(Register dst, Address src) {
5211   InstructionMark im(this);
5212   prefixq(src, dst);
5213   emit_int8((unsigned char)0x8D);
5214   emit_operand(dst, src);
5215 }
5216 
5217 void Assembler::mov64(Register dst, int64_t imm64) {
5218   InstructionMark im(this);
5219   int encode = prefixq_and_encode(dst->encoding());
5220   emit_int8((unsigned char)(0xB8 | encode));
5221   emit_int64(imm64);
5222 }
5223 
5224 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
5225   InstructionMark im(this);
5226   int encode = prefixq_and_encode(dst->encoding());
5227   emit_int8(0xB8 | encode);
5228   emit_data64(imm64, rspec);
5229 }
5230 
5231 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5232   InstructionMark im(this);
5233   int encode = prefix_and_encode(dst->encoding());
5234   emit_int8((unsigned char)(0xB8 | encode));
5235   emit_data((int)imm32, rspec, narrow_oop_operand);
5236 }
5237 
5238 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5239   InstructionMark im(this);
5240   prefix(dst);
5241   emit_int8((unsigned char)0xC7);
5242   emit_operand(rax, dst, 4);
5243   emit_data((int)imm32, rspec, narrow_oop_operand);
5244 }
5245 
5246 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5247   InstructionMark im(this);
5248   int encode = prefix_and_encode(src1->encoding());
5249   emit_int8((unsigned char)0x81);
5250   emit_int8((unsigned char)(0xF8 | encode));
5251   emit_data((int)imm32, rspec, narrow_oop_operand);
5252 }
5253 
5254 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5255   InstructionMark im(this);
5256   prefix(src1);
5257   emit_int8((unsigned char)0x81);
5258   emit_operand(rax, src1, 4);
5259   emit_data((int)imm32, rspec, narrow_oop_operand);
5260 }
5261 
5262 void Assembler::lzcntq(Register dst, Register src) {
5263   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5264   emit_int8((unsigned char)0xF3);
5265   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5266   emit_int8(0x0F);
5267   emit_int8((unsigned char)0xBD);
5268   emit_int8((unsigned char)(0xC0 | encode));
5269 }
5270 
5271 void Assembler::movdq(XMMRegister dst, Register src) {
5272   // table D-1 says MMX/SSE2
5273   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5274   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5275   emit_int8(0x6E);
5276   emit_int8((unsigned char)(0xC0 | encode));
5277 }
5278 
5279 void Assembler::movdq(Register dst, XMMRegister src) {
5280   // table D-1 says MMX/SSE2
5281   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5282   // swap src/dst to get correct prefix
5283   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5284   emit_int8(0x7E);
5285   emit_int8((unsigned char)(0xC0 | encode));
5286 }
5287 
5288 void Assembler::movq(Register dst, Register src) {
5289   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5290   emit_int8((unsigned char)0x8B);
5291   emit_int8((unsigned char)(0xC0 | encode));
5292 }
5293 
5294 void Assembler::movq(Register dst, Address src) {
5295   InstructionMark im(this);
5296   prefixq(src, dst);
5297   emit_int8((unsigned char)0x8B);
5298   emit_operand(dst, src);
5299 }
5300 
5301 void Assembler::movq(Address dst, Register src) {
5302   InstructionMark im(this);
5303   prefixq(dst, src);
5304   emit_int8((unsigned char)0x89);
5305   emit_operand(src, dst);
5306 }
5307 
5308 void Assembler::movsbq(Register dst, Address src) {
5309   InstructionMark im(this);
5310   prefixq(src, dst);
5311   emit_int8(0x0F);
5312   emit_int8((unsigned char)0xBE);
5313   emit_operand(dst, src);
5314 }
5315 
5316 void Assembler::movsbq(Register dst, Register src) {
5317   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5318   emit_int8(0x0F);
5319   emit_int8((unsigned char)0xBE);
5320   emit_int8((unsigned char)(0xC0 | encode));
5321 }
5322 
5323 void Assembler::movslq(Register dst, int32_t imm32) {
5324   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
5325   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
5326   // as a result we shouldn't use until tested at runtime...
5327   ShouldNotReachHere();
5328   InstructionMark im(this);
5329   int encode = prefixq_and_encode(dst->encoding());
5330   emit_int8((unsigned char)(0xC7 | encode));
5331   emit_int32(imm32);
5332 }
5333 
5334 void Assembler::movslq(Address dst, int32_t imm32) {
5335   assert(is_simm32(imm32), "lost bits");
5336   InstructionMark im(this);
5337   prefixq(dst);
5338   emit_int8((unsigned char)0xC7);
5339   emit_operand(rax, dst, 4);
5340   emit_int32(imm32);
5341 }
5342 
5343 void Assembler::movslq(Register dst, Address src) {
5344   InstructionMark im(this);
5345   prefixq(src, dst);
5346   emit_int8(0x63);
5347   emit_operand(dst, src);
5348 }
5349 
5350 void Assembler::movslq(Register dst, Register src) {
5351   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5352   emit_int8(0x63);
5353   emit_int8((unsigned char)(0xC0 | encode));
5354 }
5355 
5356 void Assembler::movswq(Register dst, Address src) {
5357   InstructionMark im(this);
5358   prefixq(src, dst);
5359   emit_int8(0x0F);
5360   emit_int8((unsigned char)0xBF);
5361   emit_operand(dst, src);
5362 }
5363 
5364 void Assembler::movswq(Register dst, Register src) {
5365   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5366   emit_int8((unsigned char)0x0F);
5367   emit_int8((unsigned char)0xBF);
5368   emit_int8((unsigned char)(0xC0 | encode));
5369 }
5370 
5371 void Assembler::movzbq(Register dst, Address src) {
5372   InstructionMark im(this);
5373   prefixq(src, dst);
5374   emit_int8((unsigned char)0x0F);
5375   emit_int8((unsigned char)0xB6);
5376   emit_operand(dst, src);
5377 }
5378 
5379 void Assembler::movzbq(Register dst, Register src) {
5380   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5381   emit_int8(0x0F);
5382   emit_int8((unsigned char)0xB6);
5383   emit_int8(0xC0 | encode);
5384 }
5385 
5386 void Assembler::movzwq(Register dst, Address src) {
5387   InstructionMark im(this);
5388   prefixq(src, dst);
5389   emit_int8((unsigned char)0x0F);
5390   emit_int8((unsigned char)0xB7);
5391   emit_operand(dst, src);
5392 }
5393 
5394 void Assembler::movzwq(Register dst, Register src) {
5395   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5396   emit_int8((unsigned char)0x0F);
5397   emit_int8((unsigned char)0xB7);
5398   emit_int8((unsigned char)(0xC0 | encode));
5399 }
5400 
5401 void Assembler::negq(Register dst) {
5402   int encode = prefixq_and_encode(dst->encoding());
5403   emit_int8((unsigned char)0xF7);
5404   emit_int8((unsigned char)(0xD8 | encode));
5405 }
5406 
5407 void Assembler::notq(Register dst) {
5408   int encode = prefixq_and_encode(dst->encoding());
5409   emit_int8((unsigned char)0xF7);
5410   emit_int8((unsigned char)(0xD0 | encode));
5411 }
5412 
5413 void Assembler::orq(Address dst, int32_t imm32) {
5414   InstructionMark im(this);
5415   prefixq(dst);
5416   emit_int8((unsigned char)0x81);
5417   emit_operand(rcx, dst, 4);
5418   emit_int32(imm32);
5419 }
5420 
5421 void Assembler::orq(Register dst, int32_t imm32) {
5422   (void) prefixq_and_encode(dst->encoding());
5423   emit_arith(0x81, 0xC8, dst, imm32);
5424 }
5425 
5426 void Assembler::orq(Register dst, Address src) {
5427   InstructionMark im(this);
5428   prefixq(src, dst);
5429   emit_int8(0x0B);
5430   emit_operand(dst, src);
5431 }
5432 
5433 void Assembler::orq(Register dst, Register src) {
5434   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5435   emit_arith(0x0B, 0xC0, dst, src);
5436 }
5437 
5438 void Assembler::popa() { // 64bit
5439   movq(r15, Address(rsp, 0));
5440   movq(r14, Address(rsp, wordSize));
5441   movq(r13, Address(rsp, 2 * wordSize));
5442   movq(r12, Address(rsp, 3 * wordSize));
5443   movq(r11, Address(rsp, 4 * wordSize));
5444   movq(r10, Address(rsp, 5 * wordSize));
5445   movq(r9,  Address(rsp, 6 * wordSize));
5446   movq(r8,  Address(rsp, 7 * wordSize));
5447   movq(rdi, Address(rsp, 8 * wordSize));
5448   movq(rsi, Address(rsp, 9 * wordSize));
5449   movq(rbp, Address(rsp, 10 * wordSize));
5450   // skip rsp
5451   movq(rbx, Address(rsp, 12 * wordSize));
5452   movq(rdx, Address(rsp, 13 * wordSize));
5453   movq(rcx, Address(rsp, 14 * wordSize));
5454   movq(rax, Address(rsp, 15 * wordSize));
5455 
5456   addq(rsp, 16 * wordSize);
5457 }
5458 
5459 void Assembler::popcntq(Register dst, Address src) {
5460   assert(VM_Version::supports_popcnt(), "must support");
5461   InstructionMark im(this);
5462   emit_int8((unsigned char)0xF3);
5463   prefixq(src, dst);
5464   emit_int8((unsigned char)0x0F);
5465   emit_int8((unsigned char)0xB8);
5466   emit_operand(dst, src);
5467 }
5468 
5469 void Assembler::popcntq(Register dst, Register src) {
5470   assert(VM_Version::supports_popcnt(), "must support");
5471   emit_int8((unsigned char)0xF3);
5472   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5473   emit_int8((unsigned char)0x0F);
5474   emit_int8((unsigned char)0xB8);
5475   emit_int8((unsigned char)(0xC0 | encode));
5476 }
5477 
5478 void Assembler::popq(Address dst) {
5479   InstructionMark im(this);
5480   prefixq(dst);
5481   emit_int8((unsigned char)0x8F);
5482   emit_operand(rax, dst);
5483 }
5484 
5485 void Assembler::pusha() { // 64bit
5486   // we have to store original rsp.  ABI says that 128 bytes
5487   // below rsp are local scratch.
5488   movq(Address(rsp, -5 * wordSize), rsp);
5489 
5490   subq(rsp, 16 * wordSize);
5491 
5492   movq(Address(rsp, 15 * wordSize), rax);
5493   movq(Address(rsp, 14 * wordSize), rcx);
5494   movq(Address(rsp, 13 * wordSize), rdx);
5495   movq(Address(rsp, 12 * wordSize), rbx);
5496   // skip rsp
5497   movq(Address(rsp, 10 * wordSize), rbp);
5498   movq(Address(rsp, 9 * wordSize), rsi);
5499   movq(Address(rsp, 8 * wordSize), rdi);
5500   movq(Address(rsp, 7 * wordSize), r8);
5501   movq(Address(rsp, 6 * wordSize), r9);
5502   movq(Address(rsp, 5 * wordSize), r10);
5503   movq(Address(rsp, 4 * wordSize), r11);
5504   movq(Address(rsp, 3 * wordSize), r12);
5505   movq(Address(rsp, 2 * wordSize), r13);
5506   movq(Address(rsp, wordSize), r14);
5507   movq(Address(rsp, 0), r15);
5508 }
5509 
5510 void Assembler::pushq(Address src) {
5511   InstructionMark im(this);
5512   prefixq(src);
5513   emit_int8((unsigned char)0xFF);
5514   emit_operand(rsi, src);
5515 }
5516 
5517 void Assembler::rclq(Register dst, int imm8) {
5518   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5519   int encode = prefixq_and_encode(dst->encoding());
5520   if (imm8 == 1) {
5521     emit_int8((unsigned char)0xD1);
5522     emit_int8((unsigned char)(0xD0 | encode));
5523   } else {
5524     emit_int8((unsigned char)0xC1);
5525     emit_int8((unsigned char)(0xD0 | encode));
5526     emit_int8(imm8);
5527   }
5528 }
5529 void Assembler::sarq(Register dst, int imm8) {
5530   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5531   int encode = prefixq_and_encode(dst->encoding());
5532   if (imm8 == 1) {
5533     emit_int8((unsigned char)0xD1);
5534     emit_int8((unsigned char)(0xF8 | encode));
5535   } else {
5536     emit_int8((unsigned char)0xC1);
5537     emit_int8((unsigned char)(0xF8 | encode));
5538     emit_int8(imm8);
5539   }
5540 }
5541 
5542 void Assembler::sarq(Register dst) {
5543   int encode = prefixq_and_encode(dst->encoding());
5544   emit_int8((unsigned char)0xD3);
5545   emit_int8((unsigned char)(0xF8 | encode));
5546 }
5547 
5548 void Assembler::sbbq(Address dst, int32_t imm32) {
5549   InstructionMark im(this);
5550   prefixq(dst);
5551   emit_arith_operand(0x81, rbx, dst, imm32);
5552 }
5553 
5554 void Assembler::sbbq(Register dst, int32_t imm32) {
5555   (void) prefixq_and_encode(dst->encoding());
5556   emit_arith(0x81, 0xD8, dst, imm32);
5557 }
5558 
5559 void Assembler::sbbq(Register dst, Address src) {
5560   InstructionMark im(this);
5561   prefixq(src, dst);
5562   emit_int8(0x1B);
5563   emit_operand(dst, src);
5564 }
5565 
5566 void Assembler::sbbq(Register dst, Register src) {
5567   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5568   emit_arith(0x1B, 0xC0, dst, src);
5569 }
5570 
5571 void Assembler::shlq(Register dst, int imm8) {
5572   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5573   int encode = prefixq_and_encode(dst->encoding());
5574   if (imm8 == 1) {
5575     emit_int8((unsigned char)0xD1);
5576     emit_int8((unsigned char)(0xE0 | encode));
5577   } else {
5578     emit_int8((unsigned char)0xC1);
5579     emit_int8((unsigned char)(0xE0 | encode));
5580     emit_int8(imm8);
5581   }
5582 }
5583 
5584 void Assembler::shlq(Register dst) {
5585   int encode = prefixq_and_encode(dst->encoding());
5586   emit_int8((unsigned char)0xD3);
5587   emit_int8((unsigned char)(0xE0 | encode));
5588 }
5589 
5590 void Assembler::shrq(Register dst, int imm8) {
5591   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5592   int encode = prefixq_and_encode(dst->encoding());
5593   emit_int8((unsigned char)0xC1);
5594   emit_int8((unsigned char)(0xE8 | encode));
5595   emit_int8(imm8);
5596 }
5597 
5598 void Assembler::shrq(Register dst) {
5599   int encode = prefixq_and_encode(dst->encoding());
5600   emit_int8((unsigned char)0xD3);
5601   emit_int8(0xE8 | encode);
5602 }
5603 
5604 void Assembler::subq(Address dst, int32_t imm32) {
5605   InstructionMark im(this);
5606   prefixq(dst);
5607   emit_arith_operand(0x81, rbp, dst, imm32);
5608 }
5609 
5610 void Assembler::subq(Address dst, Register src) {
5611   InstructionMark im(this);
5612   prefixq(dst, src);
5613   emit_int8(0x29);
5614   emit_operand(src, dst);
5615 }
5616 
5617 void Assembler::subq(Register dst, int32_t imm32) {
5618   (void) prefixq_and_encode(dst->encoding());
5619   emit_arith(0x81, 0xE8, dst, imm32);
5620 }
5621 
5622 // Force generation of a 4 byte immediate value even if it fits into 8bit
5623 void Assembler::subq_imm32(Register dst, int32_t imm32) {
5624   (void) prefixq_and_encode(dst->encoding());
5625   emit_arith_imm32(0x81, 0xE8, dst, imm32);
5626 }
5627 
5628 void Assembler::subq(Register dst, Address src) {
5629   InstructionMark im(this);
5630   prefixq(src, dst);
5631   emit_int8(0x2B);
5632   emit_operand(dst, src);
5633 }
5634 
5635 void Assembler::subq(Register dst, Register src) {
5636   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5637   emit_arith(0x2B, 0xC0, dst, src);
5638 }
5639 
5640 void Assembler::testq(Register dst, int32_t imm32) {
5641   // not using emit_arith because test
5642   // doesn't support sign-extension of
5643   // 8bit operands
5644   int encode = dst->encoding();
5645   if (encode == 0) {
5646     prefix(REX_W);
5647     emit_int8((unsigned char)0xA9);
5648   } else {
5649     encode = prefixq_and_encode(encode);
5650     emit_int8((unsigned char)0xF7);
5651     emit_int8((unsigned char)(0xC0 | encode));
5652   }
5653   emit_int32(imm32);
5654 }
5655 
5656 void Assembler::testq(Register dst, Register src) {
5657   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5658   emit_arith(0x85, 0xC0, dst, src);
5659 }
5660 
5661 void Assembler::xaddq(Address dst, Register src) {
5662   InstructionMark im(this);
5663   prefixq(dst, src);
5664   emit_int8(0x0F);
5665   emit_int8((unsigned char)0xC1);
5666   emit_operand(src, dst);
5667 }
5668 
5669 void Assembler::xchgq(Register dst, Address src) {
5670   InstructionMark im(this);
5671   prefixq(src, dst);
5672   emit_int8((unsigned char)0x87);
5673   emit_operand(dst, src);
5674 }
5675 
5676 void Assembler::xchgq(Register dst, Register src) {
5677   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5678   emit_int8((unsigned char)0x87);
5679   emit_int8((unsigned char)(0xc0 | encode));
5680 }
5681 
5682 void Assembler::xorq(Register dst, Register src) {
5683   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5684   emit_arith(0x33, 0xC0, dst, src);
5685 }
5686 
5687 void Assembler::xorq(Register dst, Address src) {
5688   InstructionMark im(this);
5689   prefixq(src, dst);
5690   emit_int8(0x33);
5691   emit_operand(dst, src);
5692 }
5693 
5694 #endif // !LP64