1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  26 #include "adlc.hpp"
  27 
  28 //==============================Instructions===================================
  29 //------------------------------InstructForm-----------------------------------
  30 InstructForm::InstructForm(const char *id, bool ideal_only)
  31   : _ident(id), _ideal_only(ideal_only),
  32     _localNames(cmpstr, hashstr, Form::arena),
  33     _effects(cmpstr, hashstr, Form::arena),
  34     _is_mach_constant(false),
  35     _needs_constant_base(false),
  36     _has_call(false)
  37 {
  38       _ftype = Form::INS;
  39 
  40       _matrule              = NULL;
  41       _insencode            = NULL;
  42       _constant             = NULL;
  43       _is_postalloc_expand  = false;
  44       _opcode               = NULL;
  45       _size                 = NULL;
  46       _attribs              = NULL;
  47       _predicate            = NULL;
  48       _exprule              = NULL;
  49       _rewrule              = NULL;
  50       _format               = NULL;
  51       _peephole             = NULL;
  52       _ins_pipe             = NULL;
  53       _uniq_idx             = NULL;
  54       _num_uniq             = 0;
  55       _cisc_spill_operand   = Not_cisc_spillable;// Which operand may cisc-spill
  56       _cisc_spill_alternate = NULL;            // possible cisc replacement
  57       _cisc_reg_mask_name   = NULL;
  58       _is_cisc_alternate    = false;
  59       _is_short_branch      = false;
  60       _short_branch_form    = NULL;
  61       _alignment            = 1;
  62 }
  63 
  64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  65   : _ident(id), _ideal_only(false),
  66     _localNames(instr->_localNames),
  67     _effects(instr->_effects),
  68     _is_mach_constant(false),
  69     _needs_constant_base(false),
  70     _has_call(false)
  71 {
  72       _ftype = Form::INS;
  73 
  74       _matrule               = rule;
  75       _insencode             = instr->_insencode;
  76       _constant              = instr->_constant;
  77       _is_postalloc_expand   = instr->_is_postalloc_expand;
  78       _opcode                = instr->_opcode;
  79       _size                  = instr->_size;
  80       _attribs               = instr->_attribs;
  81       _predicate             = instr->_predicate;
  82       _exprule               = instr->_exprule;
  83       _rewrule               = instr->_rewrule;
  84       _format                = instr->_format;
  85       _peephole              = instr->_peephole;
  86       _ins_pipe              = instr->_ins_pipe;
  87       _uniq_idx              = instr->_uniq_idx;
  88       _num_uniq              = instr->_num_uniq;
  89       _cisc_spill_operand    = Not_cisc_spillable; // Which operand may cisc-spill
  90       _cisc_spill_alternate  = NULL;               // possible cisc replacement
  91       _cisc_reg_mask_name    = NULL;
  92       _is_cisc_alternate     = false;
  93       _is_short_branch       = false;
  94       _short_branch_form     = NULL;
  95       _alignment             = 1;
  96      // Copy parameters
  97      const char *name;
  98      instr->_parameters.reset();
  99      for (; (name = instr->_parameters.iter()) != NULL;)
 100        _parameters.addName(name);
 101 }
 102 
 103 InstructForm::~InstructForm() {
 104 }
 105 
 106 InstructForm *InstructForm::is_instruction() const {
 107   return (InstructForm*)this;
 108 }
 109 
 110 bool InstructForm::ideal_only() const {
 111   return _ideal_only;
 112 }
 113 
 114 bool InstructForm::sets_result() const {
 115   return (_matrule != NULL && _matrule->sets_result());
 116 }
 117 
 118 bool InstructForm::needs_projections() {
 119   _components.reset();
 120   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 121     if (comp->isa(Component::KILL)) {
 122       return true;
 123     }
 124   }
 125   return false;
 126 }
 127 
 128 
 129 bool InstructForm::has_temps() {
 130   if (_matrule) {
 131     // Examine each component to see if it is a TEMP
 132     _components.reset();
 133     // Skip the first component, if already handled as (SET dst (...))
 134     Component *comp = NULL;
 135     if (sets_result())  comp = _components.iter();
 136     while ((comp = _components.iter()) != NULL) {
 137       if (comp->isa(Component::TEMP)) {
 138         return true;
 139       }
 140     }
 141   }
 142 
 143   return false;
 144 }
 145 
 146 uint InstructForm::num_defs_or_kills() {
 147   uint   defs_or_kills = 0;
 148 
 149   _components.reset();
 150   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 151     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
 152       ++defs_or_kills;
 153     }
 154   }
 155 
 156   return  defs_or_kills;
 157 }
 158 
 159 // This instruction has an expand rule?
 160 bool InstructForm::expands() const {
 161   return ( _exprule != NULL );
 162 }
 163 
 164 // This instruction has a late expand rule?
 165 bool InstructForm::postalloc_expands() const {
 166   return _is_postalloc_expand;
 167 }
 168 
 169 // This instruction has a peephole rule?
 170 Peephole *InstructForm::peepholes() const {
 171   return _peephole;
 172 }
 173 
 174 // This instruction has a peephole rule?
 175 void InstructForm::append_peephole(Peephole *peephole) {
 176   if( _peephole == NULL ) {
 177     _peephole = peephole;
 178   } else {
 179     _peephole->append_peephole(peephole);
 180   }
 181 }
 182 
 183 
 184 // ideal opcode enumeration
 185 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
 186   if( !_matrule ) return "Node"; // Something weird
 187   // Chain rules do not really have ideal Opcodes; use their source
 188   // operand ideal Opcode instead.
 189   if( is_simple_chain_rule(globalNames) ) {
 190     const char *src = _matrule->_rChild->_opType;
 191     OperandForm *src_op = globalNames[src]->is_operand();
 192     assert( src_op, "Not operand class of chain rule" );
 193     if( !src_op->_matrule ) return "Node";
 194     return src_op->_matrule->_opType;
 195   }
 196   // Operand chain rules do not really have ideal Opcodes
 197   if( _matrule->is_chain_rule(globalNames) )
 198     return "Node";
 199   return strcmp(_matrule->_opType,"Set")
 200     ? _matrule->_opType
 201     : _matrule->_rChild->_opType;
 202 }
 203 
 204 // Recursive check on all operands' match rules in my match rule
 205 bool InstructForm::is_pinned(FormDict &globals) {
 206   if ( ! _matrule)  return false;
 207 
 208   int  index   = 0;
 209   if (_matrule->find_type("Goto",          index)) return true;
 210   if (_matrule->find_type("If",            index)) return true;
 211   if (_matrule->find_type("CountedLoopEnd",index)) return true;
 212   if (_matrule->find_type("Return",        index)) return true;
 213   if (_matrule->find_type("Rethrow",       index)) return true;
 214   if (_matrule->find_type("TailCall",      index)) return true;
 215   if (_matrule->find_type("TailJump",      index)) return true;
 216   if (_matrule->find_type("Halt",          index)) return true;
 217   if (_matrule->find_type("Jump",          index)) return true;
 218 
 219   return is_parm(globals);
 220 }
 221 
 222 // Recursive check on all operands' match rules in my match rule
 223 bool InstructForm::is_projection(FormDict &globals) {
 224   if ( ! _matrule)  return false;
 225 
 226   int  index   = 0;
 227   if (_matrule->find_type("Goto",    index)) return true;
 228   if (_matrule->find_type("Return",  index)) return true;
 229   if (_matrule->find_type("Rethrow", index)) return true;
 230   if (_matrule->find_type("TailCall",index)) return true;
 231   if (_matrule->find_type("TailJump",index)) return true;
 232   if (_matrule->find_type("Halt",    index)) return true;
 233 
 234   return false;
 235 }
 236 
 237 // Recursive check on all operands' match rules in my match rule
 238 bool InstructForm::is_parm(FormDict &globals) {
 239   if ( ! _matrule)  return false;
 240 
 241   int  index   = 0;
 242   if (_matrule->find_type("Parm",index)) return true;
 243 
 244   return false;
 245 }
 246 
 247 bool InstructForm::is_ideal_negD() const {
 248   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
 249 }
 250 
 251 // Return 'true' if this instruction matches an ideal 'Copy*' node
 252 int InstructForm::is_ideal_copy() const {
 253   return _matrule ? _matrule->is_ideal_copy() : 0;
 254 }
 255 
 256 // Return 'true' if this instruction is too complex to rematerialize.
 257 int InstructForm::is_expensive() const {
 258   // We can prove it is cheap if it has an empty encoding.
 259   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
 260   if (is_empty_encoding())
 261     return 0;
 262 
 263   if (is_tls_instruction())
 264     return 1;
 265 
 266   if (_matrule == NULL)  return 0;
 267 
 268   return _matrule->is_expensive();
 269 }
 270 
 271 // Has an empty encoding if _size is a constant zero or there
 272 // are no ins_encode tokens.
 273 int InstructForm::is_empty_encoding() const {
 274   if (_insencode != NULL) {
 275     _insencode->reset();
 276     if (_insencode->encode_class_iter() == NULL) {
 277       return 1;
 278     }
 279   }
 280   if (_size != NULL && strcmp(_size, "0") == 0) {
 281     return 1;
 282   }
 283   return 0;
 284 }
 285 
 286 int InstructForm::is_tls_instruction() const {
 287   if (_ident != NULL &&
 288       ( ! strcmp( _ident,"tlsLoadP") ||
 289         ! strncmp(_ident,"tlsLoadP_",9)) ) {
 290     return 1;
 291   }
 292 
 293   if (_matrule != NULL && _insencode != NULL) {
 294     const char* opType = _matrule->_opType;
 295     if (strcmp(opType, "Set")==0)
 296       opType = _matrule->_rChild->_opType;
 297     if (strcmp(opType,"ThreadLocal")==0) {
 298       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
 299               (_ident == NULL ? "NULL" : _ident));
 300       return 1;
 301     }
 302   }
 303 
 304   return 0;
 305 }
 306 
 307 
 308 // Return 'true' if this instruction matches an ideal 'If' node
 309 bool InstructForm::is_ideal_if() const {
 310   if( _matrule == NULL ) return false;
 311 
 312   return _matrule->is_ideal_if();
 313 }
 314 
 315 // Return 'true' if this instruction matches an ideal 'FastLock' node
 316 bool InstructForm::is_ideal_fastlock() const {
 317   if( _matrule == NULL ) return false;
 318 
 319   return _matrule->is_ideal_fastlock();
 320 }
 321 
 322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
 323 bool InstructForm::is_ideal_membar() const {
 324   if( _matrule == NULL ) return false;
 325 
 326   return _matrule->is_ideal_membar();
 327 }
 328 
 329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
 330 bool InstructForm::is_ideal_loadPC() const {
 331   if( _matrule == NULL ) return false;
 332 
 333   return _matrule->is_ideal_loadPC();
 334 }
 335 
 336 // Return 'true' if this instruction matches an ideal 'Box' node
 337 bool InstructForm::is_ideal_box() const {
 338   if( _matrule == NULL ) return false;
 339 
 340   return _matrule->is_ideal_box();
 341 }
 342 
 343 // Return 'true' if this instruction matches an ideal 'Goto' node
 344 bool InstructForm::is_ideal_goto() const {
 345   if( _matrule == NULL ) return false;
 346 
 347   return _matrule->is_ideal_goto();
 348 }
 349 
 350 // Return 'true' if this instruction matches an ideal 'Jump' node
 351 bool InstructForm::is_ideal_jump() const {
 352   if( _matrule == NULL ) return false;
 353 
 354   return _matrule->is_ideal_jump();
 355 }
 356 
 357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
 358 bool InstructForm::is_ideal_branch() const {
 359   if( _matrule == NULL ) return false;
 360 
 361   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
 362 }
 363 
 364 
 365 // Return 'true' if this instruction matches an ideal 'Return' node
 366 bool InstructForm::is_ideal_return() const {
 367   if( _matrule == NULL ) return false;
 368 
 369   // Check MatchRule to see if the first entry is the ideal "Return" node
 370   int  index   = 0;
 371   if (_matrule->find_type("Return",index)) return true;
 372   if (_matrule->find_type("Rethrow",index)) return true;
 373   if (_matrule->find_type("TailCall",index)) return true;
 374   if (_matrule->find_type("TailJump",index)) return true;
 375 
 376   return false;
 377 }
 378 
 379 // Return 'true' if this instruction matches an ideal 'Halt' node
 380 bool InstructForm::is_ideal_halt() const {
 381   int  index   = 0;
 382   return _matrule && _matrule->find_type("Halt",index);
 383 }
 384 
 385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
 386 bool InstructForm::is_ideal_safepoint() const {
 387   int  index   = 0;
 388   return _matrule && _matrule->find_type("SafePoint",index);
 389 }
 390 
 391 // Return 'true' if this instruction matches an ideal 'Nop' node
 392 bool InstructForm::is_ideal_nop() const {
 393   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
 394 }
 395 
 396 bool InstructForm::is_ideal_control() const {
 397   if ( ! _matrule)  return false;
 398 
 399   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
 400 }
 401 
 402 // Return 'true' if this instruction matches an ideal 'Call' node
 403 Form::CallType InstructForm::is_ideal_call() const {
 404   if( _matrule == NULL ) return Form::invalid_type;
 405 
 406   // Check MatchRule to see if the first entry is the ideal "Call" node
 407   int  idx   = 0;
 408   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
 409   idx = 0;
 410   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
 411   idx = 0;
 412   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
 413   idx = 0;
 414   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
 415   idx = 0;
 416   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
 417   idx = 0;
 418   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
 419   idx = 0;
 420   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
 421   idx = 0;
 422 
 423   return Form::invalid_type;
 424 }
 425 
 426 // Return 'true' if this instruction matches an ideal 'Load?' node
 427 Form::DataType InstructForm::is_ideal_load() const {
 428   if( _matrule == NULL ) return Form::none;
 429 
 430   return  _matrule->is_ideal_load();
 431 }
 432 
 433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
 434 bool InstructForm::skip_antidep_check() const {
 435   if( _matrule == NULL ) return false;
 436 
 437   return  _matrule->skip_antidep_check();
 438 }
 439 
 440 // Return 'true' if this instruction matches an ideal 'Load?' node
 441 Form::DataType InstructForm::is_ideal_store() const {
 442   if( _matrule == NULL ) return Form::none;
 443 
 444   return  _matrule->is_ideal_store();
 445 }
 446 
 447 // Return 'true' if this instruction matches an ideal vector node
 448 bool InstructForm::is_vector() const {
 449   if( _matrule == NULL ) return false;
 450 
 451   return _matrule->is_vector();
 452 }
 453 
 454 
 455 // Return the input register that must match the output register
 456 // If this is not required, return 0
 457 uint InstructForm::two_address(FormDict &globals) {
 458   uint  matching_input = 0;
 459   if(_components.count() == 0) return 0;
 460 
 461   _components.reset();
 462   Component *comp = _components.iter();
 463   // Check if there is a DEF
 464   if( comp->isa(Component::DEF) ) {
 465     // Check that this is a register
 466     const char  *def_type = comp->_type;
 467     const Form  *form     = globals[def_type];
 468     OperandForm *op       = form->is_operand();
 469     if( op ) {
 470       if( op->constrained_reg_class() != NULL &&
 471           op->interface_type(globals) == Form::register_interface ) {
 472         // Remember the local name for equality test later
 473         const char *def_name = comp->_name;
 474         // Check if a component has the same name and is a USE
 475         do {
 476           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
 477             return operand_position_format(def_name);
 478           }
 479         } while( (comp = _components.iter()) != NULL);
 480       }
 481     }
 482   }
 483 
 484   return 0;
 485 }
 486 
 487 
 488 // when chaining a constant to an instruction, returns 'true' and sets opType
 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
 490   const char *dummy  = NULL;
 491   const char *dummy2 = NULL;
 492   return is_chain_of_constant(globals, dummy, dummy2);
 493 }
 494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 495                 const char * &opTypeParam) {
 496   const char *result = NULL;
 497 
 498   return is_chain_of_constant(globals, opTypeParam, result);
 499 }
 500 
 501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 502                 const char * &opTypeParam, const char * &resultParam) {
 503   Form::DataType  data_type = Form::none;
 504   if ( ! _matrule)  return data_type;
 505 
 506   // !!!!!
 507   // The source of the chain rule is 'position = 1'
 508   uint         position = 1;
 509   const char  *result   = NULL;
 510   const char  *name     = NULL;
 511   const char  *opType   = NULL;
 512   // Here base_operand is looking for an ideal type to be returned (opType).
 513   if ( _matrule->is_chain_rule(globals)
 514        && _matrule->base_operand(position, globals, result, name, opType) ) {
 515     data_type = ideal_to_const_type(opType);
 516 
 517     // if it isn't an ideal constant type, just return
 518     if ( data_type == Form::none ) return data_type;
 519 
 520     // Ideal constant types also adjust the opType parameter.
 521     resultParam = result;
 522     opTypeParam = opType;
 523     return data_type;
 524   }
 525 
 526   return data_type;
 527 }
 528 
 529 // Check if a simple chain rule
 530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
 531   if( _matrule && _matrule->sets_result()
 532       && _matrule->_rChild->_lChild == NULL
 533       && globals[_matrule->_rChild->_opType]
 534       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
 535     return true;
 536   }
 537   return false;
 538 }
 539 
 540 // check for structural rematerialization
 541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
 542   bool   rematerialize = false;
 543 
 544   Form::DataType data_type = is_chain_of_constant(globals);
 545   if( data_type != Form::none )
 546     rematerialize = true;
 547 
 548   // Constants
 549   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
 550     rematerialize = true;
 551 
 552   // Pseudo-constants (values easily available to the runtime)
 553   if (is_empty_encoding() && is_tls_instruction())
 554     rematerialize = true;
 555 
 556   // 1-input, 1-output, such as copies or increments.
 557   if( _components.count() == 2 &&
 558       _components[0]->is(Component::DEF) &&
 559       _components[1]->isa(Component::USE) )
 560     rematerialize = true;
 561 
 562   // Check for an ideal 'Load?' and eliminate rematerialize option
 563   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
 564        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
 565        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
 566     rematerialize = false;
 567   }
 568 
 569   // Always rematerialize the flags.  They are more expensive to save &
 570   // restore than to recompute (and possibly spill the compare's inputs).
 571   if( _components.count() >= 1 ) {
 572     Component *c = _components[0];
 573     const Form *form = globals[c->_type];
 574     OperandForm *opform = form->is_operand();
 575     if( opform ) {
 576       // Avoid the special stack_slots register classes
 577       const char *rc_name = opform->constrained_reg_class();
 578       if( rc_name ) {
 579         if( strcmp(rc_name,"stack_slots") ) {
 580           // Check for ideal_type of RegFlags
 581           const char *type = opform->ideal_type( globals, registers );
 582           if( (type != NULL) && !strcmp(type, "RegFlags") )
 583             rematerialize = true;
 584         } else
 585           rematerialize = false; // Do not rematerialize things target stk
 586       }
 587     }
 588   }
 589 
 590   return rematerialize;
 591 }
 592 
 593 // loads from memory, so must check for anti-dependence
 594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
 595   if ( skip_antidep_check() ) return false;
 596 
 597   // Machine independent loads must be checked for anti-dependences
 598   if( is_ideal_load() != Form::none )  return true;
 599 
 600   // !!!!! !!!!! !!!!!
 601   // TEMPORARY
 602   // if( is_simple_chain_rule(globals) )  return false;
 603 
 604   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
 605   // but writes none
 606   if( _matrule && _matrule->_rChild &&
 607       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
 608         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
 609         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
 610         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
 611     return true;
 612 
 613   // Check if instruction has a USE of a memory operand class, but no defs
 614   bool USE_of_memory  = false;
 615   bool DEF_of_memory  = false;
 616   Component     *comp = NULL;
 617   ComponentList &components = (ComponentList &)_components;
 618 
 619   components.reset();
 620   while( (comp = components.iter()) != NULL ) {
 621     const Form  *form = globals[comp->_type];
 622     if( !form ) continue;
 623     OpClassForm *op   = form->is_opclass();
 624     if( !op ) continue;
 625     if( form->interface_type(globals) == Form::memory_interface ) {
 626       if( comp->isa(Component::USE) ) USE_of_memory = true;
 627       if( comp->isa(Component::DEF) ) {
 628         OperandForm *oper = form->is_operand();
 629         if( oper && oper->is_user_name_for_sReg() ) {
 630           // Stack slots are unaliased memory handled by allocator
 631           oper = oper;  // debug stopping point !!!!!
 632         } else {
 633           DEF_of_memory = true;
 634         }
 635       }
 636     }
 637   }
 638   return (USE_of_memory && !DEF_of_memory);
 639 }
 640 
 641 
 642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
 643   if( _matrule == NULL ) return false;
 644   if( !_matrule->_opType ) return false;
 645 
 646   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
 647   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
 648   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
 649   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
 650   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
 651   if( strcmp(_matrule->_opType,"StoreFence") == 0 ) return true;
 652   if( strcmp(_matrule->_opType,"LoadFence") == 0 ) return true;
 653 
 654   return false;
 655 }
 656 
 657 int InstructForm::memory_operand(FormDict &globals) const {
 658   // Machine independent loads must be checked for anti-dependences
 659   // Check if instruction has a USE of a memory operand class, or a def.
 660   int USE_of_memory  = 0;
 661   int DEF_of_memory  = 0;
 662   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
 663   Component     *unique          = NULL;
 664   Component     *comp            = NULL;
 665   ComponentList &components      = (ComponentList &)_components;
 666 
 667   components.reset();
 668   while( (comp = components.iter()) != NULL ) {
 669     const Form  *form = globals[comp->_type];
 670     if( !form ) continue;
 671     OpClassForm *op   = form->is_opclass();
 672     if( !op ) continue;
 673     if( op->stack_slots_only(globals) )  continue;
 674     if( form->interface_type(globals) == Form::memory_interface ) {
 675       if( comp->isa(Component::DEF) ) {
 676         last_memory_DEF = comp->_name;
 677         DEF_of_memory++;
 678         unique = comp;
 679       } else if( comp->isa(Component::USE) ) {
 680         if( last_memory_DEF != NULL ) {
 681           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
 682           last_memory_DEF = NULL;
 683         }
 684         USE_of_memory++;
 685         if (DEF_of_memory == 0)  // defs take precedence
 686           unique = comp;
 687       } else {
 688         assert(last_memory_DEF == NULL, "unpaired memory DEF");
 689       }
 690     }
 691   }
 692   assert(last_memory_DEF == NULL, "unpaired memory DEF");
 693   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
 694   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
 695   if( (USE_of_memory + DEF_of_memory) > 0 ) {
 696     if( is_simple_chain_rule(globals) ) {
 697       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
 698       //((InstructForm*)this)->dump();
 699       // Preceding code prints nothing on sparc and these insns on intel:
 700       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
 701       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
 702       return NO_MEMORY_OPERAND;
 703     }
 704 
 705     if( DEF_of_memory == 1 ) {
 706       assert(unique != NULL, "");
 707       if( USE_of_memory == 0 ) {
 708         // unique def, no uses
 709       } else {
 710         // // unique def, some uses
 711         // // must return bottom unless all uses match def
 712         // unique = NULL;
 713       }
 714     } else if( DEF_of_memory > 0 ) {
 715       // multiple defs, don't care about uses
 716       unique = NULL;
 717     } else if( USE_of_memory == 1) {
 718       // unique use, no defs
 719       assert(unique != NULL, "");
 720     } else if( USE_of_memory > 0 ) {
 721       // multiple uses, no defs
 722       unique = NULL;
 723     } else {
 724       assert(false, "bad case analysis");
 725     }
 726     // process the unique DEF or USE, if there is one
 727     if( unique == NULL ) {
 728       return MANY_MEMORY_OPERANDS;
 729     } else {
 730       int pos = components.operand_position(unique->_name);
 731       if( unique->isa(Component::DEF) ) {
 732         pos += 1;                // get corresponding USE from DEF
 733       }
 734       assert(pos >= 1, "I was just looking at it!");
 735       return pos;
 736     }
 737   }
 738 
 739   // missed the memory op??
 740   if( true ) {  // %%% should not be necessary
 741     if( is_ideal_store() != Form::none ) {
 742       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 743       ((InstructForm*)this)->dump();
 744       // pretend it has multiple defs and uses
 745       return MANY_MEMORY_OPERANDS;
 746     }
 747     if( is_ideal_load()  != Form::none ) {
 748       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 749       ((InstructForm*)this)->dump();
 750       // pretend it has multiple uses and no defs
 751       return MANY_MEMORY_OPERANDS;
 752     }
 753   }
 754 
 755   return NO_MEMORY_OPERAND;
 756 }
 757 
 758 
 759 // This instruction captures the machine-independent bottom_type
 760 // Expected use is for pointer vs oop determination for LoadP
 761 bool InstructForm::captures_bottom_type(FormDict &globals) const {
 762   if( _matrule && _matrule->_rChild &&
 763        (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
 764         !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
 765         !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
 766         !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
 767         !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
 768         !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
 769         !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
 770         !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
 771         !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
 772         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
 773         !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
 774         !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) )  return true;
 775   else if ( is_ideal_load() == Form::idealP )                return true;
 776   else if ( is_ideal_store() != Form::none  )                return true;
 777 
 778   if (needs_base_oop_edge(globals)) return true;
 779 
 780   if (is_vector()) return true;
 781   if (is_mach_constant()) return true;
 782 
 783   return  false;
 784 }
 785 
 786 
 787 // Access instr_cost attribute or return NULL.
 788 const char* InstructForm::cost() {
 789   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
 790     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
 791       return cur->_val;
 792     }
 793   }
 794   return NULL;
 795 }
 796 
 797 // Return count of top-level operands.
 798 uint InstructForm::num_opnds() {
 799   int  num_opnds = _components.num_operands();
 800 
 801   // Need special handling for matching some ideal nodes
 802   // i.e. Matching a return node
 803   /*
 804   if( _matrule ) {
 805     if( strcmp(_matrule->_opType,"Return"   )==0 ||
 806         strcmp(_matrule->_opType,"Halt"     )==0 )
 807       return 3;
 808   }
 809     */
 810   return num_opnds;
 811 }
 812 
 813 const char* InstructForm::opnd_ident(int idx) {
 814   return _components.at(idx)->_name;
 815 }
 816 
 817 const char* InstructForm::unique_opnd_ident(uint idx) {
 818   uint i;
 819   for (i = 1; i < num_opnds(); ++i) {
 820     if (unique_opnds_idx(i) == idx) {
 821       break;
 822     }
 823   }
 824   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
 825 }
 826 
 827 // Return count of unmatched operands.
 828 uint InstructForm::num_post_match_opnds() {
 829   uint  num_post_match_opnds = _components.count();
 830   uint  num_match_opnds = _components.match_count();
 831   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
 832 
 833   return num_post_match_opnds;
 834 }
 835 
 836 // Return the number of leaves below this complex operand
 837 uint InstructForm::num_consts(FormDict &globals) const {
 838   if ( ! _matrule) return 0;
 839 
 840   // This is a recursive invocation on all operands in the matchrule
 841   return _matrule->num_consts(globals);
 842 }
 843 
 844 // Constants in match rule with specified type
 845 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
 846   if ( ! _matrule) return 0;
 847 
 848   // This is a recursive invocation on all operands in the matchrule
 849   return _matrule->num_consts(globals, type);
 850 }
 851 
 852 
 853 // Return the register class associated with 'leaf'.
 854 const char *InstructForm::out_reg_class(FormDict &globals) {
 855   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
 856 
 857   return NULL;
 858 }
 859 
 860 
 861 
 862 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
 863 uint InstructForm::oper_input_base(FormDict &globals) {
 864   if( !_matrule ) return 1;     // Skip control for most nodes
 865 
 866   // Need special handling for matching some ideal nodes
 867   // i.e. Matching a return node
 868   if( strcmp(_matrule->_opType,"Return"    )==0 ||
 869       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
 870       strcmp(_matrule->_opType,"TailCall"  )==0 ||
 871       strcmp(_matrule->_opType,"TailJump"  )==0 ||
 872       strcmp(_matrule->_opType,"SafePoint" )==0 ||
 873       strcmp(_matrule->_opType,"Halt"      )==0 )
 874     return AdlcVMDeps::Parms;   // Skip the machine-state edges
 875 
 876   if( _matrule->_rChild &&
 877       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
 878         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
 879         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
 880         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
 881         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
 882         // String.(compareTo/equals/indexOf) and Arrays.equals
 883         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
 884         // take 1 control and 1 memory edges.
 885     return 2;
 886   }
 887 
 888   // Check for handling of 'Memory' input/edge in the ideal world.
 889   // The AD file writer is shielded from knowledge of these edges.
 890   int base = 1;                 // Skip control
 891   base += _matrule->needs_ideal_memory_edge(globals);
 892 
 893   // Also skip the base-oop value for uses of derived oops.
 894   // The AD file writer is shielded from knowledge of these edges.
 895   base += needs_base_oop_edge(globals);
 896 
 897   return base;
 898 }
 899 
 900 // This function determines the order of the MachOper in _opnds[]
 901 // by writing the operand names into the _components list.
 902 //
 903 // Implementation does not modify state of internal structures
 904 void InstructForm::build_components() {
 905   // Add top-level operands to the components
 906   if (_matrule)  _matrule->append_components(_localNames, _components);
 907 
 908   // Add parameters that "do not appear in match rule".
 909   bool has_temp = false;
 910   const char *name;
 911   const char *kill_name = NULL;
 912   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
 913     OperandForm *opForm = (OperandForm*)_localNames[name];
 914 
 915     Effect* e = NULL;
 916     {
 917       const Form* form = _effects[name];
 918       e = form ? form->is_effect() : NULL;
 919     }
 920 
 921     if (e != NULL) {
 922       has_temp |= e->is(Component::TEMP);
 923 
 924       // KILLs must be declared after any TEMPs because TEMPs are real
 925       // uses so their operand numbering must directly follow the real
 926       // inputs from the match rule.  Fixing the numbering seems
 927       // complex so simply enforce the restriction during parse.
 928       if (kill_name != NULL &&
 929           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 930         OperandForm* kill = (OperandForm*)_localNames[kill_name];
 931         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
 932                              _ident, kill->_ident, kill_name);
 933       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
 934         kill_name = name;
 935       }
 936     }
 937 
 938     const Component *component  = _components.search(name);
 939     if ( component  == NULL ) {
 940       if (e) {
 941         _components.insert(name, opForm->_ident, e->_use_def, false);
 942         component = _components.search(name);
 943         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
 944           const Form *form = globalAD->globalNames()[component->_type];
 945           assert( form, "component type must be a defined form");
 946           OperandForm *op   = form->is_operand();
 947           if (op->_interface && op->_interface->is_RegInterface()) {
 948             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 949                                  _ident, opForm->_ident, name);
 950           }
 951         }
 952       } else {
 953         // This would be a nice warning but it triggers in a few places in a benign way
 954         // if (_matrule != NULL && !expands()) {
 955         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
 956         //                        _ident, opForm->_ident, name);
 957         // }
 958         _components.insert(name, opForm->_ident, Component::INVALID, false);
 959       }
 960     }
 961     else if (e) {
 962       // Component was found in the list
 963       // Check if there is a new effect that requires an extra component.
 964       // This happens when adding 'USE' to a component that is not yet one.
 965       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
 966         if (component->isa(Component::USE) && _matrule) {
 967           const Form *form = globalAD->globalNames()[component->_type];
 968           assert( form, "component type must be a defined form");
 969           OperandForm *op   = form->is_operand();
 970           if (op->_interface && op->_interface->is_RegInterface()) {
 971             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 972                                  _ident, opForm->_ident, name);
 973           }
 974         }
 975         _components.insert(name, opForm->_ident, e->_use_def, false);
 976       } else {
 977         Component  *comp = (Component*)component;
 978         comp->promote_use_def_info(e->_use_def);
 979       }
 980       // Component positions are zero based.
 981       int  pos  = _components.operand_position(name);
 982       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
 983               "Component::DEF can only occur in the first position");
 984     }
 985   }
 986 
 987   // Resolving the interactions between expand rules and TEMPs would
 988   // be complex so simply disallow it.
 989   if (_matrule == NULL && has_temp) {
 990     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
 991   }
 992 
 993   return;
 994 }
 995 
 996 // Return zero-based position in component list;  -1 if not in list.
 997 int   InstructForm::operand_position(const char *name, int usedef) {
 998   return unique_opnds_idx(_components.operand_position(name, usedef, this));
 999 }
1000 
1001 int   InstructForm::operand_position_format(const char *name) {
1002   return unique_opnds_idx(_components.operand_position_format(name, this));
1003 }
1004 
1005 // Return zero-based position in component list; -1 if not in list.
1006 int   InstructForm::label_position() {
1007   return unique_opnds_idx(_components.label_position());
1008 }
1009 
1010 int   InstructForm::method_position() {
1011   return unique_opnds_idx(_components.method_position());
1012 }
1013 
1014 // Return number of relocation entries needed for this instruction.
1015 uint  InstructForm::reloc(FormDict &globals) {
1016   uint reloc_entries  = 0;
1017   // Check for "Call" nodes
1018   if ( is_ideal_call() )      ++reloc_entries;
1019   if ( is_ideal_return() )    ++reloc_entries;
1020   if ( is_ideal_safepoint() ) ++reloc_entries;
1021 
1022 
1023   // Check if operands MAYBE oop pointers, by checking for ConP elements
1024   // Proceed through the leaves of the match-tree and check for ConPs
1025   if ( _matrule != NULL ) {
1026     uint         position = 0;
1027     const char  *result   = NULL;
1028     const char  *name     = NULL;
1029     const char  *opType   = NULL;
1030     while (_matrule->base_operand(position, globals, result, name, opType)) {
1031       if ( strcmp(opType,"ConP") == 0 ) {
1032 #ifdef SPARC
1033         reloc_entries += 2; // 1 for sethi + 1 for setlo
1034 #else
1035         ++reloc_entries;
1036 #endif
1037       }
1038       ++position;
1039     }
1040   }
1041 
1042   // Above is only a conservative estimate
1043   // because it did not check contents of operand classes.
1044   // !!!!! !!!!!
1045   // Add 1 to reloc info for each operand class in the component list.
1046   Component  *comp;
1047   _components.reset();
1048   while ( (comp = _components.iter()) != NULL ) {
1049     const Form        *form = globals[comp->_type];
1050     assert( form, "Did not find component's type in global names");
1051     const OpClassForm *opc  = form->is_opclass();
1052     const OperandForm *oper = form->is_operand();
1053     if ( opc && (oper == NULL) ) {
1054       ++reloc_entries;
1055     } else if ( oper ) {
1056       // floats and doubles loaded out of method's constant pool require reloc info
1057       Form::DataType type = oper->is_base_constant(globals);
1058       if ( (type == Form::idealF) || (type == Form::idealD) ) {
1059         ++reloc_entries;
1060       }
1061     }
1062   }
1063 
1064   // Float and Double constants may come from the CodeBuffer table
1065   // and require relocatable addresses for access
1066   // !!!!!
1067   // Check for any component being an immediate float or double.
1068   Form::DataType data_type = is_chain_of_constant(globals);
1069   if( data_type==idealD || data_type==idealF ) {
1070 #ifdef SPARC
1071     // sparc required more relocation entries for floating constants
1072     // (expires 9/98)
1073     reloc_entries += 6;
1074 #else
1075     reloc_entries++;
1076 #endif
1077   }
1078 
1079   return reloc_entries;
1080 }
1081 
1082 // Utility function defined in archDesc.cpp
1083 extern bool is_def(int usedef);
1084 
1085 // Return the result of reducing an instruction
1086 const char *InstructForm::reduce_result() {
1087   const char* result = "Universe";  // default
1088   _components.reset();
1089   Component *comp = _components.iter();
1090   if (comp != NULL && comp->isa(Component::DEF)) {
1091     result = comp->_type;
1092     // Override this if the rule is a store operation:
1093     if (_matrule && _matrule->_rChild &&
1094         is_store_to_memory(_matrule->_rChild->_opType))
1095       result = "Universe";
1096   }
1097   return result;
1098 }
1099 
1100 // Return the name of the operand on the right hand side of the binary match
1101 // Return NULL if there is no right hand side
1102 const char *InstructForm::reduce_right(FormDict &globals)  const {
1103   if( _matrule == NULL ) return NULL;
1104   return  _matrule->reduce_right(globals);
1105 }
1106 
1107 // Similar for left
1108 const char *InstructForm::reduce_left(FormDict &globals)   const {
1109   if( _matrule == NULL ) return NULL;
1110   return  _matrule->reduce_left(globals);
1111 }
1112 
1113 
1114 // Base class for this instruction, MachNode except for calls
1115 const char *InstructForm::mach_base_class(FormDict &globals)  const {
1116   if( is_ideal_call() == Form::JAVA_STATIC ) {
1117     return "MachCallStaticJavaNode";
1118   }
1119   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1120     return "MachCallDynamicJavaNode";
1121   }
1122   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1123     return "MachCallRuntimeNode";
1124   }
1125   else if( is_ideal_call() == Form::JAVA_LEAF ) {
1126     return "MachCallLeafNode";
1127   }
1128   else if (is_ideal_return()) {
1129     return "MachReturnNode";
1130   }
1131   else if (is_ideal_halt()) {
1132     return "MachHaltNode";
1133   }
1134   else if (is_ideal_safepoint()) {
1135     return "MachSafePointNode";
1136   }
1137   else if (is_ideal_if()) {
1138     return "MachIfNode";
1139   }
1140   else if (is_ideal_goto()) {
1141     return "MachGotoNode";
1142   }
1143   else if (is_ideal_fastlock()) {
1144     return "MachFastLockNode";
1145   }
1146   else if (is_ideal_nop()) {
1147     return "MachNopNode";
1148   }
1149   else if (is_mach_constant()) {
1150     return "MachConstantNode";
1151   }
1152   else if (captures_bottom_type(globals)) {
1153     return "MachTypeNode";
1154   } else {
1155     return "MachNode";
1156   }
1157   assert( false, "ShouldNotReachHere()");
1158   return NULL;
1159 }
1160 
1161 // Compare the instruction predicates for textual equality
1162 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1163   const Predicate *pred1  = instr1->_predicate;
1164   const Predicate *pred2  = instr2->_predicate;
1165   if( pred1 == NULL && pred2 == NULL ) {
1166     // no predicates means they are identical
1167     return true;
1168   }
1169   if( pred1 != NULL && pred2 != NULL ) {
1170     // compare the predicates
1171     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1172       return true;
1173     }
1174   }
1175 
1176   return false;
1177 }
1178 
1179 // Check if this instruction can cisc-spill to 'alternate'
1180 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1181   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1182   // Do not replace if a cisc-version has been found.
1183   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1184 
1185   int         cisc_spill_operand = Maybe_cisc_spillable;
1186   char       *result             = NULL;
1187   char       *result2            = NULL;
1188   const char *op_name            = NULL;
1189   const char *reg_type           = NULL;
1190   FormDict   &globals            = AD.globalNames();
1191   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1192   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1193     cisc_spill_operand = operand_position(op_name, Component::USE);
1194     int def_oper  = operand_position(op_name, Component::DEF);
1195     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1196       // Do not support cisc-spilling for destination operands and
1197       // make sure they have the same number of operands.
1198       _cisc_spill_alternate = instr;
1199       instr->set_cisc_alternate(true);
1200       if( AD._cisc_spill_debug ) {
1201         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1202         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1203       }
1204       // Record that a stack-version of the reg_mask is needed
1205       // !!!!!
1206       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1207       assert( oper != NULL, "cisc-spilling non operand");
1208       const char *reg_class_name = oper->constrained_reg_class();
1209       AD.set_stack_or_reg(reg_class_name);
1210       const char *reg_mask_name  = AD.reg_mask(*oper);
1211       set_cisc_reg_mask_name(reg_mask_name);
1212       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1213     } else {
1214       cisc_spill_operand = Not_cisc_spillable;
1215     }
1216   } else {
1217     cisc_spill_operand = Not_cisc_spillable;
1218   }
1219 
1220   set_cisc_spill_operand(cisc_spill_operand);
1221   return (cisc_spill_operand != Not_cisc_spillable);
1222 }
1223 
1224 // Check to see if this instruction can be replaced with the short branch
1225 // instruction `short-branch'
1226 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1227   if (_matrule != NULL &&
1228       this != short_branch &&   // Don't match myself
1229       !is_short_branch() &&     // Don't match another short branch variant
1230       reduce_result() != NULL &&
1231       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1232       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1233     // The instructions are equivalent.
1234 
1235     // Now verify that both instructions have the same parameters and
1236     // the same effects. Both branch forms should have the same inputs
1237     // and resulting projections to correctly replace a long branch node
1238     // with corresponding short branch node during code generation.
1239 
1240     bool different = false;
1241     if (short_branch->_components.count() != _components.count()) {
1242        different = true;
1243     } else if (_components.count() > 0) {
1244       short_branch->_components.reset();
1245       _components.reset();
1246       Component *comp;
1247       while ((comp = _components.iter()) != NULL) {
1248         Component *short_comp = short_branch->_components.iter();
1249         if (short_comp == NULL ||
1250             short_comp->_type != comp->_type ||
1251             short_comp->_usedef != comp->_usedef) {
1252           different = true;
1253           break;
1254         }
1255       }
1256       if (short_branch->_components.iter() != NULL)
1257         different = true;
1258     }
1259     if (different) {
1260       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
1261     }
1262     if (AD._adl_debug > 1 || AD._short_branch_debug) {
1263       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1264     }
1265     _short_branch_form = short_branch;
1266     return true;
1267   }
1268   return false;
1269 }
1270 
1271 
1272 // --------------------------- FILE *output_routines
1273 //
1274 // Generate the format call for the replacement variable
1275 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1276   // Handle special constant table variables.
1277   if (strcmp(rep_var, "constanttablebase") == 0) {
1278     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
1279     fprintf(fp, "    st->print(\"%%s\", reg);\n");
1280     return;
1281   }
1282   if (strcmp(rep_var, "constantoffset") == 0) {
1283     fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
1284     return;
1285   }
1286   if (strcmp(rep_var, "constantaddress") == 0) {
1287     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
1288     return;
1289   }
1290 
1291   // Find replacement variable's type
1292   const Form *form   = _localNames[rep_var];
1293   if (form == NULL) {
1294     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
1295                          rep_var, _ident);
1296     return;
1297   }
1298   OpClassForm *opc   = form->is_opclass();
1299   assert( opc, "replacement variable was not found in local names");
1300   // Lookup the index position of the replacement variable
1301   int idx  = operand_position_format(rep_var);
1302   if ( idx == -1 ) {
1303     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
1304                          rep_var, _ident);
1305     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
1306     return;
1307   }
1308 
1309   if (is_noninput_operand(idx)) {
1310     // This component isn't in the input array.  Print out the static
1311     // name of the register.
1312     OperandForm* oper = form->is_operand();
1313     if (oper != NULL && oper->is_bound_register()) {
1314       const RegDef* first = oper->get_RegClass()->find_first_elem();
1315       fprintf(fp, "    st->print(\"%s\");\n", first->_regname);
1316     } else {
1317       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1318     }
1319   } else {
1320     // Output the format call for this operand
1321     fprintf(fp,"opnd_array(%d)->",idx);
1322     if (idx == 0)
1323       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1324     else
1325       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1326   }
1327 }
1328 
1329 // Seach through operands to determine parameters unique positions.
1330 void InstructForm::set_unique_opnds() {
1331   uint* uniq_idx = NULL;
1332   uint  nopnds = num_opnds();
1333   uint  num_uniq = nopnds;
1334   uint i;
1335   _uniq_idx_length = 0;
1336   if (nopnds > 0) {
1337     // Allocate index array.  Worst case we're mapping from each
1338     // component back to an index and any DEF always goes at 0 so the
1339     // length of the array has to be the number of components + 1.
1340     _uniq_idx_length = _components.count() + 1;
1341     uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
1342     for (i = 0; i < _uniq_idx_length; i++) {
1343       uniq_idx[i] = i;
1344     }
1345   }
1346   // Do it only if there is a match rule and no expand rule.  With an
1347   // expand rule it is done by creating new mach node in Expand()
1348   // method.
1349   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
1350     const char *name;
1351     uint count;
1352     bool has_dupl_use = false;
1353 
1354     _parameters.reset();
1355     while ((name = _parameters.iter()) != NULL) {
1356       count = 0;
1357       uint position = 0;
1358       uint uniq_position = 0;
1359       _components.reset();
1360       Component *comp = NULL;
1361       if (sets_result()) {
1362         comp = _components.iter();
1363         position++;
1364       }
1365       // The next code is copied from the method operand_position().
1366       for (; (comp = _components.iter()) != NULL; ++position) {
1367         // When the first component is not a DEF,
1368         // leave space for the result operand!
1369         if (position==0 && (!comp->isa(Component::DEF))) {
1370           ++position;
1371         }
1372         if (strcmp(name, comp->_name) == 0) {
1373           if (++count > 1) {
1374             assert(position < _uniq_idx_length, "out of bounds");
1375             uniq_idx[position] = uniq_position;
1376             has_dupl_use = true;
1377           } else {
1378             uniq_position = position;
1379           }
1380         }
1381         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
1382           ++position;
1383           if (position != 1)
1384             --position;   // only use two slots for the 1st USE_DEF
1385         }
1386       }
1387     }
1388     if (has_dupl_use) {
1389       for (i = 1; i < nopnds; i++) {
1390         if (i != uniq_idx[i]) {
1391           break;
1392         }
1393       }
1394       uint j = i;
1395       for (; i < nopnds; i++) {
1396         if (i == uniq_idx[i]) {
1397           uniq_idx[i] = j++;
1398         }
1399       }
1400       num_uniq = j;
1401     }
1402   }
1403   _uniq_idx = uniq_idx;
1404   _num_uniq = num_uniq;
1405 }
1406 
1407 // Generate index values needed for determining the operand position
1408 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1409   uint  idx = 0;                  // position of operand in match rule
1410   int   cur_num_opnds = num_opnds();
1411 
1412   // Compute the index into vector of operand pointers:
1413   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1414   // idx1 starts at oper_input_base()
1415   if ( cur_num_opnds >= 1 ) {
1416     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
1417     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1418     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
1419     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
1420 
1421     // Generate starting points for other unique operands if they exist
1422     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1423       if( *receiver == 0 ) {
1424         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
1425                 prefix, idx, prefix, idx-1, idx-1 );
1426       } else {
1427         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
1428                 prefix, idx, prefix, idx-1, receiver, idx-1 );
1429       }
1430       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
1431     }
1432   }
1433   if( *receiver != 0 ) {
1434     // This value is used by generate_peepreplace when copying a node.
1435     // Don't emit it in other cases since it can hide bugs with the
1436     // use invalid idx's.
1437     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1438   }
1439 
1440 }
1441 
1442 // ---------------------------
1443 bool InstructForm::verify() {
1444   // !!!!! !!!!!
1445   // Check that a "label" operand occurs last in the operand list, if present
1446   return true;
1447 }
1448 
1449 void InstructForm::dump() {
1450   output(stderr);
1451 }
1452 
1453 void InstructForm::output(FILE *fp) {
1454   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1455   if (_matrule)   _matrule->output(fp);
1456   if (_insencode) _insencode->output(fp);
1457   if (_constant)  _constant->output(fp);
1458   if (_opcode)    _opcode->output(fp);
1459   if (_attribs)   _attribs->output(fp);
1460   if (_predicate) _predicate->output(fp);
1461   if (_effects.Size()) {
1462     fprintf(fp,"Effects\n");
1463     _effects.dump();
1464   }
1465   if (_exprule)   _exprule->output(fp);
1466   if (_rewrule)   _rewrule->output(fp);
1467   if (_format)    _format->output(fp);
1468   if (_peephole)  _peephole->output(fp);
1469 }
1470 
1471 void MachNodeForm::dump() {
1472   output(stderr);
1473 }
1474 
1475 void MachNodeForm::output(FILE *fp) {
1476   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1477 }
1478 
1479 //------------------------------build_predicate--------------------------------
1480 // Build instruction predicates.  If the user uses the same operand name
1481 // twice, we need to check that the operands are pointer-eequivalent in
1482 // the DFA during the labeling process.
1483 Predicate *InstructForm::build_predicate() {
1484   char buf[1024], *s=buf;
1485   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1486 
1487   MatchNode *mnode =
1488     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1489   mnode->count_instr_names(names);
1490 
1491   uint first = 1;
1492   // Start with the predicate supplied in the .ad file.
1493   if( _predicate ) {
1494     if( first ) first=0;
1495     strcpy(s,"("); s += strlen(s);
1496     strcpy(s,_predicate->_pred);
1497     s += strlen(s);
1498     strcpy(s,")"); s += strlen(s);
1499   }
1500   for( DictI i(&names); i.test(); ++i ) {
1501     uintptr_t cnt = (uintptr_t)i._value;
1502     if( cnt > 1 ) {             // Need a predicate at all?
1503       assert( cnt == 2, "Unimplemented" );
1504       // Handle many pairs
1505       if( first ) first=0;
1506       else {                    // All tests must pass, so use '&&'
1507         strcpy(s," && ");
1508         s += strlen(s);
1509       }
1510       // Add predicate to working buffer
1511       sprintf(s,"/*%s*/(",(char*)i._key);
1512       s += strlen(s);
1513       mnode->build_instr_pred(s,(char*)i._key,0);
1514       s += strlen(s);
1515       strcpy(s," == "); s += strlen(s);
1516       mnode->build_instr_pred(s,(char*)i._key,1);
1517       s += strlen(s);
1518       strcpy(s,")"); s += strlen(s);
1519     }
1520   }
1521   if( s == buf ) s = NULL;
1522   else {
1523     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1524     s = strdup(buf);
1525   }
1526   return new Predicate(s);
1527 }
1528 
1529 //------------------------------EncodeForm-------------------------------------
1530 // Constructor
1531 EncodeForm::EncodeForm()
1532   : _encClass(cmpstr,hashstr, Form::arena) {
1533 }
1534 EncodeForm::~EncodeForm() {
1535 }
1536 
1537 // record a new register class
1538 EncClass *EncodeForm::add_EncClass(const char *className) {
1539   EncClass *encClass = new EncClass(className);
1540   _eclasses.addName(className);
1541   _encClass.Insert(className,encClass);
1542   return encClass;
1543 }
1544 
1545 // Lookup the function body for an encoding class
1546 EncClass  *EncodeForm::encClass(const char *className) {
1547   assert( className != NULL, "Must provide a defined encoding name");
1548 
1549   EncClass *encClass = (EncClass*)_encClass[className];
1550   return encClass;
1551 }
1552 
1553 // Lookup the function body for an encoding class
1554 const char *EncodeForm::encClassBody(const char *className) {
1555   if( className == NULL ) return NULL;
1556 
1557   EncClass *encClass = (EncClass*)_encClass[className];
1558   assert( encClass != NULL, "Encode Class is missing.");
1559   encClass->_code.reset();
1560   const char *code = (const char*)encClass->_code.iter();
1561   assert( code != NULL, "Found an empty encode class body.");
1562 
1563   return code;
1564 }
1565 
1566 // Lookup the function body for an encoding class
1567 const char *EncodeForm::encClassPrototype(const char *className) {
1568   assert( className != NULL, "Encode class name must be non NULL.");
1569 
1570   return className;
1571 }
1572 
1573 void EncodeForm::dump() {                  // Debug printer
1574   output(stderr);
1575 }
1576 
1577 void EncodeForm::output(FILE *fp) {          // Write info to output files
1578   const char *name;
1579   fprintf(fp,"\n");
1580   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1581   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1582     ((EncClass*)_encClass[name])->output(fp);
1583   }
1584   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1585 }
1586 //------------------------------EncClass---------------------------------------
1587 EncClass::EncClass(const char *name)
1588   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1589 }
1590 EncClass::~EncClass() {
1591 }
1592 
1593 // Add a parameter <type,name> pair
1594 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1595   _parameter_type.addName( parameter_type );
1596   _parameter_name.addName( parameter_name );
1597 }
1598 
1599 // Verify operand types in parameter list
1600 bool EncClass::check_parameter_types(FormDict &globals) {
1601   // !!!!!
1602   return false;
1603 }
1604 
1605 // Add the decomposed "code" sections of an encoding's code-block
1606 void EncClass::add_code(const char *code) {
1607   _code.addName(code);
1608 }
1609 
1610 // Add the decomposed "replacement variables" of an encoding's code-block
1611 void EncClass::add_rep_var(char *replacement_var) {
1612   _code.addName(NameList::_signal);
1613   _rep_vars.addName(replacement_var);
1614 }
1615 
1616 // Lookup the function body for an encoding class
1617 int EncClass::rep_var_index(const char *rep_var) {
1618   uint        position = 0;
1619   const char *name     = NULL;
1620 
1621   _parameter_name.reset();
1622   while ( (name = _parameter_name.iter()) != NULL ) {
1623     if ( strcmp(rep_var,name) == 0 ) return position;
1624     ++position;
1625   }
1626 
1627   return -1;
1628 }
1629 
1630 // Check after parsing
1631 bool EncClass::verify() {
1632   // 1!!!!
1633   // Check that each replacement variable, '$name' in architecture description
1634   // is actually a local variable for this encode class, or a reserved name
1635   // "primary, secondary, tertiary"
1636   return true;
1637 }
1638 
1639 void EncClass::dump() {
1640   output(stderr);
1641 }
1642 
1643 // Write info to output files
1644 void EncClass::output(FILE *fp) {
1645   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1646 
1647   // Output the parameter list
1648   _parameter_type.reset();
1649   _parameter_name.reset();
1650   const char *type = _parameter_type.iter();
1651   const char *name = _parameter_name.iter();
1652   fprintf(fp, " ( ");
1653   for ( ; (type != NULL) && (name != NULL);
1654         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1655     fprintf(fp, " %s %s,", type, name);
1656   }
1657   fprintf(fp, " ) ");
1658 
1659   // Output the code block
1660   _code.reset();
1661   _rep_vars.reset();
1662   const char *code;
1663   while ( (code = _code.iter()) != NULL ) {
1664     if ( _code.is_signal(code) ) {
1665       // A replacement variable
1666       const char *rep_var = _rep_vars.iter();
1667       fprintf(fp,"($%s)", rep_var);
1668     } else {
1669       // A section of code
1670       fprintf(fp,"%s", code);
1671     }
1672   }
1673 
1674 }
1675 
1676 //------------------------------Opcode-----------------------------------------
1677 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1678   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1679 }
1680 
1681 Opcode::~Opcode() {
1682 }
1683 
1684 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1685   if( strcmp(param,"primary") == 0 ) {
1686     return Opcode::PRIMARY;
1687   }
1688   else if( strcmp(param,"secondary") == 0 ) {
1689     return Opcode::SECONDARY;
1690   }
1691   else if( strcmp(param,"tertiary") == 0 ) {
1692     return Opcode::TERTIARY;
1693   }
1694   return Opcode::NOT_AN_OPCODE;
1695 }
1696 
1697 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1698   // Default values previously provided by MachNode::primary()...
1699   const char *description = NULL;
1700   const char *value       = NULL;
1701   // Check if user provided any opcode definitions
1702   if( this != NULL ) {
1703     // Update 'value' if user provided a definition in the instruction
1704     switch (desired_opcode) {
1705     case PRIMARY:
1706       description = "primary()";
1707       if( _primary   != NULL)  { value = _primary;     }
1708       break;
1709     case SECONDARY:
1710       description = "secondary()";
1711       if( _secondary != NULL ) { value = _secondary;   }
1712       break;
1713     case TERTIARY:
1714       description = "tertiary()";
1715       if( _tertiary  != NULL ) { value = _tertiary;    }
1716       break;
1717     default:
1718       assert( false, "ShouldNotReachHere();");
1719       break;
1720     }
1721   }
1722   if (value != NULL) {
1723     fprintf(fp, "(%s /*%s*/)", value, description);
1724   }
1725   return value != NULL;
1726 }
1727 
1728 void Opcode::dump() {
1729   output(stderr);
1730 }
1731 
1732 // Write info to output files
1733 void Opcode::output(FILE *fp) {
1734   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1735   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1736   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1737 }
1738 
1739 //------------------------------InsEncode--------------------------------------
1740 InsEncode::InsEncode() {
1741 }
1742 InsEncode::~InsEncode() {
1743 }
1744 
1745 // Add "encode class name" and its parameters
1746 NameAndList *InsEncode::add_encode(char *encoding) {
1747   assert( encoding != NULL, "Must provide name for encoding");
1748 
1749   // add_parameter(NameList::_signal);
1750   NameAndList *encode = new NameAndList(encoding);
1751   _encoding.addName((char*)encode);
1752 
1753   return encode;
1754 }
1755 
1756 // Access the list of encodings
1757 void InsEncode::reset() {
1758   _encoding.reset();
1759   // _parameter.reset();
1760 }
1761 const char* InsEncode::encode_class_iter() {
1762   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1763   return  ( encode_class != NULL ? encode_class->name() : NULL );
1764 }
1765 // Obtain parameter name from zero based index
1766 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1767   NameAndList *params = (NameAndList*)_encoding.current();
1768   assert( params != NULL, "Internal Error");
1769   const char *param = (*params)[param_no];
1770 
1771   // Remove '$' if parser placed it there.
1772   return ( param != NULL && *param == '$') ? (param+1) : param;
1773 }
1774 
1775 void InsEncode::dump() {
1776   output(stderr);
1777 }
1778 
1779 // Write info to output files
1780 void InsEncode::output(FILE *fp) {
1781   NameAndList *encoding  = NULL;
1782   const char  *parameter = NULL;
1783 
1784   fprintf(fp,"InsEncode: ");
1785   _encoding.reset();
1786 
1787   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1788     // Output the encoding being used
1789     fprintf(fp,"%s(", encoding->name() );
1790 
1791     // Output its parameter list, if any
1792     bool first_param = true;
1793     encoding->reset();
1794     while (  (parameter = encoding->iter()) != 0 ) {
1795       // Output the ',' between parameters
1796       if ( ! first_param )  fprintf(fp,", ");
1797       first_param = false;
1798       // Output the parameter
1799       fprintf(fp,"%s", parameter);
1800     } // done with parameters
1801     fprintf(fp,")  ");
1802   } // done with encodings
1803 
1804   fprintf(fp,"\n");
1805 }
1806 
1807 //------------------------------Effect-----------------------------------------
1808 static int effect_lookup(const char *name) {
1809   if(!strcmp(name, "USE")) return Component::USE;
1810   if(!strcmp(name, "DEF")) return Component::DEF;
1811   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1812   if(!strcmp(name, "KILL")) return Component::KILL;
1813   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1814   if(!strcmp(name, "TEMP")) return Component::TEMP;
1815   if(!strcmp(name, "INVALID")) return Component::INVALID;
1816   if(!strcmp(name, "CALL")) return Component::CALL;
1817   assert( false,"Invalid effect name specified\n");
1818   return Component::INVALID;
1819 }
1820 
1821 const char *Component::getUsedefName() {
1822   switch (_usedef) {
1823     case Component::INVALID:  return "INVALID";  break;
1824     case Component::USE:      return "USE";      break;
1825     case Component::USE_DEF:  return "USE_DEF";  break;
1826     case Component::USE_KILL: return "USE_KILL"; break;
1827     case Component::KILL:     return "KILL";     break;
1828     case Component::TEMP:     return "TEMP";     break;
1829     case Component::DEF:      return "DEF";      break;
1830     case Component::CALL:     return "CALL";     break;
1831     default: assert(false, "unknown effect");
1832   }
1833   return "Undefined Use/Def info";
1834 }
1835 
1836 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1837   _ftype = Form::EFF;
1838 }
1839 
1840 Effect::~Effect() {
1841 }
1842 
1843 // Dynamic type check
1844 Effect *Effect::is_effect() const {
1845   return (Effect*)this;
1846 }
1847 
1848 
1849 // True if this component is equal to the parameter.
1850 bool Effect::is(int use_def_kill_enum) const {
1851   return (_use_def == use_def_kill_enum ? true : false);
1852 }
1853 // True if this component is used/def'd/kill'd as the parameter suggests.
1854 bool Effect::isa(int use_def_kill_enum) const {
1855   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1856 }
1857 
1858 void Effect::dump() {
1859   output(stderr);
1860 }
1861 
1862 void Effect::output(FILE *fp) {          // Write info to output files
1863   fprintf(fp,"Effect: %s\n", (_name?_name:""));
1864 }
1865 
1866 //------------------------------ExpandRule-------------------------------------
1867 ExpandRule::ExpandRule() : _expand_instrs(),
1868                            _newopconst(cmpstr, hashstr, Form::arena) {
1869   _ftype = Form::EXP;
1870 }
1871 
1872 ExpandRule::~ExpandRule() {                  // Destructor
1873 }
1874 
1875 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1876   _expand_instrs.addName((char*)instruction_name_and_operand_list);
1877 }
1878 
1879 void ExpandRule::reset_instructions() {
1880   _expand_instrs.reset();
1881 }
1882 
1883 NameAndList* ExpandRule::iter_instructions() {
1884   return (NameAndList*)_expand_instrs.iter();
1885 }
1886 
1887 
1888 void ExpandRule::dump() {
1889   output(stderr);
1890 }
1891 
1892 void ExpandRule::output(FILE *fp) {         // Write info to output files
1893   NameAndList *expand_instr = NULL;
1894   const char *opid = NULL;
1895 
1896   fprintf(fp,"\nExpand Rule:\n");
1897 
1898   // Iterate over the instructions 'node' expands into
1899   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1900     fprintf(fp,"%s(", expand_instr->name());
1901 
1902     // iterate over the operand list
1903     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1904       fprintf(fp,"%s ", opid);
1905     }
1906     fprintf(fp,");\n");
1907   }
1908 }
1909 
1910 //------------------------------RewriteRule------------------------------------
1911 RewriteRule::RewriteRule(char* params, char* block)
1912   : _tempParams(params), _tempBlock(block) { };  // Constructor
1913 RewriteRule::~RewriteRule() {                 // Destructor
1914 }
1915 
1916 void RewriteRule::dump() {
1917   output(stderr);
1918 }
1919 
1920 void RewriteRule::output(FILE *fp) {         // Write info to output files
1921   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1922           (_tempParams?_tempParams:""),
1923           (_tempBlock?_tempBlock:""));
1924 }
1925 
1926 
1927 //==============================MachNodes======================================
1928 //------------------------------MachNodeForm-----------------------------------
1929 MachNodeForm::MachNodeForm(char *id)
1930   : _ident(id) {
1931 }
1932 
1933 MachNodeForm::~MachNodeForm() {
1934 }
1935 
1936 MachNodeForm *MachNodeForm::is_machnode() const {
1937   return (MachNodeForm*)this;
1938 }
1939 
1940 //==============================Operand Classes================================
1941 //------------------------------OpClassForm------------------------------------
1942 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1943   _ftype = Form::OPCLASS;
1944 }
1945 
1946 OpClassForm::~OpClassForm() {
1947 }
1948 
1949 bool OpClassForm::ideal_only() const { return 0; }
1950 
1951 OpClassForm *OpClassForm::is_opclass() const {
1952   return (OpClassForm*)this;
1953 }
1954 
1955 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1956   if( _oplst.count() == 0 ) return Form::no_interface;
1957 
1958   // Check that my operands have the same interface type
1959   Form::InterfaceType  interface;
1960   bool  first = true;
1961   NameList &op_list = (NameList &)_oplst;
1962   op_list.reset();
1963   const char *op_name;
1964   while( (op_name = op_list.iter()) != NULL ) {
1965     const Form  *form    = globals[op_name];
1966     OperandForm *operand = form->is_operand();
1967     assert( operand, "Entry in operand class that is not an operand");
1968     if( first ) {
1969       first     = false;
1970       interface = operand->interface_type(globals);
1971     } else {
1972       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1973     }
1974   }
1975   return interface;
1976 }
1977 
1978 bool OpClassForm::stack_slots_only(FormDict &globals) const {
1979   if( _oplst.count() == 0 ) return false;  // how?
1980 
1981   NameList &op_list = (NameList &)_oplst;
1982   op_list.reset();
1983   const char *op_name;
1984   while( (op_name = op_list.iter()) != NULL ) {
1985     const Form  *form    = globals[op_name];
1986     OperandForm *operand = form->is_operand();
1987     assert( operand, "Entry in operand class that is not an operand");
1988     if( !operand->stack_slots_only(globals) )  return false;
1989   }
1990   return true;
1991 }
1992 
1993 
1994 void OpClassForm::dump() {
1995   output(stderr);
1996 }
1997 
1998 void OpClassForm::output(FILE *fp) {
1999   const char *name;
2000   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
2001   fprintf(fp,"\nCount = %d\n", _oplst.count());
2002   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
2003     fprintf(fp,"%s, ",name);
2004   }
2005   fprintf(fp,"\n");
2006 }
2007 
2008 
2009 //==============================Operands=======================================
2010 //------------------------------OperandForm------------------------------------
2011 OperandForm::OperandForm(const char* id)
2012   : OpClassForm(id), _ideal_only(false),
2013     _localNames(cmpstr, hashstr, Form::arena) {
2014       _ftype = Form::OPER;
2015 
2016       _matrule   = NULL;
2017       _interface = NULL;
2018       _attribs   = NULL;
2019       _predicate = NULL;
2020       _constraint= NULL;
2021       _construct = NULL;
2022       _format    = NULL;
2023 }
2024 OperandForm::OperandForm(const char* id, bool ideal_only)
2025   : OpClassForm(id), _ideal_only(ideal_only),
2026     _localNames(cmpstr, hashstr, Form::arena) {
2027       _ftype = Form::OPER;
2028 
2029       _matrule   = NULL;
2030       _interface = NULL;
2031       _attribs   = NULL;
2032       _predicate = NULL;
2033       _constraint= NULL;
2034       _construct = NULL;
2035       _format    = NULL;
2036 }
2037 OperandForm::~OperandForm() {
2038 }
2039 
2040 
2041 OperandForm *OperandForm::is_operand() const {
2042   return (OperandForm*)this;
2043 }
2044 
2045 bool OperandForm::ideal_only() const {
2046   return _ideal_only;
2047 }
2048 
2049 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
2050   if( _interface == NULL )  return Form::no_interface;
2051 
2052   return _interface->interface_type(globals);
2053 }
2054 
2055 
2056 bool OperandForm::stack_slots_only(FormDict &globals) const {
2057   if( _constraint == NULL )  return false;
2058   return _constraint->stack_slots_only();
2059 }
2060 
2061 
2062 // Access op_cost attribute or return NULL.
2063 const char* OperandForm::cost() {
2064   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
2065     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
2066       return cur->_val;
2067     }
2068   }
2069   return NULL;
2070 }
2071 
2072 // Return the number of leaves below this complex operand
2073 uint OperandForm::num_leaves() const {
2074   if ( ! _matrule) return 0;
2075 
2076   int num_leaves = _matrule->_numleaves;
2077   return num_leaves;
2078 }
2079 
2080 // Return the number of constants contained within this complex operand
2081 uint OperandForm::num_consts(FormDict &globals) const {
2082   if ( ! _matrule) return 0;
2083 
2084   // This is a recursive invocation on all operands in the matchrule
2085   return _matrule->num_consts(globals);
2086 }
2087 
2088 // Return the number of constants in match rule with specified type
2089 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
2090   if ( ! _matrule) return 0;
2091 
2092   // This is a recursive invocation on all operands in the matchrule
2093   return _matrule->num_consts(globals, type);
2094 }
2095 
2096 // Return the number of pointer constants contained within this complex operand
2097 uint OperandForm::num_const_ptrs(FormDict &globals) const {
2098   if ( ! _matrule) return 0;
2099 
2100   // This is a recursive invocation on all operands in the matchrule
2101   return _matrule->num_const_ptrs(globals);
2102 }
2103 
2104 uint OperandForm::num_edges(FormDict &globals) const {
2105   uint edges  = 0;
2106   uint leaves = num_leaves();
2107   uint consts = num_consts(globals);
2108 
2109   // If we are matching a constant directly, there are no leaves.
2110   edges = ( leaves > consts ) ? leaves - consts : 0;
2111 
2112   // !!!!!
2113   // Special case operands that do not have a corresponding ideal node.
2114   if( (edges == 0) && (consts == 0) ) {
2115     if( constrained_reg_class() != NULL ) {
2116       edges = 1;
2117     } else {
2118       if( _matrule
2119           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
2120         const Form *form = globals[_matrule->_opType];
2121         OperandForm *oper = form ? form->is_operand() : NULL;
2122         if( oper ) {
2123           return oper->num_edges(globals);
2124         }
2125       }
2126     }
2127   }
2128 
2129   return edges;
2130 }
2131 
2132 
2133 // Check if this operand is usable for cisc-spilling
2134 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
2135   const char *ideal = ideal_type(globals);
2136   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2137   return is_cisc_reg;
2138 }
2139 
2140 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2141   Form::InterfaceType my_interface = interface_type(globals);
2142   return (my_interface == memory_interface);
2143 }
2144 
2145 
2146 // node matches ideal 'Bool'
2147 bool OperandForm::is_ideal_bool() const {
2148   if( _matrule == NULL ) return false;
2149 
2150   return _matrule->is_ideal_bool();
2151 }
2152 
2153 // Require user's name for an sRegX to be stackSlotX
2154 Form::DataType OperandForm::is_user_name_for_sReg() const {
2155   DataType data_type = none;
2156   if( _ident != NULL ) {
2157     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2158     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2159     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2160     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2161     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2162   }
2163   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2164 
2165   return data_type;
2166 }
2167 
2168 
2169 // Return ideal type, if there is a single ideal type for this operand
2170 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2171   const char *type = NULL;
2172   if (ideal_only()) type = _ident;
2173   else if( _matrule == NULL ) {
2174     // Check for condition code register
2175     const char *rc_name = constrained_reg_class();
2176     // !!!!!
2177     if (rc_name == NULL) return NULL;
2178     // !!!!! !!!!!
2179     // Check constraints on result's register class
2180     if( registers ) {
2181       RegClass *reg_class  = registers->getRegClass(rc_name);
2182       assert( reg_class != NULL, "Register class is not defined");
2183 
2184       // Check for ideal type of entries in register class, all are the same type
2185       reg_class->reset();
2186       RegDef *reg_def = reg_class->RegDef_iter();
2187       assert( reg_def != NULL, "No entries in register class");
2188       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2189       // Return substring that names the register's ideal type
2190       type = reg_def->_idealtype + 3;
2191       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2192       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2193       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2194     }
2195   }
2196   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2197     // This operand matches a single type, at the top level.
2198     // Check for ideal type
2199     type = _matrule->_opType;
2200     if( strcmp(type,"Bool") == 0 )
2201       return "Bool";
2202     // transitive lookup
2203     const Form *frm = globals[type];
2204     OperandForm *op = frm->is_operand();
2205     type = op->ideal_type(globals, registers);
2206   }
2207   return type;
2208 }
2209 
2210 
2211 // If there is a single ideal type for this interface field, return it.
2212 const char *OperandForm::interface_ideal_type(FormDict &globals,
2213                                               const char *field) const {
2214   const char  *ideal_type = NULL;
2215   const char  *value      = NULL;
2216 
2217   // Check if "field" is valid for this operand's interface
2218   if ( ! is_interface_field(field, value) )   return ideal_type;
2219 
2220   // !!!!! !!!!! !!!!!
2221   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2222 
2223   // Else, lookup type of field's replacement variable
2224 
2225   return ideal_type;
2226 }
2227 
2228 
2229 RegClass* OperandForm::get_RegClass() const {
2230   if (_interface && !_interface->is_RegInterface()) return NULL;
2231   return globalAD->get_registers()->getRegClass(constrained_reg_class());
2232 }
2233 
2234 
2235 bool OperandForm::is_bound_register() const {
2236   RegClass* reg_class = get_RegClass();
2237   if (reg_class == NULL) {
2238     return false;
2239   }
2240 
2241   const char* name = ideal_type(globalAD->globalNames());
2242   if (name == NULL) {
2243     return false;
2244   }
2245 
2246   uint size = 0;
2247   if (strcmp(name, "RegFlags") == 0) size = 1;
2248   if (strcmp(name, "RegI") == 0) size = 1;
2249   if (strcmp(name, "RegF") == 0) size = 1;
2250   if (strcmp(name, "RegD") == 0) size = 2;
2251   if (strcmp(name, "RegL") == 0) size = 2;
2252   if (strcmp(name, "RegN") == 0) size = 1;
2253   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
2254   if (size == 0) {
2255     return false;
2256   }
2257   return size == reg_class->size();
2258 }
2259 
2260 
2261 // Check if this is a valid field for this operand,
2262 // Return 'true' if valid, and set the value to the string the user provided.
2263 bool  OperandForm::is_interface_field(const char *field,
2264                                       const char * &value) const {
2265   return false;
2266 }
2267 
2268 
2269 // Return register class name if a constraint specifies the register class.
2270 const char *OperandForm::constrained_reg_class() const {
2271   const char *reg_class  = NULL;
2272   if ( _constraint ) {
2273     // !!!!!
2274     Constraint *constraint = _constraint;
2275     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2276       reg_class = _constraint->_arg;
2277     }
2278   }
2279 
2280   return reg_class;
2281 }
2282 
2283 
2284 // Return the register class associated with 'leaf'.
2285 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2286   const char *reg_class = NULL; // "RegMask::Empty";
2287 
2288   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2289     reg_class = constrained_reg_class();
2290     return reg_class;
2291   }
2292   const char *result   = NULL;
2293   const char *name     = NULL;
2294   const char *type     = NULL;
2295   // iterate through all base operands
2296   // until we reach the register that corresponds to "leaf"
2297   // This function is not looking for an ideal type.  It needs the first
2298   // level user type associated with the leaf.
2299   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2300     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2301     OperandForm *oper = form ? form->is_operand() : NULL;
2302     if( oper ) {
2303       reg_class = oper->constrained_reg_class();
2304       if( reg_class ) {
2305         reg_class = reg_class;
2306       } else {
2307         // ShouldNotReachHere();
2308       }
2309     } else {
2310       // ShouldNotReachHere();
2311     }
2312 
2313     // Increment our target leaf position if current leaf is not a candidate.
2314     if( reg_class == NULL)    ++leaf;
2315     // Exit the loop with the value of reg_class when at the correct index
2316     if( idx == leaf )         break;
2317     // May iterate through all base operands if reg_class for 'leaf' is NULL
2318   }
2319   return reg_class;
2320 }
2321 
2322 
2323 // Recursive call to construct list of top-level operands.
2324 // Implementation does not modify state of internal structures
2325 void OperandForm::build_components() {
2326   if (_matrule)  _matrule->append_components(_localNames, _components);
2327 
2328   // Add parameters that "do not appear in match rule".
2329   const char *name;
2330   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2331     OperandForm *opForm = (OperandForm*)_localNames[name];
2332 
2333     if ( _components.operand_position(name) == -1 ) {
2334       _components.insert(name, opForm->_ident, Component::INVALID, false);
2335     }
2336   }
2337 
2338   return;
2339 }
2340 
2341 int OperandForm::operand_position(const char *name, int usedef) {
2342   return _components.operand_position(name, usedef, this);
2343 }
2344 
2345 
2346 // Return zero-based position in component list, only counting constants;
2347 // Return -1 if not in list.
2348 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2349   // Iterate through components and count constants preceding 'constant'
2350   int position = 0;
2351   Component *comp;
2352   _components.reset();
2353   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2354     // Special case for operands that take a single user-defined operand
2355     // Skip the initial definition in the component list.
2356     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2357 
2358     const char *type = comp->_type;
2359     // Lookup operand form for replacement variable's type
2360     const Form *form = globals[type];
2361     assert( form != NULL, "Component's type not found");
2362     OperandForm *oper = form ? form->is_operand() : NULL;
2363     if( oper ) {
2364       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2365         ++position;
2366       }
2367     }
2368   }
2369 
2370   // Check for being passed a component that was not in the list
2371   if( comp != last )  position = -1;
2372 
2373   return position;
2374 }
2375 // Provide position of constant by "name"
2376 int OperandForm::constant_position(FormDict &globals, const char *name) {
2377   const Component *comp = _components.search(name);
2378   int idx = constant_position( globals, comp );
2379 
2380   return idx;
2381 }
2382 
2383 
2384 // Return zero-based position in component list, only counting constants;
2385 // Return -1 if not in list.
2386 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2387   // Iterate through components and count registers preceding 'last'
2388   uint  position = 0;
2389   Component *comp;
2390   _components.reset();
2391   while( (comp = _components.iter()) != NULL
2392          && (strcmp(comp->_name,reg_name) != 0) ) {
2393     // Special case for operands that take a single user-defined operand
2394     // Skip the initial definition in the component list.
2395     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2396 
2397     const char *type = comp->_type;
2398     // Lookup operand form for component's type
2399     const Form *form = globals[type];
2400     assert( form != NULL, "Component's type not found");
2401     OperandForm *oper = form ? form->is_operand() : NULL;
2402     if( oper ) {
2403       if( oper->_matrule->is_base_register(globals) ) {
2404         ++position;
2405       }
2406     }
2407   }
2408 
2409   return position;
2410 }
2411 
2412 
2413 const char *OperandForm::reduce_result()  const {
2414   return _ident;
2415 }
2416 // Return the name of the operand on the right hand side of the binary match
2417 // Return NULL if there is no right hand side
2418 const char *OperandForm::reduce_right(FormDict &globals)  const {
2419   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2420 }
2421 
2422 // Similar for left
2423 const char *OperandForm::reduce_left(FormDict &globals)   const {
2424   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2425 }
2426 
2427 
2428 // --------------------------- FILE *output_routines
2429 //
2430 // Output code for disp_is_oop, if true.
2431 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2432   //  Check it is a memory interface with a non-user-constant disp field
2433   if ( this->_interface == NULL ) return;
2434   MemInterface *mem_interface = this->_interface->is_MemInterface();
2435   if ( mem_interface == NULL )    return;
2436   const char   *disp  = mem_interface->_disp;
2437   if ( *disp != '$' )             return;
2438 
2439   // Lookup replacement variable in operand's component list
2440   const char   *rep_var = disp + 1;
2441   const Component *comp = this->_components.search(rep_var);
2442   assert( comp != NULL, "Replacement variable not found in components");
2443   // Lookup operand form for replacement variable's type
2444   const char      *type = comp->_type;
2445   Form            *form = (Form*)globals[type];
2446   assert( form != NULL, "Replacement variable's type not found");
2447   OperandForm     *op   = form->is_operand();
2448   assert( op, "Memory Interface 'disp' can only emit an operand form");
2449   // Check if this is a ConP, which may require relocation
2450   if ( op->is_base_constant(globals) == Form::idealP ) {
2451     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2452     uint idx  = op->constant_position( globals, rep_var);
2453     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
2454     fprintf(fp,  "  return _c%d->reloc();", idx);
2455     fprintf(fp, " }\n");
2456   }
2457 }
2458 
2459 // Generate code for internal and external format methods
2460 //
2461 // internal access to reg# node->_idx
2462 // access to subsumed constant _c0, _c1,
2463 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2464   Form::DataType dtype;
2465   if (_matrule && (_matrule->is_base_register(globals) ||
2466                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2467     // !!!!! !!!!!
2468     fprintf(fp,"  { char reg_str[128];\n");
2469     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2470     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2471     fprintf(fp,"  }\n");
2472   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2473     format_constant( fp, index, dtype );
2474   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2475     // Special format for Stack Slot Register
2476     fprintf(fp,"  { char reg_str[128];\n");
2477     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2478     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2479     fprintf(fp,"  }\n");
2480   } else {
2481     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2482     fflush(fp);
2483     fprintf(stderr,"No format defined for %s\n", _ident);
2484     dump();
2485     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2486   }
2487 }
2488 
2489 // Similar to "int_format" but for cases where data is external to operand
2490 // external access to reg# node->in(idx)->_idx,
2491 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2492   Form::DataType dtype;
2493   if (_matrule && (_matrule->is_base_register(globals) ||
2494                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2495     fprintf(fp,"  { char reg_str[128];\n");
2496     fprintf(fp,"    ra->dump_register(node->in(idx");
2497     if ( index != 0 ) fprintf(fp,              "+%d",index);
2498     fprintf(fp,                                      "),reg_str);\n");
2499     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2500     fprintf(fp,"  }\n");
2501   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2502     format_constant( fp, index, dtype );
2503   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2504     // Special format for Stack Slot Register
2505     fprintf(fp,"  { char reg_str[128];\n");
2506     fprintf(fp,"    ra->dump_register(node->in(idx");
2507     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2508     fprintf(fp,                                       "),reg_str);\n");
2509     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2510     fprintf(fp,"  }\n");
2511   } else {
2512     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2513     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2514   }
2515 }
2516 
2517 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2518   switch(const_type) {
2519   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
2520   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2521   case Form::idealNKlass:
2522   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2523   case Form::idealL: fprintf(fp,"  st->print(\"#%%lld\", _c%d);\n", const_index); break;
2524   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2525   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2526   default:
2527     assert( false, "ShouldNotReachHere()");
2528   }
2529 }
2530 
2531 // Return the operand form corresponding to the given index, else NULL.
2532 OperandForm *OperandForm::constant_operand(FormDict &globals,
2533                                            uint      index) {
2534   // !!!!!
2535   // Check behavior on complex operands
2536   uint n_consts = num_consts(globals);
2537   if( n_consts > 0 ) {
2538     uint i = 0;
2539     const char *type;
2540     Component  *comp;
2541     _components.reset();
2542     if ((comp = _components.iter()) == NULL) {
2543       assert(n_consts == 1, "Bad component list detected.\n");
2544       // Current operand is THE operand
2545       if ( index == 0 ) {
2546         return this;
2547       }
2548     } // end if NULL
2549     else {
2550       // Skip the first component, it can not be a DEF of a constant
2551       do {
2552         type = comp->base_type(globals);
2553         // Check that "type" is a 'ConI', 'ConP', ...
2554         if ( ideal_to_const_type(type) != Form::none ) {
2555           // When at correct component, get corresponding Operand
2556           if ( index == 0 ) {
2557             return globals[comp->_type]->is_operand();
2558           }
2559           // Decrement number of constants to go
2560           --index;
2561         }
2562       } while((comp = _components.iter()) != NULL);
2563     }
2564   }
2565 
2566   // Did not find a constant for this index.
2567   return NULL;
2568 }
2569 
2570 // If this operand has a single ideal type, return its type
2571 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2572   const char *type_name = ideal_type(globals);
2573   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2574                                     : Form::none;
2575   return type;
2576 }
2577 
2578 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2579   if ( _matrule == NULL )    return Form::none;
2580 
2581   return _matrule->is_base_constant(globals);
2582 }
2583 
2584 // "true" if this operand is a simple type that is swallowed
2585 bool  OperandForm::swallowed(FormDict &globals) const {
2586   Form::DataType type   = simple_type(globals);
2587   if( type != Form::none ) {
2588     return true;
2589   }
2590 
2591   return false;
2592 }
2593 
2594 // Output code to access the value of the index'th constant
2595 void OperandForm::access_constant(FILE *fp, FormDict &globals,
2596                                   uint const_index) {
2597   OperandForm *oper = constant_operand(globals, const_index);
2598   assert( oper, "Index exceeds number of constants in operand");
2599   Form::DataType dtype = oper->is_base_constant(globals);
2600 
2601   switch(dtype) {
2602   case idealI: fprintf(fp,"_c%d",           const_index); break;
2603   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2604   case idealL: fprintf(fp,"_c%d",           const_index); break;
2605   case idealF: fprintf(fp,"_c%d",           const_index); break;
2606   case idealD: fprintf(fp,"_c%d",           const_index); break;
2607   default:
2608     assert( false, "ShouldNotReachHere()");
2609   }
2610 }
2611 
2612 
2613 void OperandForm::dump() {
2614   output(stderr);
2615 }
2616 
2617 void OperandForm::output(FILE *fp) {
2618   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2619   if (_matrule)    _matrule->dump();
2620   if (_interface)  _interface->dump();
2621   if (_attribs)    _attribs->dump();
2622   if (_predicate)  _predicate->dump();
2623   if (_constraint) _constraint->dump();
2624   if (_construct)  _construct->dump();
2625   if (_format)     _format->dump();
2626 }
2627 
2628 //------------------------------Constraint-------------------------------------
2629 Constraint::Constraint(const char *func, const char *arg)
2630   : _func(func), _arg(arg) {
2631 }
2632 Constraint::~Constraint() { /* not owner of char* */
2633 }
2634 
2635 bool Constraint::stack_slots_only() const {
2636   return strcmp(_func, "ALLOC_IN_RC") == 0
2637       && strcmp(_arg,  "stack_slots") == 0;
2638 }
2639 
2640 void Constraint::dump() {
2641   output(stderr);
2642 }
2643 
2644 void Constraint::output(FILE *fp) {           // Write info to output files
2645   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2646   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2647 }
2648 
2649 //------------------------------Predicate--------------------------------------
2650 Predicate::Predicate(char *pr)
2651   : _pred(pr) {
2652 }
2653 Predicate::~Predicate() {
2654 }
2655 
2656 void Predicate::dump() {
2657   output(stderr);
2658 }
2659 
2660 void Predicate::output(FILE *fp) {
2661   fprintf(fp,"Predicate");  // Write to output files
2662 }
2663 //------------------------------Interface--------------------------------------
2664 Interface::Interface(const char *name) : _name(name) {
2665 }
2666 Interface::~Interface() {
2667 }
2668 
2669 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2670   Interface *thsi = (Interface*)this;
2671   if ( thsi->is_RegInterface()   ) return Form::register_interface;
2672   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2673   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2674   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2675 
2676   return Form::no_interface;
2677 }
2678 
2679 RegInterface   *Interface::is_RegInterface() {
2680   if ( strcmp(_name,"REG_INTER") != 0 )
2681     return NULL;
2682   return (RegInterface*)this;
2683 }
2684 MemInterface   *Interface::is_MemInterface() {
2685   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2686   return (MemInterface*)this;
2687 }
2688 ConstInterface *Interface::is_ConstInterface() {
2689   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2690   return (ConstInterface*)this;
2691 }
2692 CondInterface  *Interface::is_CondInterface() {
2693   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2694   return (CondInterface*)this;
2695 }
2696 
2697 
2698 void Interface::dump() {
2699   output(stderr);
2700 }
2701 
2702 // Write info to output files
2703 void Interface::output(FILE *fp) {
2704   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2705 }
2706 
2707 //------------------------------RegInterface-----------------------------------
2708 RegInterface::RegInterface() : Interface("REG_INTER") {
2709 }
2710 RegInterface::~RegInterface() {
2711 }
2712 
2713 void RegInterface::dump() {
2714   output(stderr);
2715 }
2716 
2717 // Write info to output files
2718 void RegInterface::output(FILE *fp) {
2719   Interface::output(fp);
2720 }
2721 
2722 //------------------------------ConstInterface---------------------------------
2723 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2724 }
2725 ConstInterface::~ConstInterface() {
2726 }
2727 
2728 void ConstInterface::dump() {
2729   output(stderr);
2730 }
2731 
2732 // Write info to output files
2733 void ConstInterface::output(FILE *fp) {
2734   Interface::output(fp);
2735 }
2736 
2737 //------------------------------MemInterface-----------------------------------
2738 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2739   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2740 }
2741 MemInterface::~MemInterface() {
2742   // not owner of any character arrays
2743 }
2744 
2745 void MemInterface::dump() {
2746   output(stderr);
2747 }
2748 
2749 // Write info to output files
2750 void MemInterface::output(FILE *fp) {
2751   Interface::output(fp);
2752   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2753   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2754   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2755   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2756   // fprintf(fp,"\n");
2757 }
2758 
2759 //------------------------------CondInterface----------------------------------
2760 CondInterface::CondInterface(const char* equal,         const char* equal_format,
2761                              const char* not_equal,     const char* not_equal_format,
2762                              const char* less,          const char* less_format,
2763                              const char* greater_equal, const char* greater_equal_format,
2764                              const char* less_equal,    const char* less_equal_format,
2765                              const char* greater,       const char* greater_format,
2766                              const char* overflow,      const char* overflow_format,
2767                              const char* no_overflow,   const char* no_overflow_format)
2768   : Interface("COND_INTER"),
2769     _equal(equal),                 _equal_format(equal_format),
2770     _not_equal(not_equal),         _not_equal_format(not_equal_format),
2771     _less(less),                   _less_format(less_format),
2772     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2773     _less_equal(less_equal),       _less_equal_format(less_equal_format),
2774     _greater(greater),             _greater_format(greater_format),
2775     _overflow(overflow),           _overflow_format(overflow_format),
2776     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
2777 }
2778 CondInterface::~CondInterface() {
2779   // not owner of any character arrays
2780 }
2781 
2782 void CondInterface::dump() {
2783   output(stderr);
2784 }
2785 
2786 // Write info to output files
2787 void CondInterface::output(FILE *fp) {
2788   Interface::output(fp);
2789   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
2790   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
2791   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
2792   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
2793   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
2794   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
2795   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
2796   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
2797   // fprintf(fp,"\n");
2798 }
2799 
2800 //------------------------------ConstructRule----------------------------------
2801 ConstructRule::ConstructRule(char *cnstr)
2802   : _construct(cnstr) {
2803 }
2804 ConstructRule::~ConstructRule() {
2805 }
2806 
2807 void ConstructRule::dump() {
2808   output(stderr);
2809 }
2810 
2811 void ConstructRule::output(FILE *fp) {
2812   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2813 }
2814 
2815 
2816 //==============================Shared Forms===================================
2817 //------------------------------AttributeForm----------------------------------
2818 int         AttributeForm::_insId   = 0;           // start counter at 0
2819 int         AttributeForm::_opId    = 0;           // start counter at 0
2820 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2821 const char* AttributeForm::_op_cost  = "op_cost";  // required name
2822 
2823 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2824   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2825     if (type==OP_ATTR) {
2826       id = ++_opId;
2827     }
2828     else if (type==INS_ATTR) {
2829       id = ++_insId;
2830     }
2831     else assert( false,"");
2832 }
2833 AttributeForm::~AttributeForm() {
2834 }
2835 
2836 // Dynamic type check
2837 AttributeForm *AttributeForm::is_attribute() const {
2838   return (AttributeForm*)this;
2839 }
2840 
2841 
2842 // inlined  // int  AttributeForm::type() { return id;}
2843 
2844 void AttributeForm::dump() {
2845   output(stderr);
2846 }
2847 
2848 void AttributeForm::output(FILE *fp) {
2849   if( _attrname && _attrdef ) {
2850     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2851             _attrname, _attrdef);
2852   }
2853   else {
2854     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2855             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2856   }
2857 }
2858 
2859 //------------------------------Component--------------------------------------
2860 Component::Component(const char *name, const char *type, int usedef)
2861   : _name(name), _type(type), _usedef(usedef) {
2862     _ftype = Form::COMP;
2863 }
2864 Component::~Component() {
2865 }
2866 
2867 // True if this component is equal to the parameter.
2868 bool Component::is(int use_def_kill_enum) const {
2869   return (_usedef == use_def_kill_enum ? true : false);
2870 }
2871 // True if this component is used/def'd/kill'd as the parameter suggests.
2872 bool Component::isa(int use_def_kill_enum) const {
2873   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2874 }
2875 
2876 // Extend this component with additional use/def/kill behavior
2877 int Component::promote_use_def_info(int new_use_def) {
2878   _usedef |= new_use_def;
2879 
2880   return _usedef;
2881 }
2882 
2883 // Check the base type of this component, if it has one
2884 const char *Component::base_type(FormDict &globals) {
2885   const Form *frm = globals[_type];
2886   if (frm == NULL) return NULL;
2887   OperandForm *op = frm->is_operand();
2888   if (op == NULL) return NULL;
2889   if (op->ideal_only()) return op->_ident;
2890   return (char *)op->ideal_type(globals);
2891 }
2892 
2893 void Component::dump() {
2894   output(stderr);
2895 }
2896 
2897 void Component::output(FILE *fp) {
2898   fprintf(fp,"Component:");  // Write to output files
2899   fprintf(fp, "  name = %s", _name);
2900   fprintf(fp, ", type = %s", _type);
2901   assert(_usedef != 0, "unknown effect");
2902   fprintf(fp, ", use/def = %s\n", getUsedefName());
2903 }
2904 
2905 
2906 //------------------------------ComponentList---------------------------------
2907 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2908 }
2909 ComponentList::~ComponentList() {
2910   // // This list may not own its elements if copied via assignment
2911   // Component *component;
2912   // for (reset(); (component = iter()) != NULL;) {
2913   //   delete component;
2914   // }
2915 }
2916 
2917 void   ComponentList::insert(Component *component, bool mflag) {
2918   NameList::addName((char *)component);
2919   if(mflag) _matchcnt++;
2920 }
2921 void   ComponentList::insert(const char *name, const char *opType, int usedef,
2922                              bool mflag) {
2923   Component * component = new Component(name, opType, usedef);
2924   insert(component, mflag);
2925 }
2926 Component *ComponentList::current() { return (Component*)NameList::current(); }
2927 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2928 Component *ComponentList::match_iter() {
2929   if(_iter < _matchcnt) return (Component*)NameList::iter();
2930   return NULL;
2931 }
2932 Component *ComponentList::post_match_iter() {
2933   Component *comp = iter();
2934   // At end of list?
2935   if ( comp == NULL ) {
2936     return comp;
2937   }
2938   // In post-match components?
2939   if (_iter > match_count()-1) {
2940     return comp;
2941   }
2942 
2943   return post_match_iter();
2944 }
2945 
2946 void       ComponentList::reset()   { NameList::reset(); }
2947 int        ComponentList::count()   { return NameList::count(); }
2948 
2949 Component *ComponentList::operator[](int position) {
2950   // Shortcut complete iteration if there are not enough entries
2951   if (position >= count()) return NULL;
2952 
2953   int        index     = 0;
2954   Component *component = NULL;
2955   for (reset(); (component = iter()) != NULL;) {
2956     if (index == position) {
2957       return component;
2958     }
2959     ++index;
2960   }
2961 
2962   return NULL;
2963 }
2964 
2965 const Component *ComponentList::search(const char *name) {
2966   PreserveIter pi(this);
2967   reset();
2968   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2969     if( strcmp(comp->_name,name) == 0 ) return comp;
2970   }
2971 
2972   return NULL;
2973 }
2974 
2975 // Return number of USEs + number of DEFs
2976 // When there are no components, or the first component is a USE,
2977 // then we add '1' to hold a space for the 'result' operand.
2978 int ComponentList::num_operands() {
2979   PreserveIter pi(this);
2980   uint       count = 1;           // result operand
2981   uint       position = 0;
2982 
2983   Component *component  = NULL;
2984   for( reset(); (component = iter()) != NULL; ++position ) {
2985     if( component->isa(Component::USE) ||
2986         ( position == 0 && (! component->isa(Component::DEF))) ) {
2987       ++count;
2988     }
2989   }
2990 
2991   return count;
2992 }
2993 
2994 // Return zero-based position of operand 'name' in list;  -1 if not in list.
2995 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2996 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
2997   PreserveIter pi(this);
2998   int position = 0;
2999   int num_opnds = num_operands();
3000   Component *component;
3001   Component* preceding_non_use = NULL;
3002   Component* first_def = NULL;
3003   for (reset(); (component = iter()) != NULL; ++position) {
3004     // When the first component is not a DEF,
3005     // leave space for the result operand!
3006     if ( position==0 && (! component->isa(Component::DEF)) ) {
3007       ++position;
3008       ++num_opnds;
3009     }
3010     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
3011       // When the first entry in the component list is a DEF and a USE
3012       // Treat them as being separate, a DEF first, then a USE
3013       if( position==0
3014           && usedef==Component::USE && component->isa(Component::DEF) ) {
3015         assert(position+1 < num_opnds, "advertised index in bounds");
3016         return position+1;
3017       } else {
3018         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
3019           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
3020                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
3021                   name, component->getUsedefName());
3022           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3023           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3024           fprintf(stderr,  "\n");
3025         }
3026         if( position >= num_opnds ) {
3027           fprintf(stderr, "the name '%s' is too late in its name list", name);
3028           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3029           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3030           fprintf(stderr,  "\n");
3031         }
3032         assert(position < num_opnds, "advertised index in bounds");
3033         return position;
3034       }
3035     }
3036     if( component->isa(Component::DEF)
3037         && component->isa(Component::USE) ) {
3038       ++position;
3039       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3040     }
3041     if( component->isa(Component::DEF) && !first_def ) {
3042       first_def = component;
3043     }
3044     if( !component->isa(Component::USE) && component != first_def ) {
3045       preceding_non_use = component;
3046     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
3047       preceding_non_use = NULL;
3048     }
3049   }
3050   return Not_in_list;
3051 }
3052 
3053 // Find position for this name, regardless of use/def information
3054 int ComponentList::operand_position(const char *name) {
3055   PreserveIter pi(this);
3056   int position = 0;
3057   Component *component;
3058   for (reset(); (component = iter()) != NULL; ++position) {
3059     // When the first component is not a DEF,
3060     // leave space for the result operand!
3061     if ( position==0 && (! component->isa(Component::DEF)) ) {
3062       ++position;
3063     }
3064     if (strcmp(name, component->_name)==0) {
3065       return position;
3066     }
3067     if( component->isa(Component::DEF)
3068         && component->isa(Component::USE) ) {
3069       ++position;
3070       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3071     }
3072   }
3073   return Not_in_list;
3074 }
3075 
3076 int ComponentList::operand_position_format(const char *name, Form *fm) {
3077   PreserveIter pi(this);
3078   int  first_position = operand_position(name);
3079   int  use_position   = operand_position(name, Component::USE, fm);
3080 
3081   return ((first_position < use_position) ? use_position : first_position);
3082 }
3083 
3084 int ComponentList::label_position() {
3085   PreserveIter pi(this);
3086   int position = 0;
3087   reset();
3088   for( Component *comp; (comp = iter()) != NULL; ++position) {
3089     // When the first component is not a DEF,
3090     // leave space for the result operand!
3091     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3092       ++position;
3093     }
3094     if (strcmp(comp->_type, "label")==0) {
3095       return position;
3096     }
3097     if( comp->isa(Component::DEF)
3098         && comp->isa(Component::USE) ) {
3099       ++position;
3100       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3101     }
3102   }
3103 
3104   return -1;
3105 }
3106 
3107 int ComponentList::method_position() {
3108   PreserveIter pi(this);
3109   int position = 0;
3110   reset();
3111   for( Component *comp; (comp = iter()) != NULL; ++position) {
3112     // When the first component is not a DEF,
3113     // leave space for the result operand!
3114     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3115       ++position;
3116     }
3117     if (strcmp(comp->_type, "method")==0) {
3118       return position;
3119     }
3120     if( comp->isa(Component::DEF)
3121         && comp->isa(Component::USE) ) {
3122       ++position;
3123       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3124     }
3125   }
3126 
3127   return -1;
3128 }
3129 
3130 void ComponentList::dump() { output(stderr); }
3131 
3132 void ComponentList::output(FILE *fp) {
3133   PreserveIter pi(this);
3134   fprintf(fp, "\n");
3135   Component *component;
3136   for (reset(); (component = iter()) != NULL;) {
3137     component->output(fp);
3138   }
3139   fprintf(fp, "\n");
3140 }
3141 
3142 //------------------------------MatchNode--------------------------------------
3143 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3144                      const char *opType, MatchNode *lChild, MatchNode *rChild)
3145   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
3146     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3147     _commutative_id(0) {
3148   _numleaves = (lChild ? lChild->_numleaves : 0)
3149                + (rChild ? rChild->_numleaves : 0);
3150 }
3151 
3152 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3153   : _AD(ad), _result(mnode._result), _name(mnode._name),
3154     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3155     _internalop(0), _numleaves(mnode._numleaves),
3156     _commutative_id(mnode._commutative_id) {
3157 }
3158 
3159 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3160   : _AD(ad), _result(mnode._result), _name(mnode._name),
3161     _opType(mnode._opType),
3162     _internalop(0), _numleaves(mnode._numleaves),
3163     _commutative_id(mnode._commutative_id) {
3164   if (mnode._lChild) {
3165     _lChild = new MatchNode(ad, *mnode._lChild, clone);
3166   } else {
3167     _lChild = NULL;
3168   }
3169   if (mnode._rChild) {
3170     _rChild = new MatchNode(ad, *mnode._rChild, clone);
3171   } else {
3172     _rChild = NULL;
3173   }
3174 }
3175 
3176 MatchNode::~MatchNode() {
3177   // // This node may not own its children if copied via assignment
3178   // if( _lChild ) delete _lChild;
3179   // if( _rChild ) delete _rChild;
3180 }
3181 
3182 bool  MatchNode::find_type(const char *type, int &position) const {
3183   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3184   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3185 
3186   if (strcmp(type,_opType)==0)  {
3187     return true;
3188   } else {
3189     ++position;
3190   }
3191   return false;
3192 }
3193 
3194 // Recursive call collecting info on top-level operands, not transitive.
3195 // Implementation does not modify state of internal structures.
3196 void MatchNode::append_components(FormDict& locals, ComponentList& components,
3197                                   bool def_flag) const {
3198   int usedef = def_flag ? Component::DEF : Component::USE;
3199   FormDict &globals = _AD.globalNames();
3200 
3201   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3202   // Base case
3203   if (_lChild==NULL && _rChild==NULL) {
3204     // If _opType is not an operation, do not build a component for it #####
3205     const Form *f = globals[_opType];
3206     if( f != NULL ) {
3207       // Add non-ideals that are operands, operand-classes,
3208       if( ! f->ideal_only()
3209           && (f->is_opclass() || f->is_operand()) ) {
3210         components.insert(_name, _opType, usedef, true);
3211       }
3212     }
3213     return;
3214   }
3215   // Promote results of "Set" to DEF
3216   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3217   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3218   tmpdef_flag = false;   // only applies to component immediately following 'Set'
3219   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3220 }
3221 
3222 // Find the n'th base-operand in the match node,
3223 // recursively investigates match rules of user-defined operands.
3224 //
3225 // Implementation does not modify state of internal structures since they
3226 // can be shared.
3227 bool MatchNode::base_operand(uint &position, FormDict &globals,
3228                              const char * &result, const char * &name,
3229                              const char * &opType) const {
3230   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3231   // Base case
3232   if (_lChild==NULL && _rChild==NULL) {
3233     // Check for special case: "Universe", "label"
3234     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3235       if (position == 0) {
3236         result = _result;
3237         name   = _name;
3238         opType = _opType;
3239         return 1;
3240       } else {
3241         -- position;
3242         return 0;
3243       }
3244     }
3245 
3246     const Form *form = globals[_opType];
3247     MatchNode *matchNode = NULL;
3248     // Check for user-defined type
3249     if (form) {
3250       // User operand or instruction?
3251       OperandForm  *opForm = form->is_operand();
3252       InstructForm *inForm = form->is_instruction();
3253       if ( opForm ) {
3254         matchNode = (MatchNode*)opForm->_matrule;
3255       } else if ( inForm ) {
3256         matchNode = (MatchNode*)inForm->_matrule;
3257       }
3258     }
3259     // if this is user-defined, recurse on match rule
3260     // User-defined operand and instruction forms have a match-rule.
3261     if (matchNode) {
3262       return (matchNode->base_operand(position,globals,result,name,opType));
3263     } else {
3264       // Either not a form, or a system-defined form (no match rule).
3265       if (position==0) {
3266         result = _result;
3267         name   = _name;
3268         opType = _opType;
3269         return 1;
3270       } else {
3271         --position;
3272         return 0;
3273       }
3274     }
3275 
3276   } else {
3277     // Examine the left child and right child as well
3278     if (_lChild) {
3279       if (_lChild->base_operand(position, globals, result, name, opType))
3280         return 1;
3281     }
3282 
3283     if (_rChild) {
3284       if (_rChild->base_operand(position, globals, result, name, opType))
3285         return 1;
3286     }
3287   }
3288 
3289   return 0;
3290 }
3291 
3292 // Recursive call on all operands' match rules in my match rule.
3293 uint  MatchNode::num_consts(FormDict &globals) const {
3294   uint        index      = 0;
3295   uint        num_consts = 0;
3296   const char *result;
3297   const char *name;
3298   const char *opType;
3299 
3300   for (uint position = index;
3301        base_operand(position,globals,result,name,opType); position = index) {
3302     ++index;
3303     if( ideal_to_const_type(opType) )        num_consts++;
3304   }
3305 
3306   return num_consts;
3307 }
3308 
3309 // Recursive call on all operands' match rules in my match rule.
3310 // Constants in match rule subtree with specified type
3311 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3312   uint        index      = 0;
3313   uint        num_consts = 0;
3314   const char *result;
3315   const char *name;
3316   const char *opType;
3317 
3318   for (uint position = index;
3319        base_operand(position,globals,result,name,opType); position = index) {
3320     ++index;
3321     if( ideal_to_const_type(opType) == type ) num_consts++;
3322   }
3323 
3324   return num_consts;
3325 }
3326 
3327 // Recursive call on all operands' match rules in my match rule.
3328 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3329   return  num_consts( globals, Form::idealP );
3330 }
3331 
3332 bool  MatchNode::sets_result() const {
3333   return   ( (strcmp(_name,"Set") == 0) ? true : false );
3334 }
3335 
3336 const char *MatchNode::reduce_right(FormDict &globals) const {
3337   // If there is no right reduction, return NULL.
3338   const char      *rightStr    = NULL;
3339 
3340   // If we are a "Set", start from the right child.
3341   const MatchNode *const mnode = sets_result() ?
3342     (const MatchNode *)this->_rChild :
3343     (const MatchNode *)this;
3344 
3345   // If our right child exists, it is the right reduction
3346   if ( mnode->_rChild ) {
3347     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3348       : mnode->_rChild->_opType;
3349   }
3350   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3351   return rightStr;
3352 }
3353 
3354 const char *MatchNode::reduce_left(FormDict &globals) const {
3355   // If there is no left reduction, return NULL.
3356   const char  *leftStr  = NULL;
3357 
3358   // If we are a "Set", start from the right child.
3359   const MatchNode *const mnode = sets_result() ?
3360     (const MatchNode *)this->_rChild :
3361     (const MatchNode *)this;
3362 
3363   // If our left child exists, it is the left reduction
3364   if ( mnode->_lChild ) {
3365     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3366       : mnode->_lChild->_opType;
3367   } else {
3368     // May be simple chain rule: (Set dst operand_form_source)
3369     if ( sets_result() ) {
3370       OperandForm *oper = globals[mnode->_opType]->is_operand();
3371       if( oper ) {
3372         leftStr = mnode->_opType;
3373       }
3374     }
3375   }
3376   return leftStr;
3377 }
3378 
3379 //------------------------------count_instr_names------------------------------
3380 // Count occurrences of operands names in the leaves of the instruction
3381 // match rule.
3382 void MatchNode::count_instr_names( Dict &names ) {
3383   if( !this ) return;
3384   if( _lChild ) _lChild->count_instr_names(names);
3385   if( _rChild ) _rChild->count_instr_names(names);
3386   if( !_lChild && !_rChild ) {
3387     uintptr_t cnt = (uintptr_t)names[_name];
3388     cnt++;                      // One more name found
3389     names.Insert(_name,(void*)cnt);
3390   }
3391 }
3392 
3393 //------------------------------build_instr_pred-------------------------------
3394 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3395 // can skip some leading instances of 'name'.
3396 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3397   if( _lChild ) {
3398     if( !cnt ) strcpy( buf, "_kids[0]->" );
3399     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3400     if( cnt < 0 ) return cnt;   // Found it, all done
3401   }
3402   if( _rChild ) {
3403     if( !cnt ) strcpy( buf, "_kids[1]->" );
3404     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3405     if( cnt < 0 ) return cnt;   // Found it, all done
3406   }
3407   if( !_lChild && !_rChild ) {  // Found a leaf
3408     // Wrong name?  Give up...
3409     if( strcmp(name,_name) ) return cnt;
3410     if( !cnt ) strcpy(buf,"_leaf");
3411     return cnt-1;
3412   }
3413   return cnt;
3414 }
3415 
3416 
3417 //------------------------------build_internalop-------------------------------
3418 // Build string representation of subtree
3419 void MatchNode::build_internalop( ) {
3420   char *iop, *subtree;
3421   const char *lstr, *rstr;
3422   // Build string representation of subtree
3423   // Operation lchildType rchildType
3424   int len = (int)strlen(_opType) + 4;
3425   lstr = (_lChild) ? ((_lChild->_internalop) ?
3426                        _lChild->_internalop : _lChild->_opType) : "";
3427   rstr = (_rChild) ? ((_rChild->_internalop) ?
3428                        _rChild->_internalop : _rChild->_opType) : "";
3429   len += (int)strlen(lstr) + (int)strlen(rstr);
3430   subtree = (char *)malloc(len);
3431   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3432   // Hash the subtree string in _internalOps; if a name exists, use it
3433   iop = (char *)_AD._internalOps[subtree];
3434   // Else create a unique name, and add it to the hash table
3435   if (iop == NULL) {
3436     iop = subtree;
3437     _AD._internalOps.Insert(subtree, iop);
3438     _AD._internalOpNames.addName(iop);
3439     _AD._internalMatch.Insert(iop, this);
3440   }
3441   // Add the internal operand name to the MatchNode
3442   _internalop = iop;
3443   _result = iop;
3444 }
3445 
3446 
3447 void MatchNode::dump() {
3448   output(stderr);
3449 }
3450 
3451 void MatchNode::output(FILE *fp) {
3452   if (_lChild==0 && _rChild==0) {
3453     fprintf(fp," %s",_name);    // operand
3454   }
3455   else {
3456     fprintf(fp," (%s ",_name);  // " (opcodeName "
3457     if(_lChild) _lChild->output(fp); //               left operand
3458     if(_rChild) _rChild->output(fp); //                    right operand
3459     fprintf(fp,")");                 //                                 ")"
3460   }
3461 }
3462 
3463 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3464   static const char *needs_ideal_memory_list[] = {
3465     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
3466     "StoreB","StoreC","Store" ,"StoreFP",
3467     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3468     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
3469     "StoreVector", "LoadVector",
3470     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3471     "LoadPLocked",
3472     "StorePConditional", "StoreIConditional", "StoreLConditional",
3473     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3474     "StoreCM",
3475     "ClearArray",
3476     "GetAndAddI", "GetAndSetI", "GetAndSetP",
3477     "GetAndAddL", "GetAndSetL", "GetAndSetN",
3478   };
3479   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3480   if( strcmp(_opType,"PrefetchRead")==0 ||
3481       strcmp(_opType,"PrefetchWrite")==0 ||
3482       strcmp(_opType,"PrefetchAllocation")==0 )
3483     return 1;
3484   if( _lChild ) {
3485     const char *opType = _lChild->_opType;
3486     for( int i=0; i<cnt; i++ )
3487       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3488         return 1;
3489     if( _lChild->needs_ideal_memory_edge(globals) )
3490       return 1;
3491   }
3492   if( _rChild ) {
3493     const char *opType = _rChild->_opType;
3494     for( int i=0; i<cnt; i++ )
3495       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3496         return 1;
3497     if( _rChild->needs_ideal_memory_edge(globals) )
3498       return 1;
3499   }
3500 
3501   return 0;
3502 }
3503 
3504 // TRUE if defines a derived oop, and so needs a base oop edge present
3505 // post-matching.
3506 int MatchNode::needs_base_oop_edge() const {
3507   if( !strcmp(_opType,"AddP") ) return 1;
3508   if( strcmp(_opType,"Set") ) return 0;
3509   return !strcmp(_rChild->_opType,"AddP");
3510 }
3511 
3512 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3513   if( is_simple_chain_rule(globals) ) {
3514     const char *src = _matrule->_rChild->_opType;
3515     OperandForm *src_op = globals[src]->is_operand();
3516     assert( src_op, "Not operand class of chain rule" );
3517     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3518   }                             // Else check instruction
3519 
3520   return _matrule ? _matrule->needs_base_oop_edge() : 0;
3521 }
3522 
3523 
3524 //-------------------------cisc spilling methods-------------------------------
3525 // helper routines and methods for detecting cisc-spilling instructions
3526 //-------------------------cisc_spill_merge------------------------------------
3527 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3528   int cisc_spillable  = Maybe_cisc_spillable;
3529 
3530   // Combine results of left and right checks
3531   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3532     // neither side is spillable, nor prevents cisc spilling
3533     cisc_spillable = Maybe_cisc_spillable;
3534   }
3535   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3536     // right side is spillable
3537     cisc_spillable = right_spillable;
3538   }
3539   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3540     // left side is spillable
3541     cisc_spillable = left_spillable;
3542   }
3543   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3544     // left or right prevents cisc spilling this instruction
3545     cisc_spillable = Not_cisc_spillable;
3546   }
3547   else {
3548     // Only allow one to spill
3549     cisc_spillable = Not_cisc_spillable;
3550   }
3551 
3552   return cisc_spillable;
3553 }
3554 
3555 //-------------------------root_ops_match--------------------------------------
3556 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3557   // Base Case: check that the current operands/operations match
3558   assert( op1, "Must have op's name");
3559   assert( op2, "Must have op's name");
3560   const Form *form1 = globals[op1];
3561   const Form *form2 = globals[op2];
3562 
3563   return (form1 == form2);
3564 }
3565 
3566 //-------------------------cisc_spill_match_node-------------------------------
3567 // Recursively check two MatchRules for legal conversion via cisc-spilling
3568 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3569   int cisc_spillable  = Maybe_cisc_spillable;
3570   int left_spillable  = Maybe_cisc_spillable;
3571   int right_spillable = Maybe_cisc_spillable;
3572 
3573   // Check that each has same number of operands at this level
3574   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3575     return Not_cisc_spillable;
3576 
3577   // Base Case: check that the current operands/operations match
3578   // or are CISC spillable
3579   assert( _opType, "Must have _opType");
3580   assert( mRule2->_opType, "Must have _opType");
3581   const Form *form  = globals[_opType];
3582   const Form *form2 = globals[mRule2->_opType];
3583   if( form == form2 ) {
3584     cisc_spillable = Maybe_cisc_spillable;
3585   } else {
3586     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3587     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3588     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3589     DataType data_type = Form::none;
3590     if (form->is_operand()) {
3591       // Make sure the loadX matches the type of the reg
3592       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3593     }
3594     // Detect reg vs (loadX memory)
3595     if( form->is_cisc_reg(globals)
3596         && form2_inst
3597         && data_type != Form::none
3598         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3599         && (name_left != NULL)       // NOT (load)
3600         && (name_right == NULL) ) {  // NOT (load memory foo)
3601       const Form *form2_left = name_left ? globals[name_left] : NULL;
3602       if( form2_left && form2_left->is_cisc_mem(globals) ) {
3603         cisc_spillable = Is_cisc_spillable;
3604         operand        = _name;
3605         reg_type       = _result;
3606         return Is_cisc_spillable;
3607       } else {
3608         cisc_spillable = Not_cisc_spillable;
3609       }
3610     }
3611     // Detect reg vs memory
3612     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3613       cisc_spillable = Is_cisc_spillable;
3614       operand        = _name;
3615       reg_type       = _result;
3616       return Is_cisc_spillable;
3617     } else {
3618       cisc_spillable = Not_cisc_spillable;
3619     }
3620   }
3621 
3622   // If cisc is still possible, check rest of tree
3623   if( cisc_spillable == Maybe_cisc_spillable ) {
3624     // Check that each has same number of operands at this level
3625     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3626 
3627     // Check left operands
3628     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3629       left_spillable = Maybe_cisc_spillable;
3630     } else {
3631       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3632     }
3633 
3634     // Check right operands
3635     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3636       right_spillable =  Maybe_cisc_spillable;
3637     } else {
3638       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3639     }
3640 
3641     // Combine results of left and right checks
3642     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3643   }
3644 
3645   return cisc_spillable;
3646 }
3647 
3648 //---------------------------cisc_spill_match_rule------------------------------
3649 // Recursively check two MatchRules for legal conversion via cisc-spilling
3650 // This method handles the root of Match tree,
3651 // general recursive checks done in MatchNode
3652 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3653                                            MatchRule* mRule2, const char* &operand,
3654                                            const char* &reg_type) {
3655   int cisc_spillable  = Maybe_cisc_spillable;
3656   int left_spillable  = Maybe_cisc_spillable;
3657   int right_spillable = Maybe_cisc_spillable;
3658 
3659   // Check that each sets a result
3660   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3661   // Check that each has same number of operands at this level
3662   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3663 
3664   // Check left operands: at root, must be target of 'Set'
3665   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3666     left_spillable = Not_cisc_spillable;
3667   } else {
3668     // Do not support cisc-spilling instruction's target location
3669     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3670       left_spillable = Maybe_cisc_spillable;
3671     } else {
3672       left_spillable = Not_cisc_spillable;
3673     }
3674   }
3675 
3676   // Check right operands: recursive walk to identify reg->mem operand
3677   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3678     right_spillable =  Maybe_cisc_spillable;
3679   } else {
3680     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3681   }
3682 
3683   // Combine results of left and right checks
3684   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3685 
3686   return cisc_spillable;
3687 }
3688 
3689 //----------------------------- equivalent ------------------------------------
3690 // Recursively check to see if two match rules are equivalent.
3691 // This rule handles the root.
3692 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3693   // Check that each sets a result
3694   if (sets_result() != mRule2->sets_result()) {
3695     return false;
3696   }
3697 
3698   // Check that the current operands/operations match
3699   assert( _opType, "Must have _opType");
3700   assert( mRule2->_opType, "Must have _opType");
3701   const Form *form  = globals[_opType];
3702   const Form *form2 = globals[mRule2->_opType];
3703   if( form != form2 ) {
3704     return false;
3705   }
3706 
3707   if (_lChild ) {
3708     if( !_lChild->equivalent(globals, mRule2->_lChild) )
3709       return false;
3710   } else if (mRule2->_lChild) {
3711     return false; // I have NULL left child, mRule2 has non-NULL left child.
3712   }
3713 
3714   if (_rChild ) {
3715     if( !_rChild->equivalent(globals, mRule2->_rChild) )
3716       return false;
3717   } else if (mRule2->_rChild) {
3718     return false; // I have NULL right child, mRule2 has non-NULL right child.
3719   }
3720 
3721   // We've made it through the gauntlet.
3722   return true;
3723 }
3724 
3725 //----------------------------- equivalent ------------------------------------
3726 // Recursively check to see if two match rules are equivalent.
3727 // This rule handles the operands.
3728 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3729   if( !mNode2 )
3730     return false;
3731 
3732   // Check that the current operands/operations match
3733   assert( _opType, "Must have _opType");
3734   assert( mNode2->_opType, "Must have _opType");
3735   const Form *form  = globals[_opType];
3736   const Form *form2 = globals[mNode2->_opType];
3737   if( form != form2 ) {
3738     return false;
3739   }
3740 
3741   // Check that their children also match
3742   if (_lChild ) {
3743     if( !_lChild->equivalent(globals, mNode2->_lChild) )
3744       return false;
3745   } else if (mNode2->_lChild) {
3746     return false; // I have NULL left child, mNode2 has non-NULL left child.
3747   }
3748 
3749   if (_rChild ) {
3750     if( !_rChild->equivalent(globals, mNode2->_rChild) )
3751       return false;
3752   } else if (mNode2->_rChild) {
3753     return false; // I have NULL right child, mNode2 has non-NULL right child.
3754   }
3755 
3756   // We've made it through the gauntlet.
3757   return true;
3758 }
3759 
3760 //-------------------------- has_commutative_op -------------------------------
3761 // Recursively check for commutative operations with subtree operands
3762 // which could be swapped.
3763 void MatchNode::count_commutative_op(int& count) {
3764   static const char *commut_op_list[] = {
3765     "AddI","AddL","AddF","AddD",
3766     "AndI","AndL",
3767     "MaxI","MinI",
3768     "MulI","MulL","MulF","MulD",
3769     "OrI" ,"OrL" ,
3770     "XorI","XorL"
3771   };
3772   int cnt = sizeof(commut_op_list)/sizeof(char*);
3773 
3774   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3775     // Don't swap if right operand is an immediate constant.
3776     bool is_const = false;
3777     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3778       FormDict &globals = _AD.globalNames();
3779       const Form *form = globals[_rChild->_opType];
3780       if ( form ) {
3781         OperandForm  *oper = form->is_operand();
3782         if( oper && oper->interface_type(globals) == Form::constant_interface )
3783           is_const = true;
3784       }
3785     }
3786     if( !is_const ) {
3787       for( int i=0; i<cnt; i++ ) {
3788         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3789           count++;
3790           _commutative_id = count; // id should be > 0
3791           break;
3792         }
3793       }
3794     }
3795   }
3796   if( _lChild )
3797     _lChild->count_commutative_op(count);
3798   if( _rChild )
3799     _rChild->count_commutative_op(count);
3800 }
3801 
3802 //-------------------------- swap_commutative_op ------------------------------
3803 // Recursively swap specified commutative operation with subtree operands.
3804 void MatchNode::swap_commutative_op(bool atroot, int id) {
3805   if( _commutative_id == id ) { // id should be > 0
3806     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3807             "not swappable operation");
3808     MatchNode* tmp = _lChild;
3809     _lChild = _rChild;
3810     _rChild = tmp;
3811     // Don't exit here since we need to build internalop.
3812   }
3813 
3814   bool is_set = ( strcmp(_opType, "Set") == 0 );
3815   if( _lChild )
3816     _lChild->swap_commutative_op(is_set, id);
3817   if( _rChild )
3818     _rChild->swap_commutative_op(is_set, id);
3819 
3820   // If not the root, reduce this subtree to an internal operand
3821   if( !atroot && (_lChild || _rChild) ) {
3822     build_internalop();
3823   }
3824 }
3825 
3826 //-------------------------- swap_commutative_op ------------------------------
3827 // Recursively swap specified commutative operation with subtree operands.
3828 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3829   assert(match_rules_cnt < 100," too many match rule clones");
3830   // Clone
3831   MatchRule* clone = new MatchRule(_AD, this);
3832   // Swap operands of commutative operation
3833   ((MatchNode*)clone)->swap_commutative_op(true, count);
3834   char* buf = (char*) malloc(strlen(instr_ident) + 4);
3835   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3836   clone->_result = buf;
3837 
3838   clone->_next = this->_next;
3839   this-> _next = clone;
3840   if( (--count) > 0 ) {
3841     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3842     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3843   }
3844 }
3845 
3846 //------------------------------MatchRule--------------------------------------
3847 MatchRule::MatchRule(ArchDesc &ad)
3848   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3849     _next = NULL;
3850 }
3851 
3852 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3853   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3854     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3855     _next = NULL;
3856 }
3857 
3858 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3859                      int numleaves)
3860   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3861     _numchilds(0) {
3862       _next = NULL;
3863       mroot->_lChild = NULL;
3864       mroot->_rChild = NULL;
3865       delete mroot;
3866       _numleaves = numleaves;
3867       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3868 }
3869 MatchRule::~MatchRule() {
3870 }
3871 
3872 // Recursive call collecting info on top-level operands, not transitive.
3873 // Implementation does not modify state of internal structures.
3874 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3875   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3876 
3877   MatchNode::append_components(locals, components,
3878                                false /* not necessarily a def */);
3879 }
3880 
3881 // Recursive call on all operands' match rules in my match rule.
3882 // Implementation does not modify state of internal structures  since they
3883 // can be shared.
3884 // The MatchNode that is called first treats its
3885 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3886                              const char *&result, const char * &name,
3887                              const char * &opType)const{
3888   uint position = position0;
3889 
3890   return (MatchNode::base_operand( position, globals, result, name, opType));
3891 }
3892 
3893 
3894 bool MatchRule::is_base_register(FormDict &globals) const {
3895   uint   position = 1;
3896   const char  *result   = NULL;
3897   const char  *name     = NULL;
3898   const char  *opType   = NULL;
3899   if (!base_operand(position, globals, result, name, opType)) {
3900     position = 0;
3901     if( base_operand(position, globals, result, name, opType) &&
3902         (strcmp(opType,"RegI")==0 ||
3903          strcmp(opType,"RegP")==0 ||
3904          strcmp(opType,"RegN")==0 ||
3905          strcmp(opType,"RegL")==0 ||
3906          strcmp(opType,"RegF")==0 ||
3907          strcmp(opType,"RegD")==0 ||
3908          strcmp(opType,"VecS")==0 ||
3909          strcmp(opType,"VecD")==0 ||
3910          strcmp(opType,"VecX")==0 ||
3911          strcmp(opType,"VecY")==0 ||
3912          strcmp(opType,"Reg" )==0) ) {
3913       return 1;
3914     }
3915   }
3916   return 0;
3917 }
3918 
3919 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3920   uint         position = 1;
3921   const char  *result   = NULL;
3922   const char  *name     = NULL;
3923   const char  *opType   = NULL;
3924   if (!base_operand(position, globals, result, name, opType)) {
3925     position = 0;
3926     if (base_operand(position, globals, result, name, opType)) {
3927       return ideal_to_const_type(opType);
3928     }
3929   }
3930   return Form::none;
3931 }
3932 
3933 bool MatchRule::is_chain_rule(FormDict &globals) const {
3934 
3935   // Check for chain rule, and do not generate a match list for it
3936   if ((_lChild == NULL) && (_rChild == NULL) ) {
3937     const Form *form = globals[_opType];
3938     // If this is ideal, then it is a base match, not a chain rule.
3939     if ( form && form->is_operand() && (!form->ideal_only())) {
3940       return true;
3941     }
3942   }
3943   // Check for "Set" form of chain rule, and do not generate a match list
3944   if (_rChild) {
3945     const char *rch = _rChild->_opType;
3946     const Form *form = globals[rch];
3947     if ((!strcmp(_opType,"Set") &&
3948          ((form) && form->is_operand()))) {
3949       return true;
3950     }
3951   }
3952   return false;
3953 }
3954 
3955 int MatchRule::is_ideal_copy() const {
3956   if( _rChild ) {
3957     const char  *opType = _rChild->_opType;
3958 #if 1
3959     if( strcmp(opType,"CastIP")==0 )
3960       return 1;
3961 #else
3962     if( strcmp(opType,"CastII")==0 )
3963       return 1;
3964     // Do not treat *CastPP this way, because it
3965     // may transfer a raw pointer to an oop.
3966     // If the register allocator were to coalesce this
3967     // into a single LRG, the GC maps would be incorrect.
3968     //if( strcmp(opType,"CastPP")==0 )
3969     //  return 1;
3970     //if( strcmp(opType,"CheckCastPP")==0 )
3971     //  return 1;
3972     //
3973     // Do not treat CastX2P or CastP2X this way, because
3974     // raw pointers and int types are treated differently
3975     // when saving local & stack info for safepoints in
3976     // Output().
3977     //if( strcmp(opType,"CastX2P")==0 )
3978     //  return 1;
3979     //if( strcmp(opType,"CastP2X")==0 )
3980     //  return 1;
3981 #endif
3982   }
3983   if( is_chain_rule(_AD.globalNames()) &&
3984       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3985     return 1;
3986   return 0;
3987 }
3988 
3989 
3990 int MatchRule::is_expensive() const {
3991   if( _rChild ) {
3992     const char  *opType = _rChild->_opType;
3993     if( strcmp(opType,"AtanD")==0 ||
3994         strcmp(opType,"CosD")==0 ||
3995         strcmp(opType,"DivD")==0 ||
3996         strcmp(opType,"DivF")==0 ||
3997         strcmp(opType,"DivI")==0 ||
3998         strcmp(opType,"ExpD")==0 ||
3999         strcmp(opType,"LogD")==0 ||
4000         strcmp(opType,"Log10D")==0 ||
4001         strcmp(opType,"ModD")==0 ||
4002         strcmp(opType,"ModF")==0 ||
4003         strcmp(opType,"ModI")==0 ||
4004         strcmp(opType,"PowD")==0 ||
4005         strcmp(opType,"SinD")==0 ||
4006         strcmp(opType,"SqrtD")==0 ||
4007         strcmp(opType,"TanD")==0 ||
4008         strcmp(opType,"ConvD2F")==0 ||
4009         strcmp(opType,"ConvD2I")==0 ||
4010         strcmp(opType,"ConvD2L")==0 ||
4011         strcmp(opType,"ConvF2D")==0 ||
4012         strcmp(opType,"ConvF2I")==0 ||
4013         strcmp(opType,"ConvF2L")==0 ||
4014         strcmp(opType,"ConvI2D")==0 ||
4015         strcmp(opType,"ConvI2F")==0 ||
4016         strcmp(opType,"ConvI2L")==0 ||
4017         strcmp(opType,"ConvL2D")==0 ||
4018         strcmp(opType,"ConvL2F")==0 ||
4019         strcmp(opType,"ConvL2I")==0 ||
4020         strcmp(opType,"DecodeN")==0 ||
4021         strcmp(opType,"EncodeP")==0 ||
4022         strcmp(opType,"EncodePKlass")==0 ||
4023         strcmp(opType,"DecodeNKlass")==0 ||
4024         strcmp(opType,"RoundDouble")==0 ||
4025         strcmp(opType,"RoundFloat")==0 ||
4026         strcmp(opType,"ReverseBytesI")==0 ||
4027         strcmp(opType,"ReverseBytesL")==0 ||
4028         strcmp(opType,"ReverseBytesUS")==0 ||
4029         strcmp(opType,"ReverseBytesS")==0 ||
4030         strcmp(opType,"ReplicateB")==0 ||
4031         strcmp(opType,"ReplicateS")==0 ||
4032         strcmp(opType,"ReplicateI")==0 ||
4033         strcmp(opType,"ReplicateL")==0 ||
4034         strcmp(opType,"ReplicateF")==0 ||
4035         strcmp(opType,"ReplicateD")==0 ||
4036         0 /* 0 to line up columns nicely */ )
4037       return 1;
4038   }
4039   return 0;
4040 }
4041 
4042 bool MatchRule::is_ideal_if() const {
4043   if( !_opType ) return false;
4044   return
4045     !strcmp(_opType,"If"            ) ||
4046     !strcmp(_opType,"CountedLoopEnd");
4047 }
4048 
4049 bool MatchRule::is_ideal_fastlock() const {
4050   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4051     return (strcmp(_rChild->_opType,"FastLock") == 0);
4052   }
4053   return false;
4054 }
4055 
4056 bool MatchRule::is_ideal_membar() const {
4057   if( !_opType ) return false;
4058   return
4059     !strcmp(_opType,"MemBarAcquire") ||
4060     !strcmp(_opType,"MemBarRelease") ||
4061     !strcmp(_opType,"MemBarAcquireLock") ||
4062     !strcmp(_opType,"MemBarReleaseLock") ||
4063     !strcmp(_opType,"LoadFence" ) ||
4064     !strcmp(_opType,"StoreFence") ||
4065     !strcmp(_opType,"MemBarVolatile") ||
4066     !strcmp(_opType,"MemBarCPUOrder") ||
4067     !strcmp(_opType,"MemBarStoreStore");
4068 }
4069 
4070 bool MatchRule::is_ideal_loadPC() const {
4071   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4072     return (strcmp(_rChild->_opType,"LoadPC") == 0);
4073   }
4074   return false;
4075 }
4076 
4077 bool MatchRule::is_ideal_box() const {
4078   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4079     return (strcmp(_rChild->_opType,"Box") == 0);
4080   }
4081   return false;
4082 }
4083 
4084 bool MatchRule::is_ideal_goto() const {
4085   bool   ideal_goto = false;
4086 
4087   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
4088     ideal_goto = true;
4089   }
4090   return ideal_goto;
4091 }
4092 
4093 bool MatchRule::is_ideal_jump() const {
4094   if( _opType ) {
4095     if( !strcmp(_opType,"Jump") )
4096       return true;
4097   }
4098   return false;
4099 }
4100 
4101 bool MatchRule::is_ideal_bool() const {
4102   if( _opType ) {
4103     if( !strcmp(_opType,"Bool") )
4104       return true;
4105   }
4106   return false;
4107 }
4108 
4109 
4110 Form::DataType MatchRule::is_ideal_load() const {
4111   Form::DataType ideal_load = Form::none;
4112 
4113   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4114     const char *opType = _rChild->_opType;
4115     ideal_load = is_load_from_memory(opType);
4116   }
4117 
4118   return ideal_load;
4119 }
4120 
4121 bool MatchRule::is_vector() const {
4122   static const char *vector_list[] = {
4123     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
4124     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
4125     "MulVS","MulVI","MulVF","MulVD",
4126     "DivVF","DivVD",
4127     "AndV" ,"XorV" ,"OrV",
4128     "LShiftCntV","RShiftCntV",
4129     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
4130     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
4131     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
4132     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
4133     "LoadVector","StoreVector",
4134     // Next are not supported currently.
4135     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
4136     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
4137   };
4138   int cnt = sizeof(vector_list)/sizeof(char*);
4139   if (_rChild) {
4140     const char  *opType = _rChild->_opType;
4141     for (int i=0; i<cnt; i++)
4142       if (strcmp(opType,vector_list[i]) == 0)
4143         return true;
4144   }
4145   return false;
4146 }
4147 
4148 
4149 bool MatchRule::skip_antidep_check() const {
4150   // Some loads operate on what is effectively immutable memory so we
4151   // should skip the anti dep computations.  For some of these nodes
4152   // the rewritable field keeps the anti dep logic from triggering but
4153   // for certain kinds of LoadKlass it does not since they are
4154   // actually reading memory which could be rewritten by the runtime,
4155   // though never by generated code.  This disables it uniformly for
4156   // the nodes that behave like this: LoadKlass, LoadNKlass and
4157   // LoadRange.
4158   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4159     const char *opType = _rChild->_opType;
4160     if (strcmp("LoadKlass", opType) == 0 ||
4161         strcmp("LoadNKlass", opType) == 0 ||
4162         strcmp("LoadRange", opType) == 0) {
4163       return true;
4164     }
4165   }
4166 
4167   return false;
4168 }
4169 
4170 
4171 Form::DataType MatchRule::is_ideal_store() const {
4172   Form::DataType ideal_store = Form::none;
4173 
4174   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4175     const char *opType = _rChild->_opType;
4176     ideal_store = is_store_to_memory(opType);
4177   }
4178 
4179   return ideal_store;
4180 }
4181 
4182 
4183 void MatchRule::dump() {
4184   output(stderr);
4185 }
4186 
4187 // Write just one line.
4188 void MatchRule::output_short(FILE *fp) {
4189   fprintf(fp,"MatchRule: ( %s",_name);
4190   if (_lChild) _lChild->output(fp);
4191   if (_rChild) _rChild->output(fp);
4192   fprintf(fp," )");
4193 }
4194 
4195 void MatchRule::output(FILE *fp) {
4196   output_short(fp);
4197   fprintf(fp,"\n   nesting depth = %d\n", _depth);
4198   if (_result) fprintf(fp,"   Result Type = %s", _result);
4199   fprintf(fp,"\n");
4200 }
4201 
4202 //------------------------------Attribute--------------------------------------
4203 Attribute::Attribute(char *id, char* val, int type)
4204   : _ident(id), _val(val), _atype(type) {
4205 }
4206 Attribute::~Attribute() {
4207 }
4208 
4209 int Attribute::int_val(ArchDesc &ad) {
4210   // Make sure it is an integer constant:
4211   int result = 0;
4212   if (!_val || !ADLParser::is_int_token(_val, result)) {
4213     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4214                   _ident, _val ? _val : "");
4215   }
4216   return result;
4217 }
4218 
4219 void Attribute::dump() {
4220   output(stderr);
4221 } // Debug printer
4222 
4223 // Write to output files
4224 void Attribute::output(FILE *fp) {
4225   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4226 }
4227 
4228 //------------------------------FormatRule----------------------------------
4229 FormatRule::FormatRule(char *temp)
4230   : _temp(temp) {
4231 }
4232 FormatRule::~FormatRule() {
4233 }
4234 
4235 void FormatRule::dump() {
4236   output(stderr);
4237 }
4238 
4239 // Write to output files
4240 void FormatRule::output(FILE *fp) {
4241   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4242   fprintf(fp,"\n");
4243 }