1 //
   2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedClassPointers) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 563     } else {
 564       klass_load_size = 1*BytesPerInstWord;
 565     }
 566     if (Assembler::is_simm13(v_off)) {
 567       return klass_load_size +
 568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 569              NativeCall::instruction_size);  // call; delay slot
 570     } else {
 571       return klass_load_size +
 572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 573              NativeCall::instruction_size);  // call; delay slot
 574     }
 575   }
 576 }
 577 
 578 int MachCallRuntimeNode::ret_addr_offset() {
 579 #ifdef _LP64
 580   if (MacroAssembler::is_far_target(entry_point())) {
 581     return NativeFarCall::instruction_size;
 582   } else {
 583     return NativeCall::instruction_size;
 584   }
 585 #else
 586   return NativeCall::instruction_size;  // call; delay slot
 587 #endif
 588 }
 589 
 590 // Indicate if the safepoint node needs the polling page as an input.
 591 // Since Sparc does not have absolute addressing, it does.
 592 bool SafePointNode::needs_polling_address_input() {
 593   return true;
 594 }
 595 
 596 // emit an interrupt that is caught by the debugger (for debugging compiler)
 597 void emit_break(CodeBuffer &cbuf) {
 598   MacroAssembler _masm(&cbuf);
 599   __ breakpoint_trap();
 600 }
 601 
 602 #ifndef PRODUCT
 603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 604   st->print("TA");
 605 }
 606 #endif
 607 
 608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 609   emit_break(cbuf);
 610 }
 611 
 612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 613   return MachNode::size(ra_);
 614 }
 615 
 616 // Traceable jump
 617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 618   MacroAssembler _masm(&cbuf);
 619   Register rdest = reg_to_register_object(jump_target);
 620   __ JMP(rdest, 0);
 621   __ delayed()->nop();
 622 }
 623 
 624 // Traceable jump and set exception pc
 625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 626   MacroAssembler _masm(&cbuf);
 627   Register rdest = reg_to_register_object(jump_target);
 628   __ JMP(rdest, 0);
 629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 630 }
 631 
 632 void emit_nop(CodeBuffer &cbuf) {
 633   MacroAssembler _masm(&cbuf);
 634   __ nop();
 635 }
 636 
 637 void emit_illtrap(CodeBuffer &cbuf) {
 638   MacroAssembler _masm(&cbuf);
 639   __ illtrap(0);
 640 }
 641 
 642 
 643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 644   assert(n->rule() != loadUB_rule, "");
 645 
 646   intptr_t offset = 0;
 647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 648   const Node* addr = n->get_base_and_disp(offset, adr_type);
 649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   atype = atype->add_offset(offset);
 653   assert(disp32 == offset, "wrong disp32");
 654   return atype->_offset;
 655 }
 656 
 657 
 658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 659   assert(n->rule() != loadUB_rule, "");
 660 
 661   intptr_t offset = 0;
 662   Node* addr = n->in(2);
 663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 665     Node* a = addr->in(2/*AddPNode::Address*/);
 666     Node* o = addr->in(3/*AddPNode::Offset*/);
 667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 669     assert(atype->isa_oop_ptr(), "still an oop");
 670   }
 671   offset = atype->is_ptr()->_offset;
 672   if (offset != Type::OffsetBot)  offset += disp32;
 673   return offset;
 674 }
 675 
 676 static inline jdouble replicate_immI(int con, int count, int width) {
 677   // Load a constant replicated "count" times with width "width"
 678   assert(count*width == 8 && width <= 4, "sanity");
 679   int bit_width = width * 8;
 680   jlong val = con;
 681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 682   for (int i = 0; i < count - 1; i++) {
 683     val |= (val << bit_width);
 684   }
 685   jdouble dval = *((jdouble*) &val);  // coerce to double type
 686   return dval;
 687 }
 688 
 689 static inline jdouble replicate_immF(float con) {
 690   // Replicate float con 2 times and pack into vector.
 691   int val = *((int*)&con);
 692   jlong lval = val;
 693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 695   return dval;
 696 }
 697 
 698 // Standard Sparc opcode form2 field breakdown
 699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 701   int op = (f30 << 30) |
 702            (f29 << 29) |
 703            (f25 << 25) |
 704            (f22 << 22) |
 705            (f20 << 20) |
 706            (f19 << 19) |
 707            (f0  <<  0);
 708   cbuf.insts()->emit_int32(op);
 709 }
 710 
 711 // Standard Sparc opcode form2 field breakdown
 712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 713   f0 >>= 10;           // Drop 10 bits
 714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 715   int op = (f30 << 30) |
 716            (f25 << 25) |
 717            (f22 << 22) |
 718            (f0  <<  0);
 719   cbuf.insts()->emit_int32(op);
 720 }
 721 
 722 // Standard Sparc opcode form3 field breakdown
 723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 724   int op = (f30 << 30) |
 725            (f25 << 25) |
 726            (f19 << 19) |
 727            (f14 << 14) |
 728            (f5  <<  5) |
 729            (f0  <<  0);
 730   cbuf.insts()->emit_int32(op);
 731 }
 732 
 733 // Standard Sparc opcode form3 field breakdown
 734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 735   simm13 &= (1<<13)-1; // Mask to 13 bits
 736   int op = (f30 << 30) |
 737            (f25 << 25) |
 738            (f19 << 19) |
 739            (f14 << 14) |
 740            (1   << 13) | // bit to indicate immediate-mode
 741            (simm13<<0);
 742   cbuf.insts()->emit_int32(op);
 743 }
 744 
 745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 746   simm10 &= (1<<10)-1; // Mask to 10 bits
 747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 748 }
 749 
 750 #ifdef ASSERT
 751 // Helper function for VerifyOops in emit_form3_mem_reg
 752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 753   warning("VerifyOops encountered unexpected instruction:");
 754   n->dump(2);
 755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 756 }
 757 #endif
 758 
 759 
 760 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 762 
 763 #ifdef ASSERT
 764   // The following code implements the +VerifyOops feature.
 765   // It verifies oop values which are loaded into or stored out of
 766   // the current method activation.  +VerifyOops complements techniques
 767   // like ScavengeALot, because it eagerly inspects oops in transit,
 768   // as they enter or leave the stack, as opposed to ScavengeALot,
 769   // which inspects oops "at rest", in the stack or heap, at safepoints.
 770   // For this reason, +VerifyOops can sometimes detect bugs very close
 771   // to their point of creation.  It can also serve as a cross-check
 772   // on the validity of oop maps, when used toegether with ScavengeALot.
 773 
 774   // It would be good to verify oops at other points, especially
 775   // when an oop is used as a base pointer for a load or store.
 776   // This is presently difficult, because it is hard to know when
 777   // a base address is biased or not.  (If we had such information,
 778   // it would be easy and useful to make a two-argument version of
 779   // verify_oop which unbiases the base, and performs verification.)
 780 
 781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 782   bool is_verified_oop_base  = false;
 783   bool is_verified_oop_load  = false;
 784   bool is_verified_oop_store = false;
 785   int tmp_enc = -1;
 786   if (VerifyOops && src1_enc != R_SP_enc) {
 787     // classify the op, mainly for an assert check
 788     int st_op = 0, ld_op = 0;
 789     switch (primary) {
 790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 794     case Assembler::std_op3:  st_op = Op_StoreL; break;
 795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 797 
 798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 809 
 810     default: ShouldNotReachHere();
 811     }
 812     if (tertiary == REGP_OP) {
 813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 815       else                          ShouldNotReachHere();
 816       if (st_op) {
 817         // a store
 818         // inputs are (0:control, 1:memory, 2:address, 3:value)
 819         Node* n2 = n->in(3);
 820         if (n2 != NULL) {
 821           const Type* t = n2->bottom_type();
 822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 823         }
 824       } else {
 825         // a load
 826         const Type* t = n->bottom_type();
 827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 828       }
 829     }
 830 
 831     if (ld_op) {
 832       // a Load
 833       // inputs are (0:control, 1:memory, 2:address)
 834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 849           !(n->rule() == loadUB_rule)) {
 850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 851       }
 852     } else if (st_op) {
 853       // a Store
 854       // inputs are (0:control, 1:memory, 2:address, 3:value)
 855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 863       }
 864     }
 865 
 866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 867       Node* addr = n->in(2);
 868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 870         if (atype != NULL) {
 871           intptr_t offset = get_offset_from_base(n, atype, disp32);
 872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 873           if (offset != offset_2) {
 874             get_offset_from_base(n, atype, disp32);
 875             get_offset_from_base_2(n, atype, disp32);
 876           }
 877           assert(offset == offset_2, "different offsets");
 878           if (offset == disp32) {
 879             // we now know that src1 is a true oop pointer
 880             is_verified_oop_base = true;
 881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 882               if( primary == Assembler::ldd_op3 ) {
 883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 884               } else {
 885                 tmp_enc = dst_enc;
 886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 887                 assert(src1_enc != dst_enc, "");
 888               }
 889             }
 890           }
 891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 892                        || offset == oopDesc::mark_offset_in_bytes())) {
 893                       // loading the mark should not be allowed either, but
 894                       // we don't check this since it conflicts with InlineObjectHash
 895                       // usage of LoadINode to get the mark. We could keep the
 896                       // check if we create a new LoadMarkNode
 897             // but do not verify the object before its header is initialized
 898             ShouldNotReachHere();
 899           }
 900         }
 901       }
 902     }
 903   }
 904 #endif
 905 
 906   uint instr;
 907   instr = (Assembler::ldst_op << 30)
 908         | (dst_enc        << 25)
 909         | (primary        << 19)
 910         | (src1_enc       << 14);
 911 
 912   uint index = src2_enc;
 913   int disp = disp32;
 914 
 915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 916     disp += STACK_BIAS;
 917     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
 918     if (!Assembler::is_simm13(disp)) {
 919       ra->C->record_method_not_compilable("unable to handle large constant offsets");
 920       return;
 921     }
 922   }
 923 
 924   // We should have a compiler bailout here rather than a guarantee.
 925   // Better yet would be some mechanism to handle variable-size matches correctly.
 926   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 927 
 928   if( disp == 0 ) {
 929     // use reg-reg form
 930     // bit 13 is already zero
 931     instr |= index;
 932   } else {
 933     // use reg-imm form
 934     instr |= 0x00002000;          // set bit 13 to one
 935     instr |= disp & 0x1FFF;
 936   }
 937 
 938   cbuf.insts()->emit_int32(instr);
 939 
 940 #ifdef ASSERT
 941   {
 942     MacroAssembler _masm(&cbuf);
 943     if (is_verified_oop_base) {
 944       __ verify_oop(reg_to_register_object(src1_enc));
 945     }
 946     if (is_verified_oop_store) {
 947       __ verify_oop(reg_to_register_object(dst_enc));
 948     }
 949     if (tmp_enc != -1) {
 950       __ mov(O7, reg_to_register_object(tmp_enc));
 951     }
 952     if (is_verified_oop_load) {
 953       __ verify_oop(reg_to_register_object(dst_enc));
 954     }
 955   }
 956 #endif
 957 }
 958 
 959 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 960   // The method which records debug information at every safepoint
 961   // expects the call to be the first instruction in the snippet as
 962   // it creates a PcDesc structure which tracks the offset of a call
 963   // from the start of the codeBlob. This offset is computed as
 964   // code_end() - code_begin() of the code which has been emitted
 965   // so far.
 966   // In this particular case we have skirted around the problem by
 967   // putting the "mov" instruction in the delay slot but the problem
 968   // may bite us again at some other point and a cleaner/generic
 969   // solution using relocations would be needed.
 970   MacroAssembler _masm(&cbuf);
 971   __ set_inst_mark();
 972 
 973   // We flush the current window just so that there is a valid stack copy
 974   // the fact that the current window becomes active again instantly is
 975   // not a problem there is nothing live in it.
 976 
 977 #ifdef ASSERT
 978   int startpos = __ offset();
 979 #endif /* ASSERT */
 980 
 981   __ call((address)entry_point, rtype);
 982 
 983   if (preserve_g2)   __ delayed()->mov(G2, L7);
 984   else __ delayed()->nop();
 985 
 986   if (preserve_g2)   __ mov(L7, G2);
 987 
 988 #ifdef ASSERT
 989   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 990 #ifdef _LP64
 991     // Trash argument dump slots.
 992     __ set(0xb0b8ac0db0b8ac0d, G1);
 993     __ mov(G1, G5);
 994     __ stx(G1, SP, STACK_BIAS + 0x80);
 995     __ stx(G1, SP, STACK_BIAS + 0x88);
 996     __ stx(G1, SP, STACK_BIAS + 0x90);
 997     __ stx(G1, SP, STACK_BIAS + 0x98);
 998     __ stx(G1, SP, STACK_BIAS + 0xA0);
 999     __ stx(G1, SP, STACK_BIAS + 0xA8);
1000 #else // _LP64
1001     // this is also a native call, so smash the first 7 stack locations,
1002     // and the various registers
1003 
1004     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1005     // while [SP+0x44..0x58] are the argument dump slots.
1006     __ set((intptr_t)0xbaadf00d, G1);
1007     __ mov(G1, G5);
1008     __ sllx(G1, 32, G1);
1009     __ or3(G1, G5, G1);
1010     __ mov(G1, G5);
1011     __ stx(G1, SP, 0x40);
1012     __ stx(G1, SP, 0x48);
1013     __ stx(G1, SP, 0x50);
1014     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1015 #endif // _LP64
1016   }
1017 #endif /*ASSERT*/
1018 }
1019 
1020 //=============================================================================
1021 // REQUIRED FUNCTIONALITY for encoding
1022 void emit_lo(CodeBuffer &cbuf, int val) {  }
1023 void emit_hi(CodeBuffer &cbuf, int val) {  }
1024 
1025 
1026 //=============================================================================
1027 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1028 
1029 int Compile::ConstantTable::calculate_table_base_offset() const {
1030   if (UseRDPCForConstantTableBase) {
1031     // The table base offset might be less but then it fits into
1032     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1033     return Assembler::min_simm13();
1034   } else {
1035     int offset = -(size() / 2);
1036     if (!Assembler::is_simm13(offset)) {
1037       offset = Assembler::min_simm13();
1038     }
1039     return offset;
1040   }
1041 }
1042 
1043 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1044   Compile* C = ra_->C;
1045   Compile::ConstantTable& constant_table = C->constant_table();
1046   MacroAssembler _masm(&cbuf);
1047 
1048   Register r = as_Register(ra_->get_encode(this));
1049   CodeSection* consts_section = __ code()->consts();
1050   int consts_size = consts_section->align_at_start(consts_section->size());
1051   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1052 
1053   if (UseRDPCForConstantTableBase) {
1054     // For the following RDPC logic to work correctly the consts
1055     // section must be allocated right before the insts section.  This
1056     // assert checks for that.  The layout and the SECT_* constants
1057     // are defined in src/share/vm/asm/codeBuffer.hpp.
1058     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1059     int insts_offset = __ offset();
1060 
1061     // Layout:
1062     //
1063     // |----------- consts section ------------|----------- insts section -----------...
1064     // |------ constant table -----|- padding -|------------------x----
1065     //                                                            \ current PC (RDPC instruction)
1066     // |<------------- consts_size ----------->|<- insts_offset ->|
1067     //                                                            \ table base
1068     // The table base offset is later added to the load displacement
1069     // so it has to be negative.
1070     int table_base_offset = -(consts_size + insts_offset);
1071     int disp;
1072 
1073     // If the displacement from the current PC to the constant table
1074     // base fits into simm13 we set the constant table base to the
1075     // current PC.
1076     if (Assembler::is_simm13(table_base_offset)) {
1077       constant_table.set_table_base_offset(table_base_offset);
1078       disp = 0;
1079     } else {
1080       // Otherwise we set the constant table base offset to the
1081       // maximum negative displacement of load instructions to keep
1082       // the disp as small as possible:
1083       //
1084       // |<------------- consts_size ----------->|<- insts_offset ->|
1085       // |<--------- min_simm13 --------->|<-------- disp --------->|
1086       //                                  \ table base
1087       table_base_offset = Assembler::min_simm13();
1088       constant_table.set_table_base_offset(table_base_offset);
1089       disp = (consts_size + insts_offset) + table_base_offset;
1090     }
1091 
1092     __ rdpc(r);
1093 
1094     if (disp != 0) {
1095       assert(r != O7, "need temporary");
1096       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1097     }
1098   }
1099   else {
1100     // Materialize the constant table base.
1101     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1102     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1103     AddressLiteral base(baseaddr, rspec);
1104     __ set(base, r);
1105   }
1106 }
1107 
1108 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1109   if (UseRDPCForConstantTableBase) {
1110     // This is really the worst case but generally it's only 1 instruction.
1111     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1112   } else {
1113     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1114   }
1115 }
1116 
1117 #ifndef PRODUCT
1118 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1119   char reg[128];
1120   ra_->dump_register(this, reg);
1121   if (UseRDPCForConstantTableBase) {
1122     st->print("RDPC   %s\t! constant table base", reg);
1123   } else {
1124     st->print("SET    &constanttable,%s\t! constant table base", reg);
1125   }
1126 }
1127 #endif
1128 
1129 
1130 //=============================================================================
1131 
1132 #ifndef PRODUCT
1133 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1134   Compile* C = ra_->C;
1135 
1136   for (int i = 0; i < OptoPrologueNops; i++) {
1137     st->print_cr("NOP"); st->print("\t");
1138   }
1139 
1140   if( VerifyThread ) {
1141     st->print_cr("Verify_Thread"); st->print("\t");
1142   }
1143 
1144   size_t framesize = C->frame_slots() << LogBytesPerInt;
1145 
1146   // Calls to C2R adapters often do not accept exceptional returns.
1147   // We require that their callers must bang for them.  But be careful, because
1148   // some VM calls (such as call site linkage) can use several kilobytes of
1149   // stack.  But the stack safety zone should account for that.
1150   // See bugs 4446381, 4468289, 4497237.
1151   if (C->need_stack_bang(framesize)) {
1152     st->print_cr("! stack bang"); st->print("\t");
1153   }
1154 
1155   if (Assembler::is_simm13(-framesize)) {
1156     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1157   } else {
1158     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1159     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1160     st->print   ("SAVE   R_SP,R_G3,R_SP");
1161   }
1162 
1163 }
1164 #endif
1165 
1166 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1167   Compile* C = ra_->C;
1168   MacroAssembler _masm(&cbuf);
1169 
1170   for (int i = 0; i < OptoPrologueNops; i++) {
1171     __ nop();
1172   }
1173 
1174   __ verify_thread();
1175 
1176   size_t framesize = C->frame_slots() << LogBytesPerInt;
1177   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1178   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1179 
1180   // Calls to C2R adapters often do not accept exceptional returns.
1181   // We require that their callers must bang for them.  But be careful, because
1182   // some VM calls (such as call site linkage) can use several kilobytes of
1183   // stack.  But the stack safety zone should account for that.
1184   // See bugs 4446381, 4468289, 4497237.
1185   if (C->need_stack_bang(framesize)) {
1186     __ generate_stack_overflow_check(framesize);
1187   }
1188 
1189   if (Assembler::is_simm13(-framesize)) {
1190     __ save(SP, -framesize, SP);
1191   } else {
1192     __ sethi(-framesize & ~0x3ff, G3);
1193     __ add(G3, -framesize & 0x3ff, G3);
1194     __ save(SP, G3, SP);
1195   }
1196   C->set_frame_complete( __ offset() );
1197 
1198   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1199     // NOTE: We set the table base offset here because users might be
1200     // emitted before MachConstantBaseNode.
1201     Compile::ConstantTable& constant_table = C->constant_table();
1202     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1203   }
1204 }
1205 
1206 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1207   return MachNode::size(ra_);
1208 }
1209 
1210 int MachPrologNode::reloc() const {
1211   return 10; // a large enough number
1212 }
1213 
1214 //=============================================================================
1215 #ifndef PRODUCT
1216 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1217   Compile* C = ra_->C;
1218 
1219   if( do_polling() && ra_->C->is_method_compilation() ) {
1220     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1221 #ifdef _LP64
1222     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1223 #else
1224     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1225 #endif
1226   }
1227 
1228   if( do_polling() )
1229     st->print("RET\n\t");
1230 
1231   st->print("RESTORE");
1232 }
1233 #endif
1234 
1235 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1236   MacroAssembler _masm(&cbuf);
1237   Compile* C = ra_->C;
1238 
1239   __ verify_thread();
1240 
1241   // If this does safepoint polling, then do it here
1242   if( do_polling() && ra_->C->is_method_compilation() ) {
1243     AddressLiteral polling_page(os::get_polling_page());
1244     __ sethi(polling_page, L0);
1245     __ relocate(relocInfo::poll_return_type);
1246     __ ld_ptr( L0, 0, G0 );
1247   }
1248 
1249   // If this is a return, then stuff the restore in the delay slot
1250   if( do_polling() ) {
1251     __ ret();
1252     __ delayed()->restore();
1253   } else {
1254     __ restore();
1255   }
1256 }
1257 
1258 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1259   return MachNode::size(ra_);
1260 }
1261 
1262 int MachEpilogNode::reloc() const {
1263   return 16; // a large enough number
1264 }
1265 
1266 const Pipeline * MachEpilogNode::pipeline() const {
1267   return MachNode::pipeline_class();
1268 }
1269 
1270 int MachEpilogNode::safepoint_offset() const {
1271   assert( do_polling(), "no return for this epilog node");
1272   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1273 }
1274 
1275 //=============================================================================
1276 
1277 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1278 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1279 static enum RC rc_class( OptoReg::Name reg ) {
1280   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1281   if (OptoReg::is_stack(reg)) return rc_stack;
1282   VMReg r = OptoReg::as_VMReg(reg);
1283   if (r->is_Register()) return rc_int;
1284   assert(r->is_FloatRegister(), "must be");
1285   return rc_float;
1286 }
1287 
1288 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1289   if (cbuf) {
1290     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1291   }
1292 #ifndef PRODUCT
1293   else if (!do_size) {
1294     if (size != 0) st->print("\n\t");
1295     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1296     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1297   }
1298 #endif
1299   return size+4;
1300 }
1301 
1302 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1303   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1304 #ifndef PRODUCT
1305   else if( !do_size ) {
1306     if( size != 0 ) st->print("\n\t");
1307     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1308   }
1309 #endif
1310   return size+4;
1311 }
1312 
1313 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1314                                         PhaseRegAlloc *ra_,
1315                                         bool do_size,
1316                                         outputStream* st ) const {
1317   // Get registers to move
1318   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1319   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1320   OptoReg::Name dst_second = ra_->get_reg_second(this );
1321   OptoReg::Name dst_first = ra_->get_reg_first(this );
1322 
1323   enum RC src_second_rc = rc_class(src_second);
1324   enum RC src_first_rc = rc_class(src_first);
1325   enum RC dst_second_rc = rc_class(dst_second);
1326   enum RC dst_first_rc = rc_class(dst_first);
1327 
1328   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1329 
1330   // Generate spill code!
1331   int size = 0;
1332 
1333   if( src_first == dst_first && src_second == dst_second )
1334     return size;            // Self copy, no move
1335 
1336   // --------------------------------------
1337   // Check for mem-mem move.  Load into unused float registers and fall into
1338   // the float-store case.
1339   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1340     int offset = ra_->reg2offset(src_first);
1341     // Further check for aligned-adjacent pair, so we can use a double load
1342     if( (src_first&1)==0 && src_first+1 == src_second ) {
1343       src_second    = OptoReg::Name(R_F31_num);
1344       src_second_rc = rc_float;
1345       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1346     } else {
1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1348     }
1349     src_first    = OptoReg::Name(R_F30_num);
1350     src_first_rc = rc_float;
1351   }
1352 
1353   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1354     int offset = ra_->reg2offset(src_second);
1355     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1356     src_second    = OptoReg::Name(R_F31_num);
1357     src_second_rc = rc_float;
1358   }
1359 
1360   // --------------------------------------
1361   // Check for float->int copy; requires a trip through memory
1362   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1363     int offset = frame::register_save_words*wordSize;
1364     if (cbuf) {
1365       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1366       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1367       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1368       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1369     }
1370 #ifndef PRODUCT
1371     else if (!do_size) {
1372       if (size != 0) st->print("\n\t");
1373       st->print(  "SUB    R_SP,16,R_SP\n");
1374       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1375       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1376       st->print("\tADD    R_SP,16,R_SP\n");
1377     }
1378 #endif
1379     size += 16;
1380   }
1381 
1382   // Check for float->int copy on T4
1383   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1384     // Further check for aligned-adjacent pair, so we can use a double move
1385     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1386       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1387     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1388   }
1389   // Check for int->float copy on T4
1390   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1391     // Further check for aligned-adjacent pair, so we can use a double move
1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1395   }
1396 
1397   // --------------------------------------
1398   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1399   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1400   // hardware does the flop for me.  Doubles are always aligned, so no problem
1401   // there.  Misaligned sources only come from native-long-returns (handled
1402   // special below).
1403 #ifndef _LP64
1404   if( src_first_rc == rc_int &&     // source is already big-endian
1405       src_second_rc != rc_bad &&    // 64-bit move
1406       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1407     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1408     // Do the big-endian flop.
1409     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1410     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1411   }
1412 #endif
1413 
1414   // --------------------------------------
1415   // Check for integer reg-reg copy
1416   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1417 #ifndef _LP64
1418     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1419       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1420       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1421       //       operand contains the least significant word of the 64-bit value and vice versa.
1422       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1423       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1424       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1425       if( cbuf ) {
1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1427         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1428         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1429 #ifndef PRODUCT
1430       } else if( !do_size ) {
1431         if( size != 0 ) st->print("\n\t");
1432         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1433         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1434         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1435 #endif
1436       }
1437       return size+12;
1438     }
1439     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1440       // returning a long value in I0/I1
1441       // a SpillCopy must be able to target a return instruction's reg_class
1442       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1443       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1444       //       operand contains the least significant word of the 64-bit value and vice versa.
1445       OptoReg::Name tdest = dst_first;
1446 
1447       if (src_first == dst_first) {
1448         tdest = OptoReg::Name(R_O7_num);
1449         size += 4;
1450       }
1451 
1452       if( cbuf ) {
1453         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1454         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1455         // ShrL_reg_imm6
1456         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1457         // ShrR_reg_imm6  src, 0, dst
1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1459         if (tdest != dst_first) {
1460           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1461         }
1462       }
1463 #ifndef PRODUCT
1464       else if( !do_size ) {
1465         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1466         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1467         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1468         if (tdest != dst_first) {
1469           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1470         }
1471       }
1472 #endif // PRODUCT
1473       return size+8;
1474     }
1475 #endif // !_LP64
1476     // Else normal reg-reg copy
1477     assert( src_second != dst_first, "smashed second before evacuating it" );
1478     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1479     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1480     // This moves an aligned adjacent pair.
1481     // See if we are done.
1482     if( src_first+1 == src_second && dst_first+1 == dst_second )
1483       return size;
1484   }
1485 
1486   // Check for integer store
1487   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1488     int offset = ra_->reg2offset(dst_first);
1489     // Further check for aligned-adjacent pair, so we can use a double store
1490     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1491       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1492     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1493   }
1494 
1495   // Check for integer load
1496   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1497     int offset = ra_->reg2offset(src_first);
1498     // Further check for aligned-adjacent pair, so we can use a double load
1499     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1500       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1501     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1502   }
1503 
1504   // Check for float reg-reg copy
1505   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1506     // Further check for aligned-adjacent pair, so we can use a double move
1507     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1508       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1509     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1510   }
1511 
1512   // Check for float store
1513   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1514     int offset = ra_->reg2offset(dst_first);
1515     // Further check for aligned-adjacent pair, so we can use a double store
1516     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1517       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1518     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1519   }
1520 
1521   // Check for float load
1522   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1523     int offset = ra_->reg2offset(src_first);
1524     // Further check for aligned-adjacent pair, so we can use a double load
1525     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1526       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1527     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1528   }
1529 
1530   // --------------------------------------------------------------------
1531   // Check for hi bits still needing moving.  Only happens for misaligned
1532   // arguments to native calls.
1533   if( src_second == dst_second )
1534     return size;               // Self copy; no move
1535   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1536 
1537 #ifndef _LP64
1538   // In the LP64 build, all registers can be moved as aligned/adjacent
1539   // pairs, so there's never any need to move the high bits separately.
1540   // The 32-bit builds have to deal with the 32-bit ABI which can force
1541   // all sorts of silly alignment problems.
1542 
1543   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1544   // 32-bits of a 64-bit register, but are needed in low bits of another
1545   // register (else it's a hi-bits-to-hi-bits copy which should have
1546   // happened already as part of a 64-bit move)
1547   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1548     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1549     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1550     // Shift src_second down to dst_second's low bits.
1551     if( cbuf ) {
1552       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1553 #ifndef PRODUCT
1554     } else if( !do_size ) {
1555       if( size != 0 ) st->print("\n\t");
1556       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1557 #endif
1558     }
1559     return size+4;
1560   }
1561 
1562   // Check for high word integer store.  Must down-shift the hi bits
1563   // into a temp register, then fall into the case of storing int bits.
1564   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1565     // Shift src_second down to dst_second's low bits.
1566     if( cbuf ) {
1567       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1568 #ifndef PRODUCT
1569     } else if( !do_size ) {
1570       if( size != 0 ) st->print("\n\t");
1571       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1572 #endif
1573     }
1574     size+=4;
1575     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1576   }
1577 
1578   // Check for high word integer load
1579   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1580     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1581 
1582   // Check for high word integer store
1583   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1584     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1585 
1586   // Check for high word float store
1587   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1588     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1589 
1590 #endif // !_LP64
1591 
1592   Unimplemented();
1593 }
1594 
1595 #ifndef PRODUCT
1596 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1597   implementation( NULL, ra_, false, st );
1598 }
1599 #endif
1600 
1601 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1602   implementation( &cbuf, ra_, false, NULL );
1603 }
1604 
1605 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1606   return implementation( NULL, ra_, true, NULL );
1607 }
1608 
1609 //=============================================================================
1610 #ifndef PRODUCT
1611 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1612   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1613 }
1614 #endif
1615 
1616 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1617   MacroAssembler _masm(&cbuf);
1618   for(int i = 0; i < _count; i += 1) {
1619     __ nop();
1620   }
1621 }
1622 
1623 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1624   return 4 * _count;
1625 }
1626 
1627 
1628 //=============================================================================
1629 #ifndef PRODUCT
1630 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1631   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1632   int reg = ra_->get_reg_first(this);
1633   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1634 }
1635 #endif
1636 
1637 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1638   MacroAssembler _masm(&cbuf);
1639   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1640   int reg = ra_->get_encode(this);
1641 
1642   if (Assembler::is_simm13(offset)) {
1643      __ add(SP, offset, reg_to_register_object(reg));
1644   } else {
1645      __ set(offset, O7);
1646      __ add(SP, O7, reg_to_register_object(reg));
1647   }
1648 }
1649 
1650 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1651   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1652   assert(ra_ == ra_->C->regalloc(), "sanity");
1653   return ra_->C->scratch_emit_size(this);
1654 }
1655 
1656 //=============================================================================
1657 #ifndef PRODUCT
1658 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1659   st->print_cr("\nUEP:");
1660 #ifdef    _LP64
1661   if (UseCompressedClassPointers) {
1662     assert(Universe::heap() != NULL, "java heap should be initialized");
1663     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1664     if (Universe::narrow_klass_base() != 0) {
1665       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1666       if (Universe::narrow_klass_shift() != 0) {
1667         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1668       }
1669       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1670       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1671     } else {
1672       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1673     }
1674   } else {
1675     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1676   }
1677   st->print_cr("\tCMP    R_G5,R_G3" );
1678   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1679 #else  // _LP64
1680   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1681   st->print_cr("\tCMP    R_G5,R_G3" );
1682   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1683 #endif // _LP64
1684 }
1685 #endif
1686 
1687 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1688   MacroAssembler _masm(&cbuf);
1689   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1690   Register temp_reg   = G3;
1691   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1692 
1693   // Load klass from receiver
1694   __ load_klass(O0, temp_reg);
1695   // Compare against expected klass
1696   __ cmp(temp_reg, G5_ic_reg);
1697   // Branch to miss code, checks xcc or icc depending
1698   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1699 }
1700 
1701 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1702   return MachNode::size(ra_);
1703 }
1704 
1705 
1706 //=============================================================================
1707 
1708 uint size_exception_handler() {
1709   if (TraceJumps) {
1710     return (400); // just a guess
1711   }
1712   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1713 }
1714 
1715 uint size_deopt_handler() {
1716   if (TraceJumps) {
1717     return (400); // just a guess
1718   }
1719   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1720 }
1721 
1722 // Emit exception handler code.
1723 int emit_exception_handler(CodeBuffer& cbuf) {
1724   Register temp_reg = G3;
1725   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1726   MacroAssembler _masm(&cbuf);
1727 
1728   address base =
1729   __ start_a_stub(size_exception_handler());
1730   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1731 
1732   int offset = __ offset();
1733 
1734   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1735   __ delayed()->nop();
1736 
1737   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1738 
1739   __ end_a_stub();
1740 
1741   return offset;
1742 }
1743 
1744 int emit_deopt_handler(CodeBuffer& cbuf) {
1745   // Can't use any of the current frame's registers as we may have deopted
1746   // at a poll and everything (including G3) can be live.
1747   Register temp_reg = L0;
1748   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1749   MacroAssembler _masm(&cbuf);
1750 
1751   address base =
1752   __ start_a_stub(size_deopt_handler());
1753   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1754 
1755   int offset = __ offset();
1756   __ save_frame(0);
1757   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1758   __ delayed()->restore();
1759 
1760   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1761 
1762   __ end_a_stub();
1763   return offset;
1764 
1765 }
1766 
1767 // Given a register encoding, produce a Integer Register object
1768 static Register reg_to_register_object(int register_encoding) {
1769   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1770   return as_Register(register_encoding);
1771 }
1772 
1773 // Given a register encoding, produce a single-precision Float Register object
1774 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1775   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1776   return as_SingleFloatRegister(register_encoding);
1777 }
1778 
1779 // Given a register encoding, produce a double-precision Float Register object
1780 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1781   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1782   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1783   return as_DoubleFloatRegister(register_encoding);
1784 }
1785 
1786 const bool Matcher::match_rule_supported(int opcode) {
1787   if (!has_match_rule(opcode))
1788     return false;
1789 
1790   switch (opcode) {
1791   case Op_CountLeadingZerosI:
1792   case Op_CountLeadingZerosL:
1793   case Op_CountTrailingZerosI:
1794   case Op_CountTrailingZerosL:
1795   case Op_PopCountI:
1796   case Op_PopCountL:
1797     if (!UsePopCountInstruction)
1798       return false;
1799   case Op_CompareAndSwapL:
1800 #ifdef _LP64
1801   case Op_CompareAndSwapP:
1802 #endif
1803     if (!VM_Version::supports_cx8())
1804       return false;
1805     break;
1806   }
1807 
1808   return true;  // Per default match rules are supported.
1809 }
1810 
1811 int Matcher::regnum_to_fpu_offset(int regnum) {
1812   return regnum - 32; // The FP registers are in the second chunk
1813 }
1814 
1815 #ifdef ASSERT
1816 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1817 #endif
1818 
1819 // Vector width in bytes
1820 const int Matcher::vector_width_in_bytes(BasicType bt) {
1821   assert(MaxVectorSize == 8, "");
1822   return 8;
1823 }
1824 
1825 // Vector ideal reg
1826 const int Matcher::vector_ideal_reg(int size) {
1827   assert(MaxVectorSize == 8, "");
1828   return Op_RegD;
1829 }
1830 
1831 const int Matcher::vector_shift_count_ideal_reg(int size) {
1832   fatal("vector shift is not supported");
1833   return Node::NotAMachineReg;
1834 }
1835 
1836 // Limits on vector size (number of elements) loaded into vector.
1837 const int Matcher::max_vector_size(const BasicType bt) {
1838   assert(is_java_primitive(bt), "only primitive type vectors");
1839   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1840 }
1841 
1842 const int Matcher::min_vector_size(const BasicType bt) {
1843   return max_vector_size(bt); // Same as max.
1844 }
1845 
1846 // SPARC doesn't support misaligned vectors store/load.
1847 const bool Matcher::misaligned_vectors_ok() {
1848   return false;
1849 }
1850 
1851 // Current (2013) SPARC platforms need to read original key
1852 // to construct decryption expanded key 
1853 const bool Matcher::pass_original_key_for_aes() {
1854   return true;
1855 }
1856 
1857 // USII supports fxtof through the whole range of number, USIII doesn't
1858 const bool Matcher::convL2FSupported(void) {
1859   return VM_Version::has_fast_fxtof();
1860 }
1861 
1862 // Is this branch offset short enough that a short branch can be used?
1863 //
1864 // NOTE: If the platform does not provide any short branch variants, then
1865 //       this method should return false for offset 0.
1866 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1867   // The passed offset is relative to address of the branch.
1868   // Don't need to adjust the offset.
1869   return UseCBCond && Assembler::is_simm12(offset);
1870 }
1871 
1872 const bool Matcher::isSimpleConstant64(jlong value) {
1873   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1874   // Depends on optimizations in MacroAssembler::setx.
1875   int hi = (int)(value >> 32);
1876   int lo = (int)(value & ~0);
1877   return (hi == 0) || (hi == -1) || (lo == 0);
1878 }
1879 
1880 // No scaling for the parameter the ClearArray node.
1881 const bool Matcher::init_array_count_is_in_bytes = true;
1882 
1883 // Threshold size for cleararray.
1884 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1885 
1886 // No additional cost for CMOVL.
1887 const int Matcher::long_cmove_cost() { return 0; }
1888 
1889 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1890 const int Matcher::float_cmove_cost() {
1891   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1892 }
1893 
1894 // Should the Matcher clone shifts on addressing modes, expecting them to
1895 // be subsumed into complex addressing expressions or compute them into
1896 // registers?  True for Intel but false for most RISCs
1897 const bool Matcher::clone_shift_expressions = false;
1898 
1899 // Do we need to mask the count passed to shift instructions or does
1900 // the cpu only look at the lower 5/6 bits anyway?
1901 const bool Matcher::need_masked_shift_count = false;
1902 
1903 bool Matcher::narrow_oop_use_complex_address() {
1904   NOT_LP64(ShouldNotCallThis());
1905   assert(UseCompressedOops, "only for compressed oops code");
1906   return false;
1907 }
1908 
1909 bool Matcher::narrow_klass_use_complex_address() {
1910   NOT_LP64(ShouldNotCallThis());
1911   assert(UseCompressedClassPointers, "only for compressed klass code");
1912   return false;
1913 }
1914 
1915 // Is it better to copy float constants, or load them directly from memory?
1916 // Intel can load a float constant from a direct address, requiring no
1917 // extra registers.  Most RISCs will have to materialize an address into a
1918 // register first, so they would do better to copy the constant from stack.
1919 const bool Matcher::rematerialize_float_constants = false;
1920 
1921 // If CPU can load and store mis-aligned doubles directly then no fixup is
1922 // needed.  Else we split the double into 2 integer pieces and move it
1923 // piece-by-piece.  Only happens when passing doubles into C code as the
1924 // Java calling convention forces doubles to be aligned.
1925 #ifdef _LP64
1926 const bool Matcher::misaligned_doubles_ok = true;
1927 #else
1928 const bool Matcher::misaligned_doubles_ok = false;
1929 #endif
1930 
1931 // No-op on SPARC.
1932 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1933 }
1934 
1935 // Advertise here if the CPU requires explicit rounding operations
1936 // to implement the UseStrictFP mode.
1937 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1938 
1939 // Are floats conerted to double when stored to stack during deoptimization?
1940 // Sparc does not handle callee-save floats.
1941 bool Matcher::float_in_double() { return false; }
1942 
1943 // Do ints take an entire long register or just half?
1944 // Note that we if-def off of _LP64.
1945 // The relevant question is how the int is callee-saved.  In _LP64
1946 // the whole long is written but de-opt'ing will have to extract
1947 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1948 #ifdef _LP64
1949 const bool Matcher::int_in_long = true;
1950 #else
1951 const bool Matcher::int_in_long = false;
1952 #endif
1953 
1954 // Return whether or not this register is ever used as an argument.  This
1955 // function is used on startup to build the trampoline stubs in generateOptoStub.
1956 // Registers not mentioned will be killed by the VM call in the trampoline, and
1957 // arguments in those registers not be available to the callee.
1958 bool Matcher::can_be_java_arg( int reg ) {
1959   // Standard sparc 6 args in registers
1960   if( reg == R_I0_num ||
1961       reg == R_I1_num ||
1962       reg == R_I2_num ||
1963       reg == R_I3_num ||
1964       reg == R_I4_num ||
1965       reg == R_I5_num ) return true;
1966 #ifdef _LP64
1967   // 64-bit builds can pass 64-bit pointers and longs in
1968   // the high I registers
1969   if( reg == R_I0H_num ||
1970       reg == R_I1H_num ||
1971       reg == R_I2H_num ||
1972       reg == R_I3H_num ||
1973       reg == R_I4H_num ||
1974       reg == R_I5H_num ) return true;
1975 
1976   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1977     return true;
1978   }
1979 
1980 #else
1981   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1982   // Longs cannot be passed in O regs, because O regs become I regs
1983   // after a 'save' and I regs get their high bits chopped off on
1984   // interrupt.
1985   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1986   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1987 #endif
1988   // A few float args in registers
1989   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1990 
1991   return false;
1992 }
1993 
1994 bool Matcher::is_spillable_arg( int reg ) {
1995   return can_be_java_arg(reg);
1996 }
1997 
1998 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1999   // Use hardware SDIVX instruction when it is
2000   // faster than a code which use multiply.
2001   return VM_Version::has_fast_idiv();
2002 }
2003 
2004 // Register for DIVI projection of divmodI
2005 RegMask Matcher::divI_proj_mask() {
2006   ShouldNotReachHere();
2007   return RegMask();
2008 }
2009 
2010 // Register for MODI projection of divmodI
2011 RegMask Matcher::modI_proj_mask() {
2012   ShouldNotReachHere();
2013   return RegMask();
2014 }
2015 
2016 // Register for DIVL projection of divmodL
2017 RegMask Matcher::divL_proj_mask() {
2018   ShouldNotReachHere();
2019   return RegMask();
2020 }
2021 
2022 // Register for MODL projection of divmodL
2023 RegMask Matcher::modL_proj_mask() {
2024   ShouldNotReachHere();
2025   return RegMask();
2026 }
2027 
2028 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2029   return L7_REGP_mask();
2030 }
2031 
2032 const RegMask Matcher::mathExactI_result_proj_mask() {
2033   return G1_REGI_mask();
2034 }
2035 
2036 const RegMask Matcher::mathExactL_result_proj_mask() {
2037   return G1_REGL_mask();
2038 }
2039 
2040 const RegMask Matcher::mathExactI_flags_proj_mask() {
2041   return INT_FLAGS_mask();
2042 }
2043 
2044 
2045 %}
2046 
2047 
2048 // The intptr_t operand types, defined by textual substitution.
2049 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2050 #ifdef _LP64
2051 #define immX      immL
2052 #define immX13    immL13
2053 #define immX13m7  immL13m7
2054 #define iRegX     iRegL
2055 #define g1RegX    g1RegL
2056 #else
2057 #define immX      immI
2058 #define immX13    immI13
2059 #define immX13m7  immI13m7
2060 #define iRegX     iRegI
2061 #define g1RegX    g1RegI
2062 #endif
2063 
2064 //----------ENCODING BLOCK-----------------------------------------------------
2065 // This block specifies the encoding classes used by the compiler to output
2066 // byte streams.  Encoding classes are parameterized macros used by
2067 // Machine Instruction Nodes in order to generate the bit encoding of the
2068 // instruction.  Operands specify their base encoding interface with the
2069 // interface keyword.  There are currently supported four interfaces,
2070 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2071 // operand to generate a function which returns its register number when
2072 // queried.   CONST_INTER causes an operand to generate a function which
2073 // returns the value of the constant when queried.  MEMORY_INTER causes an
2074 // operand to generate four functions which return the Base Register, the
2075 // Index Register, the Scale Value, and the Offset Value of the operand when
2076 // queried.  COND_INTER causes an operand to generate six functions which
2077 // return the encoding code (ie - encoding bits for the instruction)
2078 // associated with each basic boolean condition for a conditional instruction.
2079 //
2080 // Instructions specify two basic values for encoding.  Again, a function
2081 // is available to check if the constant displacement is an oop. They use the
2082 // ins_encode keyword to specify their encoding classes (which must be
2083 // a sequence of enc_class names, and their parameters, specified in
2084 // the encoding block), and they use the
2085 // opcode keyword to specify, in order, their primary, secondary, and
2086 // tertiary opcode.  Only the opcode sections which a particular instruction
2087 // needs for encoding need to be specified.
2088 encode %{
2089   enc_class enc_untested %{
2090 #ifdef ASSERT
2091     MacroAssembler _masm(&cbuf);
2092     __ untested("encoding");
2093 #endif
2094   %}
2095 
2096   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2097     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2098                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2099   %}
2100 
2101   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2102     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2103                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2104   %}
2105 
2106   enc_class form3_mem_prefetch_read( memory mem ) %{
2107     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2108                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2109   %}
2110 
2111   enc_class form3_mem_prefetch_write( memory mem ) %{
2112     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2113                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2114   %}
2115 
2116   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2117     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2118     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2119     guarantee($mem$$index == R_G0_enc, "double index?");
2120     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2121     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2122     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2123     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2124   %}
2125 
2126   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2127     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2128     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2129     guarantee($mem$$index == R_G0_enc, "double index?");
2130     // Load long with 2 instructions
2131     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2132     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2133   %}
2134 
2135   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2136   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2137     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2138     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2139   %}
2140 
2141   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2142     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2143     if( $rs2$$reg != $rd$$reg )
2144       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2145   %}
2146 
2147   // Target lo half of long
2148   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2149     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2150     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2151       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2152   %}
2153 
2154   // Source lo half of long
2155   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2156     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2157     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2158       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2159   %}
2160 
2161   // Target hi half of long
2162   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2163     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2164   %}
2165 
2166   // Source lo half of long, and leave it sign extended.
2167   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2168     // Sign extend low half
2169     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2170   %}
2171 
2172   // Source hi half of long, and leave it sign extended.
2173   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2174     // Shift high half to low half
2175     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2176   %}
2177 
2178   // Source hi half of long
2179   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2180     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2181     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2182       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2183   %}
2184 
2185   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2186     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2187   %}
2188 
2189   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2190     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2191     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2192   %}
2193 
2194   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2195     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2196     // clear if nothing else is happening
2197     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2198     // blt,a,pn done
2199     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2200     // mov dst,-1 in delay slot
2201     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2202   %}
2203 
2204   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2205     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2206   %}
2207 
2208   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2209     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2210   %}
2211 
2212   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2213     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2214   %}
2215 
2216   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2217     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2218   %}
2219 
2220   enc_class move_return_pc_to_o1() %{
2221     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2222   %}
2223 
2224 #ifdef _LP64
2225   /* %%% merge with enc_to_bool */
2226   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2227     MacroAssembler _masm(&cbuf);
2228 
2229     Register   src_reg = reg_to_register_object($src$$reg);
2230     Register   dst_reg = reg_to_register_object($dst$$reg);
2231     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2232   %}
2233 #endif
2234 
2235   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2236     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2237     MacroAssembler _masm(&cbuf);
2238 
2239     Register   p_reg = reg_to_register_object($p$$reg);
2240     Register   q_reg = reg_to_register_object($q$$reg);
2241     Register   y_reg = reg_to_register_object($y$$reg);
2242     Register tmp_reg = reg_to_register_object($tmp$$reg);
2243 
2244     __ subcc( p_reg, q_reg,   p_reg );
2245     __ add  ( p_reg, y_reg, tmp_reg );
2246     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2247   %}
2248 
2249   enc_class form_d2i_helper(regD src, regF dst) %{
2250     // fcmp %fcc0,$src,$src
2251     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2252     // branch %fcc0 not-nan, predict taken
2253     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2254     // fdtoi $src,$dst
2255     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2256     // fitos $dst,$dst (if nan)
2257     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2258     // clear $dst (if nan)
2259     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2260     // carry on here...
2261   %}
2262 
2263   enc_class form_d2l_helper(regD src, regD dst) %{
2264     // fcmp %fcc0,$src,$src  check for NAN
2265     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2266     // branch %fcc0 not-nan, predict taken
2267     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2268     // fdtox $src,$dst   convert in delay slot
2269     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2270     // fxtod $dst,$dst  (if nan)
2271     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2272     // clear $dst (if nan)
2273     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2274     // carry on here...
2275   %}
2276 
2277   enc_class form_f2i_helper(regF src, regF dst) %{
2278     // fcmps %fcc0,$src,$src
2279     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2280     // branch %fcc0 not-nan, predict taken
2281     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2282     // fstoi $src,$dst
2283     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2284     // fitos $dst,$dst (if nan)
2285     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2286     // clear $dst (if nan)
2287     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2288     // carry on here...
2289   %}
2290 
2291   enc_class form_f2l_helper(regF src, regD dst) %{
2292     // fcmps %fcc0,$src,$src
2293     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2294     // branch %fcc0 not-nan, predict taken
2295     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2296     // fstox $src,$dst
2297     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2298     // fxtod $dst,$dst (if nan)
2299     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2300     // clear $dst (if nan)
2301     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2302     // carry on here...
2303   %}
2304 
2305   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2306   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2307   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2308   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2309 
2310   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2311 
2312   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2313   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2314 
2315   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2316     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2317   %}
2318 
2319   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2320     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2321   %}
2322 
2323   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2324     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2325   %}
2326 
2327   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2328     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2329   %}
2330 
2331   enc_class form3_convI2F(regF rs2, regF rd) %{
2332     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2333   %}
2334 
2335   // Encloding class for traceable jumps
2336   enc_class form_jmpl(g3RegP dest) %{
2337     emit_jmpl(cbuf, $dest$$reg);
2338   %}
2339 
2340   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2341     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2342   %}
2343 
2344   enc_class form2_nop() %{
2345     emit_nop(cbuf);
2346   %}
2347 
2348   enc_class form2_illtrap() %{
2349     emit_illtrap(cbuf);
2350   %}
2351 
2352 
2353   // Compare longs and convert into -1, 0, 1.
2354   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2355     // CMP $src1,$src2
2356     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2357     // blt,a,pn done
2358     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2359     // mov dst,-1 in delay slot
2360     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2361     // bgt,a,pn done
2362     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2363     // mov dst,1 in delay slot
2364     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2365     // CLR    $dst
2366     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2367   %}
2368 
2369   enc_class enc_PartialSubtypeCheck() %{
2370     MacroAssembler _masm(&cbuf);
2371     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2372     __ delayed()->nop();
2373   %}
2374 
2375   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2376     MacroAssembler _masm(&cbuf);
2377     Label* L = $labl$$label;
2378     Assembler::Predict predict_taken =
2379       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2380 
2381     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2382     __ delayed()->nop();
2383   %}
2384 
2385   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2386     MacroAssembler _masm(&cbuf);
2387     Label* L = $labl$$label;
2388     Assembler::Predict predict_taken =
2389       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2390 
2391     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2392     __ delayed()->nop();
2393   %}
2394 
2395   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2396     int op = (Assembler::arith_op << 30) |
2397              ($dst$$reg << 25) |
2398              (Assembler::movcc_op3 << 19) |
2399              (1 << 18) |                    // cc2 bit for 'icc'
2400              ($cmp$$cmpcode << 14) |
2401              (0 << 13) |                    // select register move
2402              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2403              ($src$$reg << 0);
2404     cbuf.insts()->emit_int32(op);
2405   %}
2406 
2407   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2408     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2409     int op = (Assembler::arith_op << 30) |
2410              ($dst$$reg << 25) |
2411              (Assembler::movcc_op3 << 19) |
2412              (1 << 18) |                    // cc2 bit for 'icc'
2413              ($cmp$$cmpcode << 14) |
2414              (1 << 13) |                    // select immediate move
2415              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2416              (simm11 << 0);
2417     cbuf.insts()->emit_int32(op);
2418   %}
2419 
2420   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2421     int op = (Assembler::arith_op << 30) |
2422              ($dst$$reg << 25) |
2423              (Assembler::movcc_op3 << 19) |
2424              (0 << 18) |                    // cc2 bit for 'fccX'
2425              ($cmp$$cmpcode << 14) |
2426              (0 << 13) |                    // select register move
2427              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2428              ($src$$reg << 0);
2429     cbuf.insts()->emit_int32(op);
2430   %}
2431 
2432   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2433     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2434     int op = (Assembler::arith_op << 30) |
2435              ($dst$$reg << 25) |
2436              (Assembler::movcc_op3 << 19) |
2437              (0 << 18) |                    // cc2 bit for 'fccX'
2438              ($cmp$$cmpcode << 14) |
2439              (1 << 13) |                    // select immediate move
2440              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2441              (simm11 << 0);
2442     cbuf.insts()->emit_int32(op);
2443   %}
2444 
2445   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2446     int op = (Assembler::arith_op << 30) |
2447              ($dst$$reg << 25) |
2448              (Assembler::fpop2_op3 << 19) |
2449              (0 << 18) |
2450              ($cmp$$cmpcode << 14) |
2451              (1 << 13) |                    // select register move
2452              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2453              ($primary << 5) |              // select single, double or quad
2454              ($src$$reg << 0);
2455     cbuf.insts()->emit_int32(op);
2456   %}
2457 
2458   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2459     int op = (Assembler::arith_op << 30) |
2460              ($dst$$reg << 25) |
2461              (Assembler::fpop2_op3 << 19) |
2462              (0 << 18) |
2463              ($cmp$$cmpcode << 14) |
2464              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2465              ($primary << 5) |              // select single, double or quad
2466              ($src$$reg << 0);
2467     cbuf.insts()->emit_int32(op);
2468   %}
2469 
2470   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2471   // the condition comes from opcode-field instead of an argument.
2472   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2473     int op = (Assembler::arith_op << 30) |
2474              ($dst$$reg << 25) |
2475              (Assembler::movcc_op3 << 19) |
2476              (1 << 18) |                    // cc2 bit for 'icc'
2477              ($primary << 14) |
2478              (0 << 13) |                    // select register move
2479              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2480              ($src$$reg << 0);
2481     cbuf.insts()->emit_int32(op);
2482   %}
2483 
2484   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2485     int op = (Assembler::arith_op << 30) |
2486              ($dst$$reg << 25) |
2487              (Assembler::movcc_op3 << 19) |
2488              (6 << 16) |                    // cc2 bit for 'xcc'
2489              ($primary << 14) |
2490              (0 << 13) |                    // select register move
2491              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2492              ($src$$reg << 0);
2493     cbuf.insts()->emit_int32(op);
2494   %}
2495 
2496   enc_class Set13( immI13 src, iRegI rd ) %{
2497     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2498   %}
2499 
2500   enc_class SetHi22( immI src, iRegI rd ) %{
2501     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2502   %}
2503 
2504   enc_class Set32( immI src, iRegI rd ) %{
2505     MacroAssembler _masm(&cbuf);
2506     __ set($src$$constant, reg_to_register_object($rd$$reg));
2507   %}
2508 
2509   enc_class call_epilog %{
2510     if( VerifyStackAtCalls ) {
2511       MacroAssembler _masm(&cbuf);
2512       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2513       Register temp_reg = G3;
2514       __ add(SP, framesize, temp_reg);
2515       __ cmp(temp_reg, FP);
2516       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2517     }
2518   %}
2519 
2520   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2521   // to G1 so the register allocator will not have to deal with the misaligned register
2522   // pair.
2523   enc_class adjust_long_from_native_call %{
2524 #ifndef _LP64
2525     if (returns_long()) {
2526       //    sllx  O0,32,O0
2527       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2528       //    srl   O1,0,O1
2529       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2530       //    or    O0,O1,G1
2531       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2532     }
2533 #endif
2534   %}
2535 
2536   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2537     // CALL directly to the runtime
2538     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2539     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2540                     /*preserve_g2=*/true);
2541   %}
2542 
2543   enc_class preserve_SP %{
2544     MacroAssembler _masm(&cbuf);
2545     __ mov(SP, L7_mh_SP_save);
2546   %}
2547 
2548   enc_class restore_SP %{
2549     MacroAssembler _masm(&cbuf);
2550     __ mov(L7_mh_SP_save, SP);
2551   %}
2552 
2553   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2554     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2555     // who we intended to call.
2556     if (!_method) {
2557       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2558     } else if (_optimized_virtual) {
2559       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2560     } else {
2561       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2562     }
2563     if (_method) {  // Emit stub for static call.
2564       CompiledStaticCall::emit_to_interp_stub(cbuf);
2565     }
2566   %}
2567 
2568   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2569     MacroAssembler _masm(&cbuf);
2570     __ set_inst_mark();
2571     int vtable_index = this->_vtable_index;
2572     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2573     if (vtable_index < 0) {
2574       // must be invalid_vtable_index, not nonvirtual_vtable_index
2575       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2576       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2577       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2578       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2579       __ ic_call((address)$meth$$method);
2580     } else {
2581       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2582       // Just go thru the vtable
2583       // get receiver klass (receiver already checked for non-null)
2584       // If we end up going thru a c2i adapter interpreter expects method in G5
2585       int off = __ offset();
2586       __ load_klass(O0, G3_scratch);
2587       int klass_load_size;
2588       if (UseCompressedClassPointers) {
2589         assert(Universe::heap() != NULL, "java heap should be initialized");
2590         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2591       } else {
2592         klass_load_size = 1*BytesPerInstWord;
2593       }
2594       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2595       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2596       if (Assembler::is_simm13(v_off)) {
2597         __ ld_ptr(G3, v_off, G5_method);
2598       } else {
2599         // Generate 2 instructions
2600         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2601         __ or3(G5_method, v_off & 0x3ff, G5_method);
2602         // ld_ptr, set_hi, set
2603         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2604                "Unexpected instruction size(s)");
2605         __ ld_ptr(G3, G5_method, G5_method);
2606       }
2607       // NOTE: for vtable dispatches, the vtable entry will never be null.
2608       // However it may very well end up in handle_wrong_method if the
2609       // method is abstract for the particular class.
2610       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2611       // jump to target (either compiled code or c2iadapter)
2612       __ jmpl(G3_scratch, G0, O7);
2613       __ delayed()->nop();
2614     }
2615   %}
2616 
2617   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2618     MacroAssembler _masm(&cbuf);
2619 
2620     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2621     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2622                               // we might be calling a C2I adapter which needs it.
2623 
2624     assert(temp_reg != G5_ic_reg, "conflicting registers");
2625     // Load nmethod
2626     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2627 
2628     // CALL to compiled java, indirect the contents of G3
2629     __ set_inst_mark();
2630     __ callr(temp_reg, G0);
2631     __ delayed()->nop();
2632   %}
2633 
2634 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2635     MacroAssembler _masm(&cbuf);
2636     Register Rdividend = reg_to_register_object($src1$$reg);
2637     Register Rdivisor = reg_to_register_object($src2$$reg);
2638     Register Rresult = reg_to_register_object($dst$$reg);
2639 
2640     __ sra(Rdivisor, 0, Rdivisor);
2641     __ sra(Rdividend, 0, Rdividend);
2642     __ sdivx(Rdividend, Rdivisor, Rresult);
2643 %}
2644 
2645 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2646     MacroAssembler _masm(&cbuf);
2647 
2648     Register Rdividend = reg_to_register_object($src1$$reg);
2649     int divisor = $imm$$constant;
2650     Register Rresult = reg_to_register_object($dst$$reg);
2651 
2652     __ sra(Rdividend, 0, Rdividend);
2653     __ sdivx(Rdividend, divisor, Rresult);
2654 %}
2655 
2656 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2657     MacroAssembler _masm(&cbuf);
2658     Register Rsrc1 = reg_to_register_object($src1$$reg);
2659     Register Rsrc2 = reg_to_register_object($src2$$reg);
2660     Register Rdst  = reg_to_register_object($dst$$reg);
2661 
2662     __ sra( Rsrc1, 0, Rsrc1 );
2663     __ sra( Rsrc2, 0, Rsrc2 );
2664     __ mulx( Rsrc1, Rsrc2, Rdst );
2665     __ srlx( Rdst, 32, Rdst );
2666 %}
2667 
2668 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2669     MacroAssembler _masm(&cbuf);
2670     Register Rdividend = reg_to_register_object($src1$$reg);
2671     Register Rdivisor = reg_to_register_object($src2$$reg);
2672     Register Rresult = reg_to_register_object($dst$$reg);
2673     Register Rscratch = reg_to_register_object($scratch$$reg);
2674 
2675     assert(Rdividend != Rscratch, "");
2676     assert(Rdivisor  != Rscratch, "");
2677 
2678     __ sra(Rdividend, 0, Rdividend);
2679     __ sra(Rdivisor, 0, Rdivisor);
2680     __ sdivx(Rdividend, Rdivisor, Rscratch);
2681     __ mulx(Rscratch, Rdivisor, Rscratch);
2682     __ sub(Rdividend, Rscratch, Rresult);
2683 %}
2684 
2685 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2686     MacroAssembler _masm(&cbuf);
2687 
2688     Register Rdividend = reg_to_register_object($src1$$reg);
2689     int divisor = $imm$$constant;
2690     Register Rresult = reg_to_register_object($dst$$reg);
2691     Register Rscratch = reg_to_register_object($scratch$$reg);
2692 
2693     assert(Rdividend != Rscratch, "");
2694 
2695     __ sra(Rdividend, 0, Rdividend);
2696     __ sdivx(Rdividend, divisor, Rscratch);
2697     __ mulx(Rscratch, divisor, Rscratch);
2698     __ sub(Rdividend, Rscratch, Rresult);
2699 %}
2700 
2701 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2702     MacroAssembler _masm(&cbuf);
2703 
2704     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2705     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2706 
2707     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2708 %}
2709 
2710 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2711     MacroAssembler _masm(&cbuf);
2712 
2713     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2714     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2715 
2716     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2717 %}
2718 
2719 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2720     MacroAssembler _masm(&cbuf);
2721 
2722     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2723     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2724 
2725     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2726 %}
2727 
2728 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2729     MacroAssembler _masm(&cbuf);
2730 
2731     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2732     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2733 
2734     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2735 %}
2736 
2737 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2738     MacroAssembler _masm(&cbuf);
2739 
2740     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2741     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2742 
2743     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2744 %}
2745 
2746 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2747     MacroAssembler _masm(&cbuf);
2748 
2749     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2750     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2751 
2752     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2753 %}
2754 
2755 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2756     MacroAssembler _masm(&cbuf);
2757 
2758     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2759     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2760 
2761     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2762 %}
2763 
2764 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2765     MacroAssembler _masm(&cbuf);
2766 
2767     Register Roop  = reg_to_register_object($oop$$reg);
2768     Register Rbox  = reg_to_register_object($box$$reg);
2769     Register Rscratch = reg_to_register_object($scratch$$reg);
2770     Register Rmark =    reg_to_register_object($scratch2$$reg);
2771 
2772     assert(Roop  != Rscratch, "");
2773     assert(Roop  != Rmark, "");
2774     assert(Rbox  != Rscratch, "");
2775     assert(Rbox  != Rmark, "");
2776 
2777     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2778 %}
2779 
2780 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2781     MacroAssembler _masm(&cbuf);
2782 
2783     Register Roop  = reg_to_register_object($oop$$reg);
2784     Register Rbox  = reg_to_register_object($box$$reg);
2785     Register Rscratch = reg_to_register_object($scratch$$reg);
2786     Register Rmark =    reg_to_register_object($scratch2$$reg);
2787 
2788     assert(Roop  != Rscratch, "");
2789     assert(Roop  != Rmark, "");
2790     assert(Rbox  != Rscratch, "");
2791     assert(Rbox  != Rmark, "");
2792 
2793     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2794   %}
2795 
2796   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2797     MacroAssembler _masm(&cbuf);
2798     Register Rmem = reg_to_register_object($mem$$reg);
2799     Register Rold = reg_to_register_object($old$$reg);
2800     Register Rnew = reg_to_register_object($new$$reg);
2801 
2802     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2803     __ cmp( Rold, Rnew );
2804   %}
2805 
2806   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2807     Register Rmem = reg_to_register_object($mem$$reg);
2808     Register Rold = reg_to_register_object($old$$reg);
2809     Register Rnew = reg_to_register_object($new$$reg);
2810 
2811     MacroAssembler _masm(&cbuf);
2812     __ mov(Rnew, O7);
2813     __ casx(Rmem, Rold, O7);
2814     __ cmp( Rold, O7 );
2815   %}
2816 
2817   // raw int cas, used for compareAndSwap
2818   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2819     Register Rmem = reg_to_register_object($mem$$reg);
2820     Register Rold = reg_to_register_object($old$$reg);
2821     Register Rnew = reg_to_register_object($new$$reg);
2822 
2823     MacroAssembler _masm(&cbuf);
2824     __ mov(Rnew, O7);
2825     __ cas(Rmem, Rold, O7);
2826     __ cmp( Rold, O7 );
2827   %}
2828 
2829   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2830     Register Rres = reg_to_register_object($res$$reg);
2831 
2832     MacroAssembler _masm(&cbuf);
2833     __ mov(1, Rres);
2834     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2835   %}
2836 
2837   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2838     Register Rres = reg_to_register_object($res$$reg);
2839 
2840     MacroAssembler _masm(&cbuf);
2841     __ mov(1, Rres);
2842     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2843   %}
2844 
2845   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2846     MacroAssembler _masm(&cbuf);
2847     Register Rdst = reg_to_register_object($dst$$reg);
2848     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2849                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2850     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2851                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2852 
2853     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2854     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2855   %}
2856 
2857 
2858   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2859     Label Ldone, Lloop;
2860     MacroAssembler _masm(&cbuf);
2861 
2862     Register   str1_reg = reg_to_register_object($str1$$reg);
2863     Register   str2_reg = reg_to_register_object($str2$$reg);
2864     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2865     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2866     Register result_reg = reg_to_register_object($result$$reg);
2867 
2868     assert(result_reg != str1_reg &&
2869            result_reg != str2_reg &&
2870            result_reg != cnt1_reg &&
2871            result_reg != cnt2_reg ,
2872            "need different registers");
2873 
2874     // Compute the minimum of the string lengths(str1_reg) and the
2875     // difference of the string lengths (stack)
2876 
2877     // See if the lengths are different, and calculate min in str1_reg.
2878     // Stash diff in O7 in case we need it for a tie-breaker.
2879     Label Lskip;
2880     __ subcc(cnt1_reg, cnt2_reg, O7);
2881     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2882     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2883     // cnt2 is shorter, so use its count:
2884     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2885     __ bind(Lskip);
2886 
2887     // reallocate cnt1_reg, cnt2_reg, result_reg
2888     // Note:  limit_reg holds the string length pre-scaled by 2
2889     Register limit_reg =   cnt1_reg;
2890     Register  chr2_reg =   cnt2_reg;
2891     Register  chr1_reg = result_reg;
2892     // str{12} are the base pointers
2893 
2894     // Is the minimum length zero?
2895     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2896     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2897     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2898 
2899     // Load first characters
2900     __ lduh(str1_reg, 0, chr1_reg);
2901     __ lduh(str2_reg, 0, chr2_reg);
2902 
2903     // Compare first characters
2904     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2905     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2906     assert(chr1_reg == result_reg, "result must be pre-placed");
2907     __ delayed()->nop();
2908 
2909     {
2910       // Check after comparing first character to see if strings are equivalent
2911       Label LSkip2;
2912       // Check if the strings start at same location
2913       __ cmp(str1_reg, str2_reg);
2914       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2915       __ delayed()->nop();
2916 
2917       // Check if the length difference is zero (in O7)
2918       __ cmp(G0, O7);
2919       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2920       __ delayed()->mov(G0, result_reg);  // result is zero
2921 
2922       // Strings might not be equal
2923       __ bind(LSkip2);
2924     }
2925 
2926     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2927     __ signx(limit_reg);
2928 
2929     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2930     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2931     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2932 
2933     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2934     __ add(str1_reg, limit_reg, str1_reg);
2935     __ add(str2_reg, limit_reg, str2_reg);
2936     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2937 
2938     // Compare the rest of the characters
2939     __ lduh(str1_reg, limit_reg, chr1_reg);
2940     __ bind(Lloop);
2941     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2942     __ lduh(str2_reg, limit_reg, chr2_reg);
2943     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2944     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2945     assert(chr1_reg == result_reg, "result must be pre-placed");
2946     __ delayed()->inccc(limit_reg, sizeof(jchar));
2947     // annul LDUH if branch is not taken to prevent access past end of string
2948     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2949     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2950 
2951     // If strings are equal up to min length, return the length difference.
2952     __ mov(O7, result_reg);
2953 
2954     // Otherwise, return the difference between the first mismatched chars.
2955     __ bind(Ldone);
2956   %}
2957 
2958 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2959     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2960     MacroAssembler _masm(&cbuf);
2961 
2962     Register   str1_reg = reg_to_register_object($str1$$reg);
2963     Register   str2_reg = reg_to_register_object($str2$$reg);
2964     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2965     Register   tmp1_reg = O7;
2966     Register result_reg = reg_to_register_object($result$$reg);
2967 
2968     assert(result_reg != str1_reg &&
2969            result_reg != str2_reg &&
2970            result_reg !=  cnt_reg &&
2971            result_reg != tmp1_reg ,
2972            "need different registers");
2973 
2974     __ cmp(str1_reg, str2_reg); //same char[] ?
2975     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2976     __ delayed()->add(G0, 1, result_reg);
2977 
2978     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2979     __ delayed()->add(G0, 1, result_reg); // count == 0
2980 
2981     //rename registers
2982     Register limit_reg =    cnt_reg;
2983     Register  chr1_reg = result_reg;
2984     Register  chr2_reg =   tmp1_reg;
2985 
2986     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2987     __ signx(limit_reg);
2988 
2989     //check for alignment and position the pointers to the ends
2990     __ or3(str1_reg, str2_reg, chr1_reg);
2991     __ andcc(chr1_reg, 0x3, chr1_reg);
2992     // notZero means at least one not 4-byte aligned.
2993     // We could optimize the case when both arrays are not aligned
2994     // but it is not frequent case and it requires additional checks.
2995     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2996     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2997 
2998     // Compare char[] arrays aligned to 4 bytes.
2999     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3000                           chr1_reg, chr2_reg, Ldone);
3001     __ ba(Ldone);
3002     __ delayed()->add(G0, 1, result_reg);
3003 
3004     // char by char compare
3005     __ bind(Lchar);
3006     __ add(str1_reg, limit_reg, str1_reg);
3007     __ add(str2_reg, limit_reg, str2_reg);
3008     __ neg(limit_reg); //negate count
3009 
3010     __ lduh(str1_reg, limit_reg, chr1_reg);
3011     // Lchar_loop
3012     __ bind(Lchar_loop);
3013     __ lduh(str2_reg, limit_reg, chr2_reg);
3014     __ cmp(chr1_reg, chr2_reg);
3015     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3016     __ delayed()->mov(G0, result_reg); //not equal
3017     __ inccc(limit_reg, sizeof(jchar));
3018     // annul LDUH if branch is not taken to prevent access past end of string
3019     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3020     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3021 
3022     __ add(G0, 1, result_reg);  //equal
3023 
3024     __ bind(Ldone);
3025   %}
3026 
3027 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3028     Label Lvector, Ldone, Lloop;
3029     MacroAssembler _masm(&cbuf);
3030 
3031     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3032     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3033     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3034     Register   tmp2_reg = O7;
3035     Register result_reg = reg_to_register_object($result$$reg);
3036 
3037     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3038     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3039 
3040     // return true if the same array
3041     __ cmp(ary1_reg, ary2_reg);
3042     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3043     __ delayed()->add(G0, 1, result_reg); // equal
3044 
3045     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3046     __ delayed()->mov(G0, result_reg);    // not equal
3047 
3048     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3049     __ delayed()->mov(G0, result_reg);    // not equal
3050 
3051     //load the lengths of arrays
3052     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3053     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3054 
3055     // return false if the two arrays are not equal length
3056     __ cmp(tmp1_reg, tmp2_reg);
3057     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3058     __ delayed()->mov(G0, result_reg);     // not equal
3059 
3060     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3061     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3062 
3063     // load array addresses
3064     __ add(ary1_reg, base_offset, ary1_reg);
3065     __ add(ary2_reg, base_offset, ary2_reg);
3066 
3067     // renaming registers
3068     Register chr1_reg  =  result_reg; // for characters in ary1
3069     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3070     Register limit_reg =  tmp1_reg;   // length
3071 
3072     // set byte count
3073     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3074 
3075     // Compare char[] arrays aligned to 4 bytes.
3076     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3077                           chr1_reg, chr2_reg, Ldone);
3078     __ add(G0, 1, result_reg); // equals
3079 
3080     __ bind(Ldone);
3081   %}
3082 
3083   enc_class enc_rethrow() %{
3084     cbuf.set_insts_mark();
3085     Register temp_reg = G3;
3086     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3087     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3088     MacroAssembler _masm(&cbuf);
3089 #ifdef ASSERT
3090     __ save_frame(0);
3091     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3092     __ sethi(last_rethrow_addrlit, L1);
3093     Address addr(L1, last_rethrow_addrlit.low10());
3094     __ rdpc(L2);
3095     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3096     __ st_ptr(L2, addr);
3097     __ restore();
3098 #endif
3099     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3100     __ delayed()->nop();
3101   %}
3102 
3103   enc_class emit_mem_nop() %{
3104     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3105     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3106   %}
3107 
3108   enc_class emit_fadd_nop() %{
3109     // Generates the instruction FMOVS f31,f31
3110     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3111   %}
3112 
3113   enc_class emit_br_nop() %{
3114     // Generates the instruction BPN,PN .
3115     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3116   %}
3117 
3118   enc_class enc_membar_acquire %{
3119     MacroAssembler _masm(&cbuf);
3120     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3121   %}
3122 
3123   enc_class enc_membar_release %{
3124     MacroAssembler _masm(&cbuf);
3125     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3126   %}
3127 
3128   enc_class enc_membar_volatile %{
3129     MacroAssembler _masm(&cbuf);
3130     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3131   %}
3132 
3133 %}
3134 
3135 //----------FRAME--------------------------------------------------------------
3136 // Definition of frame structure and management information.
3137 //
3138 //  S T A C K   L A Y O U T    Allocators stack-slot number
3139 //                             |   (to get allocators register number
3140 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3141 //  r   CALLER     |        |
3142 //  o     |        +--------+      pad to even-align allocators stack-slot
3143 //  w     V        |  pad0  |        numbers; owned by CALLER
3144 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3145 //  h     ^        |   in   |  5
3146 //        |        |  args  |  4   Holes in incoming args owned by SELF
3147 //  |     |        |        |  3
3148 //  |     |        +--------+
3149 //  V     |        | old out|      Empty on Intel, window on Sparc
3150 //        |    old |preserve|      Must be even aligned.
3151 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3152 //        |        |   in   |  3   area for Intel ret address
3153 //     Owned by    |preserve|      Empty on Sparc.
3154 //       SELF      +--------+
3155 //        |        |  pad2  |  2   pad to align old SP
3156 //        |        +--------+  1
3157 //        |        | locks  |  0
3158 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3159 //        |        |  pad1  | 11   pad to align new SP
3160 //        |        +--------+
3161 //        |        |        | 10
3162 //        |        | spills |  9   spills
3163 //        V        |        |  8   (pad0 slot for callee)
3164 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3165 //        ^        |  out   |  7
3166 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3167 //     Owned by    +--------+
3168 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3169 //        |    new |preserve|      Must be even-aligned.
3170 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3171 //        |        |        |
3172 //
3173 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3174 //         known from SELF's arguments and the Java calling convention.
3175 //         Region 6-7 is determined per call site.
3176 // Note 2: If the calling convention leaves holes in the incoming argument
3177 //         area, those holes are owned by SELF.  Holes in the outgoing area
3178 //         are owned by the CALLEE.  Holes should not be nessecary in the
3179 //         incoming area, as the Java calling convention is completely under
3180 //         the control of the AD file.  Doubles can be sorted and packed to
3181 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3182 //         varargs C calling conventions.
3183 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3184 //         even aligned with pad0 as needed.
3185 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3186 //         region 6-11 is even aligned; it may be padded out more so that
3187 //         the region from SP to FP meets the minimum stack alignment.
3188 
3189 frame %{
3190   // What direction does stack grow in (assumed to be same for native & Java)
3191   stack_direction(TOWARDS_LOW);
3192 
3193   // These two registers define part of the calling convention
3194   // between compiled code and the interpreter.
3195   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3196   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3197 
3198   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3199   cisc_spilling_operand_name(indOffset);
3200 
3201   // Number of stack slots consumed by a Monitor enter
3202 #ifdef _LP64
3203   sync_stack_slots(2);
3204 #else
3205   sync_stack_slots(1);
3206 #endif
3207 
3208   // Compiled code's Frame Pointer
3209   frame_pointer(R_SP);
3210 
3211   // Stack alignment requirement
3212   stack_alignment(StackAlignmentInBytes);
3213   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3214   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3215 
3216   // Number of stack slots between incoming argument block and the start of
3217   // a new frame.  The PROLOG must add this many slots to the stack.  The
3218   // EPILOG must remove this many slots.
3219   in_preserve_stack_slots(0);
3220 
3221   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3222   // for calls to C.  Supports the var-args backing area for register parms.
3223   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3224 #ifdef _LP64
3225   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3226   varargs_C_out_slots_killed(12);
3227 #else
3228   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3229   varargs_C_out_slots_killed( 7);
3230 #endif
3231 
3232   // The after-PROLOG location of the return address.  Location of
3233   // return address specifies a type (REG or STACK) and a number
3234   // representing the register number (i.e. - use a register name) or
3235   // stack slot.
3236   return_addr(REG R_I7);          // Ret Addr is in register I7
3237 
3238   // Body of function which returns an OptoRegs array locating
3239   // arguments either in registers or in stack slots for calling
3240   // java
3241   calling_convention %{
3242     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3243 
3244   %}
3245 
3246   // Body of function which returns an OptoRegs array locating
3247   // arguments either in registers or in stack slots for callin
3248   // C.
3249   c_calling_convention %{
3250     // This is obviously always outgoing
3251     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3252   %}
3253 
3254   // Location of native (C/C++) and interpreter return values.  This is specified to
3255   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3256   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3257   // to and from the register pairs is done by the appropriate call and epilog
3258   // opcodes.  This simplifies the register allocator.
3259   c_return_value %{
3260     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3261 #ifdef     _LP64
3262     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3263     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3264     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3265     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3266 #else  // !_LP64
3267     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3268     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3269     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3270     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3271 #endif
3272     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3273                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3274   %}
3275 
3276   // Location of compiled Java return values.  Same as C
3277   return_value %{
3278     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3279 #ifdef     _LP64
3280     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3281     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3282     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3283     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3284 #else  // !_LP64
3285     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3286     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3287     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3288     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3289 #endif
3290     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3291                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3292   %}
3293 
3294 %}
3295 
3296 
3297 //----------ATTRIBUTES---------------------------------------------------------
3298 //----------Operand Attributes-------------------------------------------------
3299 op_attrib op_cost(1);          // Required cost attribute
3300 
3301 //----------Instruction Attributes---------------------------------------------
3302 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3303 ins_attrib ins_size(32);           // Required size attribute (in bits)
3304 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3305 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3306                                    // non-matching short branch variant of some
3307                                                             // long branch?
3308 
3309 //----------OPERANDS-----------------------------------------------------------
3310 // Operand definitions must precede instruction definitions for correct parsing
3311 // in the ADLC because operands constitute user defined types which are used in
3312 // instruction definitions.
3313 
3314 //----------Simple Operands----------------------------------------------------
3315 // Immediate Operands
3316 // Integer Immediate: 32-bit
3317 operand immI() %{
3318   match(ConI);
3319 
3320   op_cost(0);
3321   // formats are generated automatically for constants and base registers
3322   format %{ %}
3323   interface(CONST_INTER);
3324 %}
3325 
3326 // Integer Immediate: 8-bit
3327 operand immI8() %{
3328   predicate(Assembler::is_simm8(n->get_int()));
3329   match(ConI);
3330   op_cost(0);
3331   format %{ %}
3332   interface(CONST_INTER);
3333 %}
3334 
3335 // Integer Immediate: 13-bit
3336 operand immI13() %{
3337   predicate(Assembler::is_simm13(n->get_int()));
3338   match(ConI);
3339   op_cost(0);
3340 
3341   format %{ %}
3342   interface(CONST_INTER);
3343 %}
3344 
3345 // Integer Immediate: 13-bit minus 7
3346 operand immI13m7() %{
3347   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3348   match(ConI);
3349   op_cost(0);
3350 
3351   format %{ %}
3352   interface(CONST_INTER);
3353 %}
3354 
3355 // Integer Immediate: 16-bit
3356 operand immI16() %{
3357   predicate(Assembler::is_simm16(n->get_int()));
3358   match(ConI);
3359   op_cost(0);
3360   format %{ %}
3361   interface(CONST_INTER);
3362 %}
3363 
3364 // Unsigned (positive) Integer Immediate: 13-bit
3365 operand immU13() %{
3366   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3367   match(ConI);
3368   op_cost(0);
3369 
3370   format %{ %}
3371   interface(CONST_INTER);
3372 %}
3373 
3374 // Integer Immediate: 6-bit
3375 operand immU6() %{
3376   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3377   match(ConI);
3378   op_cost(0);
3379   format %{ %}
3380   interface(CONST_INTER);
3381 %}
3382 
3383 // Integer Immediate: 11-bit
3384 operand immI11() %{
3385   predicate(Assembler::is_simm11(n->get_int()));
3386   match(ConI);
3387   op_cost(0);
3388   format %{ %}
3389   interface(CONST_INTER);
3390 %}
3391 
3392 // Integer Immediate: 5-bit
3393 operand immI5() %{
3394   predicate(Assembler::is_simm5(n->get_int()));
3395   match(ConI);
3396   op_cost(0);
3397   format %{ %}
3398   interface(CONST_INTER);
3399 %}
3400 
3401 // Int Immediate positive
3402 operand immU32()
3403 %{
3404   predicate(n->get_int() >= 0);
3405   match(ConI);
3406 
3407   op_cost(0);
3408   format %{ %}
3409   interface(CONST_INTER);
3410 %}
3411 
3412 // Integer Immediate: 0-bit
3413 operand immI0() %{
3414   predicate(n->get_int() == 0);
3415   match(ConI);
3416   op_cost(0);
3417 
3418   format %{ %}
3419   interface(CONST_INTER);
3420 %}
3421 
3422 // Integer Immediate: the value 10
3423 operand immI10() %{
3424   predicate(n->get_int() == 10);
3425   match(ConI);
3426   op_cost(0);
3427 
3428   format %{ %}
3429   interface(CONST_INTER);
3430 %}
3431 
3432 // Integer Immediate: the values 0-31
3433 operand immU5() %{
3434   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3435   match(ConI);
3436   op_cost(0);
3437 
3438   format %{ %}
3439   interface(CONST_INTER);
3440 %}
3441 
3442 // Integer Immediate: the values 1-31
3443 operand immI_1_31() %{
3444   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3445   match(ConI);
3446   op_cost(0);
3447 
3448   format %{ %}
3449   interface(CONST_INTER);
3450 %}
3451 
3452 // Integer Immediate: the values 32-63
3453 operand immI_32_63() %{
3454   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3455   match(ConI);
3456   op_cost(0);
3457 
3458   format %{ %}
3459   interface(CONST_INTER);
3460 %}
3461 
3462 // Immediates for special shifts (sign extend)
3463 
3464 // Integer Immediate: the value 16
3465 operand immI_16() %{
3466   predicate(n->get_int() == 16);
3467   match(ConI);
3468   op_cost(0);
3469 
3470   format %{ %}
3471   interface(CONST_INTER);
3472 %}
3473 
3474 // Integer Immediate: the value 24
3475 operand immI_24() %{
3476   predicate(n->get_int() == 24);
3477   match(ConI);
3478   op_cost(0);
3479 
3480   format %{ %}
3481   interface(CONST_INTER);
3482 %}
3483 
3484 // Integer Immediate: the value 255
3485 operand immI_255() %{
3486   predicate( n->get_int() == 255 );
3487   match(ConI);
3488   op_cost(0);
3489 
3490   format %{ %}
3491   interface(CONST_INTER);
3492 %}
3493 
3494 // Integer Immediate: the value 65535
3495 operand immI_65535() %{
3496   predicate(n->get_int() == 65535);
3497   match(ConI);
3498   op_cost(0);
3499 
3500   format %{ %}
3501   interface(CONST_INTER);
3502 %}
3503 
3504 // Long Immediate: the value FF
3505 operand immL_FF() %{
3506   predicate( n->get_long() == 0xFFL );
3507   match(ConL);
3508   op_cost(0);
3509 
3510   format %{ %}
3511   interface(CONST_INTER);
3512 %}
3513 
3514 // Long Immediate: the value FFFF
3515 operand immL_FFFF() %{
3516   predicate( n->get_long() == 0xFFFFL );
3517   match(ConL);
3518   op_cost(0);
3519 
3520   format %{ %}
3521   interface(CONST_INTER);
3522 %}
3523 
3524 // Pointer Immediate: 32 or 64-bit
3525 operand immP() %{
3526   match(ConP);
3527 
3528   op_cost(5);
3529   // formats are generated automatically for constants and base registers
3530   format %{ %}
3531   interface(CONST_INTER);
3532 %}
3533 
3534 #ifdef _LP64
3535 // Pointer Immediate: 64-bit
3536 operand immP_set() %{
3537   predicate(!VM_Version::is_niagara_plus());
3538   match(ConP);
3539 
3540   op_cost(5);
3541   // formats are generated automatically for constants and base registers
3542   format %{ %}
3543   interface(CONST_INTER);
3544 %}
3545 
3546 // Pointer Immediate: 64-bit
3547 // From Niagara2 processors on a load should be better than materializing.
3548 operand immP_load() %{
3549   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3550   match(ConP);
3551 
3552   op_cost(5);
3553   // formats are generated automatically for constants and base registers
3554   format %{ %}
3555   interface(CONST_INTER);
3556 %}
3557 
3558 // Pointer Immediate: 64-bit
3559 operand immP_no_oop_cheap() %{
3560   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3561   match(ConP);
3562 
3563   op_cost(5);
3564   // formats are generated automatically for constants and base registers
3565   format %{ %}
3566   interface(CONST_INTER);
3567 %}
3568 #endif
3569 
3570 operand immP13() %{
3571   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3572   match(ConP);
3573   op_cost(0);
3574 
3575   format %{ %}
3576   interface(CONST_INTER);
3577 %}
3578 
3579 operand immP0() %{
3580   predicate(n->get_ptr() == 0);
3581   match(ConP);
3582   op_cost(0);
3583 
3584   format %{ %}
3585   interface(CONST_INTER);
3586 %}
3587 
3588 operand immP_poll() %{
3589   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3590   match(ConP);
3591 
3592   // formats are generated automatically for constants and base registers
3593   format %{ %}
3594   interface(CONST_INTER);
3595 %}
3596 
3597 // Pointer Immediate
3598 operand immN()
3599 %{
3600   match(ConN);
3601 
3602   op_cost(10);
3603   format %{ %}
3604   interface(CONST_INTER);
3605 %}
3606 
3607 operand immNKlass()
3608 %{
3609   match(ConNKlass);
3610 
3611   op_cost(10);
3612   format %{ %}
3613   interface(CONST_INTER);
3614 %}
3615 
3616 // NULL Pointer Immediate
3617 operand immN0()
3618 %{
3619   predicate(n->get_narrowcon() == 0);
3620   match(ConN);
3621 
3622   op_cost(0);
3623   format %{ %}
3624   interface(CONST_INTER);
3625 %}
3626 
3627 operand immL() %{
3628   match(ConL);
3629   op_cost(40);
3630   // formats are generated automatically for constants and base registers
3631   format %{ %}
3632   interface(CONST_INTER);
3633 %}
3634 
3635 operand immL0() %{
3636   predicate(n->get_long() == 0L);
3637   match(ConL);
3638   op_cost(0);
3639   // formats are generated automatically for constants and base registers
3640   format %{ %}
3641   interface(CONST_INTER);
3642 %}
3643 
3644 // Integer Immediate: 5-bit
3645 operand immL5() %{
3646   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3647   match(ConL);
3648   op_cost(0);
3649   format %{ %}
3650   interface(CONST_INTER);
3651 %}
3652 
3653 // Long Immediate: 13-bit
3654 operand immL13() %{
3655   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3656   match(ConL);
3657   op_cost(0);
3658 
3659   format %{ %}
3660   interface(CONST_INTER);
3661 %}
3662 
3663 // Long Immediate: 13-bit minus 7
3664 operand immL13m7() %{
3665   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3666   match(ConL);
3667   op_cost(0);
3668 
3669   format %{ %}
3670   interface(CONST_INTER);
3671 %}
3672 
3673 // Long Immediate: low 32-bit mask
3674 operand immL_32bits() %{
3675   predicate(n->get_long() == 0xFFFFFFFFL);
3676   match(ConL);
3677   op_cost(0);
3678 
3679   format %{ %}
3680   interface(CONST_INTER);
3681 %}
3682 
3683 // Long Immediate: cheap (materialize in <= 3 instructions)
3684 operand immL_cheap() %{
3685   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3686   match(ConL);
3687   op_cost(0);
3688 
3689   format %{ %}
3690   interface(CONST_INTER);
3691 %}
3692 
3693 // Long Immediate: expensive (materialize in > 3 instructions)
3694 operand immL_expensive() %{
3695   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3696   match(ConL);
3697   op_cost(0);
3698 
3699   format %{ %}
3700   interface(CONST_INTER);
3701 %}
3702 
3703 // Double Immediate
3704 operand immD() %{
3705   match(ConD);
3706 
3707   op_cost(40);
3708   format %{ %}
3709   interface(CONST_INTER);
3710 %}
3711 
3712 operand immD0() %{
3713 #ifdef _LP64
3714   // on 64-bit architectures this comparision is faster
3715   predicate(jlong_cast(n->getd()) == 0);
3716 #else
3717   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3718 #endif
3719   match(ConD);
3720 
3721   op_cost(0);
3722   format %{ %}
3723   interface(CONST_INTER);
3724 %}
3725 
3726 // Float Immediate
3727 operand immF() %{
3728   match(ConF);
3729 
3730   op_cost(20);
3731   format %{ %}
3732   interface(CONST_INTER);
3733 %}
3734 
3735 // Float Immediate: 0
3736 operand immF0() %{
3737   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3738   match(ConF);
3739 
3740   op_cost(0);
3741   format %{ %}
3742   interface(CONST_INTER);
3743 %}
3744 
3745 // Integer Register Operands
3746 // Integer Register
3747 operand iRegI() %{
3748   constraint(ALLOC_IN_RC(int_reg));
3749   match(RegI);
3750 
3751   match(notemp_iRegI);
3752   match(g1RegI);
3753   match(o0RegI);
3754   match(iRegIsafe);
3755 
3756   format %{ %}
3757   interface(REG_INTER);
3758 %}
3759 
3760 operand notemp_iRegI() %{
3761   constraint(ALLOC_IN_RC(notemp_int_reg));
3762   match(RegI);
3763 
3764   match(o0RegI);
3765 
3766   format %{ %}
3767   interface(REG_INTER);
3768 %}
3769 
3770 operand o0RegI() %{
3771   constraint(ALLOC_IN_RC(o0_regI));
3772   match(iRegI);
3773 
3774   format %{ %}
3775   interface(REG_INTER);
3776 %}
3777 
3778 // Pointer Register
3779 operand iRegP() %{
3780   constraint(ALLOC_IN_RC(ptr_reg));
3781   match(RegP);
3782 
3783   match(lock_ptr_RegP);
3784   match(g1RegP);
3785   match(g2RegP);
3786   match(g3RegP);
3787   match(g4RegP);
3788   match(i0RegP);
3789   match(o0RegP);
3790   match(o1RegP);
3791   match(l7RegP);
3792 
3793   format %{ %}
3794   interface(REG_INTER);
3795 %}
3796 
3797 operand sp_ptr_RegP() %{
3798   constraint(ALLOC_IN_RC(sp_ptr_reg));
3799   match(RegP);
3800   match(iRegP);
3801 
3802   format %{ %}
3803   interface(REG_INTER);
3804 %}
3805 
3806 operand lock_ptr_RegP() %{
3807   constraint(ALLOC_IN_RC(lock_ptr_reg));
3808   match(RegP);
3809   match(i0RegP);
3810   match(o0RegP);
3811   match(o1RegP);
3812   match(l7RegP);
3813 
3814   format %{ %}
3815   interface(REG_INTER);
3816 %}
3817 
3818 operand g1RegP() %{
3819   constraint(ALLOC_IN_RC(g1_regP));
3820   match(iRegP);
3821 
3822   format %{ %}
3823   interface(REG_INTER);
3824 %}
3825 
3826 operand g2RegP() %{
3827   constraint(ALLOC_IN_RC(g2_regP));
3828   match(iRegP);
3829 
3830   format %{ %}
3831   interface(REG_INTER);
3832 %}
3833 
3834 operand g3RegP() %{
3835   constraint(ALLOC_IN_RC(g3_regP));
3836   match(iRegP);
3837 
3838   format %{ %}
3839   interface(REG_INTER);
3840 %}
3841 
3842 operand g1RegI() %{
3843   constraint(ALLOC_IN_RC(g1_regI));
3844   match(iRegI);
3845 
3846   format %{ %}
3847   interface(REG_INTER);
3848 %}
3849 
3850 operand g3RegI() %{
3851   constraint(ALLOC_IN_RC(g3_regI));
3852   match(iRegI);
3853 
3854   format %{ %}
3855   interface(REG_INTER);
3856 %}
3857 
3858 operand g4RegI() %{
3859   constraint(ALLOC_IN_RC(g4_regI));
3860   match(iRegI);
3861 
3862   format %{ %}
3863   interface(REG_INTER);
3864 %}
3865 
3866 operand g4RegP() %{
3867   constraint(ALLOC_IN_RC(g4_regP));
3868   match(iRegP);
3869 
3870   format %{ %}
3871   interface(REG_INTER);
3872 %}
3873 
3874 operand i0RegP() %{
3875   constraint(ALLOC_IN_RC(i0_regP));
3876   match(iRegP);
3877 
3878   format %{ %}
3879   interface(REG_INTER);
3880 %}
3881 
3882 operand o0RegP() %{
3883   constraint(ALLOC_IN_RC(o0_regP));
3884   match(iRegP);
3885 
3886   format %{ %}
3887   interface(REG_INTER);
3888 %}
3889 
3890 operand o1RegP() %{
3891   constraint(ALLOC_IN_RC(o1_regP));
3892   match(iRegP);
3893 
3894   format %{ %}
3895   interface(REG_INTER);
3896 %}
3897 
3898 operand o2RegP() %{
3899   constraint(ALLOC_IN_RC(o2_regP));
3900   match(iRegP);
3901 
3902   format %{ %}
3903   interface(REG_INTER);
3904 %}
3905 
3906 operand o7RegP() %{
3907   constraint(ALLOC_IN_RC(o7_regP));
3908   match(iRegP);
3909 
3910   format %{ %}
3911   interface(REG_INTER);
3912 %}
3913 
3914 operand l7RegP() %{
3915   constraint(ALLOC_IN_RC(l7_regP));
3916   match(iRegP);
3917 
3918   format %{ %}
3919   interface(REG_INTER);
3920 %}
3921 
3922 operand o7RegI() %{
3923   constraint(ALLOC_IN_RC(o7_regI));
3924   match(iRegI);
3925 
3926   format %{ %}
3927   interface(REG_INTER);
3928 %}
3929 
3930 operand iRegN() %{
3931   constraint(ALLOC_IN_RC(int_reg));
3932   match(RegN);
3933 
3934   format %{ %}
3935   interface(REG_INTER);
3936 %}
3937 
3938 // Long Register
3939 operand iRegL() %{
3940   constraint(ALLOC_IN_RC(long_reg));
3941   match(RegL);
3942 
3943   format %{ %}
3944   interface(REG_INTER);
3945 %}
3946 
3947 operand o2RegL() %{
3948   constraint(ALLOC_IN_RC(o2_regL));
3949   match(iRegL);
3950 
3951   format %{ %}
3952   interface(REG_INTER);
3953 %}
3954 
3955 operand o7RegL() %{
3956   constraint(ALLOC_IN_RC(o7_regL));
3957   match(iRegL);
3958 
3959   format %{ %}
3960   interface(REG_INTER);
3961 %}
3962 
3963 operand g1RegL() %{
3964   constraint(ALLOC_IN_RC(g1_regL));
3965   match(iRegL);
3966 
3967   format %{ %}
3968   interface(REG_INTER);
3969 %}
3970 
3971 operand g3RegL() %{
3972   constraint(ALLOC_IN_RC(g3_regL));
3973   match(iRegL);
3974 
3975   format %{ %}
3976   interface(REG_INTER);
3977 %}
3978 
3979 // Int Register safe
3980 // This is 64bit safe
3981 operand iRegIsafe() %{
3982   constraint(ALLOC_IN_RC(long_reg));
3983 
3984   match(iRegI);
3985 
3986   format %{ %}
3987   interface(REG_INTER);
3988 %}
3989 
3990 // Condition Code Flag Register
3991 operand flagsReg() %{
3992   constraint(ALLOC_IN_RC(int_flags));
3993   match(RegFlags);
3994 
3995   format %{ "ccr" %} // both ICC and XCC
3996   interface(REG_INTER);
3997 %}
3998 
3999 // Condition Code Register, unsigned comparisons.
4000 operand flagsRegU() %{
4001   constraint(ALLOC_IN_RC(int_flags));
4002   match(RegFlags);
4003 
4004   format %{ "icc_U" %}
4005   interface(REG_INTER);
4006 %}
4007 
4008 // Condition Code Register, pointer comparisons.
4009 operand flagsRegP() %{
4010   constraint(ALLOC_IN_RC(int_flags));
4011   match(RegFlags);
4012 
4013 #ifdef _LP64
4014   format %{ "xcc_P" %}
4015 #else
4016   format %{ "icc_P" %}
4017 #endif
4018   interface(REG_INTER);
4019 %}
4020 
4021 // Condition Code Register, long comparisons.
4022 operand flagsRegL() %{
4023   constraint(ALLOC_IN_RC(int_flags));
4024   match(RegFlags);
4025 
4026   format %{ "xcc_L" %}
4027   interface(REG_INTER);
4028 %}
4029 
4030 // Condition Code Register, floating comparisons, unordered same as "less".
4031 operand flagsRegF() %{
4032   constraint(ALLOC_IN_RC(float_flags));
4033   match(RegFlags);
4034   match(flagsRegF0);
4035 
4036   format %{ %}
4037   interface(REG_INTER);
4038 %}
4039 
4040 operand flagsRegF0() %{
4041   constraint(ALLOC_IN_RC(float_flag0));
4042   match(RegFlags);
4043 
4044   format %{ %}
4045   interface(REG_INTER);
4046 %}
4047 
4048 
4049 // Condition Code Flag Register used by long compare
4050 operand flagsReg_long_LTGE() %{
4051   constraint(ALLOC_IN_RC(int_flags));
4052   match(RegFlags);
4053   format %{ "icc_LTGE" %}
4054   interface(REG_INTER);
4055 %}
4056 operand flagsReg_long_EQNE() %{
4057   constraint(ALLOC_IN_RC(int_flags));
4058   match(RegFlags);
4059   format %{ "icc_EQNE" %}
4060   interface(REG_INTER);
4061 %}
4062 operand flagsReg_long_LEGT() %{
4063   constraint(ALLOC_IN_RC(int_flags));
4064   match(RegFlags);
4065   format %{ "icc_LEGT" %}
4066   interface(REG_INTER);
4067 %}
4068 
4069 
4070 operand regD() %{
4071   constraint(ALLOC_IN_RC(dflt_reg));
4072   match(RegD);
4073 
4074   match(regD_low);
4075 
4076   format %{ %}
4077   interface(REG_INTER);
4078 %}
4079 
4080 operand regF() %{
4081   constraint(ALLOC_IN_RC(sflt_reg));
4082   match(RegF);
4083 
4084   format %{ %}
4085   interface(REG_INTER);
4086 %}
4087 
4088 operand regD_low() %{
4089   constraint(ALLOC_IN_RC(dflt_low_reg));
4090   match(regD);
4091 
4092   format %{ %}
4093   interface(REG_INTER);
4094 %}
4095 
4096 // Special Registers
4097 
4098 // Method Register
4099 operand inline_cache_regP(iRegP reg) %{
4100   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4101   match(reg);
4102   format %{ %}
4103   interface(REG_INTER);
4104 %}
4105 
4106 operand interpreter_method_oop_regP(iRegP reg) %{
4107   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4108   match(reg);
4109   format %{ %}
4110   interface(REG_INTER);
4111 %}
4112 
4113 
4114 //----------Complex Operands---------------------------------------------------
4115 // Indirect Memory Reference
4116 operand indirect(sp_ptr_RegP reg) %{
4117   constraint(ALLOC_IN_RC(sp_ptr_reg));
4118   match(reg);
4119 
4120   op_cost(100);
4121   format %{ "[$reg]" %}
4122   interface(MEMORY_INTER) %{
4123     base($reg);
4124     index(0x0);
4125     scale(0x0);
4126     disp(0x0);
4127   %}
4128 %}
4129 
4130 // Indirect with simm13 Offset
4131 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4132   constraint(ALLOC_IN_RC(sp_ptr_reg));
4133   match(AddP reg offset);
4134 
4135   op_cost(100);
4136   format %{ "[$reg + $offset]" %}
4137   interface(MEMORY_INTER) %{
4138     base($reg);
4139     index(0x0);
4140     scale(0x0);
4141     disp($offset);
4142   %}
4143 %}
4144 
4145 // Indirect with simm13 Offset minus 7
4146 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4147   constraint(ALLOC_IN_RC(sp_ptr_reg));
4148   match(AddP reg offset);
4149 
4150   op_cost(100);
4151   format %{ "[$reg + $offset]" %}
4152   interface(MEMORY_INTER) %{
4153     base($reg);
4154     index(0x0);
4155     scale(0x0);
4156     disp($offset);
4157   %}
4158 %}
4159 
4160 // Note:  Intel has a swapped version also, like this:
4161 //operand indOffsetX(iRegI reg, immP offset) %{
4162 //  constraint(ALLOC_IN_RC(int_reg));
4163 //  match(AddP offset reg);
4164 //
4165 //  op_cost(100);
4166 //  format %{ "[$reg + $offset]" %}
4167 //  interface(MEMORY_INTER) %{
4168 //    base($reg);
4169 //    index(0x0);
4170 //    scale(0x0);
4171 //    disp($offset);
4172 //  %}
4173 //%}
4174 //// However, it doesn't make sense for SPARC, since
4175 // we have no particularly good way to embed oops in
4176 // single instructions.
4177 
4178 // Indirect with Register Index
4179 operand indIndex(iRegP addr, iRegX index) %{
4180   constraint(ALLOC_IN_RC(ptr_reg));
4181   match(AddP addr index);
4182 
4183   op_cost(100);
4184   format %{ "[$addr + $index]" %}
4185   interface(MEMORY_INTER) %{
4186     base($addr);
4187     index($index);
4188     scale(0x0);
4189     disp(0x0);
4190   %}
4191 %}
4192 
4193 //----------Special Memory Operands--------------------------------------------
4194 // Stack Slot Operand - This operand is used for loading and storing temporary
4195 //                      values on the stack where a match requires a value to
4196 //                      flow through memory.
4197 operand stackSlotI(sRegI reg) %{
4198   constraint(ALLOC_IN_RC(stack_slots));
4199   op_cost(100);
4200   //match(RegI);
4201   format %{ "[$reg]" %}
4202   interface(MEMORY_INTER) %{
4203     base(0xE);   // R_SP
4204     index(0x0);
4205     scale(0x0);
4206     disp($reg);  // Stack Offset
4207   %}
4208 %}
4209 
4210 operand stackSlotP(sRegP reg) %{
4211   constraint(ALLOC_IN_RC(stack_slots));
4212   op_cost(100);
4213   //match(RegP);
4214   format %{ "[$reg]" %}
4215   interface(MEMORY_INTER) %{
4216     base(0xE);   // R_SP
4217     index(0x0);
4218     scale(0x0);
4219     disp($reg);  // Stack Offset
4220   %}
4221 %}
4222 
4223 operand stackSlotF(sRegF reg) %{
4224   constraint(ALLOC_IN_RC(stack_slots));
4225   op_cost(100);
4226   //match(RegF);
4227   format %{ "[$reg]" %}
4228   interface(MEMORY_INTER) %{
4229     base(0xE);   // R_SP
4230     index(0x0);
4231     scale(0x0);
4232     disp($reg);  // Stack Offset
4233   %}
4234 %}
4235 operand stackSlotD(sRegD reg) %{
4236   constraint(ALLOC_IN_RC(stack_slots));
4237   op_cost(100);
4238   //match(RegD);
4239   format %{ "[$reg]" %}
4240   interface(MEMORY_INTER) %{
4241     base(0xE);   // R_SP
4242     index(0x0);
4243     scale(0x0);
4244     disp($reg);  // Stack Offset
4245   %}
4246 %}
4247 operand stackSlotL(sRegL reg) %{
4248   constraint(ALLOC_IN_RC(stack_slots));
4249   op_cost(100);
4250   //match(RegL);
4251   format %{ "[$reg]" %}
4252   interface(MEMORY_INTER) %{
4253     base(0xE);   // R_SP
4254     index(0x0);
4255     scale(0x0);
4256     disp($reg);  // Stack Offset
4257   %}
4258 %}
4259 
4260 // Operands for expressing Control Flow
4261 // NOTE:  Label is a predefined operand which should not be redefined in
4262 //        the AD file.  It is generically handled within the ADLC.
4263 
4264 //----------Conditional Branch Operands----------------------------------------
4265 // Comparison Op  - This is the operation of the comparison, and is limited to
4266 //                  the following set of codes:
4267 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4268 //
4269 // Other attributes of the comparison, such as unsignedness, are specified
4270 // by the comparison instruction that sets a condition code flags register.
4271 // That result is represented by a flags operand whose subtype is appropriate
4272 // to the unsignedness (etc.) of the comparison.
4273 //
4274 // Later, the instruction which matches both the Comparison Op (a Bool) and
4275 // the flags (produced by the Cmp) specifies the coding of the comparison op
4276 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4277 
4278 operand cmpOp() %{
4279   match(Bool);
4280 
4281   format %{ "" %}
4282   interface(COND_INTER) %{
4283     equal(0x1);
4284     not_equal(0x9);
4285     less(0x3);
4286     greater_equal(0xB);
4287     less_equal(0x2);
4288     greater(0xA);
4289     overflow(0x7);
4290     no_overflow(0xF);
4291   %}
4292 %}
4293 
4294 // Comparison Op, unsigned
4295 operand cmpOpU() %{
4296   match(Bool);
4297   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4298             n->as_Bool()->_test._test != BoolTest::no_overflow);
4299 
4300   format %{ "u" %}
4301   interface(COND_INTER) %{
4302     equal(0x1);
4303     not_equal(0x9);
4304     less(0x5);
4305     greater_equal(0xD);
4306     less_equal(0x4);
4307     greater(0xC);
4308     overflow(0x7);
4309     no_overflow(0xF);
4310   %}
4311 %}
4312 
4313 // Comparison Op, pointer (same as unsigned)
4314 operand cmpOpP() %{
4315   match(Bool);
4316   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4317             n->as_Bool()->_test._test != BoolTest::no_overflow);
4318 
4319   format %{ "p" %}
4320   interface(COND_INTER) %{
4321     equal(0x1);
4322     not_equal(0x9);
4323     less(0x5);
4324     greater_equal(0xD);
4325     less_equal(0x4);
4326     greater(0xC);
4327     overflow(0x7);
4328     no_overflow(0xF);
4329   %}
4330 %}
4331 
4332 // Comparison Op, branch-register encoding
4333 operand cmpOp_reg() %{
4334   match(Bool);
4335   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4336             n->as_Bool()->_test._test != BoolTest::no_overflow);
4337 
4338   format %{ "" %}
4339   interface(COND_INTER) %{
4340     equal        (0x1);
4341     not_equal    (0x5);
4342     less         (0x3);
4343     greater_equal(0x7);
4344     less_equal   (0x2);
4345     greater      (0x6);
4346     overflow(0x7); // not supported
4347     no_overflow(0xF); // not supported
4348   %}
4349 %}
4350 
4351 // Comparison Code, floating, unordered same as less
4352 operand cmpOpF() %{
4353   match(Bool);
4354   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4355             n->as_Bool()->_test._test != BoolTest::no_overflow);
4356 
4357   format %{ "fl" %}
4358   interface(COND_INTER) %{
4359     equal(0x9);
4360     not_equal(0x1);
4361     less(0x3);
4362     greater_equal(0xB);
4363     less_equal(0xE);
4364     greater(0x6);
4365 
4366     overflow(0x7); // not supported
4367     no_overflow(0xF); // not supported
4368   %}
4369 %}
4370 
4371 // Used by long compare
4372 operand cmpOp_commute() %{
4373   match(Bool);
4374   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4375             n->as_Bool()->_test._test != BoolTest::no_overflow);
4376 
4377   format %{ "" %}
4378   interface(COND_INTER) %{
4379     equal(0x1);
4380     not_equal(0x9);
4381     less(0xA);
4382     greater_equal(0x2);
4383     less_equal(0xB);
4384     greater(0x3);
4385     overflow(0x7);
4386     no_overflow(0xF);
4387   %}
4388 %}
4389 
4390 //----------OPERAND CLASSES----------------------------------------------------
4391 // Operand Classes are groups of operands that are used to simplify
4392 // instruction definitions by not requiring the AD writer to specify separate
4393 // instructions for every form of operand when the instruction accepts
4394 // multiple operand types with the same basic encoding and format.  The classic
4395 // case of this is memory operands.
4396 opclass memory( indirect, indOffset13, indIndex );
4397 opclass indIndexMemory( indIndex );
4398 
4399 //----------PIPELINE-----------------------------------------------------------
4400 pipeline %{
4401 
4402 //----------ATTRIBUTES---------------------------------------------------------
4403 attributes %{
4404   fixed_size_instructions;           // Fixed size instructions
4405   branch_has_delay_slot;             // Branch has delay slot following
4406   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4407   instruction_unit_size = 4;         // An instruction is 4 bytes long
4408   instruction_fetch_unit_size = 16;  // The processor fetches one line
4409   instruction_fetch_units = 1;       // of 16 bytes
4410 
4411   // List of nop instructions
4412   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4413 %}
4414 
4415 //----------RESOURCES----------------------------------------------------------
4416 // Resources are the functional units available to the machine
4417 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4418 
4419 //----------PIPELINE DESCRIPTION-----------------------------------------------
4420 // Pipeline Description specifies the stages in the machine's pipeline
4421 
4422 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4423 
4424 //----------PIPELINE CLASSES---------------------------------------------------
4425 // Pipeline Classes describe the stages in which input and output are
4426 // referenced by the hardware pipeline.
4427 
4428 // Integer ALU reg-reg operation
4429 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4430     single_instruction;
4431     dst   : E(write);
4432     src1  : R(read);
4433     src2  : R(read);
4434     IALU  : R;
4435 %}
4436 
4437 // Integer ALU reg-reg long operation
4438 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4439     instruction_count(2);
4440     dst   : E(write);
4441     src1  : R(read);
4442     src2  : R(read);
4443     IALU  : R;
4444     IALU  : R;
4445 %}
4446 
4447 // Integer ALU reg-reg long dependent operation
4448 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4449     instruction_count(1); multiple_bundles;
4450     dst   : E(write);
4451     src1  : R(read);
4452     src2  : R(read);
4453     cr    : E(write);
4454     IALU  : R(2);
4455 %}
4456 
4457 // Integer ALU reg-imm operaion
4458 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4459     single_instruction;
4460     dst   : E(write);
4461     src1  : R(read);
4462     IALU  : R;
4463 %}
4464 
4465 // Integer ALU reg-reg operation with condition code
4466 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4467     single_instruction;
4468     dst   : E(write);
4469     cr    : E(write);
4470     src1  : R(read);
4471     src2  : R(read);
4472     IALU  : R;
4473 %}
4474 
4475 // Integer ALU reg-imm operation with condition code
4476 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4477     single_instruction;
4478     dst   : E(write);
4479     cr    : E(write);
4480     src1  : R(read);
4481     IALU  : R;
4482 %}
4483 
4484 // Integer ALU zero-reg operation
4485 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4486     single_instruction;
4487     dst   : E(write);
4488     src2  : R(read);
4489     IALU  : R;
4490 %}
4491 
4492 // Integer ALU zero-reg operation with condition code only
4493 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4494     single_instruction;
4495     cr    : E(write);
4496     src   : R(read);
4497     IALU  : R;
4498 %}
4499 
4500 // Integer ALU reg-reg operation with condition code only
4501 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4502     single_instruction;
4503     cr    : E(write);
4504     src1  : R(read);
4505     src2  : R(read);
4506     IALU  : R;
4507 %}
4508 
4509 // Integer ALU reg-imm operation with condition code only
4510 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4511     single_instruction;
4512     cr    : E(write);
4513     src1  : R(read);
4514     IALU  : R;
4515 %}
4516 
4517 // Integer ALU reg-reg-zero operation with condition code only
4518 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4519     single_instruction;
4520     cr    : E(write);
4521     src1  : R(read);
4522     src2  : R(read);
4523     IALU  : R;
4524 %}
4525 
4526 // Integer ALU reg-imm-zero operation with condition code only
4527 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4528     single_instruction;
4529     cr    : E(write);
4530     src1  : R(read);
4531     IALU  : R;
4532 %}
4533 
4534 // Integer ALU reg-reg operation with condition code, src1 modified
4535 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4536     single_instruction;
4537     cr    : E(write);
4538     src1  : E(write);
4539     src1  : R(read);
4540     src2  : R(read);
4541     IALU  : R;
4542 %}
4543 
4544 // Integer ALU reg-imm operation with condition code, src1 modified
4545 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4546     single_instruction;
4547     cr    : E(write);
4548     src1  : E(write);
4549     src1  : R(read);
4550     IALU  : R;
4551 %}
4552 
4553 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4554     multiple_bundles;
4555     dst   : E(write)+4;
4556     cr    : E(write);
4557     src1  : R(read);
4558     src2  : R(read);
4559     IALU  : R(3);
4560     BR    : R(2);
4561 %}
4562 
4563 // Integer ALU operation
4564 pipe_class ialu_none(iRegI dst) %{
4565     single_instruction;
4566     dst   : E(write);
4567     IALU  : R;
4568 %}
4569 
4570 // Integer ALU reg operation
4571 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4572     single_instruction; may_have_no_code;
4573     dst   : E(write);
4574     src   : R(read);
4575     IALU  : R;
4576 %}
4577 
4578 // Integer ALU reg conditional operation
4579 // This instruction has a 1 cycle stall, and cannot execute
4580 // in the same cycle as the instruction setting the condition
4581 // code. We kludge this by pretending to read the condition code
4582 // 1 cycle earlier, and by marking the functional units as busy
4583 // for 2 cycles with the result available 1 cycle later than
4584 // is really the case.
4585 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4586     single_instruction;
4587     op2_out : C(write);
4588     op1     : R(read);
4589     cr      : R(read);       // This is really E, with a 1 cycle stall
4590     BR      : R(2);
4591     MS      : R(2);
4592 %}
4593 
4594 #ifdef _LP64
4595 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4596     instruction_count(1); multiple_bundles;
4597     dst     : C(write)+1;
4598     src     : R(read)+1;
4599     IALU    : R(1);
4600     BR      : E(2);
4601     MS      : E(2);
4602 %}
4603 #endif
4604 
4605 // Integer ALU reg operation
4606 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4607     single_instruction; may_have_no_code;
4608     dst   : E(write);
4609     src   : R(read);
4610     IALU  : R;
4611 %}
4612 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4613     single_instruction; may_have_no_code;
4614     dst   : E(write);
4615     src   : R(read);
4616     IALU  : R;
4617 %}
4618 
4619 // Two integer ALU reg operations
4620 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4621     instruction_count(2);
4622     dst   : E(write);
4623     src   : R(read);
4624     A0    : R;
4625     A1    : R;
4626 %}
4627 
4628 // Two integer ALU reg operations
4629 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4630     instruction_count(2); may_have_no_code;
4631     dst   : E(write);
4632     src   : R(read);
4633     A0    : R;
4634     A1    : R;
4635 %}
4636 
4637 // Integer ALU imm operation
4638 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4639     single_instruction;
4640     dst   : E(write);
4641     IALU  : R;
4642 %}
4643 
4644 // Integer ALU reg-reg with carry operation
4645 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4646     single_instruction;
4647     dst   : E(write);
4648     src1  : R(read);
4649     src2  : R(read);
4650     IALU  : R;
4651 %}
4652 
4653 // Integer ALU cc operation
4654 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4655     single_instruction;
4656     dst   : E(write);
4657     cc    : R(read);
4658     IALU  : R;
4659 %}
4660 
4661 // Integer ALU cc / second IALU operation
4662 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4663     instruction_count(1); multiple_bundles;
4664     dst   : E(write)+1;
4665     src   : R(read);
4666     IALU  : R;
4667 %}
4668 
4669 // Integer ALU cc / second IALU operation
4670 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4671     instruction_count(1); multiple_bundles;
4672     dst   : E(write)+1;
4673     p     : R(read);
4674     q     : R(read);
4675     IALU  : R;
4676 %}
4677 
4678 // Integer ALU hi-lo-reg operation
4679 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4680     instruction_count(1); multiple_bundles;
4681     dst   : E(write)+1;
4682     IALU  : R(2);
4683 %}
4684 
4685 // Float ALU hi-lo-reg operation (with temp)
4686 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4687     instruction_count(1); multiple_bundles;
4688     dst   : E(write)+1;
4689     IALU  : R(2);
4690 %}
4691 
4692 // Long Constant
4693 pipe_class loadConL( iRegL dst, immL src ) %{
4694     instruction_count(2); multiple_bundles;
4695     dst   : E(write)+1;
4696     IALU  : R(2);
4697     IALU  : R(2);
4698 %}
4699 
4700 // Pointer Constant
4701 pipe_class loadConP( iRegP dst, immP src ) %{
4702     instruction_count(0); multiple_bundles;
4703     fixed_latency(6);
4704 %}
4705 
4706 // Polling Address
4707 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4708 #ifdef _LP64
4709     instruction_count(0); multiple_bundles;
4710     fixed_latency(6);
4711 #else
4712     dst   : E(write);
4713     IALU  : R;
4714 #endif
4715 %}
4716 
4717 // Long Constant small
4718 pipe_class loadConLlo( iRegL dst, immL src ) %{
4719     instruction_count(2);
4720     dst   : E(write);
4721     IALU  : R;
4722     IALU  : R;
4723 %}
4724 
4725 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4726 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4727     instruction_count(1); multiple_bundles;
4728     src   : R(read);
4729     dst   : M(write)+1;
4730     IALU  : R;
4731     MS    : E;
4732 %}
4733 
4734 // Integer ALU nop operation
4735 pipe_class ialu_nop() %{
4736     single_instruction;
4737     IALU  : R;
4738 %}
4739 
4740 // Integer ALU nop operation
4741 pipe_class ialu_nop_A0() %{
4742     single_instruction;
4743     A0    : R;
4744 %}
4745 
4746 // Integer ALU nop operation
4747 pipe_class ialu_nop_A1() %{
4748     single_instruction;
4749     A1    : R;
4750 %}
4751 
4752 // Integer Multiply reg-reg operation
4753 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4754     single_instruction;
4755     dst   : E(write);
4756     src1  : R(read);
4757     src2  : R(read);
4758     MS    : R(5);
4759 %}
4760 
4761 // Integer Multiply reg-imm operation
4762 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4763     single_instruction;
4764     dst   : E(write);
4765     src1  : R(read);
4766     MS    : R(5);
4767 %}
4768 
4769 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4770     single_instruction;
4771     dst   : E(write)+4;
4772     src1  : R(read);
4773     src2  : R(read);
4774     MS    : R(6);
4775 %}
4776 
4777 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4778     single_instruction;
4779     dst   : E(write)+4;
4780     src1  : R(read);
4781     MS    : R(6);
4782 %}
4783 
4784 // Integer Divide reg-reg
4785 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4786     instruction_count(1); multiple_bundles;
4787     dst   : E(write);
4788     temp  : E(write);
4789     src1  : R(read);
4790     src2  : R(read);
4791     temp  : R(read);
4792     MS    : R(38);
4793 %}
4794 
4795 // Integer Divide reg-imm
4796 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4797     instruction_count(1); multiple_bundles;
4798     dst   : E(write);
4799     temp  : E(write);
4800     src1  : R(read);
4801     temp  : R(read);
4802     MS    : R(38);
4803 %}
4804 
4805 // Long Divide
4806 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4807     dst  : E(write)+71;
4808     src1 : R(read);
4809     src2 : R(read)+1;
4810     MS   : R(70);
4811 %}
4812 
4813 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4814     dst  : E(write)+71;
4815     src1 : R(read);
4816     MS   : R(70);
4817 %}
4818 
4819 // Floating Point Add Float
4820 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4821     single_instruction;
4822     dst   : X(write);
4823     src1  : E(read);
4824     src2  : E(read);
4825     FA    : R;
4826 %}
4827 
4828 // Floating Point Add Double
4829 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4830     single_instruction;
4831     dst   : X(write);
4832     src1  : E(read);
4833     src2  : E(read);
4834     FA    : R;
4835 %}
4836 
4837 // Floating Point Conditional Move based on integer flags
4838 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4839     single_instruction;
4840     dst   : X(write);
4841     src   : E(read);
4842     cr    : R(read);
4843     FA    : R(2);
4844     BR    : R(2);
4845 %}
4846 
4847 // Floating Point Conditional Move based on integer flags
4848 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4849     single_instruction;
4850     dst   : X(write);
4851     src   : E(read);
4852     cr    : R(read);
4853     FA    : R(2);
4854     BR    : R(2);
4855 %}
4856 
4857 // Floating Point Multiply Float
4858 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4859     single_instruction;
4860     dst   : X(write);
4861     src1  : E(read);
4862     src2  : E(read);
4863     FM    : R;
4864 %}
4865 
4866 // Floating Point Multiply Double
4867 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4868     single_instruction;
4869     dst   : X(write);
4870     src1  : E(read);
4871     src2  : E(read);
4872     FM    : R;
4873 %}
4874 
4875 // Floating Point Divide Float
4876 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4877     single_instruction;
4878     dst   : X(write);
4879     src1  : E(read);
4880     src2  : E(read);
4881     FM    : R;
4882     FDIV  : C(14);
4883 %}
4884 
4885 // Floating Point Divide Double
4886 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4887     single_instruction;
4888     dst   : X(write);
4889     src1  : E(read);
4890     src2  : E(read);
4891     FM    : R;
4892     FDIV  : C(17);
4893 %}
4894 
4895 // Floating Point Move/Negate/Abs Float
4896 pipe_class faddF_reg(regF dst, regF src) %{
4897     single_instruction;
4898     dst   : W(write);
4899     src   : E(read);
4900     FA    : R(1);
4901 %}
4902 
4903 // Floating Point Move/Negate/Abs Double
4904 pipe_class faddD_reg(regD dst, regD src) %{
4905     single_instruction;
4906     dst   : W(write);
4907     src   : E(read);
4908     FA    : R;
4909 %}
4910 
4911 // Floating Point Convert F->D
4912 pipe_class fcvtF2D(regD dst, regF src) %{
4913     single_instruction;
4914     dst   : X(write);
4915     src   : E(read);
4916     FA    : R;
4917 %}
4918 
4919 // Floating Point Convert I->D
4920 pipe_class fcvtI2D(regD dst, regF src) %{
4921     single_instruction;
4922     dst   : X(write);
4923     src   : E(read);
4924     FA    : R;
4925 %}
4926 
4927 // Floating Point Convert LHi->D
4928 pipe_class fcvtLHi2D(regD dst, regD src) %{
4929     single_instruction;
4930     dst   : X(write);
4931     src   : E(read);
4932     FA    : R;
4933 %}
4934 
4935 // Floating Point Convert L->D
4936 pipe_class fcvtL2D(regD dst, regF src) %{
4937     single_instruction;
4938     dst   : X(write);
4939     src   : E(read);
4940     FA    : R;
4941 %}
4942 
4943 // Floating Point Convert L->F
4944 pipe_class fcvtL2F(regD dst, regF src) %{
4945     single_instruction;
4946     dst   : X(write);
4947     src   : E(read);
4948     FA    : R;
4949 %}
4950 
4951 // Floating Point Convert D->F
4952 pipe_class fcvtD2F(regD dst, regF src) %{
4953     single_instruction;
4954     dst   : X(write);
4955     src   : E(read);
4956     FA    : R;
4957 %}
4958 
4959 // Floating Point Convert I->L
4960 pipe_class fcvtI2L(regD dst, regF src) %{
4961     single_instruction;
4962     dst   : X(write);
4963     src   : E(read);
4964     FA    : R;
4965 %}
4966 
4967 // Floating Point Convert D->F
4968 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4969     instruction_count(1); multiple_bundles;
4970     dst   : X(write)+6;
4971     src   : E(read);
4972     FA    : R;
4973 %}
4974 
4975 // Floating Point Convert D->L
4976 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4977     instruction_count(1); multiple_bundles;
4978     dst   : X(write)+6;
4979     src   : E(read);
4980     FA    : R;
4981 %}
4982 
4983 // Floating Point Convert F->I
4984 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4985     instruction_count(1); multiple_bundles;
4986     dst   : X(write)+6;
4987     src   : E(read);
4988     FA    : R;
4989 %}
4990 
4991 // Floating Point Convert F->L
4992 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4993     instruction_count(1); multiple_bundles;
4994     dst   : X(write)+6;
4995     src   : E(read);
4996     FA    : R;
4997 %}
4998 
4999 // Floating Point Convert I->F
5000 pipe_class fcvtI2F(regF dst, regF src) %{
5001     single_instruction;
5002     dst   : X(write);
5003     src   : E(read);
5004     FA    : R;
5005 %}
5006 
5007 // Floating Point Compare
5008 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5009     single_instruction;
5010     cr    : X(write);
5011     src1  : E(read);
5012     src2  : E(read);
5013     FA    : R;
5014 %}
5015 
5016 // Floating Point Compare
5017 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5018     single_instruction;
5019     cr    : X(write);
5020     src1  : E(read);
5021     src2  : E(read);
5022     FA    : R;
5023 %}
5024 
5025 // Floating Add Nop
5026 pipe_class fadd_nop() %{
5027     single_instruction;
5028     FA  : R;
5029 %}
5030 
5031 // Integer Store to Memory
5032 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5033     single_instruction;
5034     mem   : R(read);
5035     src   : C(read);
5036     MS    : R;
5037 %}
5038 
5039 // Integer Store to Memory
5040 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5041     single_instruction;
5042     mem   : R(read);
5043     src   : C(read);
5044     MS    : R;
5045 %}
5046 
5047 // Integer Store Zero to Memory
5048 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5049     single_instruction;
5050     mem   : R(read);
5051     MS    : R;
5052 %}
5053 
5054 // Special Stack Slot Store
5055 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5056     single_instruction;
5057     stkSlot : R(read);
5058     src     : C(read);
5059     MS      : R;
5060 %}
5061 
5062 // Special Stack Slot Store
5063 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5064     instruction_count(2); multiple_bundles;
5065     stkSlot : R(read);
5066     src     : C(read);
5067     MS      : R(2);
5068 %}
5069 
5070 // Float Store
5071 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5072     single_instruction;
5073     mem : R(read);
5074     src : C(read);
5075     MS  : R;
5076 %}
5077 
5078 // Float Store
5079 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5080     single_instruction;
5081     mem : R(read);
5082     MS  : R;
5083 %}
5084 
5085 // Double Store
5086 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5087     instruction_count(1);
5088     mem : R(read);
5089     src : C(read);
5090     MS  : R;
5091 %}
5092 
5093 // Double Store
5094 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5095     single_instruction;
5096     mem : R(read);
5097     MS  : R;
5098 %}
5099 
5100 // Special Stack Slot Float Store
5101 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5102     single_instruction;
5103     stkSlot : R(read);
5104     src     : C(read);
5105     MS      : R;
5106 %}
5107 
5108 // Special Stack Slot Double Store
5109 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5110     single_instruction;
5111     stkSlot : R(read);
5112     src     : C(read);
5113     MS      : R;
5114 %}
5115 
5116 // Integer Load (when sign bit propagation not needed)
5117 pipe_class iload_mem(iRegI dst, memory mem) %{
5118     single_instruction;
5119     mem : R(read);
5120     dst : C(write);
5121     MS  : R;
5122 %}
5123 
5124 // Integer Load from stack operand
5125 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5126     single_instruction;
5127     mem : R(read);
5128     dst : C(write);
5129     MS  : R;
5130 %}
5131 
5132 // Integer Load (when sign bit propagation or masking is needed)
5133 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5134     single_instruction;
5135     mem : R(read);
5136     dst : M(write);
5137     MS  : R;
5138 %}
5139 
5140 // Float Load
5141 pipe_class floadF_mem(regF dst, memory mem) %{
5142     single_instruction;
5143     mem : R(read);
5144     dst : M(write);
5145     MS  : R;
5146 %}
5147 
5148 // Float Load
5149 pipe_class floadD_mem(regD dst, memory mem) %{
5150     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5151     mem : R(read);
5152     dst : M(write);
5153     MS  : R;
5154 %}
5155 
5156 // Float Load
5157 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5158     single_instruction;
5159     stkSlot : R(read);
5160     dst : M(write);
5161     MS  : R;
5162 %}
5163 
5164 // Float Load
5165 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5166     single_instruction;
5167     stkSlot : R(read);
5168     dst : M(write);
5169     MS  : R;
5170 %}
5171 
5172 // Memory Nop
5173 pipe_class mem_nop() %{
5174     single_instruction;
5175     MS  : R;
5176 %}
5177 
5178 pipe_class sethi(iRegP dst, immI src) %{
5179     single_instruction;
5180     dst  : E(write);
5181     IALU : R;
5182 %}
5183 
5184 pipe_class loadPollP(iRegP poll) %{
5185     single_instruction;
5186     poll : R(read);
5187     MS   : R;
5188 %}
5189 
5190 pipe_class br(Universe br, label labl) %{
5191     single_instruction_with_delay_slot;
5192     BR  : R;
5193 %}
5194 
5195 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5196     single_instruction_with_delay_slot;
5197     cr    : E(read);
5198     BR    : R;
5199 %}
5200 
5201 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5202     single_instruction_with_delay_slot;
5203     op1 : E(read);
5204     BR  : R;
5205     MS  : R;
5206 %}
5207 
5208 // Compare and branch
5209 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5210     instruction_count(2); has_delay_slot;
5211     cr    : E(write);
5212     src1  : R(read);
5213     src2  : R(read);
5214     IALU  : R;
5215     BR    : R;
5216 %}
5217 
5218 // Compare and branch
5219 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5220     instruction_count(2); has_delay_slot;
5221     cr    : E(write);
5222     src1  : R(read);
5223     IALU  : R;
5224     BR    : R;
5225 %}
5226 
5227 // Compare and branch using cbcond
5228 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5229     single_instruction;
5230     src1  : E(read);
5231     src2  : E(read);
5232     IALU  : R;
5233     BR    : R;
5234 %}
5235 
5236 // Compare and branch using cbcond
5237 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5238     single_instruction;
5239     src1  : E(read);
5240     IALU  : R;
5241     BR    : R;
5242 %}
5243 
5244 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5245     single_instruction_with_delay_slot;
5246     cr    : E(read);
5247     BR    : R;
5248 %}
5249 
5250 pipe_class br_nop() %{
5251     single_instruction;
5252     BR  : R;
5253 %}
5254 
5255 pipe_class simple_call(method meth) %{
5256     instruction_count(2); multiple_bundles; force_serialization;
5257     fixed_latency(100);
5258     BR  : R(1);
5259     MS  : R(1);
5260     A0  : R(1);
5261 %}
5262 
5263 pipe_class compiled_call(method meth) %{
5264     instruction_count(1); multiple_bundles; force_serialization;
5265     fixed_latency(100);
5266     MS  : R(1);
5267 %}
5268 
5269 pipe_class call(method meth) %{
5270     instruction_count(0); multiple_bundles; force_serialization;
5271     fixed_latency(100);
5272 %}
5273 
5274 pipe_class tail_call(Universe ignore, label labl) %{
5275     single_instruction; has_delay_slot;
5276     fixed_latency(100);
5277     BR  : R(1);
5278     MS  : R(1);
5279 %}
5280 
5281 pipe_class ret(Universe ignore) %{
5282     single_instruction; has_delay_slot;
5283     BR  : R(1);
5284     MS  : R(1);
5285 %}
5286 
5287 pipe_class ret_poll(g3RegP poll) %{
5288     instruction_count(3); has_delay_slot;
5289     poll : E(read);
5290     MS   : R;
5291 %}
5292 
5293 // The real do-nothing guy
5294 pipe_class empty( ) %{
5295     instruction_count(0);
5296 %}
5297 
5298 pipe_class long_memory_op() %{
5299     instruction_count(0); multiple_bundles; force_serialization;
5300     fixed_latency(25);
5301     MS  : R(1);
5302 %}
5303 
5304 // Check-cast
5305 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5306     array : R(read);
5307     match  : R(read);
5308     IALU   : R(2);
5309     BR     : R(2);
5310     MS     : R;
5311 %}
5312 
5313 // Convert FPU flags into +1,0,-1
5314 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5315     src1  : E(read);
5316     src2  : E(read);
5317     dst   : E(write);
5318     FA    : R;
5319     MS    : R(2);
5320     BR    : R(2);
5321 %}
5322 
5323 // Compare for p < q, and conditionally add y
5324 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5325     p     : E(read);
5326     q     : E(read);
5327     y     : E(read);
5328     IALU  : R(3)
5329 %}
5330 
5331 // Perform a compare, then move conditionally in a branch delay slot.
5332 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5333     src2   : E(read);
5334     srcdst : E(read);
5335     IALU   : R;
5336     BR     : R;
5337 %}
5338 
5339 // Define the class for the Nop node
5340 define %{
5341    MachNop = ialu_nop;
5342 %}
5343 
5344 %}
5345 
5346 //----------INSTRUCTIONS-------------------------------------------------------
5347 
5348 //------------Special Stack Slot instructions - no match rules-----------------
5349 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5350   // No match rule to avoid chain rule match.
5351   effect(DEF dst, USE src);
5352   ins_cost(MEMORY_REF_COST);
5353   size(4);
5354   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5355   opcode(Assembler::ldf_op3);
5356   ins_encode(simple_form3_mem_reg(src, dst));
5357   ins_pipe(floadF_stk);
5358 %}
5359 
5360 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5361   // No match rule to avoid chain rule match.
5362   effect(DEF dst, USE src);
5363   ins_cost(MEMORY_REF_COST);
5364   size(4);
5365   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5366   opcode(Assembler::lddf_op3);
5367   ins_encode(simple_form3_mem_reg(src, dst));
5368   ins_pipe(floadD_stk);
5369 %}
5370 
5371 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5372   // No match rule to avoid chain rule match.
5373   effect(DEF dst, USE src);
5374   ins_cost(MEMORY_REF_COST);
5375   size(4);
5376   format %{ "STF    $src,$dst\t! regF to stkI" %}
5377   opcode(Assembler::stf_op3);
5378   ins_encode(simple_form3_mem_reg(dst, src));
5379   ins_pipe(fstoreF_stk_reg);
5380 %}
5381 
5382 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5383   // No match rule to avoid chain rule match.
5384   effect(DEF dst, USE src);
5385   ins_cost(MEMORY_REF_COST);
5386   size(4);
5387   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5388   opcode(Assembler::stdf_op3);
5389   ins_encode(simple_form3_mem_reg(dst, src));
5390   ins_pipe(fstoreD_stk_reg);
5391 %}
5392 
5393 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5394   effect(DEF dst, USE src);
5395   ins_cost(MEMORY_REF_COST*2);
5396   size(8);
5397   format %{ "STW    $src,$dst.hi\t! long\n\t"
5398             "STW    R_G0,$dst.lo" %}
5399   opcode(Assembler::stw_op3);
5400   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5401   ins_pipe(lstoreI_stk_reg);
5402 %}
5403 
5404 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5405   // No match rule to avoid chain rule match.
5406   effect(DEF dst, USE src);
5407   ins_cost(MEMORY_REF_COST);
5408   size(4);
5409   format %{ "STX    $src,$dst\t! regL to stkD" %}
5410   opcode(Assembler::stx_op3);
5411   ins_encode(simple_form3_mem_reg( dst, src ) );
5412   ins_pipe(istore_stk_reg);
5413 %}
5414 
5415 //---------- Chain stack slots between similar types --------
5416 
5417 // Load integer from stack slot
5418 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5419   match(Set dst src);
5420   ins_cost(MEMORY_REF_COST);
5421 
5422   size(4);
5423   format %{ "LDUW   $src,$dst\t!stk" %}
5424   opcode(Assembler::lduw_op3);
5425   ins_encode(simple_form3_mem_reg( src, dst ) );
5426   ins_pipe(iload_mem);
5427 %}
5428 
5429 // Store integer to stack slot
5430 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5431   match(Set dst src);
5432   ins_cost(MEMORY_REF_COST);
5433 
5434   size(4);
5435   format %{ "STW    $src,$dst\t!stk" %}
5436   opcode(Assembler::stw_op3);
5437   ins_encode(simple_form3_mem_reg( dst, src ) );
5438   ins_pipe(istore_mem_reg);
5439 %}
5440 
5441 // Load long from stack slot
5442 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5443   match(Set dst src);
5444 
5445   ins_cost(MEMORY_REF_COST);
5446   size(4);
5447   format %{ "LDX    $src,$dst\t! long" %}
5448   opcode(Assembler::ldx_op3);
5449   ins_encode(simple_form3_mem_reg( src, dst ) );
5450   ins_pipe(iload_mem);
5451 %}
5452 
5453 // Store long to stack slot
5454 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5455   match(Set dst src);
5456 
5457   ins_cost(MEMORY_REF_COST);
5458   size(4);
5459   format %{ "STX    $src,$dst\t! long" %}
5460   opcode(Assembler::stx_op3);
5461   ins_encode(simple_form3_mem_reg( dst, src ) );
5462   ins_pipe(istore_mem_reg);
5463 %}
5464 
5465 #ifdef _LP64
5466 // Load pointer from stack slot, 64-bit encoding
5467 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5468   match(Set dst src);
5469   ins_cost(MEMORY_REF_COST);
5470   size(4);
5471   format %{ "LDX    $src,$dst\t!ptr" %}
5472   opcode(Assembler::ldx_op3);
5473   ins_encode(simple_form3_mem_reg( src, dst ) );
5474   ins_pipe(iload_mem);
5475 %}
5476 
5477 // Store pointer to stack slot
5478 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5479   match(Set dst src);
5480   ins_cost(MEMORY_REF_COST);
5481   size(4);
5482   format %{ "STX    $src,$dst\t!ptr" %}
5483   opcode(Assembler::stx_op3);
5484   ins_encode(simple_form3_mem_reg( dst, src ) );
5485   ins_pipe(istore_mem_reg);
5486 %}
5487 #else // _LP64
5488 // Load pointer from stack slot, 32-bit encoding
5489 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5490   match(Set dst src);
5491   ins_cost(MEMORY_REF_COST);
5492   format %{ "LDUW   $src,$dst\t!ptr" %}
5493   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5494   ins_encode(simple_form3_mem_reg( src, dst ) );
5495   ins_pipe(iload_mem);
5496 %}
5497 
5498 // Store pointer to stack slot
5499 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5500   match(Set dst src);
5501   ins_cost(MEMORY_REF_COST);
5502   format %{ "STW    $src,$dst\t!ptr" %}
5503   opcode(Assembler::stw_op3, Assembler::ldst_op);
5504   ins_encode(simple_form3_mem_reg( dst, src ) );
5505   ins_pipe(istore_mem_reg);
5506 %}
5507 #endif // _LP64
5508 
5509 //------------Special Nop instructions for bundling - no match rules-----------
5510 // Nop using the A0 functional unit
5511 instruct Nop_A0() %{
5512   ins_cost(0);
5513 
5514   format %{ "NOP    ! Alu Pipeline" %}
5515   opcode(Assembler::or_op3, Assembler::arith_op);
5516   ins_encode( form2_nop() );
5517   ins_pipe(ialu_nop_A0);
5518 %}
5519 
5520 // Nop using the A1 functional unit
5521 instruct Nop_A1( ) %{
5522   ins_cost(0);
5523 
5524   format %{ "NOP    ! Alu Pipeline" %}
5525   opcode(Assembler::or_op3, Assembler::arith_op);
5526   ins_encode( form2_nop() );
5527   ins_pipe(ialu_nop_A1);
5528 %}
5529 
5530 // Nop using the memory functional unit
5531 instruct Nop_MS( ) %{
5532   ins_cost(0);
5533 
5534   format %{ "NOP    ! Memory Pipeline" %}
5535   ins_encode( emit_mem_nop );
5536   ins_pipe(mem_nop);
5537 %}
5538 
5539 // Nop using the floating add functional unit
5540 instruct Nop_FA( ) %{
5541   ins_cost(0);
5542 
5543   format %{ "NOP    ! Floating Add Pipeline" %}
5544   ins_encode( emit_fadd_nop );
5545   ins_pipe(fadd_nop);
5546 %}
5547 
5548 // Nop using the branch functional unit
5549 instruct Nop_BR( ) %{
5550   ins_cost(0);
5551 
5552   format %{ "NOP    ! Branch Pipeline" %}
5553   ins_encode( emit_br_nop );
5554   ins_pipe(br_nop);
5555 %}
5556 
5557 //----------Load/Store/Move Instructions---------------------------------------
5558 //----------Load Instructions--------------------------------------------------
5559 // Load Byte (8bit signed)
5560 instruct loadB(iRegI dst, memory mem) %{
5561   match(Set dst (LoadB mem));
5562   ins_cost(MEMORY_REF_COST);
5563 
5564   size(4);
5565   format %{ "LDSB   $mem,$dst\t! byte" %}
5566   ins_encode %{
5567     __ ldsb($mem$$Address, $dst$$Register);
5568   %}
5569   ins_pipe(iload_mask_mem);
5570 %}
5571 
5572 // Load Byte (8bit signed) into a Long Register
5573 instruct loadB2L(iRegL dst, memory mem) %{
5574   match(Set dst (ConvI2L (LoadB mem)));
5575   ins_cost(MEMORY_REF_COST);
5576 
5577   size(4);
5578   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5579   ins_encode %{
5580     __ ldsb($mem$$Address, $dst$$Register);
5581   %}
5582   ins_pipe(iload_mask_mem);
5583 %}
5584 
5585 // Load Unsigned Byte (8bit UNsigned) into an int reg
5586 instruct loadUB(iRegI dst, memory mem) %{
5587   match(Set dst (LoadUB mem));
5588   ins_cost(MEMORY_REF_COST);
5589 
5590   size(4);
5591   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5592   ins_encode %{
5593     __ ldub($mem$$Address, $dst$$Register);
5594   %}
5595   ins_pipe(iload_mem);
5596 %}
5597 
5598 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5599 instruct loadUB2L(iRegL dst, memory mem) %{
5600   match(Set dst (ConvI2L (LoadUB mem)));
5601   ins_cost(MEMORY_REF_COST);
5602 
5603   size(4);
5604   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5605   ins_encode %{
5606     __ ldub($mem$$Address, $dst$$Register);
5607   %}
5608   ins_pipe(iload_mem);
5609 %}
5610 
5611 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5612 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5613   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5614   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5615 
5616   size(2*4);
5617   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5618             "AND    $dst,$mask,$dst" %}
5619   ins_encode %{
5620     __ ldub($mem$$Address, $dst$$Register);
5621     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5622   %}
5623   ins_pipe(iload_mem);
5624 %}
5625 
5626 // Load Short (16bit signed)
5627 instruct loadS(iRegI dst, memory mem) %{
5628   match(Set dst (LoadS mem));
5629   ins_cost(MEMORY_REF_COST);
5630 
5631   size(4);
5632   format %{ "LDSH   $mem,$dst\t! short" %}
5633   ins_encode %{
5634     __ ldsh($mem$$Address, $dst$$Register);
5635   %}
5636   ins_pipe(iload_mask_mem);
5637 %}
5638 
5639 // Load Short (16 bit signed) to Byte (8 bit signed)
5640 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5641   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5642   ins_cost(MEMORY_REF_COST);
5643 
5644   size(4);
5645 
5646   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5647   ins_encode %{
5648     __ ldsb($mem$$Address, $dst$$Register, 1);
5649   %}
5650   ins_pipe(iload_mask_mem);
5651 %}
5652 
5653 // Load Short (16bit signed) into a Long Register
5654 instruct loadS2L(iRegL dst, memory mem) %{
5655   match(Set dst (ConvI2L (LoadS mem)));
5656   ins_cost(MEMORY_REF_COST);
5657 
5658   size(4);
5659   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5660   ins_encode %{
5661     __ ldsh($mem$$Address, $dst$$Register);
5662   %}
5663   ins_pipe(iload_mask_mem);
5664 %}
5665 
5666 // Load Unsigned Short/Char (16bit UNsigned)
5667 instruct loadUS(iRegI dst, memory mem) %{
5668   match(Set dst (LoadUS mem));
5669   ins_cost(MEMORY_REF_COST);
5670 
5671   size(4);
5672   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5673   ins_encode %{
5674     __ lduh($mem$$Address, $dst$$Register);
5675   %}
5676   ins_pipe(iload_mem);
5677 %}
5678 
5679 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5680 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5681   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5682   ins_cost(MEMORY_REF_COST);
5683 
5684   size(4);
5685   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5686   ins_encode %{
5687     __ ldsb($mem$$Address, $dst$$Register, 1);
5688   %}
5689   ins_pipe(iload_mask_mem);
5690 %}
5691 
5692 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5693 instruct loadUS2L(iRegL dst, memory mem) %{
5694   match(Set dst (ConvI2L (LoadUS mem)));
5695   ins_cost(MEMORY_REF_COST);
5696 
5697   size(4);
5698   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5699   ins_encode %{
5700     __ lduh($mem$$Address, $dst$$Register);
5701   %}
5702   ins_pipe(iload_mem);
5703 %}
5704 
5705 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5706 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5707   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5708   ins_cost(MEMORY_REF_COST);
5709 
5710   size(4);
5711   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5712   ins_encode %{
5713     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5714   %}
5715   ins_pipe(iload_mem);
5716 %}
5717 
5718 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5719 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5720   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5721   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5722 
5723   size(2*4);
5724   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5725             "AND    $dst,$mask,$dst" %}
5726   ins_encode %{
5727     Register Rdst = $dst$$Register;
5728     __ lduh($mem$$Address, Rdst);
5729     __ and3(Rdst, $mask$$constant, Rdst);
5730   %}
5731   ins_pipe(iload_mem);
5732 %}
5733 
5734 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5735 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5736   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5737   effect(TEMP dst, TEMP tmp);
5738   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5739 
5740   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5741             "SET    $mask,$tmp\n\t"
5742             "AND    $dst,$tmp,$dst" %}
5743   ins_encode %{
5744     Register Rdst = $dst$$Register;
5745     Register Rtmp = $tmp$$Register;
5746     __ lduh($mem$$Address, Rdst);
5747     __ set($mask$$constant, Rtmp);
5748     __ and3(Rdst, Rtmp, Rdst);
5749   %}
5750   ins_pipe(iload_mem);
5751 %}
5752 
5753 // Load Integer
5754 instruct loadI(iRegI dst, memory mem) %{
5755   match(Set dst (LoadI mem));
5756   ins_cost(MEMORY_REF_COST);
5757 
5758   size(4);
5759   format %{ "LDUW   $mem,$dst\t! int" %}
5760   ins_encode %{
5761     __ lduw($mem$$Address, $dst$$Register);
5762   %}
5763   ins_pipe(iload_mem);
5764 %}
5765 
5766 // Load Integer to Byte (8 bit signed)
5767 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5768   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5769   ins_cost(MEMORY_REF_COST);
5770 
5771   size(4);
5772 
5773   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5774   ins_encode %{
5775     __ ldsb($mem$$Address, $dst$$Register, 3);
5776   %}
5777   ins_pipe(iload_mask_mem);
5778 %}
5779 
5780 // Load Integer to Unsigned Byte (8 bit UNsigned)
5781 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5782   match(Set dst (AndI (LoadI mem) mask));
5783   ins_cost(MEMORY_REF_COST);
5784 
5785   size(4);
5786 
5787   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5788   ins_encode %{
5789     __ ldub($mem$$Address, $dst$$Register, 3);
5790   %}
5791   ins_pipe(iload_mask_mem);
5792 %}
5793 
5794 // Load Integer to Short (16 bit signed)
5795 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5796   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5797   ins_cost(MEMORY_REF_COST);
5798 
5799   size(4);
5800 
5801   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5802   ins_encode %{
5803     __ ldsh($mem$$Address, $dst$$Register, 2);
5804   %}
5805   ins_pipe(iload_mask_mem);
5806 %}
5807 
5808 // Load Integer to Unsigned Short (16 bit UNsigned)
5809 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5810   match(Set dst (AndI (LoadI mem) mask));
5811   ins_cost(MEMORY_REF_COST);
5812 
5813   size(4);
5814 
5815   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5816   ins_encode %{
5817     __ lduh($mem$$Address, $dst$$Register, 2);
5818   %}
5819   ins_pipe(iload_mask_mem);
5820 %}
5821 
5822 // Load Integer into a Long Register
5823 instruct loadI2L(iRegL dst, memory mem) %{
5824   match(Set dst (ConvI2L (LoadI mem)));
5825   ins_cost(MEMORY_REF_COST);
5826 
5827   size(4);
5828   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5829   ins_encode %{
5830     __ ldsw($mem$$Address, $dst$$Register);
5831   %}
5832   ins_pipe(iload_mask_mem);
5833 %}
5834 
5835 // Load Integer with mask 0xFF into a Long Register
5836 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5837   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5838   ins_cost(MEMORY_REF_COST);
5839 
5840   size(4);
5841   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5842   ins_encode %{
5843     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5844   %}
5845   ins_pipe(iload_mem);
5846 %}
5847 
5848 // Load Integer with mask 0xFFFF into a Long Register
5849 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5850   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5851   ins_cost(MEMORY_REF_COST);
5852 
5853   size(4);
5854   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5855   ins_encode %{
5856     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5857   %}
5858   ins_pipe(iload_mem);
5859 %}
5860 
5861 // Load Integer with a 12-bit mask into a Long Register
5862 instruct loadI2L_immU13(iRegL dst, memory mem, immU13 mask) %{
5863   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5864   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5865 
5866   size(2*4);
5867   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5868             "AND    $dst,$mask,$dst" %}
5869   ins_encode %{
5870     Register Rdst = $dst$$Register;
5871     __ lduw($mem$$Address, Rdst);
5872     __ and3(Rdst, $mask$$constant, Rdst);
5873   %}
5874   ins_pipe(iload_mem);
5875 %}
5876 
5877 // Load Integer with a 31-bit mask into a Long Register
5878 instruct loadI2L_immU32(iRegL dst, memory mem, immU32 mask, iRegL tmp) %{
5879   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5880   effect(TEMP dst, TEMP tmp);
5881   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5882 
5883   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5884             "SET    $mask,$tmp\n\t"
5885             "AND    $dst,$tmp,$dst" %}
5886   ins_encode %{
5887     Register Rdst = $dst$$Register;
5888     Register Rtmp = $tmp$$Register;
5889     __ lduw($mem$$Address, Rdst);
5890     __ set($mask$$constant, Rtmp);
5891     __ and3(Rdst, Rtmp, Rdst);
5892   %}
5893   ins_pipe(iload_mem);
5894 %}
5895 
5896 // Load Unsigned Integer into a Long Register
5897 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5898   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5899   ins_cost(MEMORY_REF_COST);
5900 
5901   size(4);
5902   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5903   ins_encode %{
5904     __ lduw($mem$$Address, $dst$$Register);
5905   %}
5906   ins_pipe(iload_mem);
5907 %}
5908 
5909 // Load Long - aligned
5910 instruct loadL(iRegL dst, memory mem ) %{
5911   match(Set dst (LoadL mem));
5912   ins_cost(MEMORY_REF_COST);
5913 
5914   size(4);
5915   format %{ "LDX    $mem,$dst\t! long" %}
5916   ins_encode %{
5917     __ ldx($mem$$Address, $dst$$Register);
5918   %}
5919   ins_pipe(iload_mem);
5920 %}
5921 
5922 // Load Long - UNaligned
5923 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5924   match(Set dst (LoadL_unaligned mem));
5925   effect(KILL tmp);
5926   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5927   size(16);
5928   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5929           "\tLDUW   $mem  ,$dst\n"
5930           "\tSLLX   #32, $dst, $dst\n"
5931           "\tOR     $dst, R_O7, $dst" %}
5932   opcode(Assembler::lduw_op3);
5933   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5934   ins_pipe(iload_mem);
5935 %}
5936 
5937 // Load Range
5938 instruct loadRange(iRegI dst, memory mem) %{
5939   match(Set dst (LoadRange mem));
5940   ins_cost(MEMORY_REF_COST);
5941 
5942   size(4);
5943   format %{ "LDUW   $mem,$dst\t! range" %}
5944   opcode(Assembler::lduw_op3);
5945   ins_encode(simple_form3_mem_reg( mem, dst ) );
5946   ins_pipe(iload_mem);
5947 %}
5948 
5949 // Load Integer into %f register (for fitos/fitod)
5950 instruct loadI_freg(regF dst, memory mem) %{
5951   match(Set dst (LoadI mem));
5952   ins_cost(MEMORY_REF_COST);
5953   size(4);
5954 
5955   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5956   opcode(Assembler::ldf_op3);
5957   ins_encode(simple_form3_mem_reg( mem, dst ) );
5958   ins_pipe(floadF_mem);
5959 %}
5960 
5961 // Load Pointer
5962 instruct loadP(iRegP dst, memory mem) %{
5963   match(Set dst (LoadP mem));
5964   ins_cost(MEMORY_REF_COST);
5965   size(4);
5966 
5967 #ifndef _LP64
5968   format %{ "LDUW   $mem,$dst\t! ptr" %}
5969   ins_encode %{
5970     __ lduw($mem$$Address, $dst$$Register);
5971   %}
5972 #else
5973   format %{ "LDX    $mem,$dst\t! ptr" %}
5974   ins_encode %{
5975     __ ldx($mem$$Address, $dst$$Register);
5976   %}
5977 #endif
5978   ins_pipe(iload_mem);
5979 %}
5980 
5981 // Load Compressed Pointer
5982 instruct loadN(iRegN dst, memory mem) %{
5983   match(Set dst (LoadN mem));
5984   ins_cost(MEMORY_REF_COST);
5985   size(4);
5986 
5987   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5988   ins_encode %{
5989     __ lduw($mem$$Address, $dst$$Register);
5990   %}
5991   ins_pipe(iload_mem);
5992 %}
5993 
5994 // Load Klass Pointer
5995 instruct loadKlass(iRegP dst, memory mem) %{
5996   match(Set dst (LoadKlass mem));
5997   ins_cost(MEMORY_REF_COST);
5998   size(4);
5999 
6000 #ifndef _LP64
6001   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6002   ins_encode %{
6003     __ lduw($mem$$Address, $dst$$Register);
6004   %}
6005 #else
6006   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6007   ins_encode %{
6008     __ ldx($mem$$Address, $dst$$Register);
6009   %}
6010 #endif
6011   ins_pipe(iload_mem);
6012 %}
6013 
6014 // Load narrow Klass Pointer
6015 instruct loadNKlass(iRegN dst, memory mem) %{
6016   match(Set dst (LoadNKlass mem));
6017   ins_cost(MEMORY_REF_COST);
6018   size(4);
6019 
6020   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6021   ins_encode %{
6022     __ lduw($mem$$Address, $dst$$Register);
6023   %}
6024   ins_pipe(iload_mem);
6025 %}
6026 
6027 // Load Double
6028 instruct loadD(regD dst, memory mem) %{
6029   match(Set dst (LoadD mem));
6030   ins_cost(MEMORY_REF_COST);
6031 
6032   size(4);
6033   format %{ "LDDF   $mem,$dst" %}
6034   opcode(Assembler::lddf_op3);
6035   ins_encode(simple_form3_mem_reg( mem, dst ) );
6036   ins_pipe(floadD_mem);
6037 %}
6038 
6039 // Load Double - UNaligned
6040 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6041   match(Set dst (LoadD_unaligned mem));
6042   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6043   size(8);
6044   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6045           "\tLDF    $mem+4,$dst.lo\t!" %}
6046   opcode(Assembler::ldf_op3);
6047   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6048   ins_pipe(iload_mem);
6049 %}
6050 
6051 // Load Float
6052 instruct loadF(regF dst, memory mem) %{
6053   match(Set dst (LoadF mem));
6054   ins_cost(MEMORY_REF_COST);
6055 
6056   size(4);
6057   format %{ "LDF    $mem,$dst" %}
6058   opcode(Assembler::ldf_op3);
6059   ins_encode(simple_form3_mem_reg( mem, dst ) );
6060   ins_pipe(floadF_mem);
6061 %}
6062 
6063 // Load Constant
6064 instruct loadConI( iRegI dst, immI src ) %{
6065   match(Set dst src);
6066   ins_cost(DEFAULT_COST * 3/2);
6067   format %{ "SET    $src,$dst" %}
6068   ins_encode( Set32(src, dst) );
6069   ins_pipe(ialu_hi_lo_reg);
6070 %}
6071 
6072 instruct loadConI13( iRegI dst, immI13 src ) %{
6073   match(Set dst src);
6074 
6075   size(4);
6076   format %{ "MOV    $src,$dst" %}
6077   ins_encode( Set13( src, dst ) );
6078   ins_pipe(ialu_imm);
6079 %}
6080 
6081 #ifndef _LP64
6082 instruct loadConP(iRegP dst, immP con) %{
6083   match(Set dst con);
6084   ins_cost(DEFAULT_COST * 3/2);
6085   format %{ "SET    $con,$dst\t!ptr" %}
6086   ins_encode %{
6087     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6088       intptr_t val = $con$$constant;
6089     if (constant_reloc == relocInfo::oop_type) {
6090       __ set_oop_constant((jobject) val, $dst$$Register);
6091     } else if (constant_reloc == relocInfo::metadata_type) {
6092       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6093     } else {          // non-oop pointers, e.g. card mark base, heap top
6094       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6095       __ set(val, $dst$$Register);
6096     }
6097   %}
6098   ins_pipe(loadConP);
6099 %}
6100 #else
6101 instruct loadConP_set(iRegP dst, immP_set con) %{
6102   match(Set dst con);
6103   ins_cost(DEFAULT_COST * 3/2);
6104   format %{ "SET    $con,$dst\t! ptr" %}
6105   ins_encode %{
6106     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6107       intptr_t val = $con$$constant;
6108     if (constant_reloc == relocInfo::oop_type) {
6109       __ set_oop_constant((jobject) val, $dst$$Register);
6110     } else if (constant_reloc == relocInfo::metadata_type) {
6111       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6112     } else {          // non-oop pointers, e.g. card mark base, heap top
6113       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6114       __ set(val, $dst$$Register);
6115     }
6116   %}
6117   ins_pipe(loadConP);
6118 %}
6119 
6120 instruct loadConP_load(iRegP dst, immP_load con) %{
6121   match(Set dst con);
6122   ins_cost(MEMORY_REF_COST);
6123   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6124   ins_encode %{
6125     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6126     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6127   %}
6128   ins_pipe(loadConP);
6129 %}
6130 
6131 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6132   match(Set dst con);
6133   ins_cost(DEFAULT_COST * 3/2);
6134   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6135   ins_encode %{
6136     __ set($con$$constant, $dst$$Register);
6137   %}
6138   ins_pipe(loadConP);
6139 %}
6140 #endif // _LP64
6141 
6142 instruct loadConP0(iRegP dst, immP0 src) %{
6143   match(Set dst src);
6144 
6145   size(4);
6146   format %{ "CLR    $dst\t!ptr" %}
6147   ins_encode %{
6148     __ clr($dst$$Register);
6149   %}
6150   ins_pipe(ialu_imm);
6151 %}
6152 
6153 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6154   match(Set dst src);
6155   ins_cost(DEFAULT_COST);
6156   format %{ "SET    $src,$dst\t!ptr" %}
6157   ins_encode %{
6158     AddressLiteral polling_page(os::get_polling_page());
6159     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6160   %}
6161   ins_pipe(loadConP_poll);
6162 %}
6163 
6164 instruct loadConN0(iRegN dst, immN0 src) %{
6165   match(Set dst src);
6166 
6167   size(4);
6168   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6169   ins_encode %{
6170     __ clr($dst$$Register);
6171   %}
6172   ins_pipe(ialu_imm);
6173 %}
6174 
6175 instruct loadConN(iRegN dst, immN src) %{
6176   match(Set dst src);
6177   ins_cost(DEFAULT_COST * 3/2);
6178   format %{ "SET    $src,$dst\t! compressed ptr" %}
6179   ins_encode %{
6180     Register dst = $dst$$Register;
6181     __ set_narrow_oop((jobject)$src$$constant, dst);
6182   %}
6183   ins_pipe(ialu_hi_lo_reg);
6184 %}
6185 
6186 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6187   match(Set dst src);
6188   ins_cost(DEFAULT_COST * 3/2);
6189   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6190   ins_encode %{
6191     Register dst = $dst$$Register;
6192     __ set_narrow_klass((Klass*)$src$$constant, dst);
6193   %}
6194   ins_pipe(ialu_hi_lo_reg);
6195 %}
6196 
6197 // Materialize long value (predicated by immL_cheap).
6198 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6199   match(Set dst con);
6200   effect(KILL tmp);
6201   ins_cost(DEFAULT_COST * 3);
6202   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6203   ins_encode %{
6204     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6205   %}
6206   ins_pipe(loadConL);
6207 %}
6208 
6209 // Load long value from constant table (predicated by immL_expensive).
6210 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6211   match(Set dst con);
6212   ins_cost(MEMORY_REF_COST);
6213   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6214   ins_encode %{
6215       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6216     __ ldx($constanttablebase, con_offset, $dst$$Register);
6217   %}
6218   ins_pipe(loadConL);
6219 %}
6220 
6221 instruct loadConL0( iRegL dst, immL0 src ) %{
6222   match(Set dst src);
6223   ins_cost(DEFAULT_COST);
6224   size(4);
6225   format %{ "CLR    $dst\t! long" %}
6226   ins_encode( Set13( src, dst ) );
6227   ins_pipe(ialu_imm);
6228 %}
6229 
6230 instruct loadConL13( iRegL dst, immL13 src ) %{
6231   match(Set dst src);
6232   ins_cost(DEFAULT_COST * 2);
6233 
6234   size(4);
6235   format %{ "MOV    $src,$dst\t! long" %}
6236   ins_encode( Set13( src, dst ) );
6237   ins_pipe(ialu_imm);
6238 %}
6239 
6240 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6241   match(Set dst con);
6242   effect(KILL tmp);
6243   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6244   ins_encode %{
6245       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6246     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6247   %}
6248   ins_pipe(loadConFD);
6249 %}
6250 
6251 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6252   match(Set dst con);
6253   effect(KILL tmp);
6254   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6255   ins_encode %{
6256     // XXX This is a quick fix for 6833573.
6257     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6258     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6259     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6260   %}
6261   ins_pipe(loadConFD);
6262 %}
6263 
6264 // Prefetch instructions.
6265 // Must be safe to execute with invalid address (cannot fault).
6266 
6267 instruct prefetchr( memory mem ) %{
6268   match( PrefetchRead mem );
6269   ins_cost(MEMORY_REF_COST);
6270   size(4);
6271 
6272   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6273   opcode(Assembler::prefetch_op3);
6274   ins_encode( form3_mem_prefetch_read( mem ) );
6275   ins_pipe(iload_mem);
6276 %}
6277 
6278 instruct prefetchw( memory mem ) %{
6279   match( PrefetchWrite mem );
6280   ins_cost(MEMORY_REF_COST);
6281   size(4);
6282 
6283   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6284   opcode(Assembler::prefetch_op3);
6285   ins_encode( form3_mem_prefetch_write( mem ) );
6286   ins_pipe(iload_mem);
6287 %}
6288 
6289 // Prefetch instructions for allocation.
6290 
6291 instruct prefetchAlloc( memory mem ) %{
6292   predicate(AllocatePrefetchInstr == 0);
6293   match( PrefetchAllocation mem );
6294   ins_cost(MEMORY_REF_COST);
6295   size(4);
6296 
6297   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6298   opcode(Assembler::prefetch_op3);
6299   ins_encode( form3_mem_prefetch_write( mem ) );
6300   ins_pipe(iload_mem);
6301 %}
6302 
6303 // Use BIS instruction to prefetch for allocation.
6304 // Could fault, need space at the end of TLAB.
6305 instruct prefetchAlloc_bis( iRegP dst ) %{
6306   predicate(AllocatePrefetchInstr == 1);
6307   match( PrefetchAllocation dst );
6308   ins_cost(MEMORY_REF_COST);
6309   size(4);
6310 
6311   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6312   ins_encode %{
6313     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6314   %}
6315   ins_pipe(istore_mem_reg);
6316 %}
6317 
6318 // Next code is used for finding next cache line address to prefetch.
6319 #ifndef _LP64
6320 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6321   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6322   ins_cost(DEFAULT_COST);
6323   size(4);
6324 
6325   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6326   ins_encode %{
6327     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6328   %}
6329   ins_pipe(ialu_reg_imm);
6330 %}
6331 #else
6332 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6333   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6334   ins_cost(DEFAULT_COST);
6335   size(4);
6336 
6337   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6338   ins_encode %{
6339     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6340   %}
6341   ins_pipe(ialu_reg_imm);
6342 %}
6343 #endif
6344 
6345 //----------Store Instructions-------------------------------------------------
6346 // Store Byte
6347 instruct storeB(memory mem, iRegI src) %{
6348   match(Set mem (StoreB mem src));
6349   ins_cost(MEMORY_REF_COST);
6350 
6351   size(4);
6352   format %{ "STB    $src,$mem\t! byte" %}
6353   opcode(Assembler::stb_op3);
6354   ins_encode(simple_form3_mem_reg( mem, src ) );
6355   ins_pipe(istore_mem_reg);
6356 %}
6357 
6358 instruct storeB0(memory mem, immI0 src) %{
6359   match(Set mem (StoreB mem src));
6360   ins_cost(MEMORY_REF_COST);
6361 
6362   size(4);
6363   format %{ "STB    $src,$mem\t! byte" %}
6364   opcode(Assembler::stb_op3);
6365   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6366   ins_pipe(istore_mem_zero);
6367 %}
6368 
6369 instruct storeCM0(memory mem, immI0 src) %{
6370   match(Set mem (StoreCM mem src));
6371   ins_cost(MEMORY_REF_COST);
6372 
6373   size(4);
6374   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6375   opcode(Assembler::stb_op3);
6376   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6377   ins_pipe(istore_mem_zero);
6378 %}
6379 
6380 // Store Char/Short
6381 instruct storeC(memory mem, iRegI src) %{
6382   match(Set mem (StoreC mem src));
6383   ins_cost(MEMORY_REF_COST);
6384 
6385   size(4);
6386   format %{ "STH    $src,$mem\t! short" %}
6387   opcode(Assembler::sth_op3);
6388   ins_encode(simple_form3_mem_reg( mem, src ) );
6389   ins_pipe(istore_mem_reg);
6390 %}
6391 
6392 instruct storeC0(memory mem, immI0 src) %{
6393   match(Set mem (StoreC mem src));
6394   ins_cost(MEMORY_REF_COST);
6395 
6396   size(4);
6397   format %{ "STH    $src,$mem\t! short" %}
6398   opcode(Assembler::sth_op3);
6399   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6400   ins_pipe(istore_mem_zero);
6401 %}
6402 
6403 // Store Integer
6404 instruct storeI(memory mem, iRegI src) %{
6405   match(Set mem (StoreI mem src));
6406   ins_cost(MEMORY_REF_COST);
6407 
6408   size(4);
6409   format %{ "STW    $src,$mem" %}
6410   opcode(Assembler::stw_op3);
6411   ins_encode(simple_form3_mem_reg( mem, src ) );
6412   ins_pipe(istore_mem_reg);
6413 %}
6414 
6415 // Store Long
6416 instruct storeL(memory mem, iRegL src) %{
6417   match(Set mem (StoreL mem src));
6418   ins_cost(MEMORY_REF_COST);
6419   size(4);
6420   format %{ "STX    $src,$mem\t! long" %}
6421   opcode(Assembler::stx_op3);
6422   ins_encode(simple_form3_mem_reg( mem, src ) );
6423   ins_pipe(istore_mem_reg);
6424 %}
6425 
6426 instruct storeI0(memory mem, immI0 src) %{
6427   match(Set mem (StoreI mem src));
6428   ins_cost(MEMORY_REF_COST);
6429 
6430   size(4);
6431   format %{ "STW    $src,$mem" %}
6432   opcode(Assembler::stw_op3);
6433   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6434   ins_pipe(istore_mem_zero);
6435 %}
6436 
6437 instruct storeL0(memory mem, immL0 src) %{
6438   match(Set mem (StoreL mem src));
6439   ins_cost(MEMORY_REF_COST);
6440 
6441   size(4);
6442   format %{ "STX    $src,$mem" %}
6443   opcode(Assembler::stx_op3);
6444   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6445   ins_pipe(istore_mem_zero);
6446 %}
6447 
6448 // Store Integer from float register (used after fstoi)
6449 instruct storeI_Freg(memory mem, regF src) %{
6450   match(Set mem (StoreI mem src));
6451   ins_cost(MEMORY_REF_COST);
6452 
6453   size(4);
6454   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6455   opcode(Assembler::stf_op3);
6456   ins_encode(simple_form3_mem_reg( mem, src ) );
6457   ins_pipe(fstoreF_mem_reg);
6458 %}
6459 
6460 // Store Pointer
6461 instruct storeP(memory dst, sp_ptr_RegP src) %{
6462   match(Set dst (StoreP dst src));
6463   ins_cost(MEMORY_REF_COST);
6464   size(4);
6465 
6466 #ifndef _LP64
6467   format %{ "STW    $src,$dst\t! ptr" %}
6468   opcode(Assembler::stw_op3, 0, REGP_OP);
6469 #else
6470   format %{ "STX    $src,$dst\t! ptr" %}
6471   opcode(Assembler::stx_op3, 0, REGP_OP);
6472 #endif
6473   ins_encode( form3_mem_reg( dst, src ) );
6474   ins_pipe(istore_mem_spORreg);
6475 %}
6476 
6477 instruct storeP0(memory dst, immP0 src) %{
6478   match(Set dst (StoreP dst src));
6479   ins_cost(MEMORY_REF_COST);
6480   size(4);
6481 
6482 #ifndef _LP64
6483   format %{ "STW    $src,$dst\t! ptr" %}
6484   opcode(Assembler::stw_op3, 0, REGP_OP);
6485 #else
6486   format %{ "STX    $src,$dst\t! ptr" %}
6487   opcode(Assembler::stx_op3, 0, REGP_OP);
6488 #endif
6489   ins_encode( form3_mem_reg( dst, R_G0 ) );
6490   ins_pipe(istore_mem_zero);
6491 %}
6492 
6493 // Store Compressed Pointer
6494 instruct storeN(memory dst, iRegN src) %{
6495    match(Set dst (StoreN dst src));
6496    ins_cost(MEMORY_REF_COST);
6497    size(4);
6498 
6499    format %{ "STW    $src,$dst\t! compressed ptr" %}
6500    ins_encode %{
6501      Register base = as_Register($dst$$base);
6502      Register index = as_Register($dst$$index);
6503      Register src = $src$$Register;
6504      if (index != G0) {
6505        __ stw(src, base, index);
6506      } else {
6507        __ stw(src, base, $dst$$disp);
6508      }
6509    %}
6510    ins_pipe(istore_mem_spORreg);
6511 %}
6512 
6513 instruct storeNKlass(memory dst, iRegN src) %{
6514    match(Set dst (StoreNKlass dst src));
6515    ins_cost(MEMORY_REF_COST);
6516    size(4);
6517 
6518    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6519    ins_encode %{
6520      Register base = as_Register($dst$$base);
6521      Register index = as_Register($dst$$index);
6522      Register src = $src$$Register;
6523      if (index != G0) {
6524        __ stw(src, base, index);
6525      } else {
6526        __ stw(src, base, $dst$$disp);
6527      }
6528    %}
6529    ins_pipe(istore_mem_spORreg);
6530 %}
6531 
6532 instruct storeN0(memory dst, immN0 src) %{
6533    match(Set dst (StoreN dst src));
6534    ins_cost(MEMORY_REF_COST);
6535    size(4);
6536 
6537    format %{ "STW    $src,$dst\t! compressed ptr" %}
6538    ins_encode %{
6539      Register base = as_Register($dst$$base);
6540      Register index = as_Register($dst$$index);
6541      if (index != G0) {
6542        __ stw(0, base, index);
6543      } else {
6544        __ stw(0, base, $dst$$disp);
6545      }
6546    %}
6547    ins_pipe(istore_mem_zero);
6548 %}
6549 
6550 // Store Double
6551 instruct storeD( memory mem, regD src) %{
6552   match(Set mem (StoreD mem src));
6553   ins_cost(MEMORY_REF_COST);
6554 
6555   size(4);
6556   format %{ "STDF   $src,$mem" %}
6557   opcode(Assembler::stdf_op3);
6558   ins_encode(simple_form3_mem_reg( mem, src ) );
6559   ins_pipe(fstoreD_mem_reg);
6560 %}
6561 
6562 instruct storeD0( memory mem, immD0 src) %{
6563   match(Set mem (StoreD mem src));
6564   ins_cost(MEMORY_REF_COST);
6565 
6566   size(4);
6567   format %{ "STX    $src,$mem" %}
6568   opcode(Assembler::stx_op3);
6569   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6570   ins_pipe(fstoreD_mem_zero);
6571 %}
6572 
6573 // Store Float
6574 instruct storeF( memory mem, regF src) %{
6575   match(Set mem (StoreF mem src));
6576   ins_cost(MEMORY_REF_COST);
6577 
6578   size(4);
6579   format %{ "STF    $src,$mem" %}
6580   opcode(Assembler::stf_op3);
6581   ins_encode(simple_form3_mem_reg( mem, src ) );
6582   ins_pipe(fstoreF_mem_reg);
6583 %}
6584 
6585 instruct storeF0( memory mem, immF0 src) %{
6586   match(Set mem (StoreF mem src));
6587   ins_cost(MEMORY_REF_COST);
6588 
6589   size(4);
6590   format %{ "STW    $src,$mem\t! storeF0" %}
6591   opcode(Assembler::stw_op3);
6592   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6593   ins_pipe(fstoreF_mem_zero);
6594 %}
6595 
6596 // Convert oop pointer into compressed form
6597 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6598   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6599   match(Set dst (EncodeP src));
6600   format %{ "encode_heap_oop $src, $dst" %}
6601   ins_encode %{
6602     __ encode_heap_oop($src$$Register, $dst$$Register);
6603   %}
6604   ins_pipe(ialu_reg);
6605 %}
6606 
6607 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6608   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6609   match(Set dst (EncodeP src));
6610   format %{ "encode_heap_oop_not_null $src, $dst" %}
6611   ins_encode %{
6612     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6613   %}
6614   ins_pipe(ialu_reg);
6615 %}
6616 
6617 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6618   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6619             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6620   match(Set dst (DecodeN src));
6621   format %{ "decode_heap_oop $src, $dst" %}
6622   ins_encode %{
6623     __ decode_heap_oop($src$$Register, $dst$$Register);
6624   %}
6625   ins_pipe(ialu_reg);
6626 %}
6627 
6628 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6629   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6630             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6631   match(Set dst (DecodeN src));
6632   format %{ "decode_heap_oop_not_null $src, $dst" %}
6633   ins_encode %{
6634     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6635   %}
6636   ins_pipe(ialu_reg);
6637 %}
6638 
6639 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6640   match(Set dst (EncodePKlass src));
6641   format %{ "encode_klass_not_null $src, $dst" %}
6642   ins_encode %{
6643     __ encode_klass_not_null($src$$Register, $dst$$Register);
6644   %}
6645   ins_pipe(ialu_reg);
6646 %}
6647 
6648 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6649   match(Set dst (DecodeNKlass src));
6650   format %{ "decode_klass_not_null $src, $dst" %}
6651   ins_encode %{
6652     __ decode_klass_not_null($src$$Register, $dst$$Register);
6653   %}
6654   ins_pipe(ialu_reg);
6655 %}
6656 
6657 //----------MemBar Instructions-----------------------------------------------
6658 // Memory barrier flavors
6659 
6660 instruct membar_acquire() %{
6661   match(MemBarAcquire);
6662   ins_cost(4*MEMORY_REF_COST);
6663 
6664   size(0);
6665   format %{ "MEMBAR-acquire" %}
6666   ins_encode( enc_membar_acquire );
6667   ins_pipe(long_memory_op);
6668 %}
6669 
6670 instruct membar_acquire_lock() %{
6671   match(MemBarAcquireLock);
6672   ins_cost(0);
6673 
6674   size(0);
6675   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6676   ins_encode( );
6677   ins_pipe(empty);
6678 %}
6679 
6680 instruct membar_release() %{
6681   match(MemBarRelease);
6682   ins_cost(4*MEMORY_REF_COST);
6683 
6684   size(0);
6685   format %{ "MEMBAR-release" %}
6686   ins_encode( enc_membar_release );
6687   ins_pipe(long_memory_op);
6688 %}
6689 
6690 instruct membar_release_lock() %{
6691   match(MemBarReleaseLock);
6692   ins_cost(0);
6693 
6694   size(0);
6695   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6696   ins_encode( );
6697   ins_pipe(empty);
6698 %}
6699 
6700 instruct membar_volatile() %{
6701   match(MemBarVolatile);
6702   ins_cost(4*MEMORY_REF_COST);
6703 
6704   size(4);
6705   format %{ "MEMBAR-volatile" %}
6706   ins_encode( enc_membar_volatile );
6707   ins_pipe(long_memory_op);
6708 %}
6709 
6710 instruct unnecessary_membar_volatile() %{
6711   match(MemBarVolatile);
6712   predicate(Matcher::post_store_load_barrier(n));
6713   ins_cost(0);
6714 
6715   size(0);
6716   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6717   ins_encode( );
6718   ins_pipe(empty);
6719 %}
6720 
6721 instruct membar_storestore() %{
6722   match(MemBarStoreStore);
6723   ins_cost(0);
6724 
6725   size(0);
6726   format %{ "!MEMBAR-storestore (empty encoding)" %}
6727   ins_encode( );
6728   ins_pipe(empty);
6729 %}
6730 
6731 //----------Register Move Instructions-----------------------------------------
6732 instruct roundDouble_nop(regD dst) %{
6733   match(Set dst (RoundDouble dst));
6734   ins_cost(0);
6735   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6736   ins_encode( );
6737   ins_pipe(empty);
6738 %}
6739 
6740 
6741 instruct roundFloat_nop(regF dst) %{
6742   match(Set dst (RoundFloat dst));
6743   ins_cost(0);
6744   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6745   ins_encode( );
6746   ins_pipe(empty);
6747 %}
6748 
6749 
6750 // Cast Index to Pointer for unsafe natives
6751 instruct castX2P(iRegX src, iRegP dst) %{
6752   match(Set dst (CastX2P src));
6753 
6754   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6755   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6756   ins_pipe(ialu_reg);
6757 %}
6758 
6759 // Cast Pointer to Index for unsafe natives
6760 instruct castP2X(iRegP src, iRegX dst) %{
6761   match(Set dst (CastP2X src));
6762 
6763   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6764   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6765   ins_pipe(ialu_reg);
6766 %}
6767 
6768 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6769   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6770   match(Set stkSlot src);   // chain rule
6771   ins_cost(MEMORY_REF_COST);
6772   format %{ "STDF   $src,$stkSlot\t!stk" %}
6773   opcode(Assembler::stdf_op3);
6774   ins_encode(simple_form3_mem_reg(stkSlot, src));
6775   ins_pipe(fstoreD_stk_reg);
6776 %}
6777 
6778 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6779   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6780   match(Set dst stkSlot);   // chain rule
6781   ins_cost(MEMORY_REF_COST);
6782   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6783   opcode(Assembler::lddf_op3);
6784   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6785   ins_pipe(floadD_stk);
6786 %}
6787 
6788 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6789   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6790   match(Set stkSlot src);   // chain rule
6791   ins_cost(MEMORY_REF_COST);
6792   format %{ "STF   $src,$stkSlot\t!stk" %}
6793   opcode(Assembler::stf_op3);
6794   ins_encode(simple_form3_mem_reg(stkSlot, src));
6795   ins_pipe(fstoreF_stk_reg);
6796 %}
6797 
6798 //----------Conditional Move---------------------------------------------------
6799 // Conditional move
6800 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6801   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6802   ins_cost(150);
6803   format %{ "MOV$cmp $pcc,$src,$dst" %}
6804   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6805   ins_pipe(ialu_reg);
6806 %}
6807 
6808 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6809   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6810   ins_cost(140);
6811   format %{ "MOV$cmp $pcc,$src,$dst" %}
6812   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6813   ins_pipe(ialu_imm);
6814 %}
6815 
6816 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6817   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6818   ins_cost(150);
6819   size(4);
6820   format %{ "MOV$cmp  $icc,$src,$dst" %}
6821   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6822   ins_pipe(ialu_reg);
6823 %}
6824 
6825 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6826   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6827   ins_cost(140);
6828   size(4);
6829   format %{ "MOV$cmp  $icc,$src,$dst" %}
6830   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6831   ins_pipe(ialu_imm);
6832 %}
6833 
6834 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6835   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6836   ins_cost(150);
6837   size(4);
6838   format %{ "MOV$cmp  $icc,$src,$dst" %}
6839   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6840   ins_pipe(ialu_reg);
6841 %}
6842 
6843 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6844   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6845   ins_cost(140);
6846   size(4);
6847   format %{ "MOV$cmp  $icc,$src,$dst" %}
6848   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6849   ins_pipe(ialu_imm);
6850 %}
6851 
6852 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6853   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6854   ins_cost(150);
6855   size(4);
6856   format %{ "MOV$cmp $fcc,$src,$dst" %}
6857   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6858   ins_pipe(ialu_reg);
6859 %}
6860 
6861 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6862   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6863   ins_cost(140);
6864   size(4);
6865   format %{ "MOV$cmp $fcc,$src,$dst" %}
6866   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6867   ins_pipe(ialu_imm);
6868 %}
6869 
6870 // Conditional move for RegN. Only cmov(reg,reg).
6871 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6872   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6873   ins_cost(150);
6874   format %{ "MOV$cmp $pcc,$src,$dst" %}
6875   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6876   ins_pipe(ialu_reg);
6877 %}
6878 
6879 // This instruction also works with CmpN so we don't need cmovNN_reg.
6880 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6881   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6882   ins_cost(150);
6883   size(4);
6884   format %{ "MOV$cmp  $icc,$src,$dst" %}
6885   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6886   ins_pipe(ialu_reg);
6887 %}
6888 
6889 // This instruction also works with CmpN so we don't need cmovNN_reg.
6890 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6891   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6892   ins_cost(150);
6893   size(4);
6894   format %{ "MOV$cmp  $icc,$src,$dst" %}
6895   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6896   ins_pipe(ialu_reg);
6897 %}
6898 
6899 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6900   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6901   ins_cost(150);
6902   size(4);
6903   format %{ "MOV$cmp $fcc,$src,$dst" %}
6904   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6905   ins_pipe(ialu_reg);
6906 %}
6907 
6908 // Conditional move
6909 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6910   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6911   ins_cost(150);
6912   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6913   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6914   ins_pipe(ialu_reg);
6915 %}
6916 
6917 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6918   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6919   ins_cost(140);
6920   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6921   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6922   ins_pipe(ialu_imm);
6923 %}
6924 
6925 // This instruction also works with CmpN so we don't need cmovPN_reg.
6926 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6927   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6928   ins_cost(150);
6929 
6930   size(4);
6931   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6932   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6933   ins_pipe(ialu_reg);
6934 %}
6935 
6936 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6937   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6938   ins_cost(150);
6939 
6940   size(4);
6941   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6942   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6943   ins_pipe(ialu_reg);
6944 %}
6945 
6946 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6947   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6948   ins_cost(140);
6949 
6950   size(4);
6951   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6952   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6953   ins_pipe(ialu_imm);
6954 %}
6955 
6956 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6957   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6958   ins_cost(140);
6959 
6960   size(4);
6961   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6962   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6963   ins_pipe(ialu_imm);
6964 %}
6965 
6966 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6967   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6968   ins_cost(150);
6969   size(4);
6970   format %{ "MOV$cmp $fcc,$src,$dst" %}
6971   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6972   ins_pipe(ialu_imm);
6973 %}
6974 
6975 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6976   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6977   ins_cost(140);
6978   size(4);
6979   format %{ "MOV$cmp $fcc,$src,$dst" %}
6980   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6981   ins_pipe(ialu_imm);
6982 %}
6983 
6984 // Conditional move
6985 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6986   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6987   ins_cost(150);
6988   opcode(0x101);
6989   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6990   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6991   ins_pipe(int_conditional_float_move);
6992 %}
6993 
6994 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6995   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6996   ins_cost(150);
6997 
6998   size(4);
6999   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7000   opcode(0x101);
7001   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7002   ins_pipe(int_conditional_float_move);
7003 %}
7004 
7005 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7006   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7007   ins_cost(150);
7008 
7009   size(4);
7010   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7011   opcode(0x101);
7012   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7013   ins_pipe(int_conditional_float_move);
7014 %}
7015 
7016 // Conditional move,
7017 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7018   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7019   ins_cost(150);
7020   size(4);
7021   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7022   opcode(0x1);
7023   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7024   ins_pipe(int_conditional_double_move);
7025 %}
7026 
7027 // Conditional move
7028 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7029   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7030   ins_cost(150);
7031   size(4);
7032   opcode(0x102);
7033   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7034   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7035   ins_pipe(int_conditional_double_move);
7036 %}
7037 
7038 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7039   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7040   ins_cost(150);
7041 
7042   size(4);
7043   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7044   opcode(0x102);
7045   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7046   ins_pipe(int_conditional_double_move);
7047 %}
7048 
7049 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7050   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7051   ins_cost(150);
7052 
7053   size(4);
7054   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7055   opcode(0x102);
7056   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7057   ins_pipe(int_conditional_double_move);
7058 %}
7059 
7060 // Conditional move,
7061 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7062   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7063   ins_cost(150);
7064   size(4);
7065   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7066   opcode(0x2);
7067   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7068   ins_pipe(int_conditional_double_move);
7069 %}
7070 
7071 // Conditional move
7072 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7073   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7074   ins_cost(150);
7075   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7076   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7077   ins_pipe(ialu_reg);
7078 %}
7079 
7080 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7081   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7082   ins_cost(140);
7083   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7084   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7085   ins_pipe(ialu_imm);
7086 %}
7087 
7088 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7089   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7090   ins_cost(150);
7091 
7092   size(4);
7093   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7094   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7095   ins_pipe(ialu_reg);
7096 %}
7097 
7098 
7099 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7100   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7101   ins_cost(150);
7102 
7103   size(4);
7104   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7105   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7106   ins_pipe(ialu_reg);
7107 %}
7108 
7109 
7110 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7111   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7112   ins_cost(150);
7113 
7114   size(4);
7115   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7116   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7117   ins_pipe(ialu_reg);
7118 %}
7119 
7120 
7121 
7122 //----------OS and Locking Instructions----------------------------------------
7123 
7124 // This name is KNOWN by the ADLC and cannot be changed.
7125 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7126 // for this guy.
7127 instruct tlsLoadP(g2RegP dst) %{
7128   match(Set dst (ThreadLocal));
7129 
7130   size(0);
7131   ins_cost(0);
7132   format %{ "# TLS is in G2" %}
7133   ins_encode( /*empty encoding*/ );
7134   ins_pipe(ialu_none);
7135 %}
7136 
7137 instruct checkCastPP( iRegP dst ) %{
7138   match(Set dst (CheckCastPP dst));
7139 
7140   size(0);
7141   format %{ "# checkcastPP of $dst" %}
7142   ins_encode( /*empty encoding*/ );
7143   ins_pipe(empty);
7144 %}
7145 
7146 
7147 instruct castPP( iRegP dst ) %{
7148   match(Set dst (CastPP dst));
7149   format %{ "# castPP of $dst" %}
7150   ins_encode( /*empty encoding*/ );
7151   ins_pipe(empty);
7152 %}
7153 
7154 instruct castII( iRegI dst ) %{
7155   match(Set dst (CastII dst));
7156   format %{ "# castII of $dst" %}
7157   ins_encode( /*empty encoding*/ );
7158   ins_cost(0);
7159   ins_pipe(empty);
7160 %}
7161 
7162 //----------Arithmetic Instructions--------------------------------------------
7163 // Addition Instructions
7164 // Register Addition
7165 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7166   match(Set dst (AddI src1 src2));
7167 
7168   size(4);
7169   format %{ "ADD    $src1,$src2,$dst" %}
7170   ins_encode %{
7171     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7172   %}
7173   ins_pipe(ialu_reg_reg);
7174 %}
7175 
7176 // Immediate Addition
7177 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7178   match(Set dst (AddI src1 src2));
7179 
7180   size(4);
7181   format %{ "ADD    $src1,$src2,$dst" %}
7182   opcode(Assembler::add_op3, Assembler::arith_op);
7183   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7184   ins_pipe(ialu_reg_imm);
7185 %}
7186 
7187 // Pointer Register Addition
7188 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7189   match(Set dst (AddP src1 src2));
7190 
7191   size(4);
7192   format %{ "ADD    $src1,$src2,$dst" %}
7193   opcode(Assembler::add_op3, Assembler::arith_op);
7194   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7195   ins_pipe(ialu_reg_reg);
7196 %}
7197 
7198 // Pointer Immediate Addition
7199 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7200   match(Set dst (AddP src1 src2));
7201 
7202   size(4);
7203   format %{ "ADD    $src1,$src2,$dst" %}
7204   opcode(Assembler::add_op3, Assembler::arith_op);
7205   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7206   ins_pipe(ialu_reg_imm);
7207 %}
7208 
7209 // Long Addition
7210 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7211   match(Set dst (AddL src1 src2));
7212 
7213   size(4);
7214   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7215   opcode(Assembler::add_op3, Assembler::arith_op);
7216   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7217   ins_pipe(ialu_reg_reg);
7218 %}
7219 
7220 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7221   match(Set dst (AddL src1 con));
7222 
7223   size(4);
7224   format %{ "ADD    $src1,$con,$dst" %}
7225   opcode(Assembler::add_op3, Assembler::arith_op);
7226   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7227   ins_pipe(ialu_reg_imm);
7228 %}
7229 
7230 //----------Conditional_store--------------------------------------------------
7231 // Conditional-store of the updated heap-top.
7232 // Used during allocation of the shared heap.
7233 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7234 
7235 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7236 instruct loadPLocked(iRegP dst, memory mem) %{
7237   match(Set dst (LoadPLocked mem));
7238   ins_cost(MEMORY_REF_COST);
7239 
7240 #ifndef _LP64
7241   size(4);
7242   format %{ "LDUW   $mem,$dst\t! ptr" %}
7243   opcode(Assembler::lduw_op3, 0, REGP_OP);
7244 #else
7245   format %{ "LDX    $mem,$dst\t! ptr" %}
7246   opcode(Assembler::ldx_op3, 0, REGP_OP);
7247 #endif
7248   ins_encode( form3_mem_reg( mem, dst ) );
7249   ins_pipe(iload_mem);
7250 %}
7251 
7252 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7253   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7254   effect( KILL newval );
7255   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7256             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7257   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7258   ins_pipe( long_memory_op );
7259 %}
7260 
7261 // Conditional-store of an int value.
7262 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7263   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7264   effect( KILL newval );
7265   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7266             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7267   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7268   ins_pipe( long_memory_op );
7269 %}
7270 
7271 // Conditional-store of a long value.
7272 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7273   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7274   effect( KILL newval );
7275   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7276             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7277   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7278   ins_pipe( long_memory_op );
7279 %}
7280 
7281 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7282 
7283 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7284   predicate(VM_Version::supports_cx8());
7285   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7286   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7287   format %{
7288             "MOV    $newval,O7\n\t"
7289             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7290             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7291             "MOV    1,$res\n\t"
7292             "MOVne  xcc,R_G0,$res"
7293   %}
7294   ins_encode( enc_casx(mem_ptr, oldval, newval),
7295               enc_lflags_ne_to_boolean(res) );
7296   ins_pipe( long_memory_op );
7297 %}
7298 
7299 
7300 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7301   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7302   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7303   format %{
7304             "MOV    $newval,O7\n\t"
7305             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7306             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7307             "MOV    1,$res\n\t"
7308             "MOVne  icc,R_G0,$res"
7309   %}
7310   ins_encode( enc_casi(mem_ptr, oldval, newval),
7311               enc_iflags_ne_to_boolean(res) );
7312   ins_pipe( long_memory_op );
7313 %}
7314 
7315 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7316 #ifdef _LP64
7317   predicate(VM_Version::supports_cx8());
7318 #endif
7319   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7320   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7321   format %{
7322             "MOV    $newval,O7\n\t"
7323             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7324             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7325             "MOV    1,$res\n\t"
7326             "MOVne  xcc,R_G0,$res"
7327   %}
7328 #ifdef _LP64
7329   ins_encode( enc_casx(mem_ptr, oldval, newval),
7330               enc_lflags_ne_to_boolean(res) );
7331 #else
7332   ins_encode( enc_casi(mem_ptr, oldval, newval),
7333               enc_iflags_ne_to_boolean(res) );
7334 #endif
7335   ins_pipe( long_memory_op );
7336 %}
7337 
7338 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7339   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7340   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7341   format %{
7342             "MOV    $newval,O7\n\t"
7343             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7344             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7345             "MOV    1,$res\n\t"
7346             "MOVne  icc,R_G0,$res"
7347   %}
7348   ins_encode( enc_casi(mem_ptr, oldval, newval),
7349               enc_iflags_ne_to_boolean(res) );
7350   ins_pipe( long_memory_op );
7351 %}
7352 
7353 instruct xchgI( memory mem, iRegI newval) %{
7354   match(Set newval (GetAndSetI mem newval));
7355   format %{ "SWAP  [$mem],$newval" %}
7356   size(4);
7357   ins_encode %{
7358     __ swap($mem$$Address, $newval$$Register);
7359   %}
7360   ins_pipe( long_memory_op );
7361 %}
7362 
7363 #ifndef _LP64
7364 instruct xchgP( memory mem, iRegP newval) %{
7365   match(Set newval (GetAndSetP mem newval));
7366   format %{ "SWAP  [$mem],$newval" %}
7367   size(4);
7368   ins_encode %{
7369     __ swap($mem$$Address, $newval$$Register);
7370   %}
7371   ins_pipe( long_memory_op );
7372 %}
7373 #endif
7374 
7375 instruct xchgN( memory mem, iRegN newval) %{
7376   match(Set newval (GetAndSetN mem newval));
7377   format %{ "SWAP  [$mem],$newval" %}
7378   size(4);
7379   ins_encode %{
7380     __ swap($mem$$Address, $newval$$Register);
7381   %}
7382   ins_pipe( long_memory_op );
7383 %}
7384 
7385 //---------------------
7386 // Subtraction Instructions
7387 // Register Subtraction
7388 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7389   match(Set dst (SubI src1 src2));
7390 
7391   size(4);
7392   format %{ "SUB    $src1,$src2,$dst" %}
7393   opcode(Assembler::sub_op3, Assembler::arith_op);
7394   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7395   ins_pipe(ialu_reg_reg);
7396 %}
7397 
7398 // Immediate Subtraction
7399 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7400   match(Set dst (SubI src1 src2));
7401 
7402   size(4);
7403   format %{ "SUB    $src1,$src2,$dst" %}
7404   opcode(Assembler::sub_op3, Assembler::arith_op);
7405   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7406   ins_pipe(ialu_reg_imm);
7407 %}
7408 
7409 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7410   match(Set dst (SubI zero src2));
7411 
7412   size(4);
7413   format %{ "NEG    $src2,$dst" %}
7414   opcode(Assembler::sub_op3, Assembler::arith_op);
7415   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7416   ins_pipe(ialu_zero_reg);
7417 %}
7418 
7419 // Long subtraction
7420 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7421   match(Set dst (SubL src1 src2));
7422 
7423   size(4);
7424   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7425   opcode(Assembler::sub_op3, Assembler::arith_op);
7426   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7427   ins_pipe(ialu_reg_reg);
7428 %}
7429 
7430 // Immediate Subtraction
7431 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7432   match(Set dst (SubL src1 con));
7433 
7434   size(4);
7435   format %{ "SUB    $src1,$con,$dst\t! long" %}
7436   opcode(Assembler::sub_op3, Assembler::arith_op);
7437   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7438   ins_pipe(ialu_reg_imm);
7439 %}
7440 
7441 // Long negation
7442 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7443   match(Set dst (SubL zero src2));
7444 
7445   size(4);
7446   format %{ "NEG    $src2,$dst\t! long" %}
7447   opcode(Assembler::sub_op3, Assembler::arith_op);
7448   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7449   ins_pipe(ialu_zero_reg);
7450 %}
7451 
7452 // Multiplication Instructions
7453 // Integer Multiplication
7454 // Register Multiplication
7455 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7456   match(Set dst (MulI src1 src2));
7457 
7458   size(4);
7459   format %{ "MULX   $src1,$src2,$dst" %}
7460   opcode(Assembler::mulx_op3, Assembler::arith_op);
7461   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7462   ins_pipe(imul_reg_reg);
7463 %}
7464 
7465 // Immediate Multiplication
7466 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7467   match(Set dst (MulI src1 src2));
7468 
7469   size(4);
7470   format %{ "MULX   $src1,$src2,$dst" %}
7471   opcode(Assembler::mulx_op3, Assembler::arith_op);
7472   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7473   ins_pipe(imul_reg_imm);
7474 %}
7475 
7476 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7477   match(Set dst (MulL src1 src2));
7478   ins_cost(DEFAULT_COST * 5);
7479   size(4);
7480   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7481   opcode(Assembler::mulx_op3, Assembler::arith_op);
7482   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7483   ins_pipe(mulL_reg_reg);
7484 %}
7485 
7486 // Immediate Multiplication
7487 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7488   match(Set dst (MulL src1 src2));
7489   ins_cost(DEFAULT_COST * 5);
7490   size(4);
7491   format %{ "MULX   $src1,$src2,$dst" %}
7492   opcode(Assembler::mulx_op3, Assembler::arith_op);
7493   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7494   ins_pipe(mulL_reg_imm);
7495 %}
7496 
7497 // Integer Division
7498 // Register Division
7499 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7500   match(Set dst (DivI src1 src2));
7501   ins_cost((2+71)*DEFAULT_COST);
7502 
7503   format %{ "SRA     $src2,0,$src2\n\t"
7504             "SRA     $src1,0,$src1\n\t"
7505             "SDIVX   $src1,$src2,$dst" %}
7506   ins_encode( idiv_reg( src1, src2, dst ) );
7507   ins_pipe(sdiv_reg_reg);
7508 %}
7509 
7510 // Immediate Division
7511 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7512   match(Set dst (DivI src1 src2));
7513   ins_cost((2+71)*DEFAULT_COST);
7514 
7515   format %{ "SRA     $src1,0,$src1\n\t"
7516             "SDIVX   $src1,$src2,$dst" %}
7517   ins_encode( idiv_imm( src1, src2, dst ) );
7518   ins_pipe(sdiv_reg_imm);
7519 %}
7520 
7521 //----------Div-By-10-Expansion------------------------------------------------
7522 // Extract hi bits of a 32x32->64 bit multiply.
7523 // Expand rule only, not matched
7524 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7525   effect( DEF dst, USE src1, USE src2 );
7526   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7527             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7528   ins_encode( enc_mul_hi(dst,src1,src2));
7529   ins_pipe(sdiv_reg_reg);
7530 %}
7531 
7532 // Magic constant, reciprocal of 10
7533 instruct loadConI_x66666667(iRegIsafe dst) %{
7534   effect( DEF dst );
7535 
7536   size(8);
7537   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7538   ins_encode( Set32(0x66666667, dst) );
7539   ins_pipe(ialu_hi_lo_reg);
7540 %}
7541 
7542 // Register Shift Right Arithmetic Long by 32-63
7543 instruct sra_31( iRegI dst, iRegI src ) %{
7544   effect( DEF dst, USE src );
7545   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7546   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7547   ins_pipe(ialu_reg_reg);
7548 %}
7549 
7550 // Arithmetic Shift Right by 8-bit immediate
7551 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7552   effect( DEF dst, USE src );
7553   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7554   opcode(Assembler::sra_op3, Assembler::arith_op);
7555   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7556   ins_pipe(ialu_reg_imm);
7557 %}
7558 
7559 // Integer DIV with 10
7560 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7561   match(Set dst (DivI src div));
7562   ins_cost((6+6)*DEFAULT_COST);
7563   expand %{
7564     iRegIsafe tmp1;               // Killed temps;
7565     iRegIsafe tmp2;               // Killed temps;
7566     iRegI tmp3;                   // Killed temps;
7567     iRegI tmp4;                   // Killed temps;
7568     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7569     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7570     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7571     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7572     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7573   %}
7574 %}
7575 
7576 // Register Long Division
7577 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7578   match(Set dst (DivL src1 src2));
7579   ins_cost(DEFAULT_COST*71);
7580   size(4);
7581   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7582   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7583   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7584   ins_pipe(divL_reg_reg);
7585 %}
7586 
7587 // Register Long Division
7588 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7589   match(Set dst (DivL src1 src2));
7590   ins_cost(DEFAULT_COST*71);
7591   size(4);
7592   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7593   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7594   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7595   ins_pipe(divL_reg_imm);
7596 %}
7597 
7598 // Integer Remainder
7599 // Register Remainder
7600 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7601   match(Set dst (ModI src1 src2));
7602   effect( KILL ccr, KILL temp);
7603 
7604   format %{ "SREM   $src1,$src2,$dst" %}
7605   ins_encode( irem_reg(src1, src2, dst, temp) );
7606   ins_pipe(sdiv_reg_reg);
7607 %}
7608 
7609 // Immediate Remainder
7610 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7611   match(Set dst (ModI src1 src2));
7612   effect( KILL ccr, KILL temp);
7613 
7614   format %{ "SREM   $src1,$src2,$dst" %}
7615   ins_encode( irem_imm(src1, src2, dst, temp) );
7616   ins_pipe(sdiv_reg_imm);
7617 %}
7618 
7619 // Register Long Remainder
7620 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7621   effect(DEF dst, USE src1, USE src2);
7622   size(4);
7623   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7624   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7625   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7626   ins_pipe(divL_reg_reg);
7627 %}
7628 
7629 // Register Long Division
7630 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7631   effect(DEF dst, USE src1, USE src2);
7632   size(4);
7633   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7634   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7635   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7636   ins_pipe(divL_reg_imm);
7637 %}
7638 
7639 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7640   effect(DEF dst, USE src1, USE src2);
7641   size(4);
7642   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7643   opcode(Assembler::mulx_op3, Assembler::arith_op);
7644   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7645   ins_pipe(mulL_reg_reg);
7646 %}
7647 
7648 // Immediate Multiplication
7649 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7650   effect(DEF dst, USE src1, USE src2);
7651   size(4);
7652   format %{ "MULX   $src1,$src2,$dst" %}
7653   opcode(Assembler::mulx_op3, Assembler::arith_op);
7654   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7655   ins_pipe(mulL_reg_imm);
7656 %}
7657 
7658 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7659   effect(DEF dst, USE src1, USE src2);
7660   size(4);
7661   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7662   opcode(Assembler::sub_op3, Assembler::arith_op);
7663   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7664   ins_pipe(ialu_reg_reg);
7665 %}
7666 
7667 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7668   effect(DEF dst, USE src1, USE src2);
7669   size(4);
7670   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7671   opcode(Assembler::sub_op3, Assembler::arith_op);
7672   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7673   ins_pipe(ialu_reg_reg);
7674 %}
7675 
7676 // Register Long Remainder
7677 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7678   match(Set dst (ModL src1 src2));
7679   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7680   expand %{
7681     iRegL tmp1;
7682     iRegL tmp2;
7683     divL_reg_reg_1(tmp1, src1, src2);
7684     mulL_reg_reg_1(tmp2, tmp1, src2);
7685     subL_reg_reg_1(dst,  src1, tmp2);
7686   %}
7687 %}
7688 
7689 // Register Long Remainder
7690 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7691   match(Set dst (ModL src1 src2));
7692   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7693   expand %{
7694     iRegL tmp1;
7695     iRegL tmp2;
7696     divL_reg_imm13_1(tmp1, src1, src2);
7697     mulL_reg_imm13_1(tmp2, tmp1, src2);
7698     subL_reg_reg_2  (dst,  src1, tmp2);
7699   %}
7700 %}
7701 
7702 // Integer Shift Instructions
7703 // Register Shift Left
7704 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7705   match(Set dst (LShiftI src1 src2));
7706 
7707   size(4);
7708   format %{ "SLL    $src1,$src2,$dst" %}
7709   opcode(Assembler::sll_op3, Assembler::arith_op);
7710   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7711   ins_pipe(ialu_reg_reg);
7712 %}
7713 
7714 // Register Shift Left Immediate
7715 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7716   match(Set dst (LShiftI src1 src2));
7717 
7718   size(4);
7719   format %{ "SLL    $src1,$src2,$dst" %}
7720   opcode(Assembler::sll_op3, Assembler::arith_op);
7721   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7722   ins_pipe(ialu_reg_imm);
7723 %}
7724 
7725 // Register Shift Left
7726 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7727   match(Set dst (LShiftL src1 src2));
7728 
7729   size(4);
7730   format %{ "SLLX   $src1,$src2,$dst" %}
7731   opcode(Assembler::sllx_op3, Assembler::arith_op);
7732   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7733   ins_pipe(ialu_reg_reg);
7734 %}
7735 
7736 // Register Shift Left Immediate
7737 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7738   match(Set dst (LShiftL src1 src2));
7739 
7740   size(4);
7741   format %{ "SLLX   $src1,$src2,$dst" %}
7742   opcode(Assembler::sllx_op3, Assembler::arith_op);
7743   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7744   ins_pipe(ialu_reg_imm);
7745 %}
7746 
7747 // Register Arithmetic Shift Right
7748 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7749   match(Set dst (RShiftI src1 src2));
7750   size(4);
7751   format %{ "SRA    $src1,$src2,$dst" %}
7752   opcode(Assembler::sra_op3, Assembler::arith_op);
7753   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7754   ins_pipe(ialu_reg_reg);
7755 %}
7756 
7757 // Register Arithmetic Shift Right Immediate
7758 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7759   match(Set dst (RShiftI src1 src2));
7760 
7761   size(4);
7762   format %{ "SRA    $src1,$src2,$dst" %}
7763   opcode(Assembler::sra_op3, Assembler::arith_op);
7764   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7765   ins_pipe(ialu_reg_imm);
7766 %}
7767 
7768 // Register Shift Right Arithmatic Long
7769 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7770   match(Set dst (RShiftL src1 src2));
7771 
7772   size(4);
7773   format %{ "SRAX   $src1,$src2,$dst" %}
7774   opcode(Assembler::srax_op3, Assembler::arith_op);
7775   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7776   ins_pipe(ialu_reg_reg);
7777 %}
7778 
7779 // Register Shift Left Immediate
7780 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7781   match(Set dst (RShiftL src1 src2));
7782 
7783   size(4);
7784   format %{ "SRAX   $src1,$src2,$dst" %}
7785   opcode(Assembler::srax_op3, Assembler::arith_op);
7786   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7787   ins_pipe(ialu_reg_imm);
7788 %}
7789 
7790 // Register Shift Right
7791 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7792   match(Set dst (URShiftI src1 src2));
7793 
7794   size(4);
7795   format %{ "SRL    $src1,$src2,$dst" %}
7796   opcode(Assembler::srl_op3, Assembler::arith_op);
7797   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7798   ins_pipe(ialu_reg_reg);
7799 %}
7800 
7801 // Register Shift Right Immediate
7802 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7803   match(Set dst (URShiftI src1 src2));
7804 
7805   size(4);
7806   format %{ "SRL    $src1,$src2,$dst" %}
7807   opcode(Assembler::srl_op3, Assembler::arith_op);
7808   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7809   ins_pipe(ialu_reg_imm);
7810 %}
7811 
7812 // Register Shift Right
7813 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7814   match(Set dst (URShiftL src1 src2));
7815 
7816   size(4);
7817   format %{ "SRLX   $src1,$src2,$dst" %}
7818   opcode(Assembler::srlx_op3, Assembler::arith_op);
7819   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7820   ins_pipe(ialu_reg_reg);
7821 %}
7822 
7823 // Register Shift Right Immediate
7824 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7825   match(Set dst (URShiftL src1 src2));
7826 
7827   size(4);
7828   format %{ "SRLX   $src1,$src2,$dst" %}
7829   opcode(Assembler::srlx_op3, Assembler::arith_op);
7830   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7831   ins_pipe(ialu_reg_imm);
7832 %}
7833 
7834 // Register Shift Right Immediate with a CastP2X
7835 #ifdef _LP64
7836 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7837   match(Set dst (URShiftL (CastP2X src1) src2));
7838   size(4);
7839   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7840   opcode(Assembler::srlx_op3, Assembler::arith_op);
7841   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7842   ins_pipe(ialu_reg_imm);
7843 %}
7844 #else
7845 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7846   match(Set dst (URShiftI (CastP2X src1) src2));
7847   size(4);
7848   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7849   opcode(Assembler::srl_op3, Assembler::arith_op);
7850   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7851   ins_pipe(ialu_reg_imm);
7852 %}
7853 #endif
7854 
7855 
7856 //----------Floating Point Arithmetic Instructions-----------------------------
7857 
7858 //  Add float single precision
7859 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7860   match(Set dst (AddF src1 src2));
7861 
7862   size(4);
7863   format %{ "FADDS  $src1,$src2,$dst" %}
7864   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7865   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7866   ins_pipe(faddF_reg_reg);
7867 %}
7868 
7869 //  Add float double precision
7870 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7871   match(Set dst (AddD src1 src2));
7872 
7873   size(4);
7874   format %{ "FADDD  $src1,$src2,$dst" %}
7875   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7876   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7877   ins_pipe(faddD_reg_reg);
7878 %}
7879 
7880 //  Sub float single precision
7881 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7882   match(Set dst (SubF src1 src2));
7883 
7884   size(4);
7885   format %{ "FSUBS  $src1,$src2,$dst" %}
7886   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7887   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7888   ins_pipe(faddF_reg_reg);
7889 %}
7890 
7891 //  Sub float double precision
7892 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7893   match(Set dst (SubD src1 src2));
7894 
7895   size(4);
7896   format %{ "FSUBD  $src1,$src2,$dst" %}
7897   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7898   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7899   ins_pipe(faddD_reg_reg);
7900 %}
7901 
7902 //  Mul float single precision
7903 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7904   match(Set dst (MulF src1 src2));
7905 
7906   size(4);
7907   format %{ "FMULS  $src1,$src2,$dst" %}
7908   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7909   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7910   ins_pipe(fmulF_reg_reg);
7911 %}
7912 
7913 //  Mul float double precision
7914 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7915   match(Set dst (MulD src1 src2));
7916 
7917   size(4);
7918   format %{ "FMULD  $src1,$src2,$dst" %}
7919   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7920   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7921   ins_pipe(fmulD_reg_reg);
7922 %}
7923 
7924 //  Div float single precision
7925 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7926   match(Set dst (DivF src1 src2));
7927 
7928   size(4);
7929   format %{ "FDIVS  $src1,$src2,$dst" %}
7930   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7931   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7932   ins_pipe(fdivF_reg_reg);
7933 %}
7934 
7935 //  Div float double precision
7936 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7937   match(Set dst (DivD src1 src2));
7938 
7939   size(4);
7940   format %{ "FDIVD  $src1,$src2,$dst" %}
7941   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7942   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7943   ins_pipe(fdivD_reg_reg);
7944 %}
7945 
7946 //  Absolute float double precision
7947 instruct absD_reg(regD dst, regD src) %{
7948   match(Set dst (AbsD src));
7949 
7950   format %{ "FABSd  $src,$dst" %}
7951   ins_encode(fabsd(dst, src));
7952   ins_pipe(faddD_reg);
7953 %}
7954 
7955 //  Absolute float single precision
7956 instruct absF_reg(regF dst, regF src) %{
7957   match(Set dst (AbsF src));
7958 
7959   format %{ "FABSs  $src,$dst" %}
7960   ins_encode(fabss(dst, src));
7961   ins_pipe(faddF_reg);
7962 %}
7963 
7964 instruct negF_reg(regF dst, regF src) %{
7965   match(Set dst (NegF src));
7966 
7967   size(4);
7968   format %{ "FNEGs  $src,$dst" %}
7969   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7970   ins_encode(form3_opf_rs2F_rdF(src, dst));
7971   ins_pipe(faddF_reg);
7972 %}
7973 
7974 instruct negD_reg(regD dst, regD src) %{
7975   match(Set dst (NegD src));
7976 
7977   format %{ "FNEGd  $src,$dst" %}
7978   ins_encode(fnegd(dst, src));
7979   ins_pipe(faddD_reg);
7980 %}
7981 
7982 //  Sqrt float double precision
7983 instruct sqrtF_reg_reg(regF dst, regF src) %{
7984   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7985 
7986   size(4);
7987   format %{ "FSQRTS $src,$dst" %}
7988   ins_encode(fsqrts(dst, src));
7989   ins_pipe(fdivF_reg_reg);
7990 %}
7991 
7992 //  Sqrt float double precision
7993 instruct sqrtD_reg_reg(regD dst, regD src) %{
7994   match(Set dst (SqrtD src));
7995 
7996   size(4);
7997   format %{ "FSQRTD $src,$dst" %}
7998   ins_encode(fsqrtd(dst, src));
7999   ins_pipe(fdivD_reg_reg);
8000 %}
8001 
8002 //----------Logical Instructions-----------------------------------------------
8003 // And Instructions
8004 // Register And
8005 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8006   match(Set dst (AndI src1 src2));
8007 
8008   size(4);
8009   format %{ "AND    $src1,$src2,$dst" %}
8010   opcode(Assembler::and_op3, Assembler::arith_op);
8011   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8012   ins_pipe(ialu_reg_reg);
8013 %}
8014 
8015 // Immediate And
8016 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8017   match(Set dst (AndI src1 src2));
8018 
8019   size(4);
8020   format %{ "AND    $src1,$src2,$dst" %}
8021   opcode(Assembler::and_op3, Assembler::arith_op);
8022   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8023   ins_pipe(ialu_reg_imm);
8024 %}
8025 
8026 // Register And Long
8027 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8028   match(Set dst (AndL src1 src2));
8029 
8030   ins_cost(DEFAULT_COST);
8031   size(4);
8032   format %{ "AND    $src1,$src2,$dst\t! long" %}
8033   opcode(Assembler::and_op3, Assembler::arith_op);
8034   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8035   ins_pipe(ialu_reg_reg);
8036 %}
8037 
8038 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8039   match(Set dst (AndL src1 con));
8040 
8041   ins_cost(DEFAULT_COST);
8042   size(4);
8043   format %{ "AND    $src1,$con,$dst\t! long" %}
8044   opcode(Assembler::and_op3, Assembler::arith_op);
8045   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8046   ins_pipe(ialu_reg_imm);
8047 %}
8048 
8049 // Or Instructions
8050 // Register Or
8051 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8052   match(Set dst (OrI src1 src2));
8053 
8054   size(4);
8055   format %{ "OR     $src1,$src2,$dst" %}
8056   opcode(Assembler::or_op3, Assembler::arith_op);
8057   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8058   ins_pipe(ialu_reg_reg);
8059 %}
8060 
8061 // Immediate Or
8062 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8063   match(Set dst (OrI src1 src2));
8064 
8065   size(4);
8066   format %{ "OR     $src1,$src2,$dst" %}
8067   opcode(Assembler::or_op3, Assembler::arith_op);
8068   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8069   ins_pipe(ialu_reg_imm);
8070 %}
8071 
8072 // Register Or Long
8073 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8074   match(Set dst (OrL src1 src2));
8075 
8076   ins_cost(DEFAULT_COST);
8077   size(4);
8078   format %{ "OR     $src1,$src2,$dst\t! long" %}
8079   opcode(Assembler::or_op3, Assembler::arith_op);
8080   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8081   ins_pipe(ialu_reg_reg);
8082 %}
8083 
8084 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8085   match(Set dst (OrL src1 con));
8086   ins_cost(DEFAULT_COST*2);
8087 
8088   ins_cost(DEFAULT_COST);
8089   size(4);
8090   format %{ "OR     $src1,$con,$dst\t! long" %}
8091   opcode(Assembler::or_op3, Assembler::arith_op);
8092   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8093   ins_pipe(ialu_reg_imm);
8094 %}
8095 
8096 #ifndef _LP64
8097 
8098 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8099 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8100   match(Set dst (OrI src1 (CastP2X src2)));
8101 
8102   size(4);
8103   format %{ "OR     $src1,$src2,$dst" %}
8104   opcode(Assembler::or_op3, Assembler::arith_op);
8105   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8106   ins_pipe(ialu_reg_reg);
8107 %}
8108 
8109 #else
8110 
8111 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8112   match(Set dst (OrL src1 (CastP2X src2)));
8113 
8114   ins_cost(DEFAULT_COST);
8115   size(4);
8116   format %{ "OR     $src1,$src2,$dst\t! long" %}
8117   opcode(Assembler::or_op3, Assembler::arith_op);
8118   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8119   ins_pipe(ialu_reg_reg);
8120 %}
8121 
8122 #endif
8123 
8124 // Xor Instructions
8125 // Register Xor
8126 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8127   match(Set dst (XorI src1 src2));
8128 
8129   size(4);
8130   format %{ "XOR    $src1,$src2,$dst" %}
8131   opcode(Assembler::xor_op3, Assembler::arith_op);
8132   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8133   ins_pipe(ialu_reg_reg);
8134 %}
8135 
8136 // Immediate Xor
8137 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8138   match(Set dst (XorI src1 src2));
8139 
8140   size(4);
8141   format %{ "XOR    $src1,$src2,$dst" %}
8142   opcode(Assembler::xor_op3, Assembler::arith_op);
8143   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8144   ins_pipe(ialu_reg_imm);
8145 %}
8146 
8147 // Register Xor Long
8148 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8149   match(Set dst (XorL src1 src2));
8150 
8151   ins_cost(DEFAULT_COST);
8152   size(4);
8153   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8154   opcode(Assembler::xor_op3, Assembler::arith_op);
8155   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8156   ins_pipe(ialu_reg_reg);
8157 %}
8158 
8159 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8160   match(Set dst (XorL src1 con));
8161 
8162   ins_cost(DEFAULT_COST);
8163   size(4);
8164   format %{ "XOR    $src1,$con,$dst\t! long" %}
8165   opcode(Assembler::xor_op3, Assembler::arith_op);
8166   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8167   ins_pipe(ialu_reg_imm);
8168 %}
8169 
8170 //----------Convert to Boolean-------------------------------------------------
8171 // Nice hack for 32-bit tests but doesn't work for
8172 // 64-bit pointers.
8173 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8174   match(Set dst (Conv2B src));
8175   effect( KILL ccr );
8176   ins_cost(DEFAULT_COST*2);
8177   format %{ "CMP    R_G0,$src\n\t"
8178             "ADDX   R_G0,0,$dst" %}
8179   ins_encode( enc_to_bool( src, dst ) );
8180   ins_pipe(ialu_reg_ialu);
8181 %}
8182 
8183 #ifndef _LP64
8184 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8185   match(Set dst (Conv2B src));
8186   effect( KILL ccr );
8187   ins_cost(DEFAULT_COST*2);
8188   format %{ "CMP    R_G0,$src\n\t"
8189             "ADDX   R_G0,0,$dst" %}
8190   ins_encode( enc_to_bool( src, dst ) );
8191   ins_pipe(ialu_reg_ialu);
8192 %}
8193 #else
8194 instruct convP2B( iRegI dst, iRegP src ) %{
8195   match(Set dst (Conv2B src));
8196   ins_cost(DEFAULT_COST*2);
8197   format %{ "MOV    $src,$dst\n\t"
8198             "MOVRNZ $src,1,$dst" %}
8199   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8200   ins_pipe(ialu_clr_and_mover);
8201 %}
8202 #endif
8203 
8204 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8205   match(Set dst (CmpLTMask src zero));
8206   effect(KILL ccr);
8207   size(4);
8208   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8209   ins_encode %{
8210     __ sra($src$$Register, 31, $dst$$Register);
8211   %}
8212   ins_pipe(ialu_reg_imm);
8213 %}
8214 
8215 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8216   match(Set dst (CmpLTMask p q));
8217   effect( KILL ccr );
8218   ins_cost(DEFAULT_COST*4);
8219   format %{ "CMP    $p,$q\n\t"
8220             "MOV    #0,$dst\n\t"
8221             "BLT,a  .+8\n\t"
8222             "MOV    #-1,$dst" %}
8223   ins_encode( enc_ltmask(p,q,dst) );
8224   ins_pipe(ialu_reg_reg_ialu);
8225 %}
8226 
8227 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8228   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8229   effect(KILL ccr, TEMP tmp);
8230   ins_cost(DEFAULT_COST*3);
8231 
8232   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8233             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8234             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8235   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8236   ins_pipe(cadd_cmpltmask);
8237 %}
8238 
8239 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8240   match(Set p (AndI (CmpLTMask p q) y));
8241   effect(KILL ccr);
8242   ins_cost(DEFAULT_COST*3);
8243 
8244   format %{ "CMP  $p,$q\n\t"
8245             "MOV  $y,$p\n\t"
8246             "MOVge G0,$p" %}
8247   ins_encode %{
8248     __ cmp($p$$Register, $q$$Register);
8249     __ mov($y$$Register, $p$$Register);
8250     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8251   %}
8252   ins_pipe(ialu_reg_reg_ialu);
8253 %}
8254 
8255 //-----------------------------------------------------------------
8256 // Direct raw moves between float and general registers using VIS3.
8257 
8258 //  ins_pipe(faddF_reg);
8259 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8260   predicate(UseVIS >= 3);
8261   match(Set dst (MoveF2I src));
8262 
8263   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8264   ins_encode %{
8265     __ movstouw($src$$FloatRegister, $dst$$Register);
8266   %}
8267   ins_pipe(ialu_reg_reg);
8268 %}
8269 
8270 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8271   predicate(UseVIS >= 3);
8272   match(Set dst (MoveI2F src));
8273 
8274   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8275   ins_encode %{
8276     __ movwtos($src$$Register, $dst$$FloatRegister);
8277   %}
8278   ins_pipe(ialu_reg_reg);
8279 %}
8280 
8281 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8282   predicate(UseVIS >= 3);
8283   match(Set dst (MoveD2L src));
8284 
8285   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8286   ins_encode %{
8287     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8288   %}
8289   ins_pipe(ialu_reg_reg);
8290 %}
8291 
8292 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8293   predicate(UseVIS >= 3);
8294   match(Set dst (MoveL2D src));
8295 
8296   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8297   ins_encode %{
8298     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8299   %}
8300   ins_pipe(ialu_reg_reg);
8301 %}
8302 
8303 
8304 // Raw moves between float and general registers using stack.
8305 
8306 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8307   match(Set dst (MoveF2I src));
8308   effect(DEF dst, USE src);
8309   ins_cost(MEMORY_REF_COST);
8310 
8311   size(4);
8312   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8313   opcode(Assembler::lduw_op3);
8314   ins_encode(simple_form3_mem_reg( src, dst ) );
8315   ins_pipe(iload_mem);
8316 %}
8317 
8318 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8319   match(Set dst (MoveI2F src));
8320   effect(DEF dst, USE src);
8321   ins_cost(MEMORY_REF_COST);
8322 
8323   size(4);
8324   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8325   opcode(Assembler::ldf_op3);
8326   ins_encode(simple_form3_mem_reg(src, dst));
8327   ins_pipe(floadF_stk);
8328 %}
8329 
8330 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8331   match(Set dst (MoveD2L src));
8332   effect(DEF dst, USE src);
8333   ins_cost(MEMORY_REF_COST);
8334 
8335   size(4);
8336   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8337   opcode(Assembler::ldx_op3);
8338   ins_encode(simple_form3_mem_reg( src, dst ) );
8339   ins_pipe(iload_mem);
8340 %}
8341 
8342 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8343   match(Set dst (MoveL2D src));
8344   effect(DEF dst, USE src);
8345   ins_cost(MEMORY_REF_COST);
8346 
8347   size(4);
8348   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8349   opcode(Assembler::lddf_op3);
8350   ins_encode(simple_form3_mem_reg(src, dst));
8351   ins_pipe(floadD_stk);
8352 %}
8353 
8354 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8355   match(Set dst (MoveF2I src));
8356   effect(DEF dst, USE src);
8357   ins_cost(MEMORY_REF_COST);
8358 
8359   size(4);
8360   format %{ "STF   $src,$dst\t! MoveF2I" %}
8361   opcode(Assembler::stf_op3);
8362   ins_encode(simple_form3_mem_reg(dst, src));
8363   ins_pipe(fstoreF_stk_reg);
8364 %}
8365 
8366 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8367   match(Set dst (MoveI2F src));
8368   effect(DEF dst, USE src);
8369   ins_cost(MEMORY_REF_COST);
8370 
8371   size(4);
8372   format %{ "STW    $src,$dst\t! MoveI2F" %}
8373   opcode(Assembler::stw_op3);
8374   ins_encode(simple_form3_mem_reg( dst, src ) );
8375   ins_pipe(istore_mem_reg);
8376 %}
8377 
8378 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8379   match(Set dst (MoveD2L src));
8380   effect(DEF dst, USE src);
8381   ins_cost(MEMORY_REF_COST);
8382 
8383   size(4);
8384   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8385   opcode(Assembler::stdf_op3);
8386   ins_encode(simple_form3_mem_reg(dst, src));
8387   ins_pipe(fstoreD_stk_reg);
8388 %}
8389 
8390 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8391   match(Set dst (MoveL2D src));
8392   effect(DEF dst, USE src);
8393   ins_cost(MEMORY_REF_COST);
8394 
8395   size(4);
8396   format %{ "STX    $src,$dst\t! MoveL2D" %}
8397   opcode(Assembler::stx_op3);
8398   ins_encode(simple_form3_mem_reg( dst, src ) );
8399   ins_pipe(istore_mem_reg);
8400 %}
8401 
8402 
8403 //----------Arithmetic Conversion Instructions---------------------------------
8404 // The conversions operations are all Alpha sorted.  Please keep it that way!
8405 
8406 instruct convD2F_reg(regF dst, regD src) %{
8407   match(Set dst (ConvD2F src));
8408   size(4);
8409   format %{ "FDTOS  $src,$dst" %}
8410   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8411   ins_encode(form3_opf_rs2D_rdF(src, dst));
8412   ins_pipe(fcvtD2F);
8413 %}
8414 
8415 
8416 // Convert a double to an int in a float register.
8417 // If the double is a NAN, stuff a zero in instead.
8418 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8419   effect(DEF dst, USE src, KILL fcc0);
8420   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8421             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8422             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8423             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8424             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8425       "skip:" %}
8426   ins_encode(form_d2i_helper(src,dst));
8427   ins_pipe(fcvtD2I);
8428 %}
8429 
8430 instruct convD2I_stk(stackSlotI dst, regD src) %{
8431   match(Set dst (ConvD2I src));
8432   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8433   expand %{
8434     regF tmp;
8435     convD2I_helper(tmp, src);
8436     regF_to_stkI(dst, tmp);
8437   %}
8438 %}
8439 
8440 instruct convD2I_reg(iRegI dst, regD src) %{
8441   predicate(UseVIS >= 3);
8442   match(Set dst (ConvD2I src));
8443   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8444   expand %{
8445     regF tmp;
8446     convD2I_helper(tmp, src);
8447     MoveF2I_reg_reg(dst, tmp);
8448   %}
8449 %}
8450 
8451 
8452 // Convert a double to a long in a double register.
8453 // If the double is a NAN, stuff a zero in instead.
8454 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8455   effect(DEF dst, USE src, KILL fcc0);
8456   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8457             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8458             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8459             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8460             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8461       "skip:" %}
8462   ins_encode(form_d2l_helper(src,dst));
8463   ins_pipe(fcvtD2L);
8464 %}
8465 
8466 instruct convD2L_stk(stackSlotL dst, regD src) %{
8467   match(Set dst (ConvD2L src));
8468   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8469   expand %{
8470     regD tmp;
8471     convD2L_helper(tmp, src);
8472     regD_to_stkL(dst, tmp);
8473   %}
8474 %}
8475 
8476 instruct convD2L_reg(iRegL dst, regD src) %{
8477   predicate(UseVIS >= 3);
8478   match(Set dst (ConvD2L src));
8479   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8480   expand %{
8481     regD tmp;
8482     convD2L_helper(tmp, src);
8483     MoveD2L_reg_reg(dst, tmp);
8484   %}
8485 %}
8486 
8487 
8488 instruct convF2D_reg(regD dst, regF src) %{
8489   match(Set dst (ConvF2D src));
8490   format %{ "FSTOD  $src,$dst" %}
8491   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8492   ins_encode(form3_opf_rs2F_rdD(src, dst));
8493   ins_pipe(fcvtF2D);
8494 %}
8495 
8496 
8497 // Convert a float to an int in a float register.
8498 // If the float is a NAN, stuff a zero in instead.
8499 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8500   effect(DEF dst, USE src, KILL fcc0);
8501   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8502             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8503             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8504             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8505             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8506       "skip:" %}
8507   ins_encode(form_f2i_helper(src,dst));
8508   ins_pipe(fcvtF2I);
8509 %}
8510 
8511 instruct convF2I_stk(stackSlotI dst, regF src) %{
8512   match(Set dst (ConvF2I src));
8513   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8514   expand %{
8515     regF tmp;
8516     convF2I_helper(tmp, src);
8517     regF_to_stkI(dst, tmp);
8518   %}
8519 %}
8520 
8521 instruct convF2I_reg(iRegI dst, regF src) %{
8522   predicate(UseVIS >= 3);
8523   match(Set dst (ConvF2I src));
8524   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8525   expand %{
8526     regF tmp;
8527     convF2I_helper(tmp, src);
8528     MoveF2I_reg_reg(dst, tmp);
8529   %}
8530 %}
8531 
8532 
8533 // Convert a float to a long in a float register.
8534 // If the float is a NAN, stuff a zero in instead.
8535 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8536   effect(DEF dst, USE src, KILL fcc0);
8537   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8538             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8539             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8540             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8541             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8542       "skip:" %}
8543   ins_encode(form_f2l_helper(src,dst));
8544   ins_pipe(fcvtF2L);
8545 %}
8546 
8547 instruct convF2L_stk(stackSlotL dst, regF src) %{
8548   match(Set dst (ConvF2L src));
8549   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8550   expand %{
8551     regD tmp;
8552     convF2L_helper(tmp, src);
8553     regD_to_stkL(dst, tmp);
8554   %}
8555 %}
8556 
8557 instruct convF2L_reg(iRegL dst, regF src) %{
8558   predicate(UseVIS >= 3);
8559   match(Set dst (ConvF2L src));
8560   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8561   expand %{
8562     regD tmp;
8563     convF2L_helper(tmp, src);
8564     MoveD2L_reg_reg(dst, tmp);
8565   %}
8566 %}
8567 
8568 
8569 instruct convI2D_helper(regD dst, regF tmp) %{
8570   effect(USE tmp, DEF dst);
8571   format %{ "FITOD  $tmp,$dst" %}
8572   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8573   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8574   ins_pipe(fcvtI2D);
8575 %}
8576 
8577 instruct convI2D_stk(stackSlotI src, regD dst) %{
8578   match(Set dst (ConvI2D src));
8579   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8580   expand %{
8581     regF tmp;
8582     stkI_to_regF(tmp, src);
8583     convI2D_helper(dst, tmp);
8584   %}
8585 %}
8586 
8587 instruct convI2D_reg(regD_low dst, iRegI src) %{
8588   predicate(UseVIS >= 3);
8589   match(Set dst (ConvI2D src));
8590   expand %{
8591     regF tmp;
8592     MoveI2F_reg_reg(tmp, src);
8593     convI2D_helper(dst, tmp);
8594   %}
8595 %}
8596 
8597 instruct convI2D_mem(regD_low dst, memory mem) %{
8598   match(Set dst (ConvI2D (LoadI mem)));
8599   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8600   size(8);
8601   format %{ "LDF    $mem,$dst\n\t"
8602             "FITOD  $dst,$dst" %}
8603   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8604   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8605   ins_pipe(floadF_mem);
8606 %}
8607 
8608 
8609 instruct convI2F_helper(regF dst, regF tmp) %{
8610   effect(DEF dst, USE tmp);
8611   format %{ "FITOS  $tmp,$dst" %}
8612   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8613   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8614   ins_pipe(fcvtI2F);
8615 %}
8616 
8617 instruct convI2F_stk(regF dst, stackSlotI src) %{
8618   match(Set dst (ConvI2F src));
8619   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8620   expand %{
8621     regF tmp;
8622     stkI_to_regF(tmp,src);
8623     convI2F_helper(dst, tmp);
8624   %}
8625 %}
8626 
8627 instruct convI2F_reg(regF dst, iRegI src) %{
8628   predicate(UseVIS >= 3);
8629   match(Set dst (ConvI2F src));
8630   ins_cost(DEFAULT_COST);
8631   expand %{
8632     regF tmp;
8633     MoveI2F_reg_reg(tmp, src);
8634     convI2F_helper(dst, tmp);
8635   %}
8636 %}
8637 
8638 instruct convI2F_mem( regF dst, memory mem ) %{
8639   match(Set dst (ConvI2F (LoadI mem)));
8640   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8641   size(8);
8642   format %{ "LDF    $mem,$dst\n\t"
8643             "FITOS  $dst,$dst" %}
8644   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8645   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8646   ins_pipe(floadF_mem);
8647 %}
8648 
8649 
8650 instruct convI2L_reg(iRegL dst, iRegI src) %{
8651   match(Set dst (ConvI2L src));
8652   size(4);
8653   format %{ "SRA    $src,0,$dst\t! int->long" %}
8654   opcode(Assembler::sra_op3, Assembler::arith_op);
8655   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8656   ins_pipe(ialu_reg_reg);
8657 %}
8658 
8659 // Zero-extend convert int to long
8660 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8661   match(Set dst (AndL (ConvI2L src) mask) );
8662   size(4);
8663   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8664   opcode(Assembler::srl_op3, Assembler::arith_op);
8665   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8666   ins_pipe(ialu_reg_reg);
8667 %}
8668 
8669 // Zero-extend long
8670 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8671   match(Set dst (AndL src mask) );
8672   size(4);
8673   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8674   opcode(Assembler::srl_op3, Assembler::arith_op);
8675   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8676   ins_pipe(ialu_reg_reg);
8677 %}
8678 
8679 
8680 //-----------
8681 // Long to Double conversion using V8 opcodes.
8682 // Still useful because cheetah traps and becomes
8683 // amazingly slow for some common numbers.
8684 
8685 // Magic constant, 0x43300000
8686 instruct loadConI_x43300000(iRegI dst) %{
8687   effect(DEF dst);
8688   size(4);
8689   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8690   ins_encode(SetHi22(0x43300000, dst));
8691   ins_pipe(ialu_none);
8692 %}
8693 
8694 // Magic constant, 0x41f00000
8695 instruct loadConI_x41f00000(iRegI dst) %{
8696   effect(DEF dst);
8697   size(4);
8698   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8699   ins_encode(SetHi22(0x41f00000, dst));
8700   ins_pipe(ialu_none);
8701 %}
8702 
8703 // Construct a double from two float halves
8704 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8705   effect(DEF dst, USE src1, USE src2);
8706   size(8);
8707   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8708             "FMOVS  $src2.lo,$dst.lo" %}
8709   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8710   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8711   ins_pipe(faddD_reg_reg);
8712 %}
8713 
8714 // Convert integer in high half of a double register (in the lower half of
8715 // the double register file) to double
8716 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8717   effect(DEF dst, USE src);
8718   size(4);
8719   format %{ "FITOD  $src,$dst" %}
8720   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8721   ins_encode(form3_opf_rs2D_rdD(src, dst));
8722   ins_pipe(fcvtLHi2D);
8723 %}
8724 
8725 // Add float double precision
8726 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8727   effect(DEF dst, USE src1, USE src2);
8728   size(4);
8729   format %{ "FADDD  $src1,$src2,$dst" %}
8730   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8731   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8732   ins_pipe(faddD_reg_reg);
8733 %}
8734 
8735 // Sub float double precision
8736 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8737   effect(DEF dst, USE src1, USE src2);
8738   size(4);
8739   format %{ "FSUBD  $src1,$src2,$dst" %}
8740   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8741   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8742   ins_pipe(faddD_reg_reg);
8743 %}
8744 
8745 // Mul float double precision
8746 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8747   effect(DEF dst, USE src1, USE src2);
8748   size(4);
8749   format %{ "FMULD  $src1,$src2,$dst" %}
8750   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8751   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8752   ins_pipe(fmulD_reg_reg);
8753 %}
8754 
8755 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8756   match(Set dst (ConvL2D src));
8757   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8758 
8759   expand %{
8760     regD_low   tmpsrc;
8761     iRegI      ix43300000;
8762     iRegI      ix41f00000;
8763     stackSlotL lx43300000;
8764     stackSlotL lx41f00000;
8765     regD_low   dx43300000;
8766     regD       dx41f00000;
8767     regD       tmp1;
8768     regD_low   tmp2;
8769     regD       tmp3;
8770     regD       tmp4;
8771 
8772     stkL_to_regD(tmpsrc, src);
8773 
8774     loadConI_x43300000(ix43300000);
8775     loadConI_x41f00000(ix41f00000);
8776     regI_to_stkLHi(lx43300000, ix43300000);
8777     regI_to_stkLHi(lx41f00000, ix41f00000);
8778     stkL_to_regD(dx43300000, lx43300000);
8779     stkL_to_regD(dx41f00000, lx41f00000);
8780 
8781     convI2D_regDHi_regD(tmp1, tmpsrc);
8782     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8783     subD_regD_regD(tmp3, tmp2, dx43300000);
8784     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8785     addD_regD_regD(dst, tmp3, tmp4);
8786   %}
8787 %}
8788 
8789 // Long to Double conversion using fast fxtof
8790 instruct convL2D_helper(regD dst, regD tmp) %{
8791   effect(DEF dst, USE tmp);
8792   size(4);
8793   format %{ "FXTOD  $tmp,$dst" %}
8794   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8795   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8796   ins_pipe(fcvtL2D);
8797 %}
8798 
8799 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8800   predicate(VM_Version::has_fast_fxtof());
8801   match(Set dst (ConvL2D src));
8802   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8803   expand %{
8804     regD tmp;
8805     stkL_to_regD(tmp, src);
8806     convL2D_helper(dst, tmp);
8807   %}
8808 %}
8809 
8810 instruct convL2D_reg(regD dst, iRegL src) %{
8811   predicate(UseVIS >= 3);
8812   match(Set dst (ConvL2D src));
8813   expand %{
8814     regD tmp;
8815     MoveL2D_reg_reg(tmp, src);
8816     convL2D_helper(dst, tmp);
8817   %}
8818 %}
8819 
8820 // Long to Float conversion using fast fxtof
8821 instruct convL2F_helper(regF dst, regD tmp) %{
8822   effect(DEF dst, USE tmp);
8823   size(4);
8824   format %{ "FXTOS  $tmp,$dst" %}
8825   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8826   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8827   ins_pipe(fcvtL2F);
8828 %}
8829 
8830 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8831   match(Set dst (ConvL2F src));
8832   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8833   expand %{
8834     regD tmp;
8835     stkL_to_regD(tmp, src);
8836     convL2F_helper(dst, tmp);
8837   %}
8838 %}
8839 
8840 instruct convL2F_reg(regF dst, iRegL src) %{
8841   predicate(UseVIS >= 3);
8842   match(Set dst (ConvL2F src));
8843   ins_cost(DEFAULT_COST);
8844   expand %{
8845     regD tmp;
8846     MoveL2D_reg_reg(tmp, src);
8847     convL2F_helper(dst, tmp);
8848   %}
8849 %}
8850 
8851 //-----------
8852 
8853 instruct convL2I_reg(iRegI dst, iRegL src) %{
8854   match(Set dst (ConvL2I src));
8855 #ifndef _LP64
8856   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8857   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8858   ins_pipe(ialu_move_reg_I_to_L);
8859 #else
8860   size(4);
8861   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8862   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8863   ins_pipe(ialu_reg);
8864 #endif
8865 %}
8866 
8867 // Register Shift Right Immediate
8868 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8869   match(Set dst (ConvL2I (RShiftL src cnt)));
8870 
8871   size(4);
8872   format %{ "SRAX   $src,$cnt,$dst" %}
8873   opcode(Assembler::srax_op3, Assembler::arith_op);
8874   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8875   ins_pipe(ialu_reg_imm);
8876 %}
8877 
8878 //----------Control Flow Instructions------------------------------------------
8879 // Compare Instructions
8880 // Compare Integers
8881 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8882   match(Set icc (CmpI op1 op2));
8883   effect( DEF icc, USE op1, USE op2 );
8884 
8885   size(4);
8886   format %{ "CMP    $op1,$op2" %}
8887   opcode(Assembler::subcc_op3, Assembler::arith_op);
8888   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8889   ins_pipe(ialu_cconly_reg_reg);
8890 %}
8891 
8892 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8893   match(Set icc (CmpU op1 op2));
8894 
8895   size(4);
8896   format %{ "CMP    $op1,$op2\t! unsigned" %}
8897   opcode(Assembler::subcc_op3, Assembler::arith_op);
8898   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8899   ins_pipe(ialu_cconly_reg_reg);
8900 %}
8901 
8902 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8903   match(Set icc (CmpI op1 op2));
8904   effect( DEF icc, USE op1 );
8905 
8906   size(4);
8907   format %{ "CMP    $op1,$op2" %}
8908   opcode(Assembler::subcc_op3, Assembler::arith_op);
8909   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8910   ins_pipe(ialu_cconly_reg_imm);
8911 %}
8912 
8913 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8914   match(Set icc (CmpI (AndI op1 op2) zero));
8915 
8916   size(4);
8917   format %{ "BTST   $op2,$op1" %}
8918   opcode(Assembler::andcc_op3, Assembler::arith_op);
8919   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8920   ins_pipe(ialu_cconly_reg_reg_zero);
8921 %}
8922 
8923 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8924   match(Set icc (CmpI (AndI op1 op2) zero));
8925 
8926   size(4);
8927   format %{ "BTST   $op2,$op1" %}
8928   opcode(Assembler::andcc_op3, Assembler::arith_op);
8929   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8930   ins_pipe(ialu_cconly_reg_imm_zero);
8931 %}
8932 
8933 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8934   match(Set xcc (CmpL op1 op2));
8935   effect( DEF xcc, USE op1, USE op2 );
8936 
8937   size(4);
8938   format %{ "CMP    $op1,$op2\t\t! long" %}
8939   opcode(Assembler::subcc_op3, Assembler::arith_op);
8940   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8941   ins_pipe(ialu_cconly_reg_reg);
8942 %}
8943 
8944 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8945   match(Set xcc (CmpL op1 con));
8946   effect( DEF xcc, USE op1, USE con );
8947 
8948   size(4);
8949   format %{ "CMP    $op1,$con\t\t! long" %}
8950   opcode(Assembler::subcc_op3, Assembler::arith_op);
8951   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8952   ins_pipe(ialu_cconly_reg_reg);
8953 %}
8954 
8955 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8956   match(Set xcc (CmpL (AndL op1 op2) zero));
8957   effect( DEF xcc, USE op1, USE op2 );
8958 
8959   size(4);
8960   format %{ "BTST   $op1,$op2\t\t! long" %}
8961   opcode(Assembler::andcc_op3, Assembler::arith_op);
8962   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8963   ins_pipe(ialu_cconly_reg_reg);
8964 %}
8965 
8966 // useful for checking the alignment of a pointer:
8967 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8968   match(Set xcc (CmpL (AndL op1 con) zero));
8969   effect( DEF xcc, USE op1, USE con );
8970 
8971   size(4);
8972   format %{ "BTST   $op1,$con\t\t! long" %}
8973   opcode(Assembler::andcc_op3, Assembler::arith_op);
8974   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8975   ins_pipe(ialu_cconly_reg_reg);
8976 %}
8977 
8978 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8979   match(Set icc (CmpU op1 op2));
8980 
8981   size(4);
8982   format %{ "CMP    $op1,$op2\t! unsigned" %}
8983   opcode(Assembler::subcc_op3, Assembler::arith_op);
8984   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8985   ins_pipe(ialu_cconly_reg_imm);
8986 %}
8987 
8988 // Compare Pointers
8989 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8990   match(Set pcc (CmpP op1 op2));
8991 
8992   size(4);
8993   format %{ "CMP    $op1,$op2\t! ptr" %}
8994   opcode(Assembler::subcc_op3, Assembler::arith_op);
8995   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8996   ins_pipe(ialu_cconly_reg_reg);
8997 %}
8998 
8999 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9000   match(Set pcc (CmpP op1 op2));
9001 
9002   size(4);
9003   format %{ "CMP    $op1,$op2\t! ptr" %}
9004   opcode(Assembler::subcc_op3, Assembler::arith_op);
9005   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9006   ins_pipe(ialu_cconly_reg_imm);
9007 %}
9008 
9009 // Compare Narrow oops
9010 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9011   match(Set icc (CmpN op1 op2));
9012 
9013   size(4);
9014   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9015   opcode(Assembler::subcc_op3, Assembler::arith_op);
9016   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9017   ins_pipe(ialu_cconly_reg_reg);
9018 %}
9019 
9020 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9021   match(Set icc (CmpN op1 op2));
9022 
9023   size(4);
9024   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9025   opcode(Assembler::subcc_op3, Assembler::arith_op);
9026   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9027   ins_pipe(ialu_cconly_reg_imm);
9028 %}
9029 
9030 //----------Max and Min--------------------------------------------------------
9031 // Min Instructions
9032 // Conditional move for min
9033 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9034   effect( USE_DEF op2, USE op1, USE icc );
9035 
9036   size(4);
9037   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9038   opcode(Assembler::less);
9039   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9040   ins_pipe(ialu_reg_flags);
9041 %}
9042 
9043 // Min Register with Register.
9044 instruct minI_eReg(iRegI op1, iRegI op2) %{
9045   match(Set op2 (MinI op1 op2));
9046   ins_cost(DEFAULT_COST*2);
9047   expand %{
9048     flagsReg icc;
9049     compI_iReg(icc,op1,op2);
9050     cmovI_reg_lt(op2,op1,icc);
9051   %}
9052 %}
9053 
9054 // Max Instructions
9055 // Conditional move for max
9056 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9057   effect( USE_DEF op2, USE op1, USE icc );
9058   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9059   opcode(Assembler::greater);
9060   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9061   ins_pipe(ialu_reg_flags);
9062 %}
9063 
9064 // Max Register with Register
9065 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9066   match(Set op2 (MaxI op1 op2));
9067   ins_cost(DEFAULT_COST*2);
9068   expand %{
9069     flagsReg icc;
9070     compI_iReg(icc,op1,op2);
9071     cmovI_reg_gt(op2,op1,icc);
9072   %}
9073 %}
9074 
9075 
9076 //----------Float Compares----------------------------------------------------
9077 // Compare floating, generate condition code
9078 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9079   match(Set fcc (CmpF src1 src2));
9080 
9081   size(4);
9082   format %{ "FCMPs  $fcc,$src1,$src2" %}
9083   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9084   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9085   ins_pipe(faddF_fcc_reg_reg_zero);
9086 %}
9087 
9088 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9089   match(Set fcc (CmpD src1 src2));
9090 
9091   size(4);
9092   format %{ "FCMPd  $fcc,$src1,$src2" %}
9093   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9094   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9095   ins_pipe(faddD_fcc_reg_reg_zero);
9096 %}
9097 
9098 
9099 // Compare floating, generate -1,0,1
9100 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9101   match(Set dst (CmpF3 src1 src2));
9102   effect(KILL fcc0);
9103   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9104   format %{ "fcmpl  $dst,$src1,$src2" %}
9105   // Primary = float
9106   opcode( true );
9107   ins_encode( floating_cmp( dst, src1, src2 ) );
9108   ins_pipe( floating_cmp );
9109 %}
9110 
9111 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9112   match(Set dst (CmpD3 src1 src2));
9113   effect(KILL fcc0);
9114   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9115   format %{ "dcmpl  $dst,$src1,$src2" %}
9116   // Primary = double (not float)
9117   opcode( false );
9118   ins_encode( floating_cmp( dst, src1, src2 ) );
9119   ins_pipe( floating_cmp );
9120 %}
9121 
9122 //----------Branches---------------------------------------------------------
9123 // Jump
9124 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9125 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9126   match(Jump switch_val);
9127   effect(TEMP table);
9128 
9129   ins_cost(350);
9130 
9131   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9132              "LD     [O7 + $switch_val], O7\n\t"
9133              "JUMP   O7" %}
9134   ins_encode %{
9135     // Calculate table address into a register.
9136     Register table_reg;
9137     Register label_reg = O7;
9138     // If we are calculating the size of this instruction don't trust
9139     // zero offsets because they might change when
9140     // MachConstantBaseNode decides to optimize the constant table
9141     // base.
9142     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9143       table_reg = $constanttablebase;
9144     } else {
9145       table_reg = O7;
9146       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9147       __ add($constanttablebase, con_offset, table_reg);
9148     }
9149 
9150     // Jump to base address + switch value
9151     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9152     __ jmp(label_reg, G0);
9153     __ delayed()->nop();
9154   %}
9155   ins_pipe(ialu_reg_reg);
9156 %}
9157 
9158 // Direct Branch.  Use V8 version with longer range.
9159 instruct branch(label labl) %{
9160   match(Goto);
9161   effect(USE labl);
9162 
9163   size(8);
9164   ins_cost(BRANCH_COST);
9165   format %{ "BA     $labl" %}
9166   ins_encode %{
9167     Label* L = $labl$$label;
9168     __ ba(*L);
9169     __ delayed()->nop();
9170   %}
9171   ins_pipe(br);
9172 %}
9173 
9174 // Direct Branch, short with no delay slot
9175 instruct branch_short(label labl) %{
9176   match(Goto);
9177   predicate(UseCBCond);
9178   effect(USE labl);
9179 
9180   size(4);
9181   ins_cost(BRANCH_COST);
9182   format %{ "BA     $labl\t! short branch" %}
9183   ins_encode %{ 
9184     Label* L = $labl$$label;
9185     assert(__ use_cbcond(*L), "back to back cbcond");
9186     __ ba_short(*L);
9187   %}
9188   ins_short_branch(1);
9189   ins_avoid_back_to_back(1);
9190   ins_pipe(cbcond_reg_imm);
9191 %}
9192 
9193 // Conditional Direct Branch
9194 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9195   match(If cmp icc);
9196   effect(USE labl);
9197 
9198   size(8);
9199   ins_cost(BRANCH_COST);
9200   format %{ "BP$cmp   $icc,$labl" %}
9201   // Prim = bits 24-22, Secnd = bits 31-30
9202   ins_encode( enc_bp( labl, cmp, icc ) );
9203   ins_pipe(br_cc);
9204 %}
9205 
9206 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9207   match(If cmp icc);
9208   effect(USE labl);
9209 
9210   ins_cost(BRANCH_COST);
9211   format %{ "BP$cmp  $icc,$labl" %}
9212   // Prim = bits 24-22, Secnd = bits 31-30
9213   ins_encode( enc_bp( labl, cmp, icc ) );
9214   ins_pipe(br_cc);
9215 %}
9216 
9217 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9218   match(If cmp pcc);
9219   effect(USE labl);
9220 
9221   size(8);
9222   ins_cost(BRANCH_COST);
9223   format %{ "BP$cmp  $pcc,$labl" %}
9224   ins_encode %{
9225     Label* L = $labl$$label;
9226     Assembler::Predict predict_taken =
9227       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9228 
9229     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9230     __ delayed()->nop();
9231   %}
9232   ins_pipe(br_cc);
9233 %}
9234 
9235 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9236   match(If cmp fcc);
9237   effect(USE labl);
9238 
9239   size(8);
9240   ins_cost(BRANCH_COST);
9241   format %{ "FBP$cmp $fcc,$labl" %}
9242   ins_encode %{
9243     Label* L = $labl$$label;
9244     Assembler::Predict predict_taken =
9245       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9246 
9247     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9248     __ delayed()->nop();
9249   %}
9250   ins_pipe(br_fcc);
9251 %}
9252 
9253 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9254   match(CountedLoopEnd cmp icc);
9255   effect(USE labl);
9256 
9257   size(8);
9258   ins_cost(BRANCH_COST);
9259   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9260   // Prim = bits 24-22, Secnd = bits 31-30
9261   ins_encode( enc_bp( labl, cmp, icc ) );
9262   ins_pipe(br_cc);
9263 %}
9264 
9265 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9266   match(CountedLoopEnd cmp icc);
9267   effect(USE labl);
9268 
9269   size(8);
9270   ins_cost(BRANCH_COST);
9271   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9272   // Prim = bits 24-22, Secnd = bits 31-30
9273   ins_encode( enc_bp( labl, cmp, icc ) );
9274   ins_pipe(br_cc);
9275 %}
9276 
9277 // Compare and branch instructions
9278 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9279   match(If cmp (CmpI op1 op2));
9280   effect(USE labl, KILL icc);
9281 
9282   size(12);
9283   ins_cost(BRANCH_COST);
9284   format %{ "CMP    $op1,$op2\t! int\n\t"
9285             "BP$cmp   $labl" %}
9286   ins_encode %{
9287     Label* L = $labl$$label;
9288     Assembler::Predict predict_taken =
9289       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9290     __ cmp($op1$$Register, $op2$$Register);
9291     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9292     __ delayed()->nop();
9293   %}
9294   ins_pipe(cmp_br_reg_reg);
9295 %}
9296 
9297 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9298   match(If cmp (CmpI op1 op2));
9299   effect(USE labl, KILL icc);
9300 
9301   size(12);
9302   ins_cost(BRANCH_COST);
9303   format %{ "CMP    $op1,$op2\t! int\n\t"
9304             "BP$cmp   $labl" %}
9305   ins_encode %{
9306     Label* L = $labl$$label;
9307     Assembler::Predict predict_taken =
9308       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9309     __ cmp($op1$$Register, $op2$$constant);
9310     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9311     __ delayed()->nop();
9312   %}
9313   ins_pipe(cmp_br_reg_imm);
9314 %}
9315 
9316 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9317   match(If cmp (CmpU op1 op2));
9318   effect(USE labl, KILL icc);
9319 
9320   size(12);
9321   ins_cost(BRANCH_COST);
9322   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9323             "BP$cmp  $labl" %}
9324   ins_encode %{
9325     Label* L = $labl$$label;
9326     Assembler::Predict predict_taken =
9327       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9328     __ cmp($op1$$Register, $op2$$Register);
9329     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9330     __ delayed()->nop();
9331   %}
9332   ins_pipe(cmp_br_reg_reg);
9333 %}
9334 
9335 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9336   match(If cmp (CmpU op1 op2));
9337   effect(USE labl, KILL icc);
9338 
9339   size(12);
9340   ins_cost(BRANCH_COST);
9341   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9342             "BP$cmp  $labl" %}
9343   ins_encode %{
9344     Label* L = $labl$$label;
9345     Assembler::Predict predict_taken =
9346       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9347     __ cmp($op1$$Register, $op2$$constant);
9348     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9349     __ delayed()->nop();
9350   %}
9351   ins_pipe(cmp_br_reg_imm);
9352 %}
9353 
9354 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9355   match(If cmp (CmpL op1 op2));
9356   effect(USE labl, KILL xcc);
9357 
9358   size(12);
9359   ins_cost(BRANCH_COST);
9360   format %{ "CMP    $op1,$op2\t! long\n\t"
9361             "BP$cmp   $labl" %}
9362   ins_encode %{
9363     Label* L = $labl$$label;
9364     Assembler::Predict predict_taken =
9365       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9366     __ cmp($op1$$Register, $op2$$Register);
9367     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9368     __ delayed()->nop();
9369   %}
9370   ins_pipe(cmp_br_reg_reg);
9371 %}
9372 
9373 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9374   match(If cmp (CmpL op1 op2));
9375   effect(USE labl, KILL xcc);
9376 
9377   size(12);
9378   ins_cost(BRANCH_COST);
9379   format %{ "CMP    $op1,$op2\t! long\n\t"
9380             "BP$cmp   $labl" %}
9381   ins_encode %{
9382     Label* L = $labl$$label;
9383     Assembler::Predict predict_taken =
9384       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9385     __ cmp($op1$$Register, $op2$$constant);
9386     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9387     __ delayed()->nop();
9388   %}
9389   ins_pipe(cmp_br_reg_imm);
9390 %}
9391 
9392 // Compare Pointers and branch
9393 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9394   match(If cmp (CmpP op1 op2));
9395   effect(USE labl, KILL pcc);
9396 
9397   size(12);
9398   ins_cost(BRANCH_COST);
9399   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9400             "B$cmp   $labl" %}
9401   ins_encode %{
9402     Label* L = $labl$$label;
9403     Assembler::Predict predict_taken =
9404       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9405     __ cmp($op1$$Register, $op2$$Register);
9406     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9407     __ delayed()->nop();
9408   %}
9409   ins_pipe(cmp_br_reg_reg);
9410 %}
9411 
9412 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9413   match(If cmp (CmpP op1 null));
9414   effect(USE labl, KILL pcc);
9415 
9416   size(12);
9417   ins_cost(BRANCH_COST);
9418   format %{ "CMP    $op1,0\t! ptr\n\t"
9419             "B$cmp   $labl" %}
9420   ins_encode %{
9421     Label* L = $labl$$label;
9422     Assembler::Predict predict_taken =
9423       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9424     __ cmp($op1$$Register, G0);
9425     // bpr() is not used here since it has shorter distance.
9426     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9427     __ delayed()->nop();
9428   %}
9429   ins_pipe(cmp_br_reg_reg);
9430 %}
9431 
9432 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9433   match(If cmp (CmpN op1 op2));
9434   effect(USE labl, KILL icc);
9435 
9436   size(12);
9437   ins_cost(BRANCH_COST);
9438   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9439             "BP$cmp   $labl" %}
9440   ins_encode %{
9441     Label* L = $labl$$label;
9442     Assembler::Predict predict_taken =
9443       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9444     __ cmp($op1$$Register, $op2$$Register);
9445     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9446     __ delayed()->nop();
9447   %}
9448   ins_pipe(cmp_br_reg_reg);
9449 %}
9450 
9451 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9452   match(If cmp (CmpN op1 null));
9453   effect(USE labl, KILL icc);
9454 
9455   size(12);
9456   ins_cost(BRANCH_COST);
9457   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9458             "BP$cmp   $labl" %}
9459   ins_encode %{
9460     Label* L = $labl$$label;
9461     Assembler::Predict predict_taken =
9462       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9463     __ cmp($op1$$Register, G0);
9464     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9465     __ delayed()->nop();
9466   %}
9467   ins_pipe(cmp_br_reg_reg);
9468 %}
9469 
9470 // Loop back branch
9471 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9472   match(CountedLoopEnd cmp (CmpI op1 op2));
9473   effect(USE labl, KILL icc);
9474 
9475   size(12);
9476   ins_cost(BRANCH_COST);
9477   format %{ "CMP    $op1,$op2\t! int\n\t"
9478             "BP$cmp   $labl\t! Loop end" %}
9479   ins_encode %{
9480     Label* L = $labl$$label;
9481     Assembler::Predict predict_taken =
9482       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9483     __ cmp($op1$$Register, $op2$$Register);
9484     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9485     __ delayed()->nop();
9486   %}
9487   ins_pipe(cmp_br_reg_reg);
9488 %}
9489 
9490 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9491   match(CountedLoopEnd cmp (CmpI op1 op2));
9492   effect(USE labl, KILL icc);
9493 
9494   size(12);
9495   ins_cost(BRANCH_COST);
9496   format %{ "CMP    $op1,$op2\t! int\n\t"
9497             "BP$cmp   $labl\t! Loop end" %}
9498   ins_encode %{
9499     Label* L = $labl$$label;
9500     Assembler::Predict predict_taken =
9501       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9502     __ cmp($op1$$Register, $op2$$constant);
9503     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9504     __ delayed()->nop();
9505   %}
9506   ins_pipe(cmp_br_reg_imm);
9507 %}
9508 
9509 // Short compare and branch instructions
9510 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9511   match(If cmp (CmpI op1 op2));
9512   predicate(UseCBCond);
9513   effect(USE labl, KILL icc);
9514 
9515   size(4);
9516   ins_cost(BRANCH_COST);
9517   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9518   ins_encode %{
9519     Label* L = $labl$$label;
9520     assert(__ use_cbcond(*L), "back to back cbcond");
9521     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9522   %}
9523   ins_short_branch(1);
9524   ins_avoid_back_to_back(1);
9525   ins_pipe(cbcond_reg_reg);
9526 %}
9527 
9528 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9529   match(If cmp (CmpI op1 op2));
9530   predicate(UseCBCond);
9531   effect(USE labl, KILL icc);
9532 
9533   size(4);
9534   ins_cost(BRANCH_COST);
9535   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9536   ins_encode %{
9537     Label* L = $labl$$label;
9538     assert(__ use_cbcond(*L), "back to back cbcond");
9539     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9540   %}
9541   ins_short_branch(1);
9542   ins_avoid_back_to_back(1);
9543   ins_pipe(cbcond_reg_imm);
9544 %}
9545 
9546 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9547   match(If cmp (CmpU op1 op2));
9548   predicate(UseCBCond);
9549   effect(USE labl, KILL icc);
9550 
9551   size(4);
9552   ins_cost(BRANCH_COST);
9553   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9554   ins_encode %{
9555     Label* L = $labl$$label;
9556     assert(__ use_cbcond(*L), "back to back cbcond");
9557     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9558   %}
9559   ins_short_branch(1);
9560   ins_avoid_back_to_back(1);
9561   ins_pipe(cbcond_reg_reg);
9562 %}
9563 
9564 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9565   match(If cmp (CmpU op1 op2));
9566   predicate(UseCBCond);
9567   effect(USE labl, KILL icc);
9568 
9569   size(4);
9570   ins_cost(BRANCH_COST);
9571   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9572   ins_encode %{
9573     Label* L = $labl$$label;
9574     assert(__ use_cbcond(*L), "back to back cbcond");
9575     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9576   %}
9577   ins_short_branch(1);
9578   ins_avoid_back_to_back(1);
9579   ins_pipe(cbcond_reg_imm);
9580 %}
9581 
9582 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9583   match(If cmp (CmpL op1 op2));
9584   predicate(UseCBCond);
9585   effect(USE labl, KILL xcc);
9586 
9587   size(4);
9588   ins_cost(BRANCH_COST);
9589   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9590   ins_encode %{
9591     Label* L = $labl$$label;
9592     assert(__ use_cbcond(*L), "back to back cbcond");
9593     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9594   %}
9595   ins_short_branch(1);
9596   ins_avoid_back_to_back(1);
9597   ins_pipe(cbcond_reg_reg);
9598 %}
9599 
9600 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9601   match(If cmp (CmpL op1 op2));
9602   predicate(UseCBCond);
9603   effect(USE labl, KILL xcc);
9604 
9605   size(4);
9606   ins_cost(BRANCH_COST);
9607   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9608   ins_encode %{
9609     Label* L = $labl$$label;
9610     assert(__ use_cbcond(*L), "back to back cbcond");
9611     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9612   %}
9613   ins_short_branch(1);
9614   ins_avoid_back_to_back(1);
9615   ins_pipe(cbcond_reg_imm);
9616 %}
9617 
9618 // Compare Pointers and branch
9619 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9620   match(If cmp (CmpP op1 op2));
9621   predicate(UseCBCond);
9622   effect(USE labl, KILL pcc);
9623 
9624   size(4);
9625   ins_cost(BRANCH_COST);
9626 #ifdef _LP64
9627   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9628 #else
9629   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9630 #endif
9631   ins_encode %{
9632     Label* L = $labl$$label;
9633     assert(__ use_cbcond(*L), "back to back cbcond");
9634     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9635   %}
9636   ins_short_branch(1);
9637   ins_avoid_back_to_back(1);
9638   ins_pipe(cbcond_reg_reg);
9639 %}
9640 
9641 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9642   match(If cmp (CmpP op1 null));
9643   predicate(UseCBCond);
9644   effect(USE labl, KILL pcc);
9645 
9646   size(4);
9647   ins_cost(BRANCH_COST);
9648 #ifdef _LP64
9649   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9650 #else
9651   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9652 #endif
9653   ins_encode %{
9654     Label* L = $labl$$label;
9655     assert(__ use_cbcond(*L), "back to back cbcond");
9656     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9657   %}
9658   ins_short_branch(1);
9659   ins_avoid_back_to_back(1);
9660   ins_pipe(cbcond_reg_reg);
9661 %}
9662 
9663 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9664   match(If cmp (CmpN op1 op2));
9665   predicate(UseCBCond);
9666   effect(USE labl, KILL icc);
9667 
9668   size(4);
9669   ins_cost(BRANCH_COST);
9670   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9671   ins_encode %{
9672     Label* L = $labl$$label;
9673     assert(__ use_cbcond(*L), "back to back cbcond");
9674     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9675   %}
9676   ins_short_branch(1);
9677   ins_avoid_back_to_back(1);
9678   ins_pipe(cbcond_reg_reg);
9679 %}
9680 
9681 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9682   match(If cmp (CmpN op1 null));
9683   predicate(UseCBCond);
9684   effect(USE labl, KILL icc);
9685 
9686   size(4);
9687   ins_cost(BRANCH_COST);
9688   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9689   ins_encode %{
9690     Label* L = $labl$$label;
9691     assert(__ use_cbcond(*L), "back to back cbcond");
9692     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9693   %}
9694   ins_short_branch(1);
9695   ins_avoid_back_to_back(1);
9696   ins_pipe(cbcond_reg_reg);
9697 %}
9698 
9699 // Loop back branch
9700 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9701   match(CountedLoopEnd cmp (CmpI op1 op2));
9702   predicate(UseCBCond);
9703   effect(USE labl, KILL icc);
9704 
9705   size(4);
9706   ins_cost(BRANCH_COST);
9707   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9708   ins_encode %{
9709     Label* L = $labl$$label;
9710     assert(__ use_cbcond(*L), "back to back cbcond");
9711     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9712   %}
9713   ins_short_branch(1);
9714   ins_avoid_back_to_back(1);
9715   ins_pipe(cbcond_reg_reg);
9716 %}
9717 
9718 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9719   match(CountedLoopEnd cmp (CmpI op1 op2));
9720   predicate(UseCBCond);
9721   effect(USE labl, KILL icc);
9722 
9723   size(4);
9724   ins_cost(BRANCH_COST);
9725   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9726   ins_encode %{
9727     Label* L = $labl$$label;
9728     assert(__ use_cbcond(*L), "back to back cbcond");
9729     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9730   %}
9731   ins_short_branch(1);
9732   ins_avoid_back_to_back(1);
9733   ins_pipe(cbcond_reg_imm);
9734 %}
9735 
9736 // Branch-on-register tests all 64 bits.  We assume that values
9737 // in 64-bit registers always remains zero or sign extended
9738 // unless our code munges the high bits.  Interrupts can chop
9739 // the high order bits to zero or sign at any time.
9740 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9741   match(If cmp (CmpI op1 zero));
9742   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9743   effect(USE labl);
9744 
9745   size(8);
9746   ins_cost(BRANCH_COST);
9747   format %{ "BR$cmp   $op1,$labl" %}
9748   ins_encode( enc_bpr( labl, cmp, op1 ) );
9749   ins_pipe(br_reg);
9750 %}
9751 
9752 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9753   match(If cmp (CmpP op1 null));
9754   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9755   effect(USE labl);
9756 
9757   size(8);
9758   ins_cost(BRANCH_COST);
9759   format %{ "BR$cmp   $op1,$labl" %}
9760   ins_encode( enc_bpr( labl, cmp, op1 ) );
9761   ins_pipe(br_reg);
9762 %}
9763 
9764 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9765   match(If cmp (CmpL op1 zero));
9766   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9767   effect(USE labl);
9768 
9769   size(8);
9770   ins_cost(BRANCH_COST);
9771   format %{ "BR$cmp   $op1,$labl" %}
9772   ins_encode( enc_bpr( labl, cmp, op1 ) );
9773   ins_pipe(br_reg);
9774 %}
9775 
9776 
9777 // ============================================================================
9778 // Long Compare
9779 //
9780 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9781 // is tricky.  The flavor of compare used depends on whether we are testing
9782 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9783 // The GE test is the negated LT test.  The LE test can be had by commuting
9784 // the operands (yielding a GE test) and then negating; negate again for the
9785 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9786 // NE test is negated from that.
9787 
9788 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9789 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9790 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9791 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9792 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9793 // foo match ends up with the wrong leaf.  One fix is to not match both
9794 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9795 // both forms beat the trinary form of long-compare and both are very useful
9796 // on Intel which has so few registers.
9797 
9798 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9799   match(If cmp xcc);
9800   effect(USE labl);
9801 
9802   size(8);
9803   ins_cost(BRANCH_COST);
9804   format %{ "BP$cmp   $xcc,$labl" %}
9805   ins_encode %{
9806     Label* L = $labl$$label;
9807     Assembler::Predict predict_taken =
9808       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9809 
9810     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9811     __ delayed()->nop();
9812   %}
9813   ins_pipe(br_cc);
9814 %}
9815 
9816 // Manifest a CmpL3 result in an integer register.  Very painful.
9817 // This is the test to avoid.
9818 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9819   match(Set dst (CmpL3 src1 src2) );
9820   effect( KILL ccr );
9821   ins_cost(6*DEFAULT_COST);
9822   size(24);
9823   format %{ "CMP    $src1,$src2\t\t! long\n"
9824           "\tBLT,a,pn done\n"
9825           "\tMOV    -1,$dst\t! delay slot\n"
9826           "\tBGT,a,pn done\n"
9827           "\tMOV    1,$dst\t! delay slot\n"
9828           "\tCLR    $dst\n"
9829     "done:"     %}
9830   ins_encode( cmpl_flag(src1,src2,dst) );
9831   ins_pipe(cmpL_reg);
9832 %}
9833 
9834 // Conditional move
9835 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9836   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9837   ins_cost(150);
9838   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9839   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9840   ins_pipe(ialu_reg);
9841 %}
9842 
9843 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9844   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9845   ins_cost(140);
9846   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9847   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9848   ins_pipe(ialu_imm);
9849 %}
9850 
9851 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9852   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9853   ins_cost(150);
9854   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9855   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9856   ins_pipe(ialu_reg);
9857 %}
9858 
9859 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9860   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9861   ins_cost(140);
9862   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9863   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9864   ins_pipe(ialu_imm);
9865 %}
9866 
9867 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9868   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9869   ins_cost(150);
9870   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9871   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9872   ins_pipe(ialu_reg);
9873 %}
9874 
9875 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9876   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9877   ins_cost(150);
9878   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9879   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9880   ins_pipe(ialu_reg);
9881 %}
9882 
9883 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9884   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9885   ins_cost(140);
9886   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9887   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9888   ins_pipe(ialu_imm);
9889 %}
9890 
9891 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9892   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9893   ins_cost(150);
9894   opcode(0x101);
9895   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9896   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9897   ins_pipe(int_conditional_float_move);
9898 %}
9899 
9900 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9901   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9902   ins_cost(150);
9903   opcode(0x102);
9904   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9905   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9906   ins_pipe(int_conditional_float_move);
9907 %}
9908 
9909 // ============================================================================
9910 // Safepoint Instruction
9911 instruct safePoint_poll(iRegP poll) %{
9912   match(SafePoint poll);
9913   effect(USE poll);
9914 
9915   size(4);
9916 #ifdef _LP64
9917   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9918 #else
9919   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9920 #endif
9921   ins_encode %{
9922     __ relocate(relocInfo::poll_type);
9923     __ ld_ptr($poll$$Register, 0, G0);
9924   %}
9925   ins_pipe(loadPollP);
9926 %}
9927 
9928 // ============================================================================
9929 // Call Instructions
9930 // Call Java Static Instruction
9931 instruct CallStaticJavaDirect( method meth ) %{
9932   match(CallStaticJava);
9933   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9934   effect(USE meth);
9935 
9936   size(8);
9937   ins_cost(CALL_COST);
9938   format %{ "CALL,static  ; NOP ==> " %}
9939   ins_encode( Java_Static_Call( meth ), call_epilog );
9940   ins_pipe(simple_call);
9941 %}
9942 
9943 // Call Java Static Instruction (method handle version)
9944 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9945   match(CallStaticJava);
9946   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9947   effect(USE meth, KILL l7_mh_SP_save);
9948 
9949   size(16);
9950   ins_cost(CALL_COST);
9951   format %{ "CALL,static/MethodHandle" %}
9952   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9953   ins_pipe(simple_call);
9954 %}
9955 
9956 // Call Java Dynamic Instruction
9957 instruct CallDynamicJavaDirect( method meth ) %{
9958   match(CallDynamicJava);
9959   effect(USE meth);
9960 
9961   ins_cost(CALL_COST);
9962   format %{ "SET    (empty),R_G5\n\t"
9963             "CALL,dynamic  ; NOP ==> " %}
9964   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9965   ins_pipe(call);
9966 %}
9967 
9968 // Call Runtime Instruction
9969 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9970   match(CallRuntime);
9971   effect(USE meth, KILL l7);
9972   ins_cost(CALL_COST);
9973   format %{ "CALL,runtime" %}
9974   ins_encode( Java_To_Runtime( meth ),
9975               call_epilog, adjust_long_from_native_call );
9976   ins_pipe(simple_call);
9977 %}
9978 
9979 // Call runtime without safepoint - same as CallRuntime
9980 instruct CallLeafDirect(method meth, l7RegP l7) %{
9981   match(CallLeaf);
9982   effect(USE meth, KILL l7);
9983   ins_cost(CALL_COST);
9984   format %{ "CALL,runtime leaf" %}
9985   ins_encode( Java_To_Runtime( meth ),
9986               call_epilog,
9987               adjust_long_from_native_call );
9988   ins_pipe(simple_call);
9989 %}
9990 
9991 // Call runtime without safepoint - same as CallLeaf
9992 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9993   match(CallLeafNoFP);
9994   effect(USE meth, KILL l7);
9995   ins_cost(CALL_COST);
9996   format %{ "CALL,runtime leaf nofp" %}
9997   ins_encode( Java_To_Runtime( meth ),
9998               call_epilog,
9999               adjust_long_from_native_call );
10000   ins_pipe(simple_call);
10001 %}
10002 
10003 // Tail Call; Jump from runtime stub to Java code.
10004 // Also known as an 'interprocedural jump'.
10005 // Target of jump will eventually return to caller.
10006 // TailJump below removes the return address.
10007 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10008   match(TailCall jump_target method_oop );
10009 
10010   ins_cost(CALL_COST);
10011   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10012   ins_encode(form_jmpl(jump_target));
10013   ins_pipe(tail_call);
10014 %}
10015 
10016 
10017 // Return Instruction
10018 instruct Ret() %{
10019   match(Return);
10020 
10021   // The epilogue node did the ret already.
10022   size(0);
10023   format %{ "! return" %}
10024   ins_encode();
10025   ins_pipe(empty);
10026 %}
10027 
10028 
10029 // Tail Jump; remove the return address; jump to target.
10030 // TailCall above leaves the return address around.
10031 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10032 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10033 // "restore" before this instruction (in Epilogue), we need to materialize it
10034 // in %i0.
10035 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10036   match( TailJump jump_target ex_oop );
10037   ins_cost(CALL_COST);
10038   format %{ "! discard R_O7\n\t"
10039             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10040   ins_encode(form_jmpl_set_exception_pc(jump_target));
10041   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10042   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10043   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10044   ins_pipe(tail_call);
10045 %}
10046 
10047 // Create exception oop: created by stack-crawling runtime code.
10048 // Created exception is now available to this handler, and is setup
10049 // just prior to jumping to this handler.  No code emitted.
10050 instruct CreateException( o0RegP ex_oop )
10051 %{
10052   match(Set ex_oop (CreateEx));
10053   ins_cost(0);
10054 
10055   size(0);
10056   // use the following format syntax
10057   format %{ "! exception oop is in R_O0; no code emitted" %}
10058   ins_encode();
10059   ins_pipe(empty);
10060 %}
10061 
10062 
10063 // Rethrow exception:
10064 // The exception oop will come in the first argument position.
10065 // Then JUMP (not call) to the rethrow stub code.
10066 instruct RethrowException()
10067 %{
10068   match(Rethrow);
10069   ins_cost(CALL_COST);
10070 
10071   // use the following format syntax
10072   format %{ "Jmp    rethrow_stub" %}
10073   ins_encode(enc_rethrow);
10074   ins_pipe(tail_call);
10075 %}
10076 
10077 
10078 // Die now
10079 instruct ShouldNotReachHere( )
10080 %{
10081   match(Halt);
10082   ins_cost(CALL_COST);
10083 
10084   size(4);
10085   // Use the following format syntax
10086   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10087   ins_encode( form2_illtrap() );
10088   ins_pipe(tail_call);
10089 %}
10090 
10091 // ============================================================================
10092 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10093 // array for an instance of the superklass.  Set a hidden internal cache on a
10094 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10095 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10096 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10097   match(Set index (PartialSubtypeCheck sub super));
10098   effect( KILL pcc, KILL o7 );
10099   ins_cost(DEFAULT_COST*10);
10100   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10101   ins_encode( enc_PartialSubtypeCheck() );
10102   ins_pipe(partial_subtype_check_pipe);
10103 %}
10104 
10105 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10106   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10107   effect( KILL idx, KILL o7 );
10108   ins_cost(DEFAULT_COST*10);
10109   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10110   ins_encode( enc_PartialSubtypeCheck() );
10111   ins_pipe(partial_subtype_check_pipe);
10112 %}
10113 
10114 
10115 // ============================================================================
10116 // inlined locking and unlocking
10117 
10118 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10119   match(Set pcc (FastLock object box));
10120 
10121   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10122   ins_cost(100);
10123 
10124   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10125   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10126   ins_pipe(long_memory_op);
10127 %}
10128 
10129 
10130 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10131   match(Set pcc (FastUnlock object box));
10132   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10133   ins_cost(100);
10134 
10135   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10136   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10137   ins_pipe(long_memory_op);
10138 %}
10139 
10140 // The encodings are generic.
10141 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10142   predicate(!use_block_zeroing(n->in(2)) );
10143   match(Set dummy (ClearArray cnt base));
10144   effect(TEMP temp, KILL ccr);
10145   ins_cost(300);
10146   format %{ "MOV    $cnt,$temp\n"
10147     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10148     "        BRge   loop\t\t! Clearing loop\n"
10149     "        STX    G0,[$base+$temp]\t! delay slot" %}
10150 
10151   ins_encode %{
10152     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10153     Register nof_bytes_arg    = $cnt$$Register;
10154     Register nof_bytes_tmp    = $temp$$Register;
10155     Register base_pointer_arg = $base$$Register;
10156 
10157     Label loop;
10158     __ mov(nof_bytes_arg, nof_bytes_tmp);
10159 
10160     // Loop and clear, walking backwards through the array.
10161     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10162     __ bind(loop);
10163     __ deccc(nof_bytes_tmp, 8);
10164     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10165     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10166     // %%%% this mini-loop must not cross a cache boundary!
10167   %}
10168   ins_pipe(long_memory_op);
10169 %}
10170 
10171 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10172   predicate(use_block_zeroing(n->in(2)));
10173   match(Set dummy (ClearArray cnt base));
10174   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10175   ins_cost(300);
10176   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10177 
10178   ins_encode %{
10179 
10180     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10181     Register to    = $base$$Register;
10182     Register count = $cnt$$Register;
10183 
10184     Label Ldone;
10185     __ nop(); // Separate short branches
10186     // Use BIS for zeroing (temp is not used).
10187     __ bis_zeroing(to, count, G0, Ldone);
10188     __ bind(Ldone);
10189 
10190   %}
10191   ins_pipe(long_memory_op);
10192 %}
10193 
10194 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10195   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10196   match(Set dummy (ClearArray cnt base));
10197   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10198   ins_cost(300);
10199   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10200 
10201   ins_encode %{
10202 
10203     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10204     Register to    = $base$$Register;
10205     Register count = $cnt$$Register;
10206     Register temp  = $tmp$$Register;
10207 
10208     Label Ldone;
10209     __ nop(); // Separate short branches
10210     // Use BIS for zeroing
10211     __ bis_zeroing(to, count, temp, Ldone);
10212     __ bind(Ldone);
10213 
10214   %}
10215   ins_pipe(long_memory_op);
10216 %}
10217 
10218 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10219                         o7RegI tmp, flagsReg ccr) %{
10220   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10221   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10222   ins_cost(300);
10223   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10224   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10225   ins_pipe(long_memory_op);
10226 %}
10227 
10228 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10229                        o7RegI tmp, flagsReg ccr) %{
10230   match(Set result (StrEquals (Binary str1 str2) cnt));
10231   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10232   ins_cost(300);
10233   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10234   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10235   ins_pipe(long_memory_op);
10236 %}
10237 
10238 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10239                       o7RegI tmp2, flagsReg ccr) %{
10240   match(Set result (AryEq ary1 ary2));
10241   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10242   ins_cost(300);
10243   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10244   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10245   ins_pipe(long_memory_op);
10246 %}
10247 
10248 
10249 //---------- Zeros Count Instructions ------------------------------------------
10250 
10251 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10252   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10253   match(Set dst (CountLeadingZerosI src));
10254   effect(TEMP dst, TEMP tmp, KILL cr);
10255 
10256   // x |= (x >> 1);
10257   // x |= (x >> 2);
10258   // x |= (x >> 4);
10259   // x |= (x >> 8);
10260   // x |= (x >> 16);
10261   // return (WORDBITS - popc(x));
10262   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10263             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10264             "OR      $dst,$tmp,$dst\n\t"
10265             "SRL     $dst,2,$tmp\n\t"
10266             "OR      $dst,$tmp,$dst\n\t"
10267             "SRL     $dst,4,$tmp\n\t"
10268             "OR      $dst,$tmp,$dst\n\t"
10269             "SRL     $dst,8,$tmp\n\t"
10270             "OR      $dst,$tmp,$dst\n\t"
10271             "SRL     $dst,16,$tmp\n\t"
10272             "OR      $dst,$tmp,$dst\n\t"
10273             "POPC    $dst,$dst\n\t"
10274             "MOV     32,$tmp\n\t"
10275             "SUB     $tmp,$dst,$dst" %}
10276   ins_encode %{
10277     Register Rdst = $dst$$Register;
10278     Register Rsrc = $src$$Register;
10279     Register Rtmp = $tmp$$Register;
10280     __ srl(Rsrc, 1,    Rtmp);
10281     __ srl(Rsrc, 0,    Rdst);
10282     __ or3(Rdst, Rtmp, Rdst);
10283     __ srl(Rdst, 2,    Rtmp);
10284     __ or3(Rdst, Rtmp, Rdst);
10285     __ srl(Rdst, 4,    Rtmp);
10286     __ or3(Rdst, Rtmp, Rdst);
10287     __ srl(Rdst, 8,    Rtmp);
10288     __ or3(Rdst, Rtmp, Rdst);
10289     __ srl(Rdst, 16,   Rtmp);
10290     __ or3(Rdst, Rtmp, Rdst);
10291     __ popc(Rdst, Rdst);
10292     __ mov(BitsPerInt, Rtmp);
10293     __ sub(Rtmp, Rdst, Rdst);
10294   %}
10295   ins_pipe(ialu_reg);
10296 %}
10297 
10298 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10299   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10300   match(Set dst (CountLeadingZerosL src));
10301   effect(TEMP dst, TEMP tmp, KILL cr);
10302 
10303   // x |= (x >> 1);
10304   // x |= (x >> 2);
10305   // x |= (x >> 4);
10306   // x |= (x >> 8);
10307   // x |= (x >> 16);
10308   // x |= (x >> 32);
10309   // return (WORDBITS - popc(x));
10310   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10311             "OR      $src,$tmp,$dst\n\t"
10312             "SRLX    $dst,2,$tmp\n\t"
10313             "OR      $dst,$tmp,$dst\n\t"
10314             "SRLX    $dst,4,$tmp\n\t"
10315             "OR      $dst,$tmp,$dst\n\t"
10316             "SRLX    $dst,8,$tmp\n\t"
10317             "OR      $dst,$tmp,$dst\n\t"
10318             "SRLX    $dst,16,$tmp\n\t"
10319             "OR      $dst,$tmp,$dst\n\t"
10320             "SRLX    $dst,32,$tmp\n\t"
10321             "OR      $dst,$tmp,$dst\n\t"
10322             "POPC    $dst,$dst\n\t"
10323             "MOV     64,$tmp\n\t"
10324             "SUB     $tmp,$dst,$dst" %}
10325   ins_encode %{
10326     Register Rdst = $dst$$Register;
10327     Register Rsrc = $src$$Register;
10328     Register Rtmp = $tmp$$Register;
10329     __ srlx(Rsrc, 1,    Rtmp);
10330     __ or3( Rsrc, Rtmp, Rdst);
10331     __ srlx(Rdst, 2,    Rtmp);
10332     __ or3( Rdst, Rtmp, Rdst);
10333     __ srlx(Rdst, 4,    Rtmp);
10334     __ or3( Rdst, Rtmp, Rdst);
10335     __ srlx(Rdst, 8,    Rtmp);
10336     __ or3( Rdst, Rtmp, Rdst);
10337     __ srlx(Rdst, 16,   Rtmp);
10338     __ or3( Rdst, Rtmp, Rdst);
10339     __ srlx(Rdst, 32,   Rtmp);
10340     __ or3( Rdst, Rtmp, Rdst);
10341     __ popc(Rdst, Rdst);
10342     __ mov(BitsPerLong, Rtmp);
10343     __ sub(Rtmp, Rdst, Rdst);
10344   %}
10345   ins_pipe(ialu_reg);
10346 %}
10347 
10348 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10349   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10350   match(Set dst (CountTrailingZerosI src));
10351   effect(TEMP dst, KILL cr);
10352 
10353   // return popc(~x & (x - 1));
10354   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10355             "ANDN    $dst,$src,$dst\n\t"
10356             "SRL     $dst,R_G0,$dst\n\t"
10357             "POPC    $dst,$dst" %}
10358   ins_encode %{
10359     Register Rdst = $dst$$Register;
10360     Register Rsrc = $src$$Register;
10361     __ sub(Rsrc, 1, Rdst);
10362     __ andn(Rdst, Rsrc, Rdst);
10363     __ srl(Rdst, G0, Rdst);
10364     __ popc(Rdst, Rdst);
10365   %}
10366   ins_pipe(ialu_reg);
10367 %}
10368 
10369 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10370   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10371   match(Set dst (CountTrailingZerosL src));
10372   effect(TEMP dst, KILL cr);
10373 
10374   // return popc(~x & (x - 1));
10375   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10376             "ANDN    $dst,$src,$dst\n\t"
10377             "POPC    $dst,$dst" %}
10378   ins_encode %{
10379     Register Rdst = $dst$$Register;
10380     Register Rsrc = $src$$Register;
10381     __ sub(Rsrc, 1, Rdst);
10382     __ andn(Rdst, Rsrc, Rdst);
10383     __ popc(Rdst, Rdst);
10384   %}
10385   ins_pipe(ialu_reg);
10386 %}
10387 
10388 
10389 //---------- Population Count Instructions -------------------------------------
10390 
10391 instruct popCountI(iRegIsafe dst, iRegI src) %{
10392   predicate(UsePopCountInstruction);
10393   match(Set dst (PopCountI src));
10394 
10395   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10396             "POPC   $dst, $dst" %}
10397   ins_encode %{
10398     __ srl($src$$Register, G0, $dst$$Register);
10399     __ popc($dst$$Register, $dst$$Register);
10400   %}
10401   ins_pipe(ialu_reg);
10402 %}
10403 
10404 // Note: Long.bitCount(long) returns an int.
10405 instruct popCountL(iRegIsafe dst, iRegL src) %{
10406   predicate(UsePopCountInstruction);
10407   match(Set dst (PopCountL src));
10408 
10409   format %{ "POPC   $src, $dst" %}
10410   ins_encode %{
10411     __ popc($src$$Register, $dst$$Register);
10412   %}
10413   ins_pipe(ialu_reg);
10414 %}
10415 
10416 
10417 // ============================================================================
10418 //------------Bytes reverse--------------------------------------------------
10419 
10420 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10421   match(Set dst (ReverseBytesI src));
10422 
10423   // Op cost is artificially doubled to make sure that load or store
10424   // instructions are preferred over this one which requires a spill
10425   // onto a stack slot.
10426   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10427   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10428 
10429   ins_encode %{
10430     __ set($src$$disp + STACK_BIAS, O7);
10431     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10432   %}
10433   ins_pipe( iload_mem );
10434 %}
10435 
10436 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10437   match(Set dst (ReverseBytesL src));
10438 
10439   // Op cost is artificially doubled to make sure that load or store
10440   // instructions are preferred over this one which requires a spill
10441   // onto a stack slot.
10442   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10443   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10444 
10445   ins_encode %{
10446     __ set($src$$disp + STACK_BIAS, O7);
10447     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10448   %}
10449   ins_pipe( iload_mem );
10450 %}
10451 
10452 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10453   match(Set dst (ReverseBytesUS src));
10454 
10455   // Op cost is artificially doubled to make sure that load or store
10456   // instructions are preferred over this one which requires a spill
10457   // onto a stack slot.
10458   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10459   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10460 
10461   ins_encode %{
10462     // the value was spilled as an int so bias the load
10463     __ set($src$$disp + STACK_BIAS + 2, O7);
10464     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10465   %}
10466   ins_pipe( iload_mem );
10467 %}
10468 
10469 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10470   match(Set dst (ReverseBytesS src));
10471 
10472   // Op cost is artificially doubled to make sure that load or store
10473   // instructions are preferred over this one which requires a spill
10474   // onto a stack slot.
10475   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10476   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10477 
10478   ins_encode %{
10479     // the value was spilled as an int so bias the load
10480     __ set($src$$disp + STACK_BIAS + 2, O7);
10481     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10482   %}
10483   ins_pipe( iload_mem );
10484 %}
10485 
10486 // Load Integer reversed byte order
10487 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10488   match(Set dst (ReverseBytesI (LoadI src)));
10489 
10490   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10491   size(4);
10492   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10493 
10494   ins_encode %{
10495     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10496   %}
10497   ins_pipe(iload_mem);
10498 %}
10499 
10500 // Load Long - aligned and reversed
10501 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10502   match(Set dst (ReverseBytesL (LoadL src)));
10503 
10504   ins_cost(MEMORY_REF_COST);
10505   size(4);
10506   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10507 
10508   ins_encode %{
10509     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10510   %}
10511   ins_pipe(iload_mem);
10512 %}
10513 
10514 // Load unsigned short / char reversed byte order
10515 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10516   match(Set dst (ReverseBytesUS (LoadUS src)));
10517 
10518   ins_cost(MEMORY_REF_COST);
10519   size(4);
10520   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10521 
10522   ins_encode %{
10523     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10524   %}
10525   ins_pipe(iload_mem);
10526 %}
10527 
10528 // Load short reversed byte order
10529 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10530   match(Set dst (ReverseBytesS (LoadS src)));
10531 
10532   ins_cost(MEMORY_REF_COST);
10533   size(4);
10534   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10535 
10536   ins_encode %{
10537     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10538   %}
10539   ins_pipe(iload_mem);
10540 %}
10541 
10542 // Store Integer reversed byte order
10543 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10544   match(Set dst (StoreI dst (ReverseBytesI src)));
10545 
10546   ins_cost(MEMORY_REF_COST);
10547   size(4);
10548   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10549 
10550   ins_encode %{
10551     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10552   %}
10553   ins_pipe(istore_mem_reg);
10554 %}
10555 
10556 // Store Long reversed byte order
10557 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10558   match(Set dst (StoreL dst (ReverseBytesL src)));
10559 
10560   ins_cost(MEMORY_REF_COST);
10561   size(4);
10562   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10563 
10564   ins_encode %{
10565     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10566   %}
10567   ins_pipe(istore_mem_reg);
10568 %}
10569 
10570 // Store unsighed short/char reversed byte order
10571 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10572   match(Set dst (StoreC dst (ReverseBytesUS src)));
10573 
10574   ins_cost(MEMORY_REF_COST);
10575   size(4);
10576   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10577 
10578   ins_encode %{
10579     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10580   %}
10581   ins_pipe(istore_mem_reg);
10582 %}
10583 
10584 // Store short reversed byte order
10585 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10586   match(Set dst (StoreC dst (ReverseBytesS src)));
10587 
10588   ins_cost(MEMORY_REF_COST);
10589   size(4);
10590   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10591 
10592   ins_encode %{
10593     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10594   %}
10595   ins_pipe(istore_mem_reg);
10596 %}
10597 
10598 // ====================VECTOR INSTRUCTIONS=====================================
10599 
10600 // Load Aligned Packed values into a Double Register
10601 instruct loadV8(regD dst, memory mem) %{
10602   predicate(n->as_LoadVector()->memory_size() == 8);
10603   match(Set dst (LoadVector mem));
10604   ins_cost(MEMORY_REF_COST);
10605   size(4);
10606   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10607   ins_encode %{
10608     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10609   %}
10610   ins_pipe(floadD_mem);
10611 %}
10612 
10613 // Store Vector in Double register to memory
10614 instruct storeV8(memory mem, regD src) %{
10615   predicate(n->as_StoreVector()->memory_size() == 8);
10616   match(Set mem (StoreVector mem src));
10617   ins_cost(MEMORY_REF_COST);
10618   size(4);
10619   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10620   ins_encode %{
10621     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10622   %}
10623   ins_pipe(fstoreD_mem_reg);
10624 %}
10625 
10626 // Store Zero into vector in memory
10627 instruct storeV8B_zero(memory mem, immI0 zero) %{
10628   predicate(n->as_StoreVector()->memory_size() == 8);
10629   match(Set mem (StoreVector mem (ReplicateB zero)));
10630   ins_cost(MEMORY_REF_COST);
10631   size(4);
10632   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10633   ins_encode %{
10634     __ stx(G0, $mem$$Address);
10635   %}
10636   ins_pipe(fstoreD_mem_zero);
10637 %}
10638 
10639 instruct storeV4S_zero(memory mem, immI0 zero) %{
10640   predicate(n->as_StoreVector()->memory_size() == 8);
10641   match(Set mem (StoreVector mem (ReplicateS zero)));
10642   ins_cost(MEMORY_REF_COST);
10643   size(4);
10644   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10645   ins_encode %{
10646     __ stx(G0, $mem$$Address);
10647   %}
10648   ins_pipe(fstoreD_mem_zero);
10649 %}
10650 
10651 instruct storeV2I_zero(memory mem, immI0 zero) %{
10652   predicate(n->as_StoreVector()->memory_size() == 8);
10653   match(Set mem (StoreVector mem (ReplicateI zero)));
10654   ins_cost(MEMORY_REF_COST);
10655   size(4);
10656   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10657   ins_encode %{
10658     __ stx(G0, $mem$$Address);
10659   %}
10660   ins_pipe(fstoreD_mem_zero);
10661 %}
10662 
10663 instruct storeV2F_zero(memory mem, immF0 zero) %{
10664   predicate(n->as_StoreVector()->memory_size() == 8);
10665   match(Set mem (StoreVector mem (ReplicateF zero)));
10666   ins_cost(MEMORY_REF_COST);
10667   size(4);
10668   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10669   ins_encode %{
10670     __ stx(G0, $mem$$Address);
10671   %}
10672   ins_pipe(fstoreD_mem_zero);
10673 %}
10674 
10675 // Replicate scalar to packed byte values into Double register
10676 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10677   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10678   match(Set dst (ReplicateB src));
10679   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10680   format %{ "SLLX  $src,56,$tmp\n\t"
10681             "SRLX  $tmp, 8,$tmp2\n\t"
10682             "OR    $tmp,$tmp2,$tmp\n\t"
10683             "SRLX  $tmp,16,$tmp2\n\t"
10684             "OR    $tmp,$tmp2,$tmp\n\t"
10685             "SRLX  $tmp,32,$tmp2\n\t"
10686             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10687             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10688   ins_encode %{
10689     Register Rsrc = $src$$Register;
10690     Register Rtmp = $tmp$$Register;
10691     Register Rtmp2 = $tmp2$$Register;
10692     __ sllx(Rsrc,    56, Rtmp);
10693     __ srlx(Rtmp,     8, Rtmp2);
10694     __ or3 (Rtmp, Rtmp2, Rtmp);
10695     __ srlx(Rtmp,    16, Rtmp2);
10696     __ or3 (Rtmp, Rtmp2, Rtmp);
10697     __ srlx(Rtmp,    32, Rtmp2);
10698     __ or3 (Rtmp, Rtmp2, Rtmp);
10699     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10700   %}
10701   ins_pipe(ialu_reg);
10702 %}
10703 
10704 // Replicate scalar to packed byte values into Double stack
10705 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10706   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10707   match(Set dst (ReplicateB src));
10708   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10709   format %{ "SLLX  $src,56,$tmp\n\t"
10710             "SRLX  $tmp, 8,$tmp2\n\t"
10711             "OR    $tmp,$tmp2,$tmp\n\t"
10712             "SRLX  $tmp,16,$tmp2\n\t"
10713             "OR    $tmp,$tmp2,$tmp\n\t"
10714             "SRLX  $tmp,32,$tmp2\n\t"
10715             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10716             "STX   $tmp,$dst\t! regL to stkD" %}
10717   ins_encode %{
10718     Register Rsrc = $src$$Register;
10719     Register Rtmp = $tmp$$Register;
10720     Register Rtmp2 = $tmp2$$Register;
10721     __ sllx(Rsrc,    56, Rtmp);
10722     __ srlx(Rtmp,     8, Rtmp2);
10723     __ or3 (Rtmp, Rtmp2, Rtmp);
10724     __ srlx(Rtmp,    16, Rtmp2);
10725     __ or3 (Rtmp, Rtmp2, Rtmp);
10726     __ srlx(Rtmp,    32, Rtmp2);
10727     __ or3 (Rtmp, Rtmp2, Rtmp);
10728     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10729     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10730   %}
10731   ins_pipe(ialu_reg);
10732 %}
10733 
10734 // Replicate scalar constant to packed byte values in Double register
10735 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10736   predicate(n->as_Vector()->length() == 8);
10737   match(Set dst (ReplicateB con));
10738   effect(KILL tmp);
10739   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10740   ins_encode %{
10741     // XXX This is a quick fix for 6833573.
10742     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10743     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10744     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10745   %}
10746   ins_pipe(loadConFD);
10747 %}
10748 
10749 // Replicate scalar to packed char/short values into Double register
10750 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10751   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10752   match(Set dst (ReplicateS src));
10753   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10754   format %{ "SLLX  $src,48,$tmp\n\t"
10755             "SRLX  $tmp,16,$tmp2\n\t"
10756             "OR    $tmp,$tmp2,$tmp\n\t"
10757             "SRLX  $tmp,32,$tmp2\n\t"
10758             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10759             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10760   ins_encode %{
10761     Register Rsrc = $src$$Register;
10762     Register Rtmp = $tmp$$Register;
10763     Register Rtmp2 = $tmp2$$Register;
10764     __ sllx(Rsrc,    48, Rtmp);
10765     __ srlx(Rtmp,    16, Rtmp2);
10766     __ or3 (Rtmp, Rtmp2, Rtmp);
10767     __ srlx(Rtmp,    32, Rtmp2);
10768     __ or3 (Rtmp, Rtmp2, Rtmp);
10769     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10770   %}
10771   ins_pipe(ialu_reg);
10772 %}
10773 
10774 // Replicate scalar to packed char/short values into Double stack
10775 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10776   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10777   match(Set dst (ReplicateS src));
10778   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10779   format %{ "SLLX  $src,48,$tmp\n\t"
10780             "SRLX  $tmp,16,$tmp2\n\t"
10781             "OR    $tmp,$tmp2,$tmp\n\t"
10782             "SRLX  $tmp,32,$tmp2\n\t"
10783             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10784             "STX   $tmp,$dst\t! regL to stkD" %}
10785   ins_encode %{
10786     Register Rsrc = $src$$Register;
10787     Register Rtmp = $tmp$$Register;
10788     Register Rtmp2 = $tmp2$$Register;
10789     __ sllx(Rsrc,    48, Rtmp);
10790     __ srlx(Rtmp,    16, Rtmp2);
10791     __ or3 (Rtmp, Rtmp2, Rtmp);
10792     __ srlx(Rtmp,    32, Rtmp2);
10793     __ or3 (Rtmp, Rtmp2, Rtmp);
10794     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10795     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10796   %}
10797   ins_pipe(ialu_reg);
10798 %}
10799 
10800 // Replicate scalar constant to packed char/short values in Double register
10801 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10802   predicate(n->as_Vector()->length() == 4);
10803   match(Set dst (ReplicateS con));
10804   effect(KILL tmp);
10805   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10806   ins_encode %{
10807     // XXX This is a quick fix for 6833573.
10808     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10809     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10810     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10811   %}
10812   ins_pipe(loadConFD);
10813 %}
10814 
10815 // Replicate scalar to packed int values into Double register
10816 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10817   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10818   match(Set dst (ReplicateI src));
10819   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10820   format %{ "SLLX  $src,32,$tmp\n\t"
10821             "SRLX  $tmp,32,$tmp2\n\t"
10822             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10823             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10824   ins_encode %{
10825     Register Rsrc = $src$$Register;
10826     Register Rtmp = $tmp$$Register;
10827     Register Rtmp2 = $tmp2$$Register;
10828     __ sllx(Rsrc,    32, Rtmp);
10829     __ srlx(Rtmp,    32, Rtmp2);
10830     __ or3 (Rtmp, Rtmp2, Rtmp);
10831     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10832   %}
10833   ins_pipe(ialu_reg);
10834 %}
10835 
10836 // Replicate scalar to packed int values into Double stack
10837 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10838   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10839   match(Set dst (ReplicateI src));
10840   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10841   format %{ "SLLX  $src,32,$tmp\n\t"
10842             "SRLX  $tmp,32,$tmp2\n\t"
10843             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10844             "STX   $tmp,$dst\t! regL to stkD" %}
10845   ins_encode %{
10846     Register Rsrc = $src$$Register;
10847     Register Rtmp = $tmp$$Register;
10848     Register Rtmp2 = $tmp2$$Register;
10849     __ sllx(Rsrc,    32, Rtmp);
10850     __ srlx(Rtmp,    32, Rtmp2);
10851     __ or3 (Rtmp, Rtmp2, Rtmp);
10852     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10853     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10854   %}
10855   ins_pipe(ialu_reg);
10856 %}
10857 
10858 // Replicate scalar zero constant to packed int values in Double register
10859 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10860   predicate(n->as_Vector()->length() == 2);
10861   match(Set dst (ReplicateI con));
10862   effect(KILL tmp);
10863   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10864   ins_encode %{
10865     // XXX This is a quick fix for 6833573.
10866     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10867     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10868     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10869   %}
10870   ins_pipe(loadConFD);
10871 %}
10872 
10873 // Replicate scalar to packed float values into Double stack
10874 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10875   predicate(n->as_Vector()->length() == 2);
10876   match(Set dst (ReplicateF src));
10877   ins_cost(MEMORY_REF_COST*2);
10878   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10879             "STF    $src,$dst.lo" %}
10880   opcode(Assembler::stf_op3);
10881   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10882   ins_pipe(fstoreF_stk_reg);
10883 %}
10884 
10885 // Replicate scalar zero constant to packed float values in Double register
10886 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10887   predicate(n->as_Vector()->length() == 2);
10888   match(Set dst (ReplicateF con));
10889   effect(KILL tmp);
10890   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10891   ins_encode %{
10892     // XXX This is a quick fix for 6833573.
10893     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10894     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10895     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10896   %}
10897   ins_pipe(loadConFD);
10898 %}
10899 
10900 //----------PEEPHOLE RULES-----------------------------------------------------
10901 // These must follow all instruction definitions as they use the names
10902 // defined in the instructions definitions.
10903 //
10904 // peepmatch ( root_instr_name [preceding_instruction]* );
10905 //
10906 // peepconstraint %{
10907 // (instruction_number.operand_name relational_op instruction_number.operand_name
10908 //  [, ...] );
10909 // // instruction numbers are zero-based using left to right order in peepmatch
10910 //
10911 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10912 // // provide an instruction_number.operand_name for each operand that appears
10913 // // in the replacement instruction's match rule
10914 //
10915 // ---------VM FLAGS---------------------------------------------------------
10916 //
10917 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10918 //
10919 // Each peephole rule is given an identifying number starting with zero and
10920 // increasing by one in the order seen by the parser.  An individual peephole
10921 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10922 // on the command-line.
10923 //
10924 // ---------CURRENT LIMITATIONS----------------------------------------------
10925 //
10926 // Only match adjacent instructions in same basic block
10927 // Only equality constraints
10928 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10929 // Only one replacement instruction
10930 //
10931 // ---------EXAMPLE----------------------------------------------------------
10932 //
10933 // // pertinent parts of existing instructions in architecture description
10934 // instruct movI(eRegI dst, eRegI src) %{
10935 //   match(Set dst (CopyI src));
10936 // %}
10937 //
10938 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10939 //   match(Set dst (AddI dst src));
10940 //   effect(KILL cr);
10941 // %}
10942 //
10943 // // Change (inc mov) to lea
10944 // peephole %{
10945 //   // increment preceeded by register-register move
10946 //   peepmatch ( incI_eReg movI );
10947 //   // require that the destination register of the increment
10948 //   // match the destination register of the move
10949 //   peepconstraint ( 0.dst == 1.dst );
10950 //   // construct a replacement instruction that sets
10951 //   // the destination to ( move's source register + one )
10952 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10953 // %}
10954 //
10955 
10956 // // Change load of spilled value to only a spill
10957 // instruct storeI(memory mem, eRegI src) %{
10958 //   match(Set mem (StoreI mem src));
10959 // %}
10960 //
10961 // instruct loadI(eRegI dst, memory mem) %{
10962 //   match(Set dst (LoadI mem));
10963 // %}
10964 //
10965 // peephole %{
10966 //   peepmatch ( loadI storeI );
10967 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10968 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10969 // %}
10970 
10971 //----------SMARTSPILL RULES---------------------------------------------------
10972 // These must follow all instruction definitions as they use the names
10973 // defined in the instructions definitions.
10974 //
10975 // SPARC will probably not have any of these rules due to RISC instruction set.
10976 
10977 //----------PIPELINE-----------------------------------------------------------
10978 // Rules which define the behavior of the target architectures pipeline.