1 //
   2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for all registers
 127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 128 // Class for general registers
 129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 130 // Class for general registers which may be used for implicit null checks on win95
 131 // Also safe for use by tailjump. We don't want to allocate in rbp,
 132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 133 // Class of "X" registers
 134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 135 // Class of registers that can appear in an address with no offset.
 136 // EBP and ESP require an extra instruction byte for zero offset.
 137 // Used in fast-unlock
 138 reg_class p_reg(EDX, EDI, ESI, EBX);
 139 // Class for general registers not including ECX
 140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 141 // Class for general registers not including EAX
 142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 143 // Class for general registers not including EAX or EBX.
 144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 145 // Class of EAX (for multiply and divide operations)
 146 reg_class eax_reg(EAX);
 147 // Class of EBX (for atomic add)
 148 reg_class ebx_reg(EBX);
 149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 150 reg_class ecx_reg(ECX);
 151 // Class of EDX (for multiply and divide operations)
 152 reg_class edx_reg(EDX);
 153 // Class of EDI (for synchronization)
 154 reg_class edi_reg(EDI);
 155 // Class of ESI (for synchronization)
 156 reg_class esi_reg(ESI);
 157 // Singleton class for interpreter's stack pointer
 158 reg_class ebp_reg(EBP);
 159 // Singleton class for stack pointer
 160 reg_class sp_reg(ESP);
 161 // Singleton class for instruction pointer
 162 // reg_class ip_reg(EIP);
 163 // Class of integer register pairs
 164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 165 // Class of integer register pairs that aligns with calling convention
 166 reg_class eadx_reg( EAX,EDX );
 167 reg_class ebcx_reg( ECX,EBX );
 168 // Not AX or DX, used in divides
 169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 170 
 171 // Floating point registers.  Notice FPR0 is not a choice.
 172 // FPR0 is not ever allocated; we use clever encodings to fake
 173 // a 2-address instructions out of Intels FP stack.
 174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 175 
 176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 178                       FPR7L,FPR7H );
 179 
 180 reg_class fp_flt_reg0( FPR1L );
 181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 185 
 186 %}
 187 
 188 
 189 //----------SOURCE BLOCK-------------------------------------------------------
 190 // This is a block of C++ code which provides values, functions, and
 191 // definitions necessary in the rest of the architecture description
 192 source_hpp %{
 193 // Must be visible to the DFA in dfa_x86_32.cpp
 194 extern bool is_operand_hi32_zero(Node* n);
 195 %}
 196 
 197 source %{
 198 #define   RELOC_IMM32    Assembler::imm_operand
 199 #define   RELOC_DISP32   Assembler::disp32_operand
 200 
 201 #define __ _masm.
 202 
 203 // How to find the high register of a Long pair, given the low register
 204 #define   HIGH_FROM_LOW(x) ((x)+2)
 205 
 206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 208 // fast versions of NegF/NegD and AbsF/AbsD.
 209 
 210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 213   // of 128-bits operands for SSE instructions.
 214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 215   // Store the value to a 128-bits operand.
 216   operand[0] = lo;
 217   operand[1] = hi;
 218   return operand;
 219 }
 220 
 221 // Buffer for 128-bits masks used by SSE instructions.
 222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 223 
 224 // Static initialization during VM startup.
 225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 229 
 230 // Offset hacking within calls.
 231 static int pre_call_resets_size() {
 232   int size = 0;
 233   Compile* C = Compile::current();
 234   if (C->in_24_bit_fp_mode()) {
 235     size += 6; // fldcw
 236   }
 237   if (C->max_vector_size() > 16) {
 238     size += 3; // vzeroupper
 239   }
 240   return size;
 241 }
 242 
 243 static int preserve_SP_size() {
 244   return 2;  // op, rm(reg/reg)
 245 }
 246 
 247 // !!!!! Special hack to get all type of calls to specify the byte offset
 248 //       from the start of the call to the point where the return address
 249 //       will point.
 250 int MachCallStaticJavaNode::ret_addr_offset() {
 251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
 252   if (_method_handle_invoke)
 253     offset += preserve_SP_size();
 254   return offset;
 255 }
 256 
 257 int MachCallDynamicJavaNode::ret_addr_offset() {
 258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
 259 }
 260 
 261 static int sizeof_FFree_Float_Stack_All = -1;
 262 
 263 int MachCallRuntimeNode::ret_addr_offset() {
 264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
 266 }
 267 
 268 // Indicate if the safepoint node needs the polling page as an input.
 269 // Since x86 does have absolute addressing, it doesn't.
 270 bool SafePointNode::needs_polling_address_input() {
 271   return false;
 272 }
 273 
 274 //
 275 // Compute padding required for nodes which need alignment
 276 //
 277 
 278 // The address of the call instruction needs to be 4-byte aligned to
 279 // ensure that it does not span a cache line so that it can be patched.
 280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 281   current_offset += pre_call_resets_size();  // skip fldcw, if any
 282   current_offset += 1;      // skip call opcode byte
 283   return round_to(current_offset, alignment_required()) - current_offset;
 284 }
 285 
 286 // The address of the call instruction needs to be 4-byte aligned to
 287 // ensure that it does not span a cache line so that it can be patched.
 288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 289   current_offset += pre_call_resets_size();  // skip fldcw, if any
 290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 291   current_offset += 1;      // skip call opcode byte
 292   return round_to(current_offset, alignment_required()) - current_offset;
 293 }
 294 
 295 // The address of the call instruction needs to be 4-byte aligned to
 296 // ensure that it does not span a cache line so that it can be patched.
 297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 298   current_offset += pre_call_resets_size();  // skip fldcw, if any
 299   current_offset += 5;      // skip MOV instruction
 300   current_offset += 1;      // skip call opcode byte
 301   return round_to(current_offset, alignment_required()) - current_offset;
 302 }
 303 
 304 // EMIT_RM()
 305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 307   cbuf.insts()->emit_int8(c);
 308 }
 309 
 310 // EMIT_CC()
 311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 312   unsigned char c = (unsigned char)( f1 | f2 );
 313   cbuf.insts()->emit_int8(c);
 314 }
 315 
 316 // EMIT_OPCODE()
 317 void emit_opcode(CodeBuffer &cbuf, int code) {
 318   cbuf.insts()->emit_int8((unsigned char) code);
 319 }
 320 
 321 // EMIT_OPCODE() w/ relocation information
 322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 324   emit_opcode(cbuf, code);
 325 }
 326 
 327 // EMIT_D8()
 328 void emit_d8(CodeBuffer &cbuf, int d8) {
 329   cbuf.insts()->emit_int8((unsigned char) d8);
 330 }
 331 
 332 // EMIT_D16()
 333 void emit_d16(CodeBuffer &cbuf, int d16) {
 334   cbuf.insts()->emit_int16(d16);
 335 }
 336 
 337 // EMIT_D32()
 338 void emit_d32(CodeBuffer &cbuf, int d32) {
 339   cbuf.insts()->emit_int32(d32);
 340 }
 341 
 342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 344         int format) {
 345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 346   cbuf.insts()->emit_int32(d32);
 347 }
 348 
 349 // emit 32 bit value and construct relocation entry from RelocationHolder
 350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 351         int format) {
 352 #ifdef ASSERT
 353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 355   }
 356 #endif
 357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 358   cbuf.insts()->emit_int32(d32);
 359 }
 360 
 361 // Access stack slot for load or store
 362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 364   if( -128 <= disp && disp <= 127 ) {
 365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 368   } else {
 369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 372   }
 373 }
 374 
 375    // rRegI ereg, memory mem) %{    // emit_reg_mem
 376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
 377   // There is no index & no scale, use form without SIB byte
 378   if ((index == 0x4) &&
 379       (scale == 0) && (base != ESP_enc)) {
 380     // If no displacement, mode is 0x0; unless base is [EBP]
 381     if ( (displace == 0) && (base != EBP_enc) ) {
 382       emit_rm(cbuf, 0x0, reg_encoding, base);
 383     }
 384     else {                    // If 8-bit displacement, mode 0x1
 385       if ((displace >= -128) && (displace <= 127)
 386           && (disp_reloc == relocInfo::none) ) {
 387         emit_rm(cbuf, 0x1, reg_encoding, base);
 388         emit_d8(cbuf, displace);
 389       }
 390       else {                  // If 32-bit displacement
 391         if (base == -1) { // Special flag for absolute address
 392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 393           // (manual lies; no SIB needed here)
 394           if ( disp_reloc != relocInfo::none ) {
 395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 396           } else {
 397             emit_d32      (cbuf, displace);
 398           }
 399         }
 400         else {                // Normal base + offset
 401           emit_rm(cbuf, 0x2, reg_encoding, base);
 402           if ( disp_reloc != relocInfo::none ) {
 403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 404           } else {
 405             emit_d32      (cbuf, displace);
 406           }
 407         }
 408       }
 409     }
 410   }
 411   else {                      // Else, encode with the SIB byte
 412     // If no displacement, mode is 0x0; unless base is [EBP]
 413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 415       emit_rm(cbuf, scale, index, base);
 416     }
 417     else {                    // If 8-bit displacement, mode 0x1
 418       if ((displace >= -128) && (displace <= 127)
 419           && (disp_reloc == relocInfo::none) ) {
 420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 421         emit_rm(cbuf, scale, index, base);
 422         emit_d8(cbuf, displace);
 423       }
 424       else {                  // If 32-bit displacement
 425         if (base == 0x04 ) {
 426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 427           emit_rm(cbuf, scale, index, 0x04);
 428         } else {
 429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 430           emit_rm(cbuf, scale, index, base);
 431         }
 432         if ( disp_reloc != relocInfo::none ) {
 433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 434         } else {
 435           emit_d32      (cbuf, displace);
 436         }
 437       }
 438     }
 439   }
 440 }
 441 
 442 
 443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 444   if( dst_encoding == src_encoding ) {
 445     // reg-reg copy, use an empty encoding
 446   } else {
 447     emit_opcode( cbuf, 0x8B );
 448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 449   }
 450 }
 451 
 452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 453   Label exit;
 454   __ jccb(Assembler::noParity, exit);
 455   __ pushf();
 456   //
 457   // comiss/ucomiss instructions set ZF,PF,CF flags and
 458   // zero OF,AF,SF for NaN values.
 459   // Fixup flags by zeroing ZF,PF so that compare of NaN
 460   // values returns 'less than' result (CF is set).
 461   // Leave the rest of flags unchanged.
 462   //
 463   //    7 6 5 4 3 2 1 0
 464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 465   //    0 0 1 0 1 0 1 1   (0x2B)
 466   //
 467   __ andl(Address(rsp, 0), 0xffffff2b);
 468   __ popf();
 469   __ bind(exit);
 470 }
 471 
 472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 473   Label done;
 474   __ movl(dst, -1);
 475   __ jcc(Assembler::parity, done);
 476   __ jcc(Assembler::below, done);
 477   __ setb(Assembler::notEqual, dst);
 478   __ movzbl(dst, dst);
 479   __ bind(done);
 480 }
 481 
 482 
 483 //=============================================================================
 484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 485 
 486 int Compile::ConstantTable::calculate_table_base_offset() const {
 487   return 0;  // absolute addressing, no offset
 488 }
 489 
 490 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 491   // Empty encoding
 492 }
 493 
 494 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 495   return 0;
 496 }
 497 
 498 #ifndef PRODUCT
 499 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 500   st->print("# MachConstantBaseNode (empty encoding)");
 501 }
 502 #endif
 503 
 504 
 505 //=============================================================================
 506 #ifndef PRODUCT
 507 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 508   Compile* C = ra_->C;
 509 
 510   int framesize = C->frame_slots() << LogBytesPerInt;
 511   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 512   // Remove wordSize for return addr which is already pushed.
 513   framesize -= wordSize;
 514 
 515   if (C->need_stack_bang(framesize)) {
 516     framesize -= wordSize;
 517     st->print("# stack bang");
 518     st->print("\n\t");
 519     st->print("PUSH   EBP\t# Save EBP");
 520     if (framesize) {
 521       st->print("\n\t");
 522       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 523     }
 524   } else {
 525     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 526     st->print("\n\t");
 527     framesize -= wordSize;
 528     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 529   }
 530 
 531   if (VerifyStackAtCalls) {
 532     st->print("\n\t");
 533     framesize -= wordSize;
 534     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 535   }
 536 
 537   if( C->in_24_bit_fp_mode() ) {
 538     st->print("\n\t");
 539     st->print("FLDCW  \t# load 24 bit fpu control word");
 540   }
 541   if (UseSSE >= 2 && VerifyFPU) {
 542     st->print("\n\t");
 543     st->print("# verify FPU stack (must be clean on entry)");
 544   }
 545 
 546 #ifdef ASSERT
 547   if (VerifyStackAtCalls) {
 548     st->print("\n\t");
 549     st->print("# stack alignment check");
 550   }
 551 #endif
 552   st->cr();
 553 }
 554 #endif
 555 
 556 
 557 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 558   Compile* C = ra_->C;
 559   MacroAssembler _masm(&cbuf);
 560 
 561   int framesize = C->frame_slots() << LogBytesPerInt;
 562 
 563   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
 564 
 565   C->set_frame_complete(cbuf.insts_size());
 566 
 567   if (C->has_mach_constant_base_node()) {
 568     // NOTE: We set the table base offset here because users might be
 569     // emitted before MachConstantBaseNode.
 570     Compile::ConstantTable& constant_table = C->constant_table();
 571     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 572   }
 573 }
 574 
 575 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 576   return MachNode::size(ra_); // too many variables; just compute it the hard way
 577 }
 578 
 579 int MachPrologNode::reloc() const {
 580   return 0; // a large enough number
 581 }
 582 
 583 //=============================================================================
 584 #ifndef PRODUCT
 585 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 586   Compile *C = ra_->C;
 587   int framesize = C->frame_slots() << LogBytesPerInt;
 588   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 589   // Remove two words for return addr and rbp,
 590   framesize -= 2*wordSize;
 591 
 592   if (C->max_vector_size() > 16) {
 593     st->print("VZEROUPPER");
 594     st->cr(); st->print("\t");
 595   }
 596   if (C->in_24_bit_fp_mode()) {
 597     st->print("FLDCW  standard control word");
 598     st->cr(); st->print("\t");
 599   }
 600   if (framesize) {
 601     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 602     st->cr(); st->print("\t");
 603   }
 604   st->print_cr("POPL   EBP"); st->print("\t");
 605   if (do_polling() && C->is_method_compilation()) {
 606     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 607     st->cr(); st->print("\t");
 608   }
 609 }
 610 #endif
 611 
 612 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 613   Compile *C = ra_->C;
 614 
 615   if (C->max_vector_size() > 16) {
 616     // Clear upper bits of YMM registers when current compiled code uses
 617     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 618     MacroAssembler masm(&cbuf);
 619     masm.vzeroupper();
 620   }
 621   // If method set FPU control word, restore to standard control word
 622   if (C->in_24_bit_fp_mode()) {
 623     MacroAssembler masm(&cbuf);
 624     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 625   }
 626 
 627   int framesize = C->frame_slots() << LogBytesPerInt;
 628   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 629   // Remove two words for return addr and rbp,
 630   framesize -= 2*wordSize;
 631 
 632   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 633 
 634   if (framesize >= 128) {
 635     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 636     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 637     emit_d32(cbuf, framesize);
 638   } else if (framesize) {
 639     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 640     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 641     emit_d8(cbuf, framesize);
 642   }
 643 
 644   emit_opcode(cbuf, 0x58 | EBP_enc);
 645 
 646   if (do_polling() && C->is_method_compilation()) {
 647     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 648     emit_opcode(cbuf,0x85);
 649     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 650     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 651   }
 652 }
 653 
 654 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 655   Compile *C = ra_->C;
 656   // If method set FPU control word, restore to standard control word
 657   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 658   if (C->max_vector_size() > 16) size += 3; // vzeroupper
 659   if (do_polling() && C->is_method_compilation()) size += 6;
 660 
 661   int framesize = C->frame_slots() << LogBytesPerInt;
 662   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 663   // Remove two words for return addr and rbp,
 664   framesize -= 2*wordSize;
 665 
 666   size++; // popl rbp,
 667 
 668   if (framesize >= 128) {
 669     size += 6;
 670   } else {
 671     size += framesize ? 3 : 0;
 672   }
 673   return size;
 674 }
 675 
 676 int MachEpilogNode::reloc() const {
 677   return 0; // a large enough number
 678 }
 679 
 680 const Pipeline * MachEpilogNode::pipeline() const {
 681   return MachNode::pipeline_class();
 682 }
 683 
 684 int MachEpilogNode::safepoint_offset() const { return 0; }
 685 
 686 //=============================================================================
 687 
 688 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 689 static enum RC rc_class( OptoReg::Name reg ) {
 690 
 691   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 692   if (OptoReg::is_stack(reg)) return rc_stack;
 693 
 694   VMReg r = OptoReg::as_VMReg(reg);
 695   if (r->is_Register()) return rc_int;
 696   if (r->is_FloatRegister()) {
 697     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 698     return rc_float;
 699   }
 700   assert(r->is_XMMRegister(), "must be");
 701   return rc_xmm;
 702 }
 703 
 704 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 705                         int opcode, const char *op_str, int size, outputStream* st ) {
 706   if( cbuf ) {
 707     emit_opcode  (*cbuf, opcode );
 708     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
 709 #ifndef PRODUCT
 710   } else if( !do_size ) {
 711     if( size != 0 ) st->print("\n\t");
 712     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 713       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 714       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 715     } else { // FLD, FST, PUSH, POP
 716       st->print("%s [ESP + #%d]",op_str,offset);
 717     }
 718 #endif
 719   }
 720   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 721   return size+3+offset_size;
 722 }
 723 
 724 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 725 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 726                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 727   if (cbuf) {
 728     MacroAssembler _masm(cbuf);
 729     if (reg_lo+1 == reg_hi) { // double move?
 730       if (is_load) {
 731         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 732       } else {
 733         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 734       }
 735     } else {
 736       if (is_load) {
 737         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 738       } else {
 739         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 740       }
 741     }
 742 #ifndef PRODUCT
 743   } else if (!do_size) {
 744     if (size != 0) st->print("\n\t");
 745     if (reg_lo+1 == reg_hi) { // double move?
 746       if (is_load) st->print("%s %s,[ESP + #%d]",
 747                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 748                               Matcher::regName[reg_lo], offset);
 749       else         st->print("MOVSD  [ESP + #%d],%s",
 750                               offset, Matcher::regName[reg_lo]);
 751     } else {
 752       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 753                               Matcher::regName[reg_lo], offset);
 754       else         st->print("MOVSS  [ESP + #%d],%s",
 755                               offset, Matcher::regName[reg_lo]);
 756     }
 757 #endif
 758   }
 759   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 760   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 761   return size+5+offset_size;
 762 }
 763 
 764 
 765 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 766                             int src_hi, int dst_hi, int size, outputStream* st ) {
 767   if (cbuf) {
 768     MacroAssembler _masm(cbuf);
 769     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 770       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 771                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 772     } else {
 773       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 774                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 775     }
 776 #ifndef PRODUCT
 777   } else if (!do_size) {
 778     if (size != 0) st->print("\n\t");
 779     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 780       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 781         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 782       } else {
 783         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 784       }
 785     } else {
 786       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 787         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 788       } else {
 789         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 790       }
 791     }
 792 #endif
 793   }
 794   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 795   // Only MOVAPS SSE prefix uses 1 byte.
 796   int sz = 4;
 797   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 798       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 799   return size + sz;
 800 }
 801 
 802 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 803                             int src_hi, int dst_hi, int size, outputStream* st ) {
 804   // 32-bit
 805   if (cbuf) {
 806     MacroAssembler _masm(cbuf);
 807     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 808              as_Register(Matcher::_regEncode[src_lo]));
 809 #ifndef PRODUCT
 810   } else if (!do_size) {
 811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 812 #endif
 813   }
 814   return 4;
 815 }
 816 
 817 
 818 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 819                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 820   // 32-bit
 821   if (cbuf) {
 822     MacroAssembler _masm(cbuf);
 823     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 824              as_XMMRegister(Matcher::_regEncode[src_lo]));
 825 #ifndef PRODUCT
 826   } else if (!do_size) {
 827     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 828 #endif
 829   }
 830   return 4;
 831 }
 832 
 833 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 834   if( cbuf ) {
 835     emit_opcode(*cbuf, 0x8B );
 836     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 837 #ifndef PRODUCT
 838   } else if( !do_size ) {
 839     if( size != 0 ) st->print("\n\t");
 840     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 841 #endif
 842   }
 843   return size+2;
 844 }
 845 
 846 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 847                                  int offset, int size, outputStream* st ) {
 848   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 849     if( cbuf ) {
 850       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 851       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 852 #ifndef PRODUCT
 853     } else if( !do_size ) {
 854       if( size != 0 ) st->print("\n\t");
 855       st->print("FLD    %s",Matcher::regName[src_lo]);
 856 #endif
 857     }
 858     size += 2;
 859   }
 860 
 861   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 862   const char *op_str;
 863   int op;
 864   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 865     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 866     op = 0xDD;
 867   } else {                   // 32-bit store
 868     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 869     op = 0xD9;
 870     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 871   }
 872 
 873   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 874 }
 875 
 876 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 877 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 878                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 879 
 880 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 881                             int stack_offset, int reg, uint ireg, outputStream* st);
 882 
 883 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 884                                      int dst_offset, uint ireg, outputStream* st) {
 885   int calc_size = 0;
 886   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 887   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 888   switch (ireg) {
 889   case Op_VecS:
 890     calc_size = 3+src_offset_size + 3+dst_offset_size;
 891     break;
 892   case Op_VecD:
 893     calc_size = 3+src_offset_size + 3+dst_offset_size;
 894     src_offset += 4;
 895     dst_offset += 4;
 896     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 897     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 898     calc_size += 3+src_offset_size + 3+dst_offset_size;
 899     break;
 900   case Op_VecX:
 901     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 902     break;
 903   case Op_VecY:
 904     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 905     break;
 906   default:
 907     ShouldNotReachHere();
 908   }
 909   if (cbuf) {
 910     MacroAssembler _masm(cbuf);
 911     int offset = __ offset();
 912     switch (ireg) {
 913     case Op_VecS:
 914       __ pushl(Address(rsp, src_offset));
 915       __ popl (Address(rsp, dst_offset));
 916       break;
 917     case Op_VecD:
 918       __ pushl(Address(rsp, src_offset));
 919       __ popl (Address(rsp, dst_offset));
 920       __ pushl(Address(rsp, src_offset+4));
 921       __ popl (Address(rsp, dst_offset+4));
 922       break;
 923     case Op_VecX:
 924       __ movdqu(Address(rsp, -16), xmm0);
 925       __ movdqu(xmm0, Address(rsp, src_offset));
 926       __ movdqu(Address(rsp, dst_offset), xmm0);
 927       __ movdqu(xmm0, Address(rsp, -16));
 928       break;
 929     case Op_VecY:
 930       __ vmovdqu(Address(rsp, -32), xmm0);
 931       __ vmovdqu(xmm0, Address(rsp, src_offset));
 932       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 933       __ vmovdqu(xmm0, Address(rsp, -32));
 934       break;
 935     default:
 936       ShouldNotReachHere();
 937     }
 938     int size = __ offset() - offset;
 939     assert(size == calc_size, "incorrect size calculattion");
 940     return size;
 941 #ifndef PRODUCT
 942   } else if (!do_size) {
 943     switch (ireg) {
 944     case Op_VecS:
 945       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 946                 "popl    [rsp + #%d]",
 947                 src_offset, dst_offset);
 948       break;
 949     case Op_VecD:
 950       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 951                 "popq    [rsp + #%d]\n\t"
 952                 "pushl   [rsp + #%d]\n\t"
 953                 "popq    [rsp + #%d]",
 954                 src_offset, dst_offset, src_offset+4, dst_offset+4);
 955       break;
 956      case Op_VecX:
 957       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
 958                 "movdqu  xmm0, [rsp + #%d]\n\t"
 959                 "movdqu  [rsp + #%d], xmm0\n\t"
 960                 "movdqu  xmm0, [rsp - #16]",
 961                 src_offset, dst_offset);
 962       break;
 963     case Op_VecY:
 964       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 965                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 966                 "vmovdqu [rsp + #%d], xmm0\n\t"
 967                 "vmovdqu xmm0, [rsp - #32]",
 968                 src_offset, dst_offset);
 969       break;
 970     default:
 971       ShouldNotReachHere();
 972     }
 973 #endif
 974   }
 975   return calc_size;
 976 }
 977 
 978 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 979   // Get registers to move
 980   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 981   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 982   OptoReg::Name dst_second = ra_->get_reg_second(this );
 983   OptoReg::Name dst_first = ra_->get_reg_first(this );
 984 
 985   enum RC src_second_rc = rc_class(src_second);
 986   enum RC src_first_rc = rc_class(src_first);
 987   enum RC dst_second_rc = rc_class(dst_second);
 988   enum RC dst_first_rc = rc_class(dst_first);
 989 
 990   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 991 
 992   // Generate spill code!
 993   int size = 0;
 994 
 995   if( src_first == dst_first && src_second == dst_second )
 996     return size;            // Self copy, no move
 997 
 998   if (bottom_type()->isa_vect() != NULL) {
 999     uint ireg = ideal_reg();
1000     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1001     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
1002     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1003     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1004       // mem -> mem
1005       int src_offset = ra_->reg2offset(src_first);
1006       int dst_offset = ra_->reg2offset(dst_first);
1007       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
1008     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1009       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
1010     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1011       int stack_offset = ra_->reg2offset(dst_first);
1012       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
1013     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
1014       int stack_offset = ra_->reg2offset(src_first);
1015       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1016     } else {
1017       ShouldNotReachHere();
1018     }
1019   }
1020 
1021   // --------------------------------------
1022   // Check for mem-mem move.  push/pop to move.
1023   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1024     if( src_second == dst_first ) { // overlapping stack copy ranges
1025       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1026       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1027       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1028       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1029     }
1030     // move low bits
1031     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1032     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1033     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1034       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1035       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1036     }
1037     return size;
1038   }
1039 
1040   // --------------------------------------
1041   // Check for integer reg-reg copy
1042   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1043     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1044 
1045   // Check for integer store
1046   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1047     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1048 
1049   // Check for integer load
1050   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1051     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1052 
1053   // Check for integer reg-xmm reg copy
1054   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1055     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1056             "no 64 bit integer-float reg moves" );
1057     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1058   }
1059   // --------------------------------------
1060   // Check for float reg-reg copy
1061   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1062     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1063             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1064     if( cbuf ) {
1065 
1066       // Note the mucking with the register encode to compensate for the 0/1
1067       // indexing issue mentioned in a comment in the reg_def sections
1068       // for FPR registers many lines above here.
1069 
1070       if( src_first != FPR1L_num ) {
1071         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1072         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1073         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1074         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1075      } else {
1076         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1077         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1078      }
1079 #ifndef PRODUCT
1080     } else if( !do_size ) {
1081       if( size != 0 ) st->print("\n\t");
1082       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1083       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1084 #endif
1085     }
1086     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1087   }
1088 
1089   // Check for float store
1090   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1091     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1092   }
1093 
1094   // Check for float load
1095   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1096     int offset = ra_->reg2offset(src_first);
1097     const char *op_str;
1098     int op;
1099     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1100       op_str = "FLD_D";
1101       op = 0xDD;
1102     } else {                   // 32-bit load
1103       op_str = "FLD_S";
1104       op = 0xD9;
1105       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1106     }
1107     if( cbuf ) {
1108       emit_opcode  (*cbuf, op );
1109       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1110       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1111       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1112 #ifndef PRODUCT
1113     } else if( !do_size ) {
1114       if( size != 0 ) st->print("\n\t");
1115       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1116 #endif
1117     }
1118     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1119     return size + 3+offset_size+2;
1120   }
1121 
1122   // Check for xmm reg-reg copy
1123   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1124     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1125             (src_first+1 == src_second && dst_first+1 == dst_second),
1126             "no non-adjacent float-moves" );
1127     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1128   }
1129 
1130   // Check for xmm reg-integer reg copy
1131   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1132     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1133             "no 64 bit float-integer reg moves" );
1134     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1135   }
1136 
1137   // Check for xmm store
1138   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1139     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1140   }
1141 
1142   // Check for float xmm load
1143   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1144     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1145   }
1146 
1147   // Copy from float reg to xmm reg
1148   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1149     // copy to the top of stack from floating point reg
1150     // and use LEA to preserve flags
1151     if( cbuf ) {
1152       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1153       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1154       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1155       emit_d8(*cbuf,0xF8);
1156 #ifndef PRODUCT
1157     } else if( !do_size ) {
1158       if( size != 0 ) st->print("\n\t");
1159       st->print("LEA    ESP,[ESP-8]");
1160 #endif
1161     }
1162     size += 4;
1163 
1164     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1165 
1166     // Copy from the temp memory to the xmm reg.
1167     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1168 
1169     if( cbuf ) {
1170       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1171       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1172       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1173       emit_d8(*cbuf,0x08);
1174 #ifndef PRODUCT
1175     } else if( !do_size ) {
1176       if( size != 0 ) st->print("\n\t");
1177       st->print("LEA    ESP,[ESP+8]");
1178 #endif
1179     }
1180     size += 4;
1181     return size;
1182   }
1183 
1184   assert( size > 0, "missed a case" );
1185 
1186   // --------------------------------------------------------------------
1187   // Check for second bits still needing moving.
1188   if( src_second == dst_second )
1189     return size;               // Self copy; no move
1190   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1191 
1192   // Check for second word int-int move
1193   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1194     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1195 
1196   // Check for second word integer store
1197   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1198     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1199 
1200   // Check for second word integer load
1201   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1202     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1203 
1204 
1205   Unimplemented();
1206 }
1207 
1208 #ifndef PRODUCT
1209 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1210   implementation( NULL, ra_, false, st );
1211 }
1212 #endif
1213 
1214 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1215   implementation( &cbuf, ra_, false, NULL );
1216 }
1217 
1218 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1219   return implementation( NULL, ra_, true, NULL );
1220 }
1221 
1222 
1223 //=============================================================================
1224 #ifndef PRODUCT
1225 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1226   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1227   int reg = ra_->get_reg_first(this);
1228   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1229 }
1230 #endif
1231 
1232 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1233   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1234   int reg = ra_->get_encode(this);
1235   if( offset >= 128 ) {
1236     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1237     emit_rm(cbuf, 0x2, reg, 0x04);
1238     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1239     emit_d32(cbuf, offset);
1240   }
1241   else {
1242     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1243     emit_rm(cbuf, 0x1, reg, 0x04);
1244     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1245     emit_d8(cbuf, offset);
1246   }
1247 }
1248 
1249 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1250   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1251   if( offset >= 128 ) {
1252     return 7;
1253   }
1254   else {
1255     return 4;
1256   }
1257 }
1258 
1259 //=============================================================================
1260 #ifndef PRODUCT
1261 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1262   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1263   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1264   st->print_cr("\tNOP");
1265   st->print_cr("\tNOP");
1266   if( !OptoBreakpoint )
1267     st->print_cr("\tNOP");
1268 }
1269 #endif
1270 
1271 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1272   MacroAssembler masm(&cbuf);
1273 #ifdef ASSERT
1274   uint insts_size = cbuf.insts_size();
1275 #endif
1276   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1277   masm.jump_cc(Assembler::notEqual,
1278                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1279   /* WARNING these NOPs are critical so that verified entry point is properly
1280      aligned for patching by NativeJump::patch_verified_entry() */
1281   int nops_cnt = 2;
1282   if( !OptoBreakpoint ) // Leave space for int3
1283      nops_cnt += 1;
1284   masm.nop(nops_cnt);
1285 
1286   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1287 }
1288 
1289 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1290   return OptoBreakpoint ? 11 : 12;
1291 }
1292 
1293 
1294 //=============================================================================
1295 uint size_exception_handler() {
1296   // NativeCall instruction size is the same as NativeJump.
1297   // exception handler starts out as jump and can be patched to
1298   // a call be deoptimization.  (4932387)
1299   // Note that this value is also credited (in output.cpp) to
1300   // the size of the code section.
1301   return NativeJump::instruction_size;
1302 }
1303 
1304 // Emit exception handler code.  Stuff framesize into a register
1305 // and call a VM stub routine.
1306 int emit_exception_handler(CodeBuffer& cbuf) {
1307 
1308   // Note that the code buffer's insts_mark is always relative to insts.
1309   // That's why we must use the macroassembler to generate a handler.
1310   MacroAssembler _masm(&cbuf);
1311   address base =
1312   __ start_a_stub(size_exception_handler());
1313   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1314   int offset = __ offset();
1315   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1316   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1317   __ end_a_stub();
1318   return offset;
1319 }
1320 
1321 uint size_deopt_handler() {
1322   // NativeCall instruction size is the same as NativeJump.
1323   // exception handler starts out as jump and can be patched to
1324   // a call be deoptimization.  (4932387)
1325   // Note that this value is also credited (in output.cpp) to
1326   // the size of the code section.
1327   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1328 }
1329 
1330 // Emit deopt handler code.
1331 int emit_deopt_handler(CodeBuffer& cbuf) {
1332 
1333   // Note that the code buffer's insts_mark is always relative to insts.
1334   // That's why we must use the macroassembler to generate a handler.
1335   MacroAssembler _masm(&cbuf);
1336   address base =
1337   __ start_a_stub(size_exception_handler());
1338   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1339   int offset = __ offset();
1340   InternalAddress here(__ pc());
1341   __ pushptr(here.addr());
1342 
1343   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1344   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1345   __ end_a_stub();
1346   return offset;
1347 }
1348 
1349 int Matcher::regnum_to_fpu_offset(int regnum) {
1350   return regnum - 32; // The FP registers are in the second chunk
1351 }
1352 
1353 // This is UltraSparc specific, true just means we have fast l2f conversion
1354 const bool Matcher::convL2FSupported(void) {
1355   return true;
1356 }
1357 
1358 // Is this branch offset short enough that a short branch can be used?
1359 //
1360 // NOTE: If the platform does not provide any short branch variants, then
1361 //       this method should return false for offset 0.
1362 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1363   // The passed offset is relative to address of the branch.
1364   // On 86 a branch displacement is calculated relative to address
1365   // of a next instruction.
1366   offset -= br_size;
1367 
1368   // the short version of jmpConUCF2 contains multiple branches,
1369   // making the reach slightly less
1370   if (rule == jmpConUCF2_rule)
1371     return (-126 <= offset && offset <= 125);
1372   return (-128 <= offset && offset <= 127);
1373 }
1374 
1375 const bool Matcher::isSimpleConstant64(jlong value) {
1376   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1377   return false;
1378 }
1379 
1380 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1381 const bool Matcher::init_array_count_is_in_bytes = false;
1382 
1383 // Threshold size for cleararray.
1384 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1385 
1386 // Needs 2 CMOV's for longs.
1387 const int Matcher::long_cmove_cost() { return 1; }
1388 
1389 // No CMOVF/CMOVD with SSE/SSE2
1390 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1391 
1392 // Should the Matcher clone shifts on addressing modes, expecting them to
1393 // be subsumed into complex addressing expressions or compute them into
1394 // registers?  True for Intel but false for most RISCs
1395 const bool Matcher::clone_shift_expressions = true;
1396 
1397 // Do we need to mask the count passed to shift instructions or does
1398 // the cpu only look at the lower 5/6 bits anyway?
1399 const bool Matcher::need_masked_shift_count = false;
1400 
1401 bool Matcher::narrow_oop_use_complex_address() {
1402   ShouldNotCallThis();
1403   return true;
1404 }
1405 
1406 bool Matcher::narrow_klass_use_complex_address() {
1407   ShouldNotCallThis();
1408   return true;
1409 }
1410 
1411 
1412 // Is it better to copy float constants, or load them directly from memory?
1413 // Intel can load a float constant from a direct address, requiring no
1414 // extra registers.  Most RISCs will have to materialize an address into a
1415 // register first, so they would do better to copy the constant from stack.
1416 const bool Matcher::rematerialize_float_constants = true;
1417 
1418 // If CPU can load and store mis-aligned doubles directly then no fixup is
1419 // needed.  Else we split the double into 2 integer pieces and move it
1420 // piece-by-piece.  Only happens when passing doubles into C code as the
1421 // Java calling convention forces doubles to be aligned.
1422 const bool Matcher::misaligned_doubles_ok = true;
1423 
1424 
1425 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1426   // Get the memory operand from the node
1427   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1428   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1429   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1430   uint opcnt     = 1;                 // First operand
1431   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1432   while( idx >= skipped+num_edges ) {
1433     skipped += num_edges;
1434     opcnt++;                          // Bump operand count
1435     assert( opcnt < numopnds, "Accessing non-existent operand" );
1436     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1437   }
1438 
1439   MachOper *memory = node->_opnds[opcnt];
1440   MachOper *new_memory = NULL;
1441   switch (memory->opcode()) {
1442   case DIRECT:
1443   case INDOFFSET32X:
1444     // No transformation necessary.
1445     return;
1446   case INDIRECT:
1447     new_memory = new (C) indirect_win95_safeOper( );
1448     break;
1449   case INDOFFSET8:
1450     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1451     break;
1452   case INDOFFSET32:
1453     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1454     break;
1455   case INDINDEXOFFSET:
1456     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1457     break;
1458   case INDINDEXSCALE:
1459     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1460     break;
1461   case INDINDEXSCALEOFFSET:
1462     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1463     break;
1464   case LOAD_LONG_INDIRECT:
1465   case LOAD_LONG_INDOFFSET32:
1466     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1467     return;
1468   default:
1469     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1470     return;
1471   }
1472   node->_opnds[opcnt] = new_memory;
1473 }
1474 
1475 // Advertise here if the CPU requires explicit rounding operations
1476 // to implement the UseStrictFP mode.
1477 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1478 
1479 // Are floats conerted to double when stored to stack during deoptimization?
1480 // On x32 it is stored with convertion only when FPU is used for floats.
1481 bool Matcher::float_in_double() { return (UseSSE == 0); }
1482 
1483 // Do ints take an entire long register or just half?
1484 const bool Matcher::int_in_long = false;
1485 
1486 // Return whether or not this register is ever used as an argument.  This
1487 // function is used on startup to build the trampoline stubs in generateOptoStub.
1488 // Registers not mentioned will be killed by the VM call in the trampoline, and
1489 // arguments in those registers not be available to the callee.
1490 bool Matcher::can_be_java_arg( int reg ) {
1491   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1492   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1493   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1494   return false;
1495 }
1496 
1497 bool Matcher::is_spillable_arg( int reg ) {
1498   return can_be_java_arg(reg);
1499 }
1500 
1501 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1502   // Use hardware integer DIV instruction when
1503   // it is faster than a code which use multiply.
1504   // Only when constant divisor fits into 32 bit
1505   // (min_jint is excluded to get only correct
1506   // positive 32 bit values from negative).
1507   return VM_Version::has_fast_idiv() &&
1508          (divisor == (int)divisor && divisor != min_jint);
1509 }
1510 
1511 // Register for DIVI projection of divmodI
1512 RegMask Matcher::divI_proj_mask() {
1513   return EAX_REG_mask();
1514 }
1515 
1516 // Register for MODI projection of divmodI
1517 RegMask Matcher::modI_proj_mask() {
1518   return EDX_REG_mask();
1519 }
1520 
1521 // Register for DIVL projection of divmodL
1522 RegMask Matcher::divL_proj_mask() {
1523   ShouldNotReachHere();
1524   return RegMask();
1525 }
1526 
1527 // Register for MODL projection of divmodL
1528 RegMask Matcher::modL_proj_mask() {
1529   ShouldNotReachHere();
1530   return RegMask();
1531 }
1532 
1533 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1534   return EBP_REG_mask();
1535 }
1536 
1537 const RegMask Matcher::mathExactI_result_proj_mask() {
1538   return EAX_REG_mask();
1539 }
1540 
1541 const RegMask Matcher::mathExactL_result_proj_mask() {
1542   ShouldNotReachHere();
1543   return RegMask();
1544 }
1545 
1546 const RegMask Matcher::mathExactI_flags_proj_mask() {
1547   return INT_FLAGS_mask();
1548 }
1549 
1550 // Returns true if the high 32 bits of the value is known to be zero.
1551 bool is_operand_hi32_zero(Node* n) {
1552   int opc = n->Opcode();
1553   if (opc == Op_AndL) {
1554     Node* o2 = n->in(2);
1555     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1556       return true;
1557     }
1558   }
1559   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1560     return true;
1561   }
1562   return false;
1563 }
1564 
1565 %}
1566 
1567 //----------ENCODING BLOCK-----------------------------------------------------
1568 // This block specifies the encoding classes used by the compiler to output
1569 // byte streams.  Encoding classes generate functions which are called by
1570 // Machine Instruction Nodes in order to generate the bit encoding of the
1571 // instruction.  Operands specify their base encoding interface with the
1572 // interface keyword.  There are currently supported four interfaces,
1573 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1574 // operand to generate a function which returns its register number when
1575 // queried.   CONST_INTER causes an operand to generate a function which
1576 // returns the value of the constant when queried.  MEMORY_INTER causes an
1577 // operand to generate four functions which return the Base Register, the
1578 // Index Register, the Scale Value, and the Offset Value of the operand when
1579 // queried.  COND_INTER causes an operand to generate six functions which
1580 // return the encoding code (ie - encoding bits for the instruction)
1581 // associated with each basic boolean condition for a conditional instruction.
1582 // Instructions specify two basic values for encoding.  They use the
1583 // ins_encode keyword to specify their encoding class (which must be one of
1584 // the class names specified in the encoding block), and they use the
1585 // opcode keyword to specify, in order, their primary, secondary, and
1586 // tertiary opcode.  Only the opcode sections which a particular instruction
1587 // needs for encoding need to be specified.
1588 encode %{
1589   // Build emit functions for each basic byte or larger field in the intel
1590   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1591   // code in the enc_class source block.  Emit functions will live in the
1592   // main source block for now.  In future, we can generalize this by
1593   // adding a syntax that specifies the sizes of fields in an order,
1594   // so that the adlc can build the emit functions automagically
1595 
1596   // Emit primary opcode
1597   enc_class OpcP %{
1598     emit_opcode(cbuf, $primary);
1599   %}
1600 
1601   // Emit secondary opcode
1602   enc_class OpcS %{
1603     emit_opcode(cbuf, $secondary);
1604   %}
1605 
1606   // Emit opcode directly
1607   enc_class Opcode(immI d8) %{
1608     emit_opcode(cbuf, $d8$$constant);
1609   %}
1610 
1611   enc_class SizePrefix %{
1612     emit_opcode(cbuf,0x66);
1613   %}
1614 
1615   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1616     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1617   %}
1618 
1619   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1620     emit_opcode(cbuf,$opcode$$constant);
1621     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1622   %}
1623 
1624   enc_class mov_r32_imm0( rRegI dst ) %{
1625     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1626     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1627   %}
1628 
1629   enc_class cdq_enc %{
1630     // Full implementation of Java idiv and irem; checks for
1631     // special case as described in JVM spec., p.243 & p.271.
1632     //
1633     //         normal case                           special case
1634     //
1635     // input : rax,: dividend                         min_int
1636     //         reg: divisor                          -1
1637     //
1638     // output: rax,: quotient  (= rax, idiv reg)       min_int
1639     //         rdx: remainder (= rax, irem reg)       0
1640     //
1641     //  Code sequnce:
1642     //
1643     //  81 F8 00 00 00 80    cmp         rax,80000000h
1644     //  0F 85 0B 00 00 00    jne         normal_case
1645     //  33 D2                xor         rdx,edx
1646     //  83 F9 FF             cmp         rcx,0FFh
1647     //  0F 84 03 00 00 00    je          done
1648     //                  normal_case:
1649     //  99                   cdq
1650     //  F7 F9                idiv        rax,ecx
1651     //                  done:
1652     //
1653     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1654     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1655     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1656     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1657     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1658     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1659     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1660     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1661     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1662     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1663     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1664     // normal_case:
1665     emit_opcode(cbuf,0x99);                                         // cdq
1666     // idiv (note: must be emitted by the user of this rule)
1667     // normal:
1668   %}
1669 
1670   // Dense encoding for older common ops
1671   enc_class Opc_plus(immI opcode, rRegI reg) %{
1672     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1673   %}
1674 
1675 
1676   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1677   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1678     // Check for 8-bit immediate, and set sign extend bit in opcode
1679     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1680       emit_opcode(cbuf, $primary | 0x02);
1681     }
1682     else {                          // If 32-bit immediate
1683       emit_opcode(cbuf, $primary);
1684     }
1685   %}
1686 
1687   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1688     // Emit primary opcode and set sign-extend bit
1689     // Check for 8-bit immediate, and set sign extend bit in opcode
1690     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1691       emit_opcode(cbuf, $primary | 0x02);    }
1692     else {                          // If 32-bit immediate
1693       emit_opcode(cbuf, $primary);
1694     }
1695     // Emit r/m byte with secondary opcode, after primary opcode.
1696     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1697   %}
1698 
1699   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1700     // Check for 8-bit immediate, and set sign extend bit in opcode
1701     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1702       $$$emit8$imm$$constant;
1703     }
1704     else {                          // If 32-bit immediate
1705       // Output immediate
1706       $$$emit32$imm$$constant;
1707     }
1708   %}
1709 
1710   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1711     // Emit primary opcode and set sign-extend bit
1712     // Check for 8-bit immediate, and set sign extend bit in opcode
1713     int con = (int)$imm$$constant; // Throw away top bits
1714     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1715     // Emit r/m byte with secondary opcode, after primary opcode.
1716     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1717     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1718     else                               emit_d32(cbuf,con);
1719   %}
1720 
1721   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1722     // Emit primary opcode and set sign-extend bit
1723     // Check for 8-bit immediate, and set sign extend bit in opcode
1724     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1725     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1726     // Emit r/m byte with tertiary opcode, after primary opcode.
1727     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1728     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1729     else                               emit_d32(cbuf,con);
1730   %}
1731 
1732   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1733     emit_cc(cbuf, $secondary, $dst$$reg );
1734   %}
1735 
1736   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1737     int destlo = $dst$$reg;
1738     int desthi = HIGH_FROM_LOW(destlo);
1739     // bswap lo
1740     emit_opcode(cbuf, 0x0F);
1741     emit_cc(cbuf, 0xC8, destlo);
1742     // bswap hi
1743     emit_opcode(cbuf, 0x0F);
1744     emit_cc(cbuf, 0xC8, desthi);
1745     // xchg lo and hi
1746     emit_opcode(cbuf, 0x87);
1747     emit_rm(cbuf, 0x3, destlo, desthi);
1748   %}
1749 
1750   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1751     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1752   %}
1753 
1754   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1755     $$$emit8$primary;
1756     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1757   %}
1758 
1759   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1760     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1761     emit_d8(cbuf, op >> 8 );
1762     emit_d8(cbuf, op & 255);
1763   %}
1764 
1765   // emulate a CMOV with a conditional branch around a MOV
1766   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1767     // Invert sense of branch from sense of CMOV
1768     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1769     emit_d8( cbuf, $brOffs$$constant );
1770   %}
1771 
1772   enc_class enc_PartialSubtypeCheck( ) %{
1773     Register Redi = as_Register(EDI_enc); // result register
1774     Register Reax = as_Register(EAX_enc); // super class
1775     Register Recx = as_Register(ECX_enc); // killed
1776     Register Resi = as_Register(ESI_enc); // sub class
1777     Label miss;
1778 
1779     MacroAssembler _masm(&cbuf);
1780     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1781                                      NULL, &miss,
1782                                      /*set_cond_codes:*/ true);
1783     if ($primary) {
1784       __ xorptr(Redi, Redi);
1785     }
1786     __ bind(miss);
1787   %}
1788 
1789   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1790     MacroAssembler masm(&cbuf);
1791     int start = masm.offset();
1792     if (UseSSE >= 2) {
1793       if (VerifyFPU) {
1794         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1795       }
1796     } else {
1797       // External c_calling_convention expects the FPU stack to be 'clean'.
1798       // Compiled code leaves it dirty.  Do cleanup now.
1799       masm.empty_FPU_stack();
1800     }
1801     if (sizeof_FFree_Float_Stack_All == -1) {
1802       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1803     } else {
1804       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1805     }
1806   %}
1807 
1808   enc_class Verify_FPU_For_Leaf %{
1809     if( VerifyFPU ) {
1810       MacroAssembler masm(&cbuf);
1811       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1812     }
1813   %}
1814 
1815   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1816     // This is the instruction starting address for relocation info.
1817     cbuf.set_insts_mark();
1818     $$$emit8$primary;
1819     // CALL directly to the runtime
1820     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1821                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1822 
1823     if (UseSSE >= 2) {
1824       MacroAssembler _masm(&cbuf);
1825       BasicType rt = tf()->return_type();
1826 
1827       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1828         // A C runtime call where the return value is unused.  In SSE2+
1829         // mode the result needs to be removed from the FPU stack.  It's
1830         // likely that this function call could be removed by the
1831         // optimizer if the C function is a pure function.
1832         __ ffree(0);
1833       } else if (rt == T_FLOAT) {
1834         __ lea(rsp, Address(rsp, -4));
1835         __ fstp_s(Address(rsp, 0));
1836         __ movflt(xmm0, Address(rsp, 0));
1837         __ lea(rsp, Address(rsp,  4));
1838       } else if (rt == T_DOUBLE) {
1839         __ lea(rsp, Address(rsp, -8));
1840         __ fstp_d(Address(rsp, 0));
1841         __ movdbl(xmm0, Address(rsp, 0));
1842         __ lea(rsp, Address(rsp,  8));
1843       }
1844     }
1845   %}
1846 
1847 
1848   enc_class pre_call_resets %{
1849     // If method sets FPU control word restore it here
1850     debug_only(int off0 = cbuf.insts_size());
1851     if (ra_->C->in_24_bit_fp_mode()) {
1852       MacroAssembler _masm(&cbuf);
1853       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1854     }
1855     if (ra_->C->max_vector_size() > 16) {
1856       // Clear upper bits of YMM registers when current compiled code uses
1857       // wide vectors to avoid AVX <-> SSE transition penalty during call.
1858       MacroAssembler _masm(&cbuf);
1859       __ vzeroupper();
1860     }
1861     debug_only(int off1 = cbuf.insts_size());
1862     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
1863   %}
1864 
1865   enc_class post_call_FPU %{
1866     // If method sets FPU control word do it here also
1867     if (Compile::current()->in_24_bit_fp_mode()) {
1868       MacroAssembler masm(&cbuf);
1869       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1870     }
1871   %}
1872 
1873   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1874     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1875     // who we intended to call.
1876     cbuf.set_insts_mark();
1877     $$$emit8$primary;
1878     if (!_method) {
1879       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1880                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1881     } else if (_optimized_virtual) {
1882       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1883                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1884     } else {
1885       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1886                      static_call_Relocation::spec(), RELOC_IMM32 );
1887     }
1888     if (_method) {  // Emit stub for static call.
1889       CompiledStaticCall::emit_to_interp_stub(cbuf);
1890     }
1891   %}
1892 
1893   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1894     MacroAssembler _masm(&cbuf);
1895     __ ic_call((address)$meth$$method);
1896   %}
1897 
1898   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1899     int disp = in_bytes(Method::from_compiled_offset());
1900     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1901 
1902     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1903     cbuf.set_insts_mark();
1904     $$$emit8$primary;
1905     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1906     emit_d8(cbuf, disp);             // Displacement
1907 
1908   %}
1909 
1910 //   Following encoding is no longer used, but may be restored if calling
1911 //   convention changes significantly.
1912 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1913 //
1914 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1915 //     // int ic_reg     = Matcher::inline_cache_reg();
1916 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1917 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1918 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1919 //
1920 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1921 //     // // so we load it immediately before the call
1922 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1923 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1924 //
1925 //     // xor rbp,ebp
1926 //     emit_opcode(cbuf, 0x33);
1927 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1928 //
1929 //     // CALL to interpreter.
1930 //     cbuf.set_insts_mark();
1931 //     $$$emit8$primary;
1932 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1933 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1934 //   %}
1935 
1936   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1937     $$$emit8$primary;
1938     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1939     $$$emit8$shift$$constant;
1940   %}
1941 
1942   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1943     // Load immediate does not have a zero or sign extended version
1944     // for 8-bit immediates
1945     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1946     $$$emit32$src$$constant;
1947   %}
1948 
1949   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1950     // Load immediate does not have a zero or sign extended version
1951     // for 8-bit immediates
1952     emit_opcode(cbuf, $primary + $dst$$reg);
1953     $$$emit32$src$$constant;
1954   %}
1955 
1956   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1957     // Load immediate does not have a zero or sign extended version
1958     // for 8-bit immediates
1959     int dst_enc = $dst$$reg;
1960     int src_con = $src$$constant & 0x0FFFFFFFFL;
1961     if (src_con == 0) {
1962       // xor dst, dst
1963       emit_opcode(cbuf, 0x33);
1964       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1965     } else {
1966       emit_opcode(cbuf, $primary + dst_enc);
1967       emit_d32(cbuf, src_con);
1968     }
1969   %}
1970 
1971   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1972     // Load immediate does not have a zero or sign extended version
1973     // for 8-bit immediates
1974     int dst_enc = $dst$$reg + 2;
1975     int src_con = ((julong)($src$$constant)) >> 32;
1976     if (src_con == 0) {
1977       // xor dst, dst
1978       emit_opcode(cbuf, 0x33);
1979       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1980     } else {
1981       emit_opcode(cbuf, $primary + dst_enc);
1982       emit_d32(cbuf, src_con);
1983     }
1984   %}
1985 
1986 
1987   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1988   enc_class enc_Copy( rRegI dst, rRegI src ) %{
1989     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1990   %}
1991 
1992   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
1993     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1994   %}
1995 
1996   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1997     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1998   %}
1999 
2000   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2001     $$$emit8$primary;
2002     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2003   %}
2004 
2005   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2006     $$$emit8$secondary;
2007     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2008   %}
2009 
2010   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2011     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2012   %}
2013 
2014   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2015     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2016   %}
2017 
2018   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2019     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2020   %}
2021 
2022   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2023     // Output immediate
2024     $$$emit32$src$$constant;
2025   %}
2026 
2027   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2028     // Output Float immediate bits
2029     jfloat jf = $src$$constant;
2030     int    jf_as_bits = jint_cast( jf );
2031     emit_d32(cbuf, jf_as_bits);
2032   %}
2033 
2034   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2035     // Output Float immediate bits
2036     jfloat jf = $src$$constant;
2037     int    jf_as_bits = jint_cast( jf );
2038     emit_d32(cbuf, jf_as_bits);
2039   %}
2040 
2041   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2042     // Output immediate
2043     $$$emit16$src$$constant;
2044   %}
2045 
2046   enc_class Con_d32(immI src) %{
2047     emit_d32(cbuf,$src$$constant);
2048   %}
2049 
2050   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2051     // Output immediate memory reference
2052     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2053     emit_d32(cbuf, 0x00);
2054   %}
2055 
2056   enc_class lock_prefix( ) %{
2057     if( os::is_MP() )
2058       emit_opcode(cbuf,0xF0);         // [Lock]
2059   %}
2060 
2061   // Cmp-xchg long value.
2062   // Note: we need to swap rbx, and rcx before and after the
2063   //       cmpxchg8 instruction because the instruction uses
2064   //       rcx as the high order word of the new value to store but
2065   //       our register encoding uses rbx,.
2066   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2067 
2068     // XCHG  rbx,ecx
2069     emit_opcode(cbuf,0x87);
2070     emit_opcode(cbuf,0xD9);
2071     // [Lock]
2072     if( os::is_MP() )
2073       emit_opcode(cbuf,0xF0);
2074     // CMPXCHG8 [Eptr]
2075     emit_opcode(cbuf,0x0F);
2076     emit_opcode(cbuf,0xC7);
2077     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2078     // XCHG  rbx,ecx
2079     emit_opcode(cbuf,0x87);
2080     emit_opcode(cbuf,0xD9);
2081   %}
2082 
2083   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2084     // [Lock]
2085     if( os::is_MP() )
2086       emit_opcode(cbuf,0xF0);
2087 
2088     // CMPXCHG [Eptr]
2089     emit_opcode(cbuf,0x0F);
2090     emit_opcode(cbuf,0xB1);
2091     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2092   %}
2093 
2094   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2095     int res_encoding = $res$$reg;
2096 
2097     // MOV  res,0
2098     emit_opcode( cbuf, 0xB8 + res_encoding);
2099     emit_d32( cbuf, 0 );
2100     // JNE,s  fail
2101     emit_opcode(cbuf,0x75);
2102     emit_d8(cbuf, 5 );
2103     // MOV  res,1
2104     emit_opcode( cbuf, 0xB8 + res_encoding);
2105     emit_d32( cbuf, 1 );
2106     // fail:
2107   %}
2108 
2109   enc_class set_instruction_start( ) %{
2110     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2111   %}
2112 
2113   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2114     int reg_encoding = $ereg$$reg;
2115     int base  = $mem$$base;
2116     int index = $mem$$index;
2117     int scale = $mem$$scale;
2118     int displace = $mem$$disp;
2119     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2120     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2121   %}
2122 
2123   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2124     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2125     int base  = $mem$$base;
2126     int index = $mem$$index;
2127     int scale = $mem$$scale;
2128     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2129     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2130     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2131   %}
2132 
2133   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2134     int r1, r2;
2135     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2136     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2137     emit_opcode(cbuf,0x0F);
2138     emit_opcode(cbuf,$tertiary);
2139     emit_rm(cbuf, 0x3, r1, r2);
2140     emit_d8(cbuf,$cnt$$constant);
2141     emit_d8(cbuf,$primary);
2142     emit_rm(cbuf, 0x3, $secondary, r1);
2143     emit_d8(cbuf,$cnt$$constant);
2144   %}
2145 
2146   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2147     emit_opcode( cbuf, 0x8B ); // Move
2148     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2149     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2150       emit_d8(cbuf,$primary);
2151       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2152       emit_d8(cbuf,$cnt$$constant-32);
2153     }
2154     emit_d8(cbuf,$primary);
2155     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2156     emit_d8(cbuf,31);
2157   %}
2158 
2159   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2160     int r1, r2;
2161     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2162     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2163 
2164     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2165     emit_rm(cbuf, 0x3, r1, r2);
2166     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2167       emit_opcode(cbuf,$primary);
2168       emit_rm(cbuf, 0x3, $secondary, r1);
2169       emit_d8(cbuf,$cnt$$constant-32);
2170     }
2171     emit_opcode(cbuf,0x33);  // XOR r2,r2
2172     emit_rm(cbuf, 0x3, r2, r2);
2173   %}
2174 
2175   // Clone of RegMem but accepts an extra parameter to access each
2176   // half of a double in memory; it never needs relocation info.
2177   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2178     emit_opcode(cbuf,$opcode$$constant);
2179     int reg_encoding = $rm_reg$$reg;
2180     int base     = $mem$$base;
2181     int index    = $mem$$index;
2182     int scale    = $mem$$scale;
2183     int displace = $mem$$disp + $disp_for_half$$constant;
2184     relocInfo::relocType disp_reloc = relocInfo::none;
2185     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2186   %}
2187 
2188   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2189   //
2190   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2191   // and it never needs relocation information.
2192   // Frequently used to move data between FPU's Stack Top and memory.
2193   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2194     int rm_byte_opcode = $rm_opcode$$constant;
2195     int base     = $mem$$base;
2196     int index    = $mem$$index;
2197     int scale    = $mem$$scale;
2198     int displace = $mem$$disp;
2199     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2200     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2201   %}
2202 
2203   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2204     int rm_byte_opcode = $rm_opcode$$constant;
2205     int base     = $mem$$base;
2206     int index    = $mem$$index;
2207     int scale    = $mem$$scale;
2208     int displace = $mem$$disp;
2209     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2210     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2211   %}
2212 
2213   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2214     int reg_encoding = $dst$$reg;
2215     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2216     int index        = 0x04;            // 0x04 indicates no index
2217     int scale        = 0x00;            // 0x00 indicates no scale
2218     int displace     = $src1$$constant; // 0x00 indicates no displacement
2219     relocInfo::relocType disp_reloc = relocInfo::none;
2220     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2221   %}
2222 
2223   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2224     // Compare dst,src
2225     emit_opcode(cbuf,0x3B);
2226     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2227     // jmp dst < src around move
2228     emit_opcode(cbuf,0x7C);
2229     emit_d8(cbuf,2);
2230     // move dst,src
2231     emit_opcode(cbuf,0x8B);
2232     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2233   %}
2234 
2235   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2236     // Compare dst,src
2237     emit_opcode(cbuf,0x3B);
2238     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2239     // jmp dst > src around move
2240     emit_opcode(cbuf,0x7F);
2241     emit_d8(cbuf,2);
2242     // move dst,src
2243     emit_opcode(cbuf,0x8B);
2244     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2245   %}
2246 
2247   enc_class enc_FPR_store(memory mem, regDPR src) %{
2248     // If src is FPR1, we can just FST to store it.
2249     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2250     int reg_encoding = 0x2; // Just store
2251     int base  = $mem$$base;
2252     int index = $mem$$index;
2253     int scale = $mem$$scale;
2254     int displace = $mem$$disp;
2255     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2256     if( $src$$reg != FPR1L_enc ) {
2257       reg_encoding = 0x3;  // Store & pop
2258       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2259       emit_d8( cbuf, 0xC0-1+$src$$reg );
2260     }
2261     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2262     emit_opcode(cbuf,$primary);
2263     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2264   %}
2265 
2266   enc_class neg_reg(rRegI dst) %{
2267     // NEG $dst
2268     emit_opcode(cbuf,0xF7);
2269     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2270   %}
2271 
2272   enc_class setLT_reg(eCXRegI dst) %{
2273     // SETLT $dst
2274     emit_opcode(cbuf,0x0F);
2275     emit_opcode(cbuf,0x9C);
2276     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2277   %}
2278 
2279   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2280     int tmpReg = $tmp$$reg;
2281 
2282     // SUB $p,$q
2283     emit_opcode(cbuf,0x2B);
2284     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2285     // SBB $tmp,$tmp
2286     emit_opcode(cbuf,0x1B);
2287     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2288     // AND $tmp,$y
2289     emit_opcode(cbuf,0x23);
2290     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2291     // ADD $p,$tmp
2292     emit_opcode(cbuf,0x03);
2293     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2294   %}
2295 
2296   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2297     // TEST shift,32
2298     emit_opcode(cbuf,0xF7);
2299     emit_rm(cbuf, 0x3, 0, ECX_enc);
2300     emit_d32(cbuf,0x20);
2301     // JEQ,s small
2302     emit_opcode(cbuf, 0x74);
2303     emit_d8(cbuf, 0x04);
2304     // MOV    $dst.hi,$dst.lo
2305     emit_opcode( cbuf, 0x8B );
2306     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2307     // CLR    $dst.lo
2308     emit_opcode(cbuf, 0x33);
2309     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2310 // small:
2311     // SHLD   $dst.hi,$dst.lo,$shift
2312     emit_opcode(cbuf,0x0F);
2313     emit_opcode(cbuf,0xA5);
2314     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2315     // SHL    $dst.lo,$shift"
2316     emit_opcode(cbuf,0xD3);
2317     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2318   %}
2319 
2320   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2321     // TEST shift,32
2322     emit_opcode(cbuf,0xF7);
2323     emit_rm(cbuf, 0x3, 0, ECX_enc);
2324     emit_d32(cbuf,0x20);
2325     // JEQ,s small
2326     emit_opcode(cbuf, 0x74);
2327     emit_d8(cbuf, 0x04);
2328     // MOV    $dst.lo,$dst.hi
2329     emit_opcode( cbuf, 0x8B );
2330     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2331     // CLR    $dst.hi
2332     emit_opcode(cbuf, 0x33);
2333     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2334 // small:
2335     // SHRD   $dst.lo,$dst.hi,$shift
2336     emit_opcode(cbuf,0x0F);
2337     emit_opcode(cbuf,0xAD);
2338     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2339     // SHR    $dst.hi,$shift"
2340     emit_opcode(cbuf,0xD3);
2341     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2342   %}
2343 
2344   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2345     // TEST shift,32
2346     emit_opcode(cbuf,0xF7);
2347     emit_rm(cbuf, 0x3, 0, ECX_enc);
2348     emit_d32(cbuf,0x20);
2349     // JEQ,s small
2350     emit_opcode(cbuf, 0x74);
2351     emit_d8(cbuf, 0x05);
2352     // MOV    $dst.lo,$dst.hi
2353     emit_opcode( cbuf, 0x8B );
2354     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2355     // SAR    $dst.hi,31
2356     emit_opcode(cbuf, 0xC1);
2357     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2358     emit_d8(cbuf, 0x1F );
2359 // small:
2360     // SHRD   $dst.lo,$dst.hi,$shift
2361     emit_opcode(cbuf,0x0F);
2362     emit_opcode(cbuf,0xAD);
2363     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2364     // SAR    $dst.hi,$shift"
2365     emit_opcode(cbuf,0xD3);
2366     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2367   %}
2368 
2369 
2370   // ----------------- Encodings for floating point unit -----------------
2371   // May leave result in FPU-TOS or FPU reg depending on opcodes
2372   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2373     $$$emit8$primary;
2374     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2375   %}
2376 
2377   // Pop argument in FPR0 with FSTP ST(0)
2378   enc_class PopFPU() %{
2379     emit_opcode( cbuf, 0xDD );
2380     emit_d8( cbuf, 0xD8 );
2381   %}
2382 
2383   // !!!!! equivalent to Pop_Reg_F
2384   enc_class Pop_Reg_DPR( regDPR dst ) %{
2385     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2386     emit_d8( cbuf, 0xD8+$dst$$reg );
2387   %}
2388 
2389   enc_class Push_Reg_DPR( regDPR dst ) %{
2390     emit_opcode( cbuf, 0xD9 );
2391     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2392   %}
2393 
2394   enc_class strictfp_bias1( regDPR dst ) %{
2395     emit_opcode( cbuf, 0xDB );           // FLD m80real
2396     emit_opcode( cbuf, 0x2D );
2397     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2398     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2399     emit_opcode( cbuf, 0xC8+$dst$$reg );
2400   %}
2401 
2402   enc_class strictfp_bias2( regDPR dst ) %{
2403     emit_opcode( cbuf, 0xDB );           // FLD m80real
2404     emit_opcode( cbuf, 0x2D );
2405     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2406     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2407     emit_opcode( cbuf, 0xC8+$dst$$reg );
2408   %}
2409 
2410   // Special case for moving an integer register to a stack slot.
2411   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2412     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2413   %}
2414 
2415   // Special case for moving a register to a stack slot.
2416   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2417     // Opcode already emitted
2418     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2419     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2420     emit_d32(cbuf, $dst$$disp);   // Displacement
2421   %}
2422 
2423   // Push the integer in stackSlot 'src' onto FP-stack
2424   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2425     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2426   %}
2427 
2428   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2429   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2430     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2431   %}
2432 
2433   // Same as Pop_Mem_F except for opcode
2434   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2435   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2436     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2437   %}
2438 
2439   enc_class Pop_Reg_FPR( regFPR dst ) %{
2440     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2441     emit_d8( cbuf, 0xD8+$dst$$reg );
2442   %}
2443 
2444   enc_class Push_Reg_FPR( regFPR dst ) %{
2445     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2446     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2447   %}
2448 
2449   // Push FPU's float to a stack-slot, and pop FPU-stack
2450   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2451     int pop = 0x02;
2452     if ($src$$reg != FPR1L_enc) {
2453       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2454       emit_d8( cbuf, 0xC0-1+$src$$reg );
2455       pop = 0x03;
2456     }
2457     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2458   %}
2459 
2460   // Push FPU's double to a stack-slot, and pop FPU-stack
2461   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2462     int pop = 0x02;
2463     if ($src$$reg != FPR1L_enc) {
2464       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2465       emit_d8( cbuf, 0xC0-1+$src$$reg );
2466       pop = 0x03;
2467     }
2468     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2469   %}
2470 
2471   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2472   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2473     int pop = 0xD0 - 1; // -1 since we skip FLD
2474     if ($src$$reg != FPR1L_enc) {
2475       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2476       emit_d8( cbuf, 0xC0-1+$src$$reg );
2477       pop = 0xD8;
2478     }
2479     emit_opcode( cbuf, 0xDD );
2480     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2481   %}
2482 
2483 
2484   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2485     // load dst in FPR0
2486     emit_opcode( cbuf, 0xD9 );
2487     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2488     if ($src$$reg != FPR1L_enc) {
2489       // fincstp
2490       emit_opcode (cbuf, 0xD9);
2491       emit_opcode (cbuf, 0xF7);
2492       // swap src with FPR1:
2493       // FXCH FPR1 with src
2494       emit_opcode(cbuf, 0xD9);
2495       emit_d8(cbuf, 0xC8-1+$src$$reg );
2496       // fdecstp
2497       emit_opcode (cbuf, 0xD9);
2498       emit_opcode (cbuf, 0xF6);
2499     }
2500   %}
2501 
2502   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2503     MacroAssembler _masm(&cbuf);
2504     __ subptr(rsp, 8);
2505     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2506     __ fld_d(Address(rsp, 0));
2507     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2508     __ fld_d(Address(rsp, 0));
2509   %}
2510 
2511   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2512     MacroAssembler _masm(&cbuf);
2513     __ subptr(rsp, 4);
2514     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2515     __ fld_s(Address(rsp, 0));
2516     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2517     __ fld_s(Address(rsp, 0));
2518   %}
2519 
2520   enc_class Push_ResultD(regD dst) %{
2521     MacroAssembler _masm(&cbuf);
2522     __ fstp_d(Address(rsp, 0));
2523     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2524     __ addptr(rsp, 8);
2525   %}
2526 
2527   enc_class Push_ResultF(regF dst, immI d8) %{
2528     MacroAssembler _masm(&cbuf);
2529     __ fstp_s(Address(rsp, 0));
2530     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2531     __ addptr(rsp, $d8$$constant);
2532   %}
2533 
2534   enc_class Push_SrcD(regD src) %{
2535     MacroAssembler _masm(&cbuf);
2536     __ subptr(rsp, 8);
2537     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2538     __ fld_d(Address(rsp, 0));
2539   %}
2540 
2541   enc_class push_stack_temp_qword() %{
2542     MacroAssembler _masm(&cbuf);
2543     __ subptr(rsp, 8);
2544   %}
2545 
2546   enc_class pop_stack_temp_qword() %{
2547     MacroAssembler _masm(&cbuf);
2548     __ addptr(rsp, 8);
2549   %}
2550 
2551   enc_class push_xmm_to_fpr1(regD src) %{
2552     MacroAssembler _masm(&cbuf);
2553     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2554     __ fld_d(Address(rsp, 0));
2555   %}
2556 
2557   enc_class Push_Result_Mod_DPR( regDPR src) %{
2558     if ($src$$reg != FPR1L_enc) {
2559       // fincstp
2560       emit_opcode (cbuf, 0xD9);
2561       emit_opcode (cbuf, 0xF7);
2562       // FXCH FPR1 with src
2563       emit_opcode(cbuf, 0xD9);
2564       emit_d8(cbuf, 0xC8-1+$src$$reg );
2565       // fdecstp
2566       emit_opcode (cbuf, 0xD9);
2567       emit_opcode (cbuf, 0xF6);
2568     }
2569     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2570     // // FSTP   FPR$dst$$reg
2571     // emit_opcode( cbuf, 0xDD );
2572     // emit_d8( cbuf, 0xD8+$dst$$reg );
2573   %}
2574 
2575   enc_class fnstsw_sahf_skip_parity() %{
2576     // fnstsw ax
2577     emit_opcode( cbuf, 0xDF );
2578     emit_opcode( cbuf, 0xE0 );
2579     // sahf
2580     emit_opcode( cbuf, 0x9E );
2581     // jnp  ::skip
2582     emit_opcode( cbuf, 0x7B );
2583     emit_opcode( cbuf, 0x05 );
2584   %}
2585 
2586   enc_class emitModDPR() %{
2587     // fprem must be iterative
2588     // :: loop
2589     // fprem
2590     emit_opcode( cbuf, 0xD9 );
2591     emit_opcode( cbuf, 0xF8 );
2592     // wait
2593     emit_opcode( cbuf, 0x9b );
2594     // fnstsw ax
2595     emit_opcode( cbuf, 0xDF );
2596     emit_opcode( cbuf, 0xE0 );
2597     // sahf
2598     emit_opcode( cbuf, 0x9E );
2599     // jp  ::loop
2600     emit_opcode( cbuf, 0x0F );
2601     emit_opcode( cbuf, 0x8A );
2602     emit_opcode( cbuf, 0xF4 );
2603     emit_opcode( cbuf, 0xFF );
2604     emit_opcode( cbuf, 0xFF );
2605     emit_opcode( cbuf, 0xFF );
2606   %}
2607 
2608   enc_class fpu_flags() %{
2609     // fnstsw_ax
2610     emit_opcode( cbuf, 0xDF);
2611     emit_opcode( cbuf, 0xE0);
2612     // test ax,0x0400
2613     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2614     emit_opcode( cbuf, 0xA9 );
2615     emit_d16   ( cbuf, 0x0400 );
2616     // // // This sequence works, but stalls for 12-16 cycles on PPro
2617     // // test rax,0x0400
2618     // emit_opcode( cbuf, 0xA9 );
2619     // emit_d32   ( cbuf, 0x00000400 );
2620     //
2621     // jz exit (no unordered comparison)
2622     emit_opcode( cbuf, 0x74 );
2623     emit_d8    ( cbuf, 0x02 );
2624     // mov ah,1 - treat as LT case (set carry flag)
2625     emit_opcode( cbuf, 0xB4 );
2626     emit_d8    ( cbuf, 0x01 );
2627     // sahf
2628     emit_opcode( cbuf, 0x9E);
2629   %}
2630 
2631   enc_class cmpF_P6_fixup() %{
2632     // Fixup the integer flags in case comparison involved a NaN
2633     //
2634     // JNP exit (no unordered comparison, P-flag is set by NaN)
2635     emit_opcode( cbuf, 0x7B );
2636     emit_d8    ( cbuf, 0x03 );
2637     // MOV AH,1 - treat as LT case (set carry flag)
2638     emit_opcode( cbuf, 0xB4 );
2639     emit_d8    ( cbuf, 0x01 );
2640     // SAHF
2641     emit_opcode( cbuf, 0x9E);
2642     // NOP     // target for branch to avoid branch to branch
2643     emit_opcode( cbuf, 0x90);
2644   %}
2645 
2646 //     fnstsw_ax();
2647 //     sahf();
2648 //     movl(dst, nan_result);
2649 //     jcc(Assembler::parity, exit);
2650 //     movl(dst, less_result);
2651 //     jcc(Assembler::below, exit);
2652 //     movl(dst, equal_result);
2653 //     jcc(Assembler::equal, exit);
2654 //     movl(dst, greater_result);
2655 
2656 // less_result     =  1;
2657 // greater_result  = -1;
2658 // equal_result    = 0;
2659 // nan_result      = -1;
2660 
2661   enc_class CmpF_Result(rRegI dst) %{
2662     // fnstsw_ax();
2663     emit_opcode( cbuf, 0xDF);
2664     emit_opcode( cbuf, 0xE0);
2665     // sahf
2666     emit_opcode( cbuf, 0x9E);
2667     // movl(dst, nan_result);
2668     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2669     emit_d32( cbuf, -1 );
2670     // jcc(Assembler::parity, exit);
2671     emit_opcode( cbuf, 0x7A );
2672     emit_d8    ( cbuf, 0x13 );
2673     // movl(dst, less_result);
2674     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2675     emit_d32( cbuf, -1 );
2676     // jcc(Assembler::below, exit);
2677     emit_opcode( cbuf, 0x72 );
2678     emit_d8    ( cbuf, 0x0C );
2679     // movl(dst, equal_result);
2680     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2681     emit_d32( cbuf, 0 );
2682     // jcc(Assembler::equal, exit);
2683     emit_opcode( cbuf, 0x74 );
2684     emit_d8    ( cbuf, 0x05 );
2685     // movl(dst, greater_result);
2686     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2687     emit_d32( cbuf, 1 );
2688   %}
2689 
2690 
2691   // Compare the longs and set flags
2692   // BROKEN!  Do Not use as-is
2693   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2694     // CMP    $src1.hi,$src2.hi
2695     emit_opcode( cbuf, 0x3B );
2696     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2697     // JNE,s  done
2698     emit_opcode(cbuf,0x75);
2699     emit_d8(cbuf, 2 );
2700     // CMP    $src1.lo,$src2.lo
2701     emit_opcode( cbuf, 0x3B );
2702     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2703 // done:
2704   %}
2705 
2706   enc_class convert_int_long( regL dst, rRegI src ) %{
2707     // mov $dst.lo,$src
2708     int dst_encoding = $dst$$reg;
2709     int src_encoding = $src$$reg;
2710     encode_Copy( cbuf, dst_encoding  , src_encoding );
2711     // mov $dst.hi,$src
2712     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2713     // sar $dst.hi,31
2714     emit_opcode( cbuf, 0xC1 );
2715     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2716     emit_d8(cbuf, 0x1F );
2717   %}
2718 
2719   enc_class convert_long_double( eRegL src ) %{
2720     // push $src.hi
2721     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2722     // push $src.lo
2723     emit_opcode(cbuf, 0x50+$src$$reg  );
2724     // fild 64-bits at [SP]
2725     emit_opcode(cbuf,0xdf);
2726     emit_d8(cbuf, 0x6C);
2727     emit_d8(cbuf, 0x24);
2728     emit_d8(cbuf, 0x00);
2729     // pop stack
2730     emit_opcode(cbuf, 0x83); // add  SP, #8
2731     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2732     emit_d8(cbuf, 0x8);
2733   %}
2734 
2735   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2736     // IMUL   EDX:EAX,$src1
2737     emit_opcode( cbuf, 0xF7 );
2738     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2739     // SAR    EDX,$cnt-32
2740     int shift_count = ((int)$cnt$$constant) - 32;
2741     if (shift_count > 0) {
2742       emit_opcode(cbuf, 0xC1);
2743       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2744       emit_d8(cbuf, shift_count);
2745     }
2746   %}
2747 
2748   // this version doesn't have add sp, 8
2749   enc_class convert_long_double2( eRegL src ) %{
2750     // push $src.hi
2751     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2752     // push $src.lo
2753     emit_opcode(cbuf, 0x50+$src$$reg  );
2754     // fild 64-bits at [SP]
2755     emit_opcode(cbuf,0xdf);
2756     emit_d8(cbuf, 0x6C);
2757     emit_d8(cbuf, 0x24);
2758     emit_d8(cbuf, 0x00);
2759   %}
2760 
2761   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2762     // Basic idea: long = (long)int * (long)int
2763     // IMUL EDX:EAX, src
2764     emit_opcode( cbuf, 0xF7 );
2765     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2766   %}
2767 
2768   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2769     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2770     // MUL EDX:EAX, src
2771     emit_opcode( cbuf, 0xF7 );
2772     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2773   %}
2774 
2775   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2776     // Basic idea: lo(result) = lo(x_lo * y_lo)
2777     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2778     // MOV    $tmp,$src.lo
2779     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2780     // IMUL   $tmp,EDX
2781     emit_opcode( cbuf, 0x0F );
2782     emit_opcode( cbuf, 0xAF );
2783     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2784     // MOV    EDX,$src.hi
2785     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2786     // IMUL   EDX,EAX
2787     emit_opcode( cbuf, 0x0F );
2788     emit_opcode( cbuf, 0xAF );
2789     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2790     // ADD    $tmp,EDX
2791     emit_opcode( cbuf, 0x03 );
2792     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2793     // MUL   EDX:EAX,$src.lo
2794     emit_opcode( cbuf, 0xF7 );
2795     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2796     // ADD    EDX,ESI
2797     emit_opcode( cbuf, 0x03 );
2798     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2799   %}
2800 
2801   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2802     // Basic idea: lo(result) = lo(src * y_lo)
2803     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2804     // IMUL   $tmp,EDX,$src
2805     emit_opcode( cbuf, 0x6B );
2806     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2807     emit_d8( cbuf, (int)$src$$constant );
2808     // MOV    EDX,$src
2809     emit_opcode(cbuf, 0xB8 + EDX_enc);
2810     emit_d32( cbuf, (int)$src$$constant );
2811     // MUL   EDX:EAX,EDX
2812     emit_opcode( cbuf, 0xF7 );
2813     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2814     // ADD    EDX,ESI
2815     emit_opcode( cbuf, 0x03 );
2816     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2817   %}
2818 
2819   enc_class long_div( eRegL src1, eRegL src2 ) %{
2820     // PUSH src1.hi
2821     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2822     // PUSH src1.lo
2823     emit_opcode(cbuf,               0x50+$src1$$reg  );
2824     // PUSH src2.hi
2825     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2826     // PUSH src2.lo
2827     emit_opcode(cbuf,               0x50+$src2$$reg  );
2828     // CALL directly to the runtime
2829     cbuf.set_insts_mark();
2830     emit_opcode(cbuf,0xE8);       // Call into runtime
2831     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2832     // Restore stack
2833     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2834     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2835     emit_d8(cbuf, 4*4);
2836   %}
2837 
2838   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2839     // PUSH src1.hi
2840     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2841     // PUSH src1.lo
2842     emit_opcode(cbuf,               0x50+$src1$$reg  );
2843     // PUSH src2.hi
2844     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2845     // PUSH src2.lo
2846     emit_opcode(cbuf,               0x50+$src2$$reg  );
2847     // CALL directly to the runtime
2848     cbuf.set_insts_mark();
2849     emit_opcode(cbuf,0xE8);       // Call into runtime
2850     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2851     // Restore stack
2852     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2853     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2854     emit_d8(cbuf, 4*4);
2855   %}
2856 
2857   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2858     // MOV   $tmp,$src.lo
2859     emit_opcode(cbuf, 0x8B);
2860     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2861     // OR    $tmp,$src.hi
2862     emit_opcode(cbuf, 0x0B);
2863     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2864   %}
2865 
2866   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2867     // CMP    $src1.lo,$src2.lo
2868     emit_opcode( cbuf, 0x3B );
2869     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2870     // JNE,s  skip
2871     emit_cc(cbuf, 0x70, 0x5);
2872     emit_d8(cbuf,2);
2873     // CMP    $src1.hi,$src2.hi
2874     emit_opcode( cbuf, 0x3B );
2875     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2876   %}
2877 
2878   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2879     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2880     emit_opcode( cbuf, 0x3B );
2881     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2882     // MOV    $tmp,$src1.hi
2883     emit_opcode( cbuf, 0x8B );
2884     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2885     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2886     emit_opcode( cbuf, 0x1B );
2887     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2888   %}
2889 
2890   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2891     // XOR    $tmp,$tmp
2892     emit_opcode(cbuf,0x33);  // XOR
2893     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2894     // CMP    $tmp,$src.lo
2895     emit_opcode( cbuf, 0x3B );
2896     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2897     // SBB    $tmp,$src.hi
2898     emit_opcode( cbuf, 0x1B );
2899     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2900   %}
2901 
2902  // Sniff, sniff... smells like Gnu Superoptimizer
2903   enc_class neg_long( eRegL dst ) %{
2904     emit_opcode(cbuf,0xF7);    // NEG hi
2905     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2906     emit_opcode(cbuf,0xF7);    // NEG lo
2907     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2908     emit_opcode(cbuf,0x83);    // SBB hi,0
2909     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2910     emit_d8    (cbuf,0 );
2911   %}
2912 
2913 
2914   // Because the transitions from emitted code to the runtime
2915   // monitorenter/exit helper stubs are so slow it's critical that
2916   // we inline both the stack-locking fast-path and the inflated fast path.
2917   //
2918   // See also: cmpFastLock and cmpFastUnlock.
2919   //
2920   // What follows is a specialized inline transliteration of the code
2921   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
2922   // another option would be to emit TrySlowEnter and TrySlowExit methods
2923   // at startup-time.  These methods would accept arguments as
2924   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
2925   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
2926   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
2927   // In practice, however, the # of lock sites is bounded and is usually small.
2928   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
2929   // if the processor uses simple bimodal branch predictors keyed by EIP
2930   // Since the helper routines would be called from multiple synchronization
2931   // sites.
2932   //
2933   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
2934   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
2935   // to those specialized methods.  That'd give us a mostly platform-independent
2936   // implementation that the JITs could optimize and inline at their pleasure.
2937   // Done correctly, the only time we'd need to cross to native could would be
2938   // to park() or unpark() threads.  We'd also need a few more unsafe operators
2939   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
2940   // (b) explicit barriers or fence operations.
2941   //
2942   // TODO:
2943   //
2944   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
2945   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
2946   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
2947   //    the lock operators would typically be faster than reifying Self.
2948   //
2949   // *  Ideally I'd define the primitives as:
2950   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
2951   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
2952   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
2953   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
2954   //    Furthermore the register assignments are overconstrained, possibly resulting in
2955   //    sub-optimal code near the synchronization site.
2956   //
2957   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
2958   //    Alternately, use a better sp-proximity test.
2959   //
2960   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
2961   //    Either one is sufficient to uniquely identify a thread.
2962   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
2963   //
2964   // *  Intrinsify notify() and notifyAll() for the common cases where the
2965   //    object is locked by the calling thread but the waitlist is empty.
2966   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
2967   //
2968   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
2969   //    But beware of excessive branch density on AMD Opterons.
2970   //
2971   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
2972   //    or failure of the fast-path.  If the fast-path fails then we pass
2973   //    control to the slow-path, typically in C.  In Fast_Lock and
2974   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
2975   //    will emit a conditional branch immediately after the node.
2976   //    So we have branches to branches and lots of ICC.ZF games.
2977   //    Instead, it might be better to have C2 pass a "FailureLabel"
2978   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
2979   //    will drop through the node.  ICC.ZF is undefined at exit.
2980   //    In the case of failure, the node will branch directly to the
2981   //    FailureLabel
2982 
2983 
2984   // obj: object to lock
2985   // box: on-stack box address (displaced header location) - KILLED
2986   // rax,: tmp -- KILLED
2987   // scr: tmp -- KILLED
2988   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
2989 
2990     Register objReg = as_Register($obj$$reg);
2991     Register boxReg = as_Register($box$$reg);
2992     Register tmpReg = as_Register($tmp$$reg);
2993     Register scrReg = as_Register($scr$$reg);
2994 
2995     // Ensure the register assignents are disjoint
2996     guarantee (objReg != boxReg, "") ;
2997     guarantee (objReg != tmpReg, "") ;
2998     guarantee (objReg != scrReg, "") ;
2999     guarantee (boxReg != tmpReg, "") ;
3000     guarantee (boxReg != scrReg, "") ;
3001     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3002 
3003     MacroAssembler masm(&cbuf);
3004 
3005     if (_counters != NULL) {
3006       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3007     }
3008     if (EmitSync & 1) {
3009         // set box->dhw = unused_mark (3)
3010         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3011         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3012         masm.cmpptr (rsp, (int32_t)0) ;                        
3013     } else 
3014     if (EmitSync & 2) { 
3015         Label DONE_LABEL ;           
3016         if (UseBiasedLocking) {
3017            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3018            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3019         }
3020 
3021         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3022         masm.orptr (tmpReg, 0x1);
3023         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3024         if (os::is_MP()) { masm.lock();  }
3025         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3026         masm.jcc(Assembler::equal, DONE_LABEL);
3027         // Recursive locking
3028         masm.subptr(tmpReg, rsp);
3029         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3030         masm.movptr(Address(boxReg, 0), tmpReg);
3031         masm.bind(DONE_LABEL) ; 
3032     } else {  
3033       // Possible cases that we'll encounter in fast_lock 
3034       // ------------------------------------------------
3035       // * Inflated
3036       //    -- unlocked
3037       //    -- Locked
3038       //       = by self
3039       //       = by other
3040       // * biased
3041       //    -- by Self
3042       //    -- by other
3043       // * neutral
3044       // * stack-locked
3045       //    -- by self
3046       //       = sp-proximity test hits
3047       //       = sp-proximity test generates false-negative
3048       //    -- by other
3049       //
3050 
3051       Label IsInflated, DONE_LABEL, PopDone ;
3052 
3053       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3054       // order to reduce the number of conditional branches in the most common cases.
3055       // Beware -- there's a subtle invariant that fetch of the markword
3056       // at [FETCH], below, will never observe a biased encoding (*101b).
3057       // If this invariant is not held we risk exclusion (safety) failure.
3058       if (UseBiasedLocking && !UseOptoBiasInlining) {
3059         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3060       }
3061 
3062       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3063       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3064       masm.jccb  (Assembler::notZero, IsInflated) ;
3065 
3066       // Attempt stack-locking ...
3067       masm.orptr (tmpReg, 0x1);
3068       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3069       if (os::is_MP()) { masm.lock();  }
3070       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3071       if (_counters != NULL) {
3072         masm.cond_inc32(Assembler::equal,
3073                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3074       }
3075       masm.jccb (Assembler::equal, DONE_LABEL);
3076 
3077       // Recursive locking
3078       masm.subptr(tmpReg, rsp);
3079       masm.andptr(tmpReg, 0xFFFFF003 );
3080       masm.movptr(Address(boxReg, 0), tmpReg);
3081       if (_counters != NULL) {
3082         masm.cond_inc32(Assembler::equal,
3083                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3084       }
3085       masm.jmp  (DONE_LABEL) ;
3086 
3087       masm.bind (IsInflated) ;
3088 
3089       // The object is inflated.
3090       //
3091       // TODO-FIXME: eliminate the ugly use of manifest constants:
3092       //   Use markOopDesc::monitor_value instead of "2".
3093       //   use markOop::unused_mark() instead of "3".
3094       // The tmpReg value is an objectMonitor reference ORed with
3095       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3096       // objectmonitor pointer by masking off the "2" bit or we can just
3097       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3098       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3099       //
3100       // I use the latter as it avoids AGI stalls.
3101       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3102       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3103       //
3104       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3105 
3106       // boxReg refers to the on-stack BasicLock in the current frame.
3107       // We'd like to write:
3108       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3109       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3110       // additional latency as we have another ST in the store buffer that must drain.
3111 
3112       if (EmitSync & 8192) { 
3113          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3114          masm.get_thread (scrReg) ; 
3115          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3116          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3117          if (os::is_MP()) { masm.lock(); } 
3118          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3119       } else 
3120       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3121          masm.movptr(scrReg, boxReg) ; 
3122          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3123 
3124          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3125          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3126             // prefetchw [eax + Offset(_owner)-2]
3127             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3128          }
3129 
3130          if ((EmitSync & 64) == 0) {
3131            // Optimistic form: consider XORL tmpReg,tmpReg
3132            masm.movptr(tmpReg, NULL_WORD) ; 
3133          } else { 
3134            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3135            // Test-And-CAS instead of CAS
3136            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3137            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3138            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3139          }
3140 
3141          // Appears unlocked - try to swing _owner from null to non-null.
3142          // Ideally, I'd manifest "Self" with get_thread and then attempt
3143          // to CAS the register containing Self into m->Owner.
3144          // But we don't have enough registers, so instead we can either try to CAS
3145          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3146          // we later store "Self" into m->Owner.  Transiently storing a stack address
3147          // (rsp or the address of the box) into  m->owner is harmless.
3148          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3149          if (os::is_MP()) { masm.lock();  }
3150          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3151          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3152          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3153          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3154          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3155          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3156                        
3157          // If the CAS fails we can either retry or pass control to the slow-path.  
3158          // We use the latter tactic.  
3159          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3160          // If the CAS was successful ...
3161          //   Self has acquired the lock
3162          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3163          // Intentional fall-through into DONE_LABEL ...
3164       } else {
3165          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3166          masm.movptr(boxReg, tmpReg) ; 
3167 
3168          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3169          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3170             // prefetchw [eax + Offset(_owner)-2]
3171             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3172          }
3173 
3174          if ((EmitSync & 64) == 0) {
3175            // Optimistic form
3176            masm.xorptr  (tmpReg, tmpReg) ; 
3177          } else { 
3178            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3179            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3180            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3181            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3182          }
3183 
3184          // Appears unlocked - try to swing _owner from null to non-null.
3185          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3186          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3187          masm.get_thread (scrReg) ;
3188          if (os::is_MP()) { masm.lock(); }
3189          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3190 
3191          // If the CAS fails we can either retry or pass control to the slow-path.
3192          // We use the latter tactic.
3193          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3194          // If the CAS was successful ...
3195          //   Self has acquired the lock
3196          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3197          // Intentional fall-through into DONE_LABEL ...
3198       }
3199 
3200       // DONE_LABEL is a hot target - we'd really like to place it at the
3201       // start of cache line by padding with NOPs.
3202       // See the AMD and Intel software optimization manuals for the
3203       // most efficient "long" NOP encodings.
3204       // Unfortunately none of our alignment mechanisms suffice.
3205       masm.bind(DONE_LABEL);
3206 
3207       // Avoid branch-to-branch on AMD processors
3208       // This appears to be superstition.
3209       if (EmitSync & 32) masm.nop() ;
3210 
3211 
3212       // At DONE_LABEL the icc ZFlag is set as follows ...
3213       // Fast_Unlock uses the same protocol.
3214       // ZFlag == 1 -> Success
3215       // ZFlag == 0 -> Failure - force control through the slow-path
3216     }
3217   %}
3218 
3219   // obj: object to unlock
3220   // box: box address (displaced header location), killed.  Must be EAX.
3221   // rbx,: killed tmp; cannot be obj nor box.
3222   //
3223   // Some commentary on balanced locking:
3224   //
3225   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3226   // Methods that don't have provably balanced locking are forced to run in the
3227   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3228   // The interpreter provides two properties:
3229   // I1:  At return-time the interpreter automatically and quietly unlocks any
3230   //      objects acquired the current activation (frame).  Recall that the
3231   //      interpreter maintains an on-stack list of locks currently held by
3232   //      a frame.
3233   // I2:  If a method attempts to unlock an object that is not held by the
3234   //      the frame the interpreter throws IMSX.
3235   //
3236   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3237   // B() doesn't have provably balanced locking so it runs in the interpreter.
3238   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3239   // is still locked by A().
3240   //
3241   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3242   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3243   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3244   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3245 
3246   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3247 
3248     Register objReg = as_Register($obj$$reg);
3249     Register boxReg = as_Register($box$$reg);
3250     Register tmpReg = as_Register($tmp$$reg);
3251 
3252     guarantee (objReg != boxReg, "") ;
3253     guarantee (objReg != tmpReg, "") ;
3254     guarantee (boxReg != tmpReg, "") ;
3255     guarantee (boxReg == as_Register(EAX_enc), "") ;
3256     MacroAssembler masm(&cbuf);
3257 
3258     if (EmitSync & 4) {
3259       // Disable - inhibit all inlining.  Force control through the slow-path
3260       masm.cmpptr (rsp, 0) ; 
3261     } else 
3262     if (EmitSync & 8) {
3263       Label DONE_LABEL ;
3264       if (UseBiasedLocking) {
3265          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3266       }
3267       // classic stack-locking code ...
3268       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3269       masm.testptr(tmpReg, tmpReg) ;
3270       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3271       if (os::is_MP()) { masm.lock(); }
3272       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3273       masm.bind(DONE_LABEL);
3274     } else {
3275       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3276 
3277       // Critically, the biased locking test must have precedence over
3278       // and appear before the (box->dhw == 0) recursive stack-lock test.
3279       if (UseBiasedLocking && !UseOptoBiasInlining) {
3280          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3281       }
3282       
3283       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3284       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3285       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3286 
3287       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3288       masm.jccb  (Assembler::zero, Stacked) ;
3289 
3290       masm.bind  (Inflated) ;
3291       // It's inflated.
3292       // Despite our balanced locking property we still check that m->_owner == Self
3293       // as java routines or native JNI code called by this thread might
3294       // have released the lock.
3295       // Refer to the comments in synchronizer.cpp for how we might encode extra
3296       // state in _succ so we can avoid fetching EntryList|cxq.
3297       //
3298       // I'd like to add more cases in fast_lock() and fast_unlock() --
3299       // such as recursive enter and exit -- but we have to be wary of
3300       // I$ bloat, T$ effects and BP$ effects.
3301       //
3302       // If there's no contention try a 1-0 exit.  That is, exit without
3303       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3304       // we detect and recover from the race that the 1-0 exit admits.
3305       //
3306       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3307       // before it STs null into _owner, releasing the lock.  Updates
3308       // to data protected by the critical section must be visible before
3309       // we drop the lock (and thus before any other thread could acquire
3310       // the lock and observe the fields protected by the lock).
3311       // IA32's memory-model is SPO, so STs are ordered with respect to
3312       // each other and there's no need for an explicit barrier (fence).
3313       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3314 
3315       masm.get_thread (boxReg) ;
3316       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3317         // prefetchw [ebx + Offset(_owner)-2]
3318         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3319       }
3320 
3321       // Note that we could employ various encoding schemes to reduce
3322       // the number of loads below (currently 4) to just 2 or 3.
3323       // Refer to the comments in synchronizer.cpp.
3324       // In practice the chain of fetches doesn't seem to impact performance, however.
3325       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3326          // Attempt to reduce branch density - AMD's branch predictor.
3327          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3328          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3329          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3330          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3331          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3332          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3333          masm.jmpb  (DONE_LABEL) ; 
3334       } else { 
3335          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3336          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3337          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3338          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3339          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3340          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3341          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3342          masm.jmpb  (DONE_LABEL) ; 
3343       }
3344 
3345       // The Following code fragment (EmitSync & 65536) improves the performance of
3346       // contended applications and contended synchronization microbenchmarks.
3347       // Unfortunately the emission of the code - even though not executed - causes regressions
3348       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3349       // with an equal number of never-executed NOPs results in the same regression.
3350       // We leave it off by default.
3351 
3352       if ((EmitSync & 65536) != 0) {
3353          Label LSuccess, LGoSlowPath ;
3354 
3355          masm.bind  (CheckSucc) ;
3356 
3357          // Optional pre-test ... it's safe to elide this
3358          if ((EmitSync & 16) == 0) { 
3359             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3360             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3361          }
3362 
3363          // We have a classic Dekker-style idiom:
3364          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3365          // There are a number of ways to implement the barrier:
3366          // (1) lock:andl &m->_owner, 0
3367          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3368          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3369          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3370          // (2) If supported, an explicit MFENCE is appealing.
3371          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3372          //     particularly if the write-buffer is full as might be the case if
3373          //     if stores closely precede the fence or fence-equivalent instruction.
3374          //     In more modern implementations MFENCE appears faster, however.
3375          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3376          //     The $lines underlying the top-of-stack should be in M-state.
3377          //     The locked add instruction is serializing, of course.
3378          // (4) Use xchg, which is serializing
3379          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3380          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3381          //     The integer condition codes will tell us if succ was 0.
3382          //     Since _succ and _owner should reside in the same $line and
3383          //     we just stored into _owner, it's likely that the $line
3384          //     remains in M-state for the lock:orl.
3385          //
3386          // We currently use (3), although it's likely that switching to (2)
3387          // is correct for the future.
3388             
3389          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3390          if (os::is_MP()) { 
3391             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3392               masm.mfence();
3393             } else { 
3394               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3395             }
3396          }
3397          // Ratify _succ remains non-null
3398          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3399          masm.jccb  (Assembler::notZero, LSuccess) ; 
3400 
3401          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3402          if (os::is_MP()) { masm.lock(); }
3403          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3404          masm.jccb  (Assembler::notEqual, LSuccess) ;
3405          // Since we're low on registers we installed rsp as a placeholding in _owner.
3406          // Now install Self over rsp.  This is safe as we're transitioning from
3407          // non-null to non=null
3408          masm.get_thread (boxReg) ;
3409          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3410          // Intentional fall-through into LGoSlowPath ...
3411 
3412          masm.bind  (LGoSlowPath) ; 
3413          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3414          masm.jmpb  (DONE_LABEL) ; 
3415 
3416          masm.bind  (LSuccess) ; 
3417          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3418          masm.jmpb  (DONE_LABEL) ; 
3419       }
3420 
3421       masm.bind (Stacked) ;
3422       // It's not inflated and it's not recursively stack-locked and it's not biased.
3423       // It must be stack-locked.
3424       // Try to reset the header to displaced header.
3425       // The "box" value on the stack is stable, so we can reload
3426       // and be assured we observe the same value as above.
3427       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3428       if (os::is_MP()) {   masm.lock();    }
3429       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3430       // Intention fall-thru into DONE_LABEL
3431 
3432 
3433       // DONE_LABEL is a hot target - we'd really like to place it at the
3434       // start of cache line by padding with NOPs.
3435       // See the AMD and Intel software optimization manuals for the
3436       // most efficient "long" NOP encodings.
3437       // Unfortunately none of our alignment mechanisms suffice.
3438       if ((EmitSync & 65536) == 0) {
3439          masm.bind (CheckSucc) ;
3440       }
3441       masm.bind(DONE_LABEL);
3442 
3443       // Avoid branch to branch on AMD processors
3444       if (EmitSync & 32768) { masm.nop() ; }
3445     }
3446   %}
3447 
3448 
3449   enc_class enc_pop_rdx() %{
3450     emit_opcode(cbuf,0x5A);
3451   %}
3452 
3453   enc_class enc_rethrow() %{
3454     cbuf.set_insts_mark();
3455     emit_opcode(cbuf, 0xE9);        // jmp    entry
3456     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3457                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3458   %}
3459 
3460 
3461   // Convert a double to an int.  Java semantics require we do complex
3462   // manglelations in the corner cases.  So we set the rounding mode to
3463   // 'zero', store the darned double down as an int, and reset the
3464   // rounding mode to 'nearest'.  The hardware throws an exception which
3465   // patches up the correct value directly to the stack.
3466   enc_class DPR2I_encoding( regDPR src ) %{
3467     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3468     // exceptions here, so that a NAN or other corner-case value will
3469     // thrown an exception (but normal values get converted at full speed).
3470     // However, I2C adapters and other float-stack manglers leave pending
3471     // invalid-op exceptions hanging.  We would have to clear them before
3472     // enabling them and that is more expensive than just testing for the
3473     // invalid value Intel stores down in the corner cases.
3474     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3475     emit_opcode(cbuf,0x2D);
3476     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3477     // Allocate a word
3478     emit_opcode(cbuf,0x83);            // SUB ESP,4
3479     emit_opcode(cbuf,0xEC);
3480     emit_d8(cbuf,0x04);
3481     // Encoding assumes a double has been pushed into FPR0.
3482     // Store down the double as an int, popping the FPU stack
3483     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3484     emit_opcode(cbuf,0x1C);
3485     emit_d8(cbuf,0x24);
3486     // Restore the rounding mode; mask the exception
3487     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3488     emit_opcode(cbuf,0x2D);
3489     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3490         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3491         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3492 
3493     // Load the converted int; adjust CPU stack
3494     emit_opcode(cbuf,0x58);       // POP EAX
3495     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3496     emit_d32   (cbuf,0x80000000); //         0x80000000
3497     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3498     emit_d8    (cbuf,0x07);       // Size of slow_call
3499     // Push src onto stack slow-path
3500     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3501     emit_d8    (cbuf,0xC0-1+$src$$reg );
3502     // CALL directly to the runtime
3503     cbuf.set_insts_mark();
3504     emit_opcode(cbuf,0xE8);       // Call into runtime
3505     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3506     // Carry on here...
3507   %}
3508 
3509   enc_class DPR2L_encoding( regDPR src ) %{
3510     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3511     emit_opcode(cbuf,0x2D);
3512     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3513     // Allocate a word
3514     emit_opcode(cbuf,0x83);            // SUB ESP,8
3515     emit_opcode(cbuf,0xEC);
3516     emit_d8(cbuf,0x08);
3517     // Encoding assumes a double has been pushed into FPR0.
3518     // Store down the double as a long, popping the FPU stack
3519     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3520     emit_opcode(cbuf,0x3C);
3521     emit_d8(cbuf,0x24);
3522     // Restore the rounding mode; mask the exception
3523     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3524     emit_opcode(cbuf,0x2D);
3525     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3526         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3527         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3528 
3529     // Load the converted int; adjust CPU stack
3530     emit_opcode(cbuf,0x58);       // POP EAX
3531     emit_opcode(cbuf,0x5A);       // POP EDX
3532     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3533     emit_d8    (cbuf,0xFA);       // rdx
3534     emit_d32   (cbuf,0x80000000); //         0x80000000
3535     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3536     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3537     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3538     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3539     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3540     emit_d8    (cbuf,0x07);       // Size of slow_call
3541     // Push src onto stack slow-path
3542     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3543     emit_d8    (cbuf,0xC0-1+$src$$reg );
3544     // CALL directly to the runtime
3545     cbuf.set_insts_mark();
3546     emit_opcode(cbuf,0xE8);       // Call into runtime
3547     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3548     // Carry on here...
3549   %}
3550 
3551   enc_class FMul_ST_reg( eRegFPR src1 ) %{
3552     // Operand was loaded from memory into fp ST (stack top)
3553     // FMUL   ST,$src  /* D8 C8+i */
3554     emit_opcode(cbuf, 0xD8);
3555     emit_opcode(cbuf, 0xC8 + $src1$$reg);
3556   %}
3557 
3558   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3559     // FADDP  ST,src2  /* D8 C0+i */
3560     emit_opcode(cbuf, 0xD8);
3561     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3562     //could use FADDP  src2,fpST  /* DE C0+i */
3563   %}
3564 
3565   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3566     // FADDP  src2,ST  /* DE C0+i */
3567     emit_opcode(cbuf, 0xDE);
3568     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3569   %}
3570 
3571   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3572     // Operand has been loaded into fp ST (stack top)
3573       // FSUB   ST,$src1
3574       emit_opcode(cbuf, 0xD8);
3575       emit_opcode(cbuf, 0xE0 + $src1$$reg);
3576 
3577       // FDIV
3578       emit_opcode(cbuf, 0xD8);
3579       emit_opcode(cbuf, 0xF0 + $src2$$reg);
3580   %}
3581 
3582   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3583     // Operand was loaded from memory into fp ST (stack top)
3584     // FADD   ST,$src  /* D8 C0+i */
3585     emit_opcode(cbuf, 0xD8);
3586     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3587 
3588     // FMUL  ST,src2  /* D8 C*+i */
3589     emit_opcode(cbuf, 0xD8);
3590     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3591   %}
3592 
3593 
3594   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3595     // Operand was loaded from memory into fp ST (stack top)
3596     // FADD   ST,$src  /* D8 C0+i */
3597     emit_opcode(cbuf, 0xD8);
3598     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3599 
3600     // FMULP  src2,ST  /* DE C8+i */
3601     emit_opcode(cbuf, 0xDE);
3602     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3603   %}
3604 
3605   // Atomically load the volatile long
3606   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3607     emit_opcode(cbuf,0xDF);
3608     int rm_byte_opcode = 0x05;
3609     int base     = $mem$$base;
3610     int index    = $mem$$index;
3611     int scale    = $mem$$scale;
3612     int displace = $mem$$disp;
3613     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3614     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3615     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3616   %}
3617 
3618   // Volatile Store Long.  Must be atomic, so move it into
3619   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3620   // target address before the store (for null-ptr checks)
3621   // so the memory operand is used twice in the encoding.
3622   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3623     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3624     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3625     emit_opcode(cbuf,0xDF);
3626     int rm_byte_opcode = 0x07;
3627     int base     = $mem$$base;
3628     int index    = $mem$$index;
3629     int scale    = $mem$$scale;
3630     int displace = $mem$$disp;
3631     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3632     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3633   %}
3634 
3635   // Safepoint Poll.  This polls the safepoint page, and causes an
3636   // exception if it is not readable. Unfortunately, it kills the condition code
3637   // in the process
3638   // We current use TESTL [spp],EDI
3639   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3640 
3641   enc_class Safepoint_Poll() %{
3642     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3643     emit_opcode(cbuf,0x85);
3644     emit_rm (cbuf, 0x0, 0x7, 0x5);
3645     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3646   %}
3647 %}
3648 
3649 
3650 //----------FRAME--------------------------------------------------------------
3651 // Definition of frame structure and management information.
3652 //
3653 //  S T A C K   L A Y O U T    Allocators stack-slot number
3654 //                             |   (to get allocators register number
3655 //  G  Owned by    |        |  v    add OptoReg::stack0())
3656 //  r   CALLER     |        |
3657 //  o     |        +--------+      pad to even-align allocators stack-slot
3658 //  w     V        |  pad0  |        numbers; owned by CALLER
3659 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3660 //  h     ^        |   in   |  5
3661 //        |        |  args  |  4   Holes in incoming args owned by SELF
3662 //  |     |        |        |  3
3663 //  |     |        +--------+
3664 //  V     |        | old out|      Empty on Intel, window on Sparc
3665 //        |    old |preserve|      Must be even aligned.
3666 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3667 //        |        |   in   |  3   area for Intel ret address
3668 //     Owned by    |preserve|      Empty on Sparc.
3669 //       SELF      +--------+
3670 //        |        |  pad2  |  2   pad to align old SP
3671 //        |        +--------+  1
3672 //        |        | locks  |  0
3673 //        |        +--------+----> OptoReg::stack0(), even aligned
3674 //        |        |  pad1  | 11   pad to align new SP
3675 //        |        +--------+
3676 //        |        |        | 10
3677 //        |        | spills |  9   spills
3678 //        V        |        |  8   (pad0 slot for callee)
3679 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3680 //        ^        |  out   |  7
3681 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3682 //     Owned by    +--------+
3683 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3684 //        |    new |preserve|      Must be even-aligned.
3685 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3686 //        |        |        |
3687 //
3688 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3689 //         known from SELF's arguments and the Java calling convention.
3690 //         Region 6-7 is determined per call site.
3691 // Note 2: If the calling convention leaves holes in the incoming argument
3692 //         area, those holes are owned by SELF.  Holes in the outgoing area
3693 //         are owned by the CALLEE.  Holes should not be nessecary in the
3694 //         incoming area, as the Java calling convention is completely under
3695 //         the control of the AD file.  Doubles can be sorted and packed to
3696 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3697 //         varargs C calling conventions.
3698 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3699 //         even aligned with pad0 as needed.
3700 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3701 //         region 6-11 is even aligned; it may be padded out more so that
3702 //         the region from SP to FP meets the minimum stack alignment.
3703 
3704 frame %{
3705   // What direction does stack grow in (assumed to be same for C & Java)
3706   stack_direction(TOWARDS_LOW);
3707 
3708   // These three registers define part of the calling convention
3709   // between compiled code and the interpreter.
3710   inline_cache_reg(EAX);                // Inline Cache Register
3711   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3712 
3713   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3714   cisc_spilling_operand_name(indOffset32);
3715 
3716   // Number of stack slots consumed by locking an object
3717   sync_stack_slots(1);
3718 
3719   // Compiled code's Frame Pointer
3720   frame_pointer(ESP);
3721   // Interpreter stores its frame pointer in a register which is
3722   // stored to the stack by I2CAdaptors.
3723   // I2CAdaptors convert from interpreted java to compiled java.
3724   interpreter_frame_pointer(EBP);
3725 
3726   // Stack alignment requirement
3727   // Alignment size in bytes (128-bit -> 16 bytes)
3728   stack_alignment(StackAlignmentInBytes);
3729 
3730   // Number of stack slots between incoming argument block and the start of
3731   // a new frame.  The PROLOG must add this many slots to the stack.  The
3732   // EPILOG must remove this many slots.  Intel needs one slot for
3733   // return address and one for rbp, (must save rbp)
3734   in_preserve_stack_slots(2+VerifyStackAtCalls);
3735 
3736   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3737   // for calls to C.  Supports the var-args backing area for register parms.
3738   varargs_C_out_slots_killed(0);
3739 
3740   // The after-PROLOG location of the return address.  Location of
3741   // return address specifies a type (REG or STACK) and a number
3742   // representing the register number (i.e. - use a register name) or
3743   // stack slot.
3744   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3745   // Otherwise, it is above the locks and verification slot and alignment word
3746   return_addr(STACK - 1 +
3747               round_to((Compile::current()->in_preserve_stack_slots() +
3748                         Compile::current()->fixed_slots()),
3749                        stack_alignment_in_slots()));
3750 
3751   // Body of function which returns an integer array locating
3752   // arguments either in registers or in stack slots.  Passed an array
3753   // of ideal registers called "sig" and a "length" count.  Stack-slot
3754   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3755   // arguments for a CALLEE.  Incoming stack arguments are
3756   // automatically biased by the preserve_stack_slots field above.
3757   calling_convention %{
3758     // No difference between ingoing/outgoing just pass false
3759     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3760   %}
3761 
3762 
3763   // Body of function which returns an integer array locating
3764   // arguments either in registers or in stack slots.  Passed an array
3765   // of ideal registers called "sig" and a "length" count.  Stack-slot
3766   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3767   // arguments for a CALLEE.  Incoming stack arguments are
3768   // automatically biased by the preserve_stack_slots field above.
3769   c_calling_convention %{
3770     // This is obviously always outgoing
3771     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3772   %}
3773 
3774   // Location of C & interpreter return values
3775   c_return_value %{
3776     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3777     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3778     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3779 
3780     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3781     // that C functions return float and double results in XMM0.
3782     if( ideal_reg == Op_RegD && UseSSE>=2 )
3783       return OptoRegPair(XMM0b_num,XMM0_num);
3784     if( ideal_reg == Op_RegF && UseSSE>=2 )
3785       return OptoRegPair(OptoReg::Bad,XMM0_num);
3786 
3787     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3788   %}
3789 
3790   // Location of return values
3791   return_value %{
3792     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3793     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3794     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3795     if( ideal_reg == Op_RegD && UseSSE>=2 )
3796       return OptoRegPair(XMM0b_num,XMM0_num);
3797     if( ideal_reg == Op_RegF && UseSSE>=1 )
3798       return OptoRegPair(OptoReg::Bad,XMM0_num);
3799     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3800   %}
3801 
3802 %}
3803 
3804 //----------ATTRIBUTES---------------------------------------------------------
3805 //----------Operand Attributes-------------------------------------------------
3806 op_attrib op_cost(0);        // Required cost attribute
3807 
3808 //----------Instruction Attributes---------------------------------------------
3809 ins_attrib ins_cost(100);       // Required cost attribute
3810 ins_attrib ins_size(8);         // Required size attribute (in bits)
3811 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3812                                 // non-matching short branch variant of some
3813                                                             // long branch?
3814 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3815                                 // specifies the alignment that some part of the instruction (not
3816                                 // necessarily the start) requires.  If > 1, a compute_padding()
3817                                 // function must be provided for the instruction
3818 
3819 //----------OPERANDS-----------------------------------------------------------
3820 // Operand definitions must precede instruction definitions for correct parsing
3821 // in the ADLC because operands constitute user defined types which are used in
3822 // instruction definitions.
3823 
3824 //----------Simple Operands----------------------------------------------------
3825 // Immediate Operands
3826 // Integer Immediate
3827 operand immI() %{
3828   match(ConI);
3829 
3830   op_cost(10);
3831   format %{ %}
3832   interface(CONST_INTER);
3833 %}
3834 
3835 // Constant for test vs zero
3836 operand immI0() %{
3837   predicate(n->get_int() == 0);
3838   match(ConI);
3839 
3840   op_cost(0);
3841   format %{ %}
3842   interface(CONST_INTER);
3843 %}
3844 
3845 // Constant for increment
3846 operand immI1() %{
3847   predicate(n->get_int() == 1);
3848   match(ConI);
3849 
3850   op_cost(0);
3851   format %{ %}
3852   interface(CONST_INTER);
3853 %}
3854 
3855 // Constant for decrement
3856 operand immI_M1() %{
3857   predicate(n->get_int() == -1);
3858   match(ConI);
3859 
3860   op_cost(0);
3861   format %{ %}
3862   interface(CONST_INTER);
3863 %}
3864 
3865 // Valid scale values for addressing modes
3866 operand immI2() %{
3867   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3868   match(ConI);
3869 
3870   format %{ %}
3871   interface(CONST_INTER);
3872 %}
3873 
3874 operand immI8() %{
3875   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3876   match(ConI);
3877 
3878   op_cost(5);
3879   format %{ %}
3880   interface(CONST_INTER);
3881 %}
3882 
3883 operand immI16() %{
3884   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3885   match(ConI);
3886 
3887   op_cost(10);
3888   format %{ %}
3889   interface(CONST_INTER);
3890 %}
3891 
3892 // Int Immediate positive
3893 operand immU32()
3894 %{
3895   predicate(n->get_int() >= 0);
3896   match(ConI);
3897 
3898   op_cost(0);
3899   format %{ %}
3900   interface(CONST_INTER);
3901 %}
3902 
3903 // Constant for long shifts
3904 operand immI_32() %{
3905   predicate( n->get_int() == 32 );
3906   match(ConI);
3907 
3908   op_cost(0);
3909   format %{ %}
3910   interface(CONST_INTER);
3911 %}
3912 
3913 operand immI_1_31() %{
3914   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3915   match(ConI);
3916 
3917   op_cost(0);
3918   format %{ %}
3919   interface(CONST_INTER);
3920 %}
3921 
3922 operand immI_32_63() %{
3923   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3924   match(ConI);
3925   op_cost(0);
3926 
3927   format %{ %}
3928   interface(CONST_INTER);
3929 %}
3930 
3931 operand immI_1() %{
3932   predicate( n->get_int() == 1 );
3933   match(ConI);
3934 
3935   op_cost(0);
3936   format %{ %}
3937   interface(CONST_INTER);
3938 %}
3939 
3940 operand immI_2() %{
3941   predicate( n->get_int() == 2 );
3942   match(ConI);
3943 
3944   op_cost(0);
3945   format %{ %}
3946   interface(CONST_INTER);
3947 %}
3948 
3949 operand immI_3() %{
3950   predicate( n->get_int() == 3 );
3951   match(ConI);
3952 
3953   op_cost(0);
3954   format %{ %}
3955   interface(CONST_INTER);
3956 %}
3957 
3958 // Pointer Immediate
3959 operand immP() %{
3960   match(ConP);
3961 
3962   op_cost(10);
3963   format %{ %}
3964   interface(CONST_INTER);
3965 %}
3966 
3967 // NULL Pointer Immediate
3968 operand immP0() %{
3969   predicate( n->get_ptr() == 0 );
3970   match(ConP);
3971   op_cost(0);
3972 
3973   format %{ %}
3974   interface(CONST_INTER);
3975 %}
3976 
3977 // Long Immediate
3978 operand immL() %{
3979   match(ConL);
3980 
3981   op_cost(20);
3982   format %{ %}
3983   interface(CONST_INTER);
3984 %}
3985 
3986 // Long Immediate zero
3987 operand immL0() %{
3988   predicate( n->get_long() == 0L );
3989   match(ConL);
3990   op_cost(0);
3991 
3992   format %{ %}
3993   interface(CONST_INTER);
3994 %}
3995 
3996 // Long Immediate zero
3997 operand immL_M1() %{
3998   predicate( n->get_long() == -1L );
3999   match(ConL);
4000   op_cost(0);
4001 
4002   format %{ %}
4003   interface(CONST_INTER);
4004 %}
4005 
4006 // Long immediate from 0 to 127.
4007 // Used for a shorter form of long mul by 10.
4008 operand immL_127() %{
4009   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4010   match(ConL);
4011   op_cost(0);
4012 
4013   format %{ %}
4014   interface(CONST_INTER);
4015 %}
4016 
4017 // Long Immediate: low 32-bit mask
4018 operand immL_32bits() %{
4019   predicate(n->get_long() == 0xFFFFFFFFL);
4020   match(ConL);
4021   op_cost(0);
4022 
4023   format %{ %}
4024   interface(CONST_INTER);
4025 %}
4026 
4027 // Long Immediate: low 32-bit mask
4028 operand immL32() %{
4029   predicate(n->get_long() == (int)(n->get_long()));
4030   match(ConL);
4031   op_cost(20);
4032 
4033   format %{ %}
4034   interface(CONST_INTER);
4035 %}
4036 
4037 //Double Immediate zero
4038 operand immDPR0() %{
4039   // Do additional (and counter-intuitive) test against NaN to work around VC++
4040   // bug that generates code such that NaNs compare equal to 0.0
4041   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4042   match(ConD);
4043 
4044   op_cost(5);
4045   format %{ %}
4046   interface(CONST_INTER);
4047 %}
4048 
4049 // Double Immediate one
4050 operand immDPR1() %{
4051   predicate( UseSSE<=1 && n->getd() == 1.0 );
4052   match(ConD);
4053 
4054   op_cost(5);
4055   format %{ %}
4056   interface(CONST_INTER);
4057 %}
4058 
4059 // Double Immediate
4060 operand immDPR() %{
4061   predicate(UseSSE<=1);
4062   match(ConD);
4063 
4064   op_cost(5);
4065   format %{ %}
4066   interface(CONST_INTER);
4067 %}
4068 
4069 operand immD() %{
4070   predicate(UseSSE>=2);
4071   match(ConD);
4072 
4073   op_cost(5);
4074   format %{ %}
4075   interface(CONST_INTER);
4076 %}
4077 
4078 // Double Immediate zero
4079 operand immD0() %{
4080   // Do additional (and counter-intuitive) test against NaN to work around VC++
4081   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4082   // compare equal to -0.0.
4083   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4084   match(ConD);
4085 
4086   format %{ %}
4087   interface(CONST_INTER);
4088 %}
4089 
4090 // Float Immediate zero
4091 operand immFPR0() %{
4092   predicate(UseSSE == 0 && n->getf() == 0.0F);
4093   match(ConF);
4094 
4095   op_cost(5);
4096   format %{ %}
4097   interface(CONST_INTER);
4098 %}
4099 
4100 // Float Immediate one
4101 operand immFPR1() %{
4102   predicate(UseSSE == 0 && n->getf() == 1.0F);
4103   match(ConF);
4104 
4105   op_cost(5);
4106   format %{ %}
4107   interface(CONST_INTER);
4108 %}
4109 
4110 // Float Immediate
4111 operand immFPR() %{
4112   predicate( UseSSE == 0 );
4113   match(ConF);
4114 
4115   op_cost(5);
4116   format %{ %}
4117   interface(CONST_INTER);
4118 %}
4119 
4120 // Float Immediate
4121 operand immF() %{
4122   predicate(UseSSE >= 1);
4123   match(ConF);
4124 
4125   op_cost(5);
4126   format %{ %}
4127   interface(CONST_INTER);
4128 %}
4129 
4130 // Float Immediate zero.  Zero and not -0.0
4131 operand immF0() %{
4132   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4133   match(ConF);
4134 
4135   op_cost(5);
4136   format %{ %}
4137   interface(CONST_INTER);
4138 %}
4139 
4140 // Immediates for special shifts (sign extend)
4141 
4142 // Constants for increment
4143 operand immI_16() %{
4144   predicate( n->get_int() == 16 );
4145   match(ConI);
4146 
4147   format %{ %}
4148   interface(CONST_INTER);
4149 %}
4150 
4151 operand immI_24() %{
4152   predicate( n->get_int() == 24 );
4153   match(ConI);
4154 
4155   format %{ %}
4156   interface(CONST_INTER);
4157 %}
4158 
4159 // Constant for byte-wide masking
4160 operand immI_255() %{
4161   predicate( n->get_int() == 255 );
4162   match(ConI);
4163 
4164   format %{ %}
4165   interface(CONST_INTER);
4166 %}
4167 
4168 // Constant for short-wide masking
4169 operand immI_65535() %{
4170   predicate(n->get_int() == 65535);
4171   match(ConI);
4172 
4173   format %{ %}
4174   interface(CONST_INTER);
4175 %}
4176 
4177 // Register Operands
4178 // Integer Register
4179 operand rRegI() %{
4180   constraint(ALLOC_IN_RC(int_reg));
4181   match(RegI);
4182   match(xRegI);
4183   match(eAXRegI);
4184   match(eBXRegI);
4185   match(eCXRegI);
4186   match(eDXRegI);
4187   match(eDIRegI);
4188   match(eSIRegI);
4189 
4190   format %{ %}
4191   interface(REG_INTER);
4192 %}
4193 
4194 // Subset of Integer Register
4195 operand xRegI(rRegI reg) %{
4196   constraint(ALLOC_IN_RC(int_x_reg));
4197   match(reg);
4198   match(eAXRegI);
4199   match(eBXRegI);
4200   match(eCXRegI);
4201   match(eDXRegI);
4202 
4203   format %{ %}
4204   interface(REG_INTER);
4205 %}
4206 
4207 // Special Registers
4208 operand eAXRegI(xRegI reg) %{
4209   constraint(ALLOC_IN_RC(eax_reg));
4210   match(reg);
4211   match(rRegI);
4212 
4213   format %{ "EAX" %}
4214   interface(REG_INTER);
4215 %}
4216 
4217 // Special Registers
4218 operand eBXRegI(xRegI reg) %{
4219   constraint(ALLOC_IN_RC(ebx_reg));
4220   match(reg);
4221   match(rRegI);
4222 
4223   format %{ "EBX" %}
4224   interface(REG_INTER);
4225 %}
4226 
4227 operand eCXRegI(xRegI reg) %{
4228   constraint(ALLOC_IN_RC(ecx_reg));
4229   match(reg);
4230   match(rRegI);
4231 
4232   format %{ "ECX" %}
4233   interface(REG_INTER);
4234 %}
4235 
4236 operand eDXRegI(xRegI reg) %{
4237   constraint(ALLOC_IN_RC(edx_reg));
4238   match(reg);
4239   match(rRegI);
4240 
4241   format %{ "EDX" %}
4242   interface(REG_INTER);
4243 %}
4244 
4245 operand eDIRegI(xRegI reg) %{
4246   constraint(ALLOC_IN_RC(edi_reg));
4247   match(reg);
4248   match(rRegI);
4249 
4250   format %{ "EDI" %}
4251   interface(REG_INTER);
4252 %}
4253 
4254 operand naxRegI() %{
4255   constraint(ALLOC_IN_RC(nax_reg));
4256   match(RegI);
4257   match(eCXRegI);
4258   match(eDXRegI);
4259   match(eSIRegI);
4260   match(eDIRegI);
4261 
4262   format %{ %}
4263   interface(REG_INTER);
4264 %}
4265 
4266 operand nadxRegI() %{
4267   constraint(ALLOC_IN_RC(nadx_reg));
4268   match(RegI);
4269   match(eBXRegI);
4270   match(eCXRegI);
4271   match(eSIRegI);
4272   match(eDIRegI);
4273 
4274   format %{ %}
4275   interface(REG_INTER);
4276 %}
4277 
4278 operand ncxRegI() %{
4279   constraint(ALLOC_IN_RC(ncx_reg));
4280   match(RegI);
4281   match(eAXRegI);
4282   match(eDXRegI);
4283   match(eSIRegI);
4284   match(eDIRegI);
4285 
4286   format %{ %}
4287   interface(REG_INTER);
4288 %}
4289 
4290 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4291 // //
4292 operand eSIRegI(xRegI reg) %{
4293    constraint(ALLOC_IN_RC(esi_reg));
4294    match(reg);
4295    match(rRegI);
4296 
4297    format %{ "ESI" %}
4298    interface(REG_INTER);
4299 %}
4300 
4301 // Pointer Register
4302 operand anyRegP() %{
4303   constraint(ALLOC_IN_RC(any_reg));
4304   match(RegP);
4305   match(eAXRegP);
4306   match(eBXRegP);
4307   match(eCXRegP);
4308   match(eDIRegP);
4309   match(eRegP);
4310 
4311   format %{ %}
4312   interface(REG_INTER);
4313 %}
4314 
4315 operand eRegP() %{
4316   constraint(ALLOC_IN_RC(int_reg));
4317   match(RegP);
4318   match(eAXRegP);
4319   match(eBXRegP);
4320   match(eCXRegP);
4321   match(eDIRegP);
4322 
4323   format %{ %}
4324   interface(REG_INTER);
4325 %}
4326 
4327 // On windows95, EBP is not safe to use for implicit null tests.
4328 operand eRegP_no_EBP() %{
4329   constraint(ALLOC_IN_RC(int_reg_no_rbp));
4330   match(RegP);
4331   match(eAXRegP);
4332   match(eBXRegP);
4333   match(eCXRegP);
4334   match(eDIRegP);
4335 
4336   op_cost(100);
4337   format %{ %}
4338   interface(REG_INTER);
4339 %}
4340 
4341 operand naxRegP() %{
4342   constraint(ALLOC_IN_RC(nax_reg));
4343   match(RegP);
4344   match(eBXRegP);
4345   match(eDXRegP);
4346   match(eCXRegP);
4347   match(eSIRegP);
4348   match(eDIRegP);
4349 
4350   format %{ %}
4351   interface(REG_INTER);
4352 %}
4353 
4354 operand nabxRegP() %{
4355   constraint(ALLOC_IN_RC(nabx_reg));
4356   match(RegP);
4357   match(eCXRegP);
4358   match(eDXRegP);
4359   match(eSIRegP);
4360   match(eDIRegP);
4361 
4362   format %{ %}
4363   interface(REG_INTER);
4364 %}
4365 
4366 operand pRegP() %{
4367   constraint(ALLOC_IN_RC(p_reg));
4368   match(RegP);
4369   match(eBXRegP);
4370   match(eDXRegP);
4371   match(eSIRegP);
4372   match(eDIRegP);
4373 
4374   format %{ %}
4375   interface(REG_INTER);
4376 %}
4377 
4378 // Special Registers
4379 // Return a pointer value
4380 operand eAXRegP(eRegP reg) %{
4381   constraint(ALLOC_IN_RC(eax_reg));
4382   match(reg);
4383   format %{ "EAX" %}
4384   interface(REG_INTER);
4385 %}
4386 
4387 // Used in AtomicAdd
4388 operand eBXRegP(eRegP reg) %{
4389   constraint(ALLOC_IN_RC(ebx_reg));
4390   match(reg);
4391   format %{ "EBX" %}
4392   interface(REG_INTER);
4393 %}
4394 
4395 // Tail-call (interprocedural jump) to interpreter
4396 operand eCXRegP(eRegP reg) %{
4397   constraint(ALLOC_IN_RC(ecx_reg));
4398   match(reg);
4399   format %{ "ECX" %}
4400   interface(REG_INTER);
4401 %}
4402 
4403 operand eSIRegP(eRegP reg) %{
4404   constraint(ALLOC_IN_RC(esi_reg));
4405   match(reg);
4406   format %{ "ESI" %}
4407   interface(REG_INTER);
4408 %}
4409 
4410 // Used in rep stosw
4411 operand eDIRegP(eRegP reg) %{
4412   constraint(ALLOC_IN_RC(edi_reg));
4413   match(reg);
4414   format %{ "EDI" %}
4415   interface(REG_INTER);
4416 %}
4417 
4418 operand eBPRegP() %{
4419   constraint(ALLOC_IN_RC(ebp_reg));
4420   match(RegP);
4421   format %{ "EBP" %}
4422   interface(REG_INTER);
4423 %}
4424 
4425 operand eRegL() %{
4426   constraint(ALLOC_IN_RC(long_reg));
4427   match(RegL);
4428   match(eADXRegL);
4429 
4430   format %{ %}
4431   interface(REG_INTER);
4432 %}
4433 
4434 operand eADXRegL( eRegL reg ) %{
4435   constraint(ALLOC_IN_RC(eadx_reg));
4436   match(reg);
4437 
4438   format %{ "EDX:EAX" %}
4439   interface(REG_INTER);
4440 %}
4441 
4442 operand eBCXRegL( eRegL reg ) %{
4443   constraint(ALLOC_IN_RC(ebcx_reg));
4444   match(reg);
4445 
4446   format %{ "EBX:ECX" %}
4447   interface(REG_INTER);
4448 %}
4449 
4450 // Special case for integer high multiply
4451 operand eADXRegL_low_only() %{
4452   constraint(ALLOC_IN_RC(eadx_reg));
4453   match(RegL);
4454 
4455   format %{ "EAX" %}
4456   interface(REG_INTER);
4457 %}
4458 
4459 // Flags register, used as output of compare instructions
4460 operand eFlagsReg() %{
4461   constraint(ALLOC_IN_RC(int_flags));
4462   match(RegFlags);
4463 
4464   format %{ "EFLAGS" %}
4465   interface(REG_INTER);
4466 %}
4467 
4468 // Flags register, used as output of FLOATING POINT compare instructions
4469 operand eFlagsRegU() %{
4470   constraint(ALLOC_IN_RC(int_flags));
4471   match(RegFlags);
4472 
4473   format %{ "EFLAGS_U" %}
4474   interface(REG_INTER);
4475 %}
4476 
4477 operand eFlagsRegUCF() %{
4478   constraint(ALLOC_IN_RC(int_flags));
4479   match(RegFlags);
4480   predicate(false);
4481 
4482   format %{ "EFLAGS_U_CF" %}
4483   interface(REG_INTER);
4484 %}
4485 
4486 // Condition Code Register used by long compare
4487 operand flagsReg_long_LTGE() %{
4488   constraint(ALLOC_IN_RC(int_flags));
4489   match(RegFlags);
4490   format %{ "FLAGS_LTGE" %}
4491   interface(REG_INTER);
4492 %}
4493 operand flagsReg_long_EQNE() %{
4494   constraint(ALLOC_IN_RC(int_flags));
4495   match(RegFlags);
4496   format %{ "FLAGS_EQNE" %}
4497   interface(REG_INTER);
4498 %}
4499 operand flagsReg_long_LEGT() %{
4500   constraint(ALLOC_IN_RC(int_flags));
4501   match(RegFlags);
4502   format %{ "FLAGS_LEGT" %}
4503   interface(REG_INTER);
4504 %}
4505 
4506 // Float register operands
4507 operand regDPR() %{
4508   predicate( UseSSE < 2 );
4509   constraint(ALLOC_IN_RC(fp_dbl_reg));
4510   match(RegD);
4511   match(regDPR1);
4512   match(regDPR2);
4513   format %{ %}
4514   interface(REG_INTER);
4515 %}
4516 
4517 operand regDPR1(regDPR reg) %{
4518   predicate( UseSSE < 2 );
4519   constraint(ALLOC_IN_RC(fp_dbl_reg0));
4520   match(reg);
4521   format %{ "FPR1" %}
4522   interface(REG_INTER);
4523 %}
4524 
4525 operand regDPR2(regDPR reg) %{
4526   predicate( UseSSE < 2 );
4527   constraint(ALLOC_IN_RC(fp_dbl_reg1));
4528   match(reg);
4529   format %{ "FPR2" %}
4530   interface(REG_INTER);
4531 %}
4532 
4533 operand regnotDPR1(regDPR reg) %{
4534   predicate( UseSSE < 2 );
4535   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
4536   match(reg);
4537   format %{ %}
4538   interface(REG_INTER);
4539 %}
4540 
4541 // Float register operands
4542 operand regFPR() %{
4543   predicate( UseSSE < 2 );
4544   constraint(ALLOC_IN_RC(fp_flt_reg));
4545   match(RegF);
4546   match(regFPR1);
4547   format %{ %}
4548   interface(REG_INTER);
4549 %}
4550 
4551 // Float register operands
4552 operand regFPR1(regFPR reg) %{
4553   predicate( UseSSE < 2 );
4554   constraint(ALLOC_IN_RC(fp_flt_reg0));
4555   match(reg);
4556   format %{ "FPR1" %}
4557   interface(REG_INTER);
4558 %}
4559 
4560 // XMM Float register operands
4561 operand regF() %{
4562   predicate( UseSSE>=1 );
4563   constraint(ALLOC_IN_RC(float_reg));
4564   match(RegF);
4565   format %{ %}
4566   interface(REG_INTER);
4567 %}
4568 
4569 // XMM Double register operands
4570 operand regD() %{
4571   predicate( UseSSE>=2 );
4572   constraint(ALLOC_IN_RC(double_reg));
4573   match(RegD);
4574   format %{ %}
4575   interface(REG_INTER);
4576 %}
4577 
4578 
4579 //----------Memory Operands----------------------------------------------------
4580 // Direct Memory Operand
4581 operand direct(immP addr) %{
4582   match(addr);
4583 
4584   format %{ "[$addr]" %}
4585   interface(MEMORY_INTER) %{
4586     base(0xFFFFFFFF);
4587     index(0x4);
4588     scale(0x0);
4589     disp($addr);
4590   %}
4591 %}
4592 
4593 // Indirect Memory Operand
4594 operand indirect(eRegP reg) %{
4595   constraint(ALLOC_IN_RC(int_reg));
4596   match(reg);
4597 
4598   format %{ "[$reg]" %}
4599   interface(MEMORY_INTER) %{
4600     base($reg);
4601     index(0x4);
4602     scale(0x0);
4603     disp(0x0);
4604   %}
4605 %}
4606 
4607 // Indirect Memory Plus Short Offset Operand
4608 operand indOffset8(eRegP reg, immI8 off) %{
4609   match(AddP reg off);
4610 
4611   format %{ "[$reg + $off]" %}
4612   interface(MEMORY_INTER) %{
4613     base($reg);
4614     index(0x4);
4615     scale(0x0);
4616     disp($off);
4617   %}
4618 %}
4619 
4620 // Indirect Memory Plus Long Offset Operand
4621 operand indOffset32(eRegP reg, immI off) %{
4622   match(AddP reg off);
4623 
4624   format %{ "[$reg + $off]" %}
4625   interface(MEMORY_INTER) %{
4626     base($reg);
4627     index(0x4);
4628     scale(0x0);
4629     disp($off);
4630   %}
4631 %}
4632 
4633 // Indirect Memory Plus Long Offset Operand
4634 operand indOffset32X(rRegI reg, immP off) %{
4635   match(AddP off reg);
4636 
4637   format %{ "[$reg + $off]" %}
4638   interface(MEMORY_INTER) %{
4639     base($reg);
4640     index(0x4);
4641     scale(0x0);
4642     disp($off);
4643   %}
4644 %}
4645 
4646 // Indirect Memory Plus Index Register Plus Offset Operand
4647 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4648   match(AddP (AddP reg ireg) off);
4649 
4650   op_cost(10);
4651   format %{"[$reg + $off + $ireg]" %}
4652   interface(MEMORY_INTER) %{
4653     base($reg);
4654     index($ireg);
4655     scale(0x0);
4656     disp($off);
4657   %}
4658 %}
4659 
4660 // Indirect Memory Plus Index Register Plus Offset Operand
4661 operand indIndex(eRegP reg, rRegI ireg) %{
4662   match(AddP reg ireg);
4663 
4664   op_cost(10);
4665   format %{"[$reg + $ireg]" %}
4666   interface(MEMORY_INTER) %{
4667     base($reg);
4668     index($ireg);
4669     scale(0x0);
4670     disp(0x0);
4671   %}
4672 %}
4673 
4674 // // -------------------------------------------------------------------------
4675 // // 486 architecture doesn't support "scale * index + offset" with out a base
4676 // // -------------------------------------------------------------------------
4677 // // Scaled Memory Operands
4678 // // Indirect Memory Times Scale Plus Offset Operand
4679 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4680 //   match(AddP off (LShiftI ireg scale));
4681 //
4682 //   op_cost(10);
4683 //   format %{"[$off + $ireg << $scale]" %}
4684 //   interface(MEMORY_INTER) %{
4685 //     base(0x4);
4686 //     index($ireg);
4687 //     scale($scale);
4688 //     disp($off);
4689 //   %}
4690 // %}
4691 
4692 // Indirect Memory Times Scale Plus Index Register
4693 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4694   match(AddP reg (LShiftI ireg scale));
4695 
4696   op_cost(10);
4697   format %{"[$reg + $ireg << $scale]" %}
4698   interface(MEMORY_INTER) %{
4699     base($reg);
4700     index($ireg);
4701     scale($scale);
4702     disp(0x0);
4703   %}
4704 %}
4705 
4706 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4707 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4708   match(AddP (AddP reg (LShiftI ireg scale)) off);
4709 
4710   op_cost(10);
4711   format %{"[$reg + $off + $ireg << $scale]" %}
4712   interface(MEMORY_INTER) %{
4713     base($reg);
4714     index($ireg);
4715     scale($scale);
4716     disp($off);
4717   %}
4718 %}
4719 
4720 //----------Load Long Memory Operands------------------------------------------
4721 // The load-long idiom will use it's address expression again after loading
4722 // the first word of the long.  If the load-long destination overlaps with
4723 // registers used in the addressing expression, the 2nd half will be loaded
4724 // from a clobbered address.  Fix this by requiring that load-long use
4725 // address registers that do not overlap with the load-long target.
4726 
4727 // load-long support
4728 operand load_long_RegP() %{
4729   constraint(ALLOC_IN_RC(esi_reg));
4730   match(RegP);
4731   match(eSIRegP);
4732   op_cost(100);
4733   format %{  %}
4734   interface(REG_INTER);
4735 %}
4736 
4737 // Indirect Memory Operand Long
4738 operand load_long_indirect(load_long_RegP reg) %{
4739   constraint(ALLOC_IN_RC(esi_reg));
4740   match(reg);
4741 
4742   format %{ "[$reg]" %}
4743   interface(MEMORY_INTER) %{
4744     base($reg);
4745     index(0x4);
4746     scale(0x0);
4747     disp(0x0);
4748   %}
4749 %}
4750 
4751 // Indirect Memory Plus Long Offset Operand
4752 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4753   match(AddP reg off);
4754 
4755   format %{ "[$reg + $off]" %}
4756   interface(MEMORY_INTER) %{
4757     base($reg);
4758     index(0x4);
4759     scale(0x0);
4760     disp($off);
4761   %}
4762 %}
4763 
4764 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4765 
4766 
4767 //----------Special Memory Operands--------------------------------------------
4768 // Stack Slot Operand - This operand is used for loading and storing temporary
4769 //                      values on the stack where a match requires a value to
4770 //                      flow through memory.
4771 operand stackSlotP(sRegP reg) %{
4772   constraint(ALLOC_IN_RC(stack_slots));
4773   // No match rule because this operand is only generated in matching
4774   format %{ "[$reg]" %}
4775   interface(MEMORY_INTER) %{
4776     base(0x4);   // ESP
4777     index(0x4);  // No Index
4778     scale(0x0);  // No Scale
4779     disp($reg);  // Stack Offset
4780   %}
4781 %}
4782 
4783 operand stackSlotI(sRegI reg) %{
4784   constraint(ALLOC_IN_RC(stack_slots));
4785   // No match rule because this operand is only generated in matching
4786   format %{ "[$reg]" %}
4787   interface(MEMORY_INTER) %{
4788     base(0x4);   // ESP
4789     index(0x4);  // No Index
4790     scale(0x0);  // No Scale
4791     disp($reg);  // Stack Offset
4792   %}
4793 %}
4794 
4795 operand stackSlotF(sRegF reg) %{
4796   constraint(ALLOC_IN_RC(stack_slots));
4797   // No match rule because this operand is only generated in matching
4798   format %{ "[$reg]" %}
4799   interface(MEMORY_INTER) %{
4800     base(0x4);   // ESP
4801     index(0x4);  // No Index
4802     scale(0x0);  // No Scale
4803     disp($reg);  // Stack Offset
4804   %}
4805 %}
4806 
4807 operand stackSlotD(sRegD reg) %{
4808   constraint(ALLOC_IN_RC(stack_slots));
4809   // No match rule because this operand is only generated in matching
4810   format %{ "[$reg]" %}
4811   interface(MEMORY_INTER) %{
4812     base(0x4);   // ESP
4813     index(0x4);  // No Index
4814     scale(0x0);  // No Scale
4815     disp($reg);  // Stack Offset
4816   %}
4817 %}
4818 
4819 operand stackSlotL(sRegL reg) %{
4820   constraint(ALLOC_IN_RC(stack_slots));
4821   // No match rule because this operand is only generated in matching
4822   format %{ "[$reg]" %}
4823   interface(MEMORY_INTER) %{
4824     base(0x4);   // ESP
4825     index(0x4);  // No Index
4826     scale(0x0);  // No Scale
4827     disp($reg);  // Stack Offset
4828   %}
4829 %}
4830 
4831 //----------Memory Operands - Win95 Implicit Null Variants----------------
4832 // Indirect Memory Operand
4833 operand indirect_win95_safe(eRegP_no_EBP reg)
4834 %{
4835   constraint(ALLOC_IN_RC(int_reg));
4836   match(reg);
4837 
4838   op_cost(100);
4839   format %{ "[$reg]" %}
4840   interface(MEMORY_INTER) %{
4841     base($reg);
4842     index(0x4);
4843     scale(0x0);
4844     disp(0x0);
4845   %}
4846 %}
4847 
4848 // Indirect Memory Plus Short Offset Operand
4849 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4850 %{
4851   match(AddP reg off);
4852 
4853   op_cost(100);
4854   format %{ "[$reg + $off]" %}
4855   interface(MEMORY_INTER) %{
4856     base($reg);
4857     index(0x4);
4858     scale(0x0);
4859     disp($off);
4860   %}
4861 %}
4862 
4863 // Indirect Memory Plus Long Offset Operand
4864 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4865 %{
4866   match(AddP reg off);
4867 
4868   op_cost(100);
4869   format %{ "[$reg + $off]" %}
4870   interface(MEMORY_INTER) %{
4871     base($reg);
4872     index(0x4);
4873     scale(0x0);
4874     disp($off);
4875   %}
4876 %}
4877 
4878 // Indirect Memory Plus Index Register Plus Offset Operand
4879 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4880 %{
4881   match(AddP (AddP reg ireg) off);
4882 
4883   op_cost(100);
4884   format %{"[$reg + $off + $ireg]" %}
4885   interface(MEMORY_INTER) %{
4886     base($reg);
4887     index($ireg);
4888     scale(0x0);
4889     disp($off);
4890   %}
4891 %}
4892 
4893 // Indirect Memory Times Scale Plus Index Register
4894 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4895 %{
4896   match(AddP reg (LShiftI ireg scale));
4897 
4898   op_cost(100);
4899   format %{"[$reg + $ireg << $scale]" %}
4900   interface(MEMORY_INTER) %{
4901     base($reg);
4902     index($ireg);
4903     scale($scale);
4904     disp(0x0);
4905   %}
4906 %}
4907 
4908 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4909 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4910 %{
4911   match(AddP (AddP reg (LShiftI ireg scale)) off);
4912 
4913   op_cost(100);
4914   format %{"[$reg + $off + $ireg << $scale]" %}
4915   interface(MEMORY_INTER) %{
4916     base($reg);
4917     index($ireg);
4918     scale($scale);
4919     disp($off);
4920   %}
4921 %}
4922 
4923 //----------Conditional Branch Operands----------------------------------------
4924 // Comparison Op  - This is the operation of the comparison, and is limited to
4925 //                  the following set of codes:
4926 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4927 //
4928 // Other attributes of the comparison, such as unsignedness, are specified
4929 // by the comparison instruction that sets a condition code flags register.
4930 // That result is represented by a flags operand whose subtype is appropriate
4931 // to the unsignedness (etc.) of the comparison.
4932 //
4933 // Later, the instruction which matches both the Comparison Op (a Bool) and
4934 // the flags (produced by the Cmp) specifies the coding of the comparison op
4935 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4936 
4937 // Comparision Code
4938 operand cmpOp() %{
4939   match(Bool);
4940 
4941   format %{ "" %}
4942   interface(COND_INTER) %{
4943     equal(0x4, "e");
4944     not_equal(0x5, "ne");
4945     less(0xC, "l");
4946     greater_equal(0xD, "ge");
4947     less_equal(0xE, "le");
4948     greater(0xF, "g");
4949     overflow(0x0, "o");
4950     no_overflow(0x1, "no");
4951   %}
4952 %}
4953 
4954 // Comparison Code, unsigned compare.  Used by FP also, with
4955 // C2 (unordered) turned into GT or LT already.  The other bits
4956 // C0 and C3 are turned into Carry & Zero flags.
4957 operand cmpOpU() %{
4958   match(Bool);
4959 
4960   format %{ "" %}
4961   interface(COND_INTER) %{
4962     equal(0x4, "e");
4963     not_equal(0x5, "ne");
4964     less(0x2, "b");
4965     greater_equal(0x3, "nb");
4966     less_equal(0x6, "be");
4967     greater(0x7, "nbe");
4968     overflow(0x0, "o");
4969     no_overflow(0x1, "no");
4970   %}
4971 %}
4972 
4973 // Floating comparisons that don't require any fixup for the unordered case
4974 operand cmpOpUCF() %{
4975   match(Bool);
4976   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4977             n->as_Bool()->_test._test == BoolTest::ge ||
4978             n->as_Bool()->_test._test == BoolTest::le ||
4979             n->as_Bool()->_test._test == BoolTest::gt);
4980   format %{ "" %}
4981   interface(COND_INTER) %{
4982     equal(0x4, "e");
4983     not_equal(0x5, "ne");
4984     less(0x2, "b");
4985     greater_equal(0x3, "nb");
4986     less_equal(0x6, "be");
4987     greater(0x7, "nbe");
4988     overflow(0x0, "o");
4989     no_overflow(0x1, "no");
4990   %}
4991 %}
4992 
4993 
4994 // Floating comparisons that can be fixed up with extra conditional jumps
4995 operand cmpOpUCF2() %{
4996   match(Bool);
4997   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4998             n->as_Bool()->_test._test == BoolTest::eq);
4999   format %{ "" %}
5000   interface(COND_INTER) %{
5001     equal(0x4, "e");
5002     not_equal(0x5, "ne");
5003     less(0x2, "b");
5004     greater_equal(0x3, "nb");
5005     less_equal(0x6, "be");
5006     greater(0x7, "nbe");
5007     overflow(0x0, "o");
5008     no_overflow(0x1, "no");
5009   %}
5010 %}
5011 
5012 // Comparison Code for FP conditional move
5013 operand cmpOp_fcmov() %{
5014   match(Bool);
5015 
5016   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
5017             n->as_Bool()->_test._test != BoolTest::no_overflow);
5018   format %{ "" %}
5019   interface(COND_INTER) %{
5020     equal        (0x0C8);
5021     not_equal    (0x1C8);
5022     less         (0x0C0);
5023     greater_equal(0x1C0);
5024     less_equal   (0x0D0);
5025     greater      (0x1D0);
5026     overflow(0x0, "o"); // not really supported by the instruction
5027     no_overflow(0x1, "no"); // not really supported by the instruction
5028   %}
5029 %}
5030 
5031 // Comparision Code used in long compares
5032 operand cmpOp_commute() %{
5033   match(Bool);
5034 
5035   format %{ "" %}
5036   interface(COND_INTER) %{
5037     equal(0x4, "e");
5038     not_equal(0x5, "ne");
5039     less(0xF, "g");
5040     greater_equal(0xE, "le");
5041     less_equal(0xD, "ge");
5042     greater(0xC, "l");
5043     overflow(0x0, "o");
5044     no_overflow(0x1, "no");
5045   %}
5046 %}
5047 
5048 //----------OPERAND CLASSES----------------------------------------------------
5049 // Operand Classes are groups of operands that are used as to simplify
5050 // instruction definitions by not requiring the AD writer to specify separate
5051 // instructions for every form of operand when the instruction accepts
5052 // multiple operand types with the same basic encoding and format.  The classic
5053 // case of this is memory operands.
5054 
5055 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5056                indIndex, indIndexScale, indIndexScaleOffset);
5057 
5058 // Long memory operations are encoded in 2 instructions and a +4 offset.
5059 // This means some kind of offset is always required and you cannot use
5060 // an oop as the offset (done when working on static globals).
5061 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5062                     indIndex, indIndexScale, indIndexScaleOffset);
5063 
5064 
5065 //----------PIPELINE-----------------------------------------------------------
5066 // Rules which define the behavior of the target architectures pipeline.
5067 pipeline %{
5068 
5069 //----------ATTRIBUTES---------------------------------------------------------
5070 attributes %{
5071   variable_size_instructions;        // Fixed size instructions
5072   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5073   instruction_unit_size = 1;         // An instruction is 1 bytes long
5074   instruction_fetch_unit_size = 16;  // The processor fetches one line
5075   instruction_fetch_units = 1;       // of 16 bytes
5076 
5077   // List of nop instructions
5078   nops( MachNop );
5079 %}
5080 
5081 //----------RESOURCES----------------------------------------------------------
5082 // Resources are the functional units available to the machine
5083 
5084 // Generic P2/P3 pipeline
5085 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5086 // 3 instructions decoded per cycle.
5087 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5088 // 2 ALU op, only ALU0 handles mul/div instructions.
5089 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5090            MS0, MS1, MEM = MS0 | MS1,
5091            BR, FPU,
5092            ALU0, ALU1, ALU = ALU0 | ALU1 );
5093 
5094 //----------PIPELINE DESCRIPTION-----------------------------------------------
5095 // Pipeline Description specifies the stages in the machine's pipeline
5096 
5097 // Generic P2/P3 pipeline
5098 pipe_desc(S0, S1, S2, S3, S4, S5);
5099 
5100 //----------PIPELINE CLASSES---------------------------------------------------
5101 // Pipeline Classes describe the stages in which input and output are
5102 // referenced by the hardware pipeline.
5103 
5104 // Naming convention: ialu or fpu
5105 // Then: _reg
5106 // Then: _reg if there is a 2nd register
5107 // Then: _long if it's a pair of instructions implementing a long
5108 // Then: _fat if it requires the big decoder
5109 //   Or: _mem if it requires the big decoder and a memory unit.
5110 
5111 // Integer ALU reg operation
5112 pipe_class ialu_reg(rRegI dst) %{
5113     single_instruction;
5114     dst    : S4(write);
5115     dst    : S3(read);
5116     DECODE : S0;        // any decoder
5117     ALU    : S3;        // any alu
5118 %}
5119 
5120 // Long ALU reg operation
5121 pipe_class ialu_reg_long(eRegL dst) %{
5122     instruction_count(2);
5123     dst    : S4(write);
5124     dst    : S3(read);
5125     DECODE : S0(2);     // any 2 decoders
5126     ALU    : S3(2);     // both alus
5127 %}
5128 
5129 // Integer ALU reg operation using big decoder
5130 pipe_class ialu_reg_fat(rRegI dst) %{
5131     single_instruction;
5132     dst    : S4(write);
5133     dst    : S3(read);
5134     D0     : S0;        // big decoder only
5135     ALU    : S3;        // any alu
5136 %}
5137 
5138 // Long ALU reg operation using big decoder
5139 pipe_class ialu_reg_long_fat(eRegL dst) %{
5140     instruction_count(2);
5141     dst    : S4(write);
5142     dst    : S3(read);
5143     D0     : S0(2);     // big decoder only; twice
5144     ALU    : S3(2);     // any 2 alus
5145 %}
5146 
5147 // Integer ALU reg-reg operation
5148 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
5149     single_instruction;
5150     dst    : S4(write);
5151     src    : S3(read);
5152     DECODE : S0;        // any decoder
5153     ALU    : S3;        // any alu
5154 %}
5155 
5156 // Long ALU reg-reg operation
5157 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5158     instruction_count(2);
5159     dst    : S4(write);
5160     src    : S3(read);
5161     DECODE : S0(2);     // any 2 decoders
5162     ALU    : S3(2);     // both alus
5163 %}
5164 
5165 // Integer ALU reg-reg operation
5166 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
5167     single_instruction;
5168     dst    : S4(write);
5169     src    : S3(read);
5170     D0     : S0;        // big decoder only
5171     ALU    : S3;        // any alu
5172 %}
5173 
5174 // Long ALU reg-reg operation
5175 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5176     instruction_count(2);
5177     dst    : S4(write);
5178     src    : S3(read);
5179     D0     : S0(2);     // big decoder only; twice
5180     ALU    : S3(2);     // both alus
5181 %}
5182 
5183 // Integer ALU reg-mem operation
5184 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
5185     single_instruction;
5186     dst    : S5(write);
5187     mem    : S3(read);
5188     D0     : S0;        // big decoder only
5189     ALU    : S4;        // any alu
5190     MEM    : S3;        // any mem
5191 %}
5192 
5193 // Long ALU reg-mem operation
5194 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5195     instruction_count(2);
5196     dst    : S5(write);
5197     mem    : S3(read);
5198     D0     : S0(2);     // big decoder only; twice
5199     ALU    : S4(2);     // any 2 alus
5200     MEM    : S3(2);     // both mems
5201 %}
5202 
5203 // Integer mem operation (prefetch)
5204 pipe_class ialu_mem(memory mem)
5205 %{
5206     single_instruction;
5207     mem    : S3(read);
5208     D0     : S0;        // big decoder only
5209     MEM    : S3;        // any mem
5210 %}
5211 
5212 // Integer Store to Memory
5213 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
5214     single_instruction;
5215     mem    : S3(read);
5216     src    : S5(read);
5217     D0     : S0;        // big decoder only
5218     ALU    : S4;        // any alu
5219     MEM    : S3;
5220 %}
5221 
5222 // Long Store to Memory
5223 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5224     instruction_count(2);
5225     mem    : S3(read);
5226     src    : S5(read);
5227     D0     : S0(2);     // big decoder only; twice
5228     ALU    : S4(2);     // any 2 alus
5229     MEM    : S3(2);     // Both mems
5230 %}
5231 
5232 // Integer Store to Memory
5233 pipe_class ialu_mem_imm(memory mem) %{
5234     single_instruction;
5235     mem    : S3(read);
5236     D0     : S0;        // big decoder only
5237     ALU    : S4;        // any alu
5238     MEM    : S3;
5239 %}
5240 
5241 // Integer ALU0 reg-reg operation
5242 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
5243     single_instruction;
5244     dst    : S4(write);
5245     src    : S3(read);
5246     D0     : S0;        // Big decoder only
5247     ALU0   : S3;        // only alu0
5248 %}
5249 
5250 // Integer ALU0 reg-mem operation
5251 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
5252     single_instruction;
5253     dst    : S5(write);
5254     mem    : S3(read);
5255     D0     : S0;        // big decoder only
5256     ALU0   : S4;        // ALU0 only
5257     MEM    : S3;        // any mem
5258 %}
5259 
5260 // Integer ALU reg-reg operation
5261 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
5262     single_instruction;
5263     cr     : S4(write);
5264     src1   : S3(read);
5265     src2   : S3(read);
5266     DECODE : S0;        // any decoder
5267     ALU    : S3;        // any alu
5268 %}
5269 
5270 // Integer ALU reg-imm operation
5271 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
5272     single_instruction;
5273     cr     : S4(write);
5274     src1   : S3(read);
5275     DECODE : S0;        // any decoder
5276     ALU    : S3;        // any alu
5277 %}
5278 
5279 // Integer ALU reg-mem operation
5280 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
5281     single_instruction;
5282     cr     : S4(write);
5283     src1   : S3(read);
5284     src2   : S3(read);
5285     D0     : S0;        // big decoder only
5286     ALU    : S4;        // any alu
5287     MEM    : S3;
5288 %}
5289 
5290 // Conditional move reg-reg
5291 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
5292     instruction_count(4);
5293     y      : S4(read);
5294     q      : S3(read);
5295     p      : S3(read);
5296     DECODE : S0(4);     // any decoder
5297 %}
5298 
5299 // Conditional move reg-reg
5300 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
5301     single_instruction;
5302     dst    : S4(write);
5303     src    : S3(read);
5304     cr     : S3(read);
5305     DECODE : S0;        // any decoder
5306 %}
5307 
5308 // Conditional move reg-mem
5309 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
5310     single_instruction;
5311     dst    : S4(write);
5312     src    : S3(read);
5313     cr     : S3(read);
5314     DECODE : S0;        // any decoder
5315     MEM    : S3;
5316 %}
5317 
5318 // Conditional move reg-reg long
5319 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5320     single_instruction;
5321     dst    : S4(write);
5322     src    : S3(read);
5323     cr     : S3(read);
5324     DECODE : S0(2);     // any 2 decoders
5325 %}
5326 
5327 // Conditional move double reg-reg
5328 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
5329     single_instruction;
5330     dst    : S4(write);
5331     src    : S3(read);
5332     cr     : S3(read);
5333     DECODE : S0;        // any decoder
5334 %}
5335 
5336 // Float reg-reg operation
5337 pipe_class fpu_reg(regDPR dst) %{
5338     instruction_count(2);
5339     dst    : S3(read);
5340     DECODE : S0(2);     // any 2 decoders
5341     FPU    : S3;
5342 %}
5343 
5344 // Float reg-reg operation
5345 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
5346     instruction_count(2);
5347     dst    : S4(write);
5348     src    : S3(read);
5349     DECODE : S0(2);     // any 2 decoders
5350     FPU    : S3;
5351 %}
5352 
5353 // Float reg-reg operation
5354 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
5355     instruction_count(3);
5356     dst    : S4(write);
5357     src1   : S3(read);
5358     src2   : S3(read);
5359     DECODE : S0(3);     // any 3 decoders
5360     FPU    : S3(2);
5361 %}
5362 
5363 // Float reg-reg operation
5364 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
5365     instruction_count(4);
5366     dst    : S4(write);
5367     src1   : S3(read);
5368     src2   : S3(read);
5369     src3   : S3(read);
5370     DECODE : S0(4);     // any 3 decoders
5371     FPU    : S3(2);
5372 %}
5373 
5374 // Float reg-reg operation
5375 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
5376     instruction_count(4);
5377     dst    : S4(write);
5378     src1   : S3(read);
5379     src2   : S3(read);
5380     src3   : S3(read);
5381     DECODE : S1(3);     // any 3 decoders
5382     D0     : S0;        // Big decoder only
5383     FPU    : S3(2);
5384     MEM    : S3;
5385 %}
5386 
5387 // Float reg-mem operation
5388 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
5389     instruction_count(2);
5390     dst    : S5(write);
5391     mem    : S3(read);
5392     D0     : S0;        // big decoder only
5393     DECODE : S1;        // any decoder for FPU POP
5394     FPU    : S4;
5395     MEM    : S3;        // any mem
5396 %}
5397 
5398 // Float reg-mem operation
5399 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
5400     instruction_count(3);
5401     dst    : S5(write);
5402     src1   : S3(read);
5403     mem    : S3(read);
5404     D0     : S0;        // big decoder only
5405     DECODE : S1(2);     // any decoder for FPU POP
5406     FPU    : S4;
5407     MEM    : S3;        // any mem
5408 %}
5409 
5410 // Float mem-reg operation
5411 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
5412     instruction_count(2);
5413     src    : S5(read);
5414     mem    : S3(read);
5415     DECODE : S0;        // any decoder for FPU PUSH
5416     D0     : S1;        // big decoder only
5417     FPU    : S4;
5418     MEM    : S3;        // any mem
5419 %}
5420 
5421 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
5422     instruction_count(3);
5423     src1   : S3(read);
5424     src2   : S3(read);
5425     mem    : S3(read);
5426     DECODE : S0(2);     // any decoder for FPU PUSH
5427     D0     : S1;        // big decoder only
5428     FPU    : S4;
5429     MEM    : S3;        // any mem
5430 %}
5431 
5432 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
5433     instruction_count(3);
5434     src1   : S3(read);
5435     src2   : S3(read);
5436     mem    : S4(read);
5437     DECODE : S0;        // any decoder for FPU PUSH
5438     D0     : S0(2);     // big decoder only
5439     FPU    : S4;
5440     MEM    : S3(2);     // any mem
5441 %}
5442 
5443 pipe_class fpu_mem_mem(memory dst, memory src1) %{
5444     instruction_count(2);
5445     src1   : S3(read);
5446     dst    : S4(read);
5447     D0     : S0(2);     // big decoder only
5448     MEM    : S3(2);     // any mem
5449 %}
5450 
5451 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
5452     instruction_count(3);
5453     src1   : S3(read);
5454     src2   : S3(read);
5455     dst    : S4(read);
5456     D0     : S0(3);     // big decoder only
5457     FPU    : S4;
5458     MEM    : S3(3);     // any mem
5459 %}
5460 
5461 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
5462     instruction_count(3);
5463     src1   : S4(read);
5464     mem    : S4(read);
5465     DECODE : S0;        // any decoder for FPU PUSH
5466     D0     : S0(2);     // big decoder only
5467     FPU    : S4;
5468     MEM    : S3(2);     // any mem
5469 %}
5470 
5471 // Float load constant
5472 pipe_class fpu_reg_con(regDPR dst) %{
5473     instruction_count(2);
5474     dst    : S5(write);
5475     D0     : S0;        // big decoder only for the load
5476     DECODE : S1;        // any decoder for FPU POP
5477     FPU    : S4;
5478     MEM    : S3;        // any mem
5479 %}
5480 
5481 // Float load constant
5482 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
5483     instruction_count(3);
5484     dst    : S5(write);
5485     src    : S3(read);
5486     D0     : S0;        // big decoder only for the load
5487     DECODE : S1(2);     // any decoder for FPU POP
5488     FPU    : S4;
5489     MEM    : S3;        // any mem
5490 %}
5491 
5492 // UnConditional branch
5493 pipe_class pipe_jmp( label labl ) %{
5494     single_instruction;
5495     BR   : S3;
5496 %}
5497 
5498 // Conditional branch
5499 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
5500     single_instruction;
5501     cr    : S1(read);
5502     BR    : S3;
5503 %}
5504 
5505 // Allocation idiom
5506 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
5507     instruction_count(1); force_serialization;
5508     fixed_latency(6);
5509     heap_ptr : S3(read);
5510     DECODE   : S0(3);
5511     D0       : S2;
5512     MEM      : S3;
5513     ALU      : S3(2);
5514     dst      : S5(write);
5515     BR       : S5;
5516 %}
5517 
5518 // Generic big/slow expanded idiom
5519 pipe_class pipe_slow(  ) %{
5520     instruction_count(10); multiple_bundles; force_serialization;
5521     fixed_latency(100);
5522     D0  : S0(2);
5523     MEM : S3(2);
5524 %}
5525 
5526 // The real do-nothing guy
5527 pipe_class empty( ) %{
5528     instruction_count(0);
5529 %}
5530 
5531 // Define the class for the Nop node
5532 define %{
5533    MachNop = empty;
5534 %}
5535 
5536 %}
5537 
5538 //----------INSTRUCTIONS-------------------------------------------------------
5539 //
5540 // match      -- States which machine-independent subtree may be replaced
5541 //               by this instruction.
5542 // ins_cost   -- The estimated cost of this instruction is used by instruction
5543 //               selection to identify a minimum cost tree of machine
5544 //               instructions that matches a tree of machine-independent
5545 //               instructions.
5546 // format     -- A string providing the disassembly for this instruction.
5547 //               The value of an instruction's operand may be inserted
5548 //               by referring to it with a '$' prefix.
5549 // opcode     -- Three instruction opcodes may be provided.  These are referred
5550 //               to within an encode class as $primary, $secondary, and $tertiary
5551 //               respectively.  The primary opcode is commonly used to
5552 //               indicate the type of machine instruction, while secondary
5553 //               and tertiary are often used for prefix options or addressing
5554 //               modes.
5555 // ins_encode -- A list of encode classes with parameters. The encode class
5556 //               name must have been defined in an 'enc_class' specification
5557 //               in the encode section of the architecture description.
5558 
5559 //----------BSWAP-Instruction--------------------------------------------------
5560 instruct bytes_reverse_int(rRegI dst) %{
5561   match(Set dst (ReverseBytesI dst));
5562 
5563   format %{ "BSWAP  $dst" %}
5564   opcode(0x0F, 0xC8);
5565   ins_encode( OpcP, OpcSReg(dst) );
5566   ins_pipe( ialu_reg );
5567 %}
5568 
5569 instruct bytes_reverse_long(eRegL dst) %{
5570   match(Set dst (ReverseBytesL dst));
5571 
5572   format %{ "BSWAP  $dst.lo\n\t"
5573             "BSWAP  $dst.hi\n\t"
5574             "XCHG   $dst.lo $dst.hi" %}
5575 
5576   ins_cost(125);
5577   ins_encode( bswap_long_bytes(dst) );
5578   ins_pipe( ialu_reg_reg);
5579 %}
5580 
5581 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5582   match(Set dst (ReverseBytesUS dst));
5583   effect(KILL cr);
5584 
5585   format %{ "BSWAP  $dst\n\t" 
5586             "SHR    $dst,16\n\t" %}
5587   ins_encode %{
5588     __ bswapl($dst$$Register);
5589     __ shrl($dst$$Register, 16); 
5590   %}
5591   ins_pipe( ialu_reg );
5592 %}
5593 
5594 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5595   match(Set dst (ReverseBytesS dst));
5596   effect(KILL cr);
5597 
5598   format %{ "BSWAP  $dst\n\t" 
5599             "SAR    $dst,16\n\t" %}
5600   ins_encode %{
5601     __ bswapl($dst$$Register);
5602     __ sarl($dst$$Register, 16); 
5603   %}
5604   ins_pipe( ialu_reg );
5605 %}
5606 
5607 
5608 //---------- Zeros Count Instructions ------------------------------------------
5609 
5610 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5611   predicate(UseCountLeadingZerosInstruction);
5612   match(Set dst (CountLeadingZerosI src));
5613   effect(KILL cr);
5614 
5615   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5616   ins_encode %{
5617     __ lzcntl($dst$$Register, $src$$Register);
5618   %}
5619   ins_pipe(ialu_reg);
5620 %}
5621 
5622 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5623   predicate(!UseCountLeadingZerosInstruction);
5624   match(Set dst (CountLeadingZerosI src));
5625   effect(KILL cr);
5626 
5627   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5628             "JNZ    skip\n\t"
5629             "MOV    $dst, -1\n"
5630       "skip:\n\t"
5631             "NEG    $dst\n\t"
5632             "ADD    $dst, 31" %}
5633   ins_encode %{
5634     Register Rdst = $dst$$Register;
5635     Register Rsrc = $src$$Register;
5636     Label skip;
5637     __ bsrl(Rdst, Rsrc);
5638     __ jccb(Assembler::notZero, skip);
5639     __ movl(Rdst, -1);
5640     __ bind(skip);
5641     __ negl(Rdst);
5642     __ addl(Rdst, BitsPerInt - 1);
5643   %}
5644   ins_pipe(ialu_reg);
5645 %}
5646 
5647 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5648   predicate(UseCountLeadingZerosInstruction);
5649   match(Set dst (CountLeadingZerosL src));
5650   effect(TEMP dst, KILL cr);
5651 
5652   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5653             "JNC    done\n\t"
5654             "LZCNT  $dst, $src.lo\n\t"
5655             "ADD    $dst, 32\n"
5656       "done:" %}
5657   ins_encode %{
5658     Register Rdst = $dst$$Register;
5659     Register Rsrc = $src$$Register;
5660     Label done;
5661     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5662     __ jccb(Assembler::carryClear, done);
5663     __ lzcntl(Rdst, Rsrc);
5664     __ addl(Rdst, BitsPerInt);
5665     __ bind(done);
5666   %}
5667   ins_pipe(ialu_reg);
5668 %}
5669 
5670 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5671   predicate(!UseCountLeadingZerosInstruction);
5672   match(Set dst (CountLeadingZerosL src));
5673   effect(TEMP dst, KILL cr);
5674 
5675   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5676             "JZ     msw_is_zero\n\t"
5677             "ADD    $dst, 32\n\t"
5678             "JMP    not_zero\n"
5679       "msw_is_zero:\n\t"
5680             "BSR    $dst, $src.lo\n\t"
5681             "JNZ    not_zero\n\t"
5682             "MOV    $dst, -1\n"
5683       "not_zero:\n\t"
5684             "NEG    $dst\n\t"
5685             "ADD    $dst, 63\n" %}
5686  ins_encode %{
5687     Register Rdst = $dst$$Register;
5688     Register Rsrc = $src$$Register;
5689     Label msw_is_zero;
5690     Label not_zero;
5691     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5692     __ jccb(Assembler::zero, msw_is_zero);
5693     __ addl(Rdst, BitsPerInt);
5694     __ jmpb(not_zero);
5695     __ bind(msw_is_zero);
5696     __ bsrl(Rdst, Rsrc);
5697     __ jccb(Assembler::notZero, not_zero);
5698     __ movl(Rdst, -1);
5699     __ bind(not_zero);
5700     __ negl(Rdst);
5701     __ addl(Rdst, BitsPerLong - 1);
5702   %}
5703   ins_pipe(ialu_reg);
5704 %}
5705 
5706 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5707   match(Set dst (CountTrailingZerosI src));
5708   effect(KILL cr);
5709 
5710   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5711             "JNZ    done\n\t"
5712             "MOV    $dst, 32\n"
5713       "done:" %}
5714   ins_encode %{
5715     Register Rdst = $dst$$Register;
5716     Label done;
5717     __ bsfl(Rdst, $src$$Register);
5718     __ jccb(Assembler::notZero, done);
5719     __ movl(Rdst, BitsPerInt);
5720     __ bind(done);
5721   %}
5722   ins_pipe(ialu_reg);
5723 %}
5724 
5725 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5726   match(Set dst (CountTrailingZerosL src));
5727   effect(TEMP dst, KILL cr);
5728 
5729   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5730             "JNZ    done\n\t"
5731             "BSF    $dst, $src.hi\n\t"
5732             "JNZ    msw_not_zero\n\t"
5733             "MOV    $dst, 32\n"
5734       "msw_not_zero:\n\t"
5735             "ADD    $dst, 32\n"
5736       "done:" %}
5737   ins_encode %{
5738     Register Rdst = $dst$$Register;
5739     Register Rsrc = $src$$Register;
5740     Label msw_not_zero;
5741     Label done;
5742     __ bsfl(Rdst, Rsrc);
5743     __ jccb(Assembler::notZero, done);
5744     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5745     __ jccb(Assembler::notZero, msw_not_zero);
5746     __ movl(Rdst, BitsPerInt);
5747     __ bind(msw_not_zero);
5748     __ addl(Rdst, BitsPerInt);
5749     __ bind(done);
5750   %}
5751   ins_pipe(ialu_reg);
5752 %}
5753 
5754 
5755 //---------- Population Count Instructions -------------------------------------
5756 
5757 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5758   predicate(UsePopCountInstruction);
5759   match(Set dst (PopCountI src));
5760   effect(KILL cr);
5761 
5762   format %{ "POPCNT $dst, $src" %}
5763   ins_encode %{
5764     __ popcntl($dst$$Register, $src$$Register);
5765   %}
5766   ins_pipe(ialu_reg);
5767 %}
5768 
5769 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5770   predicate(UsePopCountInstruction);
5771   match(Set dst (PopCountI (LoadI mem)));
5772   effect(KILL cr);
5773 
5774   format %{ "POPCNT $dst, $mem" %}
5775   ins_encode %{
5776     __ popcntl($dst$$Register, $mem$$Address);
5777   %}
5778   ins_pipe(ialu_reg);
5779 %}
5780 
5781 // Note: Long.bitCount(long) returns an int.
5782 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5783   predicate(UsePopCountInstruction);
5784   match(Set dst (PopCountL src));
5785   effect(KILL cr, TEMP tmp, TEMP dst);
5786 
5787   format %{ "POPCNT $dst, $src.lo\n\t"
5788             "POPCNT $tmp, $src.hi\n\t"
5789             "ADD    $dst, $tmp" %}
5790   ins_encode %{
5791     __ popcntl($dst$$Register, $src$$Register);
5792     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5793     __ addl($dst$$Register, $tmp$$Register);
5794   %}
5795   ins_pipe(ialu_reg);
5796 %}
5797 
5798 // Note: Long.bitCount(long) returns an int.
5799 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5800   predicate(UsePopCountInstruction);
5801   match(Set dst (PopCountL (LoadL mem)));
5802   effect(KILL cr, TEMP tmp, TEMP dst);
5803 
5804   format %{ "POPCNT $dst, $mem\n\t"
5805             "POPCNT $tmp, $mem+4\n\t"
5806             "ADD    $dst, $tmp" %}
5807   ins_encode %{
5808     //__ popcntl($dst$$Register, $mem$$Address$$first);
5809     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5810     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5811     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5812     __ addl($dst$$Register, $tmp$$Register);
5813   %}
5814   ins_pipe(ialu_reg);
5815 %}
5816 
5817 
5818 //----------Load/Store/Move Instructions---------------------------------------
5819 //----------Load Instructions--------------------------------------------------
5820 // Load Byte (8bit signed)
5821 instruct loadB(xRegI dst, memory mem) %{
5822   match(Set dst (LoadB mem));
5823 
5824   ins_cost(125);
5825   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5826 
5827   ins_encode %{
5828     __ movsbl($dst$$Register, $mem$$Address);
5829   %}
5830 
5831   ins_pipe(ialu_reg_mem);
5832 %}
5833 
5834 // Load Byte (8bit signed) into Long Register
5835 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5836   match(Set dst (ConvI2L (LoadB mem)));
5837   effect(KILL cr);
5838 
5839   ins_cost(375);
5840   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5841             "MOV    $dst.hi,$dst.lo\n\t"
5842             "SAR    $dst.hi,7" %}
5843 
5844   ins_encode %{
5845     __ movsbl($dst$$Register, $mem$$Address);
5846     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5847     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5848   %}
5849 
5850   ins_pipe(ialu_reg_mem);
5851 %}
5852 
5853 // Load Unsigned Byte (8bit UNsigned)
5854 instruct loadUB(xRegI dst, memory mem) %{
5855   match(Set dst (LoadUB mem));
5856 
5857   ins_cost(125);
5858   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5859 
5860   ins_encode %{
5861     __ movzbl($dst$$Register, $mem$$Address);
5862   %}
5863 
5864   ins_pipe(ialu_reg_mem);
5865 %}
5866 
5867 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5868 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5869   match(Set dst (ConvI2L (LoadUB mem)));
5870   effect(KILL cr);
5871 
5872   ins_cost(250);
5873   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5874             "XOR    $dst.hi,$dst.hi" %}
5875 
5876   ins_encode %{
5877     Register Rdst = $dst$$Register;
5878     __ movzbl(Rdst, $mem$$Address);
5879     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5880   %}
5881 
5882   ins_pipe(ialu_reg_mem);
5883 %}
5884 
5885 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5886 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5887   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5888   effect(KILL cr);
5889 
5890   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5891             "XOR    $dst.hi,$dst.hi\n\t"
5892             "AND    $dst.lo,$mask" %}
5893   ins_encode %{
5894     Register Rdst = $dst$$Register;
5895     __ movzbl(Rdst, $mem$$Address);
5896     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5897     __ andl(Rdst, $mask$$constant);
5898   %}
5899   ins_pipe(ialu_reg_mem);
5900 %}
5901 
5902 // Load Short (16bit signed)
5903 instruct loadS(rRegI dst, memory mem) %{
5904   match(Set dst (LoadS mem));
5905 
5906   ins_cost(125);
5907   format %{ "MOVSX  $dst,$mem\t# short" %}
5908 
5909   ins_encode %{
5910     __ movswl($dst$$Register, $mem$$Address);
5911   %}
5912 
5913   ins_pipe(ialu_reg_mem);
5914 %}
5915 
5916 // Load Short (16 bit signed) to Byte (8 bit signed)
5917 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5918   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5919 
5920   ins_cost(125);
5921   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5922   ins_encode %{
5923     __ movsbl($dst$$Register, $mem$$Address);
5924   %}
5925   ins_pipe(ialu_reg_mem);
5926 %}
5927 
5928 // Load Short (16bit signed) into Long Register
5929 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5930   match(Set dst (ConvI2L (LoadS mem)));
5931   effect(KILL cr);
5932 
5933   ins_cost(375);
5934   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5935             "MOV    $dst.hi,$dst.lo\n\t"
5936             "SAR    $dst.hi,15" %}
5937 
5938   ins_encode %{
5939     __ movswl($dst$$Register, $mem$$Address);
5940     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5941     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5942   %}
5943 
5944   ins_pipe(ialu_reg_mem);
5945 %}
5946 
5947 // Load Unsigned Short/Char (16bit unsigned)
5948 instruct loadUS(rRegI dst, memory mem) %{
5949   match(Set dst (LoadUS mem));
5950 
5951   ins_cost(125);
5952   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5953 
5954   ins_encode %{
5955     __ movzwl($dst$$Register, $mem$$Address);
5956   %}
5957 
5958   ins_pipe(ialu_reg_mem);
5959 %}
5960 
5961 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5962 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5963   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5964 
5965   ins_cost(125);
5966   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5967   ins_encode %{
5968     __ movsbl($dst$$Register, $mem$$Address);
5969   %}
5970   ins_pipe(ialu_reg_mem);
5971 %}
5972 
5973 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5974 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5975   match(Set dst (ConvI2L (LoadUS mem)));
5976   effect(KILL cr);
5977 
5978   ins_cost(250);
5979   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
5980             "XOR    $dst.hi,$dst.hi" %}
5981 
5982   ins_encode %{
5983     __ movzwl($dst$$Register, $mem$$Address);
5984     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5985   %}
5986 
5987   ins_pipe(ialu_reg_mem);
5988 %}
5989 
5990 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5991 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5992   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5993   effect(KILL cr);
5994 
5995   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
5996             "XOR    $dst.hi,$dst.hi" %}
5997   ins_encode %{
5998     Register Rdst = $dst$$Register;
5999     __ movzbl(Rdst, $mem$$Address);
6000     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6001   %}
6002   ins_pipe(ialu_reg_mem);
6003 %}
6004 
6005 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6006 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6007   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6008   effect(KILL cr);
6009 
6010   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6011             "XOR    $dst.hi,$dst.hi\n\t"
6012             "AND    $dst.lo,$mask" %}
6013   ins_encode %{
6014     Register Rdst = $dst$$Register;
6015     __ movzwl(Rdst, $mem$$Address);
6016     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6017     __ andl(Rdst, $mask$$constant);
6018   %}
6019   ins_pipe(ialu_reg_mem);
6020 %}
6021 
6022 // Load Integer
6023 instruct loadI(rRegI dst, memory mem) %{
6024   match(Set dst (LoadI mem));
6025 
6026   ins_cost(125);
6027   format %{ "MOV    $dst,$mem\t# int" %}
6028 
6029   ins_encode %{
6030     __ movl($dst$$Register, $mem$$Address);
6031   %}
6032 
6033   ins_pipe(ialu_reg_mem);
6034 %}
6035 
6036 // Load Integer (32 bit signed) to Byte (8 bit signed)
6037 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
6038   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6039 
6040   ins_cost(125);
6041   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6042   ins_encode %{
6043     __ movsbl($dst$$Register, $mem$$Address);
6044   %}
6045   ins_pipe(ialu_reg_mem);
6046 %}
6047 
6048 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6049 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
6050   match(Set dst (AndI (LoadI mem) mask));
6051 
6052   ins_cost(125);
6053   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6054   ins_encode %{
6055     __ movzbl($dst$$Register, $mem$$Address);
6056   %}
6057   ins_pipe(ialu_reg_mem);
6058 %}
6059 
6060 // Load Integer (32 bit signed) to Short (16 bit signed)
6061 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
6062   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6063 
6064   ins_cost(125);
6065   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6066   ins_encode %{
6067     __ movswl($dst$$Register, $mem$$Address);
6068   %}
6069   ins_pipe(ialu_reg_mem);
6070 %}
6071 
6072 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6073 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
6074   match(Set dst (AndI (LoadI mem) mask));
6075 
6076   ins_cost(125);
6077   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6078   ins_encode %{
6079     __ movzwl($dst$$Register, $mem$$Address);
6080   %}
6081   ins_pipe(ialu_reg_mem);
6082 %}
6083 
6084 // Load Integer into Long Register
6085 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6086   match(Set dst (ConvI2L (LoadI mem)));
6087   effect(KILL cr);
6088 
6089   ins_cost(375);
6090   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6091             "MOV    $dst.hi,$dst.lo\n\t"
6092             "SAR    $dst.hi,31" %}
6093 
6094   ins_encode %{
6095     __ movl($dst$$Register, $mem$$Address);
6096     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6097     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6098   %}
6099 
6100   ins_pipe(ialu_reg_mem);
6101 %}
6102 
6103 // Load Integer with mask 0xFF into Long Register
6104 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6105   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6106   effect(KILL cr);
6107 
6108   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6109             "XOR    $dst.hi,$dst.hi" %}
6110   ins_encode %{
6111     Register Rdst = $dst$$Register;
6112     __ movzbl(Rdst, $mem$$Address);
6113     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6114   %}
6115   ins_pipe(ialu_reg_mem);
6116 %}
6117 
6118 // Load Integer with mask 0xFFFF into Long Register
6119 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6120   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6121   effect(KILL cr);
6122 
6123   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6124             "XOR    $dst.hi,$dst.hi" %}
6125   ins_encode %{
6126     Register Rdst = $dst$$Register;
6127     __ movzwl(Rdst, $mem$$Address);
6128     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6129   %}
6130   ins_pipe(ialu_reg_mem);
6131 %}
6132 
6133 // Load Integer with 31-bit mask into Long Register
6134 instruct loadI2L_immU32(eRegL dst, memory mem, immU32 mask, eFlagsReg cr) %{
6135   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6136   effect(KILL cr);
6137 
6138   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
6139             "XOR    $dst.hi,$dst.hi\n\t"
6140             "AND    $dst.lo,$mask" %}
6141   ins_encode %{
6142     Register Rdst = $dst$$Register;
6143     __ movl(Rdst, $mem$$Address);
6144     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6145     __ andl(Rdst, $mask$$constant);
6146   %}
6147   ins_pipe(ialu_reg_mem);
6148 %}
6149 
6150 // Load Unsigned Integer into Long Register
6151 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
6152   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
6153   effect(KILL cr);
6154 
6155   ins_cost(250);
6156   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6157             "XOR    $dst.hi,$dst.hi" %}
6158 
6159   ins_encode %{
6160     __ movl($dst$$Register, $mem$$Address);
6161     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6162   %}
6163 
6164   ins_pipe(ialu_reg_mem);
6165 %}
6166 
6167 // Load Long.  Cannot clobber address while loading, so restrict address
6168 // register to ESI
6169 instruct loadL(eRegL dst, load_long_memory mem) %{
6170   predicate(!((LoadLNode*)n)->require_atomic_access());
6171   match(Set dst (LoadL mem));
6172 
6173   ins_cost(250);
6174   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6175             "MOV    $dst.hi,$mem+4" %}
6176 
6177   ins_encode %{
6178     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
6179     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
6180     __ movl($dst$$Register, Amemlo);
6181     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6182   %}
6183 
6184   ins_pipe(ialu_reg_long_mem);
6185 %}
6186 
6187 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6188 // then store it down to the stack and reload on the int
6189 // side.
6190 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6191   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6192   match(Set dst (LoadL mem));
6193 
6194   ins_cost(200);
6195   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6196             "FISTp  $dst" %}
6197   ins_encode(enc_loadL_volatile(mem,dst));
6198   ins_pipe( fpu_reg_mem );
6199 %}
6200 
6201 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
6202   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6203   match(Set dst (LoadL mem));
6204   effect(TEMP tmp);
6205   ins_cost(180);
6206   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6207             "MOVSD  $dst,$tmp" %}
6208   ins_encode %{
6209     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6210     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
6211   %}
6212   ins_pipe( pipe_slow );
6213 %}
6214 
6215 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
6216   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6217   match(Set dst (LoadL mem));
6218   effect(TEMP tmp);
6219   ins_cost(160);
6220   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6221             "MOVD   $dst.lo,$tmp\n\t"
6222             "PSRLQ  $tmp,32\n\t"
6223             "MOVD   $dst.hi,$tmp" %}
6224   ins_encode %{
6225     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6226     __ movdl($dst$$Register, $tmp$$XMMRegister);
6227     __ psrlq($tmp$$XMMRegister, 32);
6228     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
6229   %}
6230   ins_pipe( pipe_slow );
6231 %}
6232 
6233 // Load Range
6234 instruct loadRange(rRegI dst, memory mem) %{
6235   match(Set dst (LoadRange mem));
6236 
6237   ins_cost(125);
6238   format %{ "MOV    $dst,$mem" %}
6239   opcode(0x8B);
6240   ins_encode( OpcP, RegMem(dst,mem));
6241   ins_pipe( ialu_reg_mem );
6242 %}
6243 
6244 
6245 // Load Pointer
6246 instruct loadP(eRegP dst, memory mem) %{
6247   match(Set dst (LoadP mem));
6248 
6249   ins_cost(125);
6250   format %{ "MOV    $dst,$mem" %}
6251   opcode(0x8B);
6252   ins_encode( OpcP, RegMem(dst,mem));
6253   ins_pipe( ialu_reg_mem );
6254 %}
6255 
6256 // Load Klass Pointer
6257 instruct loadKlass(eRegP dst, memory mem) %{
6258   match(Set dst (LoadKlass mem));
6259 
6260   ins_cost(125);
6261   format %{ "MOV    $dst,$mem" %}
6262   opcode(0x8B);
6263   ins_encode( OpcP, RegMem(dst,mem));
6264   ins_pipe( ialu_reg_mem );
6265 %}
6266 
6267 // Load Double
6268 instruct loadDPR(regDPR dst, memory mem) %{
6269   predicate(UseSSE<=1);
6270   match(Set dst (LoadD mem));
6271 
6272   ins_cost(150);
6273   format %{ "FLD_D  ST,$mem\n\t"
6274             "FSTP   $dst" %}
6275   opcode(0xDD);               /* DD /0 */
6276   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6277               Pop_Reg_DPR(dst) );
6278   ins_pipe( fpu_reg_mem );
6279 %}
6280 
6281 // Load Double to XMM
6282 instruct loadD(regD dst, memory mem) %{
6283   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6284   match(Set dst (LoadD mem));
6285   ins_cost(145);
6286   format %{ "MOVSD  $dst,$mem" %}
6287   ins_encode %{
6288     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6289   %}
6290   ins_pipe( pipe_slow );
6291 %}
6292 
6293 instruct loadD_partial(regD dst, memory mem) %{
6294   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6295   match(Set dst (LoadD mem));
6296   ins_cost(145);
6297   format %{ "MOVLPD $dst,$mem" %}
6298   ins_encode %{
6299     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6300   %}
6301   ins_pipe( pipe_slow );
6302 %}
6303 
6304 // Load to XMM register (single-precision floating point)
6305 // MOVSS instruction
6306 instruct loadF(regF dst, memory mem) %{
6307   predicate(UseSSE>=1);
6308   match(Set dst (LoadF mem));
6309   ins_cost(145);
6310   format %{ "MOVSS  $dst,$mem" %}
6311   ins_encode %{
6312     __ movflt ($dst$$XMMRegister, $mem$$Address);
6313   %}
6314   ins_pipe( pipe_slow );
6315 %}
6316 
6317 // Load Float
6318 instruct loadFPR(regFPR dst, memory mem) %{
6319   predicate(UseSSE==0);
6320   match(Set dst (LoadF mem));
6321 
6322   ins_cost(150);
6323   format %{ "FLD_S  ST,$mem\n\t"
6324             "FSTP   $dst" %}
6325   opcode(0xD9);               /* D9 /0 */
6326   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6327               Pop_Reg_FPR(dst) );
6328   ins_pipe( fpu_reg_mem );
6329 %}
6330 
6331 // Load Effective Address
6332 instruct leaP8(eRegP dst, indOffset8 mem) %{
6333   match(Set dst mem);
6334 
6335   ins_cost(110);
6336   format %{ "LEA    $dst,$mem" %}
6337   opcode(0x8D);
6338   ins_encode( OpcP, RegMem(dst,mem));
6339   ins_pipe( ialu_reg_reg_fat );
6340 %}
6341 
6342 instruct leaP32(eRegP dst, indOffset32 mem) %{
6343   match(Set dst mem);
6344 
6345   ins_cost(110);
6346   format %{ "LEA    $dst,$mem" %}
6347   opcode(0x8D);
6348   ins_encode( OpcP, RegMem(dst,mem));
6349   ins_pipe( ialu_reg_reg_fat );
6350 %}
6351 
6352 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6353   match(Set dst mem);
6354 
6355   ins_cost(110);
6356   format %{ "LEA    $dst,$mem" %}
6357   opcode(0x8D);
6358   ins_encode( OpcP, RegMem(dst,mem));
6359   ins_pipe( ialu_reg_reg_fat );
6360 %}
6361 
6362 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6363   match(Set dst mem);
6364 
6365   ins_cost(110);
6366   format %{ "LEA    $dst,$mem" %}
6367   opcode(0x8D);
6368   ins_encode( OpcP, RegMem(dst,mem));
6369   ins_pipe( ialu_reg_reg_fat );
6370 %}
6371 
6372 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6373   match(Set dst mem);
6374 
6375   ins_cost(110);
6376   format %{ "LEA    $dst,$mem" %}
6377   opcode(0x8D);
6378   ins_encode( OpcP, RegMem(dst,mem));
6379   ins_pipe( ialu_reg_reg_fat );
6380 %}
6381 
6382 // Load Constant
6383 instruct loadConI(rRegI dst, immI src) %{
6384   match(Set dst src);
6385 
6386   format %{ "MOV    $dst,$src" %}
6387   ins_encode( LdImmI(dst, src) );
6388   ins_pipe( ialu_reg_fat );
6389 %}
6390 
6391 // Load Constant zero
6392 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
6393   match(Set dst src);
6394   effect(KILL cr);
6395 
6396   ins_cost(50);
6397   format %{ "XOR    $dst,$dst" %}
6398   opcode(0x33);  /* + rd */
6399   ins_encode( OpcP, RegReg( dst, dst ) );
6400   ins_pipe( ialu_reg );
6401 %}
6402 
6403 instruct loadConP(eRegP dst, immP src) %{
6404   match(Set dst src);
6405 
6406   format %{ "MOV    $dst,$src" %}
6407   opcode(0xB8);  /* + rd */
6408   ins_encode( LdImmP(dst, src) );
6409   ins_pipe( ialu_reg_fat );
6410 %}
6411 
6412 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6413   match(Set dst src);
6414   effect(KILL cr);
6415   ins_cost(200);
6416   format %{ "MOV    $dst.lo,$src.lo\n\t"
6417             "MOV    $dst.hi,$src.hi" %}
6418   opcode(0xB8);
6419   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6420   ins_pipe( ialu_reg_long_fat );
6421 %}
6422 
6423 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6424   match(Set dst src);
6425   effect(KILL cr);
6426   ins_cost(150);
6427   format %{ "XOR    $dst.lo,$dst.lo\n\t"
6428             "XOR    $dst.hi,$dst.hi" %}
6429   opcode(0x33,0x33);
6430   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6431   ins_pipe( ialu_reg_long );
6432 %}
6433 
6434 // The instruction usage is guarded by predicate in operand immFPR().
6435 instruct loadConFPR(regFPR dst, immFPR con) %{
6436   match(Set dst con);
6437   ins_cost(125);
6438   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
6439             "FSTP   $dst" %}
6440   ins_encode %{
6441     __ fld_s($constantaddress($con));
6442     __ fstp_d($dst$$reg);
6443   %}
6444   ins_pipe(fpu_reg_con);
6445 %}
6446 
6447 // The instruction usage is guarded by predicate in operand immFPR0().
6448 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
6449   match(Set dst con);
6450   ins_cost(125);
6451   format %{ "FLDZ   ST\n\t"
6452             "FSTP   $dst" %}
6453   ins_encode %{
6454     __ fldz();
6455     __ fstp_d($dst$$reg);
6456   %}
6457   ins_pipe(fpu_reg_con);
6458 %}
6459 
6460 // The instruction usage is guarded by predicate in operand immFPR1().
6461 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
6462   match(Set dst con);
6463   ins_cost(125);
6464   format %{ "FLD1   ST\n\t"
6465             "FSTP   $dst" %}
6466   ins_encode %{
6467     __ fld1();
6468     __ fstp_d($dst$$reg);
6469   %}
6470   ins_pipe(fpu_reg_con);
6471 %}
6472 
6473 // The instruction usage is guarded by predicate in operand immF().
6474 instruct loadConF(regF dst, immF con) %{
6475   match(Set dst con);
6476   ins_cost(125);
6477   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
6478   ins_encode %{
6479     __ movflt($dst$$XMMRegister, $constantaddress($con));
6480   %}
6481   ins_pipe(pipe_slow);
6482 %}
6483 
6484 // The instruction usage is guarded by predicate in operand immF0().
6485 instruct loadConF0(regF dst, immF0 src) %{
6486   match(Set dst src);
6487   ins_cost(100);
6488   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6489   ins_encode %{
6490     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
6491   %}
6492   ins_pipe(pipe_slow);
6493 %}
6494 
6495 // The instruction usage is guarded by predicate in operand immDPR().
6496 instruct loadConDPR(regDPR dst, immDPR con) %{
6497   match(Set dst con);
6498   ins_cost(125);
6499 
6500   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
6501             "FSTP   $dst" %}
6502   ins_encode %{
6503     __ fld_d($constantaddress($con));
6504     __ fstp_d($dst$$reg);
6505   %}
6506   ins_pipe(fpu_reg_con);
6507 %}
6508 
6509 // The instruction usage is guarded by predicate in operand immDPR0().
6510 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
6511   match(Set dst con);
6512   ins_cost(125);
6513 
6514   format %{ "FLDZ   ST\n\t"
6515             "FSTP   $dst" %}
6516   ins_encode %{
6517     __ fldz();
6518     __ fstp_d($dst$$reg);
6519   %}
6520   ins_pipe(fpu_reg_con);
6521 %}
6522 
6523 // The instruction usage is guarded by predicate in operand immDPR1().
6524 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6525   match(Set dst con);
6526   ins_cost(125);
6527 
6528   format %{ "FLD1   ST\n\t"
6529             "FSTP   $dst" %}
6530   ins_encode %{
6531     __ fld1();
6532     __ fstp_d($dst$$reg);
6533   %}
6534   ins_pipe(fpu_reg_con);
6535 %}
6536 
6537 // The instruction usage is guarded by predicate in operand immD().
6538 instruct loadConD(regD dst, immD con) %{
6539   match(Set dst con);
6540   ins_cost(125);
6541   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6542   ins_encode %{
6543     __ movdbl($dst$$XMMRegister, $constantaddress($con));
6544   %}
6545   ins_pipe(pipe_slow);
6546 %}
6547 
6548 // The instruction usage is guarded by predicate in operand immD0().
6549 instruct loadConD0(regD dst, immD0 src) %{
6550   match(Set dst src);
6551   ins_cost(100);
6552   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6553   ins_encode %{
6554     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6555   %}
6556   ins_pipe( pipe_slow );
6557 %}
6558 
6559 // Load Stack Slot
6560 instruct loadSSI(rRegI dst, stackSlotI src) %{
6561   match(Set dst src);
6562   ins_cost(125);
6563 
6564   format %{ "MOV    $dst,$src" %}
6565   opcode(0x8B);
6566   ins_encode( OpcP, RegMem(dst,src));
6567   ins_pipe( ialu_reg_mem );
6568 %}
6569 
6570 instruct loadSSL(eRegL dst, stackSlotL src) %{
6571   match(Set dst src);
6572 
6573   ins_cost(200);
6574   format %{ "MOV    $dst,$src.lo\n\t"
6575             "MOV    $dst+4,$src.hi" %}
6576   opcode(0x8B, 0x8B);
6577   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6578   ins_pipe( ialu_mem_long_reg );
6579 %}
6580 
6581 // Load Stack Slot
6582 instruct loadSSP(eRegP dst, stackSlotP src) %{
6583   match(Set dst src);
6584   ins_cost(125);
6585 
6586   format %{ "MOV    $dst,$src" %}
6587   opcode(0x8B);
6588   ins_encode( OpcP, RegMem(dst,src));
6589   ins_pipe( ialu_reg_mem );
6590 %}
6591 
6592 // Load Stack Slot
6593 instruct loadSSF(regFPR dst, stackSlotF src) %{
6594   match(Set dst src);
6595   ins_cost(125);
6596 
6597   format %{ "FLD_S  $src\n\t"
6598             "FSTP   $dst" %}
6599   opcode(0xD9);               /* D9 /0, FLD m32real */
6600   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6601               Pop_Reg_FPR(dst) );
6602   ins_pipe( fpu_reg_mem );
6603 %}
6604 
6605 // Load Stack Slot
6606 instruct loadSSD(regDPR dst, stackSlotD src) %{
6607   match(Set dst src);
6608   ins_cost(125);
6609 
6610   format %{ "FLD_D  $src\n\t"
6611             "FSTP   $dst" %}
6612   opcode(0xDD);               /* DD /0, FLD m64real */
6613   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6614               Pop_Reg_DPR(dst) );
6615   ins_pipe( fpu_reg_mem );
6616 %}
6617 
6618 // Prefetch instructions.
6619 // Must be safe to execute with invalid address (cannot fault).
6620 
6621 instruct prefetchr0( memory mem ) %{
6622   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6623   match(PrefetchRead mem);
6624   ins_cost(0);
6625   size(0);
6626   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6627   ins_encode();
6628   ins_pipe(empty);
6629 %}
6630 
6631 instruct prefetchr( memory mem ) %{
6632   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6633   match(PrefetchRead mem);
6634   ins_cost(100);
6635 
6636   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6637   ins_encode %{
6638     __ prefetchr($mem$$Address);
6639   %}
6640   ins_pipe(ialu_mem);
6641 %}
6642 
6643 instruct prefetchrNTA( memory mem ) %{
6644   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6645   match(PrefetchRead mem);
6646   ins_cost(100);
6647 
6648   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6649   ins_encode %{
6650     __ prefetchnta($mem$$Address);
6651   %}
6652   ins_pipe(ialu_mem);
6653 %}
6654 
6655 instruct prefetchrT0( memory mem ) %{
6656   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6657   match(PrefetchRead mem);
6658   ins_cost(100);
6659 
6660   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6661   ins_encode %{
6662     __ prefetcht0($mem$$Address);
6663   %}
6664   ins_pipe(ialu_mem);
6665 %}
6666 
6667 instruct prefetchrT2( memory mem ) %{
6668   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6669   match(PrefetchRead mem);
6670   ins_cost(100);
6671 
6672   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6673   ins_encode %{
6674     __ prefetcht2($mem$$Address);
6675   %}
6676   ins_pipe(ialu_mem);
6677 %}
6678 
6679 instruct prefetchw0( memory mem ) %{
6680   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6681   match(PrefetchWrite mem);
6682   ins_cost(0);
6683   size(0);
6684   format %{ "Prefetch (non-SSE is empty encoding)" %}
6685   ins_encode();
6686   ins_pipe(empty);
6687 %}
6688 
6689 instruct prefetchw( memory mem ) %{
6690   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6691   match( PrefetchWrite mem );
6692   ins_cost(100);
6693 
6694   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6695   ins_encode %{
6696     __ prefetchw($mem$$Address);
6697   %}
6698   ins_pipe(ialu_mem);
6699 %}
6700 
6701 instruct prefetchwNTA( memory mem ) %{
6702   predicate(UseSSE>=1);
6703   match(PrefetchWrite mem);
6704   ins_cost(100);
6705 
6706   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6707   ins_encode %{
6708     __ prefetchnta($mem$$Address);
6709   %}
6710   ins_pipe(ialu_mem);
6711 %}
6712 
6713 // Prefetch instructions for allocation.
6714 
6715 instruct prefetchAlloc0( memory mem ) %{
6716   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6717   match(PrefetchAllocation mem);
6718   ins_cost(0);
6719   size(0);
6720   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6721   ins_encode();
6722   ins_pipe(empty);
6723 %}
6724 
6725 instruct prefetchAlloc( memory mem ) %{
6726   predicate(AllocatePrefetchInstr==3);
6727   match( PrefetchAllocation mem );
6728   ins_cost(100);
6729 
6730   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6731   ins_encode %{
6732     __ prefetchw($mem$$Address);
6733   %}
6734   ins_pipe(ialu_mem);
6735 %}
6736 
6737 instruct prefetchAllocNTA( memory mem ) %{
6738   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6739   match(PrefetchAllocation mem);
6740   ins_cost(100);
6741 
6742   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6743   ins_encode %{
6744     __ prefetchnta($mem$$Address);
6745   %}
6746   ins_pipe(ialu_mem);
6747 %}
6748 
6749 instruct prefetchAllocT0( memory mem ) %{
6750   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6751   match(PrefetchAllocation mem);
6752   ins_cost(100);
6753 
6754   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6755   ins_encode %{
6756     __ prefetcht0($mem$$Address);
6757   %}
6758   ins_pipe(ialu_mem);
6759 %}
6760 
6761 instruct prefetchAllocT2( memory mem ) %{
6762   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6763   match(PrefetchAllocation mem);
6764   ins_cost(100);
6765 
6766   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6767   ins_encode %{
6768     __ prefetcht2($mem$$Address);
6769   %}
6770   ins_pipe(ialu_mem);
6771 %}
6772 
6773 //----------Store Instructions-------------------------------------------------
6774 
6775 // Store Byte
6776 instruct storeB(memory mem, xRegI src) %{
6777   match(Set mem (StoreB mem src));
6778 
6779   ins_cost(125);
6780   format %{ "MOV8   $mem,$src" %}
6781   opcode(0x88);
6782   ins_encode( OpcP, RegMem( src, mem ) );
6783   ins_pipe( ialu_mem_reg );
6784 %}
6785 
6786 // Store Char/Short
6787 instruct storeC(memory mem, rRegI src) %{
6788   match(Set mem (StoreC mem src));
6789 
6790   ins_cost(125);
6791   format %{ "MOV16  $mem,$src" %}
6792   opcode(0x89, 0x66);
6793   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6794   ins_pipe( ialu_mem_reg );
6795 %}
6796 
6797 // Store Integer
6798 instruct storeI(memory mem, rRegI src) %{
6799   match(Set mem (StoreI mem src));
6800 
6801   ins_cost(125);
6802   format %{ "MOV    $mem,$src" %}
6803   opcode(0x89);
6804   ins_encode( OpcP, RegMem( src, mem ) );
6805   ins_pipe( ialu_mem_reg );
6806 %}
6807 
6808 // Store Long
6809 instruct storeL(long_memory mem, eRegL src) %{
6810   predicate(!((StoreLNode*)n)->require_atomic_access());
6811   match(Set mem (StoreL mem src));
6812 
6813   ins_cost(200);
6814   format %{ "MOV    $mem,$src.lo\n\t"
6815             "MOV    $mem+4,$src.hi" %}
6816   opcode(0x89, 0x89);
6817   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6818   ins_pipe( ialu_mem_long_reg );
6819 %}
6820 
6821 // Store Long to Integer
6822 instruct storeL2I(memory mem, eRegL src) %{
6823   match(Set mem (StoreI mem (ConvL2I src)));
6824 
6825   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6826   ins_encode %{
6827     __ movl($mem$$Address, $src$$Register);
6828   %}
6829   ins_pipe(ialu_mem_reg);
6830 %}
6831 
6832 // Volatile Store Long.  Must be atomic, so move it into
6833 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6834 // target address before the store (for null-ptr checks)
6835 // so the memory operand is used twice in the encoding.
6836 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6837   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6838   match(Set mem (StoreL mem src));
6839   effect( KILL cr );
6840   ins_cost(400);
6841   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6842             "FILD   $src\n\t"
6843             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6844   opcode(0x3B);
6845   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6846   ins_pipe( fpu_reg_mem );
6847 %}
6848 
6849 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6850   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6851   match(Set mem (StoreL mem src));
6852   effect( TEMP tmp, KILL cr );
6853   ins_cost(380);
6854   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6855             "MOVSD  $tmp,$src\n\t"
6856             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6857   ins_encode %{
6858     __ cmpl(rax, $mem$$Address);
6859     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6860     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6861   %}
6862   ins_pipe( pipe_slow );
6863 %}
6864 
6865 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6866   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6867   match(Set mem (StoreL mem src));
6868   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6869   ins_cost(360);
6870   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6871             "MOVD   $tmp,$src.lo\n\t"
6872             "MOVD   $tmp2,$src.hi\n\t"
6873             "PUNPCKLDQ $tmp,$tmp2\n\t"
6874             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6875   ins_encode %{
6876     __ cmpl(rax, $mem$$Address);
6877     __ movdl($tmp$$XMMRegister, $src$$Register);
6878     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6879     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6880     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6881   %}
6882   ins_pipe( pipe_slow );
6883 %}
6884 
6885 // Store Pointer; for storing unknown oops and raw pointers
6886 instruct storeP(memory mem, anyRegP src) %{
6887   match(Set mem (StoreP mem src));
6888 
6889   ins_cost(125);
6890   format %{ "MOV    $mem,$src" %}
6891   opcode(0x89);
6892   ins_encode( OpcP, RegMem( src, mem ) );
6893   ins_pipe( ialu_mem_reg );
6894 %}
6895 
6896 // Store Integer Immediate
6897 instruct storeImmI(memory mem, immI src) %{
6898   match(Set mem (StoreI mem src));
6899 
6900   ins_cost(150);
6901   format %{ "MOV    $mem,$src" %}
6902   opcode(0xC7);               /* C7 /0 */
6903   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6904   ins_pipe( ialu_mem_imm );
6905 %}
6906 
6907 // Store Short/Char Immediate
6908 instruct storeImmI16(memory mem, immI16 src) %{
6909   predicate(UseStoreImmI16);
6910   match(Set mem (StoreC mem src));
6911 
6912   ins_cost(150);
6913   format %{ "MOV16  $mem,$src" %}
6914   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6915   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6916   ins_pipe( ialu_mem_imm );
6917 %}
6918 
6919 // Store Pointer Immediate; null pointers or constant oops that do not
6920 // need card-mark barriers.
6921 instruct storeImmP(memory mem, immP src) %{
6922   match(Set mem (StoreP mem src));
6923 
6924   ins_cost(150);
6925   format %{ "MOV    $mem,$src" %}
6926   opcode(0xC7);               /* C7 /0 */
6927   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6928   ins_pipe( ialu_mem_imm );
6929 %}
6930 
6931 // Store Byte Immediate
6932 instruct storeImmB(memory mem, immI8 src) %{
6933   match(Set mem (StoreB mem src));
6934 
6935   ins_cost(150);
6936   format %{ "MOV8   $mem,$src" %}
6937   opcode(0xC6);               /* C6 /0 */
6938   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6939   ins_pipe( ialu_mem_imm );
6940 %}
6941 
6942 // Store CMS card-mark Immediate
6943 instruct storeImmCM(memory mem, immI8 src) %{
6944   match(Set mem (StoreCM mem src));
6945 
6946   ins_cost(150);
6947   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6948   opcode(0xC6);               /* C6 /0 */
6949   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6950   ins_pipe( ialu_mem_imm );
6951 %}
6952 
6953 // Store Double
6954 instruct storeDPR( memory mem, regDPR1 src) %{
6955   predicate(UseSSE<=1);
6956   match(Set mem (StoreD mem src));
6957 
6958   ins_cost(100);
6959   format %{ "FST_D  $mem,$src" %}
6960   opcode(0xDD);       /* DD /2 */
6961   ins_encode( enc_FPR_store(mem,src) );
6962   ins_pipe( fpu_mem_reg );
6963 %}
6964 
6965 // Store double does rounding on x86
6966 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6967   predicate(UseSSE<=1);
6968   match(Set mem (StoreD mem (RoundDouble src)));
6969 
6970   ins_cost(100);
6971   format %{ "FST_D  $mem,$src\t# round" %}
6972   opcode(0xDD);       /* DD /2 */
6973   ins_encode( enc_FPR_store(mem,src) );
6974   ins_pipe( fpu_mem_reg );
6975 %}
6976 
6977 // Store XMM register to memory (double-precision floating points)
6978 // MOVSD instruction
6979 instruct storeD(memory mem, regD src) %{
6980   predicate(UseSSE>=2);
6981   match(Set mem (StoreD mem src));
6982   ins_cost(95);
6983   format %{ "MOVSD  $mem,$src" %}
6984   ins_encode %{
6985     __ movdbl($mem$$Address, $src$$XMMRegister);
6986   %}
6987   ins_pipe( pipe_slow );
6988 %}
6989 
6990 // Store XMM register to memory (single-precision floating point)
6991 // MOVSS instruction
6992 instruct storeF(memory mem, regF src) %{
6993   predicate(UseSSE>=1);
6994   match(Set mem (StoreF mem src));
6995   ins_cost(95);
6996   format %{ "MOVSS  $mem,$src" %}
6997   ins_encode %{
6998     __ movflt($mem$$Address, $src$$XMMRegister);
6999   %}
7000   ins_pipe( pipe_slow );
7001 %}
7002 
7003 // Store Float
7004 instruct storeFPR( memory mem, regFPR1 src) %{
7005   predicate(UseSSE==0);
7006   match(Set mem (StoreF mem src));
7007 
7008   ins_cost(100);
7009   format %{ "FST_S  $mem,$src" %}
7010   opcode(0xD9);       /* D9 /2 */
7011   ins_encode( enc_FPR_store(mem,src) );
7012   ins_pipe( fpu_mem_reg );
7013 %}
7014 
7015 // Store Float does rounding on x86
7016 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
7017   predicate(UseSSE==0);
7018   match(Set mem (StoreF mem (RoundFloat src)));
7019 
7020   ins_cost(100);
7021   format %{ "FST_S  $mem,$src\t# round" %}
7022   opcode(0xD9);       /* D9 /2 */
7023   ins_encode( enc_FPR_store(mem,src) );
7024   ins_pipe( fpu_mem_reg );
7025 %}
7026 
7027 // Store Float does rounding on x86
7028 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
7029   predicate(UseSSE<=1);
7030   match(Set mem (StoreF mem (ConvD2F src)));
7031 
7032   ins_cost(100);
7033   format %{ "FST_S  $mem,$src\t# D-round" %}
7034   opcode(0xD9);       /* D9 /2 */
7035   ins_encode( enc_FPR_store(mem,src) );
7036   ins_pipe( fpu_mem_reg );
7037 %}
7038 
7039 // Store immediate Float value (it is faster than store from FPU register)
7040 // The instruction usage is guarded by predicate in operand immFPR().
7041 instruct storeFPR_imm( memory mem, immFPR src) %{
7042   match(Set mem (StoreF mem src));
7043 
7044   ins_cost(50);
7045   format %{ "MOV    $mem,$src\t# store float" %}
7046   opcode(0xC7);               /* C7 /0 */
7047   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
7048   ins_pipe( ialu_mem_imm );
7049 %}
7050 
7051 // Store immediate Float value (it is faster than store from XMM register)
7052 // The instruction usage is guarded by predicate in operand immF().
7053 instruct storeF_imm( memory mem, immF src) %{
7054   match(Set mem (StoreF mem src));
7055 
7056   ins_cost(50);
7057   format %{ "MOV    $mem,$src\t# store float" %}
7058   opcode(0xC7);               /* C7 /0 */
7059   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7060   ins_pipe( ialu_mem_imm );
7061 %}
7062 
7063 // Store Integer to stack slot
7064 instruct storeSSI(stackSlotI dst, rRegI src) %{
7065   match(Set dst src);
7066 
7067   ins_cost(100);
7068   format %{ "MOV    $dst,$src" %}
7069   opcode(0x89);
7070   ins_encode( OpcPRegSS( dst, src ) );
7071   ins_pipe( ialu_mem_reg );
7072 %}
7073 
7074 // Store Integer to stack slot
7075 instruct storeSSP(stackSlotP dst, eRegP src) %{
7076   match(Set dst src);
7077 
7078   ins_cost(100);
7079   format %{ "MOV    $dst,$src" %}
7080   opcode(0x89);
7081   ins_encode( OpcPRegSS( dst, src ) );
7082   ins_pipe( ialu_mem_reg );
7083 %}
7084 
7085 // Store Long to stack slot
7086 instruct storeSSL(stackSlotL dst, eRegL src) %{
7087   match(Set dst src);
7088 
7089   ins_cost(200);
7090   format %{ "MOV    $dst,$src.lo\n\t"
7091             "MOV    $dst+4,$src.hi" %}
7092   opcode(0x89, 0x89);
7093   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7094   ins_pipe( ialu_mem_long_reg );
7095 %}
7096 
7097 //----------MemBar Instructions-----------------------------------------------
7098 // Memory barrier flavors
7099 
7100 instruct membar_acquire() %{
7101   match(MemBarAcquire);
7102   ins_cost(400);
7103 
7104   size(0);
7105   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7106   ins_encode();
7107   ins_pipe(empty);
7108 %}
7109 
7110 instruct membar_acquire_lock() %{
7111   match(MemBarAcquireLock);
7112   ins_cost(0);
7113 
7114   size(0);
7115   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7116   ins_encode( );
7117   ins_pipe(empty);
7118 %}
7119 
7120 instruct membar_release() %{
7121   match(MemBarRelease);
7122   ins_cost(400);
7123 
7124   size(0);
7125   format %{ "MEMBAR-release ! (empty encoding)" %}
7126   ins_encode( );
7127   ins_pipe(empty);
7128 %}
7129 
7130 instruct membar_release_lock() %{
7131   match(MemBarReleaseLock);
7132   ins_cost(0);
7133 
7134   size(0);
7135   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7136   ins_encode( );
7137   ins_pipe(empty);
7138 %}
7139 
7140 instruct membar_volatile(eFlagsReg cr) %{
7141   match(MemBarVolatile);
7142   effect(KILL cr);
7143   ins_cost(400);
7144 
7145   format %{ 
7146     $$template
7147     if (os::is_MP()) {
7148       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7149     } else {
7150       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7151     }
7152   %}
7153   ins_encode %{
7154     __ membar(Assembler::StoreLoad);
7155   %}
7156   ins_pipe(pipe_slow);
7157 %}
7158 
7159 instruct unnecessary_membar_volatile() %{
7160   match(MemBarVolatile);
7161   predicate(Matcher::post_store_load_barrier(n));
7162   ins_cost(0);
7163 
7164   size(0);
7165   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7166   ins_encode( );
7167   ins_pipe(empty);
7168 %}
7169 
7170 instruct membar_storestore() %{
7171   match(MemBarStoreStore);
7172   ins_cost(0);
7173 
7174   size(0);
7175   format %{ "MEMBAR-storestore (empty encoding)" %}
7176   ins_encode( );
7177   ins_pipe(empty);
7178 %}
7179 
7180 //----------Move Instructions--------------------------------------------------
7181 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7182   match(Set dst (CastX2P src));
7183   format %{ "# X2P  $dst, $src" %}
7184   ins_encode( /*empty encoding*/ );
7185   ins_cost(0);
7186   ins_pipe(empty);
7187 %}
7188 
7189 instruct castP2X(rRegI dst, eRegP src ) %{
7190   match(Set dst (CastP2X src));
7191   ins_cost(50);
7192   format %{ "MOV    $dst, $src\t# CastP2X" %}
7193   ins_encode( enc_Copy( dst, src) );
7194   ins_pipe( ialu_reg_reg );
7195 %}
7196 
7197 //----------Conditional Move---------------------------------------------------
7198 // Conditional move
7199 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
7200   predicate(!VM_Version::supports_cmov() );
7201   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7202   ins_cost(200);
7203   format %{ "J$cop,us skip\t# signed cmove\n\t"
7204             "MOV    $dst,$src\n"
7205       "skip:" %}
7206   ins_encode %{
7207     Label Lskip;
7208     // Invert sense of branch from sense of CMOV
7209     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7210     __ movl($dst$$Register, $src$$Register);
7211     __ bind(Lskip);
7212   %}
7213   ins_pipe( pipe_cmov_reg );
7214 %}
7215 
7216 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
7217   predicate(!VM_Version::supports_cmov() );
7218   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7219   ins_cost(200);
7220   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
7221             "MOV    $dst,$src\n"
7222       "skip:" %}
7223   ins_encode %{
7224     Label Lskip;
7225     // Invert sense of branch from sense of CMOV
7226     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7227     __ movl($dst$$Register, $src$$Register);
7228     __ bind(Lskip);
7229   %}
7230   ins_pipe( pipe_cmov_reg );
7231 %}
7232 
7233 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
7234   predicate(VM_Version::supports_cmov() );
7235   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7236   ins_cost(200);
7237   format %{ "CMOV$cop $dst,$src" %}
7238   opcode(0x0F,0x40);
7239   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7240   ins_pipe( pipe_cmov_reg );
7241 %}
7242 
7243 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
7244   predicate(VM_Version::supports_cmov() );
7245   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7246   ins_cost(200);
7247   format %{ "CMOV$cop $dst,$src" %}
7248   opcode(0x0F,0x40);
7249   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7250   ins_pipe( pipe_cmov_reg );
7251 %}
7252 
7253 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
7254   predicate(VM_Version::supports_cmov() );
7255   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7256   ins_cost(200);
7257   expand %{
7258     cmovI_regU(cop, cr, dst, src);
7259   %}
7260 %}
7261 
7262 // Conditional move
7263 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
7264   predicate(VM_Version::supports_cmov() );
7265   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7266   ins_cost(250);
7267   format %{ "CMOV$cop $dst,$src" %}
7268   opcode(0x0F,0x40);
7269   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7270   ins_pipe( pipe_cmov_mem );
7271 %}
7272 
7273 // Conditional move
7274 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
7275   predicate(VM_Version::supports_cmov() );
7276   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7277   ins_cost(250);
7278   format %{ "CMOV$cop $dst,$src" %}
7279   opcode(0x0F,0x40);
7280   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7281   ins_pipe( pipe_cmov_mem );
7282 %}
7283 
7284 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
7285   predicate(VM_Version::supports_cmov() );
7286   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7287   ins_cost(250);
7288   expand %{
7289     cmovI_memU(cop, cr, dst, src);
7290   %}
7291 %}
7292 
7293 // Conditional move
7294 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7295   predicate(VM_Version::supports_cmov() );
7296   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7297   ins_cost(200);
7298   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7299   opcode(0x0F,0x40);
7300   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7301   ins_pipe( pipe_cmov_reg );
7302 %}
7303 
7304 // Conditional move (non-P6 version)
7305 // Note:  a CMoveP is generated for  stubs and native wrappers
7306 //        regardless of whether we are on a P6, so we
7307 //        emulate a cmov here
7308 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7309   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7310   ins_cost(300);
7311   format %{ "Jn$cop   skip\n\t"
7312           "MOV    $dst,$src\t# pointer\n"
7313       "skip:" %}
7314   opcode(0x8b);
7315   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7316   ins_pipe( pipe_cmov_reg );
7317 %}
7318 
7319 // Conditional move
7320 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7321   predicate(VM_Version::supports_cmov() );
7322   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7323   ins_cost(200);
7324   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7325   opcode(0x0F,0x40);
7326   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7327   ins_pipe( pipe_cmov_reg );
7328 %}
7329 
7330 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7331   predicate(VM_Version::supports_cmov() );
7332   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7333   ins_cost(200);
7334   expand %{
7335     cmovP_regU(cop, cr, dst, src);
7336   %}
7337 %}
7338 
7339 // DISABLED: Requires the ADLC to emit a bottom_type call that
7340 // correctly meets the two pointer arguments; one is an incoming
7341 // register but the other is a memory operand.  ALSO appears to
7342 // be buggy with implicit null checks.
7343 //
7344 //// Conditional move
7345 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7346 //  predicate(VM_Version::supports_cmov() );
7347 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7348 //  ins_cost(250);
7349 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7350 //  opcode(0x0F,0x40);
7351 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7352 //  ins_pipe( pipe_cmov_mem );
7353 //%}
7354 //
7355 //// Conditional move
7356 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7357 //  predicate(VM_Version::supports_cmov() );
7358 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7359 //  ins_cost(250);
7360 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7361 //  opcode(0x0F,0x40);
7362 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7363 //  ins_pipe( pipe_cmov_mem );
7364 //%}
7365 
7366 // Conditional move
7367 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
7368   predicate(UseSSE<=1);
7369   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7370   ins_cost(200);
7371   format %{ "FCMOV$cop $dst,$src\t# double" %}
7372   opcode(0xDA);
7373   ins_encode( enc_cmov_dpr(cop,src) );
7374   ins_pipe( pipe_cmovDPR_reg );
7375 %}
7376 
7377 // Conditional move
7378 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
7379   predicate(UseSSE==0);
7380   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7381   ins_cost(200);
7382   format %{ "FCMOV$cop $dst,$src\t# float" %}
7383   opcode(0xDA);
7384   ins_encode( enc_cmov_dpr(cop,src) );
7385   ins_pipe( pipe_cmovDPR_reg );
7386 %}
7387 
7388 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7389 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
7390   predicate(UseSSE<=1);
7391   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7392   ins_cost(200);
7393   format %{ "Jn$cop   skip\n\t"
7394             "MOV    $dst,$src\t# double\n"
7395       "skip:" %}
7396   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7397   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
7398   ins_pipe( pipe_cmovDPR_reg );
7399 %}
7400 
7401 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7402 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
7403   predicate(UseSSE==0);
7404   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7405   ins_cost(200);
7406   format %{ "Jn$cop    skip\n\t"
7407             "MOV    $dst,$src\t# float\n"
7408       "skip:" %}
7409   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7410   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
7411   ins_pipe( pipe_cmovDPR_reg );
7412 %}
7413 
7414 // No CMOVE with SSE/SSE2
7415 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7416   predicate (UseSSE>=1);
7417   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7418   ins_cost(200);
7419   format %{ "Jn$cop   skip\n\t"
7420             "MOVSS  $dst,$src\t# float\n"
7421       "skip:" %}
7422   ins_encode %{
7423     Label skip;
7424     // Invert sense of branch from sense of CMOV
7425     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7426     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7427     __ bind(skip);
7428   %}
7429   ins_pipe( pipe_slow );
7430 %}
7431 
7432 // No CMOVE with SSE/SSE2
7433 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7434   predicate (UseSSE>=2);
7435   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7436   ins_cost(200);
7437   format %{ "Jn$cop   skip\n\t"
7438             "MOVSD  $dst,$src\t# float\n"
7439       "skip:" %}
7440   ins_encode %{
7441     Label skip;
7442     // Invert sense of branch from sense of CMOV
7443     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7444     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7445     __ bind(skip);
7446   %}
7447   ins_pipe( pipe_slow );
7448 %}
7449 
7450 // unsigned version
7451 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
7452   predicate (UseSSE>=1);
7453   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7454   ins_cost(200);
7455   format %{ "Jn$cop   skip\n\t"
7456             "MOVSS  $dst,$src\t# float\n"
7457       "skip:" %}
7458   ins_encode %{
7459     Label skip;
7460     // Invert sense of branch from sense of CMOV
7461     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7462     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7463     __ bind(skip);
7464   %}
7465   ins_pipe( pipe_slow );
7466 %}
7467 
7468 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
7469   predicate (UseSSE>=1);
7470   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7471   ins_cost(200);
7472   expand %{
7473     fcmovF_regU(cop, cr, dst, src);
7474   %}
7475 %}
7476 
7477 // unsigned version
7478 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
7479   predicate (UseSSE>=2);
7480   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7481   ins_cost(200);
7482   format %{ "Jn$cop   skip\n\t"
7483             "MOVSD  $dst,$src\t# float\n"
7484       "skip:" %}
7485   ins_encode %{
7486     Label skip;
7487     // Invert sense of branch from sense of CMOV
7488     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7489     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7490     __ bind(skip);
7491   %}
7492   ins_pipe( pipe_slow );
7493 %}
7494 
7495 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
7496   predicate (UseSSE>=2);
7497   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7498   ins_cost(200);
7499   expand %{
7500     fcmovD_regU(cop, cr, dst, src);
7501   %}
7502 %}
7503 
7504 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7505   predicate(VM_Version::supports_cmov() );
7506   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7507   ins_cost(200);
7508   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7509             "CMOV$cop $dst.hi,$src.hi" %}
7510   opcode(0x0F,0x40);
7511   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7512   ins_pipe( pipe_cmov_reg_long );
7513 %}
7514 
7515 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7516   predicate(VM_Version::supports_cmov() );
7517   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7518   ins_cost(200);
7519   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7520             "CMOV$cop $dst.hi,$src.hi" %}
7521   opcode(0x0F,0x40);
7522   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7523   ins_pipe( pipe_cmov_reg_long );
7524 %}
7525 
7526 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7527   predicate(VM_Version::supports_cmov() );
7528   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7529   ins_cost(200);
7530   expand %{
7531     cmovL_regU(cop, cr, dst, src);
7532   %}
7533 %}
7534 
7535 //----------Arithmetic Instructions--------------------------------------------
7536 //----------Addition Instructions----------------------------------------------
7537 
7538 instruct addExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
7539 %{
7540   match(AddExactI dst src);
7541   effect(DEF cr);
7542 
7543   format %{ "ADD    $dst, $src\t# addExact int" %}
7544   ins_encode %{
7545     __ addl($dst$$Register, $src$$Register);
7546   %}
7547   ins_pipe(ialu_reg_reg);
7548 %}
7549 
7550 instruct addExactI_eReg_imm(eAXRegI dst, immI src, eFlagsReg cr)
7551 %{
7552   match(AddExactI dst src);
7553   effect(DEF cr);
7554 
7555   format %{ "ADD    $dst, $src\t# addExact int" %}
7556   ins_encode %{
7557     __ addl($dst$$Register, $src$$constant);
7558   %}
7559   ins_pipe(ialu_reg_reg);
7560 %}
7561 
7562 instruct addExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
7563 %{
7564   match(AddExactI dst (LoadI src));
7565   effect(DEF cr);
7566 
7567   ins_cost(125);
7568   format %{ "ADD    $dst,$src\t# addExact int" %}
7569   ins_encode %{
7570     __ addl($dst$$Register, $src$$Address);
7571   %}
7572   ins_pipe( ialu_reg_mem );
7573 %}
7574 
7575 
7576 // Integer Addition Instructions
7577 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7578   match(Set dst (AddI dst src));
7579   effect(KILL cr);
7580 
7581   size(2);
7582   format %{ "ADD    $dst,$src" %}
7583   opcode(0x03);
7584   ins_encode( OpcP, RegReg( dst, src) );
7585   ins_pipe( ialu_reg_reg );
7586 %}
7587 
7588 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7589   match(Set dst (AddI dst src));
7590   effect(KILL cr);
7591 
7592   format %{ "ADD    $dst,$src" %}
7593   opcode(0x81, 0x00); /* /0 id */
7594   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7595   ins_pipe( ialu_reg );
7596 %}
7597 
7598 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7599   predicate(UseIncDec);
7600   match(Set dst (AddI dst src));
7601   effect(KILL cr);
7602 
7603   size(1);
7604   format %{ "INC    $dst" %}
7605   opcode(0x40); /*  */
7606   ins_encode( Opc_plus( primary, dst ) );
7607   ins_pipe( ialu_reg );
7608 %}
7609 
7610 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7611   match(Set dst (AddI src0 src1));
7612   ins_cost(110);
7613 
7614   format %{ "LEA    $dst,[$src0 + $src1]" %}
7615   opcode(0x8D); /* 0x8D /r */
7616   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7617   ins_pipe( ialu_reg_reg );
7618 %}
7619 
7620 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7621   match(Set dst (AddP src0 src1));
7622   ins_cost(110);
7623 
7624   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7625   opcode(0x8D); /* 0x8D /r */
7626   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7627   ins_pipe( ialu_reg_reg );
7628 %}
7629 
7630 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7631   predicate(UseIncDec);
7632   match(Set dst (AddI dst src));
7633   effect(KILL cr);
7634 
7635   size(1);
7636   format %{ "DEC    $dst" %}
7637   opcode(0x48); /*  */
7638   ins_encode( Opc_plus( primary, dst ) );
7639   ins_pipe( ialu_reg );
7640 %}
7641 
7642 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7643   match(Set dst (AddP dst src));
7644   effect(KILL cr);
7645 
7646   size(2);
7647   format %{ "ADD    $dst,$src" %}
7648   opcode(0x03);
7649   ins_encode( OpcP, RegReg( dst, src) );
7650   ins_pipe( ialu_reg_reg );
7651 %}
7652 
7653 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7654   match(Set dst (AddP dst src));
7655   effect(KILL cr);
7656 
7657   format %{ "ADD    $dst,$src" %}
7658   opcode(0x81,0x00); /* Opcode 81 /0 id */
7659   // ins_encode( RegImm( dst, src) );
7660   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7661   ins_pipe( ialu_reg );
7662 %}
7663 
7664 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7665   match(Set dst (AddI dst (LoadI src)));
7666   effect(KILL cr);
7667 
7668   ins_cost(125);
7669   format %{ "ADD    $dst,$src" %}
7670   opcode(0x03);
7671   ins_encode( OpcP, RegMem( dst, src) );
7672   ins_pipe( ialu_reg_mem );
7673 %}
7674 
7675 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7676   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7677   effect(KILL cr);
7678 
7679   ins_cost(150);
7680   format %{ "ADD    $dst,$src" %}
7681   opcode(0x01);  /* Opcode 01 /r */
7682   ins_encode( OpcP, RegMem( src, dst ) );
7683   ins_pipe( ialu_mem_reg );
7684 %}
7685 
7686 // Add Memory with Immediate
7687 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7688   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7689   effect(KILL cr);
7690 
7691   ins_cost(125);
7692   format %{ "ADD    $dst,$src" %}
7693   opcode(0x81);               /* Opcode 81 /0 id */
7694   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7695   ins_pipe( ialu_mem_imm );
7696 %}
7697 
7698 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7699   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7700   effect(KILL cr);
7701 
7702   ins_cost(125);
7703   format %{ "INC    $dst" %}
7704   opcode(0xFF);               /* Opcode FF /0 */
7705   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7706   ins_pipe( ialu_mem_imm );
7707 %}
7708 
7709 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7710   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7711   effect(KILL cr);
7712 
7713   ins_cost(125);
7714   format %{ "DEC    $dst" %}
7715   opcode(0xFF);               /* Opcode FF /1 */
7716   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7717   ins_pipe( ialu_mem_imm );
7718 %}
7719 
7720 
7721 instruct checkCastPP( eRegP dst ) %{
7722   match(Set dst (CheckCastPP dst));
7723 
7724   size(0);
7725   format %{ "#checkcastPP of $dst" %}
7726   ins_encode( /*empty encoding*/ );
7727   ins_pipe( empty );
7728 %}
7729 
7730 instruct castPP( eRegP dst ) %{
7731   match(Set dst (CastPP dst));
7732   format %{ "#castPP of $dst" %}
7733   ins_encode( /*empty encoding*/ );
7734   ins_pipe( empty );
7735 %}
7736 
7737 instruct castII( rRegI dst ) %{
7738   match(Set dst (CastII dst));
7739   format %{ "#castII of $dst" %}
7740   ins_encode( /*empty encoding*/ );
7741   ins_cost(0);
7742   ins_pipe( empty );
7743 %}
7744 
7745 
7746 // Load-locked - same as a regular pointer load when used with compare-swap
7747 instruct loadPLocked(eRegP dst, memory mem) %{
7748   match(Set dst (LoadPLocked mem));
7749 
7750   ins_cost(125);
7751   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7752   opcode(0x8B);
7753   ins_encode( OpcP, RegMem(dst,mem));
7754   ins_pipe( ialu_reg_mem );
7755 %}
7756 
7757 // Conditional-store of the updated heap-top.
7758 // Used during allocation of the shared heap.
7759 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7760 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7761   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7762   // EAX is killed if there is contention, but then it's also unused.
7763   // In the common case of no contention, EAX holds the new oop address.
7764   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7765   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7766   ins_pipe( pipe_cmpxchg );
7767 %}
7768 
7769 // Conditional-store of an int value.
7770 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7771 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7772   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7773   effect(KILL oldval);
7774   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7775   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7776   ins_pipe( pipe_cmpxchg );
7777 %}
7778 
7779 // Conditional-store of a long value.
7780 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7781 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7782   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7783   effect(KILL oldval);
7784   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7785             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7786             "XCHG   EBX,ECX"
7787   %}
7788   ins_encode %{
7789     // Note: we need to swap rbx, and rcx before and after the
7790     //       cmpxchg8 instruction because the instruction uses
7791     //       rcx as the high order word of the new value to store but
7792     //       our register encoding uses rbx.
7793     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7794     if( os::is_MP() )
7795       __ lock();
7796     __ cmpxchg8($mem$$Address);
7797     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7798   %}
7799   ins_pipe( pipe_cmpxchg );
7800 %}
7801 
7802 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7803 
7804 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7805   predicate(VM_Version::supports_cx8());
7806   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7807   effect(KILL cr, KILL oldval);
7808   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7809             "MOV    $res,0\n\t"
7810             "JNE,s  fail\n\t"
7811             "MOV    $res,1\n"
7812           "fail:" %}
7813   ins_encode( enc_cmpxchg8(mem_ptr),
7814               enc_flags_ne_to_boolean(res) );
7815   ins_pipe( pipe_cmpxchg );
7816 %}
7817 
7818 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7819   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7820   effect(KILL cr, KILL oldval);
7821   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7822             "MOV    $res,0\n\t"
7823             "JNE,s  fail\n\t"
7824             "MOV    $res,1\n"
7825           "fail:" %}
7826   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7827   ins_pipe( pipe_cmpxchg );
7828 %}
7829 
7830 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7831   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7832   effect(KILL cr, KILL oldval);
7833   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7834             "MOV    $res,0\n\t"
7835             "JNE,s  fail\n\t"
7836             "MOV    $res,1\n"
7837           "fail:" %}
7838   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7839   ins_pipe( pipe_cmpxchg );
7840 %}
7841 
7842 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7843   predicate(n->as_LoadStore()->result_not_used());
7844   match(Set dummy (GetAndAddI mem add));
7845   effect(KILL cr);
7846   format %{ "ADDL  [$mem],$add" %}
7847   ins_encode %{
7848     if (os::is_MP()) { __ lock(); }
7849     __ addl($mem$$Address, $add$$constant);
7850   %}
7851   ins_pipe( pipe_cmpxchg );
7852 %}
7853 
7854 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7855   match(Set newval (GetAndAddI mem newval));
7856   effect(KILL cr);
7857   format %{ "XADDL  [$mem],$newval" %}
7858   ins_encode %{
7859     if (os::is_MP()) { __ lock(); }
7860     __ xaddl($mem$$Address, $newval$$Register);
7861   %}
7862   ins_pipe( pipe_cmpxchg );
7863 %}
7864 
7865 instruct xchgI( memory mem, rRegI newval) %{
7866   match(Set newval (GetAndSetI mem newval));
7867   format %{ "XCHGL  $newval,[$mem]" %}
7868   ins_encode %{
7869     __ xchgl($newval$$Register, $mem$$Address);
7870   %}
7871   ins_pipe( pipe_cmpxchg );
7872 %}
7873 
7874 instruct xchgP( memory mem, pRegP newval) %{
7875   match(Set newval (GetAndSetP mem newval));
7876   format %{ "XCHGL  $newval,[$mem]" %}
7877   ins_encode %{
7878     __ xchgl($newval$$Register, $mem$$Address);
7879   %}
7880   ins_pipe( pipe_cmpxchg );
7881 %}
7882 
7883 //----------Subtraction Instructions-------------------------------------------
7884 
7885 instruct subExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
7886 %{
7887   match(SubExactI dst src);
7888   effect(DEF cr);
7889 
7890   format %{ "SUB    $dst, $src\t# subExact int" %}
7891   ins_encode %{
7892     __ subl($dst$$Register, $src$$Register);
7893   %}
7894   ins_pipe(ialu_reg_reg);
7895 %}
7896 
7897 instruct subExactI_eReg_imm(eAXRegI dst, immI src, eFlagsReg cr)
7898 %{
7899   match(SubExactI dst src);
7900   effect(DEF cr);
7901 
7902   format %{ "SUB    $dst, $src\t# subExact int" %}
7903   ins_encode %{
7904     __ subl($dst$$Register, $src$$constant);
7905   %}
7906   ins_pipe(ialu_reg_reg);
7907 %}
7908 
7909 instruct subExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
7910 %{
7911   match(SubExactI dst (LoadI src));
7912   effect(DEF cr);
7913 
7914   ins_cost(125);
7915   format %{ "SUB    $dst,$src\t# subExact int" %}
7916   ins_encode %{
7917     __ subl($dst$$Register, $src$$Address);
7918   %}
7919   ins_pipe( ialu_reg_mem );
7920 %}
7921 
7922 // Integer Subtraction Instructions
7923 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7924   match(Set dst (SubI dst src));
7925   effect(KILL cr);
7926 
7927   size(2);
7928   format %{ "SUB    $dst,$src" %}
7929   opcode(0x2B);
7930   ins_encode( OpcP, RegReg( dst, src) );
7931   ins_pipe( ialu_reg_reg );
7932 %}
7933 
7934 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7935   match(Set dst (SubI dst src));
7936   effect(KILL cr);
7937 
7938   format %{ "SUB    $dst,$src" %}
7939   opcode(0x81,0x05);  /* Opcode 81 /5 */
7940   // ins_encode( RegImm( dst, src) );
7941   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7942   ins_pipe( ialu_reg );
7943 %}
7944 
7945 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7946   match(Set dst (SubI dst (LoadI src)));
7947   effect(KILL cr);
7948 
7949   ins_cost(125);
7950   format %{ "SUB    $dst,$src" %}
7951   opcode(0x2B);
7952   ins_encode( OpcP, RegMem( dst, src) );
7953   ins_pipe( ialu_reg_mem );
7954 %}
7955 
7956 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7957   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7958   effect(KILL cr);
7959 
7960   ins_cost(150);
7961   format %{ "SUB    $dst,$src" %}
7962   opcode(0x29);  /* Opcode 29 /r */
7963   ins_encode( OpcP, RegMem( src, dst ) );
7964   ins_pipe( ialu_mem_reg );
7965 %}
7966 
7967 // Subtract from a pointer
7968 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7969   match(Set dst (AddP dst (SubI zero src)));
7970   effect(KILL cr);
7971 
7972   size(2);
7973   format %{ "SUB    $dst,$src" %}
7974   opcode(0x2B);
7975   ins_encode( OpcP, RegReg( dst, src) );
7976   ins_pipe( ialu_reg_reg );
7977 %}
7978 
7979 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7980   match(Set dst (SubI zero dst));
7981   effect(KILL cr);
7982 
7983   size(2);
7984   format %{ "NEG    $dst" %}
7985   opcode(0xF7,0x03);  // Opcode F7 /3
7986   ins_encode( OpcP, RegOpc( dst ) );
7987   ins_pipe( ialu_reg );
7988 %}
7989 
7990 instruct negExactI_eReg(eAXRegI dst, eFlagsReg cr) %{
7991   match(NegExactI dst);
7992   effect(DEF cr);
7993 
7994   format %{ "NEG    $dst\t# negExact int"%}
7995   ins_encode %{
7996     __ negl($dst$$Register);
7997   %}
7998   ins_pipe(ialu_reg);
7999 %}
8000 
8001 //----------Multiplication/Division Instructions-------------------------------
8002 // Integer Multiplication Instructions
8003 // Multiply Register
8004 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8005   match(Set dst (MulI dst src));
8006   effect(KILL cr);
8007 
8008   size(3);
8009   ins_cost(300);
8010   format %{ "IMUL   $dst,$src" %}
8011   opcode(0xAF, 0x0F);
8012   ins_encode( OpcS, OpcP, RegReg( dst, src) );
8013   ins_pipe( ialu_reg_reg_alu0 );
8014 %}
8015 
8016 // Multiply 32-bit Immediate
8017 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
8018   match(Set dst (MulI src imm));
8019   effect(KILL cr);
8020 
8021   ins_cost(300);
8022   format %{ "IMUL   $dst,$src,$imm" %}
8023   opcode(0x69);  /* 69 /r id */
8024   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8025   ins_pipe( ialu_reg_reg_alu0 );
8026 %}
8027 
8028 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8029   match(Set dst src);
8030   effect(KILL cr);
8031 
8032   // Note that this is artificially increased to make it more expensive than loadConL
8033   ins_cost(250);
8034   format %{ "MOV    EAX,$src\t// low word only" %}
8035   opcode(0xB8);
8036   ins_encode( LdImmL_Lo(dst, src) );
8037   ins_pipe( ialu_reg_fat );
8038 %}
8039 
8040 // Multiply by 32-bit Immediate, taking the shifted high order results
8041 //  (special case for shift by 32)
8042 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8043   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8044   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8045              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8046              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8047   effect(USE src1, KILL cr);
8048 
8049   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8050   ins_cost(0*100 + 1*400 - 150);
8051   format %{ "IMUL   EDX:EAX,$src1" %}
8052   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8053   ins_pipe( pipe_slow );
8054 %}
8055 
8056 // Multiply by 32-bit Immediate, taking the shifted high order results
8057 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8058   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8059   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8060              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8061              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8062   effect(USE src1, KILL cr);
8063 
8064   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8065   ins_cost(1*100 + 1*400 - 150);
8066   format %{ "IMUL   EDX:EAX,$src1\n\t"
8067             "SAR    EDX,$cnt-32" %}
8068   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8069   ins_pipe( pipe_slow );
8070 %}
8071 
8072 // Multiply Memory 32-bit Immediate
8073 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
8074   match(Set dst (MulI (LoadI src) imm));
8075   effect(KILL cr);
8076 
8077   ins_cost(300);
8078   format %{ "IMUL   $dst,$src,$imm" %}
8079   opcode(0x69);  /* 69 /r id */
8080   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8081   ins_pipe( ialu_reg_mem_alu0 );
8082 %}
8083 
8084 // Multiply Memory
8085 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
8086   match(Set dst (MulI dst (LoadI src)));
8087   effect(KILL cr);
8088 
8089   ins_cost(350);
8090   format %{ "IMUL   $dst,$src" %}
8091   opcode(0xAF, 0x0F);
8092   ins_encode( OpcS, OpcP, RegMem( dst, src) );
8093   ins_pipe( ialu_reg_mem_alu0 );
8094 %}
8095 
8096 // Multiply Register Int to Long
8097 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8098   // Basic Idea: long = (long)int * (long)int
8099   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8100   effect(DEF dst, USE src, USE src1, KILL flags);
8101 
8102   ins_cost(300);
8103   format %{ "IMUL   $dst,$src1" %}
8104 
8105   ins_encode( long_int_multiply( dst, src1 ) );
8106   ins_pipe( ialu_reg_reg_alu0 );
8107 %}
8108 
8109 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8110   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8111   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8112   effect(KILL flags);
8113 
8114   ins_cost(300);
8115   format %{ "MUL    $dst,$src1" %}
8116 
8117   ins_encode( long_uint_multiply(dst, src1) );
8118   ins_pipe( ialu_reg_reg_alu0 );
8119 %}
8120 
8121 // Multiply Register Long
8122 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8123   match(Set dst (MulL dst src));
8124   effect(KILL cr, TEMP tmp);
8125   ins_cost(4*100+3*400);
8126 // Basic idea: lo(result) = lo(x_lo * y_lo)
8127 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8128   format %{ "MOV    $tmp,$src.lo\n\t"
8129             "IMUL   $tmp,EDX\n\t"
8130             "MOV    EDX,$src.hi\n\t"
8131             "IMUL   EDX,EAX\n\t"
8132             "ADD    $tmp,EDX\n\t"
8133             "MUL    EDX:EAX,$src.lo\n\t"
8134             "ADD    EDX,$tmp" %}
8135   ins_encode( long_multiply( dst, src, tmp ) );
8136   ins_pipe( pipe_slow );
8137 %}
8138 
8139 // Multiply Register Long where the left operand's high 32 bits are zero
8140 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8141   predicate(is_operand_hi32_zero(n->in(1)));
8142   match(Set dst (MulL dst src));
8143   effect(KILL cr, TEMP tmp);
8144   ins_cost(2*100+2*400);
8145 // Basic idea: lo(result) = lo(x_lo * y_lo)
8146 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8147   format %{ "MOV    $tmp,$src.hi\n\t"
8148             "IMUL   $tmp,EAX\n\t"
8149             "MUL    EDX:EAX,$src.lo\n\t"
8150             "ADD    EDX,$tmp" %}
8151   ins_encode %{
8152     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8153     __ imull($tmp$$Register, rax);
8154     __ mull($src$$Register);
8155     __ addl(rdx, $tmp$$Register);
8156   %}
8157   ins_pipe( pipe_slow );
8158 %}
8159 
8160 // Multiply Register Long where the right operand's high 32 bits are zero
8161 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8162   predicate(is_operand_hi32_zero(n->in(2)));
8163   match(Set dst (MulL dst src));
8164   effect(KILL cr, TEMP tmp);
8165   ins_cost(2*100+2*400);
8166 // Basic idea: lo(result) = lo(x_lo * y_lo)
8167 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8168   format %{ "MOV    $tmp,$src.lo\n\t"
8169             "IMUL   $tmp,EDX\n\t"
8170             "MUL    EDX:EAX,$src.lo\n\t"
8171             "ADD    EDX,$tmp" %}
8172   ins_encode %{
8173     __ movl($tmp$$Register, $src$$Register);
8174     __ imull($tmp$$Register, rdx);
8175     __ mull($src$$Register);
8176     __ addl(rdx, $tmp$$Register);
8177   %}
8178   ins_pipe( pipe_slow );
8179 %}
8180 
8181 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8182 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8183   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8184   match(Set dst (MulL dst src));
8185   effect(KILL cr);
8186   ins_cost(1*400);
8187 // Basic idea: lo(result) = lo(x_lo * y_lo)
8188 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8189   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8190   ins_encode %{
8191     __ mull($src$$Register);
8192   %}
8193   ins_pipe( pipe_slow );
8194 %}
8195 
8196 // Multiply Register Long by small constant
8197 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
8198   match(Set dst (MulL dst src));
8199   effect(KILL cr, TEMP tmp);
8200   ins_cost(2*100+2*400);
8201   size(12);
8202 // Basic idea: lo(result) = lo(src * EAX)
8203 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8204   format %{ "IMUL   $tmp,EDX,$src\n\t"
8205             "MOV    EDX,$src\n\t"
8206             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8207             "ADD    EDX,$tmp" %}
8208   ins_encode( long_multiply_con( dst, src, tmp ) );
8209   ins_pipe( pipe_slow );
8210 %}
8211 
8212 instruct mulExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
8213 %{
8214   match(MulExactI dst src);
8215   effect(DEF cr);
8216 
8217   ins_cost(300);
8218   format %{ "IMUL   $dst, $src\t# mulExact int" %}
8219   ins_encode %{
8220     __ imull($dst$$Register, $src$$Register);
8221   %}
8222   ins_pipe(ialu_reg_reg_alu0);
8223 %}
8224 
8225 instruct mulExactI_eReg_imm(eAXRegI dst, rRegI src, immI imm, eFlagsReg cr)
8226 %{
8227   match(MulExactI src imm);
8228   effect(DEF cr);
8229 
8230   ins_cost(300);
8231   format %{ "IMUL   $dst, $src, $imm\t# mulExact int" %}
8232   ins_encode %{
8233     __ imull($dst$$Register, $src$$Register, $imm$$constant);
8234   %}
8235   ins_pipe(ialu_reg_reg_alu0);
8236 %}
8237 
8238 instruct mulExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
8239 %{
8240   match(MulExactI dst (LoadI src));
8241   effect(DEF cr);
8242 
8243   ins_cost(350);
8244   format %{ "IMUL   $dst, $src\t# mulExact int" %}
8245   ins_encode %{
8246     __ imull($dst$$Register, $src$$Address);
8247   %}
8248   ins_pipe(ialu_reg_mem_alu0);
8249 %}
8250 
8251 
8252 // Integer DIV with Register
8253 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8254   match(Set rax (DivI rax div));
8255   effect(KILL rdx, KILL cr);
8256   size(26);
8257   ins_cost(30*100+10*100);
8258   format %{ "CMP    EAX,0x80000000\n\t"
8259             "JNE,s  normal\n\t"
8260             "XOR    EDX,EDX\n\t"
8261             "CMP    ECX,-1\n\t"
8262             "JE,s   done\n"
8263     "normal: CDQ\n\t"
8264             "IDIV   $div\n\t"
8265     "done:"        %}
8266   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8267   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8268   ins_pipe( ialu_reg_reg_alu0 );
8269 %}
8270 
8271 // Divide Register Long
8272 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8273   match(Set dst (DivL src1 src2));
8274   effect( KILL cr, KILL cx, KILL bx );
8275   ins_cost(10000);
8276   format %{ "PUSH   $src1.hi\n\t"
8277             "PUSH   $src1.lo\n\t"
8278             "PUSH   $src2.hi\n\t"
8279             "PUSH   $src2.lo\n\t"
8280             "CALL   SharedRuntime::ldiv\n\t"
8281             "ADD    ESP,16" %}
8282   ins_encode( long_div(src1,src2) );
8283   ins_pipe( pipe_slow );
8284 %}
8285 
8286 // Integer DIVMOD with Register, both quotient and mod results
8287 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8288   match(DivModI rax div);
8289   effect(KILL cr);
8290   size(26);
8291   ins_cost(30*100+10*100);
8292   format %{ "CMP    EAX,0x80000000\n\t"
8293             "JNE,s  normal\n\t"
8294             "XOR    EDX,EDX\n\t"
8295             "CMP    ECX,-1\n\t"
8296             "JE,s   done\n"
8297     "normal: CDQ\n\t"
8298             "IDIV   $div\n\t"
8299     "done:"        %}
8300   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8301   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8302   ins_pipe( pipe_slow );
8303 %}
8304 
8305 // Integer MOD with Register
8306 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8307   match(Set rdx (ModI rax div));
8308   effect(KILL rax, KILL cr);
8309 
8310   size(26);
8311   ins_cost(300);
8312   format %{ "CDQ\n\t"
8313             "IDIV   $div" %}
8314   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8315   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8316   ins_pipe( ialu_reg_reg_alu0 );
8317 %}
8318 
8319 // Remainder Register Long
8320 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8321   match(Set dst (ModL src1 src2));
8322   effect( KILL cr, KILL cx, KILL bx );
8323   ins_cost(10000);
8324   format %{ "PUSH   $src1.hi\n\t"
8325             "PUSH   $src1.lo\n\t"
8326             "PUSH   $src2.hi\n\t"
8327             "PUSH   $src2.lo\n\t"
8328             "CALL   SharedRuntime::lrem\n\t"
8329             "ADD    ESP,16" %}
8330   ins_encode( long_mod(src1,src2) );
8331   ins_pipe( pipe_slow );
8332 %}
8333 
8334 // Divide Register Long (no special case since divisor != -1)
8335 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8336   match(Set dst (DivL dst imm));
8337   effect( TEMP tmp, TEMP tmp2, KILL cr );
8338   ins_cost(1000);
8339   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8340             "XOR    $tmp2,$tmp2\n\t"
8341             "CMP    $tmp,EDX\n\t"
8342             "JA,s   fast\n\t"
8343             "MOV    $tmp2,EAX\n\t"
8344             "MOV    EAX,EDX\n\t"
8345             "MOV    EDX,0\n\t"
8346             "JLE,s  pos\n\t"
8347             "LNEG   EAX : $tmp2\n\t"
8348             "DIV    $tmp # unsigned division\n\t"
8349             "XCHG   EAX,$tmp2\n\t"
8350             "DIV    $tmp\n\t"
8351             "LNEG   $tmp2 : EAX\n\t"
8352             "JMP,s  done\n"
8353     "pos:\n\t"
8354             "DIV    $tmp\n\t"
8355             "XCHG   EAX,$tmp2\n"
8356     "fast:\n\t"
8357             "DIV    $tmp\n"
8358     "done:\n\t"
8359             "MOV    EDX,$tmp2\n\t"
8360             "NEG    EDX:EAX # if $imm < 0" %}
8361   ins_encode %{
8362     int con = (int)$imm$$constant;
8363     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8364     int pcon = (con > 0) ? con : -con;
8365     Label Lfast, Lpos, Ldone;
8366 
8367     __ movl($tmp$$Register, pcon);
8368     __ xorl($tmp2$$Register,$tmp2$$Register);
8369     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8370     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8371 
8372     __ movl($tmp2$$Register, $dst$$Register); // save
8373     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8374     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8375     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8376 
8377     // Negative dividend.
8378     // convert value to positive to use unsigned division
8379     __ lneg($dst$$Register, $tmp2$$Register);
8380     __ divl($tmp$$Register);
8381     __ xchgl($dst$$Register, $tmp2$$Register);
8382     __ divl($tmp$$Register);
8383     // revert result back to negative
8384     __ lneg($tmp2$$Register, $dst$$Register);
8385     __ jmpb(Ldone);
8386 
8387     __ bind(Lpos);
8388     __ divl($tmp$$Register); // Use unsigned division
8389     __ xchgl($dst$$Register, $tmp2$$Register);
8390     // Fallthrow for final divide, tmp2 has 32 bit hi result
8391 
8392     __ bind(Lfast);
8393     // fast path: src is positive
8394     __ divl($tmp$$Register); // Use unsigned division
8395 
8396     __ bind(Ldone);
8397     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8398     if (con < 0) {
8399       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8400     }
8401   %}
8402   ins_pipe( pipe_slow );
8403 %}
8404 
8405 // Remainder Register Long (remainder fit into 32 bits)
8406 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8407   match(Set dst (ModL dst imm));
8408   effect( TEMP tmp, TEMP tmp2, KILL cr );
8409   ins_cost(1000);
8410   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8411             "CMP    $tmp,EDX\n\t"
8412             "JA,s   fast\n\t"
8413             "MOV    $tmp2,EAX\n\t"
8414             "MOV    EAX,EDX\n\t"
8415             "MOV    EDX,0\n\t"
8416             "JLE,s  pos\n\t"
8417             "LNEG   EAX : $tmp2\n\t"
8418             "DIV    $tmp # unsigned division\n\t"
8419             "MOV    EAX,$tmp2\n\t"
8420             "DIV    $tmp\n\t"
8421             "NEG    EDX\n\t"
8422             "JMP,s  done\n"
8423     "pos:\n\t"
8424             "DIV    $tmp\n\t"
8425             "MOV    EAX,$tmp2\n"
8426     "fast:\n\t"
8427             "DIV    $tmp\n"
8428     "done:\n\t"
8429             "MOV    EAX,EDX\n\t"
8430             "SAR    EDX,31\n\t" %}
8431   ins_encode %{
8432     int con = (int)$imm$$constant;
8433     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8434     int pcon = (con > 0) ? con : -con;
8435     Label  Lfast, Lpos, Ldone;
8436 
8437     __ movl($tmp$$Register, pcon);
8438     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8439     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8440 
8441     __ movl($tmp2$$Register, $dst$$Register); // save
8442     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8443     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8444     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8445 
8446     // Negative dividend.
8447     // convert value to positive to use unsigned division
8448     __ lneg($dst$$Register, $tmp2$$Register);
8449     __ divl($tmp$$Register);
8450     __ movl($dst$$Register, $tmp2$$Register);
8451     __ divl($tmp$$Register);
8452     // revert remainder back to negative
8453     __ negl(HIGH_FROM_LOW($dst$$Register));
8454     __ jmpb(Ldone);
8455 
8456     __ bind(Lpos);
8457     __ divl($tmp$$Register);
8458     __ movl($dst$$Register, $tmp2$$Register);
8459 
8460     __ bind(Lfast);
8461     // fast path: src is positive
8462     __ divl($tmp$$Register);
8463 
8464     __ bind(Ldone);
8465     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8466     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8467 
8468   %}
8469   ins_pipe( pipe_slow );
8470 %}
8471 
8472 // Integer Shift Instructions
8473 // Shift Left by one
8474 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8475   match(Set dst (LShiftI dst shift));
8476   effect(KILL cr);
8477 
8478   size(2);
8479   format %{ "SHL    $dst,$shift" %}
8480   opcode(0xD1, 0x4);  /* D1 /4 */
8481   ins_encode( OpcP, RegOpc( dst ) );
8482   ins_pipe( ialu_reg );
8483 %}
8484 
8485 // Shift Left by 8-bit immediate
8486 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8487   match(Set dst (LShiftI dst shift));
8488   effect(KILL cr);
8489 
8490   size(3);
8491   format %{ "SHL    $dst,$shift" %}
8492   opcode(0xC1, 0x4);  /* C1 /4 ib */
8493   ins_encode( RegOpcImm( dst, shift) );
8494   ins_pipe( ialu_reg );
8495 %}
8496 
8497 // Shift Left by variable
8498 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8499   match(Set dst (LShiftI dst shift));
8500   effect(KILL cr);
8501 
8502   size(2);
8503   format %{ "SHL    $dst,$shift" %}
8504   opcode(0xD3, 0x4);  /* D3 /4 */
8505   ins_encode( OpcP, RegOpc( dst ) );
8506   ins_pipe( ialu_reg_reg );
8507 %}
8508 
8509 // Arithmetic shift right by one
8510 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8511   match(Set dst (RShiftI dst shift));
8512   effect(KILL cr);
8513 
8514   size(2);
8515   format %{ "SAR    $dst,$shift" %}
8516   opcode(0xD1, 0x7);  /* D1 /7 */
8517   ins_encode( OpcP, RegOpc( dst ) );
8518   ins_pipe( ialu_reg );
8519 %}
8520 
8521 // Arithmetic shift right by one
8522 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8523   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8524   effect(KILL cr);
8525   format %{ "SAR    $dst,$shift" %}
8526   opcode(0xD1, 0x7);  /* D1 /7 */
8527   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8528   ins_pipe( ialu_mem_imm );
8529 %}
8530 
8531 // Arithmetic Shift Right by 8-bit immediate
8532 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8533   match(Set dst (RShiftI dst shift));
8534   effect(KILL cr);
8535 
8536   size(3);
8537   format %{ "SAR    $dst,$shift" %}
8538   opcode(0xC1, 0x7);  /* C1 /7 ib */
8539   ins_encode( RegOpcImm( dst, shift ) );
8540   ins_pipe( ialu_mem_imm );
8541 %}
8542 
8543 // Arithmetic Shift Right by 8-bit immediate
8544 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8545   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8546   effect(KILL cr);
8547 
8548   format %{ "SAR    $dst,$shift" %}
8549   opcode(0xC1, 0x7);  /* C1 /7 ib */
8550   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8551   ins_pipe( ialu_mem_imm );
8552 %}
8553 
8554 // Arithmetic Shift Right by variable
8555 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8556   match(Set dst (RShiftI dst shift));
8557   effect(KILL cr);
8558 
8559   size(2);
8560   format %{ "SAR    $dst,$shift" %}
8561   opcode(0xD3, 0x7);  /* D3 /7 */
8562   ins_encode( OpcP, RegOpc( dst ) );
8563   ins_pipe( ialu_reg_reg );
8564 %}
8565 
8566 // Logical shift right by one
8567 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8568   match(Set dst (URShiftI dst shift));
8569   effect(KILL cr);
8570 
8571   size(2);
8572   format %{ "SHR    $dst,$shift" %}
8573   opcode(0xD1, 0x5);  /* D1 /5 */
8574   ins_encode( OpcP, RegOpc( dst ) );
8575   ins_pipe( ialu_reg );
8576 %}
8577 
8578 // Logical Shift Right by 8-bit immediate
8579 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8580   match(Set dst (URShiftI dst shift));
8581   effect(KILL cr);
8582 
8583   size(3);
8584   format %{ "SHR    $dst,$shift" %}
8585   opcode(0xC1, 0x5);  /* C1 /5 ib */
8586   ins_encode( RegOpcImm( dst, shift) );
8587   ins_pipe( ialu_reg );
8588 %}
8589 
8590 
8591 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8592 // This idiom is used by the compiler for the i2b bytecode.
8593 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
8594   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8595 
8596   size(3);
8597   format %{ "MOVSX  $dst,$src :8" %}
8598   ins_encode %{
8599     __ movsbl($dst$$Register, $src$$Register);
8600   %}
8601   ins_pipe(ialu_reg_reg);
8602 %}
8603 
8604 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8605 // This idiom is used by the compiler the i2s bytecode.
8606 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
8607   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8608 
8609   size(3);
8610   format %{ "MOVSX  $dst,$src :16" %}
8611   ins_encode %{
8612     __ movswl($dst$$Register, $src$$Register);
8613   %}
8614   ins_pipe(ialu_reg_reg);
8615 %}
8616 
8617 
8618 // Logical Shift Right by variable
8619 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8620   match(Set dst (URShiftI dst shift));
8621   effect(KILL cr);
8622 
8623   size(2);
8624   format %{ "SHR    $dst,$shift" %}
8625   opcode(0xD3, 0x5);  /* D3 /5 */
8626   ins_encode( OpcP, RegOpc( dst ) );
8627   ins_pipe( ialu_reg_reg );
8628 %}
8629 
8630 
8631 //----------Logical Instructions-----------------------------------------------
8632 //----------Integer Logical Instructions---------------------------------------
8633 // And Instructions
8634 // And Register with Register
8635 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8636   match(Set dst (AndI dst src));
8637   effect(KILL cr);
8638 
8639   size(2);
8640   format %{ "AND    $dst,$src" %}
8641   opcode(0x23);
8642   ins_encode( OpcP, RegReg( dst, src) );
8643   ins_pipe( ialu_reg_reg );
8644 %}
8645 
8646 // And Register with Immediate
8647 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8648   match(Set dst (AndI dst src));
8649   effect(KILL cr);
8650 
8651   format %{ "AND    $dst,$src" %}
8652   opcode(0x81,0x04);  /* Opcode 81 /4 */
8653   // ins_encode( RegImm( dst, src) );
8654   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8655   ins_pipe( ialu_reg );
8656 %}
8657 
8658 // And Register with Memory
8659 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8660   match(Set dst (AndI dst (LoadI src)));
8661   effect(KILL cr);
8662 
8663   ins_cost(125);
8664   format %{ "AND    $dst,$src" %}
8665   opcode(0x23);
8666   ins_encode( OpcP, RegMem( dst, src) );
8667   ins_pipe( ialu_reg_mem );
8668 %}
8669 
8670 // And Memory with Register
8671 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8672   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8673   effect(KILL cr);
8674 
8675   ins_cost(150);
8676   format %{ "AND    $dst,$src" %}
8677   opcode(0x21);  /* Opcode 21 /r */
8678   ins_encode( OpcP, RegMem( src, dst ) );
8679   ins_pipe( ialu_mem_reg );
8680 %}
8681 
8682 // And Memory with Immediate
8683 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8684   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8685   effect(KILL cr);
8686 
8687   ins_cost(125);
8688   format %{ "AND    $dst,$src" %}
8689   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8690   // ins_encode( MemImm( dst, src) );
8691   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8692   ins_pipe( ialu_mem_imm );
8693 %}
8694 
8695 // Or Instructions
8696 // Or Register with Register
8697 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8698   match(Set dst (OrI dst src));
8699   effect(KILL cr);
8700 
8701   size(2);
8702   format %{ "OR     $dst,$src" %}
8703   opcode(0x0B);
8704   ins_encode( OpcP, RegReg( dst, src) );
8705   ins_pipe( ialu_reg_reg );
8706 %}
8707 
8708 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8709   match(Set dst (OrI dst (CastP2X src)));
8710   effect(KILL cr);
8711 
8712   size(2);
8713   format %{ "OR     $dst,$src" %}
8714   opcode(0x0B);
8715   ins_encode( OpcP, RegReg( dst, src) );
8716   ins_pipe( ialu_reg_reg );
8717 %}
8718 
8719 
8720 // Or Register with Immediate
8721 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8722   match(Set dst (OrI dst src));
8723   effect(KILL cr);
8724 
8725   format %{ "OR     $dst,$src" %}
8726   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8727   // ins_encode( RegImm( dst, src) );
8728   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8729   ins_pipe( ialu_reg );
8730 %}
8731 
8732 // Or Register with Memory
8733 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8734   match(Set dst (OrI dst (LoadI src)));
8735   effect(KILL cr);
8736 
8737   ins_cost(125);
8738   format %{ "OR     $dst,$src" %}
8739   opcode(0x0B);
8740   ins_encode( OpcP, RegMem( dst, src) );
8741   ins_pipe( ialu_reg_mem );
8742 %}
8743 
8744 // Or Memory with Register
8745 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8746   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8747   effect(KILL cr);
8748 
8749   ins_cost(150);
8750   format %{ "OR     $dst,$src" %}
8751   opcode(0x09);  /* Opcode 09 /r */
8752   ins_encode( OpcP, RegMem( src, dst ) );
8753   ins_pipe( ialu_mem_reg );
8754 %}
8755 
8756 // Or Memory with Immediate
8757 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8758   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8759   effect(KILL cr);
8760 
8761   ins_cost(125);
8762   format %{ "OR     $dst,$src" %}
8763   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8764   // ins_encode( MemImm( dst, src) );
8765   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8766   ins_pipe( ialu_mem_imm );
8767 %}
8768 
8769 // ROL/ROR
8770 // ROL expand
8771 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8772   effect(USE_DEF dst, USE shift, KILL cr);
8773 
8774   format %{ "ROL    $dst, $shift" %}
8775   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8776   ins_encode( OpcP, RegOpc( dst ));
8777   ins_pipe( ialu_reg );
8778 %}
8779 
8780 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8781   effect(USE_DEF dst, USE shift, KILL cr);
8782 
8783   format %{ "ROL    $dst, $shift" %}
8784   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8785   ins_encode( RegOpcImm(dst, shift) );
8786   ins_pipe(ialu_reg);
8787 %}
8788 
8789 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8790   effect(USE_DEF dst, USE shift, KILL cr);
8791 
8792   format %{ "ROL    $dst, $shift" %}
8793   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8794   ins_encode(OpcP, RegOpc(dst));
8795   ins_pipe( ialu_reg_reg );
8796 %}
8797 // end of ROL expand
8798 
8799 // ROL 32bit by one once
8800 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8801   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8802 
8803   expand %{
8804     rolI_eReg_imm1(dst, lshift, cr);
8805   %}
8806 %}
8807 
8808 // ROL 32bit var by imm8 once
8809 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8810   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8811   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8812 
8813   expand %{
8814     rolI_eReg_imm8(dst, lshift, cr);
8815   %}
8816 %}
8817 
8818 // ROL 32bit var by var once
8819 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8820   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8821 
8822   expand %{
8823     rolI_eReg_CL(dst, shift, cr);
8824   %}
8825 %}
8826 
8827 // ROL 32bit var by var once
8828 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8829   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8830 
8831   expand %{
8832     rolI_eReg_CL(dst, shift, cr);
8833   %}
8834 %}
8835 
8836 // ROR expand
8837 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8838   effect(USE_DEF dst, USE shift, KILL cr);
8839 
8840   format %{ "ROR    $dst, $shift" %}
8841   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8842   ins_encode( OpcP, RegOpc( dst ) );
8843   ins_pipe( ialu_reg );
8844 %}
8845 
8846 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8847   effect (USE_DEF dst, USE shift, KILL cr);
8848 
8849   format %{ "ROR    $dst, $shift" %}
8850   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8851   ins_encode( RegOpcImm(dst, shift) );
8852   ins_pipe( ialu_reg );
8853 %}
8854 
8855 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8856   effect(USE_DEF dst, USE shift, KILL cr);
8857 
8858   format %{ "ROR    $dst, $shift" %}
8859   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8860   ins_encode(OpcP, RegOpc(dst));
8861   ins_pipe( ialu_reg_reg );
8862 %}
8863 // end of ROR expand
8864 
8865 // ROR right once
8866 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8867   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8868 
8869   expand %{
8870     rorI_eReg_imm1(dst, rshift, cr);
8871   %}
8872 %}
8873 
8874 // ROR 32bit by immI8 once
8875 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8876   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8877   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8878 
8879   expand %{
8880     rorI_eReg_imm8(dst, rshift, cr);
8881   %}
8882 %}
8883 
8884 // ROR 32bit var by var once
8885 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8886   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8887 
8888   expand %{
8889     rorI_eReg_CL(dst, shift, cr);
8890   %}
8891 %}
8892 
8893 // ROR 32bit var by var once
8894 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8895   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8896 
8897   expand %{
8898     rorI_eReg_CL(dst, shift, cr);
8899   %}
8900 %}
8901 
8902 // Xor Instructions
8903 // Xor Register with Register
8904 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8905   match(Set dst (XorI dst src));
8906   effect(KILL cr);
8907 
8908   size(2);
8909   format %{ "XOR    $dst,$src" %}
8910   opcode(0x33);
8911   ins_encode( OpcP, RegReg( dst, src) );
8912   ins_pipe( ialu_reg_reg );
8913 %}
8914 
8915 // Xor Register with Immediate -1
8916 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8917   match(Set dst (XorI dst imm));  
8918 
8919   size(2);
8920   format %{ "NOT    $dst" %}  
8921   ins_encode %{
8922      __ notl($dst$$Register);
8923   %}
8924   ins_pipe( ialu_reg );
8925 %}
8926 
8927 // Xor Register with Immediate
8928 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8929   match(Set dst (XorI dst src));
8930   effect(KILL cr);
8931 
8932   format %{ "XOR    $dst,$src" %}
8933   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8934   // ins_encode( RegImm( dst, src) );
8935   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8936   ins_pipe( ialu_reg );
8937 %}
8938 
8939 // Xor Register with Memory
8940 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8941   match(Set dst (XorI dst (LoadI src)));
8942   effect(KILL cr);
8943 
8944   ins_cost(125);
8945   format %{ "XOR    $dst,$src" %}
8946   opcode(0x33);
8947   ins_encode( OpcP, RegMem(dst, src) );
8948   ins_pipe( ialu_reg_mem );
8949 %}
8950 
8951 // Xor Memory with Register
8952 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8953   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8954   effect(KILL cr);
8955 
8956   ins_cost(150);
8957   format %{ "XOR    $dst,$src" %}
8958   opcode(0x31);  /* Opcode 31 /r */
8959   ins_encode( OpcP, RegMem( src, dst ) );
8960   ins_pipe( ialu_mem_reg );
8961 %}
8962 
8963 // Xor Memory with Immediate
8964 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8965   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8966   effect(KILL cr);
8967 
8968   ins_cost(125);
8969   format %{ "XOR    $dst,$src" %}
8970   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8971   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8972   ins_pipe( ialu_mem_imm );
8973 %}
8974 
8975 //----------Convert Int to Boolean---------------------------------------------
8976 
8977 instruct movI_nocopy(rRegI dst, rRegI src) %{
8978   effect( DEF dst, USE src );
8979   format %{ "MOV    $dst,$src" %}
8980   ins_encode( enc_Copy( dst, src) );
8981   ins_pipe( ialu_reg_reg );
8982 %}
8983 
8984 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8985   effect( USE_DEF dst, USE src, KILL cr );
8986 
8987   size(4);
8988   format %{ "NEG    $dst\n\t"
8989             "ADC    $dst,$src" %}
8990   ins_encode( neg_reg(dst),
8991               OpcRegReg(0x13,dst,src) );
8992   ins_pipe( ialu_reg_reg_long );
8993 %}
8994 
8995 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8996   match(Set dst (Conv2B src));
8997 
8998   expand %{
8999     movI_nocopy(dst,src);
9000     ci2b(dst,src,cr);
9001   %}
9002 %}
9003 
9004 instruct movP_nocopy(rRegI dst, eRegP src) %{
9005   effect( DEF dst, USE src );
9006   format %{ "MOV    $dst,$src" %}
9007   ins_encode( enc_Copy( dst, src) );
9008   ins_pipe( ialu_reg_reg );
9009 %}
9010 
9011 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
9012   effect( USE_DEF dst, USE src, KILL cr );
9013   format %{ "NEG    $dst\n\t"
9014             "ADC    $dst,$src" %}
9015   ins_encode( neg_reg(dst),
9016               OpcRegReg(0x13,dst,src) );
9017   ins_pipe( ialu_reg_reg_long );
9018 %}
9019 
9020 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
9021   match(Set dst (Conv2B src));
9022 
9023   expand %{
9024     movP_nocopy(dst,src);
9025     cp2b(dst,src,cr);
9026   %}
9027 %}
9028 
9029 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
9030   match(Set dst (CmpLTMask p q));
9031   effect(KILL cr);
9032   ins_cost(400);
9033 
9034   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9035   format %{ "XOR    $dst,$dst\n\t"
9036             "CMP    $p,$q\n\t"
9037             "SETlt  $dst\n\t"
9038             "NEG    $dst" %}
9039   ins_encode %{
9040     Register Rp = $p$$Register;
9041     Register Rq = $q$$Register;
9042     Register Rd = $dst$$Register;
9043     Label done;
9044     __ xorl(Rd, Rd);
9045     __ cmpl(Rp, Rq);
9046     __ setb(Assembler::less, Rd);
9047     __ negl(Rd);
9048   %}
9049 
9050   ins_pipe(pipe_slow);
9051 %}
9052 
9053 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
9054   match(Set dst (CmpLTMask dst zero));
9055   effect(DEF dst, KILL cr);
9056   ins_cost(100);
9057 
9058   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
9059   ins_encode %{
9060   __ sarl($dst$$Register, 31);
9061   %}
9062   ins_pipe(ialu_reg);
9063 %}
9064 
9065 /* better to save a register than avoid a branch */
9066 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
9067   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9068   effect(KILL cr);
9069   ins_cost(400);
9070   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
9071             "JGE    done\n\t"
9072             "ADD    $p,$y\n"
9073             "done:  " %}
9074   ins_encode %{
9075     Register Rp = $p$$Register;
9076     Register Rq = $q$$Register;
9077     Register Ry = $y$$Register;
9078     Label done;
9079     __ subl(Rp, Rq);
9080     __ jccb(Assembler::greaterEqual, done);
9081     __ addl(Rp, Ry);
9082     __ bind(done);
9083   %}
9084 
9085   ins_pipe(pipe_cmplt);
9086 %}
9087 
9088 /* better to save a register than avoid a branch */
9089 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
9090   match(Set y (AndI (CmpLTMask p q) y));
9091   effect(KILL cr);
9092 
9093   ins_cost(300);
9094 
9095   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
9096             "JLT      done\n\t"
9097             "XORL     $y, $y\n"
9098             "done:  " %}
9099   ins_encode %{
9100     Register Rp = $p$$Register;
9101     Register Rq = $q$$Register;
9102     Register Ry = $y$$Register;
9103     Label done;
9104     __ cmpl(Rp, Rq);
9105     __ jccb(Assembler::less, done);
9106     __ xorl(Ry, Ry);
9107     __ bind(done);
9108   %}
9109 
9110   ins_pipe(pipe_cmplt);
9111 %}
9112 
9113 /* If I enable this, I encourage spilling in the inner loop of compress.
9114 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
9115   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9116 */
9117 
9118 //----------Long Instructions------------------------------------------------
9119 // Add Long Register with Register
9120 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9121   match(Set dst (AddL dst src));
9122   effect(KILL cr);
9123   ins_cost(200);
9124   format %{ "ADD    $dst.lo,$src.lo\n\t"
9125             "ADC    $dst.hi,$src.hi" %}
9126   opcode(0x03, 0x13);
9127   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9128   ins_pipe( ialu_reg_reg_long );
9129 %}
9130 
9131 // Add Long Register with Immediate
9132 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9133   match(Set dst (AddL dst src));
9134   effect(KILL cr);
9135   format %{ "ADD    $dst.lo,$src.lo\n\t"
9136             "ADC    $dst.hi,$src.hi" %}
9137   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9138   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9139   ins_pipe( ialu_reg_long );
9140 %}
9141 
9142 // Add Long Register with Memory
9143 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9144   match(Set dst (AddL dst (LoadL mem)));
9145   effect(KILL cr);
9146   ins_cost(125);
9147   format %{ "ADD    $dst.lo,$mem\n\t"
9148             "ADC    $dst.hi,$mem+4" %}
9149   opcode(0x03, 0x13);
9150   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9151   ins_pipe( ialu_reg_long_mem );
9152 %}
9153 
9154 // Subtract Long Register with Register.
9155 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9156   match(Set dst (SubL dst src));
9157   effect(KILL cr);
9158   ins_cost(200);
9159   format %{ "SUB    $dst.lo,$src.lo\n\t"
9160             "SBB    $dst.hi,$src.hi" %}
9161   opcode(0x2B, 0x1B);
9162   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9163   ins_pipe( ialu_reg_reg_long );
9164 %}
9165 
9166 // Subtract Long Register with Immediate
9167 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9168   match(Set dst (SubL dst src));
9169   effect(KILL cr);
9170   format %{ "SUB    $dst.lo,$src.lo\n\t"
9171             "SBB    $dst.hi,$src.hi" %}
9172   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9173   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9174   ins_pipe( ialu_reg_long );
9175 %}
9176 
9177 // Subtract Long Register with Memory
9178 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9179   match(Set dst (SubL dst (LoadL mem)));
9180   effect(KILL cr);
9181   ins_cost(125);
9182   format %{ "SUB    $dst.lo,$mem\n\t"
9183             "SBB    $dst.hi,$mem+4" %}
9184   opcode(0x2B, 0x1B);
9185   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9186   ins_pipe( ialu_reg_long_mem );
9187 %}
9188 
9189 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9190   match(Set dst (SubL zero dst));
9191   effect(KILL cr);
9192   ins_cost(300);
9193   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9194   ins_encode( neg_long(dst) );
9195   ins_pipe( ialu_reg_reg_long );
9196 %}
9197 
9198 // And Long Register with Register
9199 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9200   match(Set dst (AndL dst src));
9201   effect(KILL cr);
9202   format %{ "AND    $dst.lo,$src.lo\n\t"
9203             "AND    $dst.hi,$src.hi" %}
9204   opcode(0x23,0x23);
9205   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9206   ins_pipe( ialu_reg_reg_long );
9207 %}
9208 
9209 // And Long Register with Immediate
9210 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9211   match(Set dst (AndL dst src));
9212   effect(KILL cr);
9213   format %{ "AND    $dst.lo,$src.lo\n\t"
9214             "AND    $dst.hi,$src.hi" %}
9215   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9216   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9217   ins_pipe( ialu_reg_long );
9218 %}
9219 
9220 // And Long Register with Memory
9221 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9222   match(Set dst (AndL dst (LoadL mem)));
9223   effect(KILL cr);
9224   ins_cost(125);
9225   format %{ "AND    $dst.lo,$mem\n\t"
9226             "AND    $dst.hi,$mem+4" %}
9227   opcode(0x23, 0x23);
9228   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9229   ins_pipe( ialu_reg_long_mem );
9230 %}
9231 
9232 // Or Long Register with Register
9233 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9234   match(Set dst (OrL dst src));
9235   effect(KILL cr);
9236   format %{ "OR     $dst.lo,$src.lo\n\t"
9237             "OR     $dst.hi,$src.hi" %}
9238   opcode(0x0B,0x0B);
9239   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9240   ins_pipe( ialu_reg_reg_long );
9241 %}
9242 
9243 // Or Long Register with Immediate
9244 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9245   match(Set dst (OrL dst src));
9246   effect(KILL cr);
9247   format %{ "OR     $dst.lo,$src.lo\n\t"
9248             "OR     $dst.hi,$src.hi" %}
9249   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9250   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9251   ins_pipe( ialu_reg_long );
9252 %}
9253 
9254 // Or Long Register with Memory
9255 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9256   match(Set dst (OrL dst (LoadL mem)));
9257   effect(KILL cr);
9258   ins_cost(125);
9259   format %{ "OR     $dst.lo,$mem\n\t"
9260             "OR     $dst.hi,$mem+4" %}
9261   opcode(0x0B,0x0B);
9262   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9263   ins_pipe( ialu_reg_long_mem );
9264 %}
9265 
9266 // Xor Long Register with Register
9267 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9268   match(Set dst (XorL dst src));
9269   effect(KILL cr);
9270   format %{ "XOR    $dst.lo,$src.lo\n\t"
9271             "XOR    $dst.hi,$src.hi" %}
9272   opcode(0x33,0x33);
9273   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9274   ins_pipe( ialu_reg_reg_long );
9275 %}
9276 
9277 // Xor Long Register with Immediate -1
9278 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9279   match(Set dst (XorL dst imm));  
9280   format %{ "NOT    $dst.lo\n\t"
9281             "NOT    $dst.hi" %}
9282   ins_encode %{
9283      __ notl($dst$$Register);
9284      __ notl(HIGH_FROM_LOW($dst$$Register));
9285   %}
9286   ins_pipe( ialu_reg_long );
9287 %}
9288 
9289 // Xor Long Register with Immediate
9290 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9291   match(Set dst (XorL dst src));
9292   effect(KILL cr);
9293   format %{ "XOR    $dst.lo,$src.lo\n\t"
9294             "XOR    $dst.hi,$src.hi" %}
9295   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9296   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9297   ins_pipe( ialu_reg_long );
9298 %}
9299 
9300 // Xor Long Register with Memory
9301 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9302   match(Set dst (XorL dst (LoadL mem)));
9303   effect(KILL cr);
9304   ins_cost(125);
9305   format %{ "XOR    $dst.lo,$mem\n\t"
9306             "XOR    $dst.hi,$mem+4" %}
9307   opcode(0x33,0x33);
9308   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9309   ins_pipe( ialu_reg_long_mem );
9310 %}
9311 
9312 // Shift Left Long by 1
9313 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9314   predicate(UseNewLongLShift);
9315   match(Set dst (LShiftL dst cnt));
9316   effect(KILL cr);
9317   ins_cost(100);
9318   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9319             "ADC    $dst.hi,$dst.hi" %}
9320   ins_encode %{
9321     __ addl($dst$$Register,$dst$$Register);
9322     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9323   %}
9324   ins_pipe( ialu_reg_long );
9325 %}
9326 
9327 // Shift Left Long by 2
9328 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9329   predicate(UseNewLongLShift);
9330   match(Set dst (LShiftL dst cnt));
9331   effect(KILL cr);
9332   ins_cost(100);
9333   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9334             "ADC    $dst.hi,$dst.hi\n\t" 
9335             "ADD    $dst.lo,$dst.lo\n\t"
9336             "ADC    $dst.hi,$dst.hi" %}
9337   ins_encode %{
9338     __ addl($dst$$Register,$dst$$Register);
9339     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9340     __ addl($dst$$Register,$dst$$Register);
9341     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9342   %}
9343   ins_pipe( ialu_reg_long );
9344 %}
9345 
9346 // Shift Left Long by 3
9347 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9348   predicate(UseNewLongLShift);
9349   match(Set dst (LShiftL dst cnt));
9350   effect(KILL cr);
9351   ins_cost(100);
9352   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9353             "ADC    $dst.hi,$dst.hi\n\t" 
9354             "ADD    $dst.lo,$dst.lo\n\t"
9355             "ADC    $dst.hi,$dst.hi\n\t" 
9356             "ADD    $dst.lo,$dst.lo\n\t"
9357             "ADC    $dst.hi,$dst.hi" %}
9358   ins_encode %{
9359     __ addl($dst$$Register,$dst$$Register);
9360     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9361     __ addl($dst$$Register,$dst$$Register);
9362     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9363     __ addl($dst$$Register,$dst$$Register);
9364     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9365   %}
9366   ins_pipe( ialu_reg_long );
9367 %}
9368 
9369 // Shift Left Long by 1-31
9370 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9371   match(Set dst (LShiftL dst cnt));
9372   effect(KILL cr);
9373   ins_cost(200);
9374   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9375             "SHL    $dst.lo,$cnt" %}
9376   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9377   ins_encode( move_long_small_shift(dst,cnt) );
9378   ins_pipe( ialu_reg_long );
9379 %}
9380 
9381 // Shift Left Long by 32-63
9382 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9383   match(Set dst (LShiftL dst cnt));
9384   effect(KILL cr);
9385   ins_cost(300);
9386   format %{ "MOV    $dst.hi,$dst.lo\n"
9387           "\tSHL    $dst.hi,$cnt-32\n"
9388           "\tXOR    $dst.lo,$dst.lo" %}
9389   opcode(0xC1, 0x4);  /* C1 /4 ib */
9390   ins_encode( move_long_big_shift_clr(dst,cnt) );
9391   ins_pipe( ialu_reg_long );
9392 %}
9393 
9394 // Shift Left Long by variable
9395 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9396   match(Set dst (LShiftL dst shift));
9397   effect(KILL cr);
9398   ins_cost(500+200);
9399   size(17);
9400   format %{ "TEST   $shift,32\n\t"
9401             "JEQ,s  small\n\t"
9402             "MOV    $dst.hi,$dst.lo\n\t"
9403             "XOR    $dst.lo,$dst.lo\n"
9404     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9405             "SHL    $dst.lo,$shift" %}
9406   ins_encode( shift_left_long( dst, shift ) );
9407   ins_pipe( pipe_slow );
9408 %}
9409 
9410 // Shift Right Long by 1-31
9411 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9412   match(Set dst (URShiftL dst cnt));
9413   effect(KILL cr);
9414   ins_cost(200);
9415   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9416             "SHR    $dst.hi,$cnt" %}
9417   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9418   ins_encode( move_long_small_shift(dst,cnt) );
9419   ins_pipe( ialu_reg_long );
9420 %}
9421 
9422 // Shift Right Long by 32-63
9423 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9424   match(Set dst (URShiftL dst cnt));
9425   effect(KILL cr);
9426   ins_cost(300);
9427   format %{ "MOV    $dst.lo,$dst.hi\n"
9428           "\tSHR    $dst.lo,$cnt-32\n"
9429           "\tXOR    $dst.hi,$dst.hi" %}
9430   opcode(0xC1, 0x5);  /* C1 /5 ib */
9431   ins_encode( move_long_big_shift_clr(dst,cnt) );
9432   ins_pipe( ialu_reg_long );
9433 %}
9434 
9435 // Shift Right Long by variable
9436 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9437   match(Set dst (URShiftL dst shift));
9438   effect(KILL cr);
9439   ins_cost(600);
9440   size(17);
9441   format %{ "TEST   $shift,32\n\t"
9442             "JEQ,s  small\n\t"
9443             "MOV    $dst.lo,$dst.hi\n\t"
9444             "XOR    $dst.hi,$dst.hi\n"
9445     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9446             "SHR    $dst.hi,$shift" %}
9447   ins_encode( shift_right_long( dst, shift ) );
9448   ins_pipe( pipe_slow );
9449 %}
9450 
9451 // Shift Right Long by 1-31
9452 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9453   match(Set dst (RShiftL dst cnt));
9454   effect(KILL cr);
9455   ins_cost(200);
9456   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9457             "SAR    $dst.hi,$cnt" %}
9458   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9459   ins_encode( move_long_small_shift(dst,cnt) );
9460   ins_pipe( ialu_reg_long );
9461 %}
9462 
9463 // Shift Right Long by 32-63
9464 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9465   match(Set dst (RShiftL dst cnt));
9466   effect(KILL cr);
9467   ins_cost(300);
9468   format %{ "MOV    $dst.lo,$dst.hi\n"
9469           "\tSAR    $dst.lo,$cnt-32\n"
9470           "\tSAR    $dst.hi,31" %}
9471   opcode(0xC1, 0x7);  /* C1 /7 ib */
9472   ins_encode( move_long_big_shift_sign(dst,cnt) );
9473   ins_pipe( ialu_reg_long );
9474 %}
9475 
9476 // Shift Right arithmetic Long by variable
9477 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9478   match(Set dst (RShiftL dst shift));
9479   effect(KILL cr);
9480   ins_cost(600);
9481   size(18);
9482   format %{ "TEST   $shift,32\n\t"
9483             "JEQ,s  small\n\t"
9484             "MOV    $dst.lo,$dst.hi\n\t"
9485             "SAR    $dst.hi,31\n"
9486     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9487             "SAR    $dst.hi,$shift" %}
9488   ins_encode( shift_right_arith_long( dst, shift ) );
9489   ins_pipe( pipe_slow );
9490 %}
9491 
9492 
9493 //----------Double Instructions------------------------------------------------
9494 // Double Math
9495 
9496 // Compare & branch
9497 
9498 // P6 version of float compare, sets condition codes in EFLAGS
9499 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9500   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9501   match(Set cr (CmpD src1 src2));
9502   effect(KILL rax);
9503   ins_cost(150);
9504   format %{ "FLD    $src1\n\t"
9505             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9506             "JNP    exit\n\t"
9507             "MOV    ah,1       // saw a NaN, set CF\n\t"
9508             "SAHF\n"
9509      "exit:\tNOP               // avoid branch to branch" %}
9510   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9511   ins_encode( Push_Reg_DPR(src1),
9512               OpcP, RegOpc(src2),
9513               cmpF_P6_fixup );
9514   ins_pipe( pipe_slow );
9515 %}
9516 
9517 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9518   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9519   match(Set cr (CmpD src1 src2));
9520   ins_cost(150);
9521   format %{ "FLD    $src1\n\t"
9522             "FUCOMIP ST,$src2  // P6 instruction" %}
9523   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9524   ins_encode( Push_Reg_DPR(src1),
9525               OpcP, RegOpc(src2));
9526   ins_pipe( pipe_slow );
9527 %}
9528 
9529 // Compare & branch
9530 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9531   predicate(UseSSE<=1);
9532   match(Set cr (CmpD src1 src2));
9533   effect(KILL rax);
9534   ins_cost(200);
9535   format %{ "FLD    $src1\n\t"
9536             "FCOMp  $src2\n\t"
9537             "FNSTSW AX\n\t"
9538             "TEST   AX,0x400\n\t"
9539             "JZ,s   flags\n\t"
9540             "MOV    AH,1\t# unordered treat as LT\n"
9541     "flags:\tSAHF" %}
9542   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9543   ins_encode( Push_Reg_DPR(src1),
9544               OpcP, RegOpc(src2),
9545               fpu_flags);
9546   ins_pipe( pipe_slow );
9547 %}
9548 
9549 // Compare vs zero into -1,0,1
9550 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9551   predicate(UseSSE<=1);
9552   match(Set dst (CmpD3 src1 zero));
9553   effect(KILL cr, KILL rax);
9554   ins_cost(280);
9555   format %{ "FTSTD  $dst,$src1" %}
9556   opcode(0xE4, 0xD9);
9557   ins_encode( Push_Reg_DPR(src1),
9558               OpcS, OpcP, PopFPU,
9559               CmpF_Result(dst));
9560   ins_pipe( pipe_slow );
9561 %}
9562 
9563 // Compare into -1,0,1
9564 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9565   predicate(UseSSE<=1);
9566   match(Set dst (CmpD3 src1 src2));
9567   effect(KILL cr, KILL rax);
9568   ins_cost(300);
9569   format %{ "FCMPD  $dst,$src1,$src2" %}
9570   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9571   ins_encode( Push_Reg_DPR(src1),
9572               OpcP, RegOpc(src2),
9573               CmpF_Result(dst));
9574   ins_pipe( pipe_slow );
9575 %}
9576 
9577 // float compare and set condition codes in EFLAGS by XMM regs
9578 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9579   predicate(UseSSE>=2);
9580   match(Set cr (CmpD src1 src2));
9581   ins_cost(145);
9582   format %{ "UCOMISD $src1,$src2\n\t"
9583             "JNP,s   exit\n\t"
9584             "PUSHF\t# saw NaN, set CF\n\t"
9585             "AND     [rsp], #0xffffff2b\n\t"
9586             "POPF\n"
9587     "exit:" %}
9588   ins_encode %{
9589     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9590     emit_cmpfp_fixup(_masm);
9591   %}
9592   ins_pipe( pipe_slow );
9593 %}
9594 
9595 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9596   predicate(UseSSE>=2);
9597   match(Set cr (CmpD src1 src2));
9598   ins_cost(100);
9599   format %{ "UCOMISD $src1,$src2" %}
9600   ins_encode %{
9601     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9602   %}
9603   ins_pipe( pipe_slow );
9604 %}
9605 
9606 // float compare and set condition codes in EFLAGS by XMM regs
9607 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9608   predicate(UseSSE>=2);
9609   match(Set cr (CmpD src1 (LoadD src2)));
9610   ins_cost(145);
9611   format %{ "UCOMISD $src1,$src2\n\t"
9612             "JNP,s   exit\n\t"
9613             "PUSHF\t# saw NaN, set CF\n\t"
9614             "AND     [rsp], #0xffffff2b\n\t"
9615             "POPF\n"
9616     "exit:" %}
9617   ins_encode %{
9618     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9619     emit_cmpfp_fixup(_masm);
9620   %}
9621   ins_pipe( pipe_slow );
9622 %}
9623 
9624 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9625   predicate(UseSSE>=2);
9626   match(Set cr (CmpD src1 (LoadD src2)));
9627   ins_cost(100);
9628   format %{ "UCOMISD $src1,$src2" %}
9629   ins_encode %{
9630     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9631   %}
9632   ins_pipe( pipe_slow );
9633 %}
9634 
9635 // Compare into -1,0,1 in XMM
9636 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9637   predicate(UseSSE>=2);
9638   match(Set dst (CmpD3 src1 src2));
9639   effect(KILL cr);
9640   ins_cost(255);
9641   format %{ "UCOMISD $src1, $src2\n\t"
9642             "MOV     $dst, #-1\n\t"
9643             "JP,s    done\n\t"
9644             "JB,s    done\n\t"
9645             "SETNE   $dst\n\t"
9646             "MOVZB   $dst, $dst\n"
9647     "done:" %}
9648   ins_encode %{
9649     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9650     emit_cmpfp3(_masm, $dst$$Register);
9651   %}
9652   ins_pipe( pipe_slow );
9653 %}
9654 
9655 // Compare into -1,0,1 in XMM and memory
9656 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9657   predicate(UseSSE>=2);
9658   match(Set dst (CmpD3 src1 (LoadD src2)));
9659   effect(KILL cr);
9660   ins_cost(275);
9661   format %{ "UCOMISD $src1, $src2\n\t"
9662             "MOV     $dst, #-1\n\t"
9663             "JP,s    done\n\t"
9664             "JB,s    done\n\t"
9665             "SETNE   $dst\n\t"
9666             "MOVZB   $dst, $dst\n"
9667     "done:" %}
9668   ins_encode %{
9669     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9670     emit_cmpfp3(_masm, $dst$$Register);
9671   %}
9672   ins_pipe( pipe_slow );
9673 %}
9674 
9675 
9676 instruct subDPR_reg(regDPR dst, regDPR src) %{
9677   predicate (UseSSE <=1);
9678   match(Set dst (SubD dst src));
9679 
9680   format %{ "FLD    $src\n\t"
9681             "DSUBp  $dst,ST" %}
9682   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9683   ins_cost(150);
9684   ins_encode( Push_Reg_DPR(src),
9685               OpcP, RegOpc(dst) );
9686   ins_pipe( fpu_reg_reg );
9687 %}
9688 
9689 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9690   predicate (UseSSE <=1);
9691   match(Set dst (RoundDouble (SubD src1 src2)));
9692   ins_cost(250);
9693 
9694   format %{ "FLD    $src2\n\t"
9695             "DSUB   ST,$src1\n\t"
9696             "FSTP_D $dst\t# D-round" %}
9697   opcode(0xD8, 0x5);
9698   ins_encode( Push_Reg_DPR(src2),
9699               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9700   ins_pipe( fpu_mem_reg_reg );
9701 %}
9702 
9703 
9704 instruct subDPR_reg_mem(regDPR dst, memory src) %{
9705   predicate (UseSSE <=1);
9706   match(Set dst (SubD dst (LoadD src)));
9707   ins_cost(150);
9708 
9709   format %{ "FLD    $src\n\t"
9710             "DSUBp  $dst,ST" %}
9711   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9712   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9713               OpcP, RegOpc(dst) );
9714   ins_pipe( fpu_reg_mem );
9715 %}
9716 
9717 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9718   predicate (UseSSE<=1);
9719   match(Set dst (AbsD src));
9720   ins_cost(100);
9721   format %{ "FABS" %}
9722   opcode(0xE1, 0xD9);
9723   ins_encode( OpcS, OpcP );
9724   ins_pipe( fpu_reg_reg );
9725 %}
9726 
9727 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9728   predicate(UseSSE<=1);
9729   match(Set dst (NegD src));
9730   ins_cost(100);
9731   format %{ "FCHS" %}
9732   opcode(0xE0, 0xD9);
9733   ins_encode( OpcS, OpcP );
9734   ins_pipe( fpu_reg_reg );
9735 %}
9736 
9737 instruct addDPR_reg(regDPR dst, regDPR src) %{
9738   predicate(UseSSE<=1);
9739   match(Set dst (AddD dst src));
9740   format %{ "FLD    $src\n\t"
9741             "DADD   $dst,ST" %}
9742   size(4);
9743   ins_cost(150);
9744   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9745   ins_encode( Push_Reg_DPR(src),
9746               OpcP, RegOpc(dst) );
9747   ins_pipe( fpu_reg_reg );
9748 %}
9749 
9750 
9751 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9752   predicate(UseSSE<=1);
9753   match(Set dst (RoundDouble (AddD src1 src2)));
9754   ins_cost(250);
9755 
9756   format %{ "FLD    $src2\n\t"
9757             "DADD   ST,$src1\n\t"
9758             "FSTP_D $dst\t# D-round" %}
9759   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9760   ins_encode( Push_Reg_DPR(src2),
9761               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9762   ins_pipe( fpu_mem_reg_reg );
9763 %}
9764 
9765 
9766 instruct addDPR_reg_mem(regDPR dst, memory src) %{
9767   predicate(UseSSE<=1);
9768   match(Set dst (AddD dst (LoadD src)));
9769   ins_cost(150);
9770 
9771   format %{ "FLD    $src\n\t"
9772             "DADDp  $dst,ST" %}
9773   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9774   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9775               OpcP, RegOpc(dst) );
9776   ins_pipe( fpu_reg_mem );
9777 %}
9778 
9779 // add-to-memory
9780 instruct addDPR_mem_reg(memory dst, regDPR src) %{
9781   predicate(UseSSE<=1);
9782   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9783   ins_cost(150);
9784 
9785   format %{ "FLD_D  $dst\n\t"
9786             "DADD   ST,$src\n\t"
9787             "FST_D  $dst" %}
9788   opcode(0xDD, 0x0);
9789   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9790               Opcode(0xD8), RegOpc(src),
9791               set_instruction_start,
9792               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9793   ins_pipe( fpu_reg_mem );
9794 %}
9795 
9796 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9797   predicate(UseSSE<=1);
9798   match(Set dst (AddD dst con));
9799   ins_cost(125);
9800   format %{ "FLD1\n\t"
9801             "DADDp  $dst,ST" %}
9802   ins_encode %{
9803     __ fld1();
9804     __ faddp($dst$$reg);
9805   %}
9806   ins_pipe(fpu_reg);
9807 %}
9808 
9809 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9810   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9811   match(Set dst (AddD dst con));
9812   ins_cost(200);
9813   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9814             "DADDp  $dst,ST" %}
9815   ins_encode %{
9816     __ fld_d($constantaddress($con));
9817     __ faddp($dst$$reg);
9818   %}
9819   ins_pipe(fpu_reg_mem);
9820 %}
9821 
9822 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9823   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9824   match(Set dst (RoundDouble (AddD src con)));
9825   ins_cost(200);
9826   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9827             "DADD   ST,$src\n\t"
9828             "FSTP_D $dst\t# D-round" %}
9829   ins_encode %{
9830     __ fld_d($constantaddress($con));
9831     __ fadd($src$$reg);
9832     __ fstp_d(Address(rsp, $dst$$disp));
9833   %}
9834   ins_pipe(fpu_mem_reg_con);
9835 %}
9836 
9837 instruct mulDPR_reg(regDPR dst, regDPR src) %{
9838   predicate(UseSSE<=1);
9839   match(Set dst (MulD dst src));
9840   format %{ "FLD    $src\n\t"
9841             "DMULp  $dst,ST" %}
9842   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9843   ins_cost(150);
9844   ins_encode( Push_Reg_DPR(src),
9845               OpcP, RegOpc(dst) );
9846   ins_pipe( fpu_reg_reg );
9847 %}
9848 
9849 // Strict FP instruction biases argument before multiply then
9850 // biases result to avoid double rounding of subnormals.
9851 //
9852 // scale arg1 by multiplying arg1 by 2^(-15360)
9853 // load arg2
9854 // multiply scaled arg1 by arg2
9855 // rescale product by 2^(15360)
9856 //
9857 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9858   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9859   match(Set dst (MulD dst src));
9860   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9861 
9862   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9863             "DMULp  $dst,ST\n\t"
9864             "FLD    $src\n\t"
9865             "DMULp  $dst,ST\n\t"
9866             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9867             "DMULp  $dst,ST\n\t" %}
9868   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9869   ins_encode( strictfp_bias1(dst),
9870               Push_Reg_DPR(src),
9871               OpcP, RegOpc(dst),
9872               strictfp_bias2(dst) );
9873   ins_pipe( fpu_reg_reg );
9874 %}
9875 
9876 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9877   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9878   match(Set dst (MulD dst con));
9879   ins_cost(200);
9880   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9881             "DMULp  $dst,ST" %}
9882   ins_encode %{
9883     __ fld_d($constantaddress($con));
9884     __ fmulp($dst$$reg);
9885   %}
9886   ins_pipe(fpu_reg_mem);
9887 %}
9888 
9889 
9890 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9891   predicate( UseSSE<=1 );
9892   match(Set dst (MulD dst (LoadD src)));
9893   ins_cost(200);
9894   format %{ "FLD_D  $src\n\t"
9895             "DMULp  $dst,ST" %}
9896   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9897   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9898               OpcP, RegOpc(dst) );
9899   ins_pipe( fpu_reg_mem );
9900 %}
9901 
9902 //
9903 // Cisc-alternate to reg-reg multiply
9904 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9905   predicate( UseSSE<=1 );
9906   match(Set dst (MulD src (LoadD mem)));
9907   ins_cost(250);
9908   format %{ "FLD_D  $mem\n\t"
9909             "DMUL   ST,$src\n\t"
9910             "FSTP_D $dst" %}
9911   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9912   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9913               OpcReg_FPR(src),
9914               Pop_Reg_DPR(dst) );
9915   ins_pipe( fpu_reg_reg_mem );
9916 %}
9917 
9918 
9919 // MACRO3 -- addDPR a mulDPR
9920 // This instruction is a '2-address' instruction in that the result goes
9921 // back to src2.  This eliminates a move from the macro; possibly the
9922 // register allocator will have to add it back (and maybe not).
9923 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9924   predicate( UseSSE<=1 );
9925   match(Set src2 (AddD (MulD src0 src1) src2));
9926   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9927             "DMUL   ST,$src1\n\t"
9928             "DADDp  $src2,ST" %}
9929   ins_cost(250);
9930   opcode(0xDD); /* LoadD DD /0 */
9931   ins_encode( Push_Reg_FPR(src0),
9932               FMul_ST_reg(src1),
9933               FAddP_reg_ST(src2) );
9934   ins_pipe( fpu_reg_reg_reg );
9935 %}
9936 
9937 
9938 // MACRO3 -- subDPR a mulDPR
9939 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9940   predicate( UseSSE<=1 );
9941   match(Set src2 (SubD (MulD src0 src1) src2));
9942   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9943             "DMUL   ST,$src1\n\t"
9944             "DSUBRp $src2,ST" %}
9945   ins_cost(250);
9946   ins_encode( Push_Reg_FPR(src0),
9947               FMul_ST_reg(src1),
9948               Opcode(0xDE), Opc_plus(0xE0,src2));
9949   ins_pipe( fpu_reg_reg_reg );
9950 %}
9951 
9952 
9953 instruct divDPR_reg(regDPR dst, regDPR src) %{
9954   predicate( UseSSE<=1 );
9955   match(Set dst (DivD dst src));
9956 
9957   format %{ "FLD    $src\n\t"
9958             "FDIVp  $dst,ST" %}
9959   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9960   ins_cost(150);
9961   ins_encode( Push_Reg_DPR(src),
9962               OpcP, RegOpc(dst) );
9963   ins_pipe( fpu_reg_reg );
9964 %}
9965 
9966 // Strict FP instruction biases argument before division then
9967 // biases result, to avoid double rounding of subnormals.
9968 //
9969 // scale dividend by multiplying dividend by 2^(-15360)
9970 // load divisor
9971 // divide scaled dividend by divisor
9972 // rescale quotient by 2^(15360)
9973 //
9974 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9975   predicate (UseSSE<=1);
9976   match(Set dst (DivD dst src));
9977   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9978   ins_cost(01);
9979 
9980   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9981             "DMULp  $dst,ST\n\t"
9982             "FLD    $src\n\t"
9983             "FDIVp  $dst,ST\n\t"
9984             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9985             "DMULp  $dst,ST\n\t" %}
9986   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9987   ins_encode( strictfp_bias1(dst),
9988               Push_Reg_DPR(src),
9989               OpcP, RegOpc(dst),
9990               strictfp_bias2(dst) );
9991   ins_pipe( fpu_reg_reg );
9992 %}
9993 
9994 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9995   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9996   match(Set dst (RoundDouble (DivD src1 src2)));
9997 
9998   format %{ "FLD    $src1\n\t"
9999             "FDIV   ST,$src2\n\t"
10000             "FSTP_D $dst\t# D-round" %}
10001   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10002   ins_encode( Push_Reg_DPR(src1),
10003               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
10004   ins_pipe( fpu_mem_reg_reg );
10005 %}
10006 
10007 
10008 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
10009   predicate(UseSSE<=1);
10010   match(Set dst (ModD dst src));
10011   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10012 
10013   format %{ "DMOD   $dst,$src" %}
10014   ins_cost(250);
10015   ins_encode(Push_Reg_Mod_DPR(dst, src),
10016               emitModDPR(),
10017               Push_Result_Mod_DPR(src),
10018               Pop_Reg_DPR(dst));
10019   ins_pipe( pipe_slow );
10020 %}
10021 
10022 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
10023   predicate(UseSSE>=2);
10024   match(Set dst (ModD src0 src1));
10025   effect(KILL rax, KILL cr);
10026 
10027   format %{ "SUB    ESP,8\t # DMOD\n"
10028           "\tMOVSD  [ESP+0],$src1\n"
10029           "\tFLD_D  [ESP+0]\n"
10030           "\tMOVSD  [ESP+0],$src0\n"
10031           "\tFLD_D  [ESP+0]\n"
10032      "loop:\tFPREM\n"
10033           "\tFWAIT\n"
10034           "\tFNSTSW AX\n"
10035           "\tSAHF\n"
10036           "\tJP     loop\n"
10037           "\tFSTP_D [ESP+0]\n"
10038           "\tMOVSD  $dst,[ESP+0]\n"
10039           "\tADD    ESP,8\n"
10040           "\tFSTP   ST0\t # Restore FPU Stack"
10041     %}
10042   ins_cost(250);
10043   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
10044   ins_pipe( pipe_slow );
10045 %}
10046 
10047 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
10048   predicate (UseSSE<=1);
10049   match(Set dst (SinD src));
10050   ins_cost(1800);
10051   format %{ "DSIN   $dst" %}
10052   opcode(0xD9, 0xFE);
10053   ins_encode( OpcP, OpcS );
10054   ins_pipe( pipe_slow );
10055 %}
10056 
10057 instruct sinD_reg(regD dst, eFlagsReg cr) %{
10058   predicate (UseSSE>=2);
10059   match(Set dst (SinD dst));
10060   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10061   ins_cost(1800);
10062   format %{ "DSIN   $dst" %}
10063   opcode(0xD9, 0xFE);
10064   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
10065   ins_pipe( pipe_slow );
10066 %}
10067 
10068 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
10069   predicate (UseSSE<=1);
10070   match(Set dst (CosD src));
10071   ins_cost(1800);
10072   format %{ "DCOS   $dst" %}
10073   opcode(0xD9, 0xFF);
10074   ins_encode( OpcP, OpcS );
10075   ins_pipe( pipe_slow );
10076 %}
10077 
10078 instruct cosD_reg(regD dst, eFlagsReg cr) %{
10079   predicate (UseSSE>=2);
10080   match(Set dst (CosD dst));
10081   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10082   ins_cost(1800);
10083   format %{ "DCOS   $dst" %}
10084   opcode(0xD9, 0xFF);
10085   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
10086   ins_pipe( pipe_slow );
10087 %}
10088 
10089 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
10090   predicate (UseSSE<=1);
10091   match(Set dst(TanD src));
10092   format %{ "DTAN   $dst" %}
10093   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10094               Opcode(0xDD), Opcode(0xD8));   // fstp st
10095   ins_pipe( pipe_slow );
10096 %}
10097 
10098 instruct tanD_reg(regD dst, eFlagsReg cr) %{
10099   predicate (UseSSE>=2);
10100   match(Set dst(TanD dst));
10101   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10102   format %{ "DTAN   $dst" %}
10103   ins_encode( Push_SrcD(dst),
10104               Opcode(0xD9), Opcode(0xF2),    // fptan
10105               Opcode(0xDD), Opcode(0xD8),   // fstp st
10106               Push_ResultD(dst) );
10107   ins_pipe( pipe_slow );
10108 %}
10109 
10110 instruct atanDPR_reg(regDPR dst, regDPR src) %{
10111   predicate (UseSSE<=1);
10112   match(Set dst(AtanD dst src));
10113   format %{ "DATA   $dst,$src" %}
10114   opcode(0xD9, 0xF3);
10115   ins_encode( Push_Reg_DPR(src),
10116               OpcP, OpcS, RegOpc(dst) );
10117   ins_pipe( pipe_slow );
10118 %}
10119 
10120 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
10121   predicate (UseSSE>=2);
10122   match(Set dst(AtanD dst src));
10123   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10124   format %{ "DATA   $dst,$src" %}
10125   opcode(0xD9, 0xF3);
10126   ins_encode( Push_SrcD(src),
10127               OpcP, OpcS, Push_ResultD(dst) );
10128   ins_pipe( pipe_slow );
10129 %}
10130 
10131 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
10132   predicate (UseSSE<=1);
10133   match(Set dst (SqrtD src));
10134   format %{ "DSQRT  $dst,$src" %}
10135   opcode(0xFA, 0xD9);
10136   ins_encode( Push_Reg_DPR(src),
10137               OpcS, OpcP, Pop_Reg_DPR(dst) );
10138   ins_pipe( pipe_slow );
10139 %}
10140 
10141 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10142   predicate (UseSSE<=1);
10143   match(Set Y (PowD X Y));  // Raise X to the Yth power
10144   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10145   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
10146   ins_encode %{
10147     __ subptr(rsp, 8);
10148     __ fld_s($X$$reg - 1);
10149     __ fast_pow();
10150     __ addptr(rsp, 8);
10151   %}
10152   ins_pipe( pipe_slow );
10153 %}
10154 
10155 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10156   predicate (UseSSE>=2);
10157   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10158   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10159   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
10160   ins_encode %{
10161     __ subptr(rsp, 8);
10162     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
10163     __ fld_d(Address(rsp, 0));
10164     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
10165     __ fld_d(Address(rsp, 0));
10166     __ fast_pow();
10167     __ fstp_d(Address(rsp, 0));
10168     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10169     __ addptr(rsp, 8);
10170   %}
10171   ins_pipe( pipe_slow );
10172 %}
10173 
10174 
10175 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10176   predicate (UseSSE<=1);
10177   match(Set dpr1 (ExpD dpr1));
10178   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10179   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
10180   ins_encode %{
10181     __ fast_exp();
10182   %}
10183   ins_pipe( pipe_slow );
10184 %}
10185 
10186 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10187   predicate (UseSSE>=2);
10188   match(Set dst (ExpD src));
10189   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10190   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
10191   ins_encode %{
10192     __ subptr(rsp, 8);
10193     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10194     __ fld_d(Address(rsp, 0));
10195     __ fast_exp();
10196     __ fstp_d(Address(rsp, 0));
10197     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10198     __ addptr(rsp, 8);
10199   %}
10200   ins_pipe( pipe_slow );
10201 %}
10202 
10203 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
10204   predicate (UseSSE<=1);
10205   // The source Double operand on FPU stack
10206   match(Set dst (Log10D src));
10207   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10208   // fxch         ; swap ST(0) with ST(1)
10209   // fyl2x        ; compute log_10(2) * log_2(x)
10210   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10211             "FXCH   \n\t"
10212             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10213          %}
10214   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10215               Opcode(0xD9), Opcode(0xC9),   // fxch
10216               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10217 
10218   ins_pipe( pipe_slow );
10219 %}
10220 
10221 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
10222   predicate (UseSSE>=2);
10223   effect(KILL cr);
10224   match(Set dst (Log10D src));
10225   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10226   // fyl2x        ; compute log_10(2) * log_2(x)
10227   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10228             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10229          %}
10230   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10231               Push_SrcD(src),
10232               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10233               Push_ResultD(dst));
10234 
10235   ins_pipe( pipe_slow );
10236 %}
10237 
10238 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
10239   predicate (UseSSE<=1);
10240   // The source Double operand on FPU stack
10241   match(Set dst (LogD src));
10242   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10243   // fxch         ; swap ST(0) with ST(1)
10244   // fyl2x        ; compute log_e(2) * log_2(x)
10245   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10246             "FXCH   \n\t"
10247             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10248          %}
10249   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10250               Opcode(0xD9), Opcode(0xC9),   // fxch
10251               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10252 
10253   ins_pipe( pipe_slow );
10254 %}
10255 
10256 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10257   predicate (UseSSE>=2);
10258   effect(KILL cr);
10259   // The source and result Double operands in XMM registers
10260   match(Set dst (LogD src));
10261   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10262   // fyl2x        ; compute log_e(2) * log_2(x)
10263   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10264             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10265          %}
10266   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10267               Push_SrcD(src),
10268               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10269               Push_ResultD(dst));
10270   ins_pipe( pipe_slow );
10271 %}
10272 
10273 //-------------Float Instructions-------------------------------
10274 // Float Math
10275 
10276 // Code for float compare:
10277 //     fcompp();
10278 //     fwait(); fnstsw_ax();
10279 //     sahf();
10280 //     movl(dst, unordered_result);
10281 //     jcc(Assembler::parity, exit);
10282 //     movl(dst, less_result);
10283 //     jcc(Assembler::below, exit);
10284 //     movl(dst, equal_result);
10285 //     jcc(Assembler::equal, exit);
10286 //     movl(dst, greater_result);
10287 //   exit:
10288 
10289 // P6 version of float compare, sets condition codes in EFLAGS
10290 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10291   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10292   match(Set cr (CmpF src1 src2));
10293   effect(KILL rax);
10294   ins_cost(150);
10295   format %{ "FLD    $src1\n\t"
10296             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10297             "JNP    exit\n\t"
10298             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10299             "SAHF\n"
10300      "exit:\tNOP               // avoid branch to branch" %}
10301   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10302   ins_encode( Push_Reg_DPR(src1),
10303               OpcP, RegOpc(src2),
10304               cmpF_P6_fixup );
10305   ins_pipe( pipe_slow );
10306 %}
10307 
10308 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10309   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10310   match(Set cr (CmpF src1 src2));
10311   ins_cost(100);
10312   format %{ "FLD    $src1\n\t"
10313             "FUCOMIP ST,$src2  // P6 instruction" %}
10314   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10315   ins_encode( Push_Reg_DPR(src1),
10316               OpcP, RegOpc(src2));
10317   ins_pipe( pipe_slow );
10318 %}
10319 
10320 
10321 // Compare & branch
10322 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10323   predicate(UseSSE == 0);
10324   match(Set cr (CmpF src1 src2));
10325   effect(KILL rax);
10326   ins_cost(200);
10327   format %{ "FLD    $src1\n\t"
10328             "FCOMp  $src2\n\t"
10329             "FNSTSW AX\n\t"
10330             "TEST   AX,0x400\n\t"
10331             "JZ,s   flags\n\t"
10332             "MOV    AH,1\t# unordered treat as LT\n"
10333     "flags:\tSAHF" %}
10334   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10335   ins_encode( Push_Reg_DPR(src1),
10336               OpcP, RegOpc(src2),
10337               fpu_flags);
10338   ins_pipe( pipe_slow );
10339 %}
10340 
10341 // Compare vs zero into -1,0,1
10342 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10343   predicate(UseSSE == 0);
10344   match(Set dst (CmpF3 src1 zero));
10345   effect(KILL cr, KILL rax);
10346   ins_cost(280);
10347   format %{ "FTSTF  $dst,$src1" %}
10348   opcode(0xE4, 0xD9);
10349   ins_encode( Push_Reg_DPR(src1),
10350               OpcS, OpcP, PopFPU,
10351               CmpF_Result(dst));
10352   ins_pipe( pipe_slow );
10353 %}
10354 
10355 // Compare into -1,0,1
10356 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10357   predicate(UseSSE == 0);
10358   match(Set dst (CmpF3 src1 src2));
10359   effect(KILL cr, KILL rax);
10360   ins_cost(300);
10361   format %{ "FCMPF  $dst,$src1,$src2" %}
10362   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10363   ins_encode( Push_Reg_DPR(src1),
10364               OpcP, RegOpc(src2),
10365               CmpF_Result(dst));
10366   ins_pipe( pipe_slow );
10367 %}
10368 
10369 // float compare and set condition codes in EFLAGS by XMM regs
10370 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10371   predicate(UseSSE>=1);
10372   match(Set cr (CmpF src1 src2));
10373   ins_cost(145);
10374   format %{ "UCOMISS $src1,$src2\n\t"
10375             "JNP,s   exit\n\t"
10376             "PUSHF\t# saw NaN, set CF\n\t"
10377             "AND     [rsp], #0xffffff2b\n\t"
10378             "POPF\n"
10379     "exit:" %}
10380   ins_encode %{
10381     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10382     emit_cmpfp_fixup(_masm);
10383   %}
10384   ins_pipe( pipe_slow );
10385 %}
10386 
10387 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10388   predicate(UseSSE>=1);
10389   match(Set cr (CmpF src1 src2));
10390   ins_cost(100);
10391   format %{ "UCOMISS $src1,$src2" %}
10392   ins_encode %{
10393     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10394   %}
10395   ins_pipe( pipe_slow );
10396 %}
10397 
10398 // float compare and set condition codes in EFLAGS by XMM regs
10399 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10400   predicate(UseSSE>=1);
10401   match(Set cr (CmpF src1 (LoadF src2)));
10402   ins_cost(165);
10403   format %{ "UCOMISS $src1,$src2\n\t"
10404             "JNP,s   exit\n\t"
10405             "PUSHF\t# saw NaN, set CF\n\t"
10406             "AND     [rsp], #0xffffff2b\n\t"
10407             "POPF\n"
10408     "exit:" %}
10409   ins_encode %{
10410     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10411     emit_cmpfp_fixup(_masm);
10412   %}
10413   ins_pipe( pipe_slow );
10414 %}
10415 
10416 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10417   predicate(UseSSE>=1);
10418   match(Set cr (CmpF src1 (LoadF src2)));
10419   ins_cost(100);
10420   format %{ "UCOMISS $src1,$src2" %}
10421   ins_encode %{
10422     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10423   %}
10424   ins_pipe( pipe_slow );
10425 %}
10426 
10427 // Compare into -1,0,1 in XMM
10428 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10429   predicate(UseSSE>=1);
10430   match(Set dst (CmpF3 src1 src2));
10431   effect(KILL cr);
10432   ins_cost(255);
10433   format %{ "UCOMISS $src1, $src2\n\t"
10434             "MOV     $dst, #-1\n\t"
10435             "JP,s    done\n\t"
10436             "JB,s    done\n\t"
10437             "SETNE   $dst\n\t"
10438             "MOVZB   $dst, $dst\n"
10439     "done:" %}
10440   ins_encode %{
10441     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10442     emit_cmpfp3(_masm, $dst$$Register);
10443   %}
10444   ins_pipe( pipe_slow );
10445 %}
10446 
10447 // Compare into -1,0,1 in XMM and memory
10448 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10449   predicate(UseSSE>=1);
10450   match(Set dst (CmpF3 src1 (LoadF src2)));
10451   effect(KILL cr);
10452   ins_cost(275);
10453   format %{ "UCOMISS $src1, $src2\n\t"
10454             "MOV     $dst, #-1\n\t"
10455             "JP,s    done\n\t"
10456             "JB,s    done\n\t"
10457             "SETNE   $dst\n\t"
10458             "MOVZB   $dst, $dst\n"
10459     "done:" %}
10460   ins_encode %{
10461     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10462     emit_cmpfp3(_masm, $dst$$Register);
10463   %}
10464   ins_pipe( pipe_slow );
10465 %}
10466 
10467 // Spill to obtain 24-bit precision
10468 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10469   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10470   match(Set dst (SubF src1 src2));
10471 
10472   format %{ "FSUB   $dst,$src1 - $src2" %}
10473   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10474   ins_encode( Push_Reg_FPR(src1),
10475               OpcReg_FPR(src2),
10476               Pop_Mem_FPR(dst) );
10477   ins_pipe( fpu_mem_reg_reg );
10478 %}
10479 //
10480 // This instruction does not round to 24-bits
10481 instruct subFPR_reg(regFPR dst, regFPR src) %{
10482   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10483   match(Set dst (SubF dst src));
10484 
10485   format %{ "FSUB   $dst,$src" %}
10486   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10487   ins_encode( Push_Reg_FPR(src),
10488               OpcP, RegOpc(dst) );
10489   ins_pipe( fpu_reg_reg );
10490 %}
10491 
10492 // Spill to obtain 24-bit precision
10493 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10494   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10495   match(Set dst (AddF src1 src2));
10496 
10497   format %{ "FADD   $dst,$src1,$src2" %}
10498   opcode(0xD8, 0x0); /* D8 C0+i */
10499   ins_encode( Push_Reg_FPR(src2),
10500               OpcReg_FPR(src1),
10501               Pop_Mem_FPR(dst) );
10502   ins_pipe( fpu_mem_reg_reg );
10503 %}
10504 //
10505 // This instruction does not round to 24-bits
10506 instruct addFPR_reg(regFPR dst, regFPR src) %{
10507   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10508   match(Set dst (AddF dst src));
10509 
10510   format %{ "FLD    $src\n\t"
10511             "FADDp  $dst,ST" %}
10512   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10513   ins_encode( Push_Reg_FPR(src),
10514               OpcP, RegOpc(dst) );
10515   ins_pipe( fpu_reg_reg );
10516 %}
10517 
10518 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10519   predicate(UseSSE==0);
10520   match(Set dst (AbsF src));
10521   ins_cost(100);
10522   format %{ "FABS" %}
10523   opcode(0xE1, 0xD9);
10524   ins_encode( OpcS, OpcP );
10525   ins_pipe( fpu_reg_reg );
10526 %}
10527 
10528 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10529   predicate(UseSSE==0);
10530   match(Set dst (NegF src));
10531   ins_cost(100);
10532   format %{ "FCHS" %}
10533   opcode(0xE0, 0xD9);
10534   ins_encode( OpcS, OpcP );
10535   ins_pipe( fpu_reg_reg );
10536 %}
10537 
10538 // Cisc-alternate to addFPR_reg
10539 // Spill to obtain 24-bit precision
10540 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10541   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10542   match(Set dst (AddF src1 (LoadF src2)));
10543 
10544   format %{ "FLD    $src2\n\t"
10545             "FADD   ST,$src1\n\t"
10546             "FSTP_S $dst" %}
10547   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10548   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10549               OpcReg_FPR(src1),
10550               Pop_Mem_FPR(dst) );
10551   ins_pipe( fpu_mem_reg_mem );
10552 %}
10553 //
10554 // Cisc-alternate to addFPR_reg
10555 // This instruction does not round to 24-bits
10556 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10557   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10558   match(Set dst (AddF dst (LoadF src)));
10559 
10560   format %{ "FADD   $dst,$src" %}
10561   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10562   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10563               OpcP, RegOpc(dst) );
10564   ins_pipe( fpu_reg_mem );
10565 %}
10566 
10567 // // Following two instructions for _222_mpegaudio
10568 // Spill to obtain 24-bit precision
10569 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10570   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10571   match(Set dst (AddF src1 src2));
10572 
10573   format %{ "FADD   $dst,$src1,$src2" %}
10574   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10575   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10576               OpcReg_FPR(src2),
10577               Pop_Mem_FPR(dst) );
10578   ins_pipe( fpu_mem_reg_mem );
10579 %}
10580 
10581 // Cisc-spill variant
10582 // Spill to obtain 24-bit precision
10583 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10584   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10585   match(Set dst (AddF src1 (LoadF src2)));
10586 
10587   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10588   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10589   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10590               set_instruction_start,
10591               OpcP, RMopc_Mem(secondary,src1),
10592               Pop_Mem_FPR(dst) );
10593   ins_pipe( fpu_mem_mem_mem );
10594 %}
10595 
10596 // Spill to obtain 24-bit precision
10597 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10598   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10599   match(Set dst (AddF src1 src2));
10600 
10601   format %{ "FADD   $dst,$src1,$src2" %}
10602   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10603   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10604               set_instruction_start,
10605               OpcP, RMopc_Mem(secondary,src1),
10606               Pop_Mem_FPR(dst) );
10607   ins_pipe( fpu_mem_mem_mem );
10608 %}
10609 
10610 
10611 // Spill to obtain 24-bit precision
10612 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10613   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10614   match(Set dst (AddF src con));
10615   format %{ "FLD    $src\n\t"
10616             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10617             "FSTP_S $dst"  %}
10618   ins_encode %{
10619     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10620     __ fadd_s($constantaddress($con));
10621     __ fstp_s(Address(rsp, $dst$$disp));
10622   %}
10623   ins_pipe(fpu_mem_reg_con);
10624 %}
10625 //
10626 // This instruction does not round to 24-bits
10627 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10628   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10629   match(Set dst (AddF src con));
10630   format %{ "FLD    $src\n\t"
10631             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10632             "FSTP   $dst"  %}
10633   ins_encode %{
10634     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10635     __ fadd_s($constantaddress($con));
10636     __ fstp_d($dst$$reg);
10637   %}
10638   ins_pipe(fpu_reg_reg_con);
10639 %}
10640 
10641 // Spill to obtain 24-bit precision
10642 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10643   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10644   match(Set dst (MulF src1 src2));
10645 
10646   format %{ "FLD    $src1\n\t"
10647             "FMUL   $src2\n\t"
10648             "FSTP_S $dst"  %}
10649   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10650   ins_encode( Push_Reg_FPR(src1),
10651               OpcReg_FPR(src2),
10652               Pop_Mem_FPR(dst) );
10653   ins_pipe( fpu_mem_reg_reg );
10654 %}
10655 //
10656 // This instruction does not round to 24-bits
10657 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10658   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10659   match(Set dst (MulF src1 src2));
10660 
10661   format %{ "FLD    $src1\n\t"
10662             "FMUL   $src2\n\t"
10663             "FSTP_S $dst"  %}
10664   opcode(0xD8, 0x1); /* D8 C8+i */
10665   ins_encode( Push_Reg_FPR(src2),
10666               OpcReg_FPR(src1),
10667               Pop_Reg_FPR(dst) );
10668   ins_pipe( fpu_reg_reg_reg );
10669 %}
10670 
10671 
10672 // Spill to obtain 24-bit precision
10673 // Cisc-alternate to reg-reg multiply
10674 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10675   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10676   match(Set dst (MulF src1 (LoadF src2)));
10677 
10678   format %{ "FLD_S  $src2\n\t"
10679             "FMUL   $src1\n\t"
10680             "FSTP_S $dst"  %}
10681   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10682   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10683               OpcReg_FPR(src1),
10684               Pop_Mem_FPR(dst) );
10685   ins_pipe( fpu_mem_reg_mem );
10686 %}
10687 //
10688 // This instruction does not round to 24-bits
10689 // Cisc-alternate to reg-reg multiply
10690 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10691   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10692   match(Set dst (MulF src1 (LoadF src2)));
10693 
10694   format %{ "FMUL   $dst,$src1,$src2" %}
10695   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10696   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10697               OpcReg_FPR(src1),
10698               Pop_Reg_FPR(dst) );
10699   ins_pipe( fpu_reg_reg_mem );
10700 %}
10701 
10702 // Spill to obtain 24-bit precision
10703 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10704   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10705   match(Set dst (MulF src1 src2));
10706 
10707   format %{ "FMUL   $dst,$src1,$src2" %}
10708   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10709   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10710               set_instruction_start,
10711               OpcP, RMopc_Mem(secondary,src1),
10712               Pop_Mem_FPR(dst) );
10713   ins_pipe( fpu_mem_mem_mem );
10714 %}
10715 
10716 // Spill to obtain 24-bit precision
10717 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10718   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10719   match(Set dst (MulF src con));
10720 
10721   format %{ "FLD    $src\n\t"
10722             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10723             "FSTP_S $dst"  %}
10724   ins_encode %{
10725     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10726     __ fmul_s($constantaddress($con));
10727     __ fstp_s(Address(rsp, $dst$$disp));
10728   %}
10729   ins_pipe(fpu_mem_reg_con);
10730 %}
10731 //
10732 // This instruction does not round to 24-bits
10733 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10734   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10735   match(Set dst (MulF src con));
10736 
10737   format %{ "FLD    $src\n\t"
10738             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10739             "FSTP   $dst"  %}
10740   ins_encode %{
10741     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10742     __ fmul_s($constantaddress($con));
10743     __ fstp_d($dst$$reg);
10744   %}
10745   ins_pipe(fpu_reg_reg_con);
10746 %}
10747 
10748 
10749 //
10750 // MACRO1 -- subsume unshared load into mulFPR
10751 // This instruction does not round to 24-bits
10752 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10753   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10754   match(Set dst (MulF (LoadF mem1) src));
10755 
10756   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10757             "FMUL   ST,$src\n\t"
10758             "FSTP   $dst" %}
10759   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10760   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10761               OpcReg_FPR(src),
10762               Pop_Reg_FPR(dst) );
10763   ins_pipe( fpu_reg_reg_mem );
10764 %}
10765 //
10766 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10767 // This instruction does not round to 24-bits
10768 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10769   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10770   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10771   ins_cost(95);
10772 
10773   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10774             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10775             "FADD   ST,$src2\n\t"
10776             "FSTP   $dst" %}
10777   opcode(0xD9); /* LoadF D9 /0 */
10778   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10779               FMul_ST_reg(src1),
10780               FAdd_ST_reg(src2),
10781               Pop_Reg_FPR(dst) );
10782   ins_pipe( fpu_reg_mem_reg_reg );
10783 %}
10784 
10785 // MACRO3 -- addFPR a mulFPR
10786 // This instruction does not round to 24-bits.  It is a '2-address'
10787 // instruction in that the result goes back to src2.  This eliminates
10788 // a move from the macro; possibly the register allocator will have
10789 // to add it back (and maybe not).
10790 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10791   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10792   match(Set src2 (AddF (MulF src0 src1) src2));
10793 
10794   format %{ "FLD    $src0     ===MACRO3===\n\t"
10795             "FMUL   ST,$src1\n\t"
10796             "FADDP  $src2,ST" %}
10797   opcode(0xD9); /* LoadF D9 /0 */
10798   ins_encode( Push_Reg_FPR(src0),
10799               FMul_ST_reg(src1),
10800               FAddP_reg_ST(src2) );
10801   ins_pipe( fpu_reg_reg_reg );
10802 %}
10803 
10804 // MACRO4 -- divFPR subFPR
10805 // This instruction does not round to 24-bits
10806 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10807   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10808   match(Set dst (DivF (SubF src2 src1) src3));
10809 
10810   format %{ "FLD    $src2   ===MACRO4===\n\t"
10811             "FSUB   ST,$src1\n\t"
10812             "FDIV   ST,$src3\n\t"
10813             "FSTP  $dst" %}
10814   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10815   ins_encode( Push_Reg_FPR(src2),
10816               subFPR_divFPR_encode(src1,src3),
10817               Pop_Reg_FPR(dst) );
10818   ins_pipe( fpu_reg_reg_reg_reg );
10819 %}
10820 
10821 // Spill to obtain 24-bit precision
10822 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10823   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10824   match(Set dst (DivF src1 src2));
10825 
10826   format %{ "FDIV   $dst,$src1,$src2" %}
10827   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10828   ins_encode( Push_Reg_FPR(src1),
10829               OpcReg_FPR(src2),
10830               Pop_Mem_FPR(dst) );
10831   ins_pipe( fpu_mem_reg_reg );
10832 %}
10833 //
10834 // This instruction does not round to 24-bits
10835 instruct divFPR_reg(regFPR dst, regFPR src) %{
10836   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10837   match(Set dst (DivF dst src));
10838 
10839   format %{ "FDIV   $dst,$src" %}
10840   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10841   ins_encode( Push_Reg_FPR(src),
10842               OpcP, RegOpc(dst) );
10843   ins_pipe( fpu_reg_reg );
10844 %}
10845 
10846 
10847 // Spill to obtain 24-bit precision
10848 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10849   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10850   match(Set dst (ModF src1 src2));
10851   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10852 
10853   format %{ "FMOD   $dst,$src1,$src2" %}
10854   ins_encode( Push_Reg_Mod_DPR(src1, src2),
10855               emitModDPR(),
10856               Push_Result_Mod_DPR(src2),
10857               Pop_Mem_FPR(dst));
10858   ins_pipe( pipe_slow );
10859 %}
10860 //
10861 // This instruction does not round to 24-bits
10862 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10863   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10864   match(Set dst (ModF dst src));
10865   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10866 
10867   format %{ "FMOD   $dst,$src" %}
10868   ins_encode(Push_Reg_Mod_DPR(dst, src),
10869               emitModDPR(),
10870               Push_Result_Mod_DPR(src),
10871               Pop_Reg_FPR(dst));
10872   ins_pipe( pipe_slow );
10873 %}
10874 
10875 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10876   predicate(UseSSE>=1);
10877   match(Set dst (ModF src0 src1));
10878   effect(KILL rax, KILL cr);
10879   format %{ "SUB    ESP,4\t # FMOD\n"
10880           "\tMOVSS  [ESP+0],$src1\n"
10881           "\tFLD_S  [ESP+0]\n"
10882           "\tMOVSS  [ESP+0],$src0\n"
10883           "\tFLD_S  [ESP+0]\n"
10884      "loop:\tFPREM\n"
10885           "\tFWAIT\n"
10886           "\tFNSTSW AX\n"
10887           "\tSAHF\n"
10888           "\tJP     loop\n"
10889           "\tFSTP_S [ESP+0]\n"
10890           "\tMOVSS  $dst,[ESP+0]\n"
10891           "\tADD    ESP,4\n"
10892           "\tFSTP   ST0\t # Restore FPU Stack"
10893     %}
10894   ins_cost(250);
10895   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10896   ins_pipe( pipe_slow );
10897 %}
10898 
10899 
10900 //----------Arithmetic Conversion Instructions---------------------------------
10901 // The conversions operations are all Alpha sorted.  Please keep it that way!
10902 
10903 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10904   predicate(UseSSE==0);
10905   match(Set dst (RoundFloat src));
10906   ins_cost(125);
10907   format %{ "FST_S  $dst,$src\t# F-round" %}
10908   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10909   ins_pipe( fpu_mem_reg );
10910 %}
10911 
10912 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10913   predicate(UseSSE<=1);
10914   match(Set dst (RoundDouble src));
10915   ins_cost(125);
10916   format %{ "FST_D  $dst,$src\t# D-round" %}
10917   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10918   ins_pipe( fpu_mem_reg );
10919 %}
10920 
10921 // Force rounding to 24-bit precision and 6-bit exponent
10922 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10923   predicate(UseSSE==0);
10924   match(Set dst (ConvD2F src));
10925   format %{ "FST_S  $dst,$src\t# F-round" %}
10926   expand %{
10927     roundFloat_mem_reg(dst,src);
10928   %}
10929 %}
10930 
10931 // Force rounding to 24-bit precision and 6-bit exponent
10932 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10933   predicate(UseSSE==1);
10934   match(Set dst (ConvD2F src));
10935   effect( KILL cr );
10936   format %{ "SUB    ESP,4\n\t"
10937             "FST_S  [ESP],$src\t# F-round\n\t"
10938             "MOVSS  $dst,[ESP]\n\t"
10939             "ADD ESP,4" %}
10940   ins_encode %{
10941     __ subptr(rsp, 4);
10942     if ($src$$reg != FPR1L_enc) {
10943       __ fld_s($src$$reg-1);
10944       __ fstp_s(Address(rsp, 0));
10945     } else {
10946       __ fst_s(Address(rsp, 0));
10947     }
10948     __ movflt($dst$$XMMRegister, Address(rsp, 0));
10949     __ addptr(rsp, 4);
10950   %}
10951   ins_pipe( pipe_slow );
10952 %}
10953 
10954 // Force rounding double precision to single precision
10955 instruct convD2F_reg(regF dst, regD src) %{
10956   predicate(UseSSE>=2);
10957   match(Set dst (ConvD2F src));
10958   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10959   ins_encode %{
10960     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10961   %}
10962   ins_pipe( pipe_slow );
10963 %}
10964 
10965 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10966   predicate(UseSSE==0);
10967   match(Set dst (ConvF2D src));
10968   format %{ "FST_S  $dst,$src\t# D-round" %}
10969   ins_encode( Pop_Reg_Reg_DPR(dst, src));
10970   ins_pipe( fpu_reg_reg );
10971 %}
10972 
10973 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10974   predicate(UseSSE==1);
10975   match(Set dst (ConvF2D src));
10976   format %{ "FST_D  $dst,$src\t# D-round" %}
10977   expand %{
10978     roundDouble_mem_reg(dst,src);
10979   %}
10980 %}
10981 
10982 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10983   predicate(UseSSE==1);
10984   match(Set dst (ConvF2D src));
10985   effect( KILL cr );
10986   format %{ "SUB    ESP,4\n\t"
10987             "MOVSS  [ESP] $src\n\t"
10988             "FLD_S  [ESP]\n\t"
10989             "ADD    ESP,4\n\t"
10990             "FSTP   $dst\t# D-round" %}
10991   ins_encode %{
10992     __ subptr(rsp, 4);
10993     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10994     __ fld_s(Address(rsp, 0));
10995     __ addptr(rsp, 4);
10996     __ fstp_d($dst$$reg);
10997   %}
10998   ins_pipe( pipe_slow );
10999 %}
11000 
11001 instruct convF2D_reg(regD dst, regF src) %{
11002   predicate(UseSSE>=2);
11003   match(Set dst (ConvF2D src));
11004   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11005   ins_encode %{
11006     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
11007   %}
11008   ins_pipe( pipe_slow );
11009 %}
11010 
11011 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11012 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
11013   predicate(UseSSE<=1);
11014   match(Set dst (ConvD2I src));
11015   effect( KILL tmp, KILL cr );
11016   format %{ "FLD    $src\t# Convert double to int \n\t"
11017             "FLDCW  trunc mode\n\t"
11018             "SUB    ESP,4\n\t"
11019             "FISTp  [ESP + #0]\n\t"
11020             "FLDCW  std/24-bit mode\n\t"
11021             "POP    EAX\n\t"
11022             "CMP    EAX,0x80000000\n\t"
11023             "JNE,s  fast\n\t"
11024             "FLD_D  $src\n\t"
11025             "CALL   d2i_wrapper\n"
11026       "fast:" %}
11027   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
11028   ins_pipe( pipe_slow );
11029 %}
11030 
11031 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11032 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11033   predicate(UseSSE>=2);
11034   match(Set dst (ConvD2I src));
11035   effect( KILL tmp, KILL cr );
11036   format %{ "CVTTSD2SI $dst, $src\n\t"
11037             "CMP    $dst,0x80000000\n\t"
11038             "JNE,s  fast\n\t"
11039             "SUB    ESP, 8\n\t"
11040             "MOVSD  [ESP], $src\n\t"
11041             "FLD_D  [ESP]\n\t"
11042             "ADD    ESP, 8\n\t"
11043             "CALL   d2i_wrapper\n"
11044       "fast:" %}
11045   ins_encode %{
11046     Label fast;
11047     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
11048     __ cmpl($dst$$Register, 0x80000000);
11049     __ jccb(Assembler::notEqual, fast);
11050     __ subptr(rsp, 8);
11051     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11052     __ fld_d(Address(rsp, 0));
11053     __ addptr(rsp, 8);
11054     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11055     __ bind(fast);
11056   %}
11057   ins_pipe( pipe_slow );
11058 %}
11059 
11060 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
11061   predicate(UseSSE<=1);
11062   match(Set dst (ConvD2L src));
11063   effect( KILL cr );
11064   format %{ "FLD    $src\t# Convert double to long\n\t"
11065             "FLDCW  trunc mode\n\t"
11066             "SUB    ESP,8\n\t"
11067             "FISTp  [ESP + #0]\n\t"
11068             "FLDCW  std/24-bit mode\n\t"
11069             "POP    EAX\n\t"
11070             "POP    EDX\n\t"
11071             "CMP    EDX,0x80000000\n\t"
11072             "JNE,s  fast\n\t"
11073             "TEST   EAX,EAX\n\t"
11074             "JNE,s  fast\n\t"
11075             "FLD    $src\n\t"
11076             "CALL   d2l_wrapper\n"
11077       "fast:" %}
11078   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
11079   ins_pipe( pipe_slow );
11080 %}
11081 
11082 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11083 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11084   predicate (UseSSE>=2);
11085   match(Set dst (ConvD2L src));
11086   effect( KILL cr );
11087   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11088             "MOVSD  [ESP],$src\n\t"
11089             "FLD_D  [ESP]\n\t"
11090             "FLDCW  trunc mode\n\t"
11091             "FISTp  [ESP + #0]\n\t"
11092             "FLDCW  std/24-bit mode\n\t"
11093             "POP    EAX\n\t"
11094             "POP    EDX\n\t"
11095             "CMP    EDX,0x80000000\n\t"
11096             "JNE,s  fast\n\t"
11097             "TEST   EAX,EAX\n\t"
11098             "JNE,s  fast\n\t"
11099             "SUB    ESP,8\n\t"
11100             "MOVSD  [ESP],$src\n\t"
11101             "FLD_D  [ESP]\n\t"
11102             "ADD    ESP,8\n\t"
11103             "CALL   d2l_wrapper\n"
11104       "fast:" %}
11105   ins_encode %{
11106     Label fast;
11107     __ subptr(rsp, 8);
11108     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11109     __ fld_d(Address(rsp, 0));
11110     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11111     __ fistp_d(Address(rsp, 0));
11112     // Restore the rounding mode, mask the exception
11113     if (Compile::current()->in_24_bit_fp_mode()) {
11114       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11115     } else {
11116       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11117     }
11118     // Load the converted long, adjust CPU stack
11119     __ pop(rax);
11120     __ pop(rdx);
11121     __ cmpl(rdx, 0x80000000);
11122     __ jccb(Assembler::notEqual, fast);
11123     __ testl(rax, rax);
11124     __ jccb(Assembler::notEqual, fast);
11125     __ subptr(rsp, 8);
11126     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11127     __ fld_d(Address(rsp, 0));
11128     __ addptr(rsp, 8);
11129     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11130     __ bind(fast);
11131   %}
11132   ins_pipe( pipe_slow );
11133 %}
11134 
11135 // Convert a double to an int.  Java semantics require we do complex
11136 // manglations in the corner cases.  So we set the rounding mode to
11137 // 'zero', store the darned double down as an int, and reset the
11138 // rounding mode to 'nearest'.  The hardware stores a flag value down
11139 // if we would overflow or converted a NAN; we check for this and
11140 // and go the slow path if needed.
11141 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
11142   predicate(UseSSE==0);
11143   match(Set dst (ConvF2I src));
11144   effect( KILL tmp, KILL cr );
11145   format %{ "FLD    $src\t# Convert float to int \n\t"
11146             "FLDCW  trunc mode\n\t"
11147             "SUB    ESP,4\n\t"
11148             "FISTp  [ESP + #0]\n\t"
11149             "FLDCW  std/24-bit mode\n\t"
11150             "POP    EAX\n\t"
11151             "CMP    EAX,0x80000000\n\t"
11152             "JNE,s  fast\n\t"
11153             "FLD    $src\n\t"
11154             "CALL   d2i_wrapper\n"
11155       "fast:" %}
11156   // DPR2I_encoding works for FPR2I
11157   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
11158   ins_pipe( pipe_slow );
11159 %}
11160 
11161 // Convert a float in xmm to an int reg.
11162 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11163   predicate(UseSSE>=1);
11164   match(Set dst (ConvF2I src));
11165   effect( KILL tmp, KILL cr );
11166   format %{ "CVTTSS2SI $dst, $src\n\t"
11167             "CMP    $dst,0x80000000\n\t"
11168             "JNE,s  fast\n\t"
11169             "SUB    ESP, 4\n\t"
11170             "MOVSS  [ESP], $src\n\t"
11171             "FLD    [ESP]\n\t"
11172             "ADD    ESP, 4\n\t"
11173             "CALL   d2i_wrapper\n"
11174       "fast:" %}
11175   ins_encode %{
11176     Label fast;
11177     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
11178     __ cmpl($dst$$Register, 0x80000000);
11179     __ jccb(Assembler::notEqual, fast);
11180     __ subptr(rsp, 4);
11181     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11182     __ fld_s(Address(rsp, 0));
11183     __ addptr(rsp, 4);
11184     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11185     __ bind(fast);
11186   %}
11187   ins_pipe( pipe_slow );
11188 %}
11189 
11190 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
11191   predicate(UseSSE==0);
11192   match(Set dst (ConvF2L src));
11193   effect( KILL cr );
11194   format %{ "FLD    $src\t# Convert float to long\n\t"
11195             "FLDCW  trunc mode\n\t"
11196             "SUB    ESP,8\n\t"
11197             "FISTp  [ESP + #0]\n\t"
11198             "FLDCW  std/24-bit mode\n\t"
11199             "POP    EAX\n\t"
11200             "POP    EDX\n\t"
11201             "CMP    EDX,0x80000000\n\t"
11202             "JNE,s  fast\n\t"
11203             "TEST   EAX,EAX\n\t"
11204             "JNE,s  fast\n\t"
11205             "FLD    $src\n\t"
11206             "CALL   d2l_wrapper\n"
11207       "fast:" %}
11208   // DPR2L_encoding works for FPR2L
11209   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
11210   ins_pipe( pipe_slow );
11211 %}
11212 
11213 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11214 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11215   predicate (UseSSE>=1);
11216   match(Set dst (ConvF2L src));
11217   effect( KILL cr );
11218   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11219             "MOVSS  [ESP],$src\n\t"
11220             "FLD_S  [ESP]\n\t"
11221             "FLDCW  trunc mode\n\t"
11222             "FISTp  [ESP + #0]\n\t"
11223             "FLDCW  std/24-bit mode\n\t"
11224             "POP    EAX\n\t"
11225             "POP    EDX\n\t"
11226             "CMP    EDX,0x80000000\n\t"
11227             "JNE,s  fast\n\t"
11228             "TEST   EAX,EAX\n\t"
11229             "JNE,s  fast\n\t"
11230             "SUB    ESP,4\t# Convert float to long\n\t"
11231             "MOVSS  [ESP],$src\n\t"
11232             "FLD_S  [ESP]\n\t"
11233             "ADD    ESP,4\n\t"
11234             "CALL   d2l_wrapper\n"
11235       "fast:" %}
11236   ins_encode %{
11237     Label fast;
11238     __ subptr(rsp, 8);
11239     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11240     __ fld_s(Address(rsp, 0));
11241     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11242     __ fistp_d(Address(rsp, 0));
11243     // Restore the rounding mode, mask the exception
11244     if (Compile::current()->in_24_bit_fp_mode()) {
11245       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11246     } else {
11247       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11248     }
11249     // Load the converted long, adjust CPU stack
11250     __ pop(rax);
11251     __ pop(rdx);
11252     __ cmpl(rdx, 0x80000000);
11253     __ jccb(Assembler::notEqual, fast);
11254     __ testl(rax, rax);
11255     __ jccb(Assembler::notEqual, fast);
11256     __ subptr(rsp, 4);
11257     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11258     __ fld_s(Address(rsp, 0));
11259     __ addptr(rsp, 4);
11260     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11261     __ bind(fast);
11262   %}
11263   ins_pipe( pipe_slow );
11264 %}
11265 
11266 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11267   predicate( UseSSE<=1 );
11268   match(Set dst (ConvI2D src));
11269   format %{ "FILD   $src\n\t"
11270             "FSTP   $dst" %}
11271   opcode(0xDB, 0x0);  /* DB /0 */
11272   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11273   ins_pipe( fpu_reg_mem );
11274 %}
11275 
11276 instruct convI2D_reg(regD dst, rRegI src) %{
11277   predicate( UseSSE>=2 && !UseXmmI2D );
11278   match(Set dst (ConvI2D src));
11279   format %{ "CVTSI2SD $dst,$src" %}
11280   ins_encode %{
11281     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11282   %}
11283   ins_pipe( pipe_slow );
11284 %}
11285 
11286 instruct convI2D_mem(regD dst, memory mem) %{
11287   predicate( UseSSE>=2 );
11288   match(Set dst (ConvI2D (LoadI mem)));
11289   format %{ "CVTSI2SD $dst,$mem" %}
11290   ins_encode %{
11291     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11292   %}
11293   ins_pipe( pipe_slow );
11294 %}
11295 
11296 instruct convXI2D_reg(regD dst, rRegI src)
11297 %{
11298   predicate( UseSSE>=2 && UseXmmI2D );
11299   match(Set dst (ConvI2D src));
11300 
11301   format %{ "MOVD  $dst,$src\n\t"
11302             "CVTDQ2PD $dst,$dst\t# i2d" %}
11303   ins_encode %{
11304     __ movdl($dst$$XMMRegister, $src$$Register);
11305     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11306   %}
11307   ins_pipe(pipe_slow); // XXX
11308 %}
11309 
11310 instruct convI2DPR_mem(regDPR dst, memory mem) %{
11311   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11312   match(Set dst (ConvI2D (LoadI mem)));
11313   format %{ "FILD   $mem\n\t"
11314             "FSTP   $dst" %}
11315   opcode(0xDB);      /* DB /0 */
11316   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11317               Pop_Reg_DPR(dst));
11318   ins_pipe( fpu_reg_mem );
11319 %}
11320 
11321 // Convert a byte to a float; no rounding step needed.
11322 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11323   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11324   match(Set dst (ConvI2F src));
11325   format %{ "FILD   $src\n\t"
11326             "FSTP   $dst" %}
11327 
11328   opcode(0xDB, 0x0);  /* DB /0 */
11329   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11330   ins_pipe( fpu_reg_mem );
11331 %}
11332 
11333 // In 24-bit mode, force exponent rounding by storing back out
11334 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11335   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11336   match(Set dst (ConvI2F src));
11337   ins_cost(200);
11338   format %{ "FILD   $src\n\t"
11339             "FSTP_S $dst" %}
11340   opcode(0xDB, 0x0);  /* DB /0 */
11341   ins_encode( Push_Mem_I(src),
11342               Pop_Mem_FPR(dst));
11343   ins_pipe( fpu_mem_mem );
11344 %}
11345 
11346 // In 24-bit mode, force exponent rounding by storing back out
11347 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11348   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11349   match(Set dst (ConvI2F (LoadI mem)));
11350   ins_cost(200);
11351   format %{ "FILD   $mem\n\t"
11352             "FSTP_S $dst" %}
11353   opcode(0xDB);  /* DB /0 */
11354   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11355               Pop_Mem_FPR(dst));
11356   ins_pipe( fpu_mem_mem );
11357 %}
11358 
11359 // This instruction does not round to 24-bits
11360 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11361   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11362   match(Set dst (ConvI2F src));
11363   format %{ "FILD   $src\n\t"
11364             "FSTP   $dst" %}
11365   opcode(0xDB, 0x0);  /* DB /0 */
11366   ins_encode( Push_Mem_I(src),
11367               Pop_Reg_FPR(dst));
11368   ins_pipe( fpu_reg_mem );
11369 %}
11370 
11371 // This instruction does not round to 24-bits
11372 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11373   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11374   match(Set dst (ConvI2F (LoadI mem)));
11375   format %{ "FILD   $mem\n\t"
11376             "FSTP   $dst" %}
11377   opcode(0xDB);      /* DB /0 */
11378   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11379               Pop_Reg_FPR(dst));
11380   ins_pipe( fpu_reg_mem );
11381 %}
11382 
11383 // Convert an int to a float in xmm; no rounding step needed.
11384 instruct convI2F_reg(regF dst, rRegI src) %{
11385   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11386   match(Set dst (ConvI2F src));
11387   format %{ "CVTSI2SS $dst, $src" %}
11388   ins_encode %{
11389     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11390   %}
11391   ins_pipe( pipe_slow );
11392 %}
11393 
11394  instruct convXI2F_reg(regF dst, rRegI src)
11395 %{
11396   predicate( UseSSE>=2 && UseXmmI2F );
11397   match(Set dst (ConvI2F src));
11398 
11399   format %{ "MOVD  $dst,$src\n\t"
11400             "CVTDQ2PS $dst,$dst\t# i2f" %}
11401   ins_encode %{
11402     __ movdl($dst$$XMMRegister, $src$$Register);
11403     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11404   %}
11405   ins_pipe(pipe_slow); // XXX
11406 %}
11407 
11408 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11409   match(Set dst (ConvI2L src));
11410   effect(KILL cr);
11411   ins_cost(375);
11412   format %{ "MOV    $dst.lo,$src\n\t"
11413             "MOV    $dst.hi,$src\n\t"
11414             "SAR    $dst.hi,31" %}
11415   ins_encode(convert_int_long(dst,src));
11416   ins_pipe( ialu_reg_reg_long );
11417 %}
11418 
11419 // Zero-extend convert int to long
11420 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11421   match(Set dst (AndL (ConvI2L src) mask) );
11422   effect( KILL flags );
11423   ins_cost(250);
11424   format %{ "MOV    $dst.lo,$src\n\t"
11425             "XOR    $dst.hi,$dst.hi" %}
11426   opcode(0x33); // XOR
11427   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11428   ins_pipe( ialu_reg_reg_long );
11429 %}
11430 
11431 // Zero-extend long
11432 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11433   match(Set dst (AndL src mask) );
11434   effect( KILL flags );
11435   ins_cost(250);
11436   format %{ "MOV    $dst.lo,$src.lo\n\t"
11437             "XOR    $dst.hi,$dst.hi\n\t" %}
11438   opcode(0x33); // XOR
11439   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11440   ins_pipe( ialu_reg_reg_long );
11441 %}
11442 
11443 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11444   predicate (UseSSE<=1);
11445   match(Set dst (ConvL2D src));
11446   effect( KILL cr );
11447   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11448             "PUSH   $src.lo\n\t"
11449             "FILD   ST,[ESP + #0]\n\t"
11450             "ADD    ESP,8\n\t"
11451             "FSTP_D $dst\t# D-round" %}
11452   opcode(0xDF, 0x5);  /* DF /5 */
11453   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11454   ins_pipe( pipe_slow );
11455 %}
11456 
11457 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11458   predicate (UseSSE>=2);
11459   match(Set dst (ConvL2D src));
11460   effect( KILL cr );
11461   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11462             "PUSH   $src.lo\n\t"
11463             "FILD_D [ESP]\n\t"
11464             "FSTP_D [ESP]\n\t"
11465             "MOVSD  $dst,[ESP]\n\t"
11466             "ADD    ESP,8" %}
11467   opcode(0xDF, 0x5);  /* DF /5 */
11468   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11469   ins_pipe( pipe_slow );
11470 %}
11471 
11472 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11473   predicate (UseSSE>=1);
11474   match(Set dst (ConvL2F src));
11475   effect( KILL cr );
11476   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11477             "PUSH   $src.lo\n\t"
11478             "FILD_D [ESP]\n\t"
11479             "FSTP_S [ESP]\n\t"
11480             "MOVSS  $dst,[ESP]\n\t"
11481             "ADD    ESP,8" %}
11482   opcode(0xDF, 0x5);  /* DF /5 */
11483   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11484   ins_pipe( pipe_slow );
11485 %}
11486 
11487 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11488   match(Set dst (ConvL2F src));
11489   effect( KILL cr );
11490   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11491             "PUSH   $src.lo\n\t"
11492             "FILD   ST,[ESP + #0]\n\t"
11493             "ADD    ESP,8\n\t"
11494             "FSTP_S $dst\t# F-round" %}
11495   opcode(0xDF, 0x5);  /* DF /5 */
11496   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11497   ins_pipe( pipe_slow );
11498 %}
11499 
11500 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11501   match(Set dst (ConvL2I src));
11502   effect( DEF dst, USE src );
11503   format %{ "MOV    $dst,$src.lo" %}
11504   ins_encode(enc_CopyL_Lo(dst,src));
11505   ins_pipe( ialu_reg_reg );
11506 %}
11507 
11508 
11509 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11510   match(Set dst (MoveF2I src));
11511   effect( DEF dst, USE src );
11512   ins_cost(100);
11513   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11514   ins_encode %{
11515     __ movl($dst$$Register, Address(rsp, $src$$disp));
11516   %}
11517   ins_pipe( ialu_reg_mem );
11518 %}
11519 
11520 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11521   predicate(UseSSE==0);
11522   match(Set dst (MoveF2I src));
11523   effect( DEF dst, USE src );
11524 
11525   ins_cost(125);
11526   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11527   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11528   ins_pipe( fpu_mem_reg );
11529 %}
11530 
11531 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11532   predicate(UseSSE>=1);
11533   match(Set dst (MoveF2I src));
11534   effect( DEF dst, USE src );
11535 
11536   ins_cost(95);
11537   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11538   ins_encode %{
11539     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11540   %}
11541   ins_pipe( pipe_slow );
11542 %}
11543 
11544 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11545   predicate(UseSSE>=2);
11546   match(Set dst (MoveF2I src));
11547   effect( DEF dst, USE src );
11548   ins_cost(85);
11549   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11550   ins_encode %{
11551     __ movdl($dst$$Register, $src$$XMMRegister);
11552   %}
11553   ins_pipe( pipe_slow );
11554 %}
11555 
11556 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11557   match(Set dst (MoveI2F src));
11558   effect( DEF dst, USE src );
11559 
11560   ins_cost(100);
11561   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11562   ins_encode %{
11563     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11564   %}
11565   ins_pipe( ialu_mem_reg );
11566 %}
11567 
11568 
11569 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11570   predicate(UseSSE==0);
11571   match(Set dst (MoveI2F src));
11572   effect(DEF dst, USE src);
11573 
11574   ins_cost(125);
11575   format %{ "FLD_S  $src\n\t"
11576             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11577   opcode(0xD9);               /* D9 /0, FLD m32real */
11578   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11579               Pop_Reg_FPR(dst) );
11580   ins_pipe( fpu_reg_mem );
11581 %}
11582 
11583 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11584   predicate(UseSSE>=1);
11585   match(Set dst (MoveI2F src));
11586   effect( DEF dst, USE src );
11587 
11588   ins_cost(95);
11589   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11590   ins_encode %{
11591     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11592   %}
11593   ins_pipe( pipe_slow );
11594 %}
11595 
11596 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11597   predicate(UseSSE>=2);
11598   match(Set dst (MoveI2F src));
11599   effect( DEF dst, USE src );
11600 
11601   ins_cost(85);
11602   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11603   ins_encode %{
11604     __ movdl($dst$$XMMRegister, $src$$Register);
11605   %}
11606   ins_pipe( pipe_slow );
11607 %}
11608 
11609 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11610   match(Set dst (MoveD2L src));
11611   effect(DEF dst, USE src);
11612 
11613   ins_cost(250);
11614   format %{ "MOV    $dst.lo,$src\n\t"
11615             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11616   opcode(0x8B, 0x8B);
11617   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11618   ins_pipe( ialu_mem_long_reg );
11619 %}
11620 
11621 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11622   predicate(UseSSE<=1);
11623   match(Set dst (MoveD2L src));
11624   effect(DEF dst, USE src);
11625 
11626   ins_cost(125);
11627   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11628   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11629   ins_pipe( fpu_mem_reg );
11630 %}
11631 
11632 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11633   predicate(UseSSE>=2);
11634   match(Set dst (MoveD2L src));
11635   effect(DEF dst, USE src);
11636   ins_cost(95);
11637   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11638   ins_encode %{
11639     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11640   %}
11641   ins_pipe( pipe_slow );
11642 %}
11643 
11644 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11645   predicate(UseSSE>=2);
11646   match(Set dst (MoveD2L src));
11647   effect(DEF dst, USE src, TEMP tmp);
11648   ins_cost(85);
11649   format %{ "MOVD   $dst.lo,$src\n\t"
11650             "PSHUFLW $tmp,$src,0x4E\n\t"
11651             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11652   ins_encode %{
11653     __ movdl($dst$$Register, $src$$XMMRegister);
11654     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11655     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11656   %}
11657   ins_pipe( pipe_slow );
11658 %}
11659 
11660 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11661   match(Set dst (MoveL2D src));
11662   effect(DEF dst, USE src);
11663 
11664   ins_cost(200);
11665   format %{ "MOV    $dst,$src.lo\n\t"
11666             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11667   opcode(0x89, 0x89);
11668   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11669   ins_pipe( ialu_mem_long_reg );
11670 %}
11671 
11672 
11673 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11674   predicate(UseSSE<=1);
11675   match(Set dst (MoveL2D src));
11676   effect(DEF dst, USE src);
11677   ins_cost(125);
11678 
11679   format %{ "FLD_D  $src\n\t"
11680             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11681   opcode(0xDD);               /* DD /0, FLD m64real */
11682   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11683               Pop_Reg_DPR(dst) );
11684   ins_pipe( fpu_reg_mem );
11685 %}
11686 
11687 
11688 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11689   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11690   match(Set dst (MoveL2D src));
11691   effect(DEF dst, USE src);
11692 
11693   ins_cost(95);
11694   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11695   ins_encode %{
11696     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11697   %}
11698   ins_pipe( pipe_slow );
11699 %}
11700 
11701 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11702   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11703   match(Set dst (MoveL2D src));
11704   effect(DEF dst, USE src);
11705 
11706   ins_cost(95);
11707   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11708   ins_encode %{
11709     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11710   %}
11711   ins_pipe( pipe_slow );
11712 %}
11713 
11714 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11715   predicate(UseSSE>=2);
11716   match(Set dst (MoveL2D src));
11717   effect(TEMP dst, USE src, TEMP tmp);
11718   ins_cost(85);
11719   format %{ "MOVD   $dst,$src.lo\n\t"
11720             "MOVD   $tmp,$src.hi\n\t"
11721             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11722   ins_encode %{
11723     __ movdl($dst$$XMMRegister, $src$$Register);
11724     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11725     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11726   %}
11727   ins_pipe( pipe_slow );
11728 %}
11729 
11730 
11731 // =======================================================================
11732 // fast clearing of an array
11733 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11734   predicate(!UseFastStosb);
11735   match(Set dummy (ClearArray cnt base));
11736   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11737   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11738             "SHL    ECX,1\t# Convert doublewords to words\n\t"
11739             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11740   ins_encode %{ 
11741     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11742   %}
11743   ins_pipe( pipe_slow );
11744 %}
11745 
11746 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11747   predicate(UseFastStosb);
11748   match(Set dummy (ClearArray cnt base));
11749   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11750   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11751             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
11752             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
11753   ins_encode %{ 
11754     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11755   %}
11756   ins_pipe( pipe_slow );
11757 %}
11758 
11759 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11760                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
11761   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11762   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11763 
11764   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11765   ins_encode %{
11766     __ string_compare($str1$$Register, $str2$$Register,
11767                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11768                       $tmp1$$XMMRegister);
11769   %}
11770   ins_pipe( pipe_slow );
11771 %}
11772 
11773 // fast string equals
11774 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11775                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11776   match(Set result (StrEquals (Binary str1 str2) cnt));
11777   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11778 
11779   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11780   ins_encode %{
11781     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11782                           $cnt$$Register, $result$$Register, $tmp3$$Register,
11783                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11784   %}
11785   ins_pipe( pipe_slow );
11786 %}
11787 
11788 // fast search of substring with known size.
11789 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11790                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11791   predicate(UseSSE42Intrinsics);
11792   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11793   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11794 
11795   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11796   ins_encode %{
11797     int icnt2 = (int)$int_cnt2$$constant;
11798     if (icnt2 >= 8) {
11799       // IndexOf for constant substrings with size >= 8 elements
11800       // which don't need to be loaded through stack.
11801       __ string_indexofC8($str1$$Register, $str2$$Register,
11802                           $cnt1$$Register, $cnt2$$Register,
11803                           icnt2, $result$$Register,
11804                           $vec$$XMMRegister, $tmp$$Register);
11805     } else {
11806       // Small strings are loaded through stack if they cross page boundary.
11807       __ string_indexof($str1$$Register, $str2$$Register,
11808                         $cnt1$$Register, $cnt2$$Register,
11809                         icnt2, $result$$Register,
11810                         $vec$$XMMRegister, $tmp$$Register);
11811     }
11812   %}
11813   ins_pipe( pipe_slow );
11814 %}
11815 
11816 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11817                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11818   predicate(UseSSE42Intrinsics);
11819   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11820   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11821 
11822   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11823   ins_encode %{
11824     __ string_indexof($str1$$Register, $str2$$Register,
11825                       $cnt1$$Register, $cnt2$$Register,
11826                       (-1), $result$$Register,
11827                       $vec$$XMMRegister, $tmp$$Register);
11828   %}
11829   ins_pipe( pipe_slow );
11830 %}
11831 
11832 // fast array equals
11833 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11834                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11835 %{
11836   match(Set result (AryEq ary1 ary2));
11837   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11838   //ins_cost(300);
11839 
11840   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11841   ins_encode %{
11842     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11843                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
11844                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11845   %}
11846   ins_pipe( pipe_slow );
11847 %}
11848 
11849 // encode char[] to byte[] in ISO_8859_1
11850 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
11851                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11852                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
11853   match(Set result (EncodeISOArray src (Binary dst len)));
11854   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11855 
11856   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
11857   ins_encode %{
11858     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11859                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11860                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11861   %}
11862   ins_pipe( pipe_slow );
11863 %}
11864 
11865 
11866 //----------Control Flow Instructions------------------------------------------
11867 // Signed compare Instructions
11868 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11869   match(Set cr (CmpI op1 op2));
11870   effect( DEF cr, USE op1, USE op2 );
11871   format %{ "CMP    $op1,$op2" %}
11872   opcode(0x3B);  /* Opcode 3B /r */
11873   ins_encode( OpcP, RegReg( op1, op2) );
11874   ins_pipe( ialu_cr_reg_reg );
11875 %}
11876 
11877 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11878   match(Set cr (CmpI op1 op2));
11879   effect( DEF cr, USE op1 );
11880   format %{ "CMP    $op1,$op2" %}
11881   opcode(0x81,0x07);  /* Opcode 81 /7 */
11882   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11883   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11884   ins_pipe( ialu_cr_reg_imm );
11885 %}
11886 
11887 // Cisc-spilled version of cmpI_eReg
11888 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11889   match(Set cr (CmpI op1 (LoadI op2)));
11890 
11891   format %{ "CMP    $op1,$op2" %}
11892   ins_cost(500);
11893   opcode(0x3B);  /* Opcode 3B /r */
11894   ins_encode( OpcP, RegMem( op1, op2) );
11895   ins_pipe( ialu_cr_reg_mem );
11896 %}
11897 
11898 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11899   match(Set cr (CmpI src zero));
11900   effect( DEF cr, USE src );
11901 
11902   format %{ "TEST   $src,$src" %}
11903   opcode(0x85);
11904   ins_encode( OpcP, RegReg( src, src ) );
11905   ins_pipe( ialu_cr_reg_imm );
11906 %}
11907 
11908 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11909   match(Set cr (CmpI (AndI src con) zero));
11910 
11911   format %{ "TEST   $src,$con" %}
11912   opcode(0xF7,0x00);
11913   ins_encode( OpcP, RegOpc(src), Con32(con) );
11914   ins_pipe( ialu_cr_reg_imm );
11915 %}
11916 
11917 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11918   match(Set cr (CmpI (AndI src mem) zero));
11919 
11920   format %{ "TEST   $src,$mem" %}
11921   opcode(0x85);
11922   ins_encode( OpcP, RegMem( src, mem ) );
11923   ins_pipe( ialu_cr_reg_mem );
11924 %}
11925 
11926 // Unsigned compare Instructions; really, same as signed except they
11927 // produce an eFlagsRegU instead of eFlagsReg.
11928 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11929   match(Set cr (CmpU op1 op2));
11930 
11931   format %{ "CMPu   $op1,$op2" %}
11932   opcode(0x3B);  /* Opcode 3B /r */
11933   ins_encode( OpcP, RegReg( op1, op2) );
11934   ins_pipe( ialu_cr_reg_reg );
11935 %}
11936 
11937 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11938   match(Set cr (CmpU op1 op2));
11939 
11940   format %{ "CMPu   $op1,$op2" %}
11941   opcode(0x81,0x07);  /* Opcode 81 /7 */
11942   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11943   ins_pipe( ialu_cr_reg_imm );
11944 %}
11945 
11946 // // Cisc-spilled version of cmpU_eReg
11947 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11948   match(Set cr (CmpU op1 (LoadI op2)));
11949 
11950   format %{ "CMPu   $op1,$op2" %}
11951   ins_cost(500);
11952   opcode(0x3B);  /* Opcode 3B /r */
11953   ins_encode( OpcP, RegMem( op1, op2) );
11954   ins_pipe( ialu_cr_reg_mem );
11955 %}
11956 
11957 // // Cisc-spilled version of cmpU_eReg
11958 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11959 //  match(Set cr (CmpU (LoadI op1) op2));
11960 //
11961 //  format %{ "CMPu   $op1,$op2" %}
11962 //  ins_cost(500);
11963 //  opcode(0x39);  /* Opcode 39 /r */
11964 //  ins_encode( OpcP, RegMem( op1, op2) );
11965 //%}
11966 
11967 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11968   match(Set cr (CmpU src zero));
11969 
11970   format %{ "TESTu  $src,$src" %}
11971   opcode(0x85);
11972   ins_encode( OpcP, RegReg( src, src ) );
11973   ins_pipe( ialu_cr_reg_imm );
11974 %}
11975 
11976 // Unsigned pointer compare Instructions
11977 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11978   match(Set cr (CmpP op1 op2));
11979 
11980   format %{ "CMPu   $op1,$op2" %}
11981   opcode(0x3B);  /* Opcode 3B /r */
11982   ins_encode( OpcP, RegReg( op1, op2) );
11983   ins_pipe( ialu_cr_reg_reg );
11984 %}
11985 
11986 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11987   match(Set cr (CmpP op1 op2));
11988 
11989   format %{ "CMPu   $op1,$op2" %}
11990   opcode(0x81,0x07);  /* Opcode 81 /7 */
11991   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11992   ins_pipe( ialu_cr_reg_imm );
11993 %}
11994 
11995 // // Cisc-spilled version of cmpP_eReg
11996 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11997   match(Set cr (CmpP op1 (LoadP op2)));
11998 
11999   format %{ "CMPu   $op1,$op2" %}
12000   ins_cost(500);
12001   opcode(0x3B);  /* Opcode 3B /r */
12002   ins_encode( OpcP, RegMem( op1, op2) );
12003   ins_pipe( ialu_cr_reg_mem );
12004 %}
12005 
12006 // // Cisc-spilled version of cmpP_eReg
12007 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12008 //  match(Set cr (CmpP (LoadP op1) op2));
12009 //
12010 //  format %{ "CMPu   $op1,$op2" %}
12011 //  ins_cost(500);
12012 //  opcode(0x39);  /* Opcode 39 /r */
12013 //  ins_encode( OpcP, RegMem( op1, op2) );
12014 //%}
12015 
12016 // Compare raw pointer (used in out-of-heap check).
12017 // Only works because non-oop pointers must be raw pointers
12018 // and raw pointers have no anti-dependencies.
12019 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12020   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
12021   match(Set cr (CmpP op1 (LoadP op2)));
12022 
12023   format %{ "CMPu   $op1,$op2" %}
12024   opcode(0x3B);  /* Opcode 3B /r */
12025   ins_encode( OpcP, RegMem( op1, op2) );
12026   ins_pipe( ialu_cr_reg_mem );
12027 %}
12028 
12029 //
12030 // This will generate a signed flags result. This should be ok
12031 // since any compare to a zero should be eq/neq.
12032 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12033   match(Set cr (CmpP src zero));
12034 
12035   format %{ "TEST   $src,$src" %}
12036   opcode(0x85);
12037   ins_encode( OpcP, RegReg( src, src ) );
12038   ins_pipe( ialu_cr_reg_imm );
12039 %}
12040 
12041 // Cisc-spilled version of testP_reg
12042 // This will generate a signed flags result. This should be ok
12043 // since any compare to a zero should be eq/neq.
12044 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12045   match(Set cr (CmpP (LoadP op) zero));
12046 
12047   format %{ "TEST   $op,0xFFFFFFFF" %}
12048   ins_cost(500);
12049   opcode(0xF7);               /* Opcode F7 /0 */
12050   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12051   ins_pipe( ialu_cr_reg_imm );
12052 %}
12053 
12054 // Yanked all unsigned pointer compare operations.
12055 // Pointer compares are done with CmpP which is already unsigned.
12056 
12057 //----------Max and Min--------------------------------------------------------
12058 // Min Instructions
12059 ////
12060 //   *** Min and Max using the conditional move are slower than the
12061 //   *** branch version on a Pentium III.
12062 // // Conditional move for min
12063 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
12064 //  effect( USE_DEF op2, USE op1, USE cr );
12065 //  format %{ "CMOVlt $op2,$op1\t! min" %}
12066 //  opcode(0x4C,0x0F);
12067 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12068 //  ins_pipe( pipe_cmov_reg );
12069 //%}
12070 //
12071 //// Min Register with Register (P6 version)
12072 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
12073 //  predicate(VM_Version::supports_cmov() );
12074 //  match(Set op2 (MinI op1 op2));
12075 //  ins_cost(200);
12076 //  expand %{
12077 //    eFlagsReg cr;
12078 //    compI_eReg(cr,op1,op2);
12079 //    cmovI_reg_lt(op2,op1,cr);
12080 //  %}
12081 //%}
12082 
12083 // Min Register with Register (generic version)
12084 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
12085   match(Set dst (MinI dst src));
12086   effect(KILL flags);
12087   ins_cost(300);
12088 
12089   format %{ "MIN    $dst,$src" %}
12090   opcode(0xCC);
12091   ins_encode( min_enc(dst,src) );
12092   ins_pipe( pipe_slow );
12093 %}
12094 
12095 // Max Register with Register
12096 //   *** Min and Max using the conditional move are slower than the
12097 //   *** branch version on a Pentium III.
12098 // // Conditional move for max
12099 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
12100 //  effect( USE_DEF op2, USE op1, USE cr );
12101 //  format %{ "CMOVgt $op2,$op1\t! max" %}
12102 //  opcode(0x4F,0x0F);
12103 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12104 //  ins_pipe( pipe_cmov_reg );
12105 //%}
12106 //
12107 // // Max Register with Register (P6 version)
12108 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
12109 //  predicate(VM_Version::supports_cmov() );
12110 //  match(Set op2 (MaxI op1 op2));
12111 //  ins_cost(200);
12112 //  expand %{
12113 //    eFlagsReg cr;
12114 //    compI_eReg(cr,op1,op2);
12115 //    cmovI_reg_gt(op2,op1,cr);
12116 //  %}
12117 //%}
12118 
12119 // Max Register with Register (generic version)
12120 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
12121   match(Set dst (MaxI dst src));
12122   effect(KILL flags);
12123   ins_cost(300);
12124 
12125   format %{ "MAX    $dst,$src" %}
12126   opcode(0xCC);
12127   ins_encode( max_enc(dst,src) );
12128   ins_pipe( pipe_slow );
12129 %}
12130 
12131 // ============================================================================
12132 // Counted Loop limit node which represents exact final iterator value.
12133 // Note: the resulting value should fit into integer range since
12134 // counted loops have limit check on overflow.
12135 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
12136   match(Set limit (LoopLimit (Binary init limit) stride));
12137   effect(TEMP limit_hi, TEMP tmp, KILL flags);
12138   ins_cost(300);
12139 
12140   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
12141   ins_encode %{
12142     int strd = (int)$stride$$constant;
12143     assert(strd != 1 && strd != -1, "sanity");
12144     int m1 = (strd > 0) ? 1 : -1;
12145     // Convert limit to long (EAX:EDX)
12146     __ cdql();
12147     // Convert init to long (init:tmp)
12148     __ movl($tmp$$Register, $init$$Register);
12149     __ sarl($tmp$$Register, 31);
12150     // $limit - $init
12151     __ subl($limit$$Register, $init$$Register);
12152     __ sbbl($limit_hi$$Register, $tmp$$Register);
12153     // + ($stride - 1)
12154     if (strd > 0) {
12155       __ addl($limit$$Register, (strd - 1));
12156       __ adcl($limit_hi$$Register, 0);
12157       __ movl($tmp$$Register, strd);
12158     } else {
12159       __ addl($limit$$Register, (strd + 1));
12160       __ adcl($limit_hi$$Register, -1);
12161       __ lneg($limit_hi$$Register, $limit$$Register);
12162       __ movl($tmp$$Register, -strd);
12163     }
12164     // signed devision: (EAX:EDX) / pos_stride
12165     __ idivl($tmp$$Register);
12166     if (strd < 0) {
12167       // restore sign
12168       __ negl($tmp$$Register);
12169     }
12170     // (EAX) * stride
12171     __ mull($tmp$$Register);
12172     // + init (ignore upper bits)
12173     __ addl($limit$$Register, $init$$Register);
12174   %}
12175   ins_pipe( pipe_slow );
12176 %}
12177 
12178 // ============================================================================
12179 // Branch Instructions
12180 // Jump Table
12181 instruct jumpXtnd(rRegI switch_val) %{
12182   match(Jump switch_val);
12183   ins_cost(350);
12184   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
12185   ins_encode %{
12186     // Jump to Address(table_base + switch_reg)
12187     Address index(noreg, $switch_val$$Register, Address::times_1);
12188     __ jump(ArrayAddress($constantaddress, index));
12189   %}
12190   ins_pipe(pipe_jmp);
12191 %}
12192 
12193 // Jump Direct - Label defines a relative address from JMP+1
12194 instruct jmpDir(label labl) %{
12195   match(Goto);
12196   effect(USE labl);
12197 
12198   ins_cost(300);
12199   format %{ "JMP    $labl" %}
12200   size(5);
12201   ins_encode %{
12202     Label* L = $labl$$label;
12203     __ jmp(*L, false); // Always long jump
12204   %}
12205   ins_pipe( pipe_jmp );
12206 %}
12207 
12208 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12209 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12210   match(If cop cr);
12211   effect(USE labl);
12212 
12213   ins_cost(300);
12214   format %{ "J$cop    $labl" %}
12215   size(6);
12216   ins_encode %{
12217     Label* L = $labl$$label;
12218     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12219   %}
12220   ins_pipe( pipe_jcc );
12221 %}
12222 
12223 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12224 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12225   match(CountedLoopEnd cop cr);
12226   effect(USE labl);
12227 
12228   ins_cost(300);
12229   format %{ "J$cop    $labl\t# Loop end" %}
12230   size(6);
12231   ins_encode %{
12232     Label* L = $labl$$label;
12233     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12234   %}
12235   ins_pipe( pipe_jcc );
12236 %}
12237 
12238 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12239 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12240   match(CountedLoopEnd cop cmp);
12241   effect(USE labl);
12242 
12243   ins_cost(300);
12244   format %{ "J$cop,u  $labl\t# Loop end" %}
12245   size(6);
12246   ins_encode %{
12247     Label* L = $labl$$label;
12248     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12249   %}
12250   ins_pipe( pipe_jcc );
12251 %}
12252 
12253 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12254   match(CountedLoopEnd cop cmp);
12255   effect(USE labl);
12256 
12257   ins_cost(200);
12258   format %{ "J$cop,u  $labl\t# Loop end" %}
12259   size(6);
12260   ins_encode %{
12261     Label* L = $labl$$label;
12262     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12263   %}
12264   ins_pipe( pipe_jcc );
12265 %}
12266 
12267 // Jump Direct Conditional - using unsigned comparison
12268 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12269   match(If cop cmp);
12270   effect(USE labl);
12271 
12272   ins_cost(300);
12273   format %{ "J$cop,u  $labl" %}
12274   size(6);
12275   ins_encode %{
12276     Label* L = $labl$$label;
12277     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12278   %}
12279   ins_pipe(pipe_jcc);
12280 %}
12281 
12282 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12283   match(If cop cmp);
12284   effect(USE labl);
12285 
12286   ins_cost(200);
12287   format %{ "J$cop,u  $labl" %}
12288   size(6);
12289   ins_encode %{
12290     Label* L = $labl$$label;
12291     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12292   %}
12293   ins_pipe(pipe_jcc);
12294 %}
12295 
12296 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12297   match(If cop cmp);
12298   effect(USE labl);
12299 
12300   ins_cost(200);
12301   format %{ $$template
12302     if ($cop$$cmpcode == Assembler::notEqual) {
12303       $$emit$$"JP,u   $labl\n\t"
12304       $$emit$$"J$cop,u   $labl"
12305     } else {
12306       $$emit$$"JP,u   done\n\t"
12307       $$emit$$"J$cop,u   $labl\n\t"
12308       $$emit$$"done:"
12309     }
12310   %}
12311   ins_encode %{
12312     Label* l = $labl$$label;
12313     if ($cop$$cmpcode == Assembler::notEqual) {
12314       __ jcc(Assembler::parity, *l, false);
12315       __ jcc(Assembler::notEqual, *l, false);
12316     } else if ($cop$$cmpcode == Assembler::equal) {
12317       Label done;
12318       __ jccb(Assembler::parity, done);
12319       __ jcc(Assembler::equal, *l, false);
12320       __ bind(done);
12321     } else {
12322        ShouldNotReachHere();
12323     }
12324   %}
12325   ins_pipe(pipe_jcc);
12326 %}
12327 
12328 // ============================================================================
12329 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12330 // array for an instance of the superklass.  Set a hidden internal cache on a
12331 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12332 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12333 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12334   match(Set result (PartialSubtypeCheck sub super));
12335   effect( KILL rcx, KILL cr );
12336 
12337   ins_cost(1100);  // slightly larger than the next version
12338   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12339             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12340             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12341             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12342             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12343             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12344             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12345      "miss:\t" %}
12346 
12347   opcode(0x1); // Force a XOR of EDI
12348   ins_encode( enc_PartialSubtypeCheck() );
12349   ins_pipe( pipe_slow );
12350 %}
12351 
12352 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12353   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12354   effect( KILL rcx, KILL result );
12355 
12356   ins_cost(1000);
12357   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12358             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12359             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12360             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12361             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12362             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12363      "miss:\t" %}
12364 
12365   opcode(0x0);  // No need to XOR EDI
12366   ins_encode( enc_PartialSubtypeCheck() );
12367   ins_pipe( pipe_slow );
12368 %}
12369 
12370 // ============================================================================
12371 // Branch Instructions -- short offset versions
12372 //
12373 // These instructions are used to replace jumps of a long offset (the default
12374 // match) with jumps of a shorter offset.  These instructions are all tagged
12375 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12376 // match rules in general matching.  Instead, the ADLC generates a conversion
12377 // method in the MachNode which can be used to do in-place replacement of the
12378 // long variant with the shorter variant.  The compiler will determine if a
12379 // branch can be taken by the is_short_branch_offset() predicate in the machine
12380 // specific code section of the file.
12381 
12382 // Jump Direct - Label defines a relative address from JMP+1
12383 instruct jmpDir_short(label labl) %{
12384   match(Goto);
12385   effect(USE labl);
12386 
12387   ins_cost(300);
12388   format %{ "JMP,s  $labl" %}
12389   size(2);
12390   ins_encode %{
12391     Label* L = $labl$$label;
12392     __ jmpb(*L);
12393   %}
12394   ins_pipe( pipe_jmp );
12395   ins_short_branch(1);
12396 %}
12397 
12398 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12399 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12400   match(If cop cr);
12401   effect(USE labl);
12402 
12403   ins_cost(300);
12404   format %{ "J$cop,s  $labl" %}
12405   size(2);
12406   ins_encode %{
12407     Label* L = $labl$$label;
12408     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12409   %}
12410   ins_pipe( pipe_jcc );
12411   ins_short_branch(1);
12412 %}
12413 
12414 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12415 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12416   match(CountedLoopEnd cop cr);
12417   effect(USE labl);
12418 
12419   ins_cost(300);
12420   format %{ "J$cop,s  $labl\t# Loop end" %}
12421   size(2);
12422   ins_encode %{
12423     Label* L = $labl$$label;
12424     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12425   %}
12426   ins_pipe( pipe_jcc );
12427   ins_short_branch(1);
12428 %}
12429 
12430 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12431 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12432   match(CountedLoopEnd cop cmp);
12433   effect(USE labl);
12434 
12435   ins_cost(300);
12436   format %{ "J$cop,us $labl\t# Loop end" %}
12437   size(2);
12438   ins_encode %{
12439     Label* L = $labl$$label;
12440     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12441   %}
12442   ins_pipe( pipe_jcc );
12443   ins_short_branch(1);
12444 %}
12445 
12446 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12447   match(CountedLoopEnd cop cmp);
12448   effect(USE labl);
12449 
12450   ins_cost(300);
12451   format %{ "J$cop,us $labl\t# Loop end" %}
12452   size(2);
12453   ins_encode %{
12454     Label* L = $labl$$label;
12455     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12456   %}
12457   ins_pipe( pipe_jcc );
12458   ins_short_branch(1);
12459 %}
12460 
12461 // Jump Direct Conditional - using unsigned comparison
12462 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12463   match(If cop cmp);
12464   effect(USE labl);
12465 
12466   ins_cost(300);
12467   format %{ "J$cop,us $labl" %}
12468   size(2);
12469   ins_encode %{
12470     Label* L = $labl$$label;
12471     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12472   %}
12473   ins_pipe( pipe_jcc );
12474   ins_short_branch(1);
12475 %}
12476 
12477 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12478   match(If cop cmp);
12479   effect(USE labl);
12480 
12481   ins_cost(300);
12482   format %{ "J$cop,us $labl" %}
12483   size(2);
12484   ins_encode %{
12485     Label* L = $labl$$label;
12486     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12487   %}
12488   ins_pipe( pipe_jcc );
12489   ins_short_branch(1);
12490 %}
12491 
12492 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12493   match(If cop cmp);
12494   effect(USE labl);
12495 
12496   ins_cost(300);
12497   format %{ $$template
12498     if ($cop$$cmpcode == Assembler::notEqual) {
12499       $$emit$$"JP,u,s   $labl\n\t"
12500       $$emit$$"J$cop,u,s   $labl"
12501     } else {
12502       $$emit$$"JP,u,s   done\n\t"
12503       $$emit$$"J$cop,u,s  $labl\n\t"
12504       $$emit$$"done:"
12505     }
12506   %}
12507   size(4);
12508   ins_encode %{
12509     Label* l = $labl$$label;
12510     if ($cop$$cmpcode == Assembler::notEqual) {
12511       __ jccb(Assembler::parity, *l);
12512       __ jccb(Assembler::notEqual, *l);
12513     } else if ($cop$$cmpcode == Assembler::equal) {
12514       Label done;
12515       __ jccb(Assembler::parity, done);
12516       __ jccb(Assembler::equal, *l);
12517       __ bind(done);
12518     } else {
12519        ShouldNotReachHere();
12520     }
12521   %}
12522   ins_pipe(pipe_jcc);
12523   ins_short_branch(1);
12524 %}
12525 
12526 // ============================================================================
12527 // Long Compare
12528 //
12529 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12530 // is tricky.  The flavor of compare used depends on whether we are testing
12531 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12532 // The GE test is the negated LT test.  The LE test can be had by commuting
12533 // the operands (yielding a GE test) and then negating; negate again for the
12534 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12535 // NE test is negated from that.
12536 
12537 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12538 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12539 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12540 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12541 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12542 // foo match ends up with the wrong leaf.  One fix is to not match both
12543 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12544 // both forms beat the trinary form of long-compare and both are very useful
12545 // on Intel which has so few registers.
12546 
12547 // Manifest a CmpL result in an integer register.  Very painful.
12548 // This is the test to avoid.
12549 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12550   match(Set dst (CmpL3 src1 src2));
12551   effect( KILL flags );
12552   ins_cost(1000);
12553   format %{ "XOR    $dst,$dst\n\t"
12554             "CMP    $src1.hi,$src2.hi\n\t"
12555             "JLT,s  m_one\n\t"
12556             "JGT,s  p_one\n\t"
12557             "CMP    $src1.lo,$src2.lo\n\t"
12558             "JB,s   m_one\n\t"
12559             "JEQ,s  done\n"
12560     "p_one:\tINC    $dst\n\t"
12561             "JMP,s  done\n"
12562     "m_one:\tDEC    $dst\n"
12563      "done:" %}
12564   ins_encode %{
12565     Label p_one, m_one, done;
12566     __ xorptr($dst$$Register, $dst$$Register);
12567     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12568     __ jccb(Assembler::less,    m_one);
12569     __ jccb(Assembler::greater, p_one);
12570     __ cmpl($src1$$Register, $src2$$Register);
12571     __ jccb(Assembler::below,   m_one);
12572     __ jccb(Assembler::equal,   done);
12573     __ bind(p_one);
12574     __ incrementl($dst$$Register);
12575     __ jmpb(done);
12576     __ bind(m_one);
12577     __ decrementl($dst$$Register);
12578     __ bind(done);
12579   %}
12580   ins_pipe( pipe_slow );
12581 %}
12582 
12583 //======
12584 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12585 // compares.  Can be used for LE or GT compares by reversing arguments.
12586 // NOT GOOD FOR EQ/NE tests.
12587 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12588   match( Set flags (CmpL src zero ));
12589   ins_cost(100);
12590   format %{ "TEST   $src.hi,$src.hi" %}
12591   opcode(0x85);
12592   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12593   ins_pipe( ialu_cr_reg_reg );
12594 %}
12595 
12596 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12597 // compares.  Can be used for LE or GT compares by reversing arguments.
12598 // NOT GOOD FOR EQ/NE tests.
12599 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12600   match( Set flags (CmpL src1 src2 ));
12601   effect( TEMP tmp );
12602   ins_cost(300);
12603   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12604             "MOV    $tmp,$src1.hi\n\t"
12605             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12606   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12607   ins_pipe( ialu_cr_reg_reg );
12608 %}
12609 
12610 // Long compares reg < zero/req OR reg >= zero/req.
12611 // Just a wrapper for a normal branch, plus the predicate test.
12612 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12613   match(If cmp flags);
12614   effect(USE labl);
12615   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12616   expand %{
12617     jmpCon(cmp,flags,labl);    // JLT or JGE...
12618   %}
12619 %}
12620 
12621 // Compare 2 longs and CMOVE longs.
12622 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12623   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12624   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12625   ins_cost(400);
12626   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12627             "CMOV$cmp $dst.hi,$src.hi" %}
12628   opcode(0x0F,0x40);
12629   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12630   ins_pipe( pipe_cmov_reg_long );
12631 %}
12632 
12633 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12634   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12635   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12636   ins_cost(500);
12637   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12638             "CMOV$cmp $dst.hi,$src.hi" %}
12639   opcode(0x0F,0x40);
12640   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12641   ins_pipe( pipe_cmov_reg_long );
12642 %}
12643 
12644 // Compare 2 longs and CMOVE ints.
12645 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12646   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12647   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12648   ins_cost(200);
12649   format %{ "CMOV$cmp $dst,$src" %}
12650   opcode(0x0F,0x40);
12651   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12652   ins_pipe( pipe_cmov_reg );
12653 %}
12654 
12655 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12656   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12657   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12658   ins_cost(250);
12659   format %{ "CMOV$cmp $dst,$src" %}
12660   opcode(0x0F,0x40);
12661   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12662   ins_pipe( pipe_cmov_mem );
12663 %}
12664 
12665 // Compare 2 longs and CMOVE ints.
12666 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12667   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12668   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12669   ins_cost(200);
12670   format %{ "CMOV$cmp $dst,$src" %}
12671   opcode(0x0F,0x40);
12672   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12673   ins_pipe( pipe_cmov_reg );
12674 %}
12675 
12676 // Compare 2 longs and CMOVE doubles
12677 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12678   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12679   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12680   ins_cost(200);
12681   expand %{
12682     fcmovDPR_regS(cmp,flags,dst,src);
12683   %}
12684 %}
12685 
12686 // Compare 2 longs and CMOVE doubles
12687 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12688   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12689   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12690   ins_cost(200);
12691   expand %{
12692     fcmovD_regS(cmp,flags,dst,src);
12693   %}
12694 %}
12695 
12696 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12697   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12698   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12699   ins_cost(200);
12700   expand %{
12701     fcmovFPR_regS(cmp,flags,dst,src);
12702   %}
12703 %}
12704 
12705 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12706   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12707   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12708   ins_cost(200);
12709   expand %{
12710     fcmovF_regS(cmp,flags,dst,src);
12711   %}
12712 %}
12713 
12714 //======
12715 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12716 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12717   match( Set flags (CmpL src zero ));
12718   effect(TEMP tmp);
12719   ins_cost(200);
12720   format %{ "MOV    $tmp,$src.lo\n\t"
12721             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12722   ins_encode( long_cmp_flags0( src, tmp ) );
12723   ins_pipe( ialu_reg_reg_long );
12724 %}
12725 
12726 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12727 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12728   match( Set flags (CmpL src1 src2 ));
12729   ins_cost(200+300);
12730   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12731             "JNE,s  skip\n\t"
12732             "CMP    $src1.hi,$src2.hi\n\t"
12733      "skip:\t" %}
12734   ins_encode( long_cmp_flags1( src1, src2 ) );
12735   ins_pipe( ialu_cr_reg_reg );
12736 %}
12737 
12738 // Long compare reg == zero/reg OR reg != zero/reg
12739 // Just a wrapper for a normal branch, plus the predicate test.
12740 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12741   match(If cmp flags);
12742   effect(USE labl);
12743   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12744   expand %{
12745     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12746   %}
12747 %}
12748 
12749 // Compare 2 longs and CMOVE longs.
12750 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12751   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12752   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12753   ins_cost(400);
12754   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12755             "CMOV$cmp $dst.hi,$src.hi" %}
12756   opcode(0x0F,0x40);
12757   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12758   ins_pipe( pipe_cmov_reg_long );
12759 %}
12760 
12761 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12762   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12763   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12764   ins_cost(500);
12765   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12766             "CMOV$cmp $dst.hi,$src.hi" %}
12767   opcode(0x0F,0x40);
12768   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12769   ins_pipe( pipe_cmov_reg_long );
12770 %}
12771 
12772 // Compare 2 longs and CMOVE ints.
12773 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12774   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12775   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12776   ins_cost(200);
12777   format %{ "CMOV$cmp $dst,$src" %}
12778   opcode(0x0F,0x40);
12779   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12780   ins_pipe( pipe_cmov_reg );
12781 %}
12782 
12783 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12784   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12785   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12786   ins_cost(250);
12787   format %{ "CMOV$cmp $dst,$src" %}
12788   opcode(0x0F,0x40);
12789   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12790   ins_pipe( pipe_cmov_mem );
12791 %}
12792 
12793 // Compare 2 longs and CMOVE ints.
12794 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12795   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12796   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12797   ins_cost(200);
12798   format %{ "CMOV$cmp $dst,$src" %}
12799   opcode(0x0F,0x40);
12800   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12801   ins_pipe( pipe_cmov_reg );
12802 %}
12803 
12804 // Compare 2 longs and CMOVE doubles
12805 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12806   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12807   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12808   ins_cost(200);
12809   expand %{
12810     fcmovDPR_regS(cmp,flags,dst,src);
12811   %}
12812 %}
12813 
12814 // Compare 2 longs and CMOVE doubles
12815 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12816   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12817   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12818   ins_cost(200);
12819   expand %{
12820     fcmovD_regS(cmp,flags,dst,src);
12821   %}
12822 %}
12823 
12824 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12825   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12826   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12827   ins_cost(200);
12828   expand %{
12829     fcmovFPR_regS(cmp,flags,dst,src);
12830   %}
12831 %}
12832 
12833 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12834   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12835   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12836   ins_cost(200);
12837   expand %{
12838     fcmovF_regS(cmp,flags,dst,src);
12839   %}
12840 %}
12841 
12842 //======
12843 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12844 // Same as cmpL_reg_flags_LEGT except must negate src
12845 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12846   match( Set flags (CmpL src zero ));
12847   effect( TEMP tmp );
12848   ins_cost(300);
12849   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12850             "CMP    $tmp,$src.lo\n\t"
12851             "SBB    $tmp,$src.hi\n\t" %}
12852   ins_encode( long_cmp_flags3(src, tmp) );
12853   ins_pipe( ialu_reg_reg_long );
12854 %}
12855 
12856 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12857 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12858 // requires a commuted test to get the same result.
12859 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12860   match( Set flags (CmpL src1 src2 ));
12861   effect( TEMP tmp );
12862   ins_cost(300);
12863   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12864             "MOV    $tmp,$src2.hi\n\t"
12865             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12866   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12867   ins_pipe( ialu_cr_reg_reg );
12868 %}
12869 
12870 // Long compares reg < zero/req OR reg >= zero/req.
12871 // Just a wrapper for a normal branch, plus the predicate test
12872 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12873   match(If cmp flags);
12874   effect(USE labl);
12875   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12876   ins_cost(300);
12877   expand %{
12878     jmpCon(cmp,flags,labl);    // JGT or JLE...
12879   %}
12880 %}
12881 
12882 // Compare 2 longs and CMOVE longs.
12883 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12884   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12885   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12886   ins_cost(400);
12887   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12888             "CMOV$cmp $dst.hi,$src.hi" %}
12889   opcode(0x0F,0x40);
12890   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12891   ins_pipe( pipe_cmov_reg_long );
12892 %}
12893 
12894 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12895   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12896   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12897   ins_cost(500);
12898   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12899             "CMOV$cmp $dst.hi,$src.hi+4" %}
12900   opcode(0x0F,0x40);
12901   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12902   ins_pipe( pipe_cmov_reg_long );
12903 %}
12904 
12905 // Compare 2 longs and CMOVE ints.
12906 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12907   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12908   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12909   ins_cost(200);
12910   format %{ "CMOV$cmp $dst,$src" %}
12911   opcode(0x0F,0x40);
12912   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12913   ins_pipe( pipe_cmov_reg );
12914 %}
12915 
12916 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12917   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12918   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12919   ins_cost(250);
12920   format %{ "CMOV$cmp $dst,$src" %}
12921   opcode(0x0F,0x40);
12922   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12923   ins_pipe( pipe_cmov_mem );
12924 %}
12925 
12926 // Compare 2 longs and CMOVE ptrs.
12927 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12928   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12929   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12930   ins_cost(200);
12931   format %{ "CMOV$cmp $dst,$src" %}
12932   opcode(0x0F,0x40);
12933   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12934   ins_pipe( pipe_cmov_reg );
12935 %}
12936 
12937 // Compare 2 longs and CMOVE doubles
12938 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12939   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12940   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12941   ins_cost(200);
12942   expand %{
12943     fcmovDPR_regS(cmp,flags,dst,src);
12944   %}
12945 %}
12946 
12947 // Compare 2 longs and CMOVE doubles
12948 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12949   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12950   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12951   ins_cost(200);
12952   expand %{
12953     fcmovD_regS(cmp,flags,dst,src);
12954   %}
12955 %}
12956 
12957 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12958   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12959   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12960   ins_cost(200);
12961   expand %{
12962     fcmovFPR_regS(cmp,flags,dst,src);
12963   %}
12964 %}
12965 
12966 
12967 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12968   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12969   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12970   ins_cost(200);
12971   expand %{
12972     fcmovF_regS(cmp,flags,dst,src);
12973   %}
12974 %}
12975 
12976 
12977 // ============================================================================
12978 // Procedure Call/Return Instructions
12979 // Call Java Static Instruction
12980 // Note: If this code changes, the corresponding ret_addr_offset() and
12981 //       compute_padding() functions will have to be adjusted.
12982 instruct CallStaticJavaDirect(method meth) %{
12983   match(CallStaticJava);
12984   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
12985   effect(USE meth);
12986 
12987   ins_cost(300);
12988   format %{ "CALL,static " %}
12989   opcode(0xE8); /* E8 cd */
12990   ins_encode( pre_call_resets,
12991               Java_Static_Call( meth ),
12992               call_epilog,
12993               post_call_FPU );
12994   ins_pipe( pipe_slow );
12995   ins_alignment(4);
12996 %}
12997 
12998 // Call Java Static Instruction (method handle version)
12999 // Note: If this code changes, the corresponding ret_addr_offset() and
13000 //       compute_padding() functions will have to be adjusted.
13001 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
13002   match(CallStaticJava);
13003   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
13004   effect(USE meth);
13005   // EBP is saved by all callees (for interpreter stack correction).
13006   // We use it here for a similar purpose, in {preserve,restore}_SP.
13007 
13008   ins_cost(300);
13009   format %{ "CALL,static/MethodHandle " %}
13010   opcode(0xE8); /* E8 cd */
13011   ins_encode( pre_call_resets,
13012               preserve_SP,
13013               Java_Static_Call( meth ),
13014               restore_SP,
13015               call_epilog,
13016               post_call_FPU );
13017   ins_pipe( pipe_slow );
13018   ins_alignment(4);
13019 %}
13020 
13021 // Call Java Dynamic Instruction
13022 // Note: If this code changes, the corresponding ret_addr_offset() and
13023 //       compute_padding() functions will have to be adjusted.
13024 instruct CallDynamicJavaDirect(method meth) %{
13025   match(CallDynamicJava);
13026   effect(USE meth);
13027 
13028   ins_cost(300);
13029   format %{ "MOV    EAX,(oop)-1\n\t"
13030             "CALL,dynamic" %}
13031   opcode(0xE8); /* E8 cd */
13032   ins_encode( pre_call_resets,
13033               Java_Dynamic_Call( meth ),
13034               call_epilog,
13035               post_call_FPU );
13036   ins_pipe( pipe_slow );
13037   ins_alignment(4);
13038 %}
13039 
13040 // Call Runtime Instruction
13041 instruct CallRuntimeDirect(method meth) %{
13042   match(CallRuntime );
13043   effect(USE meth);
13044 
13045   ins_cost(300);
13046   format %{ "CALL,runtime " %}
13047   opcode(0xE8); /* E8 cd */
13048   // Use FFREEs to clear entries in float stack
13049   ins_encode( pre_call_resets,
13050               FFree_Float_Stack_All,
13051               Java_To_Runtime( meth ),
13052               post_call_FPU );
13053   ins_pipe( pipe_slow );
13054 %}
13055 
13056 // Call runtime without safepoint
13057 instruct CallLeafDirect(method meth) %{
13058   match(CallLeaf);
13059   effect(USE meth);
13060 
13061   ins_cost(300);
13062   format %{ "CALL_LEAF,runtime " %}
13063   opcode(0xE8); /* E8 cd */
13064   ins_encode( pre_call_resets,
13065               FFree_Float_Stack_All,
13066               Java_To_Runtime( meth ),
13067               Verify_FPU_For_Leaf, post_call_FPU );
13068   ins_pipe( pipe_slow );
13069 %}
13070 
13071 instruct CallLeafNoFPDirect(method meth) %{
13072   match(CallLeafNoFP);
13073   effect(USE meth);
13074 
13075   ins_cost(300);
13076   format %{ "CALL_LEAF_NOFP,runtime " %}
13077   opcode(0xE8); /* E8 cd */
13078   ins_encode(Java_To_Runtime(meth));
13079   ins_pipe( pipe_slow );
13080 %}
13081 
13082 
13083 // Return Instruction
13084 // Remove the return address & jump to it.
13085 instruct Ret() %{
13086   match(Return);
13087   format %{ "RET" %}
13088   opcode(0xC3);
13089   ins_encode(OpcP);
13090   ins_pipe( pipe_jmp );
13091 %}
13092 
13093 // Tail Call; Jump from runtime stub to Java code.
13094 // Also known as an 'interprocedural jump'.
13095 // Target of jump will eventually return to caller.
13096 // TailJump below removes the return address.
13097 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13098   match(TailCall jump_target method_oop );
13099   ins_cost(300);
13100   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13101   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13102   ins_encode( OpcP, RegOpc(jump_target) );
13103   ins_pipe( pipe_jmp );
13104 %}
13105 
13106 
13107 // Tail Jump; remove the return address; jump to target.
13108 // TailCall above leaves the return address around.
13109 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13110   match( TailJump jump_target ex_oop );
13111   ins_cost(300);
13112   format %{ "POP    EDX\t# pop return address into dummy\n\t"
13113             "JMP    $jump_target " %}
13114   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13115   ins_encode( enc_pop_rdx,
13116               OpcP, RegOpc(jump_target) );
13117   ins_pipe( pipe_jmp );
13118 %}
13119 
13120 // Create exception oop: created by stack-crawling runtime code.
13121 // Created exception is now available to this handler, and is setup
13122 // just prior to jumping to this handler.  No code emitted.
13123 instruct CreateException( eAXRegP ex_oop )
13124 %{
13125   match(Set ex_oop (CreateEx));
13126 
13127   size(0);
13128   // use the following format syntax
13129   format %{ "# exception oop is in EAX; no code emitted" %}
13130   ins_encode();
13131   ins_pipe( empty );
13132 %}
13133 
13134 
13135 // Rethrow exception:
13136 // The exception oop will come in the first argument position.
13137 // Then JUMP (not call) to the rethrow stub code.
13138 instruct RethrowException()
13139 %{
13140   match(Rethrow);
13141 
13142   // use the following format syntax
13143   format %{ "JMP    rethrow_stub" %}
13144   ins_encode(enc_rethrow);
13145   ins_pipe( pipe_jmp );
13146 %}
13147 
13148 // inlined locking and unlocking
13149 
13150 
13151 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
13152   match( Set cr (FastLock object box) );
13153   effect( TEMP tmp, TEMP scr, USE_KILL box );
13154   ins_cost(300);
13155   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
13156   ins_encode( Fast_Lock(object,box,tmp,scr) );
13157   ins_pipe( pipe_slow );
13158 %}
13159 
13160 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13161   match( Set cr (FastUnlock object box) );
13162   effect( TEMP tmp, USE_KILL box );
13163   ins_cost(300);
13164   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
13165   ins_encode( Fast_Unlock(object,box,tmp) );
13166   ins_pipe( pipe_slow );
13167 %}
13168 
13169 
13170 
13171 // ============================================================================
13172 // Safepoint Instruction
13173 instruct safePoint_poll(eFlagsReg cr) %{
13174   match(SafePoint);
13175   effect(KILL cr);
13176 
13177   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13178   // On SPARC that might be acceptable as we can generate the address with
13179   // just a sethi, saving an or.  By polling at offset 0 we can end up
13180   // putting additional pressure on the index-0 in the D$.  Because of
13181   // alignment (just like the situation at hand) the lower indices tend
13182   // to see more traffic.  It'd be better to change the polling address
13183   // to offset 0 of the last $line in the polling page.
13184 
13185   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13186   ins_cost(125);
13187   size(6) ;
13188   ins_encode( Safepoint_Poll() );
13189   ins_pipe( ialu_reg_mem );
13190 %}
13191 
13192 
13193 // ============================================================================
13194 // This name is KNOWN by the ADLC and cannot be changed.
13195 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
13196 // for this guy.
13197 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
13198   match(Set dst (ThreadLocal));
13199   effect(DEF dst, KILL cr);
13200 
13201   format %{ "MOV    $dst, Thread::current()" %}
13202   ins_encode %{
13203     Register dstReg = as_Register($dst$$reg);
13204     __ get_thread(dstReg);
13205   %}
13206   ins_pipe( ialu_reg_fat );
13207 %}
13208 
13209 
13210 
13211 //----------PEEPHOLE RULES-----------------------------------------------------
13212 // These must follow all instruction definitions as they use the names
13213 // defined in the instructions definitions.
13214 //
13215 // peepmatch ( root_instr_name [preceding_instruction]* );
13216 //
13217 // peepconstraint %{
13218 // (instruction_number.operand_name relational_op instruction_number.operand_name
13219 //  [, ...] );
13220 // // instruction numbers are zero-based using left to right order in peepmatch
13221 //
13222 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13223 // // provide an instruction_number.operand_name for each operand that appears
13224 // // in the replacement instruction's match rule
13225 //
13226 // ---------VM FLAGS---------------------------------------------------------
13227 //
13228 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13229 //
13230 // Each peephole rule is given an identifying number starting with zero and
13231 // increasing by one in the order seen by the parser.  An individual peephole
13232 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13233 // on the command-line.
13234 //
13235 // ---------CURRENT LIMITATIONS----------------------------------------------
13236 //
13237 // Only match adjacent instructions in same basic block
13238 // Only equality constraints
13239 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13240 // Only one replacement instruction
13241 //
13242 // ---------EXAMPLE----------------------------------------------------------
13243 //
13244 // // pertinent parts of existing instructions in architecture description
13245 // instruct movI(rRegI dst, rRegI src) %{
13246 //   match(Set dst (CopyI src));
13247 // %}
13248 //
13249 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13250 //   match(Set dst (AddI dst src));
13251 //   effect(KILL cr);
13252 // %}
13253 //
13254 // // Change (inc mov) to lea
13255 // peephole %{
13256 //   // increment preceeded by register-register move
13257 //   peepmatch ( incI_eReg movI );
13258 //   // require that the destination register of the increment
13259 //   // match the destination register of the move
13260 //   peepconstraint ( 0.dst == 1.dst );
13261 //   // construct a replacement instruction that sets
13262 //   // the destination to ( move's source register + one )
13263 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13264 // %}
13265 //
13266 // Implementation no longer uses movX instructions since
13267 // machine-independent system no longer uses CopyX nodes.
13268 //
13269 // peephole %{
13270 //   peepmatch ( incI_eReg movI );
13271 //   peepconstraint ( 0.dst == 1.dst );
13272 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13273 // %}
13274 //
13275 // peephole %{
13276 //   peepmatch ( decI_eReg movI );
13277 //   peepconstraint ( 0.dst == 1.dst );
13278 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13279 // %}
13280 //
13281 // peephole %{
13282 //   peepmatch ( addI_eReg_imm movI );
13283 //   peepconstraint ( 0.dst == 1.dst );
13284 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13285 // %}
13286 //
13287 // peephole %{
13288 //   peepmatch ( addP_eReg_imm movP );
13289 //   peepconstraint ( 0.dst == 1.dst );
13290 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13291 // %}
13292 
13293 // // Change load of spilled value to only a spill
13294 // instruct storeI(memory mem, rRegI src) %{
13295 //   match(Set mem (StoreI mem src));
13296 // %}
13297 //
13298 // instruct loadI(rRegI dst, memory mem) %{
13299 //   match(Set dst (LoadI mem));
13300 // %}
13301 //
13302 peephole %{
13303   peepmatch ( loadI storeI );
13304   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13305   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13306 %}
13307 
13308 //----------SMARTSPILL RULES---------------------------------------------------
13309 // These must follow all instruction definitions as they use the names
13310 // defined in the instructions definitions.