1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag,
 123     parameters_type_data_tag,
 124     speculative_trap_data_tag
 125   };
 126 
 127   enum {
 128     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 129     // The trap state breaks down further as [recompile:1 | reason:3].
 130     // This further breakdown is defined in deoptimization.cpp.
 131     // See Deoptimization::trap_state_reason for an assert that
 132     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 133     //
 134     // The trap_state is collected only if ProfileTraps is true.
 135     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 136     trap_shift = BitsPerByte - trap_bits,
 137     trap_mask = right_n_bits(trap_bits),
 138     trap_mask_in_place = (trap_mask << trap_shift),
 139     flag_limit = trap_shift,
 140     flag_mask = right_n_bits(flag_limit),
 141     first_flag = 0
 142   };
 143 
 144   // Size computation
 145   static int header_size_in_bytes() {
 146     return cell_size;
 147   }
 148   static int header_size_in_cells() {
 149     return 1;
 150   }
 151 
 152   static int compute_size_in_bytes(int cell_count) {
 153     return header_size_in_bytes() + cell_count * cell_size;
 154   }
 155 
 156   // Initialization
 157   void initialize(u1 tag, u2 bci, int cell_count);
 158 
 159   // Accessors
 160   u1 tag() {
 161     return _header._struct._tag;
 162   }
 163 
 164   // Return a few bits of trap state.  Range is [0..trap_mask].
 165   // The state tells if traps with zero, one, or many reasons have occurred.
 166   // It also tells whether zero or many recompilations have occurred.
 167   // The associated trap histogram in the MDO itself tells whether
 168   // traps are common or not.  If a BCI shows that a trap X has
 169   // occurred, and the MDO shows N occurrences of X, we make the
 170   // simplifying assumption that all N occurrences can be blamed
 171   // on that BCI.
 172   int trap_state() const {
 173     return ((_header._struct._flags >> trap_shift) & trap_mask);
 174   }
 175 
 176   void set_trap_state(int new_state) {
 177     assert(ProfileTraps, "used only under +ProfileTraps");
 178     uint old_flags = (_header._struct._flags & flag_mask);
 179     _header._struct._flags = (new_state << trap_shift) | old_flags;
 180   }
 181 
 182   u1 flags() const {
 183     return _header._struct._flags;
 184   }
 185 
 186   u2 bci() const {
 187     return _header._struct._bci;
 188   }
 189 
 190   void set_header(intptr_t value) {
 191     _header._bits = value;
 192   }
 193   intptr_t header() {
 194     return _header._bits;
 195   }
 196   void set_cell_at(int index, intptr_t value) {
 197     _cells[index] = value;
 198   }
 199   void release_set_cell_at(int index, intptr_t value) {
 200     OrderAccess::release_store_ptr(&_cells[index], value);
 201   }
 202   intptr_t cell_at(int index) const {
 203     return _cells[index];
 204   }
 205 
 206   void set_flag_at(int flag_number) {
 207     assert(flag_number < flag_limit, "oob");
 208     _header._struct._flags |= (0x1 << flag_number);
 209   }
 210   bool flag_at(int flag_number) const {
 211     assert(flag_number < flag_limit, "oob");
 212     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 213   }
 214 
 215   // Low-level support for code generation.
 216   static ByteSize header_offset() {
 217     return byte_offset_of(DataLayout, _header);
 218   }
 219   static ByteSize tag_offset() {
 220     return byte_offset_of(DataLayout, _header._struct._tag);
 221   }
 222   static ByteSize flags_offset() {
 223     return byte_offset_of(DataLayout, _header._struct._flags);
 224   }
 225   static ByteSize bci_offset() {
 226     return byte_offset_of(DataLayout, _header._struct._bci);
 227   }
 228   static ByteSize cell_offset(int index) {
 229     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 230   }
 231 #ifdef CC_INTERP
 232   static int cell_offset_in_bytes(int index) {
 233     return (int)offset_of(DataLayout, _cells[index]);
 234   }
 235 #endif // CC_INTERP
 236   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 237   static int flag_number_to_byte_constant(int flag_number) {
 238     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 239     DataLayout temp; temp.set_header(0);
 240     temp.set_flag_at(flag_number);
 241     return temp._header._struct._flags;
 242   }
 243   // Return a value which, when or-ed as a word into _header, sets the flag.
 244   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 245     DataLayout temp; temp.set_header(0);
 246     temp._header._struct._flags = byte_constant;
 247     return temp._header._bits;
 248   }
 249 
 250   ProfileData* data_in();
 251 
 252   // GC support
 253   void clean_weak_klass_links(BoolObjectClosure* cl);
 254 
 255   // Redefinition support
 256   void clean_weak_method_links();
 257 };
 258 
 259 
 260 // ProfileData class hierarchy
 261 class ProfileData;
 262 class   BitData;
 263 class     CounterData;
 264 class       ReceiverTypeData;
 265 class         VirtualCallData;
 266 class           VirtualCallTypeData;
 267 class       RetData;
 268 class       CallTypeData;
 269 class   JumpData;
 270 class     BranchData;
 271 class   ArrayData;
 272 class     MultiBranchData;
 273 class     ArgInfoData;
 274 class     ParametersTypeData;
 275 class   SpeculativeTrapData;
 276 
 277 // ProfileData
 278 //
 279 // A ProfileData object is created to refer to a section of profiling
 280 // data in a structured way.
 281 class ProfileData : public ResourceObj {
 282   friend class TypeEntries;
 283   friend class ReturnTypeEntry;
 284   friend class TypeStackSlotEntries;
 285 private:
 286   enum {
 287     tab_width_one = 16,
 288     tab_width_two = 36
 289   };
 290 
 291   // This is a pointer to a section of profiling data.
 292   DataLayout* _data;
 293 
 294   char* print_data_on_helper(const MethodData* md) const;
 295 
 296 protected:
 297   DataLayout* data() { return _data; }
 298   const DataLayout* data() const { return _data; }
 299 
 300   enum {
 301     cell_size = DataLayout::cell_size
 302   };
 303 
 304 public:
 305   // How many cells are in this?
 306   virtual int cell_count() const {
 307     ShouldNotReachHere();
 308     return -1;
 309   }
 310 
 311   // Return the size of this data.
 312   int size_in_bytes() {
 313     return DataLayout::compute_size_in_bytes(cell_count());
 314   }
 315 
 316 protected:
 317   // Low-level accessors for underlying data
 318   void set_intptr_at(int index, intptr_t value) {
 319     assert(0 <= index && index < cell_count(), "oob");
 320     data()->set_cell_at(index, value);
 321   }
 322   void release_set_intptr_at(int index, intptr_t value) {
 323     assert(0 <= index && index < cell_count(), "oob");
 324     data()->release_set_cell_at(index, value);
 325   }
 326   intptr_t intptr_at(int index) const {
 327     assert(0 <= index && index < cell_count(), "oob");
 328     return data()->cell_at(index);
 329   }
 330   void set_uint_at(int index, uint value) {
 331     set_intptr_at(index, (intptr_t) value);
 332   }
 333   void release_set_uint_at(int index, uint value) {
 334     release_set_intptr_at(index, (intptr_t) value);
 335   }
 336   uint uint_at(int index) const {
 337     return (uint)intptr_at(index);
 338   }
 339   void set_int_at(int index, int value) {
 340     set_intptr_at(index, (intptr_t) value);
 341   }
 342   void release_set_int_at(int index, int value) {
 343     release_set_intptr_at(index, (intptr_t) value);
 344   }
 345   int int_at(int index) const {
 346     return (int)intptr_at(index);
 347   }
 348   int int_at_unchecked(int index) const {
 349     return (int)data()->cell_at(index);
 350   }
 351   void set_oop_at(int index, oop value) {
 352     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 353   }
 354   oop oop_at(int index) const {
 355     return cast_to_oop(intptr_at(index));
 356   }
 357 
 358   void set_flag_at(int flag_number) {
 359     data()->set_flag_at(flag_number);
 360   }
 361   bool flag_at(int flag_number) const {
 362     return data()->flag_at(flag_number);
 363   }
 364 
 365   // two convenient imports for use by subclasses:
 366   static ByteSize cell_offset(int index) {
 367     return DataLayout::cell_offset(index);
 368   }
 369   static int flag_number_to_byte_constant(int flag_number) {
 370     return DataLayout::flag_number_to_byte_constant(flag_number);
 371   }
 372 
 373   ProfileData(DataLayout* data) {
 374     _data = data;
 375   }
 376 
 377 #ifdef CC_INTERP
 378   // Static low level accessors for DataLayout with ProfileData's semantics.
 379 
 380   static int cell_offset_in_bytes(int index) {
 381     return DataLayout::cell_offset_in_bytes(index);
 382   }
 383 
 384   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
 385                                             int inc = DataLayout::counter_increment) {
 386     uint count = ((uint)layout->cell_at(index)) + inc;
 387     if (count == 0) return;
 388     layout->set_cell_at(index, (intptr_t) count);
 389   }
 390 
 391   static int int_at(DataLayout* layout, int index) {
 392     return (int)layout->cell_at(index);
 393   }
 394 
 395   static int uint_at(DataLayout* layout, int index) {
 396     return (uint)layout->cell_at(index);
 397   }
 398 
 399   static oop oop_at(DataLayout* layout, int index) {
 400     return cast_to_oop(layout->cell_at(index));
 401   }
 402 
 403   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
 404     layout->set_cell_at(index, (intptr_t) value);
 405   }
 406 
 407   static void set_flag_at(DataLayout* layout, int flag_number) {
 408     layout->set_flag_at(flag_number);
 409   }
 410 #endif // CC_INTERP
 411 
 412 public:
 413   // Constructor for invalid ProfileData.
 414   ProfileData();
 415 
 416   u2 bci() const {
 417     return data()->bci();
 418   }
 419 
 420   address dp() {
 421     return (address)_data;
 422   }
 423 
 424   int trap_state() const {
 425     return data()->trap_state();
 426   }
 427   void set_trap_state(int new_state) {
 428     data()->set_trap_state(new_state);
 429   }
 430 
 431   // Type checking
 432   virtual bool is_BitData()         const { return false; }
 433   virtual bool is_CounterData()     const { return false; }
 434   virtual bool is_JumpData()        const { return false; }
 435   virtual bool is_ReceiverTypeData()const { return false; }
 436   virtual bool is_VirtualCallData() const { return false; }
 437   virtual bool is_RetData()         const { return false; }
 438   virtual bool is_BranchData()      const { return false; }
 439   virtual bool is_ArrayData()       const { return false; }
 440   virtual bool is_MultiBranchData() const { return false; }
 441   virtual bool is_ArgInfoData()     const { return false; }
 442   virtual bool is_CallTypeData()    const { return false; }
 443   virtual bool is_VirtualCallTypeData()const { return false; }
 444   virtual bool is_ParametersTypeData() const { return false; }
 445   virtual bool is_SpeculativeTrapData()const { return false; }
 446 
 447 
 448   BitData* as_BitData() const {
 449     assert(is_BitData(), "wrong type");
 450     return is_BitData()         ? (BitData*)        this : NULL;
 451   }
 452   CounterData* as_CounterData() const {
 453     assert(is_CounterData(), "wrong type");
 454     return is_CounterData()     ? (CounterData*)    this : NULL;
 455   }
 456   JumpData* as_JumpData() const {
 457     assert(is_JumpData(), "wrong type");
 458     return is_JumpData()        ? (JumpData*)       this : NULL;
 459   }
 460   ReceiverTypeData* as_ReceiverTypeData() const {
 461     assert(is_ReceiverTypeData(), "wrong type");
 462     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 463   }
 464   VirtualCallData* as_VirtualCallData() const {
 465     assert(is_VirtualCallData(), "wrong type");
 466     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 467   }
 468   RetData* as_RetData() const {
 469     assert(is_RetData(), "wrong type");
 470     return is_RetData()         ? (RetData*)        this : NULL;
 471   }
 472   BranchData* as_BranchData() const {
 473     assert(is_BranchData(), "wrong type");
 474     return is_BranchData()      ? (BranchData*)     this : NULL;
 475   }
 476   ArrayData* as_ArrayData() const {
 477     assert(is_ArrayData(), "wrong type");
 478     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 479   }
 480   MultiBranchData* as_MultiBranchData() const {
 481     assert(is_MultiBranchData(), "wrong type");
 482     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 483   }
 484   ArgInfoData* as_ArgInfoData() const {
 485     assert(is_ArgInfoData(), "wrong type");
 486     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 487   }
 488   CallTypeData* as_CallTypeData() const {
 489     assert(is_CallTypeData(), "wrong type");
 490     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 491   }
 492   VirtualCallTypeData* as_VirtualCallTypeData() const {
 493     assert(is_VirtualCallTypeData(), "wrong type");
 494     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 495   }
 496   ParametersTypeData* as_ParametersTypeData() const {
 497     assert(is_ParametersTypeData(), "wrong type");
 498     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 499   }
 500   SpeculativeTrapData* as_SpeculativeTrapData() const {
 501     assert(is_SpeculativeTrapData(), "wrong type");
 502     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 503   }
 504 
 505 
 506   // Subclass specific initialization
 507   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 508 
 509   // GC support
 510   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 511 
 512   // Redefinition support
 513   virtual void clean_weak_method_links() {}
 514 
 515   // CI translation: ProfileData can represent both MethodDataOop data
 516   // as well as CIMethodData data. This function is provided for translating
 517   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 518   // most ProfileData don't require any translation, so we provide the null
 519   // translation here, and the required translators are in the ci subclasses.
 520   virtual void translate_from(const ProfileData* data) {}
 521 
 522   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
 523     ShouldNotReachHere();
 524   }
 525 
 526   void print_data_on(outputStream* st, const MethodData* md) const;
 527 
 528   void print_shared(outputStream* st, const char* name, const char* extra) const;
 529   void tab(outputStream* st, bool first = false) const;
 530 };
 531 
 532 // BitData
 533 //
 534 // A BitData holds a flag or two in its header.
 535 class BitData : public ProfileData {
 536 protected:
 537   enum {
 538     // null_seen:
 539     //  saw a null operand (cast/aastore/instanceof)
 540     null_seen_flag              = DataLayout::first_flag + 0
 541   };
 542   enum { bit_cell_count = 0 };  // no additional data fields needed.
 543 public:
 544   BitData(DataLayout* layout) : ProfileData(layout) {
 545   }
 546 
 547   virtual bool is_BitData() const { return true; }
 548 
 549   static int static_cell_count() {
 550     return bit_cell_count;
 551   }
 552 
 553   virtual int cell_count() const {
 554     return static_cell_count();
 555   }
 556 
 557   // Accessor
 558 
 559   // The null_seen flag bit is specially known to the interpreter.
 560   // Consulting it allows the compiler to avoid setting up null_check traps.
 561   bool null_seen()     { return flag_at(null_seen_flag); }
 562   void set_null_seen()    { set_flag_at(null_seen_flag); }
 563 
 564 
 565   // Code generation support
 566   static int null_seen_byte_constant() {
 567     return flag_number_to_byte_constant(null_seen_flag);
 568   }
 569 
 570   static ByteSize bit_data_size() {
 571     return cell_offset(bit_cell_count);
 572   }
 573 
 574 #ifdef CC_INTERP
 575   static int bit_data_size_in_bytes() {
 576     return cell_offset_in_bytes(bit_cell_count);
 577   }
 578 
 579   static void set_null_seen(DataLayout* layout) {
 580     set_flag_at(layout, null_seen_flag);
 581   }
 582 
 583   static DataLayout* advance(DataLayout* layout) {
 584     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
 585   }
 586 #endif // CC_INTERP
 587 
 588   void print_data_on(outputStream* st, const char* extra = NULL) const;
 589 };
 590 
 591 // CounterData
 592 //
 593 // A CounterData corresponds to a simple counter.
 594 class CounterData : public BitData {
 595 protected:
 596   enum {
 597     count_off,
 598     counter_cell_count
 599   };
 600 public:
 601   CounterData(DataLayout* layout) : BitData(layout) {}
 602 
 603   virtual bool is_CounterData() const { return true; }
 604 
 605   static int static_cell_count() {
 606     return counter_cell_count;
 607   }
 608 
 609   virtual int cell_count() const {
 610     return static_cell_count();
 611   }
 612 
 613   // Direct accessor
 614   uint count() const {
 615     return uint_at(count_off);
 616   }
 617 
 618   // Code generation support
 619   static ByteSize count_offset() {
 620     return cell_offset(count_off);
 621   }
 622   static ByteSize counter_data_size() {
 623     return cell_offset(counter_cell_count);
 624   }
 625 
 626   void set_count(uint count) {
 627     set_uint_at(count_off, count);
 628   }
 629 
 630 #ifdef CC_INTERP
 631   static int counter_data_size_in_bytes() {
 632     return cell_offset_in_bytes(counter_cell_count);
 633   }
 634 
 635   static void increment_count_no_overflow(DataLayout* layout) {
 636     increment_uint_at_no_overflow(layout, count_off);
 637   }
 638 
 639   // Support counter decrementation at checkcast / subtype check failed.
 640   static void decrement_count(DataLayout* layout) {
 641     increment_uint_at_no_overflow(layout, count_off, -1);
 642   }
 643 
 644   static DataLayout* advance(DataLayout* layout) {
 645     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
 646   }
 647 #endif // CC_INTERP
 648 
 649   void print_data_on(outputStream* st, const char* extra = NULL) const;
 650 };
 651 
 652 // JumpData
 653 //
 654 // A JumpData is used to access profiling information for a direct
 655 // branch.  It is a counter, used for counting the number of branches,
 656 // plus a data displacement, used for realigning the data pointer to
 657 // the corresponding target bci.
 658 class JumpData : public ProfileData {
 659 protected:
 660   enum {
 661     taken_off_set,
 662     displacement_off_set,
 663     jump_cell_count
 664   };
 665 
 666   void set_displacement(int displacement) {
 667     set_int_at(displacement_off_set, displacement);
 668   }
 669 
 670 public:
 671   JumpData(DataLayout* layout) : ProfileData(layout) {
 672     assert(layout->tag() == DataLayout::jump_data_tag ||
 673       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 674   }
 675 
 676   virtual bool is_JumpData() const { return true; }
 677 
 678   static int static_cell_count() {
 679     return jump_cell_count;
 680   }
 681 
 682   virtual int cell_count() const {
 683     return static_cell_count();
 684   }
 685 
 686   // Direct accessor
 687   uint taken() const {
 688     return uint_at(taken_off_set);
 689   }
 690 
 691   void set_taken(uint cnt) {
 692     set_uint_at(taken_off_set, cnt);
 693   }
 694 
 695   // Saturating counter
 696   uint inc_taken() {
 697     uint cnt = taken() + 1;
 698     // Did we wrap? Will compiler screw us??
 699     if (cnt == 0) cnt--;
 700     set_uint_at(taken_off_set, cnt);
 701     return cnt;
 702   }
 703 
 704   int displacement() const {
 705     return int_at(displacement_off_set);
 706   }
 707 
 708   // Code generation support
 709   static ByteSize taken_offset() {
 710     return cell_offset(taken_off_set);
 711   }
 712 
 713   static ByteSize displacement_offset() {
 714     return cell_offset(displacement_off_set);
 715   }
 716 
 717 #ifdef CC_INTERP
 718   static void increment_taken_count_no_overflow(DataLayout* layout) {
 719     increment_uint_at_no_overflow(layout, taken_off_set);
 720   }
 721 
 722   static DataLayout* advance_taken(DataLayout* layout) {
 723     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
 724   }
 725 
 726   static uint taken_count(DataLayout* layout) {
 727     return (uint) uint_at(layout, taken_off_set);
 728   }
 729 #endif // CC_INTERP
 730 
 731   // Specific initialization.
 732   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 733 
 734   void print_data_on(outputStream* st, const char* extra = NULL) const;
 735 };
 736 
 737 // Entries in a ProfileData object to record types: it can either be
 738 // none (no profile), unknown (conflicting profile data) or a klass if
 739 // a single one is seen. Whether a null reference was seen is also
 740 // recorded. No counter is associated with the type and a single type
 741 // is tracked (unlike VirtualCallData).
 742 class TypeEntries {
 743 
 744 public:
 745 
 746   // A single cell is used to record information for a type:
 747   // - the cell is initialized to 0
 748   // - when a type is discovered it is stored in the cell
 749   // - bit zero of the cell is used to record whether a null reference
 750   // was encountered or not
 751   // - bit 1 is set to record a conflict in the type information
 752 
 753   enum {
 754     null_seen = 1,
 755     type_mask = ~null_seen,
 756     type_unknown = 2,
 757     status_bits = null_seen | type_unknown,
 758     type_klass_mask = ~status_bits
 759   };
 760 
 761   // what to initialize a cell to
 762   static intptr_t type_none() {
 763     return 0;
 764   }
 765 
 766   // null seen = bit 0 set?
 767   static bool was_null_seen(intptr_t v) {
 768     return (v & null_seen) != 0;
 769   }
 770 
 771   // conflicting type information = bit 1 set?
 772   static bool is_type_unknown(intptr_t v) {
 773     return (v & type_unknown) != 0;
 774   }
 775 
 776   // not type information yet = all bits cleared, ignoring bit 0?
 777   static bool is_type_none(intptr_t v) {
 778     return (v & type_mask) == 0;
 779   }
 780 
 781   // recorded type: cell without bit 0 and 1
 782   static intptr_t klass_part(intptr_t v) {
 783     intptr_t r = v & type_klass_mask;
 784     return r;
 785   }
 786 
 787   // type recorded
 788   static Klass* valid_klass(intptr_t k) {
 789     if (!is_type_none(k) &&
 790         !is_type_unknown(k)) {
 791       Klass* res = (Klass*)klass_part(k);
 792       assert(res != NULL, "invalid");
 793       return res;
 794     } else {
 795       return NULL;
 796     }
 797   }
 798 
 799   static intptr_t with_status(intptr_t k, intptr_t in) {
 800     return k | (in & status_bits);
 801   }
 802 
 803   static intptr_t with_status(Klass* k, intptr_t in) {
 804     return with_status((intptr_t)k, in);
 805   }
 806 
 807   static void print_klass(outputStream* st, intptr_t k);
 808 
 809   // GC support
 810   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 811 
 812 protected:
 813   // ProfileData object these entries are part of
 814   ProfileData* _pd;
 815   // offset within the ProfileData object where the entries start
 816   const int _base_off;
 817 
 818   TypeEntries(int base_off)
 819     : _base_off(base_off), _pd(NULL) {}
 820 
 821   void set_intptr_at(int index, intptr_t value) {
 822     _pd->set_intptr_at(index, value);
 823   }
 824 
 825   intptr_t intptr_at(int index) const {
 826     return _pd->intptr_at(index);
 827   }
 828 
 829 public:
 830   void set_profile_data(ProfileData* pd) {
 831     _pd = pd;
 832   }
 833 };
 834 
 835 // Type entries used for arguments passed at a call and parameters on
 836 // method entry. 2 cells per entry: one for the type encoded as in
 837 // TypeEntries and one initialized with the stack slot where the
 838 // profiled object is to be found so that the interpreter can locate
 839 // it quickly.
 840 class TypeStackSlotEntries : public TypeEntries {
 841 
 842 private:
 843   enum {
 844     stack_slot_entry,
 845     type_entry,
 846     per_arg_cell_count
 847   };
 848 
 849   // offset of cell for stack slot for entry i within ProfileData object
 850   int stack_slot_offset(int i) const {
 851     return _base_off + stack_slot_local_offset(i);
 852   }
 853 
 854 protected:
 855   const int _number_of_entries;
 856 
 857   // offset of cell for type for entry i within ProfileData object
 858   int type_offset(int i) const {
 859     return _base_off + type_local_offset(i);
 860   }
 861 
 862 public:
 863 
 864   TypeStackSlotEntries(int base_off, int nb_entries)
 865     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 866 
 867   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 868 
 869   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 870 
 871   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 872   static int stack_slot_local_offset(int i) {
 873     return i * per_arg_cell_count + stack_slot_entry;
 874   }
 875 
 876   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 877   static int type_local_offset(int i) {
 878     return i * per_arg_cell_count + type_entry;
 879   }
 880 
 881   // stack slot for entry i
 882   uint stack_slot(int i) const {
 883     assert(i >= 0 && i < _number_of_entries, "oob");
 884     return _pd->uint_at(stack_slot_offset(i));
 885   }
 886 
 887   // set stack slot for entry i
 888   void set_stack_slot(int i, uint num) {
 889     assert(i >= 0 && i < _number_of_entries, "oob");
 890     _pd->set_uint_at(stack_slot_offset(i), num);
 891   }
 892 
 893   // type for entry i
 894   intptr_t type(int i) const {
 895     assert(i >= 0 && i < _number_of_entries, "oob");
 896     return _pd->intptr_at(type_offset(i));
 897   }
 898 
 899   // set type for entry i
 900   void set_type(int i, intptr_t k) {
 901     assert(i >= 0 && i < _number_of_entries, "oob");
 902     _pd->set_intptr_at(type_offset(i), k);
 903   }
 904 
 905   static ByteSize per_arg_size() {
 906     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 907   }
 908 
 909   static int per_arg_count() {
 910     return per_arg_cell_count ;
 911   }
 912 
 913   // GC support
 914   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 915 
 916   void print_data_on(outputStream* st) const;
 917 };
 918 
 919 // Type entry used for return from a call. A single cell to record the
 920 // type.
 921 class ReturnTypeEntry : public TypeEntries {
 922 
 923 private:
 924   enum {
 925     cell_count = 1
 926   };
 927 
 928 public:
 929   ReturnTypeEntry(int base_off)
 930     : TypeEntries(base_off) {}
 931 
 932   void post_initialize() {
 933     set_type(type_none());
 934   }
 935 
 936   intptr_t type() const {
 937     return _pd->intptr_at(_base_off);
 938   }
 939 
 940   void set_type(intptr_t k) {
 941     _pd->set_intptr_at(_base_off, k);
 942   }
 943 
 944   static int static_cell_count() {
 945     return cell_count;
 946   }
 947 
 948   static ByteSize size() {
 949     return in_ByteSize(cell_count * DataLayout::cell_size);
 950   }
 951 
 952   ByteSize type_offset() {
 953     return DataLayout::cell_offset(_base_off);
 954   }
 955 
 956   // GC support
 957   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 958 
 959   void print_data_on(outputStream* st) const;
 960 };
 961 
 962 // Entries to collect type information at a call: contains arguments
 963 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 964 // number of cells. Because the number of cells for the return type is
 965 // smaller than the number of cells for the type of an arguments, the
 966 // number of cells is used to tell how many arguments are profiled and
 967 // whether a return value is profiled. See has_arguments() and
 968 // has_return().
 969 class TypeEntriesAtCall {
 970 private:
 971   static int stack_slot_local_offset(int i) {
 972     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 973   }
 974 
 975   static int argument_type_local_offset(int i) {
 976     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
 977   }
 978 
 979 public:
 980 
 981   static int header_cell_count() {
 982     return 1;
 983   }
 984 
 985   static int cell_count_local_offset() {
 986     return 0;
 987   }
 988 
 989   static int compute_cell_count(BytecodeStream* stream);
 990 
 991   static void initialize(DataLayout* dl, int base, int cell_count) {
 992     int off = base + cell_count_local_offset();
 993     dl->set_cell_at(off, cell_count - base - header_cell_count());
 994   }
 995 
 996   static bool arguments_profiling_enabled();
 997   static bool return_profiling_enabled();
 998 
 999   // Code generation support
1000   static ByteSize cell_count_offset() {
1001     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1002   }
1003 
1004   static ByteSize args_data_offset() {
1005     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1006   }
1007 
1008   static ByteSize stack_slot_offset(int i) {
1009     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1010   }
1011 
1012   static ByteSize argument_type_offset(int i) {
1013     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1014   }
1015 
1016   static ByteSize return_only_size() {
1017     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1018   }
1019 
1020 };
1021 
1022 // CallTypeData
1023 //
1024 // A CallTypeData is used to access profiling information about a non
1025 // virtual call for which we collect type information about arguments
1026 // and return value.
1027 class CallTypeData : public CounterData {
1028 private:
1029   // entries for arguments if any
1030   TypeStackSlotEntries _args;
1031   // entry for return type if any
1032   ReturnTypeEntry _ret;
1033 
1034   int cell_count_global_offset() const {
1035     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1036   }
1037 
1038   // number of cells not counting the header
1039   int cell_count_no_header() const {
1040     return uint_at(cell_count_global_offset());
1041   }
1042 
1043   void check_number_of_arguments(int total) {
1044     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1045   }
1046 
1047 public:
1048   CallTypeData(DataLayout* layout) :
1049     CounterData(layout),
1050     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1051     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1052   {
1053     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1054     // Some compilers (VC++) don't want this passed in member initialization list
1055     _args.set_profile_data(this);
1056     _ret.set_profile_data(this);
1057   }
1058 
1059   const TypeStackSlotEntries* args() const {
1060     assert(has_arguments(), "no profiling of arguments");
1061     return &_args;
1062   }
1063 
1064   const ReturnTypeEntry* ret() const {
1065     assert(has_return(), "no profiling of return value");
1066     return &_ret;
1067   }
1068 
1069   virtual bool is_CallTypeData() const { return true; }
1070 
1071   static int static_cell_count() {
1072     return -1;
1073   }
1074 
1075   static int compute_cell_count(BytecodeStream* stream) {
1076     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1077   }
1078 
1079   static void initialize(DataLayout* dl, int cell_count) {
1080     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1081   }
1082 
1083   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1084 
1085   virtual int cell_count() const {
1086     return CounterData::static_cell_count() +
1087       TypeEntriesAtCall::header_cell_count() +
1088       int_at_unchecked(cell_count_global_offset());
1089   }
1090 
1091   int number_of_arguments() const {
1092     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1093   }
1094 
1095   void set_argument_type(int i, Klass* k) {
1096     assert(has_arguments(), "no arguments!");
1097     intptr_t current = _args.type(i);
1098     _args.set_type(i, TypeEntries::with_status(k, current));
1099   }
1100 
1101   void set_return_type(Klass* k) {
1102     assert(has_return(), "no return!");
1103     intptr_t current = _ret.type();
1104     _ret.set_type(TypeEntries::with_status(k, current));
1105   }
1106 
1107   // An entry for a return value takes less space than an entry for an
1108   // argument so if the number of cells exceeds the number of cells
1109   // needed for an argument, this object contains type information for
1110   // at least one argument.
1111   bool has_arguments() const {
1112     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1113     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1114     return res;
1115   }
1116 
1117   // An entry for a return value takes less space than an entry for an
1118   // argument, so if the remainder of the number of cells divided by
1119   // the number of cells for an argument is not null, a return value
1120   // is profiled in this object.
1121   bool has_return() const {
1122     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1123     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1124     return res;
1125   }
1126 
1127   // Code generation support
1128   static ByteSize args_data_offset() {
1129     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1130   }
1131 
1132   // GC support
1133   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1134     if (has_arguments()) {
1135       _args.clean_weak_klass_links(is_alive_closure);
1136     }
1137     if (has_return()) {
1138       _ret.clean_weak_klass_links(is_alive_closure);
1139     }
1140   }
1141 
1142   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1143 };
1144 
1145 // ReceiverTypeData
1146 //
1147 // A ReceiverTypeData is used to access profiling information about a
1148 // dynamic type check.  It consists of a counter which counts the total times
1149 // that the check is reached, and a series of (Klass*, count) pairs
1150 // which are used to store a type profile for the receiver of the check.
1151 class ReceiverTypeData : public CounterData {
1152 protected:
1153   enum {
1154     receiver0_offset = counter_cell_count,
1155     count0_offset,
1156     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1157   };
1158 
1159 public:
1160   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1161     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1162            layout->tag() == DataLayout::virtual_call_data_tag ||
1163            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1164   }
1165 
1166   virtual bool is_ReceiverTypeData() const { return true; }
1167 
1168   static int static_cell_count() {
1169     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1170   }
1171 
1172   virtual int cell_count() const {
1173     return static_cell_count();
1174   }
1175 
1176   // Direct accessors
1177   static uint row_limit() {
1178     return TypeProfileWidth;
1179   }
1180   static int receiver_cell_index(uint row) {
1181     return receiver0_offset + row * receiver_type_row_cell_count;
1182   }
1183   static int receiver_count_cell_index(uint row) {
1184     return count0_offset + row * receiver_type_row_cell_count;
1185   }
1186 
1187   Klass* receiver(uint row) const {
1188     assert(row < row_limit(), "oob");
1189 
1190     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1191     assert(recv == NULL || recv->is_klass(), "wrong type");
1192     return recv;
1193   }
1194 
1195   void set_receiver(uint row, Klass* k) {
1196     assert((uint)row < row_limit(), "oob");
1197     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1198   }
1199 
1200   uint receiver_count(uint row) const {
1201     assert(row < row_limit(), "oob");
1202     return uint_at(receiver_count_cell_index(row));
1203   }
1204 
1205   void set_receiver_count(uint row, uint count) {
1206     assert(row < row_limit(), "oob");
1207     set_uint_at(receiver_count_cell_index(row), count);
1208   }
1209 
1210   void clear_row(uint row) {
1211     assert(row < row_limit(), "oob");
1212     // Clear total count - indicator of polymorphic call site.
1213     // The site may look like as monomorphic after that but
1214     // it allow to have more accurate profiling information because
1215     // there was execution phase change since klasses were unloaded.
1216     // If the site is still polymorphic then MDO will be updated
1217     // to reflect it. But it could be the case that the site becomes
1218     // only bimorphic. Then keeping total count not 0 will be wrong.
1219     // Even if we use monomorphic (when it is not) for compilation
1220     // we will only have trap, deoptimization and recompile again
1221     // with updated MDO after executing method in Interpreter.
1222     // An additional receiver will be recorded in the cleaned row
1223     // during next call execution.
1224     //
1225     // Note: our profiling logic works with empty rows in any slot.
1226     // We do sorting a profiling info (ciCallProfile) for compilation.
1227     //
1228     set_count(0);
1229     set_receiver(row, NULL);
1230     set_receiver_count(row, 0);
1231   }
1232 
1233   // Code generation support
1234   static ByteSize receiver_offset(uint row) {
1235     return cell_offset(receiver_cell_index(row));
1236   }
1237   static ByteSize receiver_count_offset(uint row) {
1238     return cell_offset(receiver_count_cell_index(row));
1239   }
1240   static ByteSize receiver_type_data_size() {
1241     return cell_offset(static_cell_count());
1242   }
1243 
1244   // GC support
1245   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1246 
1247 #ifdef CC_INTERP
1248   static int receiver_type_data_size_in_bytes() {
1249     return cell_offset_in_bytes(static_cell_count());
1250   }
1251 
1252   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1253     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1254     return recv;
1255   }
1256 
1257   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1258     const int num_rows = row_limit();
1259     // Receiver already exists?
1260     for (int row = 0; row < num_rows; row++) {
1261       if (receiver_unchecked(layout, row) == rcvr) {
1262         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1263         return;
1264       }
1265     }
1266     // New receiver, find a free slot.
1267     for (int row = 0; row < num_rows; row++) {
1268       if (receiver_unchecked(layout, row) == NULL) {
1269         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1270         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1271         return;
1272       }
1273     }
1274     // Receiver did not match any saved receiver and there is no empty row for it.
1275     // Increment total counter to indicate polymorphic case.
1276     increment_count_no_overflow(layout);
1277   }
1278 
1279   static DataLayout* advance(DataLayout* layout) {
1280     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1281   }
1282 #endif // CC_INTERP
1283 
1284   void print_receiver_data_on(outputStream* st) const;
1285   void print_data_on(outputStream* st, const char* extra = NULL) const;
1286 };
1287 
1288 // VirtualCallData
1289 //
1290 // A VirtualCallData is used to access profiling information about a
1291 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1292 class VirtualCallData : public ReceiverTypeData {
1293 public:
1294   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1295     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1296            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1297   }
1298 
1299   virtual bool is_VirtualCallData() const { return true; }
1300 
1301   static int static_cell_count() {
1302     // At this point we could add more profile state, e.g., for arguments.
1303     // But for now it's the same size as the base record type.
1304     return ReceiverTypeData::static_cell_count();
1305   }
1306 
1307   virtual int cell_count() const {
1308     return static_cell_count();
1309   }
1310 
1311   // Direct accessors
1312   static ByteSize virtual_call_data_size() {
1313     return cell_offset(static_cell_count());
1314   }
1315 
1316 #ifdef CC_INTERP
1317   static int virtual_call_data_size_in_bytes() {
1318     return cell_offset_in_bytes(static_cell_count());
1319   }
1320 
1321   static DataLayout* advance(DataLayout* layout) {
1322     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1323   }
1324 #endif // CC_INTERP
1325 
1326   void print_data_on(outputStream* st, const char* extra = NULL) const;
1327 };
1328 
1329 // VirtualCallTypeData
1330 //
1331 // A VirtualCallTypeData is used to access profiling information about
1332 // a virtual call for which we collect type information about
1333 // arguments and return value.
1334 class VirtualCallTypeData : public VirtualCallData {
1335 private:
1336   // entries for arguments if any
1337   TypeStackSlotEntries _args;
1338   // entry for return type if any
1339   ReturnTypeEntry _ret;
1340 
1341   int cell_count_global_offset() const {
1342     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1343   }
1344 
1345   // number of cells not counting the header
1346   int cell_count_no_header() const {
1347     return uint_at(cell_count_global_offset());
1348   }
1349 
1350   void check_number_of_arguments(int total) {
1351     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1352   }
1353 
1354 public:
1355   VirtualCallTypeData(DataLayout* layout) :
1356     VirtualCallData(layout),
1357     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1358     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1359   {
1360     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1361     // Some compilers (VC++) don't want this passed in member initialization list
1362     _args.set_profile_data(this);
1363     _ret.set_profile_data(this);
1364   }
1365 
1366   const TypeStackSlotEntries* args() const {
1367     assert(has_arguments(), "no profiling of arguments");
1368     return &_args;
1369   }
1370 
1371   const ReturnTypeEntry* ret() const {
1372     assert(has_return(), "no profiling of return value");
1373     return &_ret;
1374   }
1375 
1376   virtual bool is_VirtualCallTypeData() const { return true; }
1377 
1378   static int static_cell_count() {
1379     return -1;
1380   }
1381 
1382   static int compute_cell_count(BytecodeStream* stream) {
1383     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1384   }
1385 
1386   static void initialize(DataLayout* dl, int cell_count) {
1387     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1388   }
1389 
1390   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1391 
1392   virtual int cell_count() const {
1393     return VirtualCallData::static_cell_count() +
1394       TypeEntriesAtCall::header_cell_count() +
1395       int_at_unchecked(cell_count_global_offset());
1396   }
1397 
1398   int number_of_arguments() const {
1399     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1400   }
1401 
1402   void set_argument_type(int i, Klass* k) {
1403     assert(has_arguments(), "no arguments!");
1404     intptr_t current = _args.type(i);
1405     _args.set_type(i, TypeEntries::with_status(k, current));
1406   }
1407 
1408   void set_return_type(Klass* k) {
1409     assert(has_return(), "no return!");
1410     intptr_t current = _ret.type();
1411     _ret.set_type(TypeEntries::with_status(k, current));
1412   }
1413 
1414   // An entry for a return value takes less space than an entry for an
1415   // argument, so if the remainder of the number of cells divided by
1416   // the number of cells for an argument is not null, a return value
1417   // is profiled in this object.
1418   bool has_return() const {
1419     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1420     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1421     return res;
1422   }
1423 
1424   // An entry for a return value takes less space than an entry for an
1425   // argument so if the number of cells exceeds the number of cells
1426   // needed for an argument, this object contains type information for
1427   // at least one argument.
1428   bool has_arguments() const {
1429     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1430     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1431     return res;
1432   }
1433 
1434   // Code generation support
1435   static ByteSize args_data_offset() {
1436     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1437   }
1438 
1439   // GC support
1440   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1441     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1442     if (has_arguments()) {
1443       _args.clean_weak_klass_links(is_alive_closure);
1444     }
1445     if (has_return()) {
1446       _ret.clean_weak_klass_links(is_alive_closure);
1447     }
1448   }
1449 
1450   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1451 };
1452 
1453 // RetData
1454 //
1455 // A RetData is used to access profiling information for a ret bytecode.
1456 // It is composed of a count of the number of times that the ret has
1457 // been executed, followed by a series of triples of the form
1458 // (bci, count, di) which count the number of times that some bci was the
1459 // target of the ret and cache a corresponding data displacement.
1460 class RetData : public CounterData {
1461 protected:
1462   enum {
1463     bci0_offset = counter_cell_count,
1464     count0_offset,
1465     displacement0_offset,
1466     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1467   };
1468 
1469   void set_bci(uint row, int bci) {
1470     assert((uint)row < row_limit(), "oob");
1471     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1472   }
1473   void release_set_bci(uint row, int bci) {
1474     assert((uint)row < row_limit(), "oob");
1475     // 'release' when setting the bci acts as a valid flag for other
1476     // threads wrt bci_count and bci_displacement.
1477     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1478   }
1479   void set_bci_count(uint row, uint count) {
1480     assert((uint)row < row_limit(), "oob");
1481     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1482   }
1483   void set_bci_displacement(uint row, int disp) {
1484     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1485   }
1486 
1487 public:
1488   RetData(DataLayout* layout) : CounterData(layout) {
1489     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1490   }
1491 
1492   virtual bool is_RetData() const { return true; }
1493 
1494   enum {
1495     no_bci = -1 // value of bci when bci1/2 are not in use.
1496   };
1497 
1498   static int static_cell_count() {
1499     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1500   }
1501 
1502   virtual int cell_count() const {
1503     return static_cell_count();
1504   }
1505 
1506   static uint row_limit() {
1507     return BciProfileWidth;
1508   }
1509   static int bci_cell_index(uint row) {
1510     return bci0_offset + row * ret_row_cell_count;
1511   }
1512   static int bci_count_cell_index(uint row) {
1513     return count0_offset + row * ret_row_cell_count;
1514   }
1515   static int bci_displacement_cell_index(uint row) {
1516     return displacement0_offset + row * ret_row_cell_count;
1517   }
1518 
1519   // Direct accessors
1520   int bci(uint row) const {
1521     return int_at(bci_cell_index(row));
1522   }
1523   uint bci_count(uint row) const {
1524     return uint_at(bci_count_cell_index(row));
1525   }
1526   int bci_displacement(uint row) const {
1527     return int_at(bci_displacement_cell_index(row));
1528   }
1529 
1530   // Interpreter Runtime support
1531   address fixup_ret(int return_bci, MethodData* mdo);
1532 
1533   // Code generation support
1534   static ByteSize bci_offset(uint row) {
1535     return cell_offset(bci_cell_index(row));
1536   }
1537   static ByteSize bci_count_offset(uint row) {
1538     return cell_offset(bci_count_cell_index(row));
1539   }
1540   static ByteSize bci_displacement_offset(uint row) {
1541     return cell_offset(bci_displacement_cell_index(row));
1542   }
1543 
1544 #ifdef CC_INTERP
1545   static DataLayout* advance(MethodData *md, int bci);
1546 #endif // CC_INTERP
1547 
1548   // Specific initialization.
1549   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1550 
1551   void print_data_on(outputStream* st, const char* extra = NULL) const;
1552 };
1553 
1554 // BranchData
1555 //
1556 // A BranchData is used to access profiling data for a two-way branch.
1557 // It consists of taken and not_taken counts as well as a data displacement
1558 // for the taken case.
1559 class BranchData : public JumpData {
1560 protected:
1561   enum {
1562     not_taken_off_set = jump_cell_count,
1563     branch_cell_count
1564   };
1565 
1566   void set_displacement(int displacement) {
1567     set_int_at(displacement_off_set, displacement);
1568   }
1569 
1570 public:
1571   BranchData(DataLayout* layout) : JumpData(layout) {
1572     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1573   }
1574 
1575   virtual bool is_BranchData() const { return true; }
1576 
1577   static int static_cell_count() {
1578     return branch_cell_count;
1579   }
1580 
1581   virtual int cell_count() const {
1582     return static_cell_count();
1583   }
1584 
1585   // Direct accessor
1586   uint not_taken() const {
1587     return uint_at(not_taken_off_set);
1588   }
1589 
1590   void set_not_taken(uint cnt) {
1591     set_uint_at(not_taken_off_set, cnt);
1592   }
1593 
1594   uint inc_not_taken() {
1595     uint cnt = not_taken() + 1;
1596     // Did we wrap? Will compiler screw us??
1597     if (cnt == 0) cnt--;
1598     set_uint_at(not_taken_off_set, cnt);
1599     return cnt;
1600   }
1601 
1602   // Code generation support
1603   static ByteSize not_taken_offset() {
1604     return cell_offset(not_taken_off_set);
1605   }
1606   static ByteSize branch_data_size() {
1607     return cell_offset(branch_cell_count);
1608   }
1609 
1610 #ifdef CC_INTERP
1611   static int branch_data_size_in_bytes() {
1612     return cell_offset_in_bytes(branch_cell_count);
1613   }
1614 
1615   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1616     increment_uint_at_no_overflow(layout, not_taken_off_set);
1617   }
1618 
1619   static DataLayout* advance_not_taken(DataLayout* layout) {
1620     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1621   }
1622 #endif // CC_INTERP
1623 
1624   // Specific initialization.
1625   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1626 
1627   void print_data_on(outputStream* st, const char* extra = NULL) const;
1628 };
1629 
1630 // ArrayData
1631 //
1632 // A ArrayData is a base class for accessing profiling data which does
1633 // not have a statically known size.  It consists of an array length
1634 // and an array start.
1635 class ArrayData : public ProfileData {
1636 protected:
1637   friend class DataLayout;
1638 
1639   enum {
1640     array_len_off_set,
1641     array_start_off_set
1642   };
1643 
1644   uint array_uint_at(int index) const {
1645     int aindex = index + array_start_off_set;
1646     return uint_at(aindex);
1647   }
1648   int array_int_at(int index) const {
1649     int aindex = index + array_start_off_set;
1650     return int_at(aindex);
1651   }
1652   oop array_oop_at(int index) const {
1653     int aindex = index + array_start_off_set;
1654     return oop_at(aindex);
1655   }
1656   void array_set_int_at(int index, int value) {
1657     int aindex = index + array_start_off_set;
1658     set_int_at(aindex, value);
1659   }
1660 
1661 #ifdef CC_INTERP
1662   // Static low level accessors for DataLayout with ArrayData's semantics.
1663 
1664   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1665     int aindex = index + array_start_off_set;
1666     increment_uint_at_no_overflow(layout, aindex);
1667   }
1668 
1669   static int array_int_at(DataLayout* layout, int index) {
1670     int aindex = index + array_start_off_set;
1671     return int_at(layout, aindex);
1672   }
1673 #endif // CC_INTERP
1674 
1675   // Code generation support for subclasses.
1676   static ByteSize array_element_offset(int index) {
1677     return cell_offset(array_start_off_set + index);
1678   }
1679 
1680 public:
1681   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1682 
1683   virtual bool is_ArrayData() const { return true; }
1684 
1685   static int static_cell_count() {
1686     return -1;
1687   }
1688 
1689   int array_len() const {
1690     return int_at_unchecked(array_len_off_set);
1691   }
1692 
1693   virtual int cell_count() const {
1694     return array_len() + 1;
1695   }
1696 
1697   // Code generation support
1698   static ByteSize array_len_offset() {
1699     return cell_offset(array_len_off_set);
1700   }
1701   static ByteSize array_start_offset() {
1702     return cell_offset(array_start_off_set);
1703   }
1704 };
1705 
1706 // MultiBranchData
1707 //
1708 // A MultiBranchData is used to access profiling information for
1709 // a multi-way branch (*switch bytecodes).  It consists of a series
1710 // of (count, displacement) pairs, which count the number of times each
1711 // case was taken and specify the data displacment for each branch target.
1712 class MultiBranchData : public ArrayData {
1713 protected:
1714   enum {
1715     default_count_off_set,
1716     default_disaplacement_off_set,
1717     case_array_start
1718   };
1719   enum {
1720     relative_count_off_set,
1721     relative_displacement_off_set,
1722     per_case_cell_count
1723   };
1724 
1725   void set_default_displacement(int displacement) {
1726     array_set_int_at(default_disaplacement_off_set, displacement);
1727   }
1728   void set_displacement_at(int index, int displacement) {
1729     array_set_int_at(case_array_start +
1730                      index * per_case_cell_count +
1731                      relative_displacement_off_set,
1732                      displacement);
1733   }
1734 
1735 public:
1736   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1737     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1738   }
1739 
1740   virtual bool is_MultiBranchData() const { return true; }
1741 
1742   static int compute_cell_count(BytecodeStream* stream);
1743 
1744   int number_of_cases() const {
1745     int alen = array_len() - 2; // get rid of default case here.
1746     assert(alen % per_case_cell_count == 0, "must be even");
1747     return (alen / per_case_cell_count);
1748   }
1749 
1750   uint default_count() const {
1751     return array_uint_at(default_count_off_set);
1752   }
1753   int default_displacement() const {
1754     return array_int_at(default_disaplacement_off_set);
1755   }
1756 
1757   uint count_at(int index) const {
1758     return array_uint_at(case_array_start +
1759                          index * per_case_cell_count +
1760                          relative_count_off_set);
1761   }
1762   int displacement_at(int index) const {
1763     return array_int_at(case_array_start +
1764                         index * per_case_cell_count +
1765                         relative_displacement_off_set);
1766   }
1767 
1768   // Code generation support
1769   static ByteSize default_count_offset() {
1770     return array_element_offset(default_count_off_set);
1771   }
1772   static ByteSize default_displacement_offset() {
1773     return array_element_offset(default_disaplacement_off_set);
1774   }
1775   static ByteSize case_count_offset(int index) {
1776     return case_array_offset() +
1777            (per_case_size() * index) +
1778            relative_count_offset();
1779   }
1780   static ByteSize case_array_offset() {
1781     return array_element_offset(case_array_start);
1782   }
1783   static ByteSize per_case_size() {
1784     return in_ByteSize(per_case_cell_count) * cell_size;
1785   }
1786   static ByteSize relative_count_offset() {
1787     return in_ByteSize(relative_count_off_set) * cell_size;
1788   }
1789   static ByteSize relative_displacement_offset() {
1790     return in_ByteSize(relative_displacement_off_set) * cell_size;
1791   }
1792 
1793 #ifdef CC_INTERP
1794   static void increment_count_no_overflow(DataLayout* layout, int index) {
1795     if (index == -1) {
1796       increment_array_uint_at_no_overflow(layout, default_count_off_set);
1797     } else {
1798       increment_array_uint_at_no_overflow(layout, case_array_start +
1799                                                   index * per_case_cell_count +
1800                                                   relative_count_off_set);
1801     }
1802   }
1803 
1804   static DataLayout* advance(DataLayout* layout, int index) {
1805     if (index == -1) {
1806       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1807     } else {
1808       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1809                                                                               index * per_case_cell_count +
1810                                                                               relative_displacement_off_set));
1811     }
1812   }
1813 #endif // CC_INTERP
1814 
1815   // Specific initialization.
1816   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1817 
1818   void print_data_on(outputStream* st, const char* extra = NULL) const;
1819 };
1820 
1821 class ArgInfoData : public ArrayData {
1822 
1823 public:
1824   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1825     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1826   }
1827 
1828   virtual bool is_ArgInfoData() const { return true; }
1829 
1830 
1831   int number_of_args() const {
1832     return array_len();
1833   }
1834 
1835   uint arg_modified(int arg) const {
1836     return array_uint_at(arg);
1837   }
1838 
1839   void set_arg_modified(int arg, uint val) {
1840     array_set_int_at(arg, val);
1841   }
1842 
1843   void print_data_on(outputStream* st, const char* extra = NULL) const;
1844 };
1845 
1846 // ParametersTypeData
1847 //
1848 // A ParametersTypeData is used to access profiling information about
1849 // types of parameters to a method
1850 class ParametersTypeData : public ArrayData {
1851 
1852 private:
1853   TypeStackSlotEntries _parameters;
1854 
1855   static int stack_slot_local_offset(int i) {
1856     assert_profiling_enabled();
1857     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1858   }
1859 
1860   static int type_local_offset(int i) {
1861     assert_profiling_enabled();
1862     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1863   }
1864 
1865   static bool profiling_enabled();
1866   static void assert_profiling_enabled() {
1867     assert(profiling_enabled(), "method parameters profiling should be on");
1868   }
1869 
1870 public:
1871   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1872     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1873     // Some compilers (VC++) don't want this passed in member initialization list
1874     _parameters.set_profile_data(this);
1875   }
1876 
1877   static int compute_cell_count(Method* m);
1878 
1879   virtual bool is_ParametersTypeData() const { return true; }
1880 
1881   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1882 
1883   int number_of_parameters() const {
1884     return array_len() / TypeStackSlotEntries::per_arg_count();
1885   }
1886 
1887   const TypeStackSlotEntries* parameters() const { return &_parameters; }
1888 
1889   uint stack_slot(int i) const {
1890     return _parameters.stack_slot(i);
1891   }
1892 
1893   void set_type(int i, Klass* k) {
1894     intptr_t current = _parameters.type(i);
1895     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1896   }
1897 
1898   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1899     _parameters.clean_weak_klass_links(is_alive_closure);
1900   }
1901 
1902   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1903 
1904   static ByteSize stack_slot_offset(int i) {
1905     return cell_offset(stack_slot_local_offset(i));
1906   }
1907 
1908   static ByteSize type_offset(int i) {
1909     return cell_offset(type_local_offset(i));
1910   }
1911 };
1912 
1913 // SpeculativeTrapData
1914 //
1915 // A SpeculativeTrapData is used to record traps due to type
1916 // speculation. It records the root of the compilation: that type
1917 // speculation is wrong in the context of one compilation (for
1918 // method1) doesn't mean it's wrong in the context of another one (for
1919 // method2). Type speculation could have more/different data in the
1920 // context of the compilation of method2 and it's worthwhile to try an
1921 // optimization that failed for compilation of method1 in the context
1922 // of compilation of method2.
1923 // Space for SpeculativeTrapData entries is allocated from the extra
1924 // data space in the MDO. If we run out of space, the trap data for
1925 // the ProfileData at that bci is updated.
1926 class SpeculativeTrapData : public ProfileData {
1927 protected:
1928   enum {
1929     method_offset,
1930     speculative_trap_cell_count
1931   };
1932 public:
1933   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1934     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1935   }
1936 
1937   virtual bool is_SpeculativeTrapData() const { return true; }
1938 
1939   static int static_cell_count() {
1940     return speculative_trap_cell_count;
1941   }
1942 
1943   virtual int cell_count() const {
1944     return static_cell_count();
1945   }
1946 
1947   // Direct accessor
1948   Method* method() const {
1949     return (Method*)intptr_at(method_offset);
1950   }
1951 
1952   void set_method(Method* m) {
1953     set_intptr_at(method_offset, (intptr_t)m);
1954   }
1955 
1956   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1957 };
1958 
1959 // MethodData*
1960 //
1961 // A MethodData* holds information which has been collected about
1962 // a method.  Its layout looks like this:
1963 //
1964 // -----------------------------
1965 // | header                    |
1966 // | klass                     |
1967 // -----------------------------
1968 // | method                    |
1969 // | size of the MethodData* |
1970 // -----------------------------
1971 // | Data entries...           |
1972 // |   (variable size)         |
1973 // |                           |
1974 // .                           .
1975 // .                           .
1976 // .                           .
1977 // |                           |
1978 // -----------------------------
1979 //
1980 // The data entry area is a heterogeneous array of DataLayouts. Each
1981 // DataLayout in the array corresponds to a specific bytecode in the
1982 // method.  The entries in the array are sorted by the corresponding
1983 // bytecode.  Access to the data is via resource-allocated ProfileData,
1984 // which point to the underlying blocks of DataLayout structures.
1985 //
1986 // During interpretation, if profiling in enabled, the interpreter
1987 // maintains a method data pointer (mdp), which points at the entry
1988 // in the array corresponding to the current bci.  In the course of
1989 // intepretation, when a bytecode is encountered that has profile data
1990 // associated with it, the entry pointed to by mdp is updated, then the
1991 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1992 // is NULL to begin with, the interpreter assumes that the current method
1993 // is not (yet) being profiled.
1994 //
1995 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1996 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1997 // from the base of the data entry array.  A "displacement" is the byte offset
1998 // in certain ProfileData objects that indicate the amount the mdp must be
1999 // adjusted in the event of a change in control flow.
2000 //
2001 
2002 CC_INTERP_ONLY(class BytecodeInterpreter;)
2003 class CleanExtraDataClosure;
2004 
2005 class MethodData : public Metadata {
2006   friend class VMStructs;
2007   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2008 private:
2009   friend class ProfileData;
2010 
2011   // Back pointer to the Method*
2012   Method* _method;
2013 
2014   // Size of this oop in bytes
2015   int _size;
2016 
2017   // Cached hint for bci_to_dp and bci_to_data
2018   int _hint_di;
2019 
2020   Mutex _extra_data_lock;
2021 
2022   MethodData(methodHandle method, int size, TRAPS);
2023 public:
2024   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
2025   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2026 
2027   bool is_methodData() const volatile { return true; }
2028 
2029   // Whole-method sticky bits and flags
2030   enum {
2031     _trap_hist_limit    = 20,   // decoupled from Deoptimization::Reason_LIMIT
2032     _trap_hist_mask     = max_jubyte,
2033     _extra_data_count   = 4     // extra DataLayout headers, for trap history
2034   }; // Public flag values
2035 private:
2036   uint _nof_decompiles;             // count of all nmethod removals
2037   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2038   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2039   union {
2040     intptr_t _align;
2041     u1 _array[_trap_hist_limit];
2042   } _trap_hist;
2043 
2044   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2045   intx              _eflags;          // flags on escape information
2046   intx              _arg_local;       // bit set of non-escaping arguments
2047   intx              _arg_stack;       // bit set of stack-allocatable arguments
2048   intx              _arg_returned;    // bit set of returned arguments
2049 
2050   int _creation_mileage;              // method mileage at MDO creation
2051 
2052   // How many invocations has this MDO seen?
2053   // These counters are used to determine the exact age of MDO.
2054   // We need those because in tiered a method can be concurrently
2055   // executed at different levels.
2056   InvocationCounter _invocation_counter;
2057   // Same for backedges.
2058   InvocationCounter _backedge_counter;
2059   // Counter values at the time profiling started.
2060   int               _invocation_counter_start;
2061   int               _backedge_counter_start;
2062 
2063 #if INCLUDE_RTM_OPT
2064   // State of RTM code generation during compilation of the method
2065   int               _rtm_state;
2066 #endif
2067 
2068   // Number of loops and blocks is computed when compiling the first
2069   // time with C1. It is used to determine if method is trivial.
2070   short             _num_loops;
2071   short             _num_blocks;
2072   // Highest compile level this method has ever seen.
2073   u1                _highest_comp_level;
2074   // Same for OSR level
2075   u1                _highest_osr_comp_level;
2076   // Does this method contain anything worth profiling?
2077   bool              _would_profile;
2078 
2079   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2080   int _data_size;
2081 
2082   // data index for the area dedicated to parameters. -1 if no
2083   // parameter profiling.
2084   int _parameters_type_data_di;
2085 
2086   // Beginning of the data entries
2087   intptr_t _data[1];
2088 
2089   // Helper for size computation
2090   static int compute_data_size(BytecodeStream* stream);
2091   static int bytecode_cell_count(Bytecodes::Code code);
2092   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2093   enum { no_profile_data = -1, variable_cell_count = -2 };
2094 
2095   // Helper for initialization
2096   DataLayout* data_layout_at(int data_index) const {
2097     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2098     return (DataLayout*) (((address)_data) + data_index);
2099   }
2100 
2101   // Initialize an individual data segment.  Returns the size of
2102   // the segment in bytes.
2103   int initialize_data(BytecodeStream* stream, int data_index);
2104 
2105   // Helper for data_at
2106   DataLayout* limit_data_position() const {
2107     return (DataLayout*)((address)data_base() + _data_size);
2108   }
2109   bool out_of_bounds(int data_index) const {
2110     return data_index >= data_size();
2111   }
2112 
2113   // Give each of the data entries a chance to perform specific
2114   // data initialization.
2115   void post_initialize(BytecodeStream* stream);
2116 
2117   // hint accessors
2118   int      hint_di() const  { return _hint_di; }
2119   void set_hint_di(int di)  {
2120     assert(!out_of_bounds(di), "hint_di out of bounds");
2121     _hint_di = di;
2122   }
2123   ProfileData* data_before(int bci) {
2124     // avoid SEGV on this edge case
2125     if (data_size() == 0)
2126       return NULL;
2127     int hint = hint_di();
2128     if (data_layout_at(hint)->bci() <= bci)
2129       return data_at(hint);
2130     return first_data();
2131   }
2132 
2133   // What is the index of the first data entry?
2134   int first_di() const { return 0; }
2135 
2136   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2137   // Find or create an extra ProfileData:
2138   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2139 
2140   // return the argument info cell
2141   ArgInfoData *arg_info();
2142 
2143   enum {
2144     no_type_profile = 0,
2145     type_profile_jsr292 = 1,
2146     type_profile_all = 2
2147   };
2148 
2149   static bool profile_jsr292(methodHandle m, int bci);
2150   static int profile_arguments_flag();
2151   static bool profile_all_arguments();
2152   static bool profile_arguments_for_invoke(methodHandle m, int bci);
2153   static int profile_return_flag();
2154   static bool profile_all_return();
2155   static bool profile_return_for_invoke(methodHandle m, int bci);
2156   static int profile_parameters_flag();
2157   static bool profile_parameters_jsr292_only();
2158   static bool profile_all_parameters();
2159 
2160   void clean_extra_data(CleanExtraDataClosure* cl);
2161   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2162   void verify_extra_data_clean(CleanExtraDataClosure* cl);
2163 
2164 public:
2165   static int header_size() {
2166     return sizeof(MethodData)/wordSize;
2167   }
2168 
2169   // Compute the size of a MethodData* before it is created.
2170   static int compute_allocation_size_in_bytes(methodHandle method);
2171   static int compute_allocation_size_in_words(methodHandle method);
2172   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2173 
2174   // Determine if a given bytecode can have profile information.
2175   static bool bytecode_has_profile(Bytecodes::Code code) {
2176     return bytecode_cell_count(code) != no_profile_data;
2177   }
2178 
2179   // reset into original state
2180   void init();
2181 
2182   // My size
2183   int size_in_bytes() const { return _size; }
2184   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2185 #if INCLUDE_SERVICES
2186   void collect_statistics(KlassSizeStats *sz) const;
2187 #endif
2188 
2189   int      creation_mileage() const  { return _creation_mileage; }
2190   void set_creation_mileage(int x)   { _creation_mileage = x; }
2191 
2192   int invocation_count() {
2193     if (invocation_counter()->carry()) {
2194       return InvocationCounter::count_limit;
2195     }
2196     return invocation_counter()->count();
2197   }
2198   int backedge_count() {
2199     if (backedge_counter()->carry()) {
2200       return InvocationCounter::count_limit;
2201     }
2202     return backedge_counter()->count();
2203   }
2204 
2205   int invocation_count_start() {
2206     if (invocation_counter()->carry()) {
2207       return 0;
2208     }
2209     return _invocation_counter_start;
2210   }
2211 
2212   int backedge_count_start() {
2213     if (backedge_counter()->carry()) {
2214       return 0;
2215     }
2216     return _backedge_counter_start;
2217   }
2218 
2219   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2220   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2221 
2222   void reset_start_counters() {
2223     _invocation_counter_start = invocation_count();
2224     _backedge_counter_start = backedge_count();
2225   }
2226 
2227   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2228   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2229 
2230 #if INCLUDE_RTM_OPT
2231   int rtm_state() const {
2232     return _rtm_state;
2233   }
2234   void set_rtm_state(RTMState rstate) {
2235     _rtm_state = (int)rstate;
2236   }
2237   void atomic_set_rtm_state(RTMState rstate) {
2238     Atomic::store((int)rstate, &_rtm_state);
2239   }
2240 
2241   static int rtm_state_offset_in_bytes() {
2242     return offset_of(MethodData, _rtm_state);
2243   }
2244 #endif
2245 
2246   void set_would_profile(bool p)              { _would_profile = p;    }
2247   bool would_profile() const                  { return _would_profile; }
2248 
2249   int highest_comp_level() const              { return _highest_comp_level;      }
2250   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
2251   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
2252   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
2253 
2254   int num_loops() const                       { return _num_loops;  }
2255   void set_num_loops(int n)                   { _num_loops = n;     }
2256   int num_blocks() const                      { return _num_blocks; }
2257   void set_num_blocks(int n)                  { _num_blocks = n;    }
2258 
2259   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2260   static int mileage_of(Method* m);
2261 
2262   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2263   enum EscapeFlag {
2264     estimated    = 1 << 0,
2265     return_local = 1 << 1,
2266     return_allocated = 1 << 2,
2267     allocated_escapes = 1 << 3,
2268     unknown_modified = 1 << 4
2269   };
2270 
2271   intx eflags()                                  { return _eflags; }
2272   intx arg_local()                               { return _arg_local; }
2273   intx arg_stack()                               { return _arg_stack; }
2274   intx arg_returned()                            { return _arg_returned; }
2275   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2276                                                    assert(aid != NULL, "arg_info must be not null");
2277                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2278                                                    return aid->arg_modified(a); }
2279 
2280   void set_eflags(intx v)                        { _eflags = v; }
2281   void set_arg_local(intx v)                     { _arg_local = v; }
2282   void set_arg_stack(intx v)                     { _arg_stack = v; }
2283   void set_arg_returned(intx v)                  { _arg_returned = v; }
2284   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2285                                                    assert(aid != NULL, "arg_info must be not null");
2286                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2287                                                    aid->set_arg_modified(a, v); }
2288 
2289   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2290 
2291   // Location and size of data area
2292   address data_base() const {
2293     return (address) _data;
2294   }
2295   int data_size() const {
2296     return _data_size;
2297   }
2298 
2299   // Accessors
2300   Method* method() const { return _method; }
2301 
2302   // Get the data at an arbitrary (sort of) data index.
2303   ProfileData* data_at(int data_index) const;
2304 
2305   // Walk through the data in order.
2306   ProfileData* first_data() const { return data_at(first_di()); }
2307   ProfileData* next_data(ProfileData* current) const;
2308   bool is_valid(ProfileData* current) const { return current != NULL; }
2309 
2310   // Convert a dp (data pointer) to a di (data index).
2311   int dp_to_di(address dp) const {
2312     return dp - ((address)_data);
2313   }
2314 
2315   address di_to_dp(int di) {
2316     return (address)data_layout_at(di);
2317   }
2318 
2319   // bci to di/dp conversion.
2320   address bci_to_dp(int bci);
2321   int bci_to_di(int bci) {
2322     return dp_to_di(bci_to_dp(bci));
2323   }
2324 
2325   // Get the data at an arbitrary bci, or NULL if there is none.
2326   ProfileData* bci_to_data(int bci);
2327 
2328   // Same, but try to create an extra_data record if one is needed:
2329   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2330     ProfileData* data = NULL;
2331     // If m not NULL, try to allocate a SpeculativeTrapData entry
2332     if (m == NULL) {
2333       data = bci_to_data(bci);
2334     }
2335     if (data != NULL) {
2336       return data;
2337     }
2338     data = bci_to_extra_data(bci, m, true);
2339     if (data != NULL) {
2340       return data;
2341     }
2342     // If SpeculativeTrapData allocation fails try to allocate a
2343     // regular entry
2344     data = bci_to_data(bci);
2345     if (data != NULL) {
2346       return data;
2347     }
2348     return bci_to_extra_data(bci, NULL, true);
2349   }
2350 
2351   // Add a handful of extra data records, for trap tracking.
2352   DataLayout* extra_data_base() const { return limit_data_position(); }
2353   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2354   int extra_data_size() const { return (address)extra_data_limit()
2355                                - (address)extra_data_base(); }
2356   static DataLayout* next_extra(DataLayout* dp);
2357 
2358   // Return (uint)-1 for overflow.
2359   uint trap_count(int reason) const {
2360     assert((uint)reason < _trap_hist_limit, "oob");
2361     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2362   }
2363   // For loops:
2364   static uint trap_reason_limit() { return _trap_hist_limit; }
2365   static uint trap_count_limit()  { return _trap_hist_mask; }
2366   uint inc_trap_count(int reason) {
2367     // Count another trap, anywhere in this method.
2368     assert(reason >= 0, "must be single trap");
2369     if ((uint)reason < _trap_hist_limit) {
2370       uint cnt1 = 1 + _trap_hist._array[reason];
2371       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2372         _trap_hist._array[reason] = cnt1;
2373         return cnt1;
2374       } else {
2375         return _trap_hist_mask + (++_nof_overflow_traps);
2376       }
2377     } else {
2378       // Could not represent the count in the histogram.
2379       return (++_nof_overflow_traps);
2380     }
2381   }
2382 
2383   uint overflow_trap_count() const {
2384     return _nof_overflow_traps;
2385   }
2386   uint overflow_recompile_count() const {
2387     return _nof_overflow_recompiles;
2388   }
2389   void inc_overflow_recompile_count() {
2390     _nof_overflow_recompiles += 1;
2391   }
2392   uint decompile_count() const {
2393     return _nof_decompiles;
2394   }
2395   void inc_decompile_count() {
2396     _nof_decompiles += 1;
2397     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2398       method()->set_not_compilable(CompLevel_all, true, "decompile_count > PerMethodRecompilationCutoff");
2399     }
2400   }
2401 
2402   // Return pointer to area dedicated to parameters in MDO
2403   ParametersTypeData* parameters_type_data() const {
2404     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2405   }
2406 
2407   int parameters_type_data_di() const {
2408     assert(_parameters_type_data_di != -1, "no args type data");
2409     return _parameters_type_data_di;
2410   }
2411 
2412   // Support for code generation
2413   static ByteSize data_offset() {
2414     return byte_offset_of(MethodData, _data[0]);
2415   }
2416 
2417   static ByteSize invocation_counter_offset() {
2418     return byte_offset_of(MethodData, _invocation_counter);
2419   }
2420   static ByteSize backedge_counter_offset() {
2421     return byte_offset_of(MethodData, _backedge_counter);
2422   }
2423 
2424   static ByteSize parameters_type_data_di_offset() {
2425     return byte_offset_of(MethodData, _parameters_type_data_di);
2426   }
2427 
2428   // Deallocation support - no pointer fields to deallocate
2429   void deallocate_contents(ClassLoaderData* loader_data) {}
2430 
2431   // GC support
2432   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2433 
2434   // Printing
2435   void print_on      (outputStream* st) const;
2436   void print_value_on(outputStream* st) const;
2437 
2438   // printing support for method data
2439   void print_data_on(outputStream* st) const;
2440 
2441   const char* internal_name() const { return "{method data}"; }
2442 
2443   // verification
2444   void verify_on(outputStream* st);
2445   void verify_data_on(outputStream* st);
2446 
2447   static bool profile_parameters_for_method(methodHandle m);
2448   static bool profile_arguments();
2449   static bool profile_arguments_jsr292_only();
2450   static bool profile_return();
2451   static bool profile_parameters();
2452   static bool profile_return_jsr292_only();
2453 
2454   void clean_method_data(BoolObjectClosure* is_alive);
2455 
2456   void clean_weak_method_links();
2457 };
2458 
2459 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP