1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/output.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "utilities/xmlstream.hpp"
  44 
  45 extern uint size_exception_handler();
  46 extern uint size_deopt_handler();
  47 
  48 #ifndef PRODUCT
  49 #define DEBUG_ARG(x) , x
  50 #else
  51 #define DEBUG_ARG(x)
  52 #endif
  53 
  54 extern int emit_exception_handler(CodeBuffer &cbuf);
  55 extern int emit_deopt_handler(CodeBuffer &cbuf);
  56 
  57 // Convert Nodes to instruction bits and pass off to the VM
  58 void Compile::Output() {
  59   // RootNode goes
  60   assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
  61 
  62   // The number of new nodes (mostly MachNop) is proportional to
  63   // the number of java calls and inner loops which are aligned.
  64   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  65                             C->inner_loops()*(OptoLoopAlignment-1)),
  66                            "out of nodes before code generation" ) ) {
  67     return;
  68   }
  69   // Make sure I can find the Start Node
  70   Block *entry = _cfg->get_block(1);
  71   Block *broot = _cfg->get_root_block();
  72 
  73   const StartNode *start = entry->head()->as_Start();
  74 
  75   // Replace StartNode with prolog
  76   MachPrologNode *prolog = new (this) MachPrologNode();
  77   entry->map_node(prolog, 0);
  78   _cfg->map_node_to_block(prolog, entry);
  79   _cfg->unmap_node_from_block(start); // start is no longer in any block
  80 
  81   // Virtual methods need an unverified entry point
  82 
  83   if( is_osr_compilation() ) {
  84     if( PoisonOSREntry ) {
  85       // TODO: Should use a ShouldNotReachHereNode...
  86       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  87     }
  88   } else {
  89     if( _method && !_method->flags().is_static() ) {
  90       // Insert unvalidated entry point
  91       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  92     }
  93 
  94   }
  95 
  96 
  97   // Break before main entry point
  98   if( (_method && _method->break_at_execute())
  99 #ifndef PRODUCT
 100     ||(OptoBreakpoint && is_method_compilation())
 101     ||(OptoBreakpointOSR && is_osr_compilation())
 102     ||(OptoBreakpointC2R && !_method)
 103 #endif
 104     ) {
 105     // checking for _method means that OptoBreakpoint does not apply to
 106     // runtime stubs or frame converters
 107     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 108   }
 109 
 110   // Insert epilogs before every return
 111   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 112     Block* block = _cfg->get_block(i);
 113     if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
 114       Node* m = block->end();
 115       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 116         MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 117         block->add_inst(epilog);
 118         _cfg->map_node_to_block(epilog, block);
 119       }
 120     }
 121   }
 122 
 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
 124   if (ZapDeadCompiledLocals) {
 125     Insert_zap_nodes();
 126   }
 127 # endif
 128 
 129   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
 130   blk_starts[0] = 0;
 131 
 132   // Initialize code buffer and process short branches.
 133   CodeBuffer* cb = init_buffer(blk_starts);
 134 
 135   if (cb == NULL || failing()) {
 136     return;
 137   }
 138 
 139   ScheduleAndBundle();
 140 
 141 #ifndef PRODUCT
 142   if (trace_opto_output()) {
 143     tty->print("\n---- After ScheduleAndBundle ----\n");
 144     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 145       tty->print("\nBB#%03d:\n", i);
 146       Block* block = _cfg->get_block(i);
 147       for (uint j = 0; j < block->number_of_nodes(); j++) {
 148         Node* n = block->get_node(j);
 149         OptoReg::Name reg = _regalloc->get_reg_first(n);
 150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 151         n->dump();
 152       }
 153     }
 154   }
 155 #endif
 156 
 157   if (failing()) {
 158     return;
 159   }
 160 
 161   BuildOopMaps();
 162 
 163   if (failing())  {
 164     return;
 165   }
 166 
 167   fill_buffer(cb, blk_starts);
 168 }
 169 
 170 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 171   // Determine if we need to generate a stack overflow check.
 172   // Do it if the method is not a stub function and
 173   // has java calls or has frame size > vm_page_size/8.
 174   return (UseStackBanging && stub_function() == NULL &&
 175           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 176 }
 177 
 178 bool Compile::need_register_stack_bang() const {
 179   // Determine if we need to generate a register stack overflow check.
 180   // This is only used on architectures which have split register
 181   // and memory stacks (ie. IA64).
 182   // Bang if the method is not a stub function and has java calls
 183   return (stub_function() == NULL && has_java_calls());
 184 }
 185 
 186 # ifdef ENABLE_ZAP_DEAD_LOCALS
 187 
 188 
 189 // In order to catch compiler oop-map bugs, we have implemented
 190 // a debugging mode called ZapDeadCompilerLocals.
 191 // This mode causes the compiler to insert a call to a runtime routine,
 192 // "zap_dead_locals", right before each place in compiled code
 193 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 194 // The runtime routine checks that locations mapped as oops are really
 195 // oops, that locations mapped as values do not look like oops,
 196 // and that locations mapped as dead are not used later
 197 // (by zapping them to an invalid address).
 198 
 199 int Compile::_CompiledZap_count = 0;
 200 
 201 void Compile::Insert_zap_nodes() {
 202   bool skip = false;
 203 
 204 
 205   // Dink with static counts because code code without the extra
 206   // runtime calls is MUCH faster for debugging purposes
 207 
 208        if ( CompileZapFirst  ==  0  ) ; // nothing special
 209   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 210   else if ( CompileZapFirst  == CompiledZap_count() )
 211     warning("starting zap compilation after skipping");
 212 
 213        if ( CompileZapLast  ==  -1  ) ; // nothing special
 214   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 215   else if ( CompileZapLast  ==  CompiledZap_count() )
 216     warning("about to compile last zap");
 217 
 218   ++_CompiledZap_count; // counts skipped zaps, too
 219 
 220   if ( skip )  return;
 221 
 222 
 223   if ( _method == NULL )
 224     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 225 
 226   // Insert call to zap runtime stub before every node with an oop map
 227   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
 228     Block *b = _cfg->get_block(i);
 229     for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
 230       Node *n = b->get_node(j);
 231 
 232       // Determining if we should insert a zap-a-lot node in output.
 233       // We do that for all nodes that has oopmap info, except for calls
 234       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 235       // and expect the C code to reset it.  Hence, there can be no safepoints between
 236       // the inlined-allocation and the call to new_Java, etc.
 237       // We also cannot zap monitor calls, as they must hold the microlock
 238       // during the call to Zap, which also wants to grab the microlock.
 239       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 240       if ( insert ) { // it is MachSafePoint
 241         if ( !n->is_MachCall() ) {
 242           insert = false;
 243         } else if ( n->is_MachCall() ) {
 244           MachCallNode* call = n->as_MachCall();
 245           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 246               call->entry_point() == OptoRuntime::new_array_Java() ||
 247               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 248               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 249               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 250               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 251               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 252               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 253               ) {
 254             insert = false;
 255           }
 256         }
 257         if (insert) {
 258           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 259           b->insert_node(zap, j);
 260           _cfg->map_node_to_block(zap, b);
 261           ++j;
 262         }
 263       }
 264     }
 265   }
 266 }
 267 
 268 
 269 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 270   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 271   CallStaticJavaNode* ideal_node =
 272     new (this) CallStaticJavaNode( tf,
 273          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 274                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 275   // We need to copy the OopMap from the site we're zapping at.
 276   // We have to make a copy, because the zap site might not be
 277   // a call site, and zap_dead is a call site.
 278   OopMap* clone = node_to_check->oop_map()->deep_copy();
 279 
 280   // Add the cloned OopMap to the zap node
 281   ideal_node->set_oop_map(clone);
 282   return _matcher->match_sfpt(ideal_node);
 283 }
 284 
 285 bool Compile::is_node_getting_a_safepoint( Node* n) {
 286   // This code duplicates the logic prior to the call of add_safepoint
 287   // below in this file.
 288   if( n->is_MachSafePoint() ) return true;
 289   return false;
 290 }
 291 
 292 # endif // ENABLE_ZAP_DEAD_LOCALS
 293 
 294 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 295 // of a loop. When aligning a loop we need to provide enough instructions
 296 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 297 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 298 // By default, the size is set to 999999 by Block's constructor so that
 299 // a loop will be aligned if the size is not reset here.
 300 //
 301 // Note: Mach instructions could contain several HW instructions
 302 // so the size is estimated only.
 303 //
 304 void Compile::compute_loop_first_inst_sizes() {
 305   // The next condition is used to gate the loop alignment optimization.
 306   // Don't aligned a loop if there are enough instructions at the head of a loop
 307   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 308   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 309   // equal to 11 bytes which is the largest address NOP instruction.
 310   if (MaxLoopPad < OptoLoopAlignment - 1) {
 311     uint last_block = _cfg->number_of_blocks() - 1;
 312     for (uint i = 1; i <= last_block; i++) {
 313       Block* block = _cfg->get_block(i);
 314       // Check the first loop's block which requires an alignment.
 315       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 316         uint sum_size = 0;
 317         uint inst_cnt = NumberOfLoopInstrToAlign;
 318         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 319 
 320         // Check subsequent fallthrough blocks if the loop's first
 321         // block(s) does not have enough instructions.
 322         Block *nb = block;
 323         while(inst_cnt > 0 &&
 324               i < last_block &&
 325               !_cfg->get_block(i + 1)->has_loop_alignment() &&
 326               !nb->has_successor(block)) {
 327           i++;
 328           nb = _cfg->get_block(i);
 329           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 330         } // while( inst_cnt > 0 && i < last_block  )
 331 
 332         block->set_first_inst_size(sum_size);
 333       } // f( b->head()->is_Loop() )
 334     } // for( i <= last_block )
 335   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 336 }
 337 
 338 // The architecture description provides short branch variants for some long
 339 // branch instructions. Replace eligible long branches with short branches.
 340 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 341   // Compute size of each block, method size, and relocation information size
 342   uint nblocks  = _cfg->number_of_blocks();
 343 
 344   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 345   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 346   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 347   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 348   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 349 
 350   bool has_short_branch_candidate = false;
 351 
 352   // Initialize the sizes to 0
 353   code_size  = 0;          // Size in bytes of generated code
 354   stub_size  = 0;          // Size in bytes of all stub entries
 355   // Size in bytes of all relocation entries, including those in local stubs.
 356   // Start with 2-bytes of reloc info for the unvalidated entry point
 357   reloc_size = 1;          // Number of relocation entries
 358 
 359   // Make three passes.  The first computes pessimistic blk_starts,
 360   // relative jmp_offset and reloc_size information.  The second performs
 361   // short branch substitution using the pessimistic sizing.  The
 362   // third inserts nops where needed.
 363 
 364   // Step one, perform a pessimistic sizing pass.
 365   uint last_call_adr = max_uint;
 366   uint last_avoid_back_to_back_adr = max_uint;
 367   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 368   for (uint i = 0; i < nblocks; i++) { // For all blocks
 369     Block* block = _cfg->get_block(i);
 370 
 371     // During short branch replacement, we store the relative (to blk_starts)
 372     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 373     // This is so that we do not need to recompute sizes of all nodes when
 374     // we compute correct blk_starts in our next sizing pass.
 375     jmp_offset[i] = 0;
 376     jmp_size[i]   = 0;
 377     jmp_nidx[i]   = -1;
 378     DEBUG_ONLY( jmp_target[i] = 0; )
 379     DEBUG_ONLY( jmp_rule[i]   = 0; )
 380 
 381     // Sum all instruction sizes to compute block size
 382     uint last_inst = block->number_of_nodes();
 383     uint blk_size = 0;
 384     for (uint j = 0; j < last_inst; j++) {
 385       Node* nj = block->get_node(j);
 386       // Handle machine instruction nodes
 387       if (nj->is_Mach()) {
 388         MachNode *mach = nj->as_Mach();
 389         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 390         reloc_size += mach->reloc();
 391         if (mach->is_MachCall()) {
 392           MachCallNode *mcall = mach->as_MachCall();
 393           // This destination address is NOT PC-relative
 394 
 395           mcall->method_set((intptr_t)mcall->entry_point());
 396 
 397           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 398             stub_size  += CompiledStaticCall::to_interp_stub_size();
 399             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 400           }
 401         } else if (mach->is_MachSafePoint()) {
 402           // If call/safepoint are adjacent, account for possible
 403           // nop to disambiguate the two safepoints.
 404           // ScheduleAndBundle() can rearrange nodes in a block,
 405           // check for all offsets inside this block.
 406           if (last_call_adr >= blk_starts[i]) {
 407             blk_size += nop_size;
 408           }
 409         }
 410         if (mach->avoid_back_to_back()) {
 411           // Nop is inserted between "avoid back to back" instructions.
 412           // ScheduleAndBundle() can rearrange nodes in a block,
 413           // check for all offsets inside this block.
 414           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 415             blk_size += nop_size;
 416           }
 417         }
 418         if (mach->may_be_short_branch()) {
 419           if (!nj->is_MachBranch()) {
 420 #ifndef PRODUCT
 421             nj->dump(3);
 422 #endif
 423             Unimplemented();
 424           }
 425           assert(jmp_nidx[i] == -1, "block should have only one branch");
 426           jmp_offset[i] = blk_size;
 427           jmp_size[i]   = nj->size(_regalloc);
 428           jmp_nidx[i]   = j;
 429           has_short_branch_candidate = true;
 430         }
 431       }
 432       blk_size += nj->size(_regalloc);
 433       // Remember end of call offset
 434       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 435         last_call_adr = blk_starts[i]+blk_size;
 436       }
 437       // Remember end of avoid_back_to_back offset
 438       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
 439         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 440       }
 441     }
 442 
 443     // When the next block starts a loop, we may insert pad NOP
 444     // instructions.  Since we cannot know our future alignment,
 445     // assume the worst.
 446     if (i < nblocks - 1) {
 447       Block* nb = _cfg->get_block(i + 1);
 448       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 449       if (max_loop_pad > 0) {
 450         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 451         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 452         // If either is the last instruction in this block, bump by
 453         // max_loop_pad in lock-step with blk_size, so sizing
 454         // calculations in subsequent blocks still can conservatively
 455         // detect that it may the last instruction in this block.
 456         if (last_call_adr == blk_starts[i]+blk_size) {
 457           last_call_adr += max_loop_pad;
 458         }
 459         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 460           last_avoid_back_to_back_adr += max_loop_pad;
 461         }
 462         blk_size += max_loop_pad;
 463       }
 464     }
 465 
 466     // Save block size; update total method size
 467     blk_starts[i+1] = blk_starts[i]+blk_size;
 468   }
 469 
 470   // Step two, replace eligible long jumps.
 471   bool progress = true;
 472   uint last_may_be_short_branch_adr = max_uint;
 473   while (has_short_branch_candidate && progress) {
 474     progress = false;
 475     has_short_branch_candidate = false;
 476     int adjust_block_start = 0;
 477     for (uint i = 0; i < nblocks; i++) {
 478       Block* block = _cfg->get_block(i);
 479       int idx = jmp_nidx[i];
 480       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 481       if (mach != NULL && mach->may_be_short_branch()) {
 482 #ifdef ASSERT
 483         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 484         int j;
 485         // Find the branch; ignore trailing NOPs.
 486         for (j = block->number_of_nodes()-1; j>=0; j--) {
 487           Node* n = block->get_node(j);
 488           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 489             break;
 490         }
 491         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 492 #endif
 493         int br_size = jmp_size[i];
 494         int br_offs = blk_starts[i] + jmp_offset[i];
 495 
 496         // This requires the TRUE branch target be in succs[0]
 497         uint bnum = block->non_connector_successor(0)->_pre_order;
 498         int offset = blk_starts[bnum] - br_offs;
 499         if (bnum > i) { // adjust following block's offset
 500           offset -= adjust_block_start;
 501         }
 502 
 503         // This block can be a loop header, account for the padding
 504         // in the previous block.
 505         int prev_block_loop_pad = block->code_alignment() - relocInfo::addr_unit();
 506         if (i > 0 && prev_block_loop_pad > 0) {
 507           assert(br_offs >= prev_block_loop_pad, "Should have at least a padding on top");
 508         } else {
 509           // First block or not a loop
 510           prev_block_loop_pad = 0;
 511         }
 512         // In the following code a nop could be inserted before
 513         // the branch which will increase the backward distance.
 514         bool needs_padding = ((uint)(br_offs - prev_block_loop_pad) == last_may_be_short_branch_adr);
 515         if (needs_padding && offset <= 0)
 516           offset -= nop_size;
 517 
 518         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 519           // We've got a winner.  Replace this branch.
 520           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 521 
 522           // Update the jmp_size.
 523           int new_size = replacement->size(_regalloc);
 524           int diff     = br_size - new_size;
 525           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 526           // Conservatively take into accound padding between
 527           // avoid_back_to_back branches. Previous branch could be
 528           // converted into avoid_back_to_back branch during next
 529           // rounds.
 530           if (needs_padding && replacement->avoid_back_to_back()) {
 531             jmp_offset[i] += nop_size;
 532             diff -= nop_size;
 533           }
 534           adjust_block_start += diff;
 535           block->map_node(replacement, idx);
 536           mach->subsume_by(replacement, C);
 537           mach = replacement;
 538           progress = true;
 539 
 540           jmp_size[i] = new_size;
 541           DEBUG_ONLY( jmp_target[i] = bnum; );
 542           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 543         } else {
 544           // The jump distance is not short, try again during next iteration.
 545           has_short_branch_candidate = true;
 546         }
 547       } // (mach->may_be_short_branch())
 548       if (mach != NULL && (mach->may_be_short_branch() ||
 549                            mach->avoid_back_to_back())) {
 550         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 551       }
 552       blk_starts[i+1] -= adjust_block_start;
 553     }
 554   }
 555 
 556 #ifdef ASSERT
 557   for (uint i = 0; i < nblocks; i++) { // For all blocks
 558     if (jmp_target[i] != 0) {
 559       int br_size = jmp_size[i];
 560       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 561       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 562         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 563       }
 564       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 565     }
 566   }
 567 #endif
 568 
 569   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 570   // after ScheduleAndBundle().
 571 
 572   // ------------------
 573   // Compute size for code buffer
 574   code_size = blk_starts[nblocks];
 575 
 576   // Relocation records
 577   reloc_size += 1;              // Relo entry for exception handler
 578 
 579   // Adjust reloc_size to number of record of relocation info
 580   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 581   // a relocation index.
 582   // The CodeBuffer will expand the locs array if this estimate is too low.
 583   reloc_size *= 10 / sizeof(relocInfo);
 584 }
 585 
 586 //------------------------------FillLocArray-----------------------------------
 587 // Create a bit of debug info and append it to the array.  The mapping is from
 588 // Java local or expression stack to constant, register or stack-slot.  For
 589 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 590 // entry has been taken care of and caller should skip it).
 591 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 592   // This should never have accepted Bad before
 593   assert(OptoReg::is_valid(regnum), "location must be valid");
 594   return (OptoReg::is_reg(regnum))
 595     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 596     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 597 }
 598 
 599 
 600 ObjectValue*
 601 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 602   for (int i = 0; i < objs->length(); i++) {
 603     assert(objs->at(i)->is_object(), "corrupt object cache");
 604     ObjectValue* sv = (ObjectValue*) objs->at(i);
 605     if (sv->id() == id) {
 606       return sv;
 607     }
 608   }
 609   // Otherwise..
 610   return NULL;
 611 }
 612 
 613 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 614                                      ObjectValue* sv ) {
 615   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 616   objs->append(sv);
 617 }
 618 
 619 
 620 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 621                             GrowableArray<ScopeValue*> *array,
 622                             GrowableArray<ScopeValue*> *objs ) {
 623   assert( local, "use _top instead of null" );
 624   if (array->length() != idx) {
 625     assert(array->length() == idx + 1, "Unexpected array count");
 626     // Old functionality:
 627     //   return
 628     // New functionality:
 629     //   Assert if the local is not top. In product mode let the new node
 630     //   override the old entry.
 631     assert(local == top(), "LocArray collision");
 632     if (local == top()) {
 633       return;
 634     }
 635     array->pop();
 636   }
 637   const Type *t = local->bottom_type();
 638 
 639   // Is it a safepoint scalar object node?
 640   if (local->is_SafePointScalarObject()) {
 641     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 642 
 643     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 644     if (sv == NULL) {
 645       ciKlass* cik = t->is_oopptr()->klass();
 646       assert(cik->is_instance_klass() ||
 647              cik->is_array_klass(), "Not supported allocation.");
 648       sv = new ObjectValue(spobj->_idx,
 649                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 650       Compile::set_sv_for_object_node(objs, sv);
 651 
 652       uint first_ind = spobj->first_index(sfpt->jvms());
 653       for (uint i = 0; i < spobj->n_fields(); i++) {
 654         Node* fld_node = sfpt->in(first_ind+i);
 655         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 656       }
 657     }
 658     array->append(sv);
 659     return;
 660   }
 661 
 662   // Grab the register number for the local
 663   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 664   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 665     // Record the double as two float registers.
 666     // The register mask for such a value always specifies two adjacent
 667     // float registers, with the lower register number even.
 668     // Normally, the allocation of high and low words to these registers
 669     // is irrelevant, because nearly all operations on register pairs
 670     // (e.g., StoreD) treat them as a single unit.
 671     // Here, we assume in addition that the words in these two registers
 672     // stored "naturally" (by operations like StoreD and double stores
 673     // within the interpreter) such that the lower-numbered register
 674     // is written to the lower memory address.  This may seem like
 675     // a machine dependency, but it is not--it is a requirement on
 676     // the author of the <arch>.ad file to ensure that, for every
 677     // even/odd double-register pair to which a double may be allocated,
 678     // the word in the even single-register is stored to the first
 679     // memory word.  (Note that register numbers are completely
 680     // arbitrary, and are not tied to any machine-level encodings.)
 681 #ifdef _LP64
 682     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 683       array->append(new ConstantIntValue(0));
 684       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 685     } else if ( t->base() == Type::Long ) {
 686       array->append(new ConstantIntValue(0));
 687       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 688     } else if ( t->base() == Type::RawPtr ) {
 689       // jsr/ret return address which must be restored into a the full
 690       // width 64-bit stack slot.
 691       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 692     }
 693 #else //_LP64
 694 #ifdef SPARC
 695     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 696       // For SPARC we have to swap high and low words for
 697       // long values stored in a single-register (g0-g7).
 698       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 699       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 700     } else
 701 #endif //SPARC
 702     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 703       // Repack the double/long as two jints.
 704       // The convention the interpreter uses is that the second local
 705       // holds the first raw word of the native double representation.
 706       // This is actually reasonable, since locals and stack arrays
 707       // grow downwards in all implementations.
 708       // (If, on some machine, the interpreter's Java locals or stack
 709       // were to grow upwards, the embedded doubles would be word-swapped.)
 710       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 711       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 712     }
 713 #endif //_LP64
 714     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 715                OptoReg::is_reg(regnum) ) {
 716       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 717                                    ? Location::float_in_dbl : Location::normal ));
 718     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 719       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 720                                    ? Location::int_in_long : Location::normal ));
 721     } else if( t->base() == Type::NarrowOop ) {
 722       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 723     } else {
 724       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 725     }
 726     return;
 727   }
 728 
 729   // No register.  It must be constant data.
 730   switch (t->base()) {
 731   case Type::Half:              // Second half of a double
 732     ShouldNotReachHere();       // Caller should skip 2nd halves
 733     break;
 734   case Type::AnyPtr:
 735     array->append(new ConstantOopWriteValue(NULL));
 736     break;
 737   case Type::AryPtr:
 738   case Type::InstPtr:          // fall through
 739     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 740     break;
 741   case Type::NarrowOop:
 742     if (t == TypeNarrowOop::NULL_PTR) {
 743       array->append(new ConstantOopWriteValue(NULL));
 744     } else {
 745       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 746     }
 747     break;
 748   case Type::Int:
 749     array->append(new ConstantIntValue(t->is_int()->get_con()));
 750     break;
 751   case Type::RawPtr:
 752     // A return address (T_ADDRESS).
 753     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 754 #ifdef _LP64
 755     // Must be restored to the full-width 64-bit stack slot.
 756     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 757 #else
 758     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 759 #endif
 760     break;
 761   case Type::FloatCon: {
 762     float f = t->is_float_constant()->getf();
 763     array->append(new ConstantIntValue(jint_cast(f)));
 764     break;
 765   }
 766   case Type::DoubleCon: {
 767     jdouble d = t->is_double_constant()->getd();
 768 #ifdef _LP64
 769     array->append(new ConstantIntValue(0));
 770     array->append(new ConstantDoubleValue(d));
 771 #else
 772     // Repack the double as two jints.
 773     // The convention the interpreter uses is that the second local
 774     // holds the first raw word of the native double representation.
 775     // This is actually reasonable, since locals and stack arrays
 776     // grow downwards in all implementations.
 777     // (If, on some machine, the interpreter's Java locals or stack
 778     // were to grow upwards, the embedded doubles would be word-swapped.)
 779     jint   *dp = (jint*)&d;
 780     array->append(new ConstantIntValue(dp[1]));
 781     array->append(new ConstantIntValue(dp[0]));
 782 #endif
 783     break;
 784   }
 785   case Type::Long: {
 786     jlong d = t->is_long()->get_con();
 787 #ifdef _LP64
 788     array->append(new ConstantIntValue(0));
 789     array->append(new ConstantLongValue(d));
 790 #else
 791     // Repack the long as two jints.
 792     // The convention the interpreter uses is that the second local
 793     // holds the first raw word of the native double representation.
 794     // This is actually reasonable, since locals and stack arrays
 795     // grow downwards in all implementations.
 796     // (If, on some machine, the interpreter's Java locals or stack
 797     // were to grow upwards, the embedded doubles would be word-swapped.)
 798     jint *dp = (jint*)&d;
 799     array->append(new ConstantIntValue(dp[1]));
 800     array->append(new ConstantIntValue(dp[0]));
 801 #endif
 802     break;
 803   }
 804   case Type::Top:               // Add an illegal value here
 805     array->append(new LocationValue(Location()));
 806     break;
 807   default:
 808     ShouldNotReachHere();
 809     break;
 810   }
 811 }
 812 
 813 // Determine if this node starts a bundle
 814 bool Compile::starts_bundle(const Node *n) const {
 815   return (_node_bundling_limit > n->_idx &&
 816           _node_bundling_base[n->_idx].starts_bundle());
 817 }
 818 
 819 //--------------------------Process_OopMap_Node--------------------------------
 820 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 821 
 822   // Handle special safepoint nodes for synchronization
 823   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 824   MachCallNode      *mcall;
 825 
 826 #ifdef ENABLE_ZAP_DEAD_LOCALS
 827   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 828 #endif
 829 
 830   int safepoint_pc_offset = current_offset;
 831   bool is_method_handle_invoke = false;
 832   bool return_oop = false;
 833 
 834   // Add the safepoint in the DebugInfoRecorder
 835   if( !mach->is_MachCall() ) {
 836     mcall = NULL;
 837     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 838   } else {
 839     mcall = mach->as_MachCall();
 840 
 841     // Is the call a MethodHandle call?
 842     if (mcall->is_MachCallJava()) {
 843       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 844         assert(has_method_handle_invokes(), "must have been set during call generation");
 845         is_method_handle_invoke = true;
 846       }
 847     }
 848 
 849     // Check if a call returns an object.
 850     if (mcall->return_value_is_used() &&
 851         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 852       return_oop = true;
 853     }
 854     safepoint_pc_offset += mcall->ret_addr_offset();
 855     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 856   }
 857 
 858   // Loop over the JVMState list to add scope information
 859   // Do not skip safepoints with a NULL method, they need monitor info
 860   JVMState* youngest_jvms = sfn->jvms();
 861   int max_depth = youngest_jvms->depth();
 862 
 863   // Allocate the object pool for scalar-replaced objects -- the map from
 864   // small-integer keys (which can be recorded in the local and ostack
 865   // arrays) to descriptions of the object state.
 866   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 867 
 868   // Visit scopes from oldest to youngest.
 869   for (int depth = 1; depth <= max_depth; depth++) {
 870     JVMState* jvms = youngest_jvms->of_depth(depth);
 871     int idx;
 872     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 873     // Safepoints that do not have method() set only provide oop-map and monitor info
 874     // to support GC; these do not support deoptimization.
 875     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 876     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 877     int num_mon  = jvms->nof_monitors();
 878     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 879            "JVMS local count must match that of the method");
 880 
 881     // Add Local and Expression Stack Information
 882 
 883     // Insert locals into the locarray
 884     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 885     for( idx = 0; idx < num_locs; idx++ ) {
 886       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 887     }
 888 
 889     // Insert expression stack entries into the exparray
 890     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 891     for( idx = 0; idx < num_exps; idx++ ) {
 892       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 893     }
 894 
 895     // Add in mappings of the monitors
 896     assert( !method ||
 897             !method->is_synchronized() ||
 898             method->is_native() ||
 899             num_mon > 0 ||
 900             !GenerateSynchronizationCode,
 901             "monitors must always exist for synchronized methods");
 902 
 903     // Build the growable array of ScopeValues for exp stack
 904     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 905 
 906     // Loop over monitors and insert into array
 907     for (idx = 0; idx < num_mon; idx++) {
 908       // Grab the node that defines this monitor
 909       Node* box_node = sfn->monitor_box(jvms, idx);
 910       Node* obj_node = sfn->monitor_obj(jvms, idx);
 911 
 912       // Create ScopeValue for object
 913       ScopeValue *scval = NULL;
 914 
 915       if (obj_node->is_SafePointScalarObject()) {
 916         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 917         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 918         if (scval == NULL) {
 919           const Type *t = spobj->bottom_type();
 920           ciKlass* cik = t->is_oopptr()->klass();
 921           assert(cik->is_instance_klass() ||
 922                  cik->is_array_klass(), "Not supported allocation.");
 923           ObjectValue* sv = new ObjectValue(spobj->_idx,
 924                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 925           Compile::set_sv_for_object_node(objs, sv);
 926 
 927           uint first_ind = spobj->first_index(youngest_jvms);
 928           for (uint i = 0; i < spobj->n_fields(); i++) {
 929             Node* fld_node = sfn->in(first_ind+i);
 930             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 931           }
 932           scval = sv;
 933         }
 934       } else if (!obj_node->is_Con()) {
 935         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 936         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 937           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 938         } else {
 939           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 940         }
 941       } else {
 942         const TypePtr *tp = obj_node->get_ptr_type();
 943         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 944       }
 945 
 946       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 947       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 948       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 949       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 950     }
 951 
 952     // We dump the object pool first, since deoptimization reads it in first.
 953     debug_info()->dump_object_pool(objs);
 954 
 955     // Build first class objects to pass to scope
 956     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 957     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 958     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 959 
 960     // Make method available for all Safepoints
 961     ciMethod* scope_method = method ? method : _method;
 962     // Describe the scope here
 963     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 964     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 965     // Now we can describe the scope.
 966     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 967   } // End jvms loop
 968 
 969   // Mark the end of the scope set.
 970   debug_info()->end_safepoint(safepoint_pc_offset);
 971 }
 972 
 973 
 974 
 975 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 976 class NonSafepointEmitter {
 977   Compile*  C;
 978   JVMState* _pending_jvms;
 979   int       _pending_offset;
 980 
 981   void emit_non_safepoint();
 982 
 983  public:
 984   NonSafepointEmitter(Compile* compile) {
 985     this->C = compile;
 986     _pending_jvms = NULL;
 987     _pending_offset = 0;
 988   }
 989 
 990   void observe_instruction(Node* n, int pc_offset) {
 991     if (!C->debug_info()->recording_non_safepoints())  return;
 992 
 993     Node_Notes* nn = C->node_notes_at(n->_idx);
 994     if (nn == NULL || nn->jvms() == NULL)  return;
 995     if (_pending_jvms != NULL &&
 996         _pending_jvms->same_calls_as(nn->jvms())) {
 997       // Repeated JVMS?  Stretch it up here.
 998       _pending_offset = pc_offset;
 999     } else {
1000       if (_pending_jvms != NULL &&
1001           _pending_offset < pc_offset) {
1002         emit_non_safepoint();
1003       }
1004       _pending_jvms = NULL;
1005       if (pc_offset > C->debug_info()->last_pc_offset()) {
1006         // This is the only way _pending_jvms can become non-NULL:
1007         _pending_jvms = nn->jvms();
1008         _pending_offset = pc_offset;
1009       }
1010     }
1011   }
1012 
1013   // Stay out of the way of real safepoints:
1014   void observe_safepoint(JVMState* jvms, int pc_offset) {
1015     if (_pending_jvms != NULL &&
1016         !_pending_jvms->same_calls_as(jvms) &&
1017         _pending_offset < pc_offset) {
1018       emit_non_safepoint();
1019     }
1020     _pending_jvms = NULL;
1021   }
1022 
1023   void flush_at_end() {
1024     if (_pending_jvms != NULL) {
1025       emit_non_safepoint();
1026     }
1027     _pending_jvms = NULL;
1028   }
1029 };
1030 
1031 void NonSafepointEmitter::emit_non_safepoint() {
1032   JVMState* youngest_jvms = _pending_jvms;
1033   int       pc_offset     = _pending_offset;
1034 
1035   // Clear it now:
1036   _pending_jvms = NULL;
1037 
1038   DebugInformationRecorder* debug_info = C->debug_info();
1039   assert(debug_info->recording_non_safepoints(), "sanity");
1040 
1041   debug_info->add_non_safepoint(pc_offset);
1042   int max_depth = youngest_jvms->depth();
1043 
1044   // Visit scopes from oldest to youngest.
1045   for (int depth = 1; depth <= max_depth; depth++) {
1046     JVMState* jvms = youngest_jvms->of_depth(depth);
1047     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1048     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1049     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1050   }
1051 
1052   // Mark the end of the scope set.
1053   debug_info->end_non_safepoint(pc_offset);
1054 }
1055 
1056 //------------------------------init_buffer------------------------------------
1057 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1058 
1059   // Set the initially allocated size
1060   int  code_req   = initial_code_capacity;
1061   int  locs_req   = initial_locs_capacity;
1062   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1063   int  const_req  = initial_const_capacity;
1064 
1065   int  pad_req    = NativeCall::instruction_size;
1066   // The extra spacing after the code is necessary on some platforms.
1067   // Sometimes we need to patch in a jump after the last instruction,
1068   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1069 
1070   // Compute the byte offset where we can store the deopt pc.
1071   if (fixed_slots() != 0) {
1072     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1073   }
1074 
1075   // Compute prolog code size
1076   _method_size = 0;
1077   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1078 #if defined(IA64) && !defined(AIX)
1079   if (save_argument_registers()) {
1080     // 4815101: this is a stub with implicit and unknown precision fp args.
1081     // The usual spill mechanism can only generate stfd's in this case, which
1082     // doesn't work if the fp reg to spill contains a single-precision denorm.
1083     // Instead, we hack around the normal spill mechanism using stfspill's and
1084     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1085     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1086     //
1087     // If we ever implement 16-byte 'registers' == stack slots, we can
1088     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1089     // instead of stfd/stfs/ldfd/ldfs.
1090     _frame_slots += 8*(16/BytesPerInt);
1091   }
1092 #endif
1093   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1094 
1095   if (has_mach_constant_base_node()) {
1096     uint add_size = 0;
1097     // Fill the constant table.
1098     // Note:  This must happen before shorten_branches.
1099     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1100       Block* b = _cfg->get_block(i);
1101 
1102       for (uint j = 0; j < b->number_of_nodes(); j++) {
1103         Node* n = b->get_node(j);
1104 
1105         // If the node is a MachConstantNode evaluate the constant
1106         // value section.
1107         if (n->is_MachConstant()) {
1108           MachConstantNode* machcon = n->as_MachConstant();
1109           machcon->eval_constant(C);
1110         } else if (n->is_Mach()) {
1111           // On Power there are more nodes that issue constants.
1112           add_size += (n->as_Mach()->ins_num_consts() * 8);
1113         }
1114       }
1115     }
1116 
1117     // Calculate the offsets of the constants and the size of the
1118     // constant table (including the padding to the next section).
1119     constant_table().calculate_offsets_and_size();
1120     const_req = constant_table().size() + add_size;
1121   }
1122 
1123   // Initialize the space for the BufferBlob used to find and verify
1124   // instruction size in MachNode::emit_size()
1125   init_scratch_buffer_blob(const_req);
1126   if (failing())  return NULL; // Out of memory
1127 
1128   // Pre-compute the length of blocks and replace
1129   // long branches with short if machine supports it.
1130   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1131 
1132   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1133   int exception_handler_req = size_exception_handler();
1134   int deopt_handler_req = size_deopt_handler();
1135   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1136   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1137   stub_req += MAX_stubs_size;   // ensure per-stub margin
1138   code_req += MAX_inst_size;    // ensure per-instruction margin
1139 
1140   if (StressCodeBuffers)
1141     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1142 
1143   int total_req =
1144     const_req +
1145     code_req +
1146     pad_req +
1147     stub_req +
1148     exception_handler_req +
1149     deopt_handler_req;               // deopt handler
1150 
1151   if (has_method_handle_invokes())
1152     total_req += deopt_handler_req;  // deopt MH handler
1153 
1154   CodeBuffer* cb = code_buffer();
1155   cb->initialize(total_req, locs_req);
1156 
1157   // Have we run out of code space?
1158   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1159     C->record_failure("CodeCache is full");
1160     return NULL;
1161   }
1162   // Configure the code buffer.
1163   cb->initialize_consts_size(const_req);
1164   cb->initialize_stubs_size(stub_req);
1165   cb->initialize_oop_recorder(env()->oop_recorder());
1166 
1167   // fill in the nop array for bundling computations
1168   MachNode *_nop_list[Bundle::_nop_count];
1169   Bundle::initialize_nops(_nop_list, this);
1170 
1171   return cb;
1172 }
1173 
1174 //------------------------------fill_buffer------------------------------------
1175 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1176   // blk_starts[] contains offsets calculated during short branches processing,
1177   // offsets should not be increased during following steps.
1178 
1179   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1180   // of a loop. It is used to determine the padding for loop alignment.
1181   compute_loop_first_inst_sizes();
1182 
1183   // Create oopmap set.
1184   _oop_map_set = new OopMapSet();
1185 
1186   // !!!!! This preserves old handling of oopmaps for now
1187   debug_info()->set_oopmaps(_oop_map_set);
1188 
1189   uint nblocks  = _cfg->number_of_blocks();
1190   // Count and start of implicit null check instructions
1191   uint inct_cnt = 0;
1192   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1193 
1194   // Count and start of calls
1195   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1196 
1197   uint  return_offset = 0;
1198   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1199 
1200   int previous_offset = 0;
1201   int current_offset  = 0;
1202   int last_call_offset = -1;
1203   int last_avoid_back_to_back_offset = -1;
1204 #ifdef ASSERT
1205   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1206   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1207   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1208   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1209 #endif
1210 
1211   // Create an array of unused labels, one for each basic block, if printing is enabled
1212 #ifndef PRODUCT
1213   int *node_offsets      = NULL;
1214   uint node_offset_limit = unique();
1215 
1216   if (print_assembly())
1217     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1218 #endif
1219 
1220   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1221 
1222   // Emit the constant table.
1223   if (has_mach_constant_base_node()) {
1224     constant_table().emit(*cb);
1225   }
1226 
1227   // Create an array of labels, one for each basic block
1228   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1229   for (uint i=0; i <= nblocks; i++) {
1230     blk_labels[i].init();
1231   }
1232 
1233   // ------------------
1234   // Now fill in the code buffer
1235   Node *delay_slot = NULL;
1236 
1237   for (uint i = 0; i < nblocks; i++) {
1238     Block* block = _cfg->get_block(i);
1239     Node* head = block->head();
1240 
1241     // If this block needs to start aligned (i.e, can be reached other
1242     // than by falling-thru from the previous block), then force the
1243     // start of a new bundle.
1244     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1245       cb->flush_bundle(true);
1246     }
1247 
1248 #ifdef ASSERT
1249     if (!block->is_connector()) {
1250       stringStream st;
1251       block->dump_head(_cfg, &st);
1252       MacroAssembler(cb).block_comment(st.as_string());
1253     }
1254     jmp_target[i] = 0;
1255     jmp_offset[i] = 0;
1256     jmp_size[i]   = 0;
1257     jmp_rule[i]   = 0;
1258 #endif
1259     int blk_offset = current_offset;
1260 
1261     // Define the label at the beginning of the basic block
1262     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1263 
1264     uint last_inst = block->number_of_nodes();
1265 
1266     // Emit block normally, except for last instruction.
1267     // Emit means "dump code bits into code buffer".
1268     for (uint j = 0; j<last_inst; j++) {
1269 
1270       // Get the node
1271       Node* n = block->get_node(j);
1272 
1273       // See if delay slots are supported
1274       if (valid_bundle_info(n) &&
1275           node_bundling(n)->used_in_unconditional_delay()) {
1276         assert(delay_slot == NULL, "no use of delay slot node");
1277         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1278 
1279         delay_slot = n;
1280         continue;
1281       }
1282 
1283       // If this starts a new instruction group, then flush the current one
1284       // (but allow split bundles)
1285       if (Pipeline::requires_bundling() && starts_bundle(n))
1286         cb->flush_bundle(false);
1287 
1288       // The following logic is duplicated in the code ifdeffed for
1289       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1290       // should be factored out.  Or maybe dispersed to the nodes?
1291 
1292       // Special handling for SafePoint/Call Nodes
1293       bool is_mcall = false;
1294       if (n->is_Mach()) {
1295         MachNode *mach = n->as_Mach();
1296         is_mcall = n->is_MachCall();
1297         bool is_sfn = n->is_MachSafePoint();
1298 
1299         // If this requires all previous instructions be flushed, then do so
1300         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1301           cb->flush_bundle(true);
1302           current_offset = cb->insts_size();
1303         }
1304 
1305         // A padding may be needed again since a previous instruction
1306         // could be moved to delay slot.
1307 
1308         // align the instruction if necessary
1309         int padding = mach->compute_padding(current_offset);
1310         // Make sure safepoint node for polling is distinct from a call's
1311         // return by adding a nop if needed.
1312         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1313           padding = nop_size;
1314         }
1315         if (padding == 0 && mach->avoid_back_to_back() &&
1316             current_offset == last_avoid_back_to_back_offset) {
1317           // Avoid back to back some instructions.
1318           padding = nop_size;
1319         }
1320 
1321         if(padding > 0) {
1322           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1323           int nops_cnt = padding / nop_size;
1324           MachNode *nop = new (this) MachNopNode(nops_cnt);
1325           block->insert_node(nop, j++);
1326           last_inst++;
1327           _cfg->map_node_to_block(nop, block);
1328           nop->emit(*cb, _regalloc);
1329           cb->flush_bundle(true);
1330           current_offset = cb->insts_size();
1331         }
1332 
1333         // Remember the start of the last call in a basic block
1334         if (is_mcall) {
1335           MachCallNode *mcall = mach->as_MachCall();
1336 
1337           // This destination address is NOT PC-relative
1338           mcall->method_set((intptr_t)mcall->entry_point());
1339 
1340           // Save the return address
1341           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1342 
1343           if (mcall->is_MachCallLeaf()) {
1344             is_mcall = false;
1345             is_sfn = false;
1346           }
1347         }
1348 
1349         // sfn will be valid whenever mcall is valid now because of inheritance
1350         if (is_sfn || is_mcall) {
1351 
1352           // Handle special safepoint nodes for synchronization
1353           if (!is_mcall) {
1354             MachSafePointNode *sfn = mach->as_MachSafePoint();
1355             // !!!!! Stubs only need an oopmap right now, so bail out
1356             if (sfn->jvms()->method() == NULL) {
1357               // Write the oopmap directly to the code blob??!!
1358 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1359               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1360 #             endif
1361               continue;
1362             }
1363           } // End synchronization
1364 
1365           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1366                                            current_offset);
1367           Process_OopMap_Node(mach, current_offset);
1368         } // End if safepoint
1369 
1370         // If this is a null check, then add the start of the previous instruction to the list
1371         else if( mach->is_MachNullCheck() ) {
1372           inct_starts[inct_cnt++] = previous_offset;
1373         }
1374 
1375         // If this is a branch, then fill in the label with the target BB's label
1376         else if (mach->is_MachBranch()) {
1377           // This requires the TRUE branch target be in succs[0]
1378           uint block_num = block->non_connector_successor(0)->_pre_order;
1379 
1380           // Try to replace long branch if delay slot is not used,
1381           // it is mostly for back branches since forward branch's
1382           // distance is not updated yet.
1383           bool delay_slot_is_used = valid_bundle_info(n) &&
1384                                     node_bundling(n)->use_unconditional_delay();
1385           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1386            assert(delay_slot == NULL, "not expecting delay slot node");
1387            int br_size = n->size(_regalloc);
1388             int offset = blk_starts[block_num] - current_offset;
1389             if (block_num >= i) {
1390               // Current and following block's offset are not
1391               // finalized yet, adjust distance by the difference
1392               // between calculated and final offsets of current block.
1393               offset -= (blk_starts[i] - blk_offset);
1394             }
1395             // In the following code a nop could be inserted before
1396             // the branch which will increase the backward distance.
1397             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1398             if (needs_padding && offset <= 0)
1399               offset -= nop_size;
1400 
1401             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1402               // We've got a winner.  Replace this branch.
1403               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1404 
1405               // Update the jmp_size.
1406               int new_size = replacement->size(_regalloc);
1407               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1408               // Insert padding between avoid_back_to_back branches.
1409               if (needs_padding && replacement->avoid_back_to_back()) {
1410                 MachNode *nop = new (this) MachNopNode();
1411                 block->insert_node(nop, j++);
1412                 _cfg->map_node_to_block(nop, block);
1413                 last_inst++;
1414                 nop->emit(*cb, _regalloc);
1415                 cb->flush_bundle(true);
1416                 current_offset = cb->insts_size();
1417               }
1418 #ifdef ASSERT
1419               jmp_target[i] = block_num;
1420               jmp_offset[i] = current_offset - blk_offset;
1421               jmp_size[i]   = new_size;
1422               jmp_rule[i]   = mach->rule();
1423 #endif
1424               block->map_node(replacement, j);
1425               mach->subsume_by(replacement, C);
1426               n    = replacement;
1427               mach = replacement;
1428             }
1429           }
1430           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1431         } else if (mach->ideal_Opcode() == Op_Jump) {
1432           for (uint h = 0; h < block->_num_succs; h++) {
1433             Block* succs_block = block->_succs[h];
1434             for (uint j = 1; j < succs_block->num_preds(); j++) {
1435               Node* jpn = succs_block->pred(j);
1436               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1437                 uint block_num = succs_block->non_connector()->_pre_order;
1438                 Label *blkLabel = &blk_labels[block_num];
1439                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1440               }
1441             }
1442           }
1443         }
1444 #ifdef ASSERT
1445         // Check that oop-store precedes the card-mark
1446         else if (mach->ideal_Opcode() == Op_StoreCM) {
1447           uint storeCM_idx = j;
1448           int count = 0;
1449           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1450             Node *oop_store = mach->in(prec);  // Precedence edge
1451             if (oop_store == NULL) continue;
1452             count++;
1453             uint i4;
1454             for (i4 = 0; i4 < last_inst; ++i4) {
1455               if (block->get_node(i4) == oop_store) {
1456                 break;
1457               }
1458             }
1459             // Note: This test can provide a false failure if other precedence
1460             // edges have been added to the storeCMNode.
1461             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1462           }
1463           assert(count > 0, "storeCM expects at least one precedence edge");
1464         }
1465 #endif
1466         else if (!n->is_Proj()) {
1467           // Remember the beginning of the previous instruction, in case
1468           // it's followed by a flag-kill and a null-check.  Happens on
1469           // Intel all the time, with add-to-memory kind of opcodes.
1470           previous_offset = current_offset;
1471         }
1472 
1473         // Not an else-if!
1474         // If this is a trap based cmp then add its offset to the list.
1475         if (mach->is_TrapBasedCheckNode()) {
1476           inct_starts[inct_cnt++] = current_offset;
1477         }
1478       }
1479 
1480       // Verify that there is sufficient space remaining
1481       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1482       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1483         C->record_failure("CodeCache is full");
1484         return;
1485       }
1486 
1487       // Save the offset for the listing
1488 #ifndef PRODUCT
1489       if (node_offsets && n->_idx < node_offset_limit)
1490         node_offsets[n->_idx] = cb->insts_size();
1491 #endif
1492 
1493       // "Normal" instruction case
1494       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1495       n->emit(*cb, _regalloc);
1496       current_offset  = cb->insts_size();
1497 
1498 #ifdef ASSERT
1499       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1500         n->dump();
1501         assert(false, "wrong size of mach node");
1502       }
1503 #endif
1504       non_safepoints.observe_instruction(n, current_offset);
1505 
1506       // mcall is last "call" that can be a safepoint
1507       // record it so we can see if a poll will directly follow it
1508       // in which case we'll need a pad to make the PcDesc sites unique
1509       // see  5010568. This can be slightly inaccurate but conservative
1510       // in the case that return address is not actually at current_offset.
1511       // This is a small price to pay.
1512 
1513       if (is_mcall) {
1514         last_call_offset = current_offset;
1515       }
1516 
1517       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1518         // Avoid back to back some instructions.
1519         last_avoid_back_to_back_offset = current_offset;
1520       }
1521 
1522       // See if this instruction has a delay slot
1523       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1524         assert(delay_slot != NULL, "expecting delay slot node");
1525 
1526         // Back up 1 instruction
1527         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1528 
1529         // Save the offset for the listing
1530 #ifndef PRODUCT
1531         if (node_offsets && delay_slot->_idx < node_offset_limit)
1532           node_offsets[delay_slot->_idx] = cb->insts_size();
1533 #endif
1534 
1535         // Support a SafePoint in the delay slot
1536         if (delay_slot->is_MachSafePoint()) {
1537           MachNode *mach = delay_slot->as_Mach();
1538           // !!!!! Stubs only need an oopmap right now, so bail out
1539           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1540             // Write the oopmap directly to the code blob??!!
1541 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1542             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1543 #           endif
1544             delay_slot = NULL;
1545             continue;
1546           }
1547 
1548           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1549           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1550                                            adjusted_offset);
1551           // Generate an OopMap entry
1552           Process_OopMap_Node(mach, adjusted_offset);
1553         }
1554 
1555         // Insert the delay slot instruction
1556         delay_slot->emit(*cb, _regalloc);
1557 
1558         // Don't reuse it
1559         delay_slot = NULL;
1560       }
1561 
1562     } // End for all instructions in block
1563 
1564     // If the next block is the top of a loop, pad this block out to align
1565     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1566     if (i < nblocks-1) {
1567       Block *nb = _cfg->get_block(i + 1);
1568       int padding = nb->alignment_padding(current_offset);
1569       if( padding > 0 ) {
1570         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1571         block->insert_node(nop, block->number_of_nodes());
1572         _cfg->map_node_to_block(nop, block);
1573         nop->emit(*cb, _regalloc);
1574         current_offset = cb->insts_size();
1575       }
1576     }
1577     // Verify that the distance for generated before forward
1578     // short branches is still valid.
1579     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1580 
1581     // Save new block start offset
1582     blk_starts[i] = blk_offset;
1583   } // End of for all blocks
1584   blk_starts[nblocks] = current_offset;
1585 
1586   non_safepoints.flush_at_end();
1587 
1588   // Offset too large?
1589   if (failing())  return;
1590 
1591   // Define a pseudo-label at the end of the code
1592   MacroAssembler(cb).bind( blk_labels[nblocks] );
1593 
1594   // Compute the size of the first block
1595   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1596 
1597   assert(cb->insts_size() < 500000, "method is unreasonably large");
1598 
1599 #ifdef ASSERT
1600   for (uint i = 0; i < nblocks; i++) { // For all blocks
1601     if (jmp_target[i] != 0) {
1602       int br_size = jmp_size[i];
1603       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1604       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1605         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1606         assert(false, "Displacement too large for short jmp");
1607       }
1608     }
1609   }
1610 #endif
1611 
1612 #ifndef PRODUCT
1613   // Information on the size of the method, without the extraneous code
1614   Scheduling::increment_method_size(cb->insts_size());
1615 #endif
1616 
1617   // ------------------
1618   // Fill in exception table entries.
1619   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1620 
1621   // Only java methods have exception handlers and deopt handlers
1622   if (_method) {
1623     // Emit the exception handler code.
1624     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1625     // Emit the deopt handler code.
1626     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1627 
1628     // Emit the MethodHandle deopt handler code (if required).
1629     if (has_method_handle_invokes()) {
1630       // We can use the same code as for the normal deopt handler, we
1631       // just need a different entry point address.
1632       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1633     }
1634   }
1635 
1636   // One last check for failed CodeBuffer::expand:
1637   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1638     C->record_failure("CodeCache is full");
1639     return;
1640   }
1641 
1642 #ifndef PRODUCT
1643   // Dump the assembly code, including basic-block numbers
1644   if (print_assembly()) {
1645     ttyLocker ttyl;  // keep the following output all in one block
1646     if (!VMThread::should_terminate()) {  // test this under the tty lock
1647       // This output goes directly to the tty, not the compiler log.
1648       // To enable tools to match it up with the compilation activity,
1649       // be sure to tag this tty output with the compile ID.
1650       if (xtty != NULL) {
1651         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1652                    is_osr_compilation()    ? " compile_kind='osr'" :
1653                    "");
1654       }
1655       if (method() != NULL) {
1656         method()->print_metadata();
1657       }
1658       dump_asm(node_offsets, node_offset_limit);
1659       if (xtty != NULL) {
1660         xtty->tail("opto_assembly");
1661       }
1662     }
1663   }
1664 #endif
1665 
1666 }
1667 
1668 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1669   _inc_table.set_size(cnt);
1670 
1671   uint inct_cnt = 0;
1672   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1673     Block* block = _cfg->get_block(i);
1674     Node *n = NULL;
1675     int j;
1676 
1677     // Find the branch; ignore trailing NOPs.
1678     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1679       n = block->get_node(j);
1680       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1681         break;
1682       }
1683     }
1684 
1685     // If we didn't find anything, continue
1686     if (j < 0) {
1687       continue;
1688     }
1689 
1690     // Compute ExceptionHandlerTable subtable entry and add it
1691     // (skip empty blocks)
1692     if (n->is_Catch()) {
1693 
1694       // Get the offset of the return from the call
1695       uint call_return = call_returns[block->_pre_order];
1696 #ifdef ASSERT
1697       assert( call_return > 0, "no call seen for this basic block" );
1698       while (block->get_node(--j)->is_MachProj()) ;
1699       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1700 #endif
1701       // last instruction is a CatchNode, find it's CatchProjNodes
1702       int nof_succs = block->_num_succs;
1703       // allocate space
1704       GrowableArray<intptr_t> handler_bcis(nof_succs);
1705       GrowableArray<intptr_t> handler_pcos(nof_succs);
1706       // iterate through all successors
1707       for (int j = 0; j < nof_succs; j++) {
1708         Block* s = block->_succs[j];
1709         bool found_p = false;
1710         for (uint k = 1; k < s->num_preds(); k++) {
1711           Node* pk = s->pred(k);
1712           if (pk->is_CatchProj() && pk->in(0) == n) {
1713             const CatchProjNode* p = pk->as_CatchProj();
1714             found_p = true;
1715             // add the corresponding handler bci & pco information
1716             if (p->_con != CatchProjNode::fall_through_index) {
1717               // p leads to an exception handler (and is not fall through)
1718               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1719               // no duplicates, please
1720               if (!handler_bcis.contains(p->handler_bci())) {
1721                 uint block_num = s->non_connector()->_pre_order;
1722                 handler_bcis.append(p->handler_bci());
1723                 handler_pcos.append(blk_labels[block_num].loc_pos());
1724               }
1725             }
1726           }
1727         }
1728         assert(found_p, "no matching predecessor found");
1729         // Note:  Due to empty block removal, one block may have
1730         // several CatchProj inputs, from the same Catch.
1731       }
1732 
1733       // Set the offset of the return from the call
1734       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1735       continue;
1736     }
1737 
1738     // Handle implicit null exception table updates
1739     if (n->is_MachNullCheck()) {
1740       uint block_num = block->non_connector_successor(0)->_pre_order;
1741       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1742       continue;
1743     }
1744     // Handle implicit exception table updates: trap instructions.
1745     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1746       uint block_num = block->non_connector_successor(0)->_pre_order;
1747       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1748       continue;
1749     }
1750   } // End of for all blocks fill in exception table entries
1751 }
1752 
1753 // Static Variables
1754 #ifndef PRODUCT
1755 uint Scheduling::_total_nop_size = 0;
1756 uint Scheduling::_total_method_size = 0;
1757 uint Scheduling::_total_branches = 0;
1758 uint Scheduling::_total_unconditional_delays = 0;
1759 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1760 #endif
1761 
1762 // Initializer for class Scheduling
1763 
1764 Scheduling::Scheduling(Arena *arena, Compile &compile)
1765   : _arena(arena),
1766     _cfg(compile.cfg()),
1767     _regalloc(compile.regalloc()),
1768     _reg_node(arena),
1769     _bundle_instr_count(0),
1770     _bundle_cycle_number(0),
1771     _scheduled(arena),
1772     _available(arena),
1773     _next_node(NULL),
1774     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1775     _pinch_free_list(arena)
1776 #ifndef PRODUCT
1777   , _branches(0)
1778   , _unconditional_delays(0)
1779 #endif
1780 {
1781   // Create a MachNopNode
1782   _nop = new (&compile) MachNopNode();
1783 
1784   // Now that the nops are in the array, save the count
1785   // (but allow entries for the nops)
1786   _node_bundling_limit = compile.unique();
1787   uint node_max = _regalloc->node_regs_max_index();
1788 
1789   compile.set_node_bundling_limit(_node_bundling_limit);
1790 
1791   // This one is persistent within the Compile class
1792   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1793 
1794   // Allocate space for fixed-size arrays
1795   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1796   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1797   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1798 
1799   // Clear the arrays
1800   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1801   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1802   memset(_uses,               0, node_max * sizeof(short));
1803   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1804 
1805   // Clear the bundling information
1806   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1807 
1808   // Get the last node
1809   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1810 
1811   _next_node = block->get_node(block->number_of_nodes() - 1);
1812 }
1813 
1814 #ifndef PRODUCT
1815 // Scheduling destructor
1816 Scheduling::~Scheduling() {
1817   _total_branches             += _branches;
1818   _total_unconditional_delays += _unconditional_delays;
1819 }
1820 #endif
1821 
1822 // Step ahead "i" cycles
1823 void Scheduling::step(uint i) {
1824 
1825   Bundle *bundle = node_bundling(_next_node);
1826   bundle->set_starts_bundle();
1827 
1828   // Update the bundle record, but leave the flags information alone
1829   if (_bundle_instr_count > 0) {
1830     bundle->set_instr_count(_bundle_instr_count);
1831     bundle->set_resources_used(_bundle_use.resourcesUsed());
1832   }
1833 
1834   // Update the state information
1835   _bundle_instr_count = 0;
1836   _bundle_cycle_number += i;
1837   _bundle_use.step(i);
1838 }
1839 
1840 void Scheduling::step_and_clear() {
1841   Bundle *bundle = node_bundling(_next_node);
1842   bundle->set_starts_bundle();
1843 
1844   // Update the bundle record
1845   if (_bundle_instr_count > 0) {
1846     bundle->set_instr_count(_bundle_instr_count);
1847     bundle->set_resources_used(_bundle_use.resourcesUsed());
1848 
1849     _bundle_cycle_number += 1;
1850   }
1851 
1852   // Clear the bundling information
1853   _bundle_instr_count = 0;
1854   _bundle_use.reset();
1855 
1856   memcpy(_bundle_use_elements,
1857     Pipeline_Use::elaborated_elements,
1858     sizeof(Pipeline_Use::elaborated_elements));
1859 }
1860 
1861 // Perform instruction scheduling and bundling over the sequence of
1862 // instructions in backwards order.
1863 void Compile::ScheduleAndBundle() {
1864 
1865   // Don't optimize this if it isn't a method
1866   if (!_method)
1867     return;
1868 
1869   // Don't optimize this if scheduling is disabled
1870   if (!do_scheduling())
1871     return;
1872 
1873   // Scheduling code works only with pairs (8 bytes) maximum.
1874   if (max_vector_size() > 8)
1875     return;
1876 
1877   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1878 
1879   // Create a data structure for all the scheduling information
1880   Scheduling scheduling(Thread::current()->resource_area(), *this);
1881 
1882   // Walk backwards over each basic block, computing the needed alignment
1883   // Walk over all the basic blocks
1884   scheduling.DoScheduling();
1885 }
1886 
1887 // Compute the latency of all the instructions.  This is fairly simple,
1888 // because we already have a legal ordering.  Walk over the instructions
1889 // from first to last, and compute the latency of the instruction based
1890 // on the latency of the preceding instruction(s).
1891 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1892 #ifndef PRODUCT
1893   if (_cfg->C->trace_opto_output())
1894     tty->print("# -> ComputeLocalLatenciesForward\n");
1895 #endif
1896 
1897   // Walk over all the schedulable instructions
1898   for( uint j=_bb_start; j < _bb_end; j++ ) {
1899 
1900     // This is a kludge, forcing all latency calculations to start at 1.
1901     // Used to allow latency 0 to force an instruction to the beginning
1902     // of the bb
1903     uint latency = 1;
1904     Node *use = bb->get_node(j);
1905     uint nlen = use->len();
1906 
1907     // Walk over all the inputs
1908     for ( uint k=0; k < nlen; k++ ) {
1909       Node *def = use->in(k);
1910       if (!def)
1911         continue;
1912 
1913       uint l = _node_latency[def->_idx] + use->latency(k);
1914       if (latency < l)
1915         latency = l;
1916     }
1917 
1918     _node_latency[use->_idx] = latency;
1919 
1920 #ifndef PRODUCT
1921     if (_cfg->C->trace_opto_output()) {
1922       tty->print("# latency %4d: ", latency);
1923       use->dump();
1924     }
1925 #endif
1926   }
1927 
1928 #ifndef PRODUCT
1929   if (_cfg->C->trace_opto_output())
1930     tty->print("# <- ComputeLocalLatenciesForward\n");
1931 #endif
1932 
1933 } // end ComputeLocalLatenciesForward
1934 
1935 // See if this node fits into the present instruction bundle
1936 bool Scheduling::NodeFitsInBundle(Node *n) {
1937   uint n_idx = n->_idx;
1938 
1939   // If this is the unconditional delay instruction, then it fits
1940   if (n == _unconditional_delay_slot) {
1941 #ifndef PRODUCT
1942     if (_cfg->C->trace_opto_output())
1943       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1944 #endif
1945     return (true);
1946   }
1947 
1948   // If the node cannot be scheduled this cycle, skip it
1949   if (_current_latency[n_idx] > _bundle_cycle_number) {
1950 #ifndef PRODUCT
1951     if (_cfg->C->trace_opto_output())
1952       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1953         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1954 #endif
1955     return (false);
1956   }
1957 
1958   const Pipeline *node_pipeline = n->pipeline();
1959 
1960   uint instruction_count = node_pipeline->instructionCount();
1961   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1962     instruction_count = 0;
1963   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1964     instruction_count++;
1965 
1966   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1967 #ifndef PRODUCT
1968     if (_cfg->C->trace_opto_output())
1969       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1970         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1971 #endif
1972     return (false);
1973   }
1974 
1975   // Don't allow non-machine nodes to be handled this way
1976   if (!n->is_Mach() && instruction_count == 0)
1977     return (false);
1978 
1979   // See if there is any overlap
1980   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1981 
1982   if (delay > 0) {
1983 #ifndef PRODUCT
1984     if (_cfg->C->trace_opto_output())
1985       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1986 #endif
1987     return false;
1988   }
1989 
1990 #ifndef PRODUCT
1991   if (_cfg->C->trace_opto_output())
1992     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1993 #endif
1994 
1995   return true;
1996 }
1997 
1998 Node * Scheduling::ChooseNodeToBundle() {
1999   uint siz = _available.size();
2000 
2001   if (siz == 0) {
2002 
2003 #ifndef PRODUCT
2004     if (_cfg->C->trace_opto_output())
2005       tty->print("#   ChooseNodeToBundle: NULL\n");
2006 #endif
2007     return (NULL);
2008   }
2009 
2010   // Fast path, if only 1 instruction in the bundle
2011   if (siz == 1) {
2012 #ifndef PRODUCT
2013     if (_cfg->C->trace_opto_output()) {
2014       tty->print("#   ChooseNodeToBundle (only 1): ");
2015       _available[0]->dump();
2016     }
2017 #endif
2018     return (_available[0]);
2019   }
2020 
2021   // Don't bother, if the bundle is already full
2022   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2023     for ( uint i = 0; i < siz; i++ ) {
2024       Node *n = _available[i];
2025 
2026       // Skip projections, we'll handle them another way
2027       if (n->is_Proj())
2028         continue;
2029 
2030       // This presupposed that instructions are inserted into the
2031       // available list in a legality order; i.e. instructions that
2032       // must be inserted first are at the head of the list
2033       if (NodeFitsInBundle(n)) {
2034 #ifndef PRODUCT
2035         if (_cfg->C->trace_opto_output()) {
2036           tty->print("#   ChooseNodeToBundle: ");
2037           n->dump();
2038         }
2039 #endif
2040         return (n);
2041       }
2042     }
2043   }
2044 
2045   // Nothing fits in this bundle, choose the highest priority
2046 #ifndef PRODUCT
2047   if (_cfg->C->trace_opto_output()) {
2048     tty->print("#   ChooseNodeToBundle: ");
2049     _available[0]->dump();
2050   }
2051 #endif
2052 
2053   return _available[0];
2054 }
2055 
2056 void Scheduling::AddNodeToAvailableList(Node *n) {
2057   assert( !n->is_Proj(), "projections never directly made available" );
2058 #ifndef PRODUCT
2059   if (_cfg->C->trace_opto_output()) {
2060     tty->print("#   AddNodeToAvailableList: ");
2061     n->dump();
2062   }
2063 #endif
2064 
2065   int latency = _current_latency[n->_idx];
2066 
2067   // Insert in latency order (insertion sort)
2068   uint i;
2069   for ( i=0; i < _available.size(); i++ )
2070     if (_current_latency[_available[i]->_idx] > latency)
2071       break;
2072 
2073   // Special Check for compares following branches
2074   if( n->is_Mach() && _scheduled.size() > 0 ) {
2075     int op = n->as_Mach()->ideal_Opcode();
2076     Node *last = _scheduled[0];
2077     if( last->is_MachIf() && last->in(1) == n &&
2078         ( op == Op_CmpI ||
2079           op == Op_CmpU ||
2080           op == Op_CmpP ||
2081           op == Op_CmpF ||
2082           op == Op_CmpD ||
2083           op == Op_CmpL ) ) {
2084 
2085       // Recalculate position, moving to front of same latency
2086       for ( i=0 ; i < _available.size(); i++ )
2087         if (_current_latency[_available[i]->_idx] >= latency)
2088           break;
2089     }
2090   }
2091 
2092   // Insert the node in the available list
2093   _available.insert(i, n);
2094 
2095 #ifndef PRODUCT
2096   if (_cfg->C->trace_opto_output())
2097     dump_available();
2098 #endif
2099 }
2100 
2101 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2102   for ( uint i=0; i < n->len(); i++ ) {
2103     Node *def = n->in(i);
2104     if (!def) continue;
2105     if( def->is_Proj() )        // If this is a machine projection, then
2106       def = def->in(0);         // propagate usage thru to the base instruction
2107 
2108     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2109       continue;
2110     }
2111 
2112     // Compute the latency
2113     uint l = _bundle_cycle_number + n->latency(i);
2114     if (_current_latency[def->_idx] < l)
2115       _current_latency[def->_idx] = l;
2116 
2117     // If this does not have uses then schedule it
2118     if ((--_uses[def->_idx]) == 0)
2119       AddNodeToAvailableList(def);
2120   }
2121 }
2122 
2123 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2124 #ifndef PRODUCT
2125   if (_cfg->C->trace_opto_output()) {
2126     tty->print("#   AddNodeToBundle: ");
2127     n->dump();
2128   }
2129 #endif
2130 
2131   // Remove this from the available list
2132   uint i;
2133   for (i = 0; i < _available.size(); i++)
2134     if (_available[i] == n)
2135       break;
2136   assert(i < _available.size(), "entry in _available list not found");
2137   _available.remove(i);
2138 
2139   // See if this fits in the current bundle
2140   const Pipeline *node_pipeline = n->pipeline();
2141   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2142 
2143   // Check for instructions to be placed in the delay slot. We
2144   // do this before we actually schedule the current instruction,
2145   // because the delay slot follows the current instruction.
2146   if (Pipeline::_branch_has_delay_slot &&
2147       node_pipeline->hasBranchDelay() &&
2148       !_unconditional_delay_slot) {
2149 
2150     uint siz = _available.size();
2151 
2152     // Conditional branches can support an instruction that
2153     // is unconditionally executed and not dependent by the
2154     // branch, OR a conditionally executed instruction if
2155     // the branch is taken.  In practice, this means that
2156     // the first instruction at the branch target is
2157     // copied to the delay slot, and the branch goes to
2158     // the instruction after that at the branch target
2159     if ( n->is_MachBranch() ) {
2160 
2161       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2162       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2163 
2164 #ifndef PRODUCT
2165       _branches++;
2166 #endif
2167 
2168       // At least 1 instruction is on the available list
2169       // that is not dependent on the branch
2170       for (uint i = 0; i < siz; i++) {
2171         Node *d = _available[i];
2172         const Pipeline *avail_pipeline = d->pipeline();
2173 
2174         // Don't allow safepoints in the branch shadow, that will
2175         // cause a number of difficulties
2176         if ( avail_pipeline->instructionCount() == 1 &&
2177             !avail_pipeline->hasMultipleBundles() &&
2178             !avail_pipeline->hasBranchDelay() &&
2179             Pipeline::instr_has_unit_size() &&
2180             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2181             NodeFitsInBundle(d) &&
2182             !node_bundling(d)->used_in_delay()) {
2183 
2184           if (d->is_Mach() && !d->is_MachSafePoint()) {
2185             // A node that fits in the delay slot was found, so we need to
2186             // set the appropriate bits in the bundle pipeline information so
2187             // that it correctly indicates resource usage.  Later, when we
2188             // attempt to add this instruction to the bundle, we will skip
2189             // setting the resource usage.
2190             _unconditional_delay_slot = d;
2191             node_bundling(n)->set_use_unconditional_delay();
2192             node_bundling(d)->set_used_in_unconditional_delay();
2193             _bundle_use.add_usage(avail_pipeline->resourceUse());
2194             _current_latency[d->_idx] = _bundle_cycle_number;
2195             _next_node = d;
2196             ++_bundle_instr_count;
2197 #ifndef PRODUCT
2198             _unconditional_delays++;
2199 #endif
2200             break;
2201           }
2202         }
2203       }
2204     }
2205 
2206     // No delay slot, add a nop to the usage
2207     if (!_unconditional_delay_slot) {
2208       // See if adding an instruction in the delay slot will overflow
2209       // the bundle.
2210       if (!NodeFitsInBundle(_nop)) {
2211 #ifndef PRODUCT
2212         if (_cfg->C->trace_opto_output())
2213           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2214 #endif
2215         step(1);
2216       }
2217 
2218       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2219       _next_node = _nop;
2220       ++_bundle_instr_count;
2221     }
2222 
2223     // See if the instruction in the delay slot requires a
2224     // step of the bundles
2225     if (!NodeFitsInBundle(n)) {
2226 #ifndef PRODUCT
2227         if (_cfg->C->trace_opto_output())
2228           tty->print("#  *** STEP(branch won't fit) ***\n");
2229 #endif
2230         // Update the state information
2231         _bundle_instr_count = 0;
2232         _bundle_cycle_number += 1;
2233         _bundle_use.step(1);
2234     }
2235   }
2236 
2237   // Get the number of instructions
2238   uint instruction_count = node_pipeline->instructionCount();
2239   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2240     instruction_count = 0;
2241 
2242   // Compute the latency information
2243   uint delay = 0;
2244 
2245   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2246     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2247     if (relative_latency < 0)
2248       relative_latency = 0;
2249 
2250     delay = _bundle_use.full_latency(relative_latency, node_usage);
2251 
2252     // Does not fit in this bundle, start a new one
2253     if (delay > 0) {
2254       step(delay);
2255 
2256 #ifndef PRODUCT
2257       if (_cfg->C->trace_opto_output())
2258         tty->print("#  *** STEP(%d) ***\n", delay);
2259 #endif
2260     }
2261   }
2262 
2263   // If this was placed in the delay slot, ignore it
2264   if (n != _unconditional_delay_slot) {
2265 
2266     if (delay == 0) {
2267       if (node_pipeline->hasMultipleBundles()) {
2268 #ifndef PRODUCT
2269         if (_cfg->C->trace_opto_output())
2270           tty->print("#  *** STEP(multiple instructions) ***\n");
2271 #endif
2272         step(1);
2273       }
2274 
2275       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2276 #ifndef PRODUCT
2277         if (_cfg->C->trace_opto_output())
2278           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2279             instruction_count + _bundle_instr_count,
2280             Pipeline::_max_instrs_per_cycle);
2281 #endif
2282         step(1);
2283       }
2284     }
2285 
2286     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2287       _bundle_instr_count++;
2288 
2289     // Set the node's latency
2290     _current_latency[n->_idx] = _bundle_cycle_number;
2291 
2292     // Now merge the functional unit information
2293     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2294       _bundle_use.add_usage(node_usage);
2295 
2296     // Increment the number of instructions in this bundle
2297     _bundle_instr_count += instruction_count;
2298 
2299     // Remember this node for later
2300     if (n->is_Mach())
2301       _next_node = n;
2302   }
2303 
2304   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2305   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2306   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2307   // into the block.  All other scheduled nodes get put in the schedule here.
2308   int op = n->Opcode();
2309   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2310       (op != Op_Node &&         // Not an unused antidepedence node and
2311        // not an unallocated boxlock
2312        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2313 
2314     // Push any trailing projections
2315     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2316       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2317         Node *foi = n->fast_out(i);
2318         if( foi->is_Proj() )
2319           _scheduled.push(foi);
2320       }
2321     }
2322 
2323     // Put the instruction in the schedule list
2324     _scheduled.push(n);
2325   }
2326 
2327 #ifndef PRODUCT
2328   if (_cfg->C->trace_opto_output())
2329     dump_available();
2330 #endif
2331 
2332   // Walk all the definitions, decrementing use counts, and
2333   // if a definition has a 0 use count, place it in the available list.
2334   DecrementUseCounts(n,bb);
2335 }
2336 
2337 // This method sets the use count within a basic block.  We will ignore all
2338 // uses outside the current basic block.  As we are doing a backwards walk,
2339 // any node we reach that has a use count of 0 may be scheduled.  This also
2340 // avoids the problem of cyclic references from phi nodes, as long as phi
2341 // nodes are at the front of the basic block.  This method also initializes
2342 // the available list to the set of instructions that have no uses within this
2343 // basic block.
2344 void Scheduling::ComputeUseCount(const Block *bb) {
2345 #ifndef PRODUCT
2346   if (_cfg->C->trace_opto_output())
2347     tty->print("# -> ComputeUseCount\n");
2348 #endif
2349 
2350   // Clear the list of available and scheduled instructions, just in case
2351   _available.clear();
2352   _scheduled.clear();
2353 
2354   // No delay slot specified
2355   _unconditional_delay_slot = NULL;
2356 
2357 #ifdef ASSERT
2358   for( uint i=0; i < bb->number_of_nodes(); i++ )
2359     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2360 #endif
2361 
2362   // Force the _uses count to never go to zero for unscheduable pieces
2363   // of the block
2364   for( uint k = 0; k < _bb_start; k++ )
2365     _uses[bb->get_node(k)->_idx] = 1;
2366   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2367     _uses[bb->get_node(l)->_idx] = 1;
2368 
2369   // Iterate backwards over the instructions in the block.  Don't count the
2370   // branch projections at end or the block header instructions.
2371   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2372     Node *n = bb->get_node(j);
2373     if( n->is_Proj() ) continue; // Projections handled another way
2374 
2375     // Account for all uses
2376     for ( uint k = 0; k < n->len(); k++ ) {
2377       Node *inp = n->in(k);
2378       if (!inp) continue;
2379       assert(inp != n, "no cycles allowed" );
2380       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2381         if (inp->is_Proj()) { // Skip through Proj's
2382           inp = inp->in(0);
2383         }
2384         ++_uses[inp->_idx];     // Count 1 block-local use
2385       }
2386     }
2387 
2388     // If this instruction has a 0 use count, then it is available
2389     if (!_uses[n->_idx]) {
2390       _current_latency[n->_idx] = _bundle_cycle_number;
2391       AddNodeToAvailableList(n);
2392     }
2393 
2394 #ifndef PRODUCT
2395     if (_cfg->C->trace_opto_output()) {
2396       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2397       n->dump();
2398     }
2399 #endif
2400   }
2401 
2402 #ifndef PRODUCT
2403   if (_cfg->C->trace_opto_output())
2404     tty->print("# <- ComputeUseCount\n");
2405 #endif
2406 }
2407 
2408 // This routine performs scheduling on each basic block in reverse order,
2409 // using instruction latencies and taking into account function unit
2410 // availability.
2411 void Scheduling::DoScheduling() {
2412 #ifndef PRODUCT
2413   if (_cfg->C->trace_opto_output())
2414     tty->print("# -> DoScheduling\n");
2415 #endif
2416 
2417   Block *succ_bb = NULL;
2418   Block *bb;
2419 
2420   // Walk over all the basic blocks in reverse order
2421   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2422     bb = _cfg->get_block(i);
2423 
2424 #ifndef PRODUCT
2425     if (_cfg->C->trace_opto_output()) {
2426       tty->print("#  Schedule BB#%03d (initial)\n", i);
2427       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2428         bb->get_node(j)->dump();
2429       }
2430     }
2431 #endif
2432 
2433     // On the head node, skip processing
2434     if (bb == _cfg->get_root_block()) {
2435       continue;
2436     }
2437 
2438     // Skip empty, connector blocks
2439     if (bb->is_connector())
2440       continue;
2441 
2442     // If the following block is not the sole successor of
2443     // this one, then reset the pipeline information
2444     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2445 #ifndef PRODUCT
2446       if (_cfg->C->trace_opto_output()) {
2447         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2448                    _next_node->_idx, _bundle_instr_count);
2449       }
2450 #endif
2451       step_and_clear();
2452     }
2453 
2454     // Leave untouched the starting instruction, any Phis, a CreateEx node
2455     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2456     _bb_end = bb->number_of_nodes()-1;
2457     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2458       Node *n = bb->get_node(_bb_start);
2459       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2460       // Also, MachIdealNodes do not get scheduled
2461       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2462       MachNode *mach = n->as_Mach();
2463       int iop = mach->ideal_Opcode();
2464       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2465       if( iop == Op_Con ) continue;      // Do not schedule Top
2466       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2467           mach->pipeline() == MachNode::pipeline_class() &&
2468           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2469         continue;
2470       break;                    // Funny loop structure to be sure...
2471     }
2472     // Compute last "interesting" instruction in block - last instruction we
2473     // might schedule.  _bb_end points just after last schedulable inst.  We
2474     // normally schedule conditional branches (despite them being forced last
2475     // in the block), because they have delay slots we can fill.  Calls all
2476     // have their delay slots filled in the template expansions, so we don't
2477     // bother scheduling them.
2478     Node *last = bb->get_node(_bb_end);
2479     // Ignore trailing NOPs.
2480     while (_bb_end > 0 && last->is_Mach() &&
2481            last->as_Mach()->ideal_Opcode() == Op_Con) {
2482       last = bb->get_node(--_bb_end);
2483     }
2484     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2485     if( last->is_Catch() ||
2486        // Exclude unreachable path case when Halt node is in a separate block.
2487        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2488       // There must be a prior call.  Skip it.
2489       while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2490         assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2491       }
2492     } else if( last->is_MachNullCheck() ) {
2493       // Backup so the last null-checked memory instruction is
2494       // outside the schedulable range. Skip over the nullcheck,
2495       // projection, and the memory nodes.
2496       Node *mem = last->in(1);
2497       do {
2498         _bb_end--;
2499       } while (mem != bb->get_node(_bb_end));
2500     } else {
2501       // Set _bb_end to point after last schedulable inst.
2502       _bb_end++;
2503     }
2504 
2505     assert( _bb_start <= _bb_end, "inverted block ends" );
2506 
2507     // Compute the register antidependencies for the basic block
2508     ComputeRegisterAntidependencies(bb);
2509     if (_cfg->C->failing())  return;  // too many D-U pinch points
2510 
2511     // Compute intra-bb latencies for the nodes
2512     ComputeLocalLatenciesForward(bb);
2513 
2514     // Compute the usage within the block, and set the list of all nodes
2515     // in the block that have no uses within the block.
2516     ComputeUseCount(bb);
2517 
2518     // Schedule the remaining instructions in the block
2519     while ( _available.size() > 0 ) {
2520       Node *n = ChooseNodeToBundle();
2521       guarantee(n != NULL, "no nodes available");
2522       AddNodeToBundle(n,bb);
2523     }
2524 
2525     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2526 #ifdef ASSERT
2527     for( uint l = _bb_start; l < _bb_end; l++ ) {
2528       Node *n = bb->get_node(l);
2529       uint m;
2530       for( m = 0; m < _bb_end-_bb_start; m++ )
2531         if( _scheduled[m] == n )
2532           break;
2533       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2534     }
2535 #endif
2536 
2537     // Now copy the instructions (in reverse order) back to the block
2538     for ( uint k = _bb_start; k < _bb_end; k++ )
2539       bb->map_node(_scheduled[_bb_end-k-1], k);
2540 
2541 #ifndef PRODUCT
2542     if (_cfg->C->trace_opto_output()) {
2543       tty->print("#  Schedule BB#%03d (final)\n", i);
2544       uint current = 0;
2545       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2546         Node *n = bb->get_node(j);
2547         if( valid_bundle_info(n) ) {
2548           Bundle *bundle = node_bundling(n);
2549           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2550             tty->print("*** Bundle: ");
2551             bundle->dump();
2552           }
2553           n->dump();
2554         }
2555       }
2556     }
2557 #endif
2558 #ifdef ASSERT
2559   verify_good_schedule(bb,"after block local scheduling");
2560 #endif
2561   }
2562 
2563 #ifndef PRODUCT
2564   if (_cfg->C->trace_opto_output())
2565     tty->print("# <- DoScheduling\n");
2566 #endif
2567 
2568   // Record final node-bundling array location
2569   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2570 
2571 } // end DoScheduling
2572 
2573 // Verify that no live-range used in the block is killed in the block by a
2574 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2575 
2576 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2577 static bool edge_from_to( Node *from, Node *to ) {
2578   for( uint i=0; i<from->len(); i++ )
2579     if( from->in(i) == to )
2580       return true;
2581   return false;
2582 }
2583 
2584 #ifdef ASSERT
2585 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2586   // Check for bad kills
2587   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2588     Node *prior_use = _reg_node[def];
2589     if( prior_use && !edge_from_to(prior_use,n) ) {
2590       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2591       n->dump();
2592       tty->print_cr("...");
2593       prior_use->dump();
2594       assert(edge_from_to(prior_use,n),msg);
2595     }
2596     _reg_node.map(def,NULL); // Kill live USEs
2597   }
2598 }
2599 
2600 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2601 
2602   // Zap to something reasonable for the verify code
2603   _reg_node.clear();
2604 
2605   // Walk over the block backwards.  Check to make sure each DEF doesn't
2606   // kill a live value (other than the one it's supposed to).  Add each
2607   // USE to the live set.
2608   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2609     Node *n = b->get_node(i);
2610     int n_op = n->Opcode();
2611     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2612       // Fat-proj kills a slew of registers
2613       RegMask rm = n->out_RegMask();// Make local copy
2614       while( rm.is_NotEmpty() ) {
2615         OptoReg::Name kill = rm.find_first_elem();
2616         rm.Remove(kill);
2617         verify_do_def( n, kill, msg );
2618       }
2619     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2620       // Get DEF'd registers the normal way
2621       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2622       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2623     }
2624 
2625     // Now make all USEs live
2626     for( uint i=1; i<n->req(); i++ ) {
2627       Node *def = n->in(i);
2628       assert(def != 0, "input edge required");
2629       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2630       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2631       if( OptoReg::is_valid(reg_lo) ) {
2632         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2633         _reg_node.map(reg_lo,n);
2634       }
2635       if( OptoReg::is_valid(reg_hi) ) {
2636         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2637         _reg_node.map(reg_hi,n);
2638       }
2639     }
2640 
2641   }
2642 
2643   // Zap to something reasonable for the Antidependence code
2644   _reg_node.clear();
2645 }
2646 #endif
2647 
2648 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2649 static void add_prec_edge_from_to( Node *from, Node *to ) {
2650   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2651     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2652     from = from->in(0);
2653   }
2654   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2655       !edge_from_to( from, to ) ) // Avoid duplicate edge
2656     from->add_prec(to);
2657 }
2658 
2659 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2660   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2661     return;
2662 
2663   Node *pinch = _reg_node[def_reg]; // Get pinch point
2664   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2665       is_def ) {    // Check for a true def (not a kill)
2666     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2667     return;
2668   }
2669 
2670   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2671   debug_only( def = (Node*)0xdeadbeef; )
2672 
2673   // After some number of kills there _may_ be a later def
2674   Node *later_def = NULL;
2675 
2676   // Finding a kill requires a real pinch-point.
2677   // Check for not already having a pinch-point.
2678   // Pinch points are Op_Node's.
2679   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2680     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2681     if ( _pinch_free_list.size() > 0) {
2682       pinch = _pinch_free_list.pop();
2683     } else {
2684       pinch = new (_cfg->C) Node(1); // Pinch point to-be
2685     }
2686     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2687       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2688       return;
2689     }
2690     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2691     _reg_node.map(def_reg,pinch); // Record pinch-point
2692     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2693     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2694       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2695       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2696       later_def = NULL;           // and no later def
2697     }
2698     pinch->set_req(0,later_def);  // Hook later def so we can find it
2699   } else {                        // Else have valid pinch point
2700     if( pinch->in(0) )            // If there is a later-def
2701       later_def = pinch->in(0);   // Get it
2702   }
2703 
2704   // Add output-dependence edge from later def to kill
2705   if( later_def )               // If there is some original def
2706     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2707 
2708   // See if current kill is also a use, and so is forced to be the pinch-point.
2709   if( pinch->Opcode() == Op_Node ) {
2710     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2711     for( uint i=1; i<uses->req(); i++ ) {
2712       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2713           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2714         // Yes, found a use/kill pinch-point
2715         pinch->set_req(0,NULL);  //
2716         pinch->replace_by(kill); // Move anti-dep edges up
2717         pinch = kill;
2718         _reg_node.map(def_reg,pinch);
2719         return;
2720       }
2721     }
2722   }
2723 
2724   // Add edge from kill to pinch-point
2725   add_prec_edge_from_to(kill,pinch);
2726 }
2727 
2728 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2729   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2730     return;
2731   Node *pinch = _reg_node[use_reg]; // Get pinch point
2732   // Check for no later def_reg/kill in block
2733   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2734       // Use has to be block-local as well
2735       _cfg->get_block_for_node(use) == b) {
2736     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2737         pinch->req() == 1 ) {   // pinch not yet in block?
2738       pinch->del_req(0);        // yank pointer to later-def, also set flag
2739       // Insert the pinch-point in the block just after the last use
2740       b->insert_node(pinch, b->find_node(use) + 1);
2741       _bb_end++;                // Increase size scheduled region in block
2742     }
2743 
2744     add_prec_edge_from_to(pinch,use);
2745   }
2746 }
2747 
2748 // We insert antidependences between the reads and following write of
2749 // allocated registers to prevent illegal code motion. Hopefully, the
2750 // number of added references should be fairly small, especially as we
2751 // are only adding references within the current basic block.
2752 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2753 
2754 #ifdef ASSERT
2755   verify_good_schedule(b,"before block local scheduling");
2756 #endif
2757 
2758   // A valid schedule, for each register independently, is an endless cycle
2759   // of: a def, then some uses (connected to the def by true dependencies),
2760   // then some kills (defs with no uses), finally the cycle repeats with a new
2761   // def.  The uses are allowed to float relative to each other, as are the
2762   // kills.  No use is allowed to slide past a kill (or def).  This requires
2763   // antidependencies between all uses of a single def and all kills that
2764   // follow, up to the next def.  More edges are redundant, because later defs
2765   // & kills are already serialized with true or antidependencies.  To keep
2766   // the edge count down, we add a 'pinch point' node if there's more than
2767   // one use or more than one kill/def.
2768 
2769   // We add dependencies in one bottom-up pass.
2770 
2771   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2772 
2773   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2774   // register.  If not, we record the DEF/KILL in _reg_node, the
2775   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2776   // "pinch point", a new Node that's in the graph but not in the block.
2777   // We put edges from the prior and current DEF/KILLs to the pinch point.
2778   // We put the pinch point in _reg_node.  If there's already a pinch point
2779   // we merely add an edge from the current DEF/KILL to the pinch point.
2780 
2781   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2782   // put an edge from the pinch point to the USE.
2783 
2784   // To be expedient, the _reg_node array is pre-allocated for the whole
2785   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2786   // or a valid def/kill/pinch-point, or a leftover node from some prior
2787   // block.  Leftover node from some prior block is treated like a NULL (no
2788   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2789   // it being in the current block.
2790   bool fat_proj_seen = false;
2791   uint last_safept = _bb_end-1;
2792   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2793   Node* last_safept_node = end_node;
2794   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2795     Node *n = b->get_node(i);
2796     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2797     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2798       // Fat-proj kills a slew of registers
2799       // This can add edges to 'n' and obscure whether or not it was a def,
2800       // hence the is_def flag.
2801       fat_proj_seen = true;
2802       RegMask rm = n->out_RegMask();// Make local copy
2803       while( rm.is_NotEmpty() ) {
2804         OptoReg::Name kill = rm.find_first_elem();
2805         rm.Remove(kill);
2806         anti_do_def( b, n, kill, is_def );
2807       }
2808     } else {
2809       // Get DEF'd registers the normal way
2810       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2811       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2812     }
2813 
2814     // Kill projections on a branch should appear to occur on the
2815     // branch, not afterwards, so grab the masks from the projections
2816     // and process them.
2817     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2818       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2819         Node* use = n->fast_out(i);
2820         if (use->is_Proj()) {
2821           RegMask rm = use->out_RegMask();// Make local copy
2822           while( rm.is_NotEmpty() ) {
2823             OptoReg::Name kill = rm.find_first_elem();
2824             rm.Remove(kill);
2825             anti_do_def( b, n, kill, false );
2826           }
2827         }
2828       }
2829     }
2830 
2831     // Check each register used by this instruction for a following DEF/KILL
2832     // that must occur afterward and requires an anti-dependence edge.
2833     for( uint j=0; j<n->req(); j++ ) {
2834       Node *def = n->in(j);
2835       if( def ) {
2836         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2837         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2838         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2839       }
2840     }
2841     // Do not allow defs of new derived values to float above GC
2842     // points unless the base is definitely available at the GC point.
2843 
2844     Node *m = b->get_node(i);
2845 
2846     // Add precedence edge from following safepoint to use of derived pointer
2847     if( last_safept_node != end_node &&
2848         m != last_safept_node) {
2849       for (uint k = 1; k < m->req(); k++) {
2850         const Type *t = m->in(k)->bottom_type();
2851         if( t->isa_oop_ptr() &&
2852             t->is_ptr()->offset() != 0 ) {
2853           last_safept_node->add_prec( m );
2854           break;
2855         }
2856       }
2857     }
2858 
2859     if( n->jvms() ) {           // Precedence edge from derived to safept
2860       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2861       if( b->get_node(last_safept) != last_safept_node ) {
2862         last_safept = b->find_node(last_safept_node);
2863       }
2864       for( uint j=last_safept; j > i; j-- ) {
2865         Node *mach = b->get_node(j);
2866         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2867           mach->add_prec( n );
2868       }
2869       last_safept = i;
2870       last_safept_node = m;
2871     }
2872   }
2873 
2874   if (fat_proj_seen) {
2875     // Garbage collect pinch nodes that were not consumed.
2876     // They are usually created by a fat kill MachProj for a call.
2877     garbage_collect_pinch_nodes();
2878   }
2879 }
2880 
2881 // Garbage collect pinch nodes for reuse by other blocks.
2882 //
2883 // The block scheduler's insertion of anti-dependence
2884 // edges creates many pinch nodes when the block contains
2885 // 2 or more Calls.  A pinch node is used to prevent a
2886 // combinatorial explosion of edges.  If a set of kills for a
2887 // register is anti-dependent on a set of uses (or defs), rather
2888 // than adding an edge in the graph between each pair of kill
2889 // and use (or def), a pinch is inserted between them:
2890 //
2891 //            use1   use2  use3
2892 //                \   |   /
2893 //                 \  |  /
2894 //                  pinch
2895 //                 /  |  \
2896 //                /   |   \
2897 //            kill1 kill2 kill3
2898 //
2899 // One pinch node is created per register killed when
2900 // the second call is encountered during a backwards pass
2901 // over the block.  Most of these pinch nodes are never
2902 // wired into the graph because the register is never
2903 // used or def'ed in the block.
2904 //
2905 void Scheduling::garbage_collect_pinch_nodes() {
2906 #ifndef PRODUCT
2907     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2908 #endif
2909     int trace_cnt = 0;
2910     for (uint k = 0; k < _reg_node.Size(); k++) {
2911       Node* pinch = _reg_node[k];
2912       if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2913           // no predecence input edges
2914           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2915         cleanup_pinch(pinch);
2916         _pinch_free_list.push(pinch);
2917         _reg_node.map(k, NULL);
2918 #ifndef PRODUCT
2919         if (_cfg->C->trace_opto_output()) {
2920           trace_cnt++;
2921           if (trace_cnt > 40) {
2922             tty->print("\n");
2923             trace_cnt = 0;
2924           }
2925           tty->print(" %d", pinch->_idx);
2926         }
2927 #endif
2928       }
2929     }
2930 #ifndef PRODUCT
2931     if (_cfg->C->trace_opto_output()) tty->print("\n");
2932 #endif
2933 }
2934 
2935 // Clean up a pinch node for reuse.
2936 void Scheduling::cleanup_pinch( Node *pinch ) {
2937   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2938 
2939   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2940     Node* use = pinch->last_out(i);
2941     uint uses_found = 0;
2942     for (uint j = use->req(); j < use->len(); j++) {
2943       if (use->in(j) == pinch) {
2944         use->rm_prec(j);
2945         uses_found++;
2946       }
2947     }
2948     assert(uses_found > 0, "must be a precedence edge");
2949     i -= uses_found;    // we deleted 1 or more copies of this edge
2950   }
2951   // May have a later_def entry
2952   pinch->set_req(0, NULL);
2953 }
2954 
2955 #ifndef PRODUCT
2956 
2957 void Scheduling::dump_available() const {
2958   tty->print("#Availist  ");
2959   for (uint i = 0; i < _available.size(); i++)
2960     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2961   tty->cr();
2962 }
2963 
2964 // Print Scheduling Statistics
2965 void Scheduling::print_statistics() {
2966   // Print the size added by nops for bundling
2967   tty->print("Nops added %d bytes to total of %d bytes",
2968     _total_nop_size, _total_method_size);
2969   if (_total_method_size > 0)
2970     tty->print(", for %.2f%%",
2971       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2972   tty->print("\n");
2973 
2974   // Print the number of branch shadows filled
2975   if (Pipeline::_branch_has_delay_slot) {
2976     tty->print("Of %d branches, %d had unconditional delay slots filled",
2977       _total_branches, _total_unconditional_delays);
2978     if (_total_branches > 0)
2979       tty->print(", for %.2f%%",
2980         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2981     tty->print("\n");
2982   }
2983 
2984   uint total_instructions = 0, total_bundles = 0;
2985 
2986   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2987     uint bundle_count   = _total_instructions_per_bundle[i];
2988     total_instructions += bundle_count * i;
2989     total_bundles      += bundle_count;
2990   }
2991 
2992   if (total_bundles > 0)
2993     tty->print("Average ILP (excluding nops) is %.2f\n",
2994       ((double)total_instructions) / ((double)total_bundles));
2995 }
2996 #endif