1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  58   _is_lval = false;
  59   _target = target;
  60   switch (rtype) {
  61   case relocInfo::oop_type:
  62   case relocInfo::metadata_type:
  63     // Oops are a special case. Normally they would be their own section
  64     // but in cases like icBuffer they are literals in the code stream that
  65     // we don't have a section for. We use none so that we get a literal address
  66     // which is always patchable.
  67     break;
  68   case relocInfo::external_word_type:
  69     _rspec = external_word_Relocation::spec(target);
  70     break;
  71   case relocInfo::internal_word_type:
  72     _rspec = internal_word_Relocation::spec(target);
  73     break;
  74   case relocInfo::opt_virtual_call_type:
  75     _rspec = opt_virtual_call_Relocation::spec();
  76     break;
  77   case relocInfo::static_call_type:
  78     _rspec = static_call_Relocation::spec();
  79     break;
  80   case relocInfo::runtime_call_type:
  81     _rspec = runtime_call_Relocation::spec();
  82     break;
  83   case relocInfo::poll_type:
  84   case relocInfo::poll_return_type:
  85     _rspec = Relocation::spec_simple(rtype);
  86     break;
  87   case relocInfo::none:
  88     break;
  89   default:
  90     ShouldNotReachHere();
  91     break;
  92   }
  93 }
  94 
  95 // Implementation of Address
  96 
  97 #ifdef _LP64
  98 
  99 Address Address::make_array(ArrayAddress adr) {
 100   // Not implementable on 64bit machines
 101   // Should have been handled higher up the call chain.
 102   ShouldNotReachHere();
 103   return Address();
 104 }
 105 
 106 // exceedingly dangerous constructor
 107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 108   _base  = noreg;
 109   _index = noreg;
 110   _scale = no_scale;
 111   _disp  = disp;
 112   switch (rtype) {
 113     case relocInfo::external_word_type:
 114       _rspec = external_word_Relocation::spec(loc);
 115       break;
 116     case relocInfo::internal_word_type:
 117       _rspec = internal_word_Relocation::spec(loc);
 118       break;
 119     case relocInfo::runtime_call_type:
 120       // HMM
 121       _rspec = runtime_call_Relocation::spec();
 122       break;
 123     case relocInfo::poll_type:
 124     case relocInfo::poll_return_type:
 125       _rspec = Relocation::spec_simple(rtype);
 126       break;
 127     case relocInfo::none:
 128       break;
 129     default:
 130       ShouldNotReachHere();
 131   }
 132 }
 133 #else // LP64
 134 
 135 Address Address::make_array(ArrayAddress adr) {
 136   AddressLiteral base = adr.base();
 137   Address index = adr.index();
 138   assert(index._disp == 0, "must not have disp"); // maybe it can?
 139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 140   array._rspec = base._rspec;
 141   return array;
 142 }
 143 
 144 // exceedingly dangerous constructor
 145 Address::Address(address loc, RelocationHolder spec) {
 146   _base  = noreg;
 147   _index = noreg;
 148   _scale = no_scale;
 149   _disp  = (intptr_t) loc;
 150   _rspec = spec;
 151 }
 152 
 153 #endif // _LP64
 154 
 155 
 156 
 157 // Convert the raw encoding form into the form expected by the constructor for
 158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 159 // that to noreg for the Address constructor.
 160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 161   RelocationHolder rspec;
 162   if (disp_reloc != relocInfo::none) {
 163     rspec = Relocation::spec_simple(disp_reloc);
 164   }
 165   bool valid_index = index != rsp->encoding();
 166   if (valid_index) {
 167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 168     madr._rspec = rspec;
 169     return madr;
 170   } else {
 171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 172     madr._rspec = rspec;
 173     return madr;
 174   }
 175 }
 176 
 177 // Implementation of Assembler
 178 
 179 int AbstractAssembler::code_fill_byte() {
 180   return (u_char)'\xF4'; // hlt
 181 }
 182 
 183 // make this go away someday
 184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 185   if (rtype == relocInfo::none)
 186         emit_int32(data);
 187   else  emit_data(data, Relocation::spec_simple(rtype), format);
 188 }
 189 
 190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 191   assert(imm_operand == 0, "default format must be immediate in this file");
 192   assert(inst_mark() != NULL, "must be inside InstructionMark");
 193   if (rspec.type() !=  relocInfo::none) {
 194     #ifdef ASSERT
 195       check_relocation(rspec, format);
 196     #endif
 197     // Do not use AbstractAssembler::relocate, which is not intended for
 198     // embedded words.  Instead, relocate to the enclosing instruction.
 199 
 200     // hack. call32 is too wide for mask so use disp32
 201     if (format == call32_operand)
 202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 203     else
 204       code_section()->relocate(inst_mark(), rspec, format);
 205   }
 206   emit_int32(data);
 207 }
 208 
 209 static int encode(Register r) {
 210   int enc = r->encoding();
 211   if (enc >= 8) {
 212     enc -= 8;
 213   }
 214   return enc;
 215 }
 216 
 217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 218   assert(dst->has_byte_register(), "must have byte register");
 219   assert(isByte(op1) && isByte(op2), "wrong opcode");
 220   assert(isByte(imm8), "not a byte");
 221   assert((op1 & 0x01) == 0, "should be 8bit operation");
 222   emit_int8(op1);
 223   emit_int8(op2 | encode(dst));
 224   emit_int8(imm8);
 225 }
 226 
 227 
 228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 229   assert(isByte(op1) && isByte(op2), "wrong opcode");
 230   assert((op1 & 0x01) == 1, "should be 32bit operation");
 231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 232   if (is8bit(imm32)) {
 233     emit_int8(op1 | 0x02); // set sign bit
 234     emit_int8(op2 | encode(dst));
 235     emit_int8(imm32 & 0xFF);
 236   } else {
 237     emit_int8(op1);
 238     emit_int8(op2 | encode(dst));
 239     emit_int32(imm32);
 240   }
 241 }
 242 
 243 // Force generation of a 4 byte immediate value even if it fits into 8bit
 244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 245   assert(isByte(op1) && isByte(op2), "wrong opcode");
 246   assert((op1 & 0x01) == 1, "should be 32bit operation");
 247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 248   emit_int8(op1);
 249   emit_int8(op2 | encode(dst));
 250   emit_int32(imm32);
 251 }
 252 
 253 // immediate-to-memory forms
 254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 255   assert((op1 & 0x01) == 1, "should be 32bit operation");
 256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 257   if (is8bit(imm32)) {
 258     emit_int8(op1 | 0x02); // set sign bit
 259     emit_operand(rm, adr, 1);
 260     emit_int8(imm32 & 0xFF);
 261   } else {
 262     emit_int8(op1);
 263     emit_operand(rm, adr, 4);
 264     emit_int32(imm32);
 265   }
 266 }
 267 
 268 
 269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 270   assert(isByte(op1) && isByte(op2), "wrong opcode");
 271   emit_int8(op1);
 272   emit_int8(op2 | encode(dst) << 3 | encode(src));
 273 }
 274 
 275 
 276 void Assembler::emit_operand(Register reg, Register base, Register index,
 277                              Address::ScaleFactor scale, int disp,
 278                              RelocationHolder const& rspec,
 279                              int rip_relative_correction) {
 280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 281 
 282   // Encode the registers as needed in the fields they are used in
 283 
 284   int regenc = encode(reg) << 3;
 285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 286   int baseenc = base->is_valid() ? encode(base) : 0;
 287 
 288   if (base->is_valid()) {
 289     if (index->is_valid()) {
 290       assert(scale != Address::no_scale, "inconsistent address");
 291       // [base + index*scale + disp]
 292       if (disp == 0 && rtype == relocInfo::none  &&
 293           base != rbp LP64_ONLY(&& base != r13)) {
 294         // [base + index*scale]
 295         // [00 reg 100][ss index base]
 296         assert(index != rsp, "illegal addressing mode");
 297         emit_int8(0x04 | regenc);
 298         emit_int8(scale << 6 | indexenc | baseenc);
 299       } else if (is8bit(disp) && rtype == relocInfo::none) {
 300         // [base + index*scale + imm8]
 301         // [01 reg 100][ss index base] imm8
 302         assert(index != rsp, "illegal addressing mode");
 303         emit_int8(0x44 | regenc);
 304         emit_int8(scale << 6 | indexenc | baseenc);
 305         emit_int8(disp & 0xFF);
 306       } else {
 307         // [base + index*scale + disp32]
 308         // [10 reg 100][ss index base] disp32
 309         assert(index != rsp, "illegal addressing mode");
 310         emit_int8(0x84 | regenc);
 311         emit_int8(scale << 6 | indexenc | baseenc);
 312         emit_data(disp, rspec, disp32_operand);
 313       }
 314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 315       // [rsp + disp]
 316       if (disp == 0 && rtype == relocInfo::none) {
 317         // [rsp]
 318         // [00 reg 100][00 100 100]
 319         emit_int8(0x04 | regenc);
 320         emit_int8(0x24);
 321       } else if (is8bit(disp) && rtype == relocInfo::none) {
 322         // [rsp + imm8]
 323         // [01 reg 100][00 100 100] disp8
 324         emit_int8(0x44 | regenc);
 325         emit_int8(0x24);
 326         emit_int8(disp & 0xFF);
 327       } else {
 328         // [rsp + imm32]
 329         // [10 reg 100][00 100 100] disp32
 330         emit_int8(0x84 | regenc);
 331         emit_int8(0x24);
 332         emit_data(disp, rspec, disp32_operand);
 333       }
 334     } else {
 335       // [base + disp]
 336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 337       if (disp == 0 && rtype == relocInfo::none &&
 338           base != rbp LP64_ONLY(&& base != r13)) {
 339         // [base]
 340         // [00 reg base]
 341         emit_int8(0x00 | regenc | baseenc);
 342       } else if (is8bit(disp) && rtype == relocInfo::none) {
 343         // [base + disp8]
 344         // [01 reg base] disp8
 345         emit_int8(0x40 | regenc | baseenc);
 346         emit_int8(disp & 0xFF);
 347       } else {
 348         // [base + disp32]
 349         // [10 reg base] disp32
 350         emit_int8(0x80 | regenc | baseenc);
 351         emit_data(disp, rspec, disp32_operand);
 352       }
 353     }
 354   } else {
 355     if (index->is_valid()) {
 356       assert(scale != Address::no_scale, "inconsistent address");
 357       // [index*scale + disp]
 358       // [00 reg 100][ss index 101] disp32
 359       assert(index != rsp, "illegal addressing mode");
 360       emit_int8(0x04 | regenc);
 361       emit_int8(scale << 6 | indexenc | 0x05);
 362       emit_data(disp, rspec, disp32_operand);
 363     } else if (rtype != relocInfo::none ) {
 364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 365       // [00 000 101] disp32
 366 
 367       emit_int8(0x05 | regenc);
 368       // Note that the RIP-rel. correction applies to the generated
 369       // disp field, but _not_ to the target address in the rspec.
 370 
 371       // disp was created by converting the target address minus the pc
 372       // at the start of the instruction. That needs more correction here.
 373       // intptr_t disp = target - next_ip;
 374       assert(inst_mark() != NULL, "must be inside InstructionMark");
 375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 376       int64_t adjusted = disp;
 377       // Do rip-rel adjustment for 64bit
 378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 379       assert(is_simm32(adjusted),
 380              "must be 32bit offset (RIP relative address)");
 381       emit_data((int32_t) adjusted, rspec, disp32_operand);
 382 
 383     } else {
 384       // 32bit never did this, did everything as the rip-rel/disp code above
 385       // [disp] ABSOLUTE
 386       // [00 reg 100][00 100 101] disp32
 387       emit_int8(0x04 | regenc);
 388       emit_int8(0x25);
 389       emit_data(disp, rspec, disp32_operand);
 390     }
 391   }
 392 }
 393 
 394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 395                              Address::ScaleFactor scale, int disp,
 396                              RelocationHolder const& rspec) {
 397   emit_operand((Register)reg, base, index, scale, disp, rspec);
 398 }
 399 
 400 // Secret local extension to Assembler::WhichOperand:
 401 #define end_pc_operand (_WhichOperand_limit)
 402 
 403 address Assembler::locate_operand(address inst, WhichOperand which) {
 404   // Decode the given instruction, and return the address of
 405   // an embedded 32-bit operand word.
 406 
 407   // If "which" is disp32_operand, selects the displacement portion
 408   // of an effective address specifier.
 409   // If "which" is imm64_operand, selects the trailing immediate constant.
 410   // If "which" is call32_operand, selects the displacement of a call or jump.
 411   // Caller is responsible for ensuring that there is such an operand,
 412   // and that it is 32/64 bits wide.
 413 
 414   // If "which" is end_pc_operand, find the end of the instruction.
 415 
 416   address ip = inst;
 417   bool is_64bit = false;
 418 
 419   debug_only(bool has_disp32 = false);
 420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 421 
 422   again_after_prefix:
 423   switch (0xFF & *ip++) {
 424 
 425   // These convenience macros generate groups of "case" labels for the switch.
 426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 429 #define REP16(x) REP8((x)+0): \
 430               case REP8((x)+8)
 431 
 432   case CS_segment:
 433   case SS_segment:
 434   case DS_segment:
 435   case ES_segment:
 436   case FS_segment:
 437   case GS_segment:
 438     // Seems dubious
 439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 440     assert(ip == inst+1, "only one prefix allowed");
 441     goto again_after_prefix;
 442 
 443   case 0x67:
 444   case REX:
 445   case REX_B:
 446   case REX_X:
 447   case REX_XB:
 448   case REX_R:
 449   case REX_RB:
 450   case REX_RX:
 451   case REX_RXB:
 452     NOT_LP64(assert(false, "64bit prefixes"));
 453     goto again_after_prefix;
 454 
 455   case REX_W:
 456   case REX_WB:
 457   case REX_WX:
 458   case REX_WXB:
 459   case REX_WR:
 460   case REX_WRB:
 461   case REX_WRX:
 462   case REX_WRXB:
 463     NOT_LP64(assert(false, "64bit prefixes"));
 464     is_64bit = true;
 465     goto again_after_prefix;
 466 
 467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 468   case 0x88: // movb a, r
 469   case 0x89: // movl a, r
 470   case 0x8A: // movb r, a
 471   case 0x8B: // movl r, a
 472   case 0x8F: // popl a
 473     debug_only(has_disp32 = true);
 474     break;
 475 
 476   case 0x68: // pushq #32
 477     if (which == end_pc_operand) {
 478       return ip + 4;
 479     }
 480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 481     return ip;                  // not produced by emit_operand
 482 
 483   case 0x66: // movw ... (size prefix)
 484     again_after_size_prefix2:
 485     switch (0xFF & *ip++) {
 486     case REX:
 487     case REX_B:
 488     case REX_X:
 489     case REX_XB:
 490     case REX_R:
 491     case REX_RB:
 492     case REX_RX:
 493     case REX_RXB:
 494     case REX_W:
 495     case REX_WB:
 496     case REX_WX:
 497     case REX_WXB:
 498     case REX_WR:
 499     case REX_WRB:
 500     case REX_WRX:
 501     case REX_WRXB:
 502       NOT_LP64(assert(false, "64bit prefix found"));
 503       goto again_after_size_prefix2;
 504     case 0x8B: // movw r, a
 505     case 0x89: // movw a, r
 506       debug_only(has_disp32 = true);
 507       break;
 508     case 0xC7: // movw a, #16
 509       debug_only(has_disp32 = true);
 510       tail_size = 2;  // the imm16
 511       break;
 512     case 0x0F: // several SSE/SSE2 variants
 513       ip--;    // reparse the 0x0F
 514       goto again_after_prefix;
 515     default:
 516       ShouldNotReachHere();
 517     }
 518     break;
 519 
 520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 522     // these asserts are somewhat nonsensical
 523 #ifndef _LP64
 524     assert(which == imm_operand || which == disp32_operand,
 525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
 526 #else
 527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 528            which == narrow_oop_operand && !is_64bit,
 529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
 530 #endif // _LP64
 531     return ip;
 532 
 533   case 0x69: // imul r, a, #32
 534   case 0xC7: // movl a, #32(oop?)
 535     tail_size = 4;
 536     debug_only(has_disp32 = true); // has both kinds of operands!
 537     break;
 538 
 539   case 0x0F: // movx..., etc.
 540     switch (0xFF & *ip++) {
 541     case 0x3A: // pcmpestri
 542       tail_size = 1;
 543     case 0x38: // ptest, pmovzxbw
 544       ip++; // skip opcode
 545       debug_only(has_disp32 = true); // has both kinds of operands!
 546       break;
 547 
 548     case 0x70: // pshufd r, r/a, #8
 549       debug_only(has_disp32 = true); // has both kinds of operands!
 550     case 0x73: // psrldq r, #8
 551       tail_size = 1;
 552       break;
 553 
 554     case 0x12: // movlps
 555     case 0x28: // movaps
 556     case 0x2E: // ucomiss
 557     case 0x2F: // comiss
 558     case 0x54: // andps
 559     case 0x55: // andnps
 560     case 0x56: // orps
 561     case 0x57: // xorps
 562     case 0x6E: // movd
 563     case 0x7E: // movd
 564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 565       debug_only(has_disp32 = true);
 566       break;
 567 
 568     case 0xAD: // shrd r, a, %cl
 569     case 0xAF: // imul r, a
 570     case 0xBE: // movsbl r, a (movsxb)
 571     case 0xBF: // movswl r, a (movsxw)
 572     case 0xB6: // movzbl r, a (movzxb)
 573     case 0xB7: // movzwl r, a (movzxw)
 574     case REP16(0x40): // cmovl cc, r, a
 575     case 0xB0: // cmpxchgb
 576     case 0xB1: // cmpxchg
 577     case 0xC1: // xaddl
 578     case 0xC7: // cmpxchg8
 579     case REP16(0x90): // setcc a
 580       debug_only(has_disp32 = true);
 581       // fall out of the switch to decode the address
 582       break;
 583 
 584     case 0xC4: // pinsrw r, a, #8
 585       debug_only(has_disp32 = true);
 586     case 0xC5: // pextrw r, r, #8
 587       tail_size = 1;  // the imm8
 588       break;
 589 
 590     case 0xAC: // shrd r, a, #8
 591       debug_only(has_disp32 = true);
 592       tail_size = 1;  // the imm8
 593       break;
 594 
 595     case REP16(0x80): // jcc rdisp32
 596       if (which == end_pc_operand)  return ip + 4;
 597       assert(which == call32_operand, "jcc has no disp32 or imm");
 598       return ip;
 599     default:
 600       ShouldNotReachHere();
 601     }
 602     break;
 603 
 604   case 0x81: // addl a, #32; addl r, #32
 605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 606     // on 32bit in the case of cmpl, the imm might be an oop
 607     tail_size = 4;
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     break;
 610 
 611   case 0x83: // addl a, #8; addl r, #8
 612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 613     debug_only(has_disp32 = true); // has both kinds of operands!
 614     tail_size = 1;
 615     break;
 616 
 617   case 0x9B:
 618     switch (0xFF & *ip++) {
 619     case 0xD9: // fnstcw a
 620       debug_only(has_disp32 = true);
 621       break;
 622     default:
 623       ShouldNotReachHere();
 624     }
 625     break;
 626 
 627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 628   case REP4(0x10): // adc...
 629   case REP4(0x20): // and...
 630   case REP4(0x30): // xor...
 631   case REP4(0x08): // or...
 632   case REP4(0x18): // sbb...
 633   case REP4(0x28): // sub...
 634   case 0xF7: // mull a
 635   case 0x8D: // lea r, a
 636   case 0x87: // xchg r, a
 637   case REP4(0x38): // cmp...
 638   case 0x85: // test r, a
 639     debug_only(has_disp32 = true); // has both kinds of operands!
 640     break;
 641 
 642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 643   case 0xC6: // movb a, #8
 644   case 0x80: // cmpb a, #8
 645   case 0x6B: // imul r, a, #8
 646     debug_only(has_disp32 = true); // has both kinds of operands!
 647     tail_size = 1; // the imm8
 648     break;
 649 
 650   case 0xC4: // VEX_3bytes
 651   case 0xC5: // VEX_2bytes
 652     assert((UseAVX > 0), "shouldn't have VEX prefix");
 653     assert(ip == inst+1, "no prefixes allowed");
 654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 655     // but they have prefix 0x0F and processed when 0x0F processed above.
 656     //
 657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 658     // instructions (these instructions are not supported in 64-bit mode).
 659     // To distinguish them bits [7:6] are set in the VEX second byte since
 660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 661     // those VEX bits REX and vvvv bits are inverted.
 662     //
 663     // Fortunately C2 doesn't generate these instructions so we don't need
 664     // to check for them in product version.
 665 
 666     // Check second byte
 667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 668 
 669     // First byte
 670     if ((0xFF & *inst) == VEX_3bytes) {
 671       ip++; // third byte
 672       is_64bit = ((VEX_W & *ip) == VEX_W);
 673     }
 674     ip++; // opcode
 675     // To find the end of instruction (which == end_pc_operand).
 676     switch (0xFF & *ip) {
 677     case 0x61: // pcmpestri r, r/a, #8
 678     case 0x70: // pshufd r, r/a, #8
 679     case 0x73: // psrldq r, #8
 680       tail_size = 1;  // the imm8
 681       break;
 682     default:
 683       break;
 684     }
 685     ip++; // skip opcode
 686     debug_only(has_disp32 = true); // has both kinds of operands!
 687     break;
 688 
 689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 692   case 0xDD: // fld_d a; fst_d a; fstp_d a
 693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 694   case 0xDF: // fild_d a; fistp_d a
 695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 698     debug_only(has_disp32 = true);
 699     break;
 700 
 701   case 0xE8: // call rdisp32
 702   case 0xE9: // jmp  rdisp32
 703     if (which == end_pc_operand)  return ip + 4;
 704     assert(which == call32_operand, "call has no disp32 or imm");
 705     return ip;
 706 
 707   case 0xF0:                    // Lock
 708     assert(os::is_MP(), "only on MP");
 709     goto again_after_prefix;
 710 
 711   case 0xF3:                    // For SSE
 712   case 0xF2:                    // For SSE2
 713     switch (0xFF & *ip++) {
 714     case REX:
 715     case REX_B:
 716     case REX_X:
 717     case REX_XB:
 718     case REX_R:
 719     case REX_RB:
 720     case REX_RX:
 721     case REX_RXB:
 722     case REX_W:
 723     case REX_WB:
 724     case REX_WX:
 725     case REX_WXB:
 726     case REX_WR:
 727     case REX_WRB:
 728     case REX_WRX:
 729     case REX_WRXB:
 730       NOT_LP64(assert(false, "found 64bit prefix"));
 731       ip++;
 732     default:
 733       ip++;
 734     }
 735     debug_only(has_disp32 = true); // has both kinds of operands!
 736     break;
 737 
 738   default:
 739     ShouldNotReachHere();
 740 
 741 #undef REP8
 742 #undef REP16
 743   }
 744 
 745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 746 #ifdef _LP64
 747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 748 #else
 749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 751 #endif // LP64
 752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 753 
 754   // parse the output of emit_operand
 755   int op2 = 0xFF & *ip++;
 756   int base = op2 & 0x07;
 757   int op3 = -1;
 758   const int b100 = 4;
 759   const int b101 = 5;
 760   if (base == b100 && (op2 >> 6) != 3) {
 761     op3 = 0xFF & *ip++;
 762     base = op3 & 0x07;   // refetch the base
 763   }
 764   // now ip points at the disp (if any)
 765 
 766   switch (op2 >> 6) {
 767   case 0:
 768     // [00 reg  100][ss index base]
 769     // [00 reg  100][00   100  esp]
 770     // [00 reg base]
 771     // [00 reg  100][ss index  101][disp32]
 772     // [00 reg  101]               [disp32]
 773 
 774     if (base == b101) {
 775       if (which == disp32_operand)
 776         return ip;              // caller wants the disp32
 777       ip += 4;                  // skip the disp32
 778     }
 779     break;
 780 
 781   case 1:
 782     // [01 reg  100][ss index base][disp8]
 783     // [01 reg  100][00   100  esp][disp8]
 784     // [01 reg base]               [disp8]
 785     ip += 1;                    // skip the disp8
 786     break;
 787 
 788   case 2:
 789     // [10 reg  100][ss index base][disp32]
 790     // [10 reg  100][00   100  esp][disp32]
 791     // [10 reg base]               [disp32]
 792     if (which == disp32_operand)
 793       return ip;                // caller wants the disp32
 794     ip += 4;                    // skip the disp32
 795     break;
 796 
 797   case 3:
 798     // [11 reg base]  (not a memory addressing mode)
 799     break;
 800   }
 801 
 802   if (which == end_pc_operand) {
 803     return ip + tail_size;
 804   }
 805 
 806 #ifdef _LP64
 807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 808 #else
 809   assert(which == imm_operand, "instruction has only an imm field");
 810 #endif // LP64
 811   return ip;
 812 }
 813 
 814 address Assembler::locate_next_instruction(address inst) {
 815   // Secretly share code with locate_operand:
 816   return locate_operand(inst, end_pc_operand);
 817 }
 818 
 819 
 820 #ifdef ASSERT
 821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 822   address inst = inst_mark();
 823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 824   address opnd;
 825 
 826   Relocation* r = rspec.reloc();
 827   if (r->type() == relocInfo::none) {
 828     return;
 829   } else if (r->is_call() || format == call32_operand) {
 830     // assert(format == imm32_operand, "cannot specify a nonzero format");
 831     opnd = locate_operand(inst, call32_operand);
 832   } else if (r->is_data()) {
 833     assert(format == imm_operand || format == disp32_operand
 834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 835     opnd = locate_operand(inst, (WhichOperand)format);
 836   } else {
 837     assert(format == imm_operand, "cannot specify a format");
 838     return;
 839   }
 840   assert(opnd == pc(), "must put operand where relocs can find it");
 841 }
 842 #endif // ASSERT
 843 
 844 void Assembler::emit_operand32(Register reg, Address adr) {
 845   assert(reg->encoding() < 8, "no extended registers");
 846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 848                adr._rspec);
 849 }
 850 
 851 void Assembler::emit_operand(Register reg, Address adr,
 852                              int rip_relative_correction) {
 853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 854                adr._rspec,
 855                rip_relative_correction);
 856 }
 857 
 858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 860                adr._rspec);
 861 }
 862 
 863 // MMX operations
 864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 867 }
 868 
 869 // work around gcc (3.2.1-7a) bug
 870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 873 }
 874 
 875 
 876 void Assembler::emit_farith(int b1, int b2, int i) {
 877   assert(isByte(b1) && isByte(b2), "wrong opcode");
 878   assert(0 <= i &&  i < 8, "illegal stack offset");
 879   emit_int8(b1);
 880   emit_int8(b2 + i);
 881 }
 882 
 883 
 884 // Now the Assembler instructions (identical for 32/64 bits)
 885 
 886 void Assembler::adcl(Address dst, int32_t imm32) {
 887   InstructionMark im(this);
 888   prefix(dst);
 889   emit_arith_operand(0x81, rdx, dst, imm32);
 890 }
 891 
 892 void Assembler::adcl(Address dst, Register src) {
 893   InstructionMark im(this);
 894   prefix(dst, src);
 895   emit_int8(0x11);
 896   emit_operand(src, dst);
 897 }
 898 
 899 void Assembler::adcl(Register dst, int32_t imm32) {
 900   prefix(dst);
 901   emit_arith(0x81, 0xD0, dst, imm32);
 902 }
 903 
 904 void Assembler::adcl(Register dst, Address src) {
 905   InstructionMark im(this);
 906   prefix(src, dst);
 907   emit_int8(0x13);
 908   emit_operand(dst, src);
 909 }
 910 
 911 void Assembler::adcl(Register dst, Register src) {
 912   (void) prefix_and_encode(dst->encoding(), src->encoding());
 913   emit_arith(0x13, 0xC0, dst, src);
 914 }
 915 
 916 void Assembler::addl(Address dst, int32_t imm32) {
 917   InstructionMark im(this);
 918   prefix(dst);
 919   emit_arith_operand(0x81, rax, dst, imm32);
 920 }
 921 
 922 void Assembler::addl(Address dst, Register src) {
 923   InstructionMark im(this);
 924   prefix(dst, src);
 925   emit_int8(0x01);
 926   emit_operand(src, dst);
 927 }
 928 
 929 void Assembler::addl(Register dst, int32_t imm32) {
 930   prefix(dst);
 931   emit_arith(0x81, 0xC0, dst, imm32);
 932 }
 933 
 934 void Assembler::addl(Register dst, Address src) {
 935   InstructionMark im(this);
 936   prefix(src, dst);
 937   emit_int8(0x03);
 938   emit_operand(dst, src);
 939 }
 940 
 941 void Assembler::addl(Register dst, Register src) {
 942   (void) prefix_and_encode(dst->encoding(), src->encoding());
 943   emit_arith(0x03, 0xC0, dst, src);
 944 }
 945 
 946 void Assembler::addr_nop_4() {
 947   assert(UseAddressNop, "no CPU support");
 948   // 4 bytes: NOP DWORD PTR [EAX+0]
 949   emit_int8(0x0F);
 950   emit_int8(0x1F);
 951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 952   emit_int8(0);    // 8-bits offset (1 byte)
 953 }
 954 
 955 void Assembler::addr_nop_5() {
 956   assert(UseAddressNop, "no CPU support");
 957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 958   emit_int8(0x0F);
 959   emit_int8(0x1F);
 960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 962   emit_int8(0);    // 8-bits offset (1 byte)
 963 }
 964 
 965 void Assembler::addr_nop_7() {
 966   assert(UseAddressNop, "no CPU support");
 967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 968   emit_int8(0x0F);
 969   emit_int8(0x1F);
 970   emit_int8((unsigned char)0x80);
 971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 972   emit_int32(0);   // 32-bits offset (4 bytes)
 973 }
 974 
 975 void Assembler::addr_nop_8() {
 976   assert(UseAddressNop, "no CPU support");
 977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 978   emit_int8(0x0F);
 979   emit_int8(0x1F);
 980   emit_int8((unsigned char)0x84);
 981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 983   emit_int32(0);   // 32-bits offset (4 bytes)
 984 }
 985 
 986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 989 }
 990 
 991 void Assembler::addsd(XMMRegister dst, Address src) {
 992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 994 }
 995 
 996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
 999 }
1000 
1001 void Assembler::addss(XMMRegister dst, Address src) {
1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 }
1005 
1006 void Assembler::aesdec(XMMRegister dst, Address src) {
1007   assert(VM_Version::supports_aes(), "");
1008   InstructionMark im(this);
1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1010   emit_int8((unsigned char)0xDE);
1011   emit_operand(dst, src);
1012 }
1013 
1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1015   assert(VM_Version::supports_aes(), "");
1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1017   emit_int8((unsigned char)0xDE);
1018   emit_int8(0xC0 | encode);
1019 }
1020 
1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1022   assert(VM_Version::supports_aes(), "");
1023   InstructionMark im(this);
1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025   emit_int8((unsigned char)0xDF);
1026   emit_operand(dst, src);
1027 }
1028 
1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1030   assert(VM_Version::supports_aes(), "");
1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1032   emit_int8((unsigned char)0xDF);
1033   emit_int8((unsigned char)(0xC0 | encode));
1034 }
1035 
1036 void Assembler::aesenc(XMMRegister dst, Address src) {
1037   assert(VM_Version::supports_aes(), "");
1038   InstructionMark im(this);
1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040   emit_int8((unsigned char)0xDC);
1041   emit_operand(dst, src);
1042 }
1043 
1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1045   assert(VM_Version::supports_aes(), "");
1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1047   emit_int8((unsigned char)0xDC);
1048   emit_int8(0xC0 | encode);
1049 }
1050 
1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
1052   assert(VM_Version::supports_aes(), "");
1053   InstructionMark im(this);
1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055   emit_int8((unsigned char)0xDD);
1056   emit_operand(dst, src);
1057 }
1058 
1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1060   assert(VM_Version::supports_aes(), "");
1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1062   emit_int8((unsigned char)0xDD);
1063   emit_int8((unsigned char)(0xC0 | encode));
1064 }
1065 
1066 
1067 void Assembler::andl(Address dst, int32_t imm32) {
1068   InstructionMark im(this);
1069   prefix(dst);
1070   emit_int8((unsigned char)0x81);
1071   emit_operand(rsp, dst, 4);
1072   emit_int32(imm32);
1073 }
1074 
1075 void Assembler::andl(Register dst, int32_t imm32) {
1076   prefix(dst);
1077   emit_arith(0x81, 0xE0, dst, imm32);
1078 }
1079 
1080 void Assembler::andl(Register dst, Address src) {
1081   InstructionMark im(this);
1082   prefix(src, dst);
1083   emit_int8(0x23);
1084   emit_operand(dst, src);
1085 }
1086 
1087 void Assembler::andl(Register dst, Register src) {
1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
1089   emit_arith(0x23, 0xC0, dst, src);
1090 }
1091 
1092 void Assembler::andnl(Register dst, Register src1, Register src2) {
1093   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1094   int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
1095   emit_int8((unsigned char)0xF2);
1096   emit_int8((unsigned char)(0xC0 | encode));
1097 }
1098 
1099 void Assembler::andnl(Register dst, Register src1, Address src2) {
1100   InstructionMark im(this);
1101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1102   vex_prefix_0F38(dst, src1, src2);
1103   emit_int8((unsigned char)0xF2);
1104   emit_operand(dst, src2);
1105 }
1106 
1107 void Assembler::bsfl(Register dst, Register src) {
1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1109   emit_int8(0x0F);
1110   emit_int8((unsigned char)0xBC);
1111   emit_int8((unsigned char)(0xC0 | encode));
1112 }
1113 
1114 void Assembler::bsrl(Register dst, Register src) {
1115   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
1116   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1117   emit_int8(0x0F);
1118   emit_int8((unsigned char)0xBD);
1119   emit_int8((unsigned char)(0xC0 | encode));
1120 }
1121 
1122 void Assembler::bswapl(Register reg) { // bswap
1123   int encode = prefix_and_encode(reg->encoding());
1124   emit_int8(0x0F);
1125   emit_int8((unsigned char)(0xC8 | encode));
1126 }
1127 
1128 void Assembler::blsil(Register dst, Register src) {
1129   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1130   int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
1131   emit_int8((unsigned char)0xF3);
1132   emit_int8((unsigned char)(0xC0 | encode));
1133 }
1134 
1135 void Assembler::blsil(Register dst, Address src) {
1136   InstructionMark im(this);
1137   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1138   vex_prefix_0F38(rbx, dst, src);
1139   emit_int8((unsigned char)0xF3);
1140   emit_operand(rbx, src);
1141 }
1142 
1143 void Assembler::blsmskl(Register dst, Register src) {
1144   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1145   int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
1146   emit_int8((unsigned char)0xF3);
1147   emit_int8((unsigned char)(0xC0 | encode));
1148 }
1149 
1150 void Assembler::blsmskl(Register dst, Address src) {
1151   InstructionMark im(this);
1152   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1153   vex_prefix_0F38(rdx, dst, src);
1154   emit_int8((unsigned char)0xF3);
1155   emit_operand(rdx, src);
1156 }
1157 
1158 void Assembler::blsrl(Register dst, Register src) {
1159   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1160   int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
1161   emit_int8((unsigned char)0xF3);
1162   emit_int8((unsigned char)(0xC0 | encode));
1163 }
1164 
1165 void Assembler::blsrl(Register dst, Address src) {
1166   InstructionMark im(this);
1167   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1168   vex_prefix_0F38(rcx, dst, src);
1169   emit_int8((unsigned char)0xF3);
1170   emit_operand(rcx, src);
1171 }
1172 
1173 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1174   // suspect disp32 is always good
1175   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1176 
1177   if (L.is_bound()) {
1178     const int long_size = 5;
1179     int offs = (int)( target(L) - pc() );
1180     assert(offs <= 0, "assembler error");
1181     InstructionMark im(this);
1182     // 1110 1000 #32-bit disp
1183     emit_int8((unsigned char)0xE8);
1184     emit_data(offs - long_size, rtype, operand);
1185   } else {
1186     InstructionMark im(this);
1187     // 1110 1000 #32-bit disp
1188     L.add_patch_at(code(), locator());
1189 
1190     emit_int8((unsigned char)0xE8);
1191     emit_data(int(0), rtype, operand);
1192   }
1193 }
1194 
1195 void Assembler::call(Register dst) {
1196   int encode = prefix_and_encode(dst->encoding());
1197   emit_int8((unsigned char)0xFF);
1198   emit_int8((unsigned char)(0xD0 | encode));
1199 }
1200 
1201 
1202 void Assembler::call(Address adr) {
1203   InstructionMark im(this);
1204   prefix(adr);
1205   emit_int8((unsigned char)0xFF);
1206   emit_operand(rdx, adr);
1207 }
1208 
1209 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1210   assert(entry != NULL, "call most probably wrong");
1211   InstructionMark im(this);
1212   emit_int8((unsigned char)0xE8);
1213   intptr_t disp = entry - (pc() + sizeof(int32_t));
1214   assert(is_simm32(disp), "must be 32bit offset (call2)");
1215   // Technically, should use call32_operand, but this format is
1216   // implied by the fact that we're emitting a call instruction.
1217 
1218   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1219   emit_data((int) disp, rspec, operand);
1220 }
1221 
1222 void Assembler::cdql() {
1223   emit_int8((unsigned char)0x99);
1224 }
1225 
1226 void Assembler::cld() {
1227   emit_int8((unsigned char)0xFC);
1228 }
1229 
1230 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1231   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1232   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1233   emit_int8(0x0F);
1234   emit_int8(0x40 | cc);
1235   emit_int8((unsigned char)(0xC0 | encode));
1236 }
1237 
1238 
1239 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1240   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1241   prefix(src, dst);
1242   emit_int8(0x0F);
1243   emit_int8(0x40 | cc);
1244   emit_operand(dst, src);
1245 }
1246 
1247 void Assembler::cmpb(Address dst, int imm8) {
1248   InstructionMark im(this);
1249   prefix(dst);
1250   emit_int8((unsigned char)0x80);
1251   emit_operand(rdi, dst, 1);
1252   emit_int8(imm8);
1253 }
1254 
1255 void Assembler::cmpl(Address dst, int32_t imm32) {
1256   InstructionMark im(this);
1257   prefix(dst);
1258   emit_int8((unsigned char)0x81);
1259   emit_operand(rdi, dst, 4);
1260   emit_int32(imm32);
1261 }
1262 
1263 void Assembler::cmpl(Register dst, int32_t imm32) {
1264   prefix(dst);
1265   emit_arith(0x81, 0xF8, dst, imm32);
1266 }
1267 
1268 void Assembler::cmpl(Register dst, Register src) {
1269   (void) prefix_and_encode(dst->encoding(), src->encoding());
1270   emit_arith(0x3B, 0xC0, dst, src);
1271 }
1272 
1273 
1274 void Assembler::cmpl(Register dst, Address  src) {
1275   InstructionMark im(this);
1276   prefix(src, dst);
1277   emit_int8((unsigned char)0x3B);
1278   emit_operand(dst, src);
1279 }
1280 
1281 void Assembler::cmpw(Address dst, int imm16) {
1282   InstructionMark im(this);
1283   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1284   emit_int8(0x66);
1285   emit_int8((unsigned char)0x81);
1286   emit_operand(rdi, dst, 2);
1287   emit_int16(imm16);
1288 }
1289 
1290 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1291 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1292 // The ZF is set if the compared values were equal, and cleared otherwise.
1293 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1294   InstructionMark im(this);
1295   prefix(adr, reg);
1296   emit_int8(0x0F);
1297   emit_int8((unsigned char)0xB1);
1298   emit_operand(reg, adr);
1299 }
1300 
1301 void Assembler::comisd(XMMRegister dst, Address src) {
1302   // NOTE: dbx seems to decode this as comiss even though the
1303   // 0x66 is there. Strangly ucomisd comes out correct
1304   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1305   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1306 }
1307 
1308 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1309   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1310   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1311 }
1312 
1313 void Assembler::comiss(XMMRegister dst, Address src) {
1314   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1315   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1316 }
1317 
1318 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1319   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1320   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1321 }
1322 
1323 void Assembler::cpuid() {
1324   emit_int8(0x0F);
1325   emit_int8((unsigned char)0xA2);
1326 }
1327 
1328 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1330   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1331 }
1332 
1333 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1334   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1335   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1336 }
1337 
1338 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1339   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1340   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1341 }
1342 
1343 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1345   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1346 }
1347 
1348 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1350   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1351   emit_int8(0x2A);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1356   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1357   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1358 }
1359 
1360 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1361   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1362   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1363   emit_int8(0x2A);
1364   emit_int8((unsigned char)(0xC0 | encode));
1365 }
1366 
1367 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1368   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1369   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
1370 }
1371 
1372 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1373   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1374   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1375 }
1376 
1377 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1378   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1379   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1380 }
1381 
1382 
1383 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1384   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1385   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1386   emit_int8(0x2C);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1391   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1392   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1393   emit_int8(0x2C);
1394   emit_int8((unsigned char)(0xC0 | encode));
1395 }
1396 
1397 void Assembler::decl(Address dst) {
1398   // Don't use it directly. Use MacroAssembler::decrement() instead.
1399   InstructionMark im(this);
1400   prefix(dst);
1401   emit_int8((unsigned char)0xFF);
1402   emit_operand(rcx, dst);
1403 }
1404 
1405 void Assembler::divsd(XMMRegister dst, Address src) {
1406   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1407   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1408 }
1409 
1410 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1412   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1413 }
1414 
1415 void Assembler::divss(XMMRegister dst, Address src) {
1416   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1417   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1418 }
1419 
1420 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1421   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1422   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1423 }
1424 
1425 void Assembler::emms() {
1426   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1427   emit_int8(0x0F);
1428   emit_int8(0x77);
1429 }
1430 
1431 void Assembler::hlt() {
1432   emit_int8((unsigned char)0xF4);
1433 }
1434 
1435 void Assembler::idivl(Register src) {
1436   int encode = prefix_and_encode(src->encoding());
1437   emit_int8((unsigned char)0xF7);
1438   emit_int8((unsigned char)(0xF8 | encode));
1439 }
1440 
1441 void Assembler::divl(Register src) { // Unsigned
1442   int encode = prefix_and_encode(src->encoding());
1443   emit_int8((unsigned char)0xF7);
1444   emit_int8((unsigned char)(0xF0 | encode));
1445 }
1446 
1447 void Assembler::imull(Register dst, Register src) {
1448   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1449   emit_int8(0x0F);
1450   emit_int8((unsigned char)0xAF);
1451   emit_int8((unsigned char)(0xC0 | encode));
1452 }
1453 
1454 
1455 void Assembler::imull(Register dst, Register src, int value) {
1456   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1457   if (is8bit(value)) {
1458     emit_int8(0x6B);
1459     emit_int8((unsigned char)(0xC0 | encode));
1460     emit_int8(value & 0xFF);
1461   } else {
1462     emit_int8(0x69);
1463     emit_int8((unsigned char)(0xC0 | encode));
1464     emit_int32(value);
1465   }
1466 }
1467 
1468 void Assembler::imull(Register dst, Address src) {
1469   InstructionMark im(this);
1470   prefix(src, dst);
1471   emit_int8(0x0F);
1472   emit_int8((unsigned char) 0xAF);
1473   emit_operand(dst, src);
1474 }
1475 
1476 
1477 void Assembler::incl(Address dst) {
1478   // Don't use it directly. Use MacroAssembler::increment() instead.
1479   InstructionMark im(this);
1480   prefix(dst);
1481   emit_int8((unsigned char)0xFF);
1482   emit_operand(rax, dst);
1483 }
1484 
1485 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1486   InstructionMark im(this);
1487   assert((0 <= cc) && (cc < 16), "illegal cc");
1488   if (L.is_bound()) {
1489     address dst = target(L);
1490     assert(dst != NULL, "jcc most probably wrong");
1491 
1492     const int short_size = 2;
1493     const int long_size = 6;
1494     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1495     if (maybe_short && is8bit(offs - short_size)) {
1496       // 0111 tttn #8-bit disp
1497       emit_int8(0x70 | cc);
1498       emit_int8((offs - short_size) & 0xFF);
1499     } else {
1500       // 0000 1111 1000 tttn #32-bit disp
1501       assert(is_simm32(offs - long_size),
1502              "must be 32bit offset (call4)");
1503       emit_int8(0x0F);
1504       emit_int8((unsigned char)(0x80 | cc));
1505       emit_int32(offs - long_size);
1506     }
1507   } else {
1508     // Note: could eliminate cond. jumps to this jump if condition
1509     //       is the same however, seems to be rather unlikely case.
1510     // Note: use jccb() if label to be bound is very close to get
1511     //       an 8-bit displacement
1512     L.add_patch_at(code(), locator());
1513     emit_int8(0x0F);
1514     emit_int8((unsigned char)(0x80 | cc));
1515     emit_int32(0);
1516   }
1517 }
1518 
1519 void Assembler::jccb(Condition cc, Label& L) {
1520   if (L.is_bound()) {
1521     const int short_size = 2;
1522     address entry = target(L);
1523 #ifdef ASSERT
1524     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1525     intptr_t delta = short_branch_delta();
1526     if (delta != 0) {
1527       dist += (dist < 0 ? (-delta) :delta);
1528     }
1529     assert(is8bit(dist), "Dispacement too large for a short jmp");
1530 #endif
1531     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1532     // 0111 tttn #8-bit disp
1533     emit_int8(0x70 | cc);
1534     emit_int8((offs - short_size) & 0xFF);
1535   } else {
1536     InstructionMark im(this);
1537     L.add_patch_at(code(), locator());
1538     emit_int8(0x70 | cc);
1539     emit_int8(0);
1540   }
1541 }
1542 
1543 void Assembler::jmp(Address adr) {
1544   InstructionMark im(this);
1545   prefix(adr);
1546   emit_int8((unsigned char)0xFF);
1547   emit_operand(rsp, adr);
1548 }
1549 
1550 void Assembler::jmp(Label& L, bool maybe_short) {
1551   if (L.is_bound()) {
1552     address entry = target(L);
1553     assert(entry != NULL, "jmp most probably wrong");
1554     InstructionMark im(this);
1555     const int short_size = 2;
1556     const int long_size = 5;
1557     intptr_t offs = entry - pc();
1558     if (maybe_short && is8bit(offs - short_size)) {
1559       emit_int8((unsigned char)0xEB);
1560       emit_int8((offs - short_size) & 0xFF);
1561     } else {
1562       emit_int8((unsigned char)0xE9);
1563       emit_int32(offs - long_size);
1564     }
1565   } else {
1566     // By default, forward jumps are always 32-bit displacements, since
1567     // we can't yet know where the label will be bound.  If you're sure that
1568     // the forward jump will not run beyond 256 bytes, use jmpb to
1569     // force an 8-bit displacement.
1570     InstructionMark im(this);
1571     L.add_patch_at(code(), locator());
1572     emit_int8((unsigned char)0xE9);
1573     emit_int32(0);
1574   }
1575 }
1576 
1577 void Assembler::jmp(Register entry) {
1578   int encode = prefix_and_encode(entry->encoding());
1579   emit_int8((unsigned char)0xFF);
1580   emit_int8((unsigned char)(0xE0 | encode));
1581 }
1582 
1583 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1584   InstructionMark im(this);
1585   emit_int8((unsigned char)0xE9);
1586   assert(dest != NULL, "must have a target");
1587   intptr_t disp = dest - (pc() + sizeof(int32_t));
1588   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1589   emit_data(disp, rspec.reloc(), call32_operand);
1590 }
1591 
1592 void Assembler::jmpb(Label& L) {
1593   if (L.is_bound()) {
1594     const int short_size = 2;
1595     address entry = target(L);
1596     assert(entry != NULL, "jmp most probably wrong");
1597 #ifdef ASSERT
1598     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1599     intptr_t delta = short_branch_delta();
1600     if (delta != 0) {
1601       dist += (dist < 0 ? (-delta) :delta);
1602     }
1603     assert(is8bit(dist), "Dispacement too large for a short jmp");
1604 #endif
1605     intptr_t offs = entry - pc();
1606     emit_int8((unsigned char)0xEB);
1607     emit_int8((offs - short_size) & 0xFF);
1608   } else {
1609     InstructionMark im(this);
1610     L.add_patch_at(code(), locator());
1611     emit_int8((unsigned char)0xEB);
1612     emit_int8(0);
1613   }
1614 }
1615 
1616 void Assembler::ldmxcsr( Address src) {
1617   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1618   InstructionMark im(this);
1619   prefix(src);
1620   emit_int8(0x0F);
1621   emit_int8((unsigned char)0xAE);
1622   emit_operand(as_Register(2), src);
1623 }
1624 
1625 void Assembler::leal(Register dst, Address src) {
1626   InstructionMark im(this);
1627 #ifdef _LP64
1628   emit_int8(0x67); // addr32
1629   prefix(src, dst);
1630 #endif // LP64
1631   emit_int8((unsigned char)0x8D);
1632   emit_operand(dst, src);
1633 }
1634 
1635 void Assembler::lfence() {
1636   emit_int8(0x0F);
1637   emit_int8((unsigned char)0xAE);
1638   emit_int8((unsigned char)0xE8);
1639 }
1640 
1641 void Assembler::lock() {
1642   emit_int8((unsigned char)0xF0);
1643 }
1644 
1645 void Assembler::lzcntl(Register dst, Register src) {
1646   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1647   emit_int8((unsigned char)0xF3);
1648   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1649   emit_int8(0x0F);
1650   emit_int8((unsigned char)0xBD);
1651   emit_int8((unsigned char)(0xC0 | encode));
1652 }
1653 
1654 // Emit mfence instruction
1655 void Assembler::mfence() {
1656   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1657   emit_int8(0x0F);
1658   emit_int8((unsigned char)0xAE);
1659   emit_int8((unsigned char)0xF0);
1660 }
1661 
1662 void Assembler::mov(Register dst, Register src) {
1663   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1664 }
1665 
1666 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1668   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1669 }
1670 
1671 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1672   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1673   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1674 }
1675 
1676 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
1677   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1678   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1679   emit_int8(0x16);
1680   emit_int8((unsigned char)(0xC0 | encode));
1681 }
1682 
1683 void Assembler::movb(Register dst, Address src) {
1684   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1685   InstructionMark im(this);
1686   prefix(src, dst, true);
1687   emit_int8((unsigned char)0x8A);
1688   emit_operand(dst, src);
1689 }
1690 
1691 
1692 void Assembler::movb(Address dst, int imm8) {
1693   InstructionMark im(this);
1694    prefix(dst);
1695   emit_int8((unsigned char)0xC6);
1696   emit_operand(rax, dst, 1);
1697   emit_int8(imm8);
1698 }
1699 
1700 
1701 void Assembler::movb(Address dst, Register src) {
1702   assert(src->has_byte_register(), "must have byte register");
1703   InstructionMark im(this);
1704   prefix(dst, src, true);
1705   emit_int8((unsigned char)0x88);
1706   emit_operand(src, dst);
1707 }
1708 
1709 void Assembler::movdl(XMMRegister dst, Register src) {
1710   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1711   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1712   emit_int8(0x6E);
1713   emit_int8((unsigned char)(0xC0 | encode));
1714 }
1715 
1716 void Assembler::movdl(Register dst, XMMRegister src) {
1717   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1718   // swap src/dst to get correct prefix
1719   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1720   emit_int8(0x7E);
1721   emit_int8((unsigned char)(0xC0 | encode));
1722 }
1723 
1724 void Assembler::movdl(XMMRegister dst, Address src) {
1725   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1726   InstructionMark im(this);
1727   simd_prefix(dst, src, VEX_SIMD_66);
1728   emit_int8(0x6E);
1729   emit_operand(dst, src);
1730 }
1731 
1732 void Assembler::movdl(Address dst, XMMRegister src) {
1733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1734   InstructionMark im(this);
1735   simd_prefix(dst, src, VEX_SIMD_66);
1736   emit_int8(0x7E);
1737   emit_operand(src, dst);
1738 }
1739 
1740 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1742   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1743 }
1744 
1745 void Assembler::movdqa(XMMRegister dst, Address src) {
1746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1747   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1748 }
1749 
1750 void Assembler::movdqu(XMMRegister dst, Address src) {
1751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1752   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1753 }
1754 
1755 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1757   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1758 }
1759 
1760 void Assembler::movdqu(Address dst, XMMRegister src) {
1761   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1762   InstructionMark im(this);
1763   simd_prefix(dst, src, VEX_SIMD_F3);
1764   emit_int8(0x7F);
1765   emit_operand(src, dst);
1766 }
1767 
1768 // Move Unaligned 256bit Vector
1769 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
1770   assert(UseAVX, "");
1771   bool vector256 = true;
1772   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1773   emit_int8(0x6F);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 void Assembler::vmovdqu(XMMRegister dst, Address src) {
1778   assert(UseAVX, "");
1779   InstructionMark im(this);
1780   bool vector256 = true;
1781   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1782   emit_int8(0x6F);
1783   emit_operand(dst, src);
1784 }
1785 
1786 void Assembler::vmovdqu(Address dst, XMMRegister src) {
1787   assert(UseAVX, "");
1788   InstructionMark im(this);
1789   bool vector256 = true;
1790   // swap src<->dst for encoding
1791   assert(src != xnoreg, "sanity");
1792   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1793   emit_int8(0x7F);
1794   emit_operand(src, dst);
1795 }
1796 
1797 // Uses zero extension on 64bit
1798 
1799 void Assembler::movl(Register dst, int32_t imm32) {
1800   int encode = prefix_and_encode(dst->encoding());
1801   emit_int8((unsigned char)(0xB8 | encode));
1802   emit_int32(imm32);
1803 }
1804 
1805 void Assembler::movl(Register dst, Register src) {
1806   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1807   emit_int8((unsigned char)0x8B);
1808   emit_int8((unsigned char)(0xC0 | encode));
1809 }
1810 
1811 void Assembler::movl(Register dst, Address src) {
1812   InstructionMark im(this);
1813   prefix(src, dst);
1814   emit_int8((unsigned char)0x8B);
1815   emit_operand(dst, src);
1816 }
1817 
1818 void Assembler::movl(Address dst, int32_t imm32) {
1819   InstructionMark im(this);
1820   prefix(dst);
1821   emit_int8((unsigned char)0xC7);
1822   emit_operand(rax, dst, 4);
1823   emit_int32(imm32);
1824 }
1825 
1826 void Assembler::movl(Address dst, Register src) {
1827   InstructionMark im(this);
1828   prefix(dst, src);
1829   emit_int8((unsigned char)0x89);
1830   emit_operand(src, dst);
1831 }
1832 
1833 // New cpus require to use movsd and movss to avoid partial register stall
1834 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1835 // The selection is done in MacroAssembler::movdbl() and movflt().
1836 void Assembler::movlpd(XMMRegister dst, Address src) {
1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1838   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
1839 }
1840 
1841 void Assembler::movq( MMXRegister dst, Address src ) {
1842   assert( VM_Version::supports_mmx(), "" );
1843   emit_int8(0x0F);
1844   emit_int8(0x6F);
1845   emit_operand(dst, src);
1846 }
1847 
1848 void Assembler::movq( Address dst, MMXRegister src ) {
1849   assert( VM_Version::supports_mmx(), "" );
1850   emit_int8(0x0F);
1851   emit_int8(0x7F);
1852   // workaround gcc (3.2.1-7a) bug
1853   // In that version of gcc with only an emit_operand(MMX, Address)
1854   // gcc will tail jump and try and reverse the parameters completely
1855   // obliterating dst in the process. By having a version available
1856   // that doesn't need to swap the args at the tail jump the bug is
1857   // avoided.
1858   emit_operand(dst, src);
1859 }
1860 
1861 void Assembler::movq(XMMRegister dst, Address src) {
1862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1863   InstructionMark im(this);
1864   simd_prefix(dst, src, VEX_SIMD_F3);
1865   emit_int8(0x7E);
1866   emit_operand(dst, src);
1867 }
1868 
1869 void Assembler::movq(Address dst, XMMRegister src) {
1870   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1871   InstructionMark im(this);
1872   simd_prefix(dst, src, VEX_SIMD_66);
1873   emit_int8((unsigned char)0xD6);
1874   emit_operand(src, dst);
1875 }
1876 
1877 void Assembler::movsbl(Register dst, Address src) { // movsxb
1878   InstructionMark im(this);
1879   prefix(src, dst);
1880   emit_int8(0x0F);
1881   emit_int8((unsigned char)0xBE);
1882   emit_operand(dst, src);
1883 }
1884 
1885 void Assembler::movsbl(Register dst, Register src) { // movsxb
1886   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1887   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1888   emit_int8(0x0F);
1889   emit_int8((unsigned char)0xBE);
1890   emit_int8((unsigned char)(0xC0 | encode));
1891 }
1892 
1893 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1895   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
1896 }
1897 
1898 void Assembler::movsd(XMMRegister dst, Address src) {
1899   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1900   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
1901 }
1902 
1903 void Assembler::movsd(Address dst, XMMRegister src) {
1904   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1905   InstructionMark im(this);
1906   simd_prefix(dst, src, VEX_SIMD_F2);
1907   emit_int8(0x11);
1908   emit_operand(src, dst);
1909 }
1910 
1911 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1912   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1913   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
1914 }
1915 
1916 void Assembler::movss(XMMRegister dst, Address src) {
1917   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1918   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
1919 }
1920 
1921 void Assembler::movss(Address dst, XMMRegister src) {
1922   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1923   InstructionMark im(this);
1924   simd_prefix(dst, src, VEX_SIMD_F3);
1925   emit_int8(0x11);
1926   emit_operand(src, dst);
1927 }
1928 
1929 void Assembler::movswl(Register dst, Address src) { // movsxw
1930   InstructionMark im(this);
1931   prefix(src, dst);
1932   emit_int8(0x0F);
1933   emit_int8((unsigned char)0xBF);
1934   emit_operand(dst, src);
1935 }
1936 
1937 void Assembler::movswl(Register dst, Register src) { // movsxw
1938   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1939   emit_int8(0x0F);
1940   emit_int8((unsigned char)0xBF);
1941   emit_int8((unsigned char)(0xC0 | encode));
1942 }
1943 
1944 void Assembler::movw(Address dst, int imm16) {
1945   InstructionMark im(this);
1946 
1947   emit_int8(0x66); // switch to 16-bit mode
1948   prefix(dst);
1949   emit_int8((unsigned char)0xC7);
1950   emit_operand(rax, dst, 2);
1951   emit_int16(imm16);
1952 }
1953 
1954 void Assembler::movw(Register dst, Address src) {
1955   InstructionMark im(this);
1956   emit_int8(0x66);
1957   prefix(src, dst);
1958   emit_int8((unsigned char)0x8B);
1959   emit_operand(dst, src);
1960 }
1961 
1962 void Assembler::movw(Address dst, Register src) {
1963   InstructionMark im(this);
1964   emit_int8(0x66);
1965   prefix(dst, src);
1966   emit_int8((unsigned char)0x89);
1967   emit_operand(src, dst);
1968 }
1969 
1970 void Assembler::movzbl(Register dst, Address src) { // movzxb
1971   InstructionMark im(this);
1972   prefix(src, dst);
1973   emit_int8(0x0F);
1974   emit_int8((unsigned char)0xB6);
1975   emit_operand(dst, src);
1976 }
1977 
1978 void Assembler::movzbl(Register dst, Register src) { // movzxb
1979   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1980   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1981   emit_int8(0x0F);
1982   emit_int8((unsigned char)0xB6);
1983   emit_int8(0xC0 | encode);
1984 }
1985 
1986 void Assembler::movzwl(Register dst, Address src) { // movzxw
1987   InstructionMark im(this);
1988   prefix(src, dst);
1989   emit_int8(0x0F);
1990   emit_int8((unsigned char)0xB7);
1991   emit_operand(dst, src);
1992 }
1993 
1994 void Assembler::movzwl(Register dst, Register src) { // movzxw
1995   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1996   emit_int8(0x0F);
1997   emit_int8((unsigned char)0xB7);
1998   emit_int8(0xC0 | encode);
1999 }
2000 
2001 void Assembler::mull(Address src) {
2002   InstructionMark im(this);
2003   prefix(src);
2004   emit_int8((unsigned char)0xF7);
2005   emit_operand(rsp, src);
2006 }
2007 
2008 void Assembler::mull(Register src) {
2009   int encode = prefix_and_encode(src->encoding());
2010   emit_int8((unsigned char)0xF7);
2011   emit_int8((unsigned char)(0xE0 | encode));
2012 }
2013 
2014 void Assembler::mulsd(XMMRegister dst, Address src) {
2015   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2016   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2017 }
2018 
2019 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2021   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2022 }
2023 
2024 void Assembler::mulss(XMMRegister dst, Address src) {
2025   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2026   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2027 }
2028 
2029 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2030   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2031   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2032 }
2033 
2034 void Assembler::negl(Register dst) {
2035   int encode = prefix_and_encode(dst->encoding());
2036   emit_int8((unsigned char)0xF7);
2037   emit_int8((unsigned char)(0xD8 | encode));
2038 }
2039 
2040 void Assembler::nop(int i) {
2041 #ifdef ASSERT
2042   assert(i > 0, " ");
2043   // The fancy nops aren't currently recognized by debuggers making it a
2044   // pain to disassemble code while debugging. If asserts are on clearly
2045   // speed is not an issue so simply use the single byte traditional nop
2046   // to do alignment.
2047 
2048   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2049   return;
2050 
2051 #endif // ASSERT
2052 
2053   if (UseAddressNop && VM_Version::is_intel()) {
2054     //
2055     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2056     //  1: 0x90
2057     //  2: 0x66 0x90
2058     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2059     //  4: 0x0F 0x1F 0x40 0x00
2060     //  5: 0x0F 0x1F 0x44 0x00 0x00
2061     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2062     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2063     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2064     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2065     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2066     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2067 
2068     // The rest coding is Intel specific - don't use consecutive address nops
2069 
2070     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2071     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2072     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2073     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2074 
2075     while(i >= 15) {
2076       // For Intel don't generate consecutive addess nops (mix with regular nops)
2077       i -= 15;
2078       emit_int8(0x66);   // size prefix
2079       emit_int8(0x66);   // size prefix
2080       emit_int8(0x66);   // size prefix
2081       addr_nop_8();
2082       emit_int8(0x66);   // size prefix
2083       emit_int8(0x66);   // size prefix
2084       emit_int8(0x66);   // size prefix
2085       emit_int8((unsigned char)0x90);
2086                          // nop
2087     }
2088     switch (i) {
2089       case 14:
2090         emit_int8(0x66); // size prefix
2091       case 13:
2092         emit_int8(0x66); // size prefix
2093       case 12:
2094         addr_nop_8();
2095         emit_int8(0x66); // size prefix
2096         emit_int8(0x66); // size prefix
2097         emit_int8(0x66); // size prefix
2098         emit_int8((unsigned char)0x90);
2099                          // nop
2100         break;
2101       case 11:
2102         emit_int8(0x66); // size prefix
2103       case 10:
2104         emit_int8(0x66); // size prefix
2105       case 9:
2106         emit_int8(0x66); // size prefix
2107       case 8:
2108         addr_nop_8();
2109         break;
2110       case 7:
2111         addr_nop_7();
2112         break;
2113       case 6:
2114         emit_int8(0x66); // size prefix
2115       case 5:
2116         addr_nop_5();
2117         break;
2118       case 4:
2119         addr_nop_4();
2120         break;
2121       case 3:
2122         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2123         emit_int8(0x66); // size prefix
2124       case 2:
2125         emit_int8(0x66); // size prefix
2126       case 1:
2127         emit_int8((unsigned char)0x90);
2128                          // nop
2129         break;
2130       default:
2131         assert(i == 0, " ");
2132     }
2133     return;
2134   }
2135   if (UseAddressNop && VM_Version::is_amd()) {
2136     //
2137     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2138     //  1: 0x90
2139     //  2: 0x66 0x90
2140     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2141     //  4: 0x0F 0x1F 0x40 0x00
2142     //  5: 0x0F 0x1F 0x44 0x00 0x00
2143     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2144     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2145     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2146     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2147     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2148     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2149 
2150     // The rest coding is AMD specific - use consecutive address nops
2151 
2152     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2153     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2154     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2155     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2156     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2157     //     Size prefixes (0x66) are added for larger sizes
2158 
2159     while(i >= 22) {
2160       i -= 11;
2161       emit_int8(0x66); // size prefix
2162       emit_int8(0x66); // size prefix
2163       emit_int8(0x66); // size prefix
2164       addr_nop_8();
2165     }
2166     // Generate first nop for size between 21-12
2167     switch (i) {
2168       case 21:
2169         i -= 1;
2170         emit_int8(0x66); // size prefix
2171       case 20:
2172       case 19:
2173         i -= 1;
2174         emit_int8(0x66); // size prefix
2175       case 18:
2176       case 17:
2177         i -= 1;
2178         emit_int8(0x66); // size prefix
2179       case 16:
2180       case 15:
2181         i -= 8;
2182         addr_nop_8();
2183         break;
2184       case 14:
2185       case 13:
2186         i -= 7;
2187         addr_nop_7();
2188         break;
2189       case 12:
2190         i -= 6;
2191         emit_int8(0x66); // size prefix
2192         addr_nop_5();
2193         break;
2194       default:
2195         assert(i < 12, " ");
2196     }
2197 
2198     // Generate second nop for size between 11-1
2199     switch (i) {
2200       case 11:
2201         emit_int8(0x66); // size prefix
2202       case 10:
2203         emit_int8(0x66); // size prefix
2204       case 9:
2205         emit_int8(0x66); // size prefix
2206       case 8:
2207         addr_nop_8();
2208         break;
2209       case 7:
2210         addr_nop_7();
2211         break;
2212       case 6:
2213         emit_int8(0x66); // size prefix
2214       case 5:
2215         addr_nop_5();
2216         break;
2217       case 4:
2218         addr_nop_4();
2219         break;
2220       case 3:
2221         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2222         emit_int8(0x66); // size prefix
2223       case 2:
2224         emit_int8(0x66); // size prefix
2225       case 1:
2226         emit_int8((unsigned char)0x90);
2227                          // nop
2228         break;
2229       default:
2230         assert(i == 0, " ");
2231     }
2232     return;
2233   }
2234 
2235   // Using nops with size prefixes "0x66 0x90".
2236   // From AMD Optimization Guide:
2237   //  1: 0x90
2238   //  2: 0x66 0x90
2239   //  3: 0x66 0x66 0x90
2240   //  4: 0x66 0x66 0x66 0x90
2241   //  5: 0x66 0x66 0x90 0x66 0x90
2242   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2243   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2244   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2245   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2246   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2247   //
2248   while(i > 12) {
2249     i -= 4;
2250     emit_int8(0x66); // size prefix
2251     emit_int8(0x66);
2252     emit_int8(0x66);
2253     emit_int8((unsigned char)0x90);
2254                      // nop
2255   }
2256   // 1 - 12 nops
2257   if(i > 8) {
2258     if(i > 9) {
2259       i -= 1;
2260       emit_int8(0x66);
2261     }
2262     i -= 3;
2263     emit_int8(0x66);
2264     emit_int8(0x66);
2265     emit_int8((unsigned char)0x90);
2266   }
2267   // 1 - 8 nops
2268   if(i > 4) {
2269     if(i > 6) {
2270       i -= 1;
2271       emit_int8(0x66);
2272     }
2273     i -= 3;
2274     emit_int8(0x66);
2275     emit_int8(0x66);
2276     emit_int8((unsigned char)0x90);
2277   }
2278   switch (i) {
2279     case 4:
2280       emit_int8(0x66);
2281     case 3:
2282       emit_int8(0x66);
2283     case 2:
2284       emit_int8(0x66);
2285     case 1:
2286       emit_int8((unsigned char)0x90);
2287       break;
2288     default:
2289       assert(i == 0, " ");
2290   }
2291 }
2292 
2293 void Assembler::notl(Register dst) {
2294   int encode = prefix_and_encode(dst->encoding());
2295   emit_int8((unsigned char)0xF7);
2296   emit_int8((unsigned char)(0xD0 | encode));
2297 }
2298 
2299 void Assembler::orl(Address dst, int32_t imm32) {
2300   InstructionMark im(this);
2301   prefix(dst);
2302   emit_arith_operand(0x81, rcx, dst, imm32);
2303 }
2304 
2305 void Assembler::orl(Register dst, int32_t imm32) {
2306   prefix(dst);
2307   emit_arith(0x81, 0xC8, dst, imm32);
2308 }
2309 
2310 void Assembler::orl(Register dst, Address src) {
2311   InstructionMark im(this);
2312   prefix(src, dst);
2313   emit_int8(0x0B);
2314   emit_operand(dst, src);
2315 }
2316 
2317 void Assembler::orl(Register dst, Register src) {
2318   (void) prefix_and_encode(dst->encoding(), src->encoding());
2319   emit_arith(0x0B, 0xC0, dst, src);
2320 }
2321 
2322 void Assembler::packuswb(XMMRegister dst, Address src) {
2323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2324   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2325   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2326 }
2327 
2328 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2330   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2331 }
2332 
2333 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2334   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
2335   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
2336 }
2337 
2338 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2339   assert(VM_Version::supports_avx2(), "");
2340   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
2341   emit_int8(0x00);
2342   emit_int8(0xC0 | encode);
2343   emit_int8(imm8);
2344 }
2345 
2346 void Assembler::pause() {
2347   emit_int8((unsigned char)0xF3);
2348   emit_int8((unsigned char)0x90);
2349 }
2350 
2351 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2352   assert(VM_Version::supports_sse4_2(), "");
2353   InstructionMark im(this);
2354   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2355   emit_int8(0x61);
2356   emit_operand(dst, src);
2357   emit_int8(imm8);
2358 }
2359 
2360 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2361   assert(VM_Version::supports_sse4_2(), "");
2362   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2363   emit_int8(0x61);
2364   emit_int8((unsigned char)(0xC0 | encode));
2365   emit_int8(imm8);
2366 }
2367 
2368 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2369   assert(VM_Version::supports_sse4_1(), "");
2370   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2371   emit_int8(0x16);
2372   emit_int8((unsigned char)(0xC0 | encode));
2373   emit_int8(imm8);
2374 }
2375 
2376 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2377   assert(VM_Version::supports_sse4_1(), "");
2378   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2379   emit_int8(0x16);
2380   emit_int8((unsigned char)(0xC0 | encode));
2381   emit_int8(imm8);
2382 }
2383 
2384 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2385   assert(VM_Version::supports_sse4_1(), "");
2386   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2387   emit_int8(0x22);
2388   emit_int8((unsigned char)(0xC0 | encode));
2389   emit_int8(imm8);
2390 }
2391 
2392 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2393   assert(VM_Version::supports_sse4_1(), "");
2394   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2395   emit_int8(0x22);
2396   emit_int8((unsigned char)(0xC0 | encode));
2397   emit_int8(imm8);
2398 }
2399 
2400 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2401   assert(VM_Version::supports_sse4_1(), "");
2402   InstructionMark im(this);
2403   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2404   emit_int8(0x30);
2405   emit_operand(dst, src);
2406 }
2407 
2408 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2409   assert(VM_Version::supports_sse4_1(), "");
2410   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2411   emit_int8(0x30);
2412   emit_int8((unsigned char)(0xC0 | encode));
2413 }
2414 
2415 // generic
2416 void Assembler::pop(Register dst) {
2417   int encode = prefix_and_encode(dst->encoding());
2418   emit_int8(0x58 | encode);
2419 }
2420 
2421 void Assembler::popcntl(Register dst, Address src) {
2422   assert(VM_Version::supports_popcnt(), "must support");
2423   InstructionMark im(this);
2424   emit_int8((unsigned char)0xF3);
2425   prefix(src, dst);
2426   emit_int8(0x0F);
2427   emit_int8((unsigned char)0xB8);
2428   emit_operand(dst, src);
2429 }
2430 
2431 void Assembler::popcntl(Register dst, Register src) {
2432   assert(VM_Version::supports_popcnt(), "must support");
2433   emit_int8((unsigned char)0xF3);
2434   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2435   emit_int8(0x0F);
2436   emit_int8((unsigned char)0xB8);
2437   emit_int8((unsigned char)(0xC0 | encode));
2438 }
2439 
2440 void Assembler::popf() {
2441   emit_int8((unsigned char)0x9D);
2442 }
2443 
2444 #ifndef _LP64 // no 32bit push/pop on amd64
2445 void Assembler::popl(Address dst) {
2446   // NOTE: this will adjust stack by 8byte on 64bits
2447   InstructionMark im(this);
2448   prefix(dst);
2449   emit_int8((unsigned char)0x8F);
2450   emit_operand(rax, dst);
2451 }
2452 #endif
2453 
2454 void Assembler::prefetch_prefix(Address src) {
2455   prefix(src);
2456   emit_int8(0x0F);
2457 }
2458 
2459 void Assembler::prefetchnta(Address src) {
2460   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2461   InstructionMark im(this);
2462   prefetch_prefix(src);
2463   emit_int8(0x18);
2464   emit_operand(rax, src); // 0, src
2465 }
2466 
2467 void Assembler::prefetchr(Address src) {
2468   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2469   InstructionMark im(this);
2470   prefetch_prefix(src);
2471   emit_int8(0x0D);
2472   emit_operand(rax, src); // 0, src
2473 }
2474 
2475 void Assembler::prefetcht0(Address src) {
2476   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2477   InstructionMark im(this);
2478   prefetch_prefix(src);
2479   emit_int8(0x18);
2480   emit_operand(rcx, src); // 1, src
2481 }
2482 
2483 void Assembler::prefetcht1(Address src) {
2484   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2485   InstructionMark im(this);
2486   prefetch_prefix(src);
2487   emit_int8(0x18);
2488   emit_operand(rdx, src); // 2, src
2489 }
2490 
2491 void Assembler::prefetcht2(Address src) {
2492   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2493   InstructionMark im(this);
2494   prefetch_prefix(src);
2495   emit_int8(0x18);
2496   emit_operand(rbx, src); // 3, src
2497 }
2498 
2499 void Assembler::prefetchw(Address src) {
2500   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2501   InstructionMark im(this);
2502   prefetch_prefix(src);
2503   emit_int8(0x0D);
2504   emit_operand(rcx, src); // 1, src
2505 }
2506 
2507 void Assembler::prefix(Prefix p) {
2508   emit_int8(p);
2509 }
2510 
2511 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
2512   assert(VM_Version::supports_ssse3(), "");
2513   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2514   emit_int8(0x00);
2515   emit_int8((unsigned char)(0xC0 | encode));
2516 }
2517 
2518 void Assembler::pshufb(XMMRegister dst, Address src) {
2519   assert(VM_Version::supports_ssse3(), "");
2520   InstructionMark im(this);
2521   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2522   emit_int8(0x00);
2523   emit_operand(dst, src);
2524 }
2525 
2526 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2527   assert(isByte(mode), "invalid value");
2528   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2529   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2530   emit_int8(mode & 0xFF);
2531 
2532 }
2533 
2534 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2535   assert(isByte(mode), "invalid value");
2536   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2537   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2538   InstructionMark im(this);
2539   simd_prefix(dst, src, VEX_SIMD_66);
2540   emit_int8(0x70);
2541   emit_operand(dst, src);
2542   emit_int8(mode & 0xFF);
2543 }
2544 
2545 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2546   assert(isByte(mode), "invalid value");
2547   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2548   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2549   emit_int8(mode & 0xFF);
2550 }
2551 
2552 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2553   assert(isByte(mode), "invalid value");
2554   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2555   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2556   InstructionMark im(this);
2557   simd_prefix(dst, src, VEX_SIMD_F2);
2558   emit_int8(0x70);
2559   emit_operand(dst, src);
2560   emit_int8(mode & 0xFF);
2561 }
2562 
2563 void Assembler::psrldq(XMMRegister dst, int shift) {
2564   // Shift 128 bit value in xmm register by number of bytes.
2565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2566   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2567   emit_int8(0x73);
2568   emit_int8((unsigned char)(0xC0 | encode));
2569   emit_int8(shift);
2570 }
2571 
2572 void Assembler::ptest(XMMRegister dst, Address src) {
2573   assert(VM_Version::supports_sse4_1(), "");
2574   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2575   InstructionMark im(this);
2576   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2577   emit_int8(0x17);
2578   emit_operand(dst, src);
2579 }
2580 
2581 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2582   assert(VM_Version::supports_sse4_1(), "");
2583   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2584   emit_int8(0x17);
2585   emit_int8((unsigned char)(0xC0 | encode));
2586 }
2587 
2588 void Assembler::vptest(XMMRegister dst, Address src) {
2589   assert(VM_Version::supports_avx(), "");
2590   InstructionMark im(this);
2591   bool vector256 = true;
2592   assert(dst != xnoreg, "sanity");
2593   int dst_enc = dst->encoding();
2594   // swap src<->dst for encoding
2595   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2596   emit_int8(0x17);
2597   emit_operand(dst, src);
2598 }
2599 
2600 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
2601   assert(VM_Version::supports_avx(), "");
2602   bool vector256 = true;
2603   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
2604   emit_int8(0x17);
2605   emit_int8((unsigned char)(0xC0 | encode));
2606 }
2607 
2608 void Assembler::punpcklbw(XMMRegister dst, Address src) {
2609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2610   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2611   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2612 }
2613 
2614 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2615   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2616   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2617 }
2618 
2619 void Assembler::punpckldq(XMMRegister dst, Address src) {
2620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2621   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2622   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2623 }
2624 
2625 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2627   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2628 }
2629 
2630 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
2631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2632   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
2633 }
2634 
2635 void Assembler::push(int32_t imm32) {
2636   // in 64bits we push 64bits onto the stack but only
2637   // take a 32bit immediate
2638   emit_int8(0x68);
2639   emit_int32(imm32);
2640 }
2641 
2642 void Assembler::push(Register src) {
2643   int encode = prefix_and_encode(src->encoding());
2644 
2645   emit_int8(0x50 | encode);
2646 }
2647 
2648 void Assembler::pushf() {
2649   emit_int8((unsigned char)0x9C);
2650 }
2651 
2652 #ifndef _LP64 // no 32bit push/pop on amd64
2653 void Assembler::pushl(Address src) {
2654   // Note this will push 64bit on 64bit
2655   InstructionMark im(this);
2656   prefix(src);
2657   emit_int8((unsigned char)0xFF);
2658   emit_operand(rsi, src);
2659 }
2660 #endif
2661 
2662 void Assembler::rcll(Register dst, int imm8) {
2663   assert(isShiftCount(imm8), "illegal shift count");
2664   int encode = prefix_and_encode(dst->encoding());
2665   if (imm8 == 1) {
2666     emit_int8((unsigned char)0xD1);
2667     emit_int8((unsigned char)(0xD0 | encode));
2668   } else {
2669     emit_int8((unsigned char)0xC1);
2670     emit_int8((unsigned char)0xD0 | encode);
2671     emit_int8(imm8);
2672   }
2673 }
2674 
2675 void Assembler::rdtsc() {
2676   emit_int8((unsigned char)0x0F);
2677   emit_int8((unsigned char)0x31);
2678 }
2679 
2680 // copies data from [esi] to [edi] using rcx pointer sized words
2681 // generic
2682 void Assembler::rep_mov() {
2683   emit_int8((unsigned char)0xF3);
2684   // MOVSQ
2685   LP64_ONLY(prefix(REX_W));
2686   emit_int8((unsigned char)0xA5);
2687 }
2688 
2689 // sets rcx bytes with rax, value at [edi]
2690 void Assembler::rep_stosb() {
2691   emit_int8((unsigned char)0xF3); // REP
2692   LP64_ONLY(prefix(REX_W));
2693   emit_int8((unsigned char)0xAA); // STOSB
2694 }
2695 
2696 // sets rcx pointer sized words with rax, value at [edi]
2697 // generic
2698 void Assembler::rep_stos() {
2699   emit_int8((unsigned char)0xF3); // REP
2700   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2701   emit_int8((unsigned char)0xAB);
2702 }
2703 
2704 // scans rcx pointer sized words at [edi] for occurance of rax,
2705 // generic
2706 void Assembler::repne_scan() { // repne_scan
2707   emit_int8((unsigned char)0xF2);
2708   // SCASQ
2709   LP64_ONLY(prefix(REX_W));
2710   emit_int8((unsigned char)0xAF);
2711 }
2712 
2713 #ifdef _LP64
2714 // scans rcx 4 byte words at [edi] for occurance of rax,
2715 // generic
2716 void Assembler::repne_scanl() { // repne_scan
2717   emit_int8((unsigned char)0xF2);
2718   // SCASL
2719   emit_int8((unsigned char)0xAF);
2720 }
2721 #endif
2722 
2723 void Assembler::ret(int imm16) {
2724   if (imm16 == 0) {
2725     emit_int8((unsigned char)0xC3);
2726   } else {
2727     emit_int8((unsigned char)0xC2);
2728     emit_int16(imm16);
2729   }
2730 }
2731 
2732 void Assembler::sahf() {
2733 #ifdef _LP64
2734   // Not supported in 64bit mode
2735   ShouldNotReachHere();
2736 #endif
2737   emit_int8((unsigned char)0x9E);
2738 }
2739 
2740 void Assembler::sarl(Register dst, int imm8) {
2741   int encode = prefix_and_encode(dst->encoding());
2742   assert(isShiftCount(imm8), "illegal shift count");
2743   if (imm8 == 1) {
2744     emit_int8((unsigned char)0xD1);
2745     emit_int8((unsigned char)(0xF8 | encode));
2746   } else {
2747     emit_int8((unsigned char)0xC1);
2748     emit_int8((unsigned char)(0xF8 | encode));
2749     emit_int8(imm8);
2750   }
2751 }
2752 
2753 void Assembler::sarl(Register dst) {
2754   int encode = prefix_and_encode(dst->encoding());
2755   emit_int8((unsigned char)0xD3);
2756   emit_int8((unsigned char)(0xF8 | encode));
2757 }
2758 
2759 void Assembler::sbbl(Address dst, int32_t imm32) {
2760   InstructionMark im(this);
2761   prefix(dst);
2762   emit_arith_operand(0x81, rbx, dst, imm32);
2763 }
2764 
2765 void Assembler::sbbl(Register dst, int32_t imm32) {
2766   prefix(dst);
2767   emit_arith(0x81, 0xD8, dst, imm32);
2768 }
2769 
2770 
2771 void Assembler::sbbl(Register dst, Address src) {
2772   InstructionMark im(this);
2773   prefix(src, dst);
2774   emit_int8(0x1B);
2775   emit_operand(dst, src);
2776 }
2777 
2778 void Assembler::sbbl(Register dst, Register src) {
2779   (void) prefix_and_encode(dst->encoding(), src->encoding());
2780   emit_arith(0x1B, 0xC0, dst, src);
2781 }
2782 
2783 void Assembler::setb(Condition cc, Register dst) {
2784   assert(0 <= cc && cc < 16, "illegal cc");
2785   int encode = prefix_and_encode(dst->encoding(), true);
2786   emit_int8(0x0F);
2787   emit_int8((unsigned char)0x90 | cc);
2788   emit_int8((unsigned char)(0xC0 | encode));
2789 }
2790 
2791 void Assembler::shll(Register dst, int imm8) {
2792   assert(isShiftCount(imm8), "illegal shift count");
2793   int encode = prefix_and_encode(dst->encoding());
2794   if (imm8 == 1 ) {
2795     emit_int8((unsigned char)0xD1);
2796     emit_int8((unsigned char)(0xE0 | encode));
2797   } else {
2798     emit_int8((unsigned char)0xC1);
2799     emit_int8((unsigned char)(0xE0 | encode));
2800     emit_int8(imm8);
2801   }
2802 }
2803 
2804 void Assembler::shll(Register dst) {
2805   int encode = prefix_and_encode(dst->encoding());
2806   emit_int8((unsigned char)0xD3);
2807   emit_int8((unsigned char)(0xE0 | encode));
2808 }
2809 
2810 void Assembler::shrl(Register dst, int imm8) {
2811   assert(isShiftCount(imm8), "illegal shift count");
2812   int encode = prefix_and_encode(dst->encoding());
2813   emit_int8((unsigned char)0xC1);
2814   emit_int8((unsigned char)(0xE8 | encode));
2815   emit_int8(imm8);
2816 }
2817 
2818 void Assembler::shrl(Register dst) {
2819   int encode = prefix_and_encode(dst->encoding());
2820   emit_int8((unsigned char)0xD3);
2821   emit_int8((unsigned char)(0xE8 | encode));
2822 }
2823 
2824 // copies a single word from [esi] to [edi]
2825 void Assembler::smovl() {
2826   emit_int8((unsigned char)0xA5);
2827 }
2828 
2829 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2831   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2832 }
2833 
2834 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2836   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2837 }
2838 
2839 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2840   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2841   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2842 }
2843 
2844 void Assembler::std() {
2845   emit_int8((unsigned char)0xFD);
2846 }
2847 
2848 void Assembler::sqrtss(XMMRegister dst, Address src) {
2849   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2850   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2851 }
2852 
2853 void Assembler::stmxcsr( Address dst) {
2854   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2855   InstructionMark im(this);
2856   prefix(dst);
2857   emit_int8(0x0F);
2858   emit_int8((unsigned char)0xAE);
2859   emit_operand(as_Register(3), dst);
2860 }
2861 
2862 void Assembler::subl(Address dst, int32_t imm32) {
2863   InstructionMark im(this);
2864   prefix(dst);
2865   emit_arith_operand(0x81, rbp, dst, imm32);
2866 }
2867 
2868 void Assembler::subl(Address dst, Register src) {
2869   InstructionMark im(this);
2870   prefix(dst, src);
2871   emit_int8(0x29);
2872   emit_operand(src, dst);
2873 }
2874 
2875 void Assembler::subl(Register dst, int32_t imm32) {
2876   prefix(dst);
2877   emit_arith(0x81, 0xE8, dst, imm32);
2878 }
2879 
2880 // Force generation of a 4 byte immediate value even if it fits into 8bit
2881 void Assembler::subl_imm32(Register dst, int32_t imm32) {
2882   prefix(dst);
2883   emit_arith_imm32(0x81, 0xE8, dst, imm32);
2884 }
2885 
2886 void Assembler::subl(Register dst, Address src) {
2887   InstructionMark im(this);
2888   prefix(src, dst);
2889   emit_int8(0x2B);
2890   emit_operand(dst, src);
2891 }
2892 
2893 void Assembler::subl(Register dst, Register src) {
2894   (void) prefix_and_encode(dst->encoding(), src->encoding());
2895   emit_arith(0x2B, 0xC0, dst, src);
2896 }
2897 
2898 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2899   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2900   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2901 }
2902 
2903 void Assembler::subsd(XMMRegister dst, Address src) {
2904   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2905   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2906 }
2907 
2908 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2909   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2910   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2911 }
2912 
2913 void Assembler::subss(XMMRegister dst, Address src) {
2914   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2915   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2916 }
2917 
2918 void Assembler::testb(Register dst, int imm8) {
2919   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2920   (void) prefix_and_encode(dst->encoding(), true);
2921   emit_arith_b(0xF6, 0xC0, dst, imm8);
2922 }
2923 
2924 void Assembler::testl(Register dst, int32_t imm32) {
2925   // not using emit_arith because test
2926   // doesn't support sign-extension of
2927   // 8bit operands
2928   int encode = dst->encoding();
2929   if (encode == 0) {
2930     emit_int8((unsigned char)0xA9);
2931   } else {
2932     encode = prefix_and_encode(encode);
2933     emit_int8((unsigned char)0xF7);
2934     emit_int8((unsigned char)(0xC0 | encode));
2935   }
2936   emit_int32(imm32);
2937 }
2938 
2939 void Assembler::testl(Register dst, Register src) {
2940   (void) prefix_and_encode(dst->encoding(), src->encoding());
2941   emit_arith(0x85, 0xC0, dst, src);
2942 }
2943 
2944 void Assembler::testl(Register dst, Address  src) {
2945   InstructionMark im(this);
2946   prefix(src, dst);
2947   emit_int8((unsigned char)0x85);
2948   emit_operand(dst, src);
2949 }
2950 
2951 void Assembler::tzcntl(Register dst, Register src) {
2952   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2953   emit_int8((unsigned char)0xF3);
2954   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2955   emit_int8(0x0F);
2956   emit_int8((unsigned char)0xBC);
2957   emit_int8((unsigned char)0xC0 | encode);
2958 }
2959 
2960 void Assembler::tzcntq(Register dst, Register src) {
2961   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2962   emit_int8((unsigned char)0xF3);
2963   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2964   emit_int8(0x0F);
2965   emit_int8((unsigned char)0xBC);
2966   emit_int8((unsigned char)(0xC0 | encode));
2967 }
2968 
2969 void Assembler::ucomisd(XMMRegister dst, Address src) {
2970   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2971   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2972 }
2973 
2974 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2976   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2977 }
2978 
2979 void Assembler::ucomiss(XMMRegister dst, Address src) {
2980   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2981   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2982 }
2983 
2984 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2985   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2986   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2987 }
2988 
2989 void Assembler::xabort(int8_t imm8) {
2990   emit_int8((unsigned char)0xC6);
2991   emit_int8((unsigned char)0xF8);
2992   emit_int8((unsigned char)(imm8 & 0xFF));
2993 }
2994 
2995 void Assembler::xaddl(Address dst, Register src) {
2996   InstructionMark im(this);
2997   prefix(dst, src);
2998   emit_int8(0x0F);
2999   emit_int8((unsigned char)0xC1);
3000   emit_operand(src, dst);
3001 }
3002 
3003 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3004   InstructionMark im(this);
3005   relocate(rtype);
3006   if (abort.is_bound()) {
3007     address entry = target(abort);
3008     assert(entry != NULL, "abort entry NULL");
3009     intptr_t offset = entry - pc();
3010     emit_int8((unsigned char)0xC7);
3011     emit_int8((unsigned char)0xF8);
3012     emit_int32(offset - 6); // 2 opcode + 4 address
3013   } else {
3014     abort.add_patch_at(code(), locator());
3015     emit_int8((unsigned char)0xC7);
3016     emit_int8((unsigned char)0xF8);
3017     emit_int32(0);
3018   }
3019 }
3020 
3021 void Assembler::xchgl(Register dst, Address src) { // xchg
3022   InstructionMark im(this);
3023   prefix(src, dst);
3024   emit_int8((unsigned char)0x87);
3025   emit_operand(dst, src);
3026 }
3027 
3028 void Assembler::xchgl(Register dst, Register src) {
3029   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3030   emit_int8((unsigned char)0x87);
3031   emit_int8((unsigned char)(0xC0 | encode));
3032 }
3033 
3034 void Assembler::xend() {
3035   emit_int8((unsigned char)0x0F);
3036   emit_int8((unsigned char)0x01);
3037   emit_int8((unsigned char)0xD5);
3038 }
3039 
3040 void Assembler::xgetbv() {
3041   emit_int8(0x0F);
3042   emit_int8(0x01);
3043   emit_int8((unsigned char)0xD0);
3044 }
3045 
3046 void Assembler::xorl(Register dst, int32_t imm32) {
3047   prefix(dst);
3048   emit_arith(0x81, 0xF0, dst, imm32);
3049 }
3050 
3051 void Assembler::xorl(Register dst, Address src) {
3052   InstructionMark im(this);
3053   prefix(src, dst);
3054   emit_int8(0x33);
3055   emit_operand(dst, src);
3056 }
3057 
3058 void Assembler::xorl(Register dst, Register src) {
3059   (void) prefix_and_encode(dst->encoding(), src->encoding());
3060   emit_arith(0x33, 0xC0, dst, src);
3061 }
3062 
3063 
3064 // AVX 3-operands scalar float-point arithmetic instructions
3065 
3066 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3067   assert(VM_Version::supports_avx(), "");
3068   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3069 }
3070 
3071 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3072   assert(VM_Version::supports_avx(), "");
3073   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3074 }
3075 
3076 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3077   assert(VM_Version::supports_avx(), "");
3078   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3079 }
3080 
3081 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3082   assert(VM_Version::supports_avx(), "");
3083   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3084 }
3085 
3086 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3087   assert(VM_Version::supports_avx(), "");
3088   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3089 }
3090 
3091 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3092   assert(VM_Version::supports_avx(), "");
3093   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3094 }
3095 
3096 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3097   assert(VM_Version::supports_avx(), "");
3098   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3099 }
3100 
3101 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3102   assert(VM_Version::supports_avx(), "");
3103   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3104 }
3105 
3106 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3107   assert(VM_Version::supports_avx(), "");
3108   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3109 }
3110 
3111 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3112   assert(VM_Version::supports_avx(), "");
3113   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3114 }
3115 
3116 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3117   assert(VM_Version::supports_avx(), "");
3118   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3119 }
3120 
3121 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3122   assert(VM_Version::supports_avx(), "");
3123   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3124 }
3125 
3126 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3127   assert(VM_Version::supports_avx(), "");
3128   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3129 }
3130 
3131 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3132   assert(VM_Version::supports_avx(), "");
3133   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3134 }
3135 
3136 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3137   assert(VM_Version::supports_avx(), "");
3138   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3139 }
3140 
3141 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3142   assert(VM_Version::supports_avx(), "");
3143   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3144 }
3145 
3146 //====================VECTOR ARITHMETIC=====================================
3147 
3148 // Float-point vector arithmetic
3149 
3150 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3151   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3152   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3153 }
3154 
3155 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3156   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3157   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3158 }
3159 
3160 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3161   assert(VM_Version::supports_avx(), "");
3162   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3163 }
3164 
3165 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3166   assert(VM_Version::supports_avx(), "");
3167   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3168 }
3169 
3170 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3171   assert(VM_Version::supports_avx(), "");
3172   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3173 }
3174 
3175 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3176   assert(VM_Version::supports_avx(), "");
3177   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3178 }
3179 
3180 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3181   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3182   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3183 }
3184 
3185 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3186   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3187   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3188 }
3189 
3190 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3191   assert(VM_Version::supports_avx(), "");
3192   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3193 }
3194 
3195 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3196   assert(VM_Version::supports_avx(), "");
3197   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3198 }
3199 
3200 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3201   assert(VM_Version::supports_avx(), "");
3202   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3203 }
3204 
3205 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3206   assert(VM_Version::supports_avx(), "");
3207   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3208 }
3209 
3210 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3211   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3212   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3213 }
3214 
3215 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3216   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3217   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3218 }
3219 
3220 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3221   assert(VM_Version::supports_avx(), "");
3222   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3223 }
3224 
3225 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3226   assert(VM_Version::supports_avx(), "");
3227   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3228 }
3229 
3230 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3231   assert(VM_Version::supports_avx(), "");
3232   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3233 }
3234 
3235 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3236   assert(VM_Version::supports_avx(), "");
3237   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3238 }
3239 
3240 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3242   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3243 }
3244 
3245 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3246   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3247   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3248 }
3249 
3250 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3251   assert(VM_Version::supports_avx(), "");
3252   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3253 }
3254 
3255 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3256   assert(VM_Version::supports_avx(), "");
3257   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3258 }
3259 
3260 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3261   assert(VM_Version::supports_avx(), "");
3262   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3263 }
3264 
3265 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3266   assert(VM_Version::supports_avx(), "");
3267   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3268 }
3269 
3270 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3271   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3272   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3273 }
3274 
3275 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3276   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3277   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3278 }
3279 
3280 void Assembler::andps(XMMRegister dst, Address src) {
3281   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3282   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3283 }
3284 
3285 void Assembler::andpd(XMMRegister dst, Address src) {
3286   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3287   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3288 }
3289 
3290 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3291   assert(VM_Version::supports_avx(), "");
3292   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3293 }
3294 
3295 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3296   assert(VM_Version::supports_avx(), "");
3297   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3298 }
3299 
3300 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3301   assert(VM_Version::supports_avx(), "");
3302   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3303 }
3304 
3305 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3306   assert(VM_Version::supports_avx(), "");
3307   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3308 }
3309 
3310 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
3311   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3312   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3313 }
3314 
3315 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
3316   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3317   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3318 }
3319 
3320 void Assembler::xorpd(XMMRegister dst, Address src) {
3321   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3322   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3323 }
3324 
3325 void Assembler::xorps(XMMRegister dst, Address src) {
3326   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3327   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3328 }
3329 
3330 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3331   assert(VM_Version::supports_avx(), "");
3332   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3333 }
3334 
3335 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3336   assert(VM_Version::supports_avx(), "");
3337   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3338 }
3339 
3340 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3341   assert(VM_Version::supports_avx(), "");
3342   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3343 }
3344 
3345 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3346   assert(VM_Version::supports_avx(), "");
3347   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3348 }
3349 
3350 
3351 // Integer vector arithmetic
3352 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
3353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3354   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
3355 }
3356 
3357 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
3358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3359   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
3360 }
3361 
3362 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
3363   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3364   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
3365 }
3366 
3367 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
3368   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3369   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
3370 }
3371 
3372 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3373   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3374   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3375 }
3376 
3377 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3378   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3379   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3380 }
3381 
3382 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3383   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3384   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3385 }
3386 
3387 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3388   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3389   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3390 }
3391 
3392 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3393   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3394   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3395 }
3396 
3397 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3398   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3399   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3400 }
3401 
3402 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3403   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3404   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3405 }
3406 
3407 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3408   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3409   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3410 }
3411 
3412 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
3413   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3414   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
3415 }
3416 
3417 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
3418   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3419   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
3420 }
3421 
3422 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
3423   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3424   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
3425 }
3426 
3427 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
3428   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3429   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
3430 }
3431 
3432 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3433   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3434   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3435 }
3436 
3437 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3438   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3439   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3440 }
3441 
3442 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3443   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3444   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3445 }
3446 
3447 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3448   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3449   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3450 }
3451 
3452 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3453   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3454   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3455 }
3456 
3457 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3458   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3459   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3460 }
3461 
3462 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3463   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3464   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3465 }
3466 
3467 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3468   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3469   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3470 }
3471 
3472 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
3473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3474   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
3475 }
3476 
3477 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
3478   assert(VM_Version::supports_sse4_1(), "");
3479   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3480   emit_int8(0x40);
3481   emit_int8((unsigned char)(0xC0 | encode));
3482 }
3483 
3484 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3485   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3486   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3487 }
3488 
3489 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3490   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3491   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3492   emit_int8(0x40);
3493   emit_int8((unsigned char)(0xC0 | encode));
3494 }
3495 
3496 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3497   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3498   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3499 }
3500 
3501 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3502   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3503   InstructionMark im(this);
3504   int dst_enc = dst->encoding();
3505   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3506   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3507   emit_int8(0x40);
3508   emit_operand(dst, src);
3509 }
3510 
3511 // Shift packed integers left by specified number of bits.
3512 void Assembler::psllw(XMMRegister dst, int shift) {
3513   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3514   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3515   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3516   emit_int8(0x71);
3517   emit_int8((unsigned char)(0xC0 | encode));
3518   emit_int8(shift & 0xFF);
3519 }
3520 
3521 void Assembler::pslld(XMMRegister dst, int shift) {
3522   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3523   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3524   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3525   emit_int8(0x72);
3526   emit_int8((unsigned char)(0xC0 | encode));
3527   emit_int8(shift & 0xFF);
3528 }
3529 
3530 void Assembler::psllq(XMMRegister dst, int shift) {
3531   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3532   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3533   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3534   emit_int8(0x73);
3535   emit_int8((unsigned char)(0xC0 | encode));
3536   emit_int8(shift & 0xFF);
3537 }
3538 
3539 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
3540   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3541   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
3542 }
3543 
3544 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
3545   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3546   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
3547 }
3548 
3549 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
3550   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3551   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
3552 }
3553 
3554 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3555   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3556   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3557   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3558   emit_int8(shift & 0xFF);
3559 }
3560 
3561 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3562   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3563   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3564   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3565   emit_int8(shift & 0xFF);
3566 }
3567 
3568 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3569   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3570   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3571   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3572   emit_int8(shift & 0xFF);
3573 }
3574 
3575 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3576   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3577   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
3578 }
3579 
3580 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3581   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3582   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
3583 }
3584 
3585 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3586   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3587   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
3588 }
3589 
3590 // Shift packed integers logically right by specified number of bits.
3591 void Assembler::psrlw(XMMRegister dst, int shift) {
3592   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3593   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
3594   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3595   emit_int8(0x71);
3596   emit_int8((unsigned char)(0xC0 | encode));
3597   emit_int8(shift & 0xFF);
3598 }
3599 
3600 void Assembler::psrld(XMMRegister dst, int shift) {
3601   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3602   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
3603   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3604   emit_int8(0x72);
3605   emit_int8((unsigned char)(0xC0 | encode));
3606   emit_int8(shift & 0xFF);
3607 }
3608 
3609 void Assembler::psrlq(XMMRegister dst, int shift) {
3610   // Do not confuse it with psrldq SSE2 instruction which
3611   // shifts 128 bit value in xmm register by number of bytes.
3612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3613   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3614   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3615   emit_int8(0x73);
3616   emit_int8((unsigned char)(0xC0 | encode));
3617   emit_int8(shift & 0xFF);
3618 }
3619 
3620 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
3621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3622   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
3623 }
3624 
3625 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
3626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3627   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
3628 }
3629 
3630 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
3631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3632   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
3633 }
3634 
3635 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3636   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3637   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3638   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3639   emit_int8(shift & 0xFF);
3640 }
3641 
3642 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3643   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3644   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3645   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3646   emit_int8(shift & 0xFF);
3647 }
3648 
3649 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3650   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3651   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3652   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3653   emit_int8(shift & 0xFF);
3654 }
3655 
3656 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3657   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3658   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
3659 }
3660 
3661 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3662   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3663   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
3664 }
3665 
3666 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3667   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3668   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
3669 }
3670 
3671 // Shift packed integers arithmetically right by specified number of bits.
3672 void Assembler::psraw(XMMRegister dst, int shift) {
3673   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3674   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3675   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3676   emit_int8(0x71);
3677   emit_int8((unsigned char)(0xC0 | encode));
3678   emit_int8(shift & 0xFF);
3679 }
3680 
3681 void Assembler::psrad(XMMRegister dst, int shift) {
3682   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3683   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
3684   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3685   emit_int8(0x72);
3686   emit_int8((unsigned char)(0xC0 | encode));
3687   emit_int8(shift & 0xFF);
3688 }
3689 
3690 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
3691   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3692   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
3693 }
3694 
3695 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
3696   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3697   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
3698 }
3699 
3700 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3701   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3702   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3703   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3704   emit_int8(shift & 0xFF);
3705 }
3706 
3707 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3708   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3709   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3710   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3711   emit_int8(shift & 0xFF);
3712 }
3713 
3714 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3715   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3716   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
3717 }
3718 
3719 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3720   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3721   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
3722 }
3723 
3724 
3725 // AND packed integers
3726 void Assembler::pand(XMMRegister dst, XMMRegister src) {
3727   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3728   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
3729 }
3730 
3731 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3732   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3733   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3734 }
3735 
3736 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3737   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3738   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3739 }
3740 
3741 void Assembler::por(XMMRegister dst, XMMRegister src) {
3742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3743   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
3744 }
3745 
3746 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3747   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3748   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3749 }
3750 
3751 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3752   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3753   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3754 }
3755 
3756 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
3757   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3758   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
3759 }
3760 
3761 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3762   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3763   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3764 }
3765 
3766 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3767   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3768   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3769 }
3770 
3771 
3772 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3773   assert(VM_Version::supports_avx(), "");
3774   bool vector256 = true;
3775   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3776   emit_int8(0x18);
3777   emit_int8((unsigned char)(0xC0 | encode));
3778   // 0x00 - insert into lower 128 bits
3779   // 0x01 - insert into upper 128 bits
3780   emit_int8(0x01);
3781 }
3782 
3783 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
3784   assert(VM_Version::supports_avx(), "");
3785   InstructionMark im(this);
3786   bool vector256 = true;
3787   assert(dst != xnoreg, "sanity");
3788   int dst_enc = dst->encoding();
3789   // swap src<->dst for encoding
3790   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3791   emit_int8(0x18);
3792   emit_operand(dst, src);
3793   // 0x01 - insert into upper 128 bits
3794   emit_int8(0x01);
3795 }
3796 
3797 void Assembler::vextractf128h(Address dst, XMMRegister src) {
3798   assert(VM_Version::supports_avx(), "");
3799   InstructionMark im(this);
3800   bool vector256 = true;
3801   assert(src != xnoreg, "sanity");
3802   int src_enc = src->encoding();
3803   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3804   emit_int8(0x19);
3805   emit_operand(src, dst);
3806   // 0x01 - extract from upper 128 bits
3807   emit_int8(0x01);
3808 }
3809 
3810 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3811   assert(VM_Version::supports_avx2(), "");
3812   bool vector256 = true;
3813   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3814   emit_int8(0x38);
3815   emit_int8((unsigned char)(0xC0 | encode));
3816   // 0x00 - insert into lower 128 bits
3817   // 0x01 - insert into upper 128 bits
3818   emit_int8(0x01);
3819 }
3820 
3821 void Assembler::vinserti128h(XMMRegister dst, Address src) {
3822   assert(VM_Version::supports_avx2(), "");
3823   InstructionMark im(this);
3824   bool vector256 = true;
3825   assert(dst != xnoreg, "sanity");
3826   int dst_enc = dst->encoding();
3827   // swap src<->dst for encoding
3828   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3829   emit_int8(0x38);
3830   emit_operand(dst, src);
3831   // 0x01 - insert into upper 128 bits
3832   emit_int8(0x01);
3833 }
3834 
3835 void Assembler::vextracti128h(Address dst, XMMRegister src) {
3836   assert(VM_Version::supports_avx2(), "");
3837   InstructionMark im(this);
3838   bool vector256 = true;
3839   assert(src != xnoreg, "sanity");
3840   int src_enc = src->encoding();
3841   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3842   emit_int8(0x39);
3843   emit_operand(src, dst);
3844   // 0x01 - extract from upper 128 bits
3845   emit_int8(0x01);
3846 }
3847 
3848 // duplicate 4-bytes integer data from src into 8 locations in dest
3849 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
3850   assert(VM_Version::supports_avx2(), "");
3851   bool vector256 = true;
3852   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3853   emit_int8(0x58);
3854   emit_int8((unsigned char)(0xC0 | encode));
3855 }
3856 
3857 // Carry-Less Multiplication Quadword
3858 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
3859   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
3860   bool vector256 = false;
3861   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3862   emit_int8(0x44);
3863   emit_int8((unsigned char)(0xC0 | encode));
3864   emit_int8((unsigned char)mask);
3865 }
3866 
3867 void Assembler::vzeroupper() {
3868   assert(VM_Version::supports_avx(), "");
3869   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3870   emit_int8(0x77);
3871 }
3872 
3873 
3874 #ifndef _LP64
3875 // 32bit only pieces of the assembler
3876 
3877 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3878   // NO PREFIX AS NEVER 64BIT
3879   InstructionMark im(this);
3880   emit_int8((unsigned char)0x81);
3881   emit_int8((unsigned char)(0xF8 | src1->encoding()));
3882   emit_data(imm32, rspec, 0);
3883 }
3884 
3885 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3886   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
3887   InstructionMark im(this);
3888   emit_int8((unsigned char)0x81);
3889   emit_operand(rdi, src1);
3890   emit_data(imm32, rspec, 0);
3891 }
3892 
3893 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
3894 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
3895 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
3896 void Assembler::cmpxchg8(Address adr) {
3897   InstructionMark im(this);
3898   emit_int8(0x0F);
3899   emit_int8((unsigned char)0xC7);
3900   emit_operand(rcx, adr);
3901 }
3902 
3903 void Assembler::decl(Register dst) {
3904   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3905  emit_int8(0x48 | dst->encoding());
3906 }
3907 
3908 #endif // _LP64
3909 
3910 // 64bit typically doesn't use the x87 but needs to for the trig funcs
3911 
3912 void Assembler::fabs() {
3913   emit_int8((unsigned char)0xD9);
3914   emit_int8((unsigned char)0xE1);
3915 }
3916 
3917 void Assembler::fadd(int i) {
3918   emit_farith(0xD8, 0xC0, i);
3919 }
3920 
3921 void Assembler::fadd_d(Address src) {
3922   InstructionMark im(this);
3923   emit_int8((unsigned char)0xDC);
3924   emit_operand32(rax, src);
3925 }
3926 
3927 void Assembler::fadd_s(Address src) {
3928   InstructionMark im(this);
3929   emit_int8((unsigned char)0xD8);
3930   emit_operand32(rax, src);
3931 }
3932 
3933 void Assembler::fadda(int i) {
3934   emit_farith(0xDC, 0xC0, i);
3935 }
3936 
3937 void Assembler::faddp(int i) {
3938   emit_farith(0xDE, 0xC0, i);
3939 }
3940 
3941 void Assembler::fchs() {
3942   emit_int8((unsigned char)0xD9);
3943   emit_int8((unsigned char)0xE0);
3944 }
3945 
3946 void Assembler::fcom(int i) {
3947   emit_farith(0xD8, 0xD0, i);
3948 }
3949 
3950 void Assembler::fcomp(int i) {
3951   emit_farith(0xD8, 0xD8, i);
3952 }
3953 
3954 void Assembler::fcomp_d(Address src) {
3955   InstructionMark im(this);
3956   emit_int8((unsigned char)0xDC);
3957   emit_operand32(rbx, src);
3958 }
3959 
3960 void Assembler::fcomp_s(Address src) {
3961   InstructionMark im(this);
3962   emit_int8((unsigned char)0xD8);
3963   emit_operand32(rbx, src);
3964 }
3965 
3966 void Assembler::fcompp() {
3967   emit_int8((unsigned char)0xDE);
3968   emit_int8((unsigned char)0xD9);
3969 }
3970 
3971 void Assembler::fcos() {
3972   emit_int8((unsigned char)0xD9);
3973   emit_int8((unsigned char)0xFF);
3974 }
3975 
3976 void Assembler::fdecstp() {
3977   emit_int8((unsigned char)0xD9);
3978   emit_int8((unsigned char)0xF6);
3979 }
3980 
3981 void Assembler::fdiv(int i) {
3982   emit_farith(0xD8, 0xF0, i);
3983 }
3984 
3985 void Assembler::fdiv_d(Address src) {
3986   InstructionMark im(this);
3987   emit_int8((unsigned char)0xDC);
3988   emit_operand32(rsi, src);
3989 }
3990 
3991 void Assembler::fdiv_s(Address src) {
3992   InstructionMark im(this);
3993   emit_int8((unsigned char)0xD8);
3994   emit_operand32(rsi, src);
3995 }
3996 
3997 void Assembler::fdiva(int i) {
3998   emit_farith(0xDC, 0xF8, i);
3999 }
4000 
4001 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
4002 //       is erroneous for some of the floating-point instructions below.
4003 
4004 void Assembler::fdivp(int i) {
4005   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
4006 }
4007 
4008 void Assembler::fdivr(int i) {
4009   emit_farith(0xD8, 0xF8, i);
4010 }
4011 
4012 void Assembler::fdivr_d(Address src) {
4013   InstructionMark im(this);
4014   emit_int8((unsigned char)0xDC);
4015   emit_operand32(rdi, src);
4016 }
4017 
4018 void Assembler::fdivr_s(Address src) {
4019   InstructionMark im(this);
4020   emit_int8((unsigned char)0xD8);
4021   emit_operand32(rdi, src);
4022 }
4023 
4024 void Assembler::fdivra(int i) {
4025   emit_farith(0xDC, 0xF0, i);
4026 }
4027 
4028 void Assembler::fdivrp(int i) {
4029   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
4030 }
4031 
4032 void Assembler::ffree(int i) {
4033   emit_farith(0xDD, 0xC0, i);
4034 }
4035 
4036 void Assembler::fild_d(Address adr) {
4037   InstructionMark im(this);
4038   emit_int8((unsigned char)0xDF);
4039   emit_operand32(rbp, adr);
4040 }
4041 
4042 void Assembler::fild_s(Address adr) {
4043   InstructionMark im(this);
4044   emit_int8((unsigned char)0xDB);
4045   emit_operand32(rax, adr);
4046 }
4047 
4048 void Assembler::fincstp() {
4049   emit_int8((unsigned char)0xD9);
4050   emit_int8((unsigned char)0xF7);
4051 }
4052 
4053 void Assembler::finit() {
4054   emit_int8((unsigned char)0x9B);
4055   emit_int8((unsigned char)0xDB);
4056   emit_int8((unsigned char)0xE3);
4057 }
4058 
4059 void Assembler::fist_s(Address adr) {
4060   InstructionMark im(this);
4061   emit_int8((unsigned char)0xDB);
4062   emit_operand32(rdx, adr);
4063 }
4064 
4065 void Assembler::fistp_d(Address adr) {
4066   InstructionMark im(this);
4067   emit_int8((unsigned char)0xDF);
4068   emit_operand32(rdi, adr);
4069 }
4070 
4071 void Assembler::fistp_s(Address adr) {
4072   InstructionMark im(this);
4073   emit_int8((unsigned char)0xDB);
4074   emit_operand32(rbx, adr);
4075 }
4076 
4077 void Assembler::fld1() {
4078   emit_int8((unsigned char)0xD9);
4079   emit_int8((unsigned char)0xE8);
4080 }
4081 
4082 void Assembler::fld_d(Address adr) {
4083   InstructionMark im(this);
4084   emit_int8((unsigned char)0xDD);
4085   emit_operand32(rax, adr);
4086 }
4087 
4088 void Assembler::fld_s(Address adr) {
4089   InstructionMark im(this);
4090   emit_int8((unsigned char)0xD9);
4091   emit_operand32(rax, adr);
4092 }
4093 
4094 
4095 void Assembler::fld_s(int index) {
4096   emit_farith(0xD9, 0xC0, index);
4097 }
4098 
4099 void Assembler::fld_x(Address adr) {
4100   InstructionMark im(this);
4101   emit_int8((unsigned char)0xDB);
4102   emit_operand32(rbp, adr);
4103 }
4104 
4105 void Assembler::fldcw(Address src) {
4106   InstructionMark im(this);
4107   emit_int8((unsigned char)0xD9);
4108   emit_operand32(rbp, src);
4109 }
4110 
4111 void Assembler::fldenv(Address src) {
4112   InstructionMark im(this);
4113   emit_int8((unsigned char)0xD9);
4114   emit_operand32(rsp, src);
4115 }
4116 
4117 void Assembler::fldlg2() {
4118   emit_int8((unsigned char)0xD9);
4119   emit_int8((unsigned char)0xEC);
4120 }
4121 
4122 void Assembler::fldln2() {
4123   emit_int8((unsigned char)0xD9);
4124   emit_int8((unsigned char)0xED);
4125 }
4126 
4127 void Assembler::fldz() {
4128   emit_int8((unsigned char)0xD9);
4129   emit_int8((unsigned char)0xEE);
4130 }
4131 
4132 void Assembler::flog() {
4133   fldln2();
4134   fxch();
4135   fyl2x();
4136 }
4137 
4138 void Assembler::flog10() {
4139   fldlg2();
4140   fxch();
4141   fyl2x();
4142 }
4143 
4144 void Assembler::fmul(int i) {
4145   emit_farith(0xD8, 0xC8, i);
4146 }
4147 
4148 void Assembler::fmul_d(Address src) {
4149   InstructionMark im(this);
4150   emit_int8((unsigned char)0xDC);
4151   emit_operand32(rcx, src);
4152 }
4153 
4154 void Assembler::fmul_s(Address src) {
4155   InstructionMark im(this);
4156   emit_int8((unsigned char)0xD8);
4157   emit_operand32(rcx, src);
4158 }
4159 
4160 void Assembler::fmula(int i) {
4161   emit_farith(0xDC, 0xC8, i);
4162 }
4163 
4164 void Assembler::fmulp(int i) {
4165   emit_farith(0xDE, 0xC8, i);
4166 }
4167 
4168 void Assembler::fnsave(Address dst) {
4169   InstructionMark im(this);
4170   emit_int8((unsigned char)0xDD);
4171   emit_operand32(rsi, dst);
4172 }
4173 
4174 void Assembler::fnstcw(Address src) {
4175   InstructionMark im(this);
4176   emit_int8((unsigned char)0x9B);
4177   emit_int8((unsigned char)0xD9);
4178   emit_operand32(rdi, src);
4179 }
4180 
4181 void Assembler::fnstsw_ax() {
4182   emit_int8((unsigned char)0xDF);
4183   emit_int8((unsigned char)0xE0);
4184 }
4185 
4186 void Assembler::fprem() {
4187   emit_int8((unsigned char)0xD9);
4188   emit_int8((unsigned char)0xF8);
4189 }
4190 
4191 void Assembler::fprem1() {
4192   emit_int8((unsigned char)0xD9);
4193   emit_int8((unsigned char)0xF5);
4194 }
4195 
4196 void Assembler::frstor(Address src) {
4197   InstructionMark im(this);
4198   emit_int8((unsigned char)0xDD);
4199   emit_operand32(rsp, src);
4200 }
4201 
4202 void Assembler::fsin() {
4203   emit_int8((unsigned char)0xD9);
4204   emit_int8((unsigned char)0xFE);
4205 }
4206 
4207 void Assembler::fsqrt() {
4208   emit_int8((unsigned char)0xD9);
4209   emit_int8((unsigned char)0xFA);
4210 }
4211 
4212 void Assembler::fst_d(Address adr) {
4213   InstructionMark im(this);
4214   emit_int8((unsigned char)0xDD);
4215   emit_operand32(rdx, adr);
4216 }
4217 
4218 void Assembler::fst_s(Address adr) {
4219   InstructionMark im(this);
4220   emit_int8((unsigned char)0xD9);
4221   emit_operand32(rdx, adr);
4222 }
4223 
4224 void Assembler::fstp_d(Address adr) {
4225   InstructionMark im(this);
4226   emit_int8((unsigned char)0xDD);
4227   emit_operand32(rbx, adr);
4228 }
4229 
4230 void Assembler::fstp_d(int index) {
4231   emit_farith(0xDD, 0xD8, index);
4232 }
4233 
4234 void Assembler::fstp_s(Address adr) {
4235   InstructionMark im(this);
4236   emit_int8((unsigned char)0xD9);
4237   emit_operand32(rbx, adr);
4238 }
4239 
4240 void Assembler::fstp_x(Address adr) {
4241   InstructionMark im(this);
4242   emit_int8((unsigned char)0xDB);
4243   emit_operand32(rdi, adr);
4244 }
4245 
4246 void Assembler::fsub(int i) {
4247   emit_farith(0xD8, 0xE0, i);
4248 }
4249 
4250 void Assembler::fsub_d(Address src) {
4251   InstructionMark im(this);
4252   emit_int8((unsigned char)0xDC);
4253   emit_operand32(rsp, src);
4254 }
4255 
4256 void Assembler::fsub_s(Address src) {
4257   InstructionMark im(this);
4258   emit_int8((unsigned char)0xD8);
4259   emit_operand32(rsp, src);
4260 }
4261 
4262 void Assembler::fsuba(int i) {
4263   emit_farith(0xDC, 0xE8, i);
4264 }
4265 
4266 void Assembler::fsubp(int i) {
4267   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
4268 }
4269 
4270 void Assembler::fsubr(int i) {
4271   emit_farith(0xD8, 0xE8, i);
4272 }
4273 
4274 void Assembler::fsubr_d(Address src) {
4275   InstructionMark im(this);
4276   emit_int8((unsigned char)0xDC);
4277   emit_operand32(rbp, src);
4278 }
4279 
4280 void Assembler::fsubr_s(Address src) {
4281   InstructionMark im(this);
4282   emit_int8((unsigned char)0xD8);
4283   emit_operand32(rbp, src);
4284 }
4285 
4286 void Assembler::fsubra(int i) {
4287   emit_farith(0xDC, 0xE0, i);
4288 }
4289 
4290 void Assembler::fsubrp(int i) {
4291   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
4292 }
4293 
4294 void Assembler::ftan() {
4295   emit_int8((unsigned char)0xD9);
4296   emit_int8((unsigned char)0xF2);
4297   emit_int8((unsigned char)0xDD);
4298   emit_int8((unsigned char)0xD8);
4299 }
4300 
4301 void Assembler::ftst() {
4302   emit_int8((unsigned char)0xD9);
4303   emit_int8((unsigned char)0xE4);
4304 }
4305 
4306 void Assembler::fucomi(int i) {
4307   // make sure the instruction is supported (introduced for P6, together with cmov)
4308   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4309   emit_farith(0xDB, 0xE8, i);
4310 }
4311 
4312 void Assembler::fucomip(int i) {
4313   // make sure the instruction is supported (introduced for P6, together with cmov)
4314   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4315   emit_farith(0xDF, 0xE8, i);
4316 }
4317 
4318 void Assembler::fwait() {
4319   emit_int8((unsigned char)0x9B);
4320 }
4321 
4322 void Assembler::fxch(int i) {
4323   emit_farith(0xD9, 0xC8, i);
4324 }
4325 
4326 void Assembler::fyl2x() {
4327   emit_int8((unsigned char)0xD9);
4328   emit_int8((unsigned char)0xF1);
4329 }
4330 
4331 void Assembler::frndint() {
4332   emit_int8((unsigned char)0xD9);
4333   emit_int8((unsigned char)0xFC);
4334 }
4335 
4336 void Assembler::f2xm1() {
4337   emit_int8((unsigned char)0xD9);
4338   emit_int8((unsigned char)0xF0);
4339 }
4340 
4341 void Assembler::fldl2e() {
4342   emit_int8((unsigned char)0xD9);
4343   emit_int8((unsigned char)0xEA);
4344 }
4345 
4346 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
4347 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
4348 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
4349 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
4350 
4351 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
4352 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4353   if (pre > 0) {
4354     emit_int8(simd_pre[pre]);
4355   }
4356   if (rex_w) {
4357     prefixq(adr, xreg);
4358   } else {
4359     prefix(adr, xreg);
4360   }
4361   if (opc > 0) {
4362     emit_int8(0x0F);
4363     int opc2 = simd_opc[opc];
4364     if (opc2 > 0) {
4365       emit_int8(opc2);
4366     }
4367   }
4368 }
4369 
4370 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4371   if (pre > 0) {
4372     emit_int8(simd_pre[pre]);
4373   }
4374   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
4375                           prefix_and_encode(dst_enc, src_enc);
4376   if (opc > 0) {
4377     emit_int8(0x0F);
4378     int opc2 = simd_opc[opc];
4379     if (opc2 > 0) {
4380       emit_int8(opc2);
4381     }
4382   }
4383   return encode;
4384 }
4385 
4386 
4387 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
4388   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
4389     prefix(VEX_3bytes);
4390 
4391     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
4392     byte1 = (~byte1) & 0xE0;
4393     byte1 |= opc;
4394     emit_int8(byte1);
4395 
4396     int byte2 = ((~nds_enc) & 0xf) << 3;
4397     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4398     emit_int8(byte2);
4399   } else {
4400     prefix(VEX_2bytes);
4401 
4402     int byte1 = vex_r ? VEX_R : 0;
4403     byte1 = (~byte1) & 0x80;
4404     byte1 |= ((~nds_enc) & 0xf) << 3;
4405     byte1 |= (vector256 ? 4 : 0) | pre;
4406     emit_int8(byte1);
4407   }
4408 }
4409 
4410 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
4411   bool vex_r = (xreg_enc >= 8);
4412   bool vex_b = adr.base_needs_rex();
4413   bool vex_x = adr.index_needs_rex();
4414   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4415 }
4416 
4417 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
4418   bool vex_r = (dst_enc >= 8);
4419   bool vex_b = (src_enc >= 8);
4420   bool vex_x = false;
4421   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4422   return (((dst_enc & 7) << 3) | (src_enc & 7));
4423 }
4424 
4425 
4426 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4427   if (UseAVX > 0) {
4428     int xreg_enc = xreg->encoding();
4429     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
4430     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
4431   } else {
4432     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
4433     rex_prefix(adr, xreg, pre, opc, rex_w);
4434   }
4435 }
4436 
4437 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4438   int dst_enc = dst->encoding();
4439   int src_enc = src->encoding();
4440   if (UseAVX > 0) {
4441     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4442     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
4443   } else {
4444     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
4445     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
4446   }
4447 }
4448 
4449 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4450   InstructionMark im(this);
4451   simd_prefix(dst, dst, src, pre);
4452   emit_int8(opcode);
4453   emit_operand(dst, src);
4454 }
4455 
4456 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4457   int encode = simd_prefix_and_encode(dst, dst, src, pre);
4458   emit_int8(opcode);
4459   emit_int8((unsigned char)(0xC0 | encode));
4460 }
4461 
4462 // Versions with no second source register (non-destructive source).
4463 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4464   InstructionMark im(this);
4465   simd_prefix(dst, xnoreg, src, pre);
4466   emit_int8(opcode);
4467   emit_operand(dst, src);
4468 }
4469 
4470 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4471   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4472   emit_int8(opcode);
4473   emit_int8((unsigned char)(0xC0 | encode));
4474 }
4475 
4476 // 3-operands AVX instructions
4477 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4478                                Address src, VexSimdPrefix pre, bool vector256) {
4479   InstructionMark im(this);
4480   vex_prefix(dst, nds, src, pre, vector256);
4481   emit_int8(opcode);
4482   emit_operand(dst, src);
4483 }
4484 
4485 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4486                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
4487   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4488   emit_int8(opcode);
4489   emit_int8((unsigned char)(0xC0 | encode));
4490 }
4491 
4492 #ifndef _LP64
4493 
4494 void Assembler::incl(Register dst) {
4495   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4496   emit_int8(0x40 | dst->encoding());
4497 }
4498 
4499 void Assembler::lea(Register dst, Address src) {
4500   leal(dst, src);
4501 }
4502 
4503 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4504   InstructionMark im(this);
4505   emit_int8((unsigned char)0xC7);
4506   emit_operand(rax, dst);
4507   emit_data((int)imm32, rspec, 0);
4508 }
4509 
4510 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4511   InstructionMark im(this);
4512   int encode = prefix_and_encode(dst->encoding());
4513   emit_int8((unsigned char)(0xB8 | encode));
4514   emit_data((int)imm32, rspec, 0);
4515 }
4516 
4517 void Assembler::popa() { // 32bit
4518   emit_int8(0x61);
4519 }
4520 
4521 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
4522   InstructionMark im(this);
4523   emit_int8(0x68);
4524   emit_data(imm32, rspec, 0);
4525 }
4526 
4527 void Assembler::pusha() { // 32bit
4528   emit_int8(0x60);
4529 }
4530 
4531 void Assembler::set_byte_if_not_zero(Register dst) {
4532   emit_int8(0x0F);
4533   emit_int8((unsigned char)0x95);
4534   emit_int8((unsigned char)(0xE0 | dst->encoding()));
4535 }
4536 
4537 void Assembler::shldl(Register dst, Register src) {
4538   emit_int8(0x0F);
4539   emit_int8((unsigned char)0xA5);
4540   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4541 }
4542 
4543 void Assembler::shrdl(Register dst, Register src) {
4544   emit_int8(0x0F);
4545   emit_int8((unsigned char)0xAD);
4546   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4547 }
4548 
4549 #else // LP64
4550 
4551 void Assembler::set_byte_if_not_zero(Register dst) {
4552   int enc = prefix_and_encode(dst->encoding(), true);
4553   emit_int8(0x0F);
4554   emit_int8((unsigned char)0x95);
4555   emit_int8((unsigned char)(0xE0 | enc));
4556 }
4557 
4558 // 64bit only pieces of the assembler
4559 // This should only be used by 64bit instructions that can use rip-relative
4560 // it cannot be used by instructions that want an immediate value.
4561 
4562 bool Assembler::reachable(AddressLiteral adr) {
4563   int64_t disp;
4564   // None will force a 64bit literal to the code stream. Likely a placeholder
4565   // for something that will be patched later and we need to certain it will
4566   // always be reachable.
4567   if (adr.reloc() == relocInfo::none) {
4568     return false;
4569   }
4570   if (adr.reloc() == relocInfo::internal_word_type) {
4571     // This should be rip relative and easily reachable.
4572     return true;
4573   }
4574   if (adr.reloc() == relocInfo::virtual_call_type ||
4575       adr.reloc() == relocInfo::opt_virtual_call_type ||
4576       adr.reloc() == relocInfo::static_call_type ||
4577       adr.reloc() == relocInfo::static_stub_type ) {
4578     // This should be rip relative within the code cache and easily
4579     // reachable until we get huge code caches. (At which point
4580     // ic code is going to have issues).
4581     return true;
4582   }
4583   if (adr.reloc() != relocInfo::external_word_type &&
4584       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
4585       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
4586       adr.reloc() != relocInfo::runtime_call_type ) {
4587     return false;
4588   }
4589 
4590   // Stress the correction code
4591   if (ForceUnreachable) {
4592     // Must be runtimecall reloc, see if it is in the codecache
4593     // Flipping stuff in the codecache to be unreachable causes issues
4594     // with things like inline caches where the additional instructions
4595     // are not handled.
4596     if (CodeCache::find_blob(adr._target) == NULL) {
4597       return false;
4598     }
4599   }
4600   // For external_word_type/runtime_call_type if it is reachable from where we
4601   // are now (possibly a temp buffer) and where we might end up
4602   // anywhere in the codeCache then we are always reachable.
4603   // This would have to change if we ever save/restore shared code
4604   // to be more pessimistic.
4605   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
4606   if (!is_simm32(disp)) return false;
4607   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
4608   if (!is_simm32(disp)) return false;
4609 
4610   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4611 
4612   // Because rip relative is a disp + address_of_next_instruction and we
4613   // don't know the value of address_of_next_instruction we apply a fudge factor
4614   // to make sure we will be ok no matter the size of the instruction we get placed into.
4615   // We don't have to fudge the checks above here because they are already worst case.
4616 
4617   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
4618   // + 4 because better safe than sorry.
4619   const int fudge = 12 + 4;
4620   if (disp < 0) {
4621     disp -= fudge;
4622   } else {
4623     disp += fudge;
4624   }
4625   return is_simm32(disp);
4626 }
4627 
4628 // Check if the polling page is not reachable from the code cache using rip-relative
4629 // addressing.
4630 bool Assembler::is_polling_page_far() {
4631   intptr_t addr = (intptr_t)os::get_polling_page();
4632   return ForceUnreachable ||
4633          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4634          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
4635 }
4636 
4637 void Assembler::emit_data64(jlong data,
4638                             relocInfo::relocType rtype,
4639                             int format) {
4640   if (rtype == relocInfo::none) {
4641     emit_int64(data);
4642   } else {
4643     emit_data64(data, Relocation::spec_simple(rtype), format);
4644   }
4645 }
4646 
4647 void Assembler::emit_data64(jlong data,
4648                             RelocationHolder const& rspec,
4649                             int format) {
4650   assert(imm_operand == 0, "default format must be immediate in this file");
4651   assert(imm_operand == format, "must be immediate");
4652   assert(inst_mark() != NULL, "must be inside InstructionMark");
4653   // Do not use AbstractAssembler::relocate, which is not intended for
4654   // embedded words.  Instead, relocate to the enclosing instruction.
4655   code_section()->relocate(inst_mark(), rspec, format);
4656 #ifdef ASSERT
4657   check_relocation(rspec, format);
4658 #endif
4659   emit_int64(data);
4660 }
4661 
4662 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
4663   if (reg_enc >= 8) {
4664     prefix(REX_B);
4665     reg_enc -= 8;
4666   } else if (byteinst && reg_enc >= 4) {
4667     prefix(REX);
4668   }
4669   return reg_enc;
4670 }
4671 
4672 int Assembler::prefixq_and_encode(int reg_enc) {
4673   if (reg_enc < 8) {
4674     prefix(REX_W);
4675   } else {
4676     prefix(REX_WB);
4677     reg_enc -= 8;
4678   }
4679   return reg_enc;
4680 }
4681 
4682 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
4683   if (dst_enc < 8) {
4684     if (src_enc >= 8) {
4685       prefix(REX_B);
4686       src_enc -= 8;
4687     } else if (byteinst && src_enc >= 4) {
4688       prefix(REX);
4689     }
4690   } else {
4691     if (src_enc < 8) {
4692       prefix(REX_R);
4693     } else {
4694       prefix(REX_RB);
4695       src_enc -= 8;
4696     }
4697     dst_enc -= 8;
4698   }
4699   return dst_enc << 3 | src_enc;
4700 }
4701 
4702 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
4703   if (dst_enc < 8) {
4704     if (src_enc < 8) {
4705       prefix(REX_W);
4706     } else {
4707       prefix(REX_WB);
4708       src_enc -= 8;
4709     }
4710   } else {
4711     if (src_enc < 8) {
4712       prefix(REX_WR);
4713     } else {
4714       prefix(REX_WRB);
4715       src_enc -= 8;
4716     }
4717     dst_enc -= 8;
4718   }
4719   return dst_enc << 3 | src_enc;
4720 }
4721 
4722 void Assembler::prefix(Register reg) {
4723   if (reg->encoding() >= 8) {
4724     prefix(REX_B);
4725   }
4726 }
4727 
4728 void Assembler::prefix(Address adr) {
4729   if (adr.base_needs_rex()) {
4730     if (adr.index_needs_rex()) {
4731       prefix(REX_XB);
4732     } else {
4733       prefix(REX_B);
4734     }
4735   } else {
4736     if (adr.index_needs_rex()) {
4737       prefix(REX_X);
4738     }
4739   }
4740 }
4741 
4742 void Assembler::prefixq(Address adr) {
4743   if (adr.base_needs_rex()) {
4744     if (adr.index_needs_rex()) {
4745       prefix(REX_WXB);
4746     } else {
4747       prefix(REX_WB);
4748     }
4749   } else {
4750     if (adr.index_needs_rex()) {
4751       prefix(REX_WX);
4752     } else {
4753       prefix(REX_W);
4754     }
4755   }
4756 }
4757 
4758 
4759 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
4760   if (reg->encoding() < 8) {
4761     if (adr.base_needs_rex()) {
4762       if (adr.index_needs_rex()) {
4763         prefix(REX_XB);
4764       } else {
4765         prefix(REX_B);
4766       }
4767     } else {
4768       if (adr.index_needs_rex()) {
4769         prefix(REX_X);
4770       } else if (byteinst && reg->encoding() >= 4 ) {
4771         prefix(REX);
4772       }
4773     }
4774   } else {
4775     if (adr.base_needs_rex()) {
4776       if (adr.index_needs_rex()) {
4777         prefix(REX_RXB);
4778       } else {
4779         prefix(REX_RB);
4780       }
4781     } else {
4782       if (adr.index_needs_rex()) {
4783         prefix(REX_RX);
4784       } else {
4785         prefix(REX_R);
4786       }
4787     }
4788   }
4789 }
4790 
4791 void Assembler::prefixq(Address adr, Register src) {
4792   if (src->encoding() < 8) {
4793     if (adr.base_needs_rex()) {
4794       if (adr.index_needs_rex()) {
4795         prefix(REX_WXB);
4796       } else {
4797         prefix(REX_WB);
4798       }
4799     } else {
4800       if (adr.index_needs_rex()) {
4801         prefix(REX_WX);
4802       } else {
4803         prefix(REX_W);
4804       }
4805     }
4806   } else {
4807     if (adr.base_needs_rex()) {
4808       if (adr.index_needs_rex()) {
4809         prefix(REX_WRXB);
4810       } else {
4811         prefix(REX_WRB);
4812       }
4813     } else {
4814       if (adr.index_needs_rex()) {
4815         prefix(REX_WRX);
4816       } else {
4817         prefix(REX_WR);
4818       }
4819     }
4820   }
4821 }
4822 
4823 void Assembler::prefix(Address adr, XMMRegister reg) {
4824   if (reg->encoding() < 8) {
4825     if (adr.base_needs_rex()) {
4826       if (adr.index_needs_rex()) {
4827         prefix(REX_XB);
4828       } else {
4829         prefix(REX_B);
4830       }
4831     } else {
4832       if (adr.index_needs_rex()) {
4833         prefix(REX_X);
4834       }
4835     }
4836   } else {
4837     if (adr.base_needs_rex()) {
4838       if (adr.index_needs_rex()) {
4839         prefix(REX_RXB);
4840       } else {
4841         prefix(REX_RB);
4842       }
4843     } else {
4844       if (adr.index_needs_rex()) {
4845         prefix(REX_RX);
4846       } else {
4847         prefix(REX_R);
4848       }
4849     }
4850   }
4851 }
4852 
4853 void Assembler::prefixq(Address adr, XMMRegister src) {
4854   if (src->encoding() < 8) {
4855     if (adr.base_needs_rex()) {
4856       if (adr.index_needs_rex()) {
4857         prefix(REX_WXB);
4858       } else {
4859         prefix(REX_WB);
4860       }
4861     } else {
4862       if (adr.index_needs_rex()) {
4863         prefix(REX_WX);
4864       } else {
4865         prefix(REX_W);
4866       }
4867     }
4868   } else {
4869     if (adr.base_needs_rex()) {
4870       if (adr.index_needs_rex()) {
4871         prefix(REX_WRXB);
4872       } else {
4873         prefix(REX_WRB);
4874       }
4875     } else {
4876       if (adr.index_needs_rex()) {
4877         prefix(REX_WRX);
4878       } else {
4879         prefix(REX_WR);
4880       }
4881     }
4882   }
4883 }
4884 
4885 void Assembler::adcq(Register dst, int32_t imm32) {
4886   (void) prefixq_and_encode(dst->encoding());
4887   emit_arith(0x81, 0xD0, dst, imm32);
4888 }
4889 
4890 void Assembler::adcq(Register dst, Address src) {
4891   InstructionMark im(this);
4892   prefixq(src, dst);
4893   emit_int8(0x13);
4894   emit_operand(dst, src);
4895 }
4896 
4897 void Assembler::adcq(Register dst, Register src) {
4898   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4899   emit_arith(0x13, 0xC0, dst, src);
4900 }
4901 
4902 void Assembler::addq(Address dst, int32_t imm32) {
4903   InstructionMark im(this);
4904   prefixq(dst);
4905   emit_arith_operand(0x81, rax, dst,imm32);
4906 }
4907 
4908 void Assembler::addq(Address dst, Register src) {
4909   InstructionMark im(this);
4910   prefixq(dst, src);
4911   emit_int8(0x01);
4912   emit_operand(src, dst);
4913 }
4914 
4915 void Assembler::addq(Register dst, int32_t imm32) {
4916   (void) prefixq_and_encode(dst->encoding());
4917   emit_arith(0x81, 0xC0, dst, imm32);
4918 }
4919 
4920 void Assembler::addq(Register dst, Address src) {
4921   InstructionMark im(this);
4922   prefixq(src, dst);
4923   emit_int8(0x03);
4924   emit_operand(dst, src);
4925 }
4926 
4927 void Assembler::addq(Register dst, Register src) {
4928   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4929   emit_arith(0x03, 0xC0, dst, src);
4930 }
4931 
4932 void Assembler::andq(Address dst, int32_t imm32) {
4933   InstructionMark im(this);
4934   prefixq(dst);
4935   emit_int8((unsigned char)0x81);
4936   emit_operand(rsp, dst, 4);
4937   emit_int32(imm32);
4938 }
4939 
4940 void Assembler::andq(Register dst, int32_t imm32) {
4941   (void) prefixq_and_encode(dst->encoding());
4942   emit_arith(0x81, 0xE0, dst, imm32);
4943 }
4944 
4945 void Assembler::andq(Register dst, Address src) {
4946   InstructionMark im(this);
4947   prefixq(src, dst);
4948   emit_int8(0x23);
4949   emit_operand(dst, src);
4950 }
4951 
4952 void Assembler::andq(Register dst, Register src) {
4953   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4954   emit_arith(0x23, 0xC0, dst, src);
4955 }
4956 
4957 void Assembler::andnq(Register dst, Register src1, Register src2) {
4958   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4959   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
4960   emit_int8((unsigned char)0xF2);
4961   emit_int8((unsigned char)(0xC0 | encode));
4962 }
4963 
4964 void Assembler::andnq(Register dst, Register src1, Address src2) {
4965   InstructionMark im(this);
4966   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4967   vex_prefix_0F38_q(dst, src1, src2);
4968   emit_int8((unsigned char)0xF2);
4969   emit_operand(dst, src2);
4970 }
4971 
4972 void Assembler::bsfq(Register dst, Register src) {
4973   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4974   emit_int8(0x0F);
4975   emit_int8((unsigned char)0xBC);
4976   emit_int8((unsigned char)(0xC0 | encode));
4977 }
4978 
4979 void Assembler::bsrq(Register dst, Register src) {
4980   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
4981   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4982   emit_int8(0x0F);
4983   emit_int8((unsigned char)0xBD);
4984   emit_int8((unsigned char)(0xC0 | encode));
4985 }
4986 
4987 void Assembler::bswapq(Register reg) {
4988   int encode = prefixq_and_encode(reg->encoding());
4989   emit_int8(0x0F);
4990   emit_int8((unsigned char)(0xC8 | encode));
4991 }
4992 
4993 void Assembler::blsiq(Register dst, Register src) {
4994   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4995   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
4996   emit_int8((unsigned char)0xF3);
4997   emit_int8((unsigned char)(0xC0 | encode));
4998 }
4999 
5000 void Assembler::blsiq(Register dst, Address src) {
5001   InstructionMark im(this);
5002   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5003   vex_prefix_0F38_q(rbx, dst, src);
5004   emit_int8((unsigned char)0xF3);
5005   emit_operand(rbx, src);
5006 }
5007 
5008 void Assembler::blsmskq(Register dst, Register src) {
5009   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5010   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
5011   emit_int8((unsigned char)0xF3);
5012   emit_int8((unsigned char)(0xC0 | encode));
5013 }
5014 
5015 void Assembler::blsmskq(Register dst, Address src) {
5016   InstructionMark im(this);
5017   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5018   vex_prefix_0F38_q(rdx, dst, src);
5019   emit_int8((unsigned char)0xF3);
5020   emit_operand(rdx, src);
5021 }
5022 
5023 void Assembler::blsrq(Register dst, Register src) {
5024   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5025   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
5026   emit_int8((unsigned char)0xF3);
5027   emit_int8((unsigned char)(0xC0 | encode));
5028 }
5029 
5030 void Assembler::blsrq(Register dst, Address src) {
5031   InstructionMark im(this);
5032   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5033   vex_prefix_0F38_q(rcx, dst, src);
5034   emit_int8((unsigned char)0xF3);
5035   emit_operand(rcx, src);
5036 }
5037 
5038 void Assembler::cdqq() {
5039   prefix(REX_W);
5040   emit_int8((unsigned char)0x99);
5041 }
5042 
5043 void Assembler::clflush(Address adr) {
5044   prefix(adr);
5045   emit_int8(0x0F);
5046   emit_int8((unsigned char)0xAE);
5047   emit_operand(rdi, adr);
5048 }
5049 
5050 void Assembler::cmovq(Condition cc, Register dst, Register src) {
5051   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5052   emit_int8(0x0F);
5053   emit_int8(0x40 | cc);
5054   emit_int8((unsigned char)(0xC0 | encode));
5055 }
5056 
5057 void Assembler::cmovq(Condition cc, Register dst, Address src) {
5058   InstructionMark im(this);
5059   prefixq(src, dst);
5060   emit_int8(0x0F);
5061   emit_int8(0x40 | cc);
5062   emit_operand(dst, src);
5063 }
5064 
5065 void Assembler::cmpq(Address dst, int32_t imm32) {
5066   InstructionMark im(this);
5067   prefixq(dst);
5068   emit_int8((unsigned char)0x81);
5069   emit_operand(rdi, dst, 4);
5070   emit_int32(imm32);
5071 }
5072 
5073 void Assembler::cmpq(Register dst, int32_t imm32) {
5074   (void) prefixq_and_encode(dst->encoding());
5075   emit_arith(0x81, 0xF8, dst, imm32);
5076 }
5077 
5078 void Assembler::cmpq(Address dst, Register src) {
5079   InstructionMark im(this);
5080   prefixq(dst, src);
5081   emit_int8(0x3B);
5082   emit_operand(src, dst);
5083 }
5084 
5085 void Assembler::cmpq(Register dst, Register src) {
5086   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5087   emit_arith(0x3B, 0xC0, dst, src);
5088 }
5089 
5090 void Assembler::cmpq(Register dst, Address  src) {
5091   InstructionMark im(this);
5092   prefixq(src, dst);
5093   emit_int8(0x3B);
5094   emit_operand(dst, src);
5095 }
5096 
5097 void Assembler::cmpxchgq(Register reg, Address adr) {
5098   InstructionMark im(this);
5099   prefixq(adr, reg);
5100   emit_int8(0x0F);
5101   emit_int8((unsigned char)0xB1);
5102   emit_operand(reg, adr);
5103 }
5104 
5105 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
5106   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5107   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
5108   emit_int8(0x2A);
5109   emit_int8((unsigned char)(0xC0 | encode));
5110 }
5111 
5112 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
5113   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5114   InstructionMark im(this);
5115   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
5116   emit_int8(0x2A);
5117   emit_operand(dst, src);
5118 }
5119 
5120 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
5121   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5122   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
5123   emit_int8(0x2A);
5124   emit_int8((unsigned char)(0xC0 | encode));
5125 }
5126 
5127 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
5128   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5129   InstructionMark im(this);
5130   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
5131   emit_int8(0x2A);
5132   emit_operand(dst, src);
5133 }
5134 
5135 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
5136   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5137   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
5138   emit_int8(0x2C);
5139   emit_int8((unsigned char)(0xC0 | encode));
5140 }
5141 
5142 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
5143   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5144   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
5145   emit_int8(0x2C);
5146   emit_int8((unsigned char)(0xC0 | encode));
5147 }
5148 
5149 void Assembler::decl(Register dst) {
5150   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5151   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
5152   int encode = prefix_and_encode(dst->encoding());
5153   emit_int8((unsigned char)0xFF);
5154   emit_int8((unsigned char)(0xC8 | encode));
5155 }
5156 
5157 void Assembler::decq(Register dst) {
5158   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5159   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5160   int encode = prefixq_and_encode(dst->encoding());
5161   emit_int8((unsigned char)0xFF);
5162   emit_int8(0xC8 | encode);
5163 }
5164 
5165 void Assembler::decq(Address dst) {
5166   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5167   InstructionMark im(this);
5168   prefixq(dst);
5169   emit_int8((unsigned char)0xFF);
5170   emit_operand(rcx, dst);
5171 }
5172 
5173 void Assembler::fxrstor(Address src) {
5174   prefixq(src);
5175   emit_int8(0x0F);
5176   emit_int8((unsigned char)0xAE);
5177   emit_operand(as_Register(1), src);
5178 }
5179 
5180 void Assembler::fxsave(Address dst) {
5181   prefixq(dst);
5182   emit_int8(0x0F);
5183   emit_int8((unsigned char)0xAE);
5184   emit_operand(as_Register(0), dst);
5185 }
5186 
5187 void Assembler::idivq(Register src) {
5188   int encode = prefixq_and_encode(src->encoding());
5189   emit_int8((unsigned char)0xF7);
5190   emit_int8((unsigned char)(0xF8 | encode));
5191 }
5192 
5193 void Assembler::imulq(Register dst, Register src) {
5194   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5195   emit_int8(0x0F);
5196   emit_int8((unsigned char)0xAF);
5197   emit_int8((unsigned char)(0xC0 | encode));
5198 }
5199 
5200 void Assembler::imulq(Register dst, Register src, int value) {
5201   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5202   if (is8bit(value)) {
5203     emit_int8(0x6B);
5204     emit_int8((unsigned char)(0xC0 | encode));
5205     emit_int8(value & 0xFF);
5206   } else {
5207     emit_int8(0x69);
5208     emit_int8((unsigned char)(0xC0 | encode));
5209     emit_int32(value);
5210   }
5211 }
5212 
5213 void Assembler::imulq(Register dst, Address src) {
5214   InstructionMark im(this);
5215   prefixq(src, dst);
5216   emit_int8(0x0F);
5217   emit_int8((unsigned char) 0xAF);
5218   emit_operand(dst, src);
5219 }
5220 
5221 void Assembler::incl(Register dst) {
5222   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5223   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5224   int encode = prefix_and_encode(dst->encoding());
5225   emit_int8((unsigned char)0xFF);
5226   emit_int8((unsigned char)(0xC0 | encode));
5227 }
5228 
5229 void Assembler::incq(Register dst) {
5230   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5231   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5232   int encode = prefixq_and_encode(dst->encoding());
5233   emit_int8((unsigned char)0xFF);
5234   emit_int8((unsigned char)(0xC0 | encode));
5235 }
5236 
5237 void Assembler::incq(Address dst) {
5238   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5239   InstructionMark im(this);
5240   prefixq(dst);
5241   emit_int8((unsigned char)0xFF);
5242   emit_operand(rax, dst);
5243 }
5244 
5245 void Assembler::lea(Register dst, Address src) {
5246   leaq(dst, src);
5247 }
5248 
5249 void Assembler::leaq(Register dst, Address src) {
5250   InstructionMark im(this);
5251   prefixq(src, dst);
5252   emit_int8((unsigned char)0x8D);
5253   emit_operand(dst, src);
5254 }
5255 
5256 void Assembler::mov64(Register dst, int64_t imm64) {
5257   InstructionMark im(this);
5258   int encode = prefixq_and_encode(dst->encoding());
5259   emit_int8((unsigned char)(0xB8 | encode));
5260   emit_int64(imm64);
5261 }
5262 
5263 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
5264   InstructionMark im(this);
5265   int encode = prefixq_and_encode(dst->encoding());
5266   emit_int8(0xB8 | encode);
5267   emit_data64(imm64, rspec);
5268 }
5269 
5270 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5271   InstructionMark im(this);
5272   int encode = prefix_and_encode(dst->encoding());
5273   emit_int8((unsigned char)(0xB8 | encode));
5274   emit_data((int)imm32, rspec, narrow_oop_operand);
5275 }
5276 
5277 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5278   InstructionMark im(this);
5279   prefix(dst);
5280   emit_int8((unsigned char)0xC7);
5281   emit_operand(rax, dst, 4);
5282   emit_data((int)imm32, rspec, narrow_oop_operand);
5283 }
5284 
5285 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5286   InstructionMark im(this);
5287   int encode = prefix_and_encode(src1->encoding());
5288   emit_int8((unsigned char)0x81);
5289   emit_int8((unsigned char)(0xF8 | encode));
5290   emit_data((int)imm32, rspec, narrow_oop_operand);
5291 }
5292 
5293 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5294   InstructionMark im(this);
5295   prefix(src1);
5296   emit_int8((unsigned char)0x81);
5297   emit_operand(rax, src1, 4);
5298   emit_data((int)imm32, rspec, narrow_oop_operand);
5299 }
5300 
5301 void Assembler::lzcntq(Register dst, Register src) {
5302   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5303   emit_int8((unsigned char)0xF3);
5304   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5305   emit_int8(0x0F);
5306   emit_int8((unsigned char)0xBD);
5307   emit_int8((unsigned char)(0xC0 | encode));
5308 }
5309 
5310 void Assembler::movdq(XMMRegister dst, Register src) {
5311   // table D-1 says MMX/SSE2
5312   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5313   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5314   emit_int8(0x6E);
5315   emit_int8((unsigned char)(0xC0 | encode));
5316 }
5317 
5318 void Assembler::movdq(Register dst, XMMRegister src) {
5319   // table D-1 says MMX/SSE2
5320   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5321   // swap src/dst to get correct prefix
5322   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5323   emit_int8(0x7E);
5324   emit_int8((unsigned char)(0xC0 | encode));
5325 }
5326 
5327 void Assembler::movq(Register dst, Register src) {
5328   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5329   emit_int8((unsigned char)0x8B);
5330   emit_int8((unsigned char)(0xC0 | encode));
5331 }
5332 
5333 void Assembler::movq(Register dst, Address src) {
5334   InstructionMark im(this);
5335   prefixq(src, dst);
5336   emit_int8((unsigned char)0x8B);
5337   emit_operand(dst, src);
5338 }
5339 
5340 void Assembler::movq(Address dst, Register src) {
5341   InstructionMark im(this);
5342   prefixq(dst, src);
5343   emit_int8((unsigned char)0x89);
5344   emit_operand(src, dst);
5345 }
5346 
5347 void Assembler::movsbq(Register dst, Address src) {
5348   InstructionMark im(this);
5349   prefixq(src, dst);
5350   emit_int8(0x0F);
5351   emit_int8((unsigned char)0xBE);
5352   emit_operand(dst, src);
5353 }
5354 
5355 void Assembler::movsbq(Register dst, Register src) {
5356   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5357   emit_int8(0x0F);
5358   emit_int8((unsigned char)0xBE);
5359   emit_int8((unsigned char)(0xC0 | encode));
5360 }
5361 
5362 void Assembler::movslq(Register dst, int32_t imm32) {
5363   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
5364   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
5365   // as a result we shouldn't use until tested at runtime...
5366   ShouldNotReachHere();
5367   InstructionMark im(this);
5368   int encode = prefixq_and_encode(dst->encoding());
5369   emit_int8((unsigned char)(0xC7 | encode));
5370   emit_int32(imm32);
5371 }
5372 
5373 void Assembler::movslq(Address dst, int32_t imm32) {
5374   assert(is_simm32(imm32), "lost bits");
5375   InstructionMark im(this);
5376   prefixq(dst);
5377   emit_int8((unsigned char)0xC7);
5378   emit_operand(rax, dst, 4);
5379   emit_int32(imm32);
5380 }
5381 
5382 void Assembler::movslq(Register dst, Address src) {
5383   InstructionMark im(this);
5384   prefixq(src, dst);
5385   emit_int8(0x63);
5386   emit_operand(dst, src);
5387 }
5388 
5389 void Assembler::movslq(Register dst, Register src) {
5390   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5391   emit_int8(0x63);
5392   emit_int8((unsigned char)(0xC0 | encode));
5393 }
5394 
5395 void Assembler::movswq(Register dst, Address src) {
5396   InstructionMark im(this);
5397   prefixq(src, dst);
5398   emit_int8(0x0F);
5399   emit_int8((unsigned char)0xBF);
5400   emit_operand(dst, src);
5401 }
5402 
5403 void Assembler::movswq(Register dst, Register src) {
5404   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5405   emit_int8((unsigned char)0x0F);
5406   emit_int8((unsigned char)0xBF);
5407   emit_int8((unsigned char)(0xC0 | encode));
5408 }
5409 
5410 void Assembler::movzbq(Register dst, Address src) {
5411   InstructionMark im(this);
5412   prefixq(src, dst);
5413   emit_int8((unsigned char)0x0F);
5414   emit_int8((unsigned char)0xB6);
5415   emit_operand(dst, src);
5416 }
5417 
5418 void Assembler::movzbq(Register dst, Register src) {
5419   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5420   emit_int8(0x0F);
5421   emit_int8((unsigned char)0xB6);
5422   emit_int8(0xC0 | encode);
5423 }
5424 
5425 void Assembler::movzwq(Register dst, Address src) {
5426   InstructionMark im(this);
5427   prefixq(src, dst);
5428   emit_int8((unsigned char)0x0F);
5429   emit_int8((unsigned char)0xB7);
5430   emit_operand(dst, src);
5431 }
5432 
5433 void Assembler::movzwq(Register dst, Register src) {
5434   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5435   emit_int8((unsigned char)0x0F);
5436   emit_int8((unsigned char)0xB7);
5437   emit_int8((unsigned char)(0xC0 | encode));
5438 }
5439 
5440 void Assembler::negq(Register dst) {
5441   int encode = prefixq_and_encode(dst->encoding());
5442   emit_int8((unsigned char)0xF7);
5443   emit_int8((unsigned char)(0xD8 | encode));
5444 }
5445 
5446 void Assembler::notq(Register dst) {
5447   int encode = prefixq_and_encode(dst->encoding());
5448   emit_int8((unsigned char)0xF7);
5449   emit_int8((unsigned char)(0xD0 | encode));
5450 }
5451 
5452 void Assembler::orq(Address dst, int32_t imm32) {
5453   InstructionMark im(this);
5454   prefixq(dst);
5455   emit_int8((unsigned char)0x81);
5456   emit_operand(rcx, dst, 4);
5457   emit_int32(imm32);
5458 }
5459 
5460 void Assembler::orq(Register dst, int32_t imm32) {
5461   (void) prefixq_and_encode(dst->encoding());
5462   emit_arith(0x81, 0xC8, dst, imm32);
5463 }
5464 
5465 void Assembler::orq(Register dst, Address src) {
5466   InstructionMark im(this);
5467   prefixq(src, dst);
5468   emit_int8(0x0B);
5469   emit_operand(dst, src);
5470 }
5471 
5472 void Assembler::orq(Register dst, Register src) {
5473   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5474   emit_arith(0x0B, 0xC0, dst, src);
5475 }
5476 
5477 void Assembler::popa() { // 64bit
5478   movq(r15, Address(rsp, 0));
5479   movq(r14, Address(rsp, wordSize));
5480   movq(r13, Address(rsp, 2 * wordSize));
5481   movq(r12, Address(rsp, 3 * wordSize));
5482   movq(r11, Address(rsp, 4 * wordSize));
5483   movq(r10, Address(rsp, 5 * wordSize));
5484   movq(r9,  Address(rsp, 6 * wordSize));
5485   movq(r8,  Address(rsp, 7 * wordSize));
5486   movq(rdi, Address(rsp, 8 * wordSize));
5487   movq(rsi, Address(rsp, 9 * wordSize));
5488   movq(rbp, Address(rsp, 10 * wordSize));
5489   // skip rsp
5490   movq(rbx, Address(rsp, 12 * wordSize));
5491   movq(rdx, Address(rsp, 13 * wordSize));
5492   movq(rcx, Address(rsp, 14 * wordSize));
5493   movq(rax, Address(rsp, 15 * wordSize));
5494 
5495   addq(rsp, 16 * wordSize);
5496 }
5497 
5498 void Assembler::popcntq(Register dst, Address src) {
5499   assert(VM_Version::supports_popcnt(), "must support");
5500   InstructionMark im(this);
5501   emit_int8((unsigned char)0xF3);
5502   prefixq(src, dst);
5503   emit_int8((unsigned char)0x0F);
5504   emit_int8((unsigned char)0xB8);
5505   emit_operand(dst, src);
5506 }
5507 
5508 void Assembler::popcntq(Register dst, Register src) {
5509   assert(VM_Version::supports_popcnt(), "must support");
5510   emit_int8((unsigned char)0xF3);
5511   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5512   emit_int8((unsigned char)0x0F);
5513   emit_int8((unsigned char)0xB8);
5514   emit_int8((unsigned char)(0xC0 | encode));
5515 }
5516 
5517 void Assembler::popq(Address dst) {
5518   InstructionMark im(this);
5519   prefixq(dst);
5520   emit_int8((unsigned char)0x8F);
5521   emit_operand(rax, dst);
5522 }
5523 
5524 void Assembler::pusha() { // 64bit
5525   // we have to store original rsp.  ABI says that 128 bytes
5526   // below rsp are local scratch.
5527   movq(Address(rsp, -5 * wordSize), rsp);
5528 
5529   subq(rsp, 16 * wordSize);
5530 
5531   movq(Address(rsp, 15 * wordSize), rax);
5532   movq(Address(rsp, 14 * wordSize), rcx);
5533   movq(Address(rsp, 13 * wordSize), rdx);
5534   movq(Address(rsp, 12 * wordSize), rbx);
5535   // skip rsp
5536   movq(Address(rsp, 10 * wordSize), rbp);
5537   movq(Address(rsp, 9 * wordSize), rsi);
5538   movq(Address(rsp, 8 * wordSize), rdi);
5539   movq(Address(rsp, 7 * wordSize), r8);
5540   movq(Address(rsp, 6 * wordSize), r9);
5541   movq(Address(rsp, 5 * wordSize), r10);
5542   movq(Address(rsp, 4 * wordSize), r11);
5543   movq(Address(rsp, 3 * wordSize), r12);
5544   movq(Address(rsp, 2 * wordSize), r13);
5545   movq(Address(rsp, wordSize), r14);
5546   movq(Address(rsp, 0), r15);
5547 }
5548 
5549 void Assembler::pushq(Address src) {
5550   InstructionMark im(this);
5551   prefixq(src);
5552   emit_int8((unsigned char)0xFF);
5553   emit_operand(rsi, src);
5554 }
5555 
5556 void Assembler::rclq(Register dst, int imm8) {
5557   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5558   int encode = prefixq_and_encode(dst->encoding());
5559   if (imm8 == 1) {
5560     emit_int8((unsigned char)0xD1);
5561     emit_int8((unsigned char)(0xD0 | encode));
5562   } else {
5563     emit_int8((unsigned char)0xC1);
5564     emit_int8((unsigned char)(0xD0 | encode));
5565     emit_int8(imm8);
5566   }
5567 }
5568 void Assembler::sarq(Register dst, int imm8) {
5569   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5570   int encode = prefixq_and_encode(dst->encoding());
5571   if (imm8 == 1) {
5572     emit_int8((unsigned char)0xD1);
5573     emit_int8((unsigned char)(0xF8 | encode));
5574   } else {
5575     emit_int8((unsigned char)0xC1);
5576     emit_int8((unsigned char)(0xF8 | encode));
5577     emit_int8(imm8);
5578   }
5579 }
5580 
5581 void Assembler::sarq(Register dst) {
5582   int encode = prefixq_and_encode(dst->encoding());
5583   emit_int8((unsigned char)0xD3);
5584   emit_int8((unsigned char)(0xF8 | encode));
5585 }
5586 
5587 void Assembler::sbbq(Address dst, int32_t imm32) {
5588   InstructionMark im(this);
5589   prefixq(dst);
5590   emit_arith_operand(0x81, rbx, dst, imm32);
5591 }
5592 
5593 void Assembler::sbbq(Register dst, int32_t imm32) {
5594   (void) prefixq_and_encode(dst->encoding());
5595   emit_arith(0x81, 0xD8, dst, imm32);
5596 }
5597 
5598 void Assembler::sbbq(Register dst, Address src) {
5599   InstructionMark im(this);
5600   prefixq(src, dst);
5601   emit_int8(0x1B);
5602   emit_operand(dst, src);
5603 }
5604 
5605 void Assembler::sbbq(Register dst, Register src) {
5606   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5607   emit_arith(0x1B, 0xC0, dst, src);
5608 }
5609 
5610 void Assembler::shlq(Register dst, int imm8) {
5611   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5612   int encode = prefixq_and_encode(dst->encoding());
5613   if (imm8 == 1) {
5614     emit_int8((unsigned char)0xD1);
5615     emit_int8((unsigned char)(0xE0 | encode));
5616   } else {
5617     emit_int8((unsigned char)0xC1);
5618     emit_int8((unsigned char)(0xE0 | encode));
5619     emit_int8(imm8);
5620   }
5621 }
5622 
5623 void Assembler::shlq(Register dst) {
5624   int encode = prefixq_and_encode(dst->encoding());
5625   emit_int8((unsigned char)0xD3);
5626   emit_int8((unsigned char)(0xE0 | encode));
5627 }
5628 
5629 void Assembler::shrq(Register dst, int imm8) {
5630   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5631   int encode = prefixq_and_encode(dst->encoding());
5632   emit_int8((unsigned char)0xC1);
5633   emit_int8((unsigned char)(0xE8 | encode));
5634   emit_int8(imm8);
5635 }
5636 
5637 void Assembler::shrq(Register dst) {
5638   int encode = prefixq_and_encode(dst->encoding());
5639   emit_int8((unsigned char)0xD3);
5640   emit_int8(0xE8 | encode);
5641 }
5642 
5643 void Assembler::subq(Address dst, int32_t imm32) {
5644   InstructionMark im(this);
5645   prefixq(dst);
5646   emit_arith_operand(0x81, rbp, dst, imm32);
5647 }
5648 
5649 void Assembler::subq(Address dst, Register src) {
5650   InstructionMark im(this);
5651   prefixq(dst, src);
5652   emit_int8(0x29);
5653   emit_operand(src, dst);
5654 }
5655 
5656 void Assembler::subq(Register dst, int32_t imm32) {
5657   (void) prefixq_and_encode(dst->encoding());
5658   emit_arith(0x81, 0xE8, dst, imm32);
5659 }
5660 
5661 // Force generation of a 4 byte immediate value even if it fits into 8bit
5662 void Assembler::subq_imm32(Register dst, int32_t imm32) {
5663   (void) prefixq_and_encode(dst->encoding());
5664   emit_arith_imm32(0x81, 0xE8, dst, imm32);
5665 }
5666 
5667 void Assembler::subq(Register dst, Address src) {
5668   InstructionMark im(this);
5669   prefixq(src, dst);
5670   emit_int8(0x2B);
5671   emit_operand(dst, src);
5672 }
5673 
5674 void Assembler::subq(Register dst, Register src) {
5675   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5676   emit_arith(0x2B, 0xC0, dst, src);
5677 }
5678 
5679 void Assembler::testq(Register dst, int32_t imm32) {
5680   // not using emit_arith because test
5681   // doesn't support sign-extension of
5682   // 8bit operands
5683   int encode = dst->encoding();
5684   if (encode == 0) {
5685     prefix(REX_W);
5686     emit_int8((unsigned char)0xA9);
5687   } else {
5688     encode = prefixq_and_encode(encode);
5689     emit_int8((unsigned char)0xF7);
5690     emit_int8((unsigned char)(0xC0 | encode));
5691   }
5692   emit_int32(imm32);
5693 }
5694 
5695 void Assembler::testq(Register dst, Register src) {
5696   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5697   emit_arith(0x85, 0xC0, dst, src);
5698 }
5699 
5700 void Assembler::xaddq(Address dst, Register src) {
5701   InstructionMark im(this);
5702   prefixq(dst, src);
5703   emit_int8(0x0F);
5704   emit_int8((unsigned char)0xC1);
5705   emit_operand(src, dst);
5706 }
5707 
5708 void Assembler::xchgq(Register dst, Address src) {
5709   InstructionMark im(this);
5710   prefixq(src, dst);
5711   emit_int8((unsigned char)0x87);
5712   emit_operand(dst, src);
5713 }
5714 
5715 void Assembler::xchgq(Register dst, Register src) {
5716   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5717   emit_int8((unsigned char)0x87);
5718   emit_int8((unsigned char)(0xc0 | encode));
5719 }
5720 
5721 void Assembler::xorq(Register dst, Register src) {
5722   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5723   emit_arith(0x33, 0xC0, dst, src);
5724 }
5725 
5726 void Assembler::xorq(Register dst, Address src) {
5727   InstructionMark im(this);
5728   prefixq(src, dst);
5729   emit_int8(0x33);
5730   emit_operand(dst, src);
5731 }
5732 
5733 #endif // !LP64