1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/nmethod.hpp"
  29 #include "code/pcDesc.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "interpreter/bytecode.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/oopMapCache.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.hpp"
  48 #include "runtime/vframe.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "runtime/vframe_hp.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef TARGET_ARCH_x86
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "vmreg_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_zero
  60 # include "vmreg_zero.inline.hpp"
  61 #endif
  62 #ifdef TARGET_ARCH_arm
  63 # include "vmreg_arm.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_ppc
  66 # include "vmreg_ppc.inline.hpp"
  67 #endif
  68 #ifdef COMPILER2
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc_32
  85 # include "adfiles/ad_ppc_32.hpp"
  86 #endif
  87 #ifdef TARGET_ARCH_MODEL_ppc_64
  88 # include "adfiles/ad_ppc_64.hpp"
  89 #endif
  90 #endif // COMPILER2
  91 
  92 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  93 
  94 bool DeoptimizationMarker::_is_active = false;
  95 
  96 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  97                                          int  caller_adjustment,
  98                                          int  caller_actual_parameters,
  99                                          int  number_of_frames,
 100                                          intptr_t* frame_sizes,
 101                                          address* frame_pcs,
 102                                          BasicType return_type) {
 103   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 104   _caller_adjustment         = caller_adjustment;
 105   _caller_actual_parameters  = caller_actual_parameters;
 106   _number_of_frames          = number_of_frames;
 107   _frame_sizes               = frame_sizes;
 108   _frame_pcs                 = frame_pcs;
 109   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 110   _return_type               = return_type;
 111   _initial_info              = 0;
 112   // PD (x86 only)
 113   _counter_temp              = 0;
 114   _unpack_kind               = 0;
 115   _sender_sp_temp            = 0;
 116 
 117   _total_frame_sizes         = size_of_frames();
 118 }
 119 
 120 
 121 Deoptimization::UnrollBlock::~UnrollBlock() {
 122   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
 123   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
 124   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
 125 }
 126 
 127 
 128 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 129   assert(register_number < RegisterMap::reg_count, "checking register number");
 130   return &_register_block[register_number * 2];
 131 }
 132 
 133 
 134 
 135 int Deoptimization::UnrollBlock::size_of_frames() const {
 136   // Acount first for the adjustment of the initial frame
 137   int result = _caller_adjustment;
 138   for (int index = 0; index < number_of_frames(); index++) {
 139     result += frame_sizes()[index];
 140   }
 141   return result;
 142 }
 143 
 144 
 145 void Deoptimization::UnrollBlock::print() {
 146   ttyLocker ttyl;
 147   tty->print_cr("UnrollBlock");
 148   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 149   tty->print(   "  frame_sizes: ");
 150   for (int index = 0; index < number_of_frames(); index++) {
 151     tty->print("%d ", frame_sizes()[index]);
 152   }
 153   tty->cr();
 154 }
 155 
 156 
 157 // In order to make fetch_unroll_info work properly with escape
 158 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 159 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 160 // of previously eliminated objects occurs in realloc_objects, which is
 161 // called from the method fetch_unroll_info_helper below.
 162 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 163   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 164   // but makes the entry a little slower. There is however a little dance we have to
 165   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 166 
 167   // fetch_unroll_info() is called at the beginning of the deoptimization
 168   // handler. Note this fact before we start generating temporary frames
 169   // that can confuse an asynchronous stack walker. This counter is
 170   // decremented at the end of unpack_frames().
 171   thread->inc_in_deopt_handler();
 172 
 173   return fetch_unroll_info_helper(thread);
 174 JRT_END
 175 
 176 
 177 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 178 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 179 
 180   // Note: there is a safepoint safety issue here. No matter whether we enter
 181   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 182   // the vframeArray is created.
 183   //
 184 
 185   // Allocate our special deoptimization ResourceMark
 186   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 187   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 188   thread->set_deopt_mark(dmark);
 189 
 190   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 191   RegisterMap map(thread, true);
 192   RegisterMap dummy_map(thread, false);
 193   // Now get the deoptee with a valid map
 194   frame deoptee = stub_frame.sender(&map);
 195   // Set the deoptee nmethod
 196   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 197   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 198 
 199   if (VerifyStack) {
 200     thread->validate_frame_layout();
 201   }
 202 
 203   // Create a growable array of VFrames where each VFrame represents an inlined
 204   // Java frame.  This storage is allocated with the usual system arena.
 205   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 206   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 207   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 208   while (!vf->is_top()) {
 209     assert(vf->is_compiled_frame(), "Wrong frame type");
 210     chunk->push(compiledVFrame::cast(vf));
 211     vf = vf->sender();
 212   }
 213   assert(vf->is_compiled_frame(), "Wrong frame type");
 214   chunk->push(compiledVFrame::cast(vf));
 215 
 216 #ifdef COMPILER2
 217   // Reallocate the non-escaping objects and restore their fields. Then
 218   // relock objects if synchronization on them was eliminated.
 219   if (DoEscapeAnalysis || EliminateNestedLocks) {
 220     if (EliminateAllocations) {
 221       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 222       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 223 
 224       // The flag return_oop() indicates call sites which return oop
 225       // in compiled code. Such sites include java method calls,
 226       // runtime calls (for example, used to allocate new objects/arrays
 227       // on slow code path) and any other calls generated in compiled code.
 228       // It is not guaranteed that we can get such information here only
 229       // by analyzing bytecode in deoptimized frames. This is why this flag
 230       // is set during method compilation (see Compile::Process_OopMap_Node()).
 231       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 232       Handle return_value;
 233       if (save_oop_result) {
 234         // Reallocation may trigger GC. If deoptimization happened on return from
 235         // call which returns oop we need to save it since it is not in oopmap.
 236         oop result = deoptee.saved_oop_result(&map);
 237         assert(result == NULL || result->is_oop(), "must be oop");
 238         return_value = Handle(thread, result);
 239         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 240         if (TraceDeoptimization) {
 241           ttyLocker ttyl;
 242           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
 243         }
 244       }
 245       bool reallocated = false;
 246       if (objects != NULL) {
 247         JRT_BLOCK
 248           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 249         JRT_END
 250       }
 251       if (reallocated) {
 252         reassign_fields(&deoptee, &map, objects);
 253 #ifndef PRODUCT
 254         if (TraceDeoptimization) {
 255           ttyLocker ttyl;
 256           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 257           print_objects(objects);
 258         }
 259 #endif
 260       }
 261       if (save_oop_result) {
 262         // Restore result.
 263         deoptee.set_saved_oop_result(&map, return_value());
 264       }
 265     }
 266     if (EliminateLocks) {
 267 #ifndef PRODUCT
 268       bool first = true;
 269 #endif
 270       for (int i = 0; i < chunk->length(); i++) {
 271         compiledVFrame* cvf = chunk->at(i);
 272         assert (cvf->scope() != NULL,"expect only compiled java frames");
 273         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 274         if (monitors->is_nonempty()) {
 275           relock_objects(monitors, thread);
 276 #ifndef PRODUCT
 277           if (TraceDeoptimization) {
 278             ttyLocker ttyl;
 279             for (int j = 0; j < monitors->length(); j++) {
 280               MonitorInfo* mi = monitors->at(j);
 281               if (mi->eliminated()) {
 282                 if (first) {
 283                   first = false;
 284                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 285                 }
 286                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
 287               }
 288             }
 289           }
 290 #endif
 291         }
 292       }
 293     }
 294   }
 295 #endif // COMPILER2
 296   // Ensure that no safepoint is taken after pointers have been stored
 297   // in fields of rematerialized objects.  If a safepoint occurs from here on
 298   // out the java state residing in the vframeArray will be missed.
 299   No_Safepoint_Verifier no_safepoint;
 300 
 301   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 302 
 303   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 304   thread->set_vframe_array_head(array);
 305 
 306   // Now that the vframeArray has been created if we have any deferred local writes
 307   // added by jvmti then we can free up that structure as the data is now in the
 308   // vframeArray
 309 
 310   if (thread->deferred_locals() != NULL) {
 311     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 312     int i = 0;
 313     do {
 314       // Because of inlining we could have multiple vframes for a single frame
 315       // and several of the vframes could have deferred writes. Find them all.
 316       if (list->at(i)->id() == array->original().id()) {
 317         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 318         list->remove_at(i);
 319         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 320         delete dlv;
 321       } else {
 322         i++;
 323       }
 324     } while ( i < list->length() );
 325     if (list->length() == 0) {
 326       thread->set_deferred_locals(NULL);
 327       // free the list and elements back to C heap.
 328       delete list;
 329     }
 330 
 331   }
 332 
 333 #ifndef SHARK
 334   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 335   CodeBlob* cb = stub_frame.cb();
 336   // Verify we have the right vframeArray
 337   assert(cb->frame_size() >= 0, "Unexpected frame size");
 338   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 339 
 340   // If the deopt call site is a MethodHandle invoke call site we have
 341   // to adjust the unpack_sp.
 342   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 343   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 344     unpack_sp = deoptee.unextended_sp();
 345 
 346 #ifdef ASSERT
 347   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 348 #endif
 349 #else
 350   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 351 #endif // !SHARK
 352 
 353   // This is a guarantee instead of an assert because if vframe doesn't match
 354   // we will unpack the wrong deoptimized frame and wind up in strange places
 355   // where it will be very difficult to figure out what went wrong. Better
 356   // to die an early death here than some very obscure death later when the
 357   // trail is cold.
 358   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 359   // in that it will fail to detect a problem when there is one. This needs
 360   // more work in tiger timeframe.
 361   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 362 
 363   int number_of_frames = array->frames();
 364 
 365   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 366   // virtual activation, which is the reverse of the elements in the vframes array.
 367   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 368   // +1 because we always have an interpreter return address for the final slot.
 369   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 370   int popframe_extra_args = 0;
 371   // Create an interpreter return address for the stub to use as its return
 372   // address so the skeletal frames are perfectly walkable
 373   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 374 
 375   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 376   // activation be put back on the expression stack of the caller for reexecution
 377   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 378     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 379   }
 380 
 381   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 382   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 383   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 384   //
 385   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 386   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 387 
 388   // It's possible that the number of parameters at the call site is
 389   // different than number of arguments in the callee when method
 390   // handles are used.  If the caller is interpreted get the real
 391   // value so that the proper amount of space can be added to it's
 392   // frame.
 393   bool caller_was_method_handle = false;
 394   if (deopt_sender.is_interpreted_frame()) {
 395     methodHandle method = deopt_sender.interpreter_frame_method();
 396     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 397     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 398       // Method handle invokes may involve fairly arbitrary chains of
 399       // calls so it's impossible to know how much actual space the
 400       // caller has for locals.
 401       caller_was_method_handle = true;
 402     }
 403   }
 404 
 405   //
 406   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 407   // frame_sizes/frame_pcs[1] next oldest frame (int)
 408   // frame_sizes/frame_pcs[n] youngest frame (int)
 409   //
 410   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 411   // owns the space for the return address to it's caller).  Confusing ain't it.
 412   //
 413   // The vframe array can address vframes with indices running from
 414   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 415   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 416   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 417   // so things look a little strange in this loop.
 418   //
 419   int callee_parameters = 0;
 420   int callee_locals = 0;
 421   for (int index = 0; index < array->frames(); index++ ) {
 422     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 423     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 424     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 425     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 426                                                                                                     callee_locals,
 427                                                                                                     index == 0,
 428                                                                                                     popframe_extra_args);
 429     // This pc doesn't have to be perfect just good enough to identify the frame
 430     // as interpreted so the skeleton frame will be walkable
 431     // The correct pc will be set when the skeleton frame is completely filled out
 432     // The final pc we store in the loop is wrong and will be overwritten below
 433     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 434 
 435     callee_parameters = array->element(index)->method()->size_of_parameters();
 436     callee_locals = array->element(index)->method()->max_locals();
 437     popframe_extra_args = 0;
 438   }
 439 
 440   // Compute whether the root vframe returns a float or double value.
 441   BasicType return_type;
 442   {
 443     HandleMark hm;
 444     methodHandle method(thread, array->element(0)->method());
 445     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 446     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 447   }
 448 
 449   // Compute information for handling adapters and adjusting the frame size of the caller.
 450   int caller_adjustment = 0;
 451 
 452   // Compute the amount the oldest interpreter frame will have to adjust
 453   // its caller's stack by. If the caller is a compiled frame then
 454   // we pretend that the callee has no parameters so that the
 455   // extension counts for the full amount of locals and not just
 456   // locals-parms. This is because without a c2i adapter the parm
 457   // area as created by the compiled frame will not be usable by
 458   // the interpreter. (Depending on the calling convention there
 459   // may not even be enough space).
 460 
 461   // QQQ I'd rather see this pushed down into last_frame_adjust
 462   // and have it take the sender (aka caller).
 463 
 464   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 465     caller_adjustment = last_frame_adjust(0, callee_locals);
 466   } else if (callee_locals > callee_parameters) {
 467     // The caller frame may need extending to accommodate
 468     // non-parameter locals of the first unpacked interpreted frame.
 469     // Compute that adjustment.
 470     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 471   }
 472 
 473   // If the sender is deoptimized the we must retrieve the address of the handler
 474   // since the frame will "magically" show the original pc before the deopt
 475   // and we'd undo the deopt.
 476 
 477   frame_pcs[0] = deopt_sender.raw_pc();
 478 
 479 #ifndef SHARK
 480   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 481 #endif // SHARK
 482 
 483   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 484                                       caller_adjustment * BytesPerWord,
 485                                       caller_was_method_handle ? 0 : callee_parameters,
 486                                       number_of_frames,
 487                                       frame_sizes,
 488                                       frame_pcs,
 489                                       return_type);
 490   // On some platforms, we need a way to pass some platform dependent
 491   // information to the unpacking code so the skeletal frames come out
 492   // correct (initial fp value, unextended sp, ...)
 493   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 494 
 495   if (array->frames() > 1) {
 496     if (VerifyStack && TraceDeoptimization) {
 497       ttyLocker ttyl;
 498       tty->print_cr("Deoptimizing method containing inlining");
 499     }
 500   }
 501 
 502   array->set_unroll_block(info);
 503   return info;
 504 }
 505 
 506 // Called to cleanup deoptimization data structures in normal case
 507 // after unpacking to stack and when stack overflow error occurs
 508 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 509                                         vframeArray *array) {
 510 
 511   // Get array if coming from exception
 512   if (array == NULL) {
 513     array = thread->vframe_array_head();
 514   }
 515   thread->set_vframe_array_head(NULL);
 516 
 517   // Free the previous UnrollBlock
 518   vframeArray* old_array = thread->vframe_array_last();
 519   thread->set_vframe_array_last(array);
 520 
 521   if (old_array != NULL) {
 522     UnrollBlock* old_info = old_array->unroll_block();
 523     old_array->set_unroll_block(NULL);
 524     delete old_info;
 525     delete old_array;
 526   }
 527 
 528   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 529   // inside the vframeArray (StackValueCollections)
 530 
 531   delete thread->deopt_mark();
 532   thread->set_deopt_mark(NULL);
 533   thread->set_deopt_nmethod(NULL);
 534 
 535 
 536   if (JvmtiExport::can_pop_frame()) {
 537 #ifndef CC_INTERP
 538     // Regardless of whether we entered this routine with the pending
 539     // popframe condition bit set, we should always clear it now
 540     thread->clear_popframe_condition();
 541 #else
 542     // C++ interpreter will clear has_pending_popframe when it enters
 543     // with method_resume. For deopt_resume2 we clear it now.
 544     if (thread->popframe_forcing_deopt_reexecution())
 545         thread->clear_popframe_condition();
 546 #endif /* CC_INTERP */
 547   }
 548 
 549   // unpack_frames() is called at the end of the deoptimization handler
 550   // and (in C2) at the end of the uncommon trap handler. Note this fact
 551   // so that an asynchronous stack walker can work again. This counter is
 552   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 553   // the beginning of uncommon_trap().
 554   thread->dec_in_deopt_handler();
 555 }
 556 
 557 
 558 // Return BasicType of value being returned
 559 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 560 
 561   // We are already active int he special DeoptResourceMark any ResourceObj's we
 562   // allocate will be freed at the end of the routine.
 563 
 564   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 565   // but makes the entry a little slower. There is however a little dance we have to
 566   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 567   ResetNoHandleMark rnhm; // No-op in release/product versions
 568   HandleMark hm;
 569 
 570   frame stub_frame = thread->last_frame();
 571 
 572   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 573   // must point to the vframeArray for the unpack frame.
 574   vframeArray* array = thread->vframe_array_head();
 575 
 576 #ifndef PRODUCT
 577   if (TraceDeoptimization) {
 578     ttyLocker ttyl;
 579     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 580   }
 581 #endif
 582   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 583               stub_frame.pc(), stub_frame.sp(), exec_mode);
 584 
 585   UnrollBlock* info = array->unroll_block();
 586 
 587   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 588   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 589 
 590   BasicType bt = info->return_type();
 591 
 592   // If we have an exception pending, claim that the return type is an oop
 593   // so the deopt_blob does not overwrite the exception_oop.
 594 
 595   if (exec_mode == Unpack_exception)
 596     bt = T_OBJECT;
 597 
 598   // Cleanup thread deopt data
 599   cleanup_deopt_info(thread, array);
 600 
 601 #ifndef PRODUCT
 602   if (VerifyStack) {
 603     ResourceMark res_mark;
 604 
 605     thread->validate_frame_layout();
 606 
 607     // Verify that the just-unpacked frames match the interpreter's
 608     // notions of expression stack and locals
 609     vframeArray* cur_array = thread->vframe_array_last();
 610     RegisterMap rm(thread, false);
 611     rm.set_include_argument_oops(false);
 612     bool is_top_frame = true;
 613     int callee_size_of_parameters = 0;
 614     int callee_max_locals = 0;
 615     for (int i = 0; i < cur_array->frames(); i++) {
 616       vframeArrayElement* el = cur_array->element(i);
 617       frame* iframe = el->iframe();
 618       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 619 
 620       // Get the oop map for this bci
 621       InterpreterOopMap mask;
 622       int cur_invoke_parameter_size = 0;
 623       bool try_next_mask = false;
 624       int next_mask_expression_stack_size = -1;
 625       int top_frame_expression_stack_adjustment = 0;
 626       methodHandle mh(thread, iframe->interpreter_frame_method());
 627       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 628       BytecodeStream str(mh);
 629       str.set_start(iframe->interpreter_frame_bci());
 630       int max_bci = mh->code_size();
 631       // Get to the next bytecode if possible
 632       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 633       // Check to see if we can grab the number of outgoing arguments
 634       // at an uncommon trap for an invoke (where the compiler
 635       // generates debug info before the invoke has executed)
 636       Bytecodes::Code cur_code = str.next();
 637       if (cur_code == Bytecodes::_invokevirtual   ||
 638           cur_code == Bytecodes::_invokespecial   ||
 639           cur_code == Bytecodes::_invokestatic    ||
 640           cur_code == Bytecodes::_invokeinterface ||
 641           cur_code == Bytecodes::_invokedynamic) {
 642         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 643         Symbol* signature = invoke.signature();
 644         ArgumentSizeComputer asc(signature);
 645         cur_invoke_parameter_size = asc.size();
 646         if (invoke.has_receiver()) {
 647           // Add in receiver
 648           ++cur_invoke_parameter_size;
 649         }
 650         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 651           callee_size_of_parameters++;
 652         }
 653       }
 654       if (str.bci() < max_bci) {
 655         Bytecodes::Code bc = str.next();
 656         if (bc >= 0) {
 657           // The interpreter oop map generator reports results before
 658           // the current bytecode has executed except in the case of
 659           // calls. It seems to be hard to tell whether the compiler
 660           // has emitted debug information matching the "state before"
 661           // a given bytecode or the state after, so we try both
 662           switch (cur_code) {
 663             case Bytecodes::_invokevirtual:
 664             case Bytecodes::_invokespecial:
 665             case Bytecodes::_invokestatic:
 666             case Bytecodes::_invokeinterface:
 667             case Bytecodes::_invokedynamic:
 668             case Bytecodes::_athrow:
 669               break;
 670             default: {
 671               InterpreterOopMap next_mask;
 672               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 673               next_mask_expression_stack_size = next_mask.expression_stack_size();
 674               // Need to subtract off the size of the result type of
 675               // the bytecode because this is not described in the
 676               // debug info but returned to the interpreter in the TOS
 677               // caching register
 678               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 679               if (bytecode_result_type != T_ILLEGAL) {
 680                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 681               }
 682               assert(top_frame_expression_stack_adjustment >= 0, "");
 683               try_next_mask = true;
 684               break;
 685             }
 686           }
 687         }
 688       }
 689 
 690       // Verify stack depth and oops in frame
 691       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 692       if (!(
 693             /* SPARC */
 694             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 695             /* x86 */
 696             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 697             (try_next_mask &&
 698              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 699                                                                     top_frame_expression_stack_adjustment))) ||
 700             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 701             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 702              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 703             )) {
 704         ttyLocker ttyl;
 705 
 706         // Print out some information that will help us debug the problem
 707         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 708         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 709         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 710                       iframe->interpreter_frame_expression_stack_size());
 711         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 712         tty->print_cr("  try_next_mask = %d", try_next_mask);
 713         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 714         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 715         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 716         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 717         tty->print_cr("  exec_mode = %d", exec_mode);
 718         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 719         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 720         tty->print_cr("  Interpreted frames:");
 721         for (int k = 0; k < cur_array->frames(); k++) {
 722           vframeArrayElement* el = cur_array->element(k);
 723           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 724         }
 725         cur_array->print_on_2(tty);
 726         guarantee(false, "wrong number of expression stack elements during deopt");
 727       }
 728       VerifyOopClosure verify;
 729       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 730       callee_size_of_parameters = mh->size_of_parameters();
 731       callee_max_locals = mh->max_locals();
 732       is_top_frame = false;
 733     }
 734   }
 735 #endif /* !PRODUCT */
 736 
 737 
 738   return bt;
 739 JRT_END
 740 
 741 
 742 int Deoptimization::deoptimize_dependents() {
 743   Threads::deoptimized_wrt_marked_nmethods();
 744   return 0;
 745 }
 746 
 747 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 748   = Deoptimization::Action_reinterpret;
 749 
 750 #ifdef COMPILER2
 751 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 752   Handle pending_exception(thread->pending_exception());
 753   const char* exception_file = thread->exception_file();
 754   int exception_line = thread->exception_line();
 755   thread->clear_pending_exception();
 756 
 757   for (int i = 0; i < objects->length(); i++) {
 758     assert(objects->at(i)->is_object(), "invalid debug information");
 759     ObjectValue* sv = (ObjectValue*) objects->at(i);
 760 
 761     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 762     oop obj = NULL;
 763 
 764     if (k->oop_is_instance()) {
 765       InstanceKlass* ik = InstanceKlass::cast(k());
 766       obj = ik->allocate_instance(CHECK_(false));
 767     } else if (k->oop_is_typeArray()) {
 768       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 769       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 770       int len = sv->field_size() / type2size[ak->element_type()];
 771       obj = ak->allocate(len, CHECK_(false));
 772     } else if (k->oop_is_objArray()) {
 773       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 774       obj = ak->allocate(sv->field_size(), CHECK_(false));
 775     }
 776 
 777     assert(obj != NULL, "allocation failed");
 778     assert(sv->value().is_null(), "redundant reallocation");
 779     sv->set_value(obj);
 780   }
 781 
 782   if (pending_exception.not_null()) {
 783     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 784   }
 785 
 786   return true;
 787 }
 788 
 789 // This assumes that the fields are stored in ObjectValue in the same order
 790 // they are yielded by do_nonstatic_fields.
 791 class FieldReassigner: public FieldClosure {
 792   frame* _fr;
 793   RegisterMap* _reg_map;
 794   ObjectValue* _sv;
 795   InstanceKlass* _ik;
 796   oop _obj;
 797 
 798   int _i;
 799 public:
 800   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 801     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 802 
 803   int i() const { return _i; }
 804 
 805 
 806   void do_field(fieldDescriptor* fd) {
 807     intptr_t val;
 808     StackValue* value =
 809       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 810     int offset = fd->offset();
 811     switch (fd->field_type()) {
 812     case T_OBJECT: case T_ARRAY:
 813       assert(value->type() == T_OBJECT, "Agreement.");
 814       _obj->obj_field_put(offset, value->get_obj()());
 815       break;
 816 
 817     case T_LONG: case T_DOUBLE: {
 818       assert(value->type() == T_INT, "Agreement.");
 819       StackValue* low =
 820         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 821 #ifdef _LP64
 822       jlong res = (jlong)low->get_int();
 823 #else
 824 #ifdef SPARC
 825       // For SPARC we have to swap high and low words.
 826       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 827 #else
 828       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 829 #endif //SPARC
 830 #endif
 831       _obj->long_field_put(offset, res);
 832       break;
 833     }
 834     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 835     case T_INT: case T_FLOAT: // 4 bytes.
 836       assert(value->type() == T_INT, "Agreement.");
 837       val = value->get_int();
 838       _obj->int_field_put(offset, (jint)*((jint*)&val));
 839       break;
 840 
 841     case T_SHORT: case T_CHAR: // 2 bytes
 842       assert(value->type() == T_INT, "Agreement.");
 843       val = value->get_int();
 844       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 845       break;
 846 
 847     case T_BOOLEAN: case T_BYTE: // 1 byte
 848       assert(value->type() == T_INT, "Agreement.");
 849       val = value->get_int();
 850       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 851       break;
 852 
 853     default:
 854       ShouldNotReachHere();
 855     }
 856     _i++;
 857   }
 858 };
 859 
 860 // restore elements of an eliminated type array
 861 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 862   int index = 0;
 863   intptr_t val;
 864 
 865   for (int i = 0; i < sv->field_size(); i++) {
 866     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 867     switch(type) {
 868     case T_LONG: case T_DOUBLE: {
 869       assert(value->type() == T_INT, "Agreement.");
 870       StackValue* low =
 871         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 872 #ifdef _LP64
 873       jlong res = (jlong)low->get_int();
 874 #else
 875 #ifdef SPARC
 876       // For SPARC we have to swap high and low words.
 877       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 878 #else
 879       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 880 #endif //SPARC
 881 #endif
 882       obj->long_at_put(index, res);
 883       break;
 884     }
 885 
 886     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 887     case T_INT: case T_FLOAT: // 4 bytes.
 888       assert(value->type() == T_INT, "Agreement.");
 889       val = value->get_int();
 890       obj->int_at_put(index, (jint)*((jint*)&val));
 891       break;
 892 
 893     case T_SHORT: case T_CHAR: // 2 bytes
 894       assert(value->type() == T_INT, "Agreement.");
 895       val = value->get_int();
 896       obj->short_at_put(index, (jshort)*((jint*)&val));
 897       break;
 898 
 899     case T_BOOLEAN: case T_BYTE: // 1 byte
 900       assert(value->type() == T_INT, "Agreement.");
 901       val = value->get_int();
 902       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 903       break;
 904 
 905       default:
 906         ShouldNotReachHere();
 907     }
 908     index++;
 909   }
 910 }
 911 
 912 
 913 // restore fields of an eliminated object array
 914 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 915   for (int i = 0; i < sv->field_size(); i++) {
 916     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 917     assert(value->type() == T_OBJECT, "object element expected");
 918     obj->obj_at_put(i, value->get_obj()());
 919   }
 920 }
 921 
 922 
 923 // restore fields of all eliminated objects and arrays
 924 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 925   for (int i = 0; i < objects->length(); i++) {
 926     ObjectValue* sv = (ObjectValue*) objects->at(i);
 927     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 928     Handle obj = sv->value();
 929     assert(obj.not_null(), "reallocation was missed");
 930 
 931     if (k->oop_is_instance()) {
 932       InstanceKlass* ik = InstanceKlass::cast(k());
 933       FieldReassigner reassign(fr, reg_map, sv, obj());
 934       ik->do_nonstatic_fields(&reassign);
 935     } else if (k->oop_is_typeArray()) {
 936       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 937       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 938     } else if (k->oop_is_objArray()) {
 939       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 940     }
 941   }
 942 }
 943 
 944 
 945 // relock objects for which synchronization was eliminated
 946 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 947   for (int i = 0; i < monitors->length(); i++) {
 948     MonitorInfo* mon_info = monitors->at(i);
 949     if (mon_info->eliminated()) {
 950       assert(mon_info->owner() != NULL, "reallocation was missed");
 951       Handle obj = Handle(mon_info->owner());
 952       markOop mark = obj->mark();
 953       if (UseBiasedLocking && mark->has_bias_pattern()) {
 954         // New allocated objects may have the mark set to anonymously biased.
 955         // Also the deoptimized method may called methods with synchronization
 956         // where the thread-local object is bias locked to the current thread.
 957         assert(mark->is_biased_anonymously() ||
 958                mark->biased_locker() == thread, "should be locked to current thread");
 959         // Reset mark word to unbiased prototype.
 960         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 961         obj->set_mark(unbiased_prototype);
 962       }
 963       BasicLock* lock = mon_info->lock();
 964       ObjectSynchronizer::slow_enter(obj, lock, thread);
 965     }
 966     assert(mon_info->owner()->is_locked(), "object must be locked now");
 967   }
 968 }
 969 
 970 
 971 #ifndef PRODUCT
 972 // print information about reallocated objects
 973 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 974   fieldDescriptor fd;
 975 
 976   for (int i = 0; i < objects->length(); i++) {
 977     ObjectValue* sv = (ObjectValue*) objects->at(i);
 978     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 979     Handle obj = sv->value();
 980 
 981     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
 982     k->print_value();
 983     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 984     tty->cr();
 985 
 986     if (Verbose) {
 987       k->oop_print_on(obj(), tty);
 988     }
 989   }
 990 }
 991 #endif
 992 #endif // COMPILER2
 993 
 994 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 995   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
 996 
 997 #ifndef PRODUCT
 998   if (TraceDeoptimization) {
 999     ttyLocker ttyl;
1000     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
1001     fr.print_on(tty);
1002     tty->print_cr("     Virtual frames (innermost first):");
1003     for (int index = 0; index < chunk->length(); index++) {
1004       compiledVFrame* vf = chunk->at(index);
1005       tty->print("       %2d - ", index);
1006       vf->print_value();
1007       int bci = chunk->at(index)->raw_bci();
1008       const char* code_name;
1009       if (bci == SynchronizationEntryBCI) {
1010         code_name = "sync entry";
1011       } else {
1012         Bytecodes::Code code = vf->method()->code_at(bci);
1013         code_name = Bytecodes::name(code);
1014       }
1015       tty->print(" - %s", code_name);
1016       tty->print_cr(" @ bci %d ", bci);
1017       if (Verbose) {
1018         vf->print();
1019         tty->cr();
1020       }
1021     }
1022   }
1023 #endif
1024 
1025   // Register map for next frame (used for stack crawl).  We capture
1026   // the state of the deopt'ing frame's caller.  Thus if we need to
1027   // stuff a C2I adapter we can properly fill in the callee-save
1028   // register locations.
1029   frame caller = fr.sender(reg_map);
1030   int frame_size = caller.sp() - fr.sp();
1031 
1032   frame sender = caller;
1033 
1034   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1035   // the vframeArray containing the unpacking information is allocated in the C heap.
1036   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1037   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
1038 
1039   // Compare the vframeArray to the collected vframes
1040   assert(array->structural_compare(thread, chunk), "just checking");
1041 
1042 #ifndef PRODUCT
1043   if (TraceDeoptimization) {
1044     ttyLocker ttyl;
1045     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1046   }
1047 #endif // PRODUCT
1048 
1049   return array;
1050 }
1051 
1052 
1053 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1054   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1055   for (int i = 0; i < monitors->length(); i++) {
1056     MonitorInfo* mon_info = monitors->at(i);
1057     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1058       objects_to_revoke->append(Handle(mon_info->owner()));
1059     }
1060   }
1061 }
1062 
1063 
1064 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1065   if (!UseBiasedLocking) {
1066     return;
1067   }
1068 
1069   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1070 
1071   // Unfortunately we don't have a RegisterMap available in most of
1072   // the places we want to call this routine so we need to walk the
1073   // stack again to update the register map.
1074   if (map == NULL || !map->update_map()) {
1075     StackFrameStream sfs(thread, true);
1076     bool found = false;
1077     while (!found && !sfs.is_done()) {
1078       frame* cur = sfs.current();
1079       sfs.next();
1080       found = cur->id() == fr.id();
1081     }
1082     assert(found, "frame to be deoptimized not found on target thread's stack");
1083     map = sfs.register_map();
1084   }
1085 
1086   vframe* vf = vframe::new_vframe(&fr, map, thread);
1087   compiledVFrame* cvf = compiledVFrame::cast(vf);
1088   // Revoke monitors' biases in all scopes
1089   while (!cvf->is_top()) {
1090     collect_monitors(cvf, objects_to_revoke);
1091     cvf = compiledVFrame::cast(cvf->sender());
1092   }
1093   collect_monitors(cvf, objects_to_revoke);
1094 
1095   if (SafepointSynchronize::is_at_safepoint()) {
1096     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1097   } else {
1098     BiasedLocking::revoke(objects_to_revoke);
1099   }
1100 }
1101 
1102 
1103 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1104   if (!UseBiasedLocking) {
1105     return;
1106   }
1107 
1108   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1109   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1110   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1111     if (jt->has_last_Java_frame()) {
1112       StackFrameStream sfs(jt, true);
1113       while (!sfs.is_done()) {
1114         frame* cur = sfs.current();
1115         if (cb->contains(cur->pc())) {
1116           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1117           compiledVFrame* cvf = compiledVFrame::cast(vf);
1118           // Revoke monitors' biases in all scopes
1119           while (!cvf->is_top()) {
1120             collect_monitors(cvf, objects_to_revoke);
1121             cvf = compiledVFrame::cast(cvf->sender());
1122           }
1123           collect_monitors(cvf, objects_to_revoke);
1124         }
1125         sfs.next();
1126       }
1127     }
1128   }
1129   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1130 }
1131 
1132 
1133 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1134   assert(fr.can_be_deoptimized(), "checking frame type");
1135 
1136   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1137 
1138   // Patch the nmethod so that when execution returns to it we will
1139   // deopt the execution state and return to the interpreter.
1140   fr.deoptimize(thread);
1141 }
1142 
1143 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1144   // Deoptimize only if the frame comes from compile code.
1145   // Do not deoptimize the frame which is already patched
1146   // during the execution of the loops below.
1147   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1148     return;
1149   }
1150   ResourceMark rm;
1151   DeoptimizationMarker dm;
1152   if (UseBiasedLocking) {
1153     revoke_biases_of_monitors(thread, fr, map);
1154   }
1155   deoptimize_single_frame(thread, fr);
1156 
1157 }
1158 
1159 
1160 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1161   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1162          "can only deoptimize other thread at a safepoint");
1163   // Compute frame and register map based on thread and sp.
1164   RegisterMap reg_map(thread, UseBiasedLocking);
1165   frame fr = thread->last_frame();
1166   while (fr.id() != id) {
1167     fr = fr.sender(&reg_map);
1168   }
1169   deoptimize(thread, fr, &reg_map);
1170 }
1171 
1172 
1173 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1174   if (thread == Thread::current()) {
1175     Deoptimization::deoptimize_frame_internal(thread, id);
1176   } else {
1177     VM_DeoptimizeFrame deopt(thread, id);
1178     VMThread::execute(&deopt);
1179   }
1180 }
1181 
1182 
1183 // JVMTI PopFrame support
1184 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1185 {
1186   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1187 }
1188 JRT_END
1189 
1190 MethodData*
1191 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1192                                 bool create_if_missing) {
1193   Thread* THREAD = thread;
1194   MethodData* mdo = m()->method_data();
1195   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1196     // Build an MDO.  Ignore errors like OutOfMemory;
1197     // that simply means we won't have an MDO to update.
1198     Method::build_interpreter_method_data(m, THREAD);
1199     if (HAS_PENDING_EXCEPTION) {
1200       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1201       CLEAR_PENDING_EXCEPTION;
1202     }
1203     mdo = m()->method_data();
1204   }
1205   return mdo;
1206 }
1207 
1208 #if defined(COMPILER2) || defined(SHARK)
1209 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1210   // in case of an unresolved klass entry, load the class.
1211   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1212     Klass* tk = constant_pool->klass_at(index, CHECK);
1213     return;
1214   }
1215 
1216   if (!constant_pool->tag_at(index).is_symbol()) return;
1217 
1218   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1219   Symbol*  symbol  = constant_pool->symbol_at(index);
1220 
1221   // class name?
1222   if (symbol->byte_at(0) != '(') {
1223     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1224     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1225     return;
1226   }
1227 
1228   // then it must be a signature!
1229   ResourceMark rm(THREAD);
1230   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1231     if (ss.is_object()) {
1232       Symbol* class_name = ss.as_symbol(CHECK);
1233       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1234       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1235     }
1236   }
1237 }
1238 
1239 
1240 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1241   EXCEPTION_MARK;
1242   load_class_by_index(constant_pool, index, THREAD);
1243   if (HAS_PENDING_EXCEPTION) {
1244     // Exception happened during classloading. We ignore the exception here, since it
1245     // is going to be rethrown since the current activation is going to be deoptimized and
1246     // the interpreter will re-execute the bytecode.
1247     CLEAR_PENDING_EXCEPTION;
1248     // Class loading called java code which may have caused a stack
1249     // overflow. If the exception was thrown right before the return
1250     // to the runtime the stack is no longer guarded. Reguard the
1251     // stack otherwise if we return to the uncommon trap blob and the
1252     // stack bang causes a stack overflow we crash.
1253     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1254     JavaThread* thread = (JavaThread*)THREAD;
1255     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1256     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1257     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1258   }
1259 }
1260 
1261 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1262   HandleMark hm;
1263 
1264   // uncommon_trap() is called at the beginning of the uncommon trap
1265   // handler. Note this fact before we start generating temporary frames
1266   // that can confuse an asynchronous stack walker. This counter is
1267   // decremented at the end of unpack_frames().
1268   thread->inc_in_deopt_handler();
1269 
1270   // We need to update the map if we have biased locking.
1271   RegisterMap reg_map(thread, UseBiasedLocking);
1272   frame stub_frame = thread->last_frame();
1273   frame fr = stub_frame.sender(&reg_map);
1274   // Make sure the calling nmethod is not getting deoptimized and removed
1275   // before we are done with it.
1276   nmethodLocker nl(fr.pc());
1277 
1278   // Log a message
1279   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
1280               trap_request, fr.pc());
1281 
1282   {
1283     ResourceMark rm;
1284 
1285     // Revoke biases of any monitors in the frame to ensure we can migrate them
1286     revoke_biases_of_monitors(thread, fr, &reg_map);
1287 
1288     DeoptReason reason = trap_request_reason(trap_request);
1289     DeoptAction action = trap_request_action(trap_request);
1290     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1291 
1292     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1293     compiledVFrame* cvf = compiledVFrame::cast(vf);
1294 
1295     nmethod* nm = cvf->code();
1296 
1297     ScopeDesc*      trap_scope  = cvf->scope();
1298     methodHandle    trap_method = trap_scope->method();
1299     int             trap_bci    = trap_scope->bci();
1300     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1301 
1302     // Record this event in the histogram.
1303     gather_statistics(reason, action, trap_bc);
1304 
1305     // Ensure that we can record deopt. history:
1306     // Need MDO to record RTM code generation state.
1307     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1308 
1309     MethodData* trap_mdo =
1310       get_method_data(thread, trap_method, create_if_missing);
1311 
1312     // Log a message
1313     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1314                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
1315                               trap_method->name_and_sig_as_C_string(), trap_bci);
1316 
1317     // Print a bunch of diagnostics, if requested.
1318     if (TraceDeoptimization || LogCompilation) {
1319       ResourceMark rm;
1320       ttyLocker ttyl;
1321       char buf[100];
1322       if (xtty != NULL) {
1323         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1324                          os::current_thread_id(),
1325                          format_trap_request(buf, sizeof(buf), trap_request));
1326         nm->log_identity(xtty);
1327       }
1328       Symbol* class_name = NULL;
1329       bool unresolved = false;
1330       if (unloaded_class_index >= 0) {
1331         constantPoolHandle constants (THREAD, trap_method->constants());
1332         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1333           class_name = constants->klass_name_at(unloaded_class_index);
1334           unresolved = true;
1335           if (xtty != NULL)
1336             xtty->print(" unresolved='1'");
1337         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1338           class_name = constants->symbol_at(unloaded_class_index);
1339         }
1340         if (xtty != NULL)
1341           xtty->name(class_name);
1342       }
1343       if (xtty != NULL && trap_mdo != NULL && reason < MethodData::_trap_hist_limit) {
1344         // Dump the relevant MDO state.
1345         // This is the deopt count for the current reason, any previous
1346         // reasons or recompiles seen at this point.
1347         int dcnt = trap_mdo->trap_count(reason);
1348         if (dcnt != 0)
1349           xtty->print(" count='%d'", dcnt);
1350         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1351         int dos = (pdata == NULL)? 0: pdata->trap_state();
1352         if (dos != 0) {
1353           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1354           if (trap_state_is_recompiled(dos)) {
1355             int recnt2 = trap_mdo->overflow_recompile_count();
1356             if (recnt2 != 0)
1357               xtty->print(" recompiles2='%d'", recnt2);
1358           }
1359         }
1360       }
1361       if (xtty != NULL) {
1362         xtty->stamp();
1363         xtty->end_head();
1364       }
1365       if (TraceDeoptimization) {  // make noise on the tty
1366         tty->print("Uncommon trap occurred in");
1367         nm->method()->print_short_name(tty);
1368         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
1369                    fr.pc(),
1370                    os::current_thread_id(),
1371                    trap_reason_name(reason),
1372                    trap_action_name(action),
1373                    unloaded_class_index);
1374         if (class_name != NULL) {
1375           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1376           class_name->print_symbol_on(tty);
1377         }
1378         tty->cr();
1379       }
1380       if (xtty != NULL) {
1381         // Log the precise location of the trap.
1382         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1383           xtty->begin_elem("jvms bci='%d'", sd->bci());
1384           xtty->method(sd->method());
1385           xtty->end_elem();
1386           if (sd->is_top())  break;
1387         }
1388         xtty->tail("uncommon_trap");
1389       }
1390     }
1391     // (End diagnostic printout.)
1392 
1393     // Load class if necessary
1394     if (unloaded_class_index >= 0) {
1395       constantPoolHandle constants(THREAD, trap_method->constants());
1396       load_class_by_index(constants, unloaded_class_index);
1397     }
1398 
1399     // Flush the nmethod if necessary and desirable.
1400     //
1401     // We need to avoid situations where we are re-flushing the nmethod
1402     // because of a hot deoptimization site.  Repeated flushes at the same
1403     // point need to be detected by the compiler and avoided.  If the compiler
1404     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1405     // module must take measures to avoid an infinite cycle of recompilation
1406     // and deoptimization.  There are several such measures:
1407     //
1408     //   1. If a recompilation is ordered a second time at some site X
1409     //   and for the same reason R, the action is adjusted to 'reinterpret',
1410     //   to give the interpreter time to exercise the method more thoroughly.
1411     //   If this happens, the method's overflow_recompile_count is incremented.
1412     //
1413     //   2. If the compiler fails to reduce the deoptimization rate, then
1414     //   the method's overflow_recompile_count will begin to exceed the set
1415     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1416     //   is adjusted to 'make_not_compilable', and the method is abandoned
1417     //   to the interpreter.  This is a performance hit for hot methods,
1418     //   but is better than a disastrous infinite cycle of recompilations.
1419     //   (Actually, only the method containing the site X is abandoned.)
1420     //
1421     //   3. In parallel with the previous measures, if the total number of
1422     //   recompilations of a method exceeds the much larger set limit
1423     //   PerMethodRecompilationCutoff, the method is abandoned.
1424     //   This should only happen if the method is very large and has
1425     //   many "lukewarm" deoptimizations.  The code which enforces this
1426     //   limit is elsewhere (class nmethod, class Method).
1427     //
1428     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1429     // to recompile at each bytecode independently of the per-BCI cutoff.
1430     //
1431     // The decision to update code is up to the compiler, and is encoded
1432     // in the Action_xxx code.  If the compiler requests Action_none
1433     // no trap state is changed, no compiled code is changed, and the
1434     // computation suffers along in the interpreter.
1435     //
1436     // The other action codes specify various tactics for decompilation
1437     // and recompilation.  Action_maybe_recompile is the loosest, and
1438     // allows the compiled code to stay around until enough traps are seen,
1439     // and until the compiler gets around to recompiling the trapping method.
1440     //
1441     // The other actions cause immediate removal of the present code.
1442 
1443     bool update_trap_state = (reason != Reason_tenured);
1444     bool make_not_entrant = false;
1445     bool make_not_compilable = false;
1446     bool reprofile = false;
1447     switch (action) {
1448     case Action_none:
1449       // Keep the old code.
1450       update_trap_state = false;
1451       break;
1452     case Action_maybe_recompile:
1453       // Do not need to invalidate the present code, but we can
1454       // initiate another
1455       // Start compiler without (necessarily) invalidating the nmethod.
1456       // The system will tolerate the old code, but new code should be
1457       // generated when possible.
1458       break;
1459     case Action_reinterpret:
1460       // Go back into the interpreter for a while, and then consider
1461       // recompiling form scratch.
1462       make_not_entrant = true;
1463       // Reset invocation counter for outer most method.
1464       // This will allow the interpreter to exercise the bytecodes
1465       // for a while before recompiling.
1466       // By contrast, Action_make_not_entrant is immediate.
1467       //
1468       // Note that the compiler will track null_check, null_assert,
1469       // range_check, and class_check events and log them as if they
1470       // had been traps taken from compiled code.  This will update
1471       // the MDO trap history so that the next compilation will
1472       // properly detect hot trap sites.
1473       reprofile = true;
1474       break;
1475     case Action_make_not_entrant:
1476       // Request immediate recompilation, and get rid of the old code.
1477       // Make them not entrant, so next time they are called they get
1478       // recompiled.  Unloaded classes are loaded now so recompile before next
1479       // time they are called.  Same for uninitialized.  The interpreter will
1480       // link the missing class, if any.
1481       make_not_entrant = true;
1482       break;
1483     case Action_make_not_compilable:
1484       // Give up on compiling this method at all.
1485       make_not_entrant = true;
1486       make_not_compilable = true;
1487       break;
1488     default:
1489       ShouldNotReachHere();
1490     }
1491 
1492     // Setting +ProfileTraps fixes the following, on all platforms:
1493     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1494     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1495     // recompile relies on a MethodData* to record heroic opt failures.
1496 
1497     // Whether the interpreter is producing MDO data or not, we also need
1498     // to use the MDO to detect hot deoptimization points and control
1499     // aggressive optimization.
1500     bool inc_recompile_count = false;
1501     ProfileData* pdata = NULL;
1502     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1503       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
1504       uint this_trap_count = 0;
1505       bool maybe_prior_trap = false;
1506       bool maybe_prior_recompile = false;
1507       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1508                                    nm->method(),
1509                                    //outputs:
1510                                    this_trap_count,
1511                                    maybe_prior_trap,
1512                                    maybe_prior_recompile);
1513       // Because the interpreter also counts null, div0, range, and class
1514       // checks, these traps from compiled code are double-counted.
1515       // This is harmless; it just means that the PerXTrapLimit values
1516       // are in effect a little smaller than they look.
1517 
1518       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1519       if (per_bc_reason != Reason_none) {
1520         // Now take action based on the partially known per-BCI history.
1521         if (maybe_prior_trap
1522             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1523           // If there are too many traps at this BCI, force a recompile.
1524           // This will allow the compiler to see the limit overflow, and
1525           // take corrective action, if possible.  The compiler generally
1526           // does not use the exact PerBytecodeTrapLimit value, but instead
1527           // changes its tactics if it sees any traps at all.  This provides
1528           // a little hysteresis, delaying a recompile until a trap happens
1529           // several times.
1530           //
1531           // Actually, since there is only one bit of counter per BCI,
1532           // the possible per-BCI counts are {0,1,(per-method count)}.
1533           // This produces accurate results if in fact there is only
1534           // one hot trap site, but begins to get fuzzy if there are
1535           // many sites.  For example, if there are ten sites each
1536           // trapping two or more times, they each get the blame for
1537           // all of their traps.
1538           make_not_entrant = true;
1539         }
1540 
1541         // Detect repeated recompilation at the same BCI, and enforce a limit.
1542         if (make_not_entrant && maybe_prior_recompile) {
1543           // More than one recompile at this point.
1544           inc_recompile_count = maybe_prior_trap;
1545         }
1546       } else {
1547         // For reasons which are not recorded per-bytecode, we simply
1548         // force recompiles unconditionally.
1549         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1550         make_not_entrant = true;
1551       }
1552 
1553       // Go back to the compiler if there are too many traps in this method.
1554       if (this_trap_count >= per_method_trap_limit(reason)) {
1555         // If there are too many traps in this method, force a recompile.
1556         // This will allow the compiler to see the limit overflow, and
1557         // take corrective action, if possible.
1558         // (This condition is an unlikely backstop only, because the
1559         // PerBytecodeTrapLimit is more likely to take effect first,
1560         // if it is applicable.)
1561         make_not_entrant = true;
1562       }
1563 
1564       // Here's more hysteresis:  If there has been a recompile at
1565       // this trap point already, run the method in the interpreter
1566       // for a while to exercise it more thoroughly.
1567       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1568         reprofile = true;
1569       }
1570     }
1571 
1572     // Take requested actions on the method:
1573 
1574     // Recompile
1575     if (make_not_entrant) {
1576       if (!nm->make_not_entrant()) {
1577         return; // the call did not change nmethod's state
1578       }
1579 
1580       if (pdata != NULL) {
1581         // Record the recompilation event, if any.
1582         int tstate0 = pdata->trap_state();
1583         int tstate1 = trap_state_set_recompiled(tstate0, true);
1584         if (tstate1 != tstate0)
1585           pdata->set_trap_state(tstate1);
1586       }
1587 
1588 #if INCLUDE_RTM_OPT
1589       // Restart collecting RTM locking abort statistic if the method
1590       // is recompiled for a reason other than RTM state change.
1591       // Assume that in new recompiled code the statistic could be different,
1592       // for example, due to different inlining.
1593       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1594           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1595         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1596       }
1597 #endif
1598       // For code aging we count traps separately here, using make_not_entrant()
1599       // as a guard against simultaneous deopts in multiple threads.
1600       if (reason == Reason_tenured && trap_mdo != NULL) {
1601         trap_mdo->inc_tenure_traps();
1602       }
1603     }
1604 
1605     if (inc_recompile_count) {
1606       trap_mdo->inc_overflow_recompile_count();
1607       if ((uint)trap_mdo->overflow_recompile_count() >
1608           (uint)PerBytecodeRecompilationCutoff) {
1609         // Give up on the method containing the bad BCI.
1610         if (trap_method() == nm->method()) {
1611           make_not_compilable = true;
1612         } else {
1613           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1614           // But give grace to the enclosing nm->method().
1615         }
1616       }
1617     }
1618 
1619     // Reprofile
1620     if (reprofile) {
1621       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1622     }
1623 
1624     // Give up compiling
1625     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1626       assert(make_not_entrant, "consistent");
1627       nm->method()->set_not_compilable(CompLevel_full_optimization);
1628     }
1629 
1630   } // Free marked resources
1631 
1632 }
1633 JRT_END
1634 
1635 ProfileData*
1636 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1637                                          int trap_bci,
1638                                          Deoptimization::DeoptReason reason,
1639                                          Method* compiled_method,
1640                                          //outputs:
1641                                          uint& ret_this_trap_count,
1642                                          bool& ret_maybe_prior_trap,
1643                                          bool& ret_maybe_prior_recompile) {
1644   uint prior_trap_count = trap_mdo->trap_count(reason);
1645   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1646 
1647   // If the runtime cannot find a place to store trap history,
1648   // it is estimated based on the general condition of the method.
1649   // If the method has ever been recompiled, or has ever incurred
1650   // a trap with the present reason , then this BCI is assumed
1651   // (pessimistically) to be the culprit.
1652   bool maybe_prior_trap      = (prior_trap_count != 0);
1653   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1654   ProfileData* pdata = NULL;
1655 
1656 
1657   // For reasons which are recorded per bytecode, we check per-BCI data.
1658   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1659   if (per_bc_reason != Reason_none) {
1660     // Find the profile data for this BCI.  If there isn't one,
1661     // try to allocate one from the MDO's set of spares.
1662     // This will let us detect a repeated trap at this point.
1663     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1664 
1665     if (pdata != NULL) {
1666       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1667         if (LogCompilation && xtty != NULL) {
1668           ttyLocker ttyl;
1669           // no more room for speculative traps in this MDO
1670           xtty->elem("speculative_traps_oom");
1671         }
1672       }
1673       // Query the trap state of this profile datum.
1674       int tstate0 = pdata->trap_state();
1675       if (!trap_state_has_reason(tstate0, per_bc_reason))
1676         maybe_prior_trap = false;
1677       if (!trap_state_is_recompiled(tstate0))
1678         maybe_prior_recompile = false;
1679 
1680       // Update the trap state of this profile datum.
1681       int tstate1 = tstate0;
1682       // Record the reason.
1683       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1684       // Store the updated state on the MDO, for next time.
1685       if (tstate1 != tstate0)
1686         pdata->set_trap_state(tstate1);
1687     } else {
1688       if (LogCompilation && xtty != NULL) {
1689         ttyLocker ttyl;
1690         // Missing MDP?  Leave a small complaint in the log.
1691         xtty->elem("missing_mdp bci='%d'", trap_bci);
1692       }
1693     }
1694   }
1695 
1696   // Return results:
1697   ret_this_trap_count = this_trap_count;
1698   ret_maybe_prior_trap = maybe_prior_trap;
1699   ret_maybe_prior_recompile = maybe_prior_recompile;
1700   return pdata;
1701 }
1702 
1703 void
1704 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1705   ResourceMark rm;
1706   // Ignored outputs:
1707   uint ignore_this_trap_count;
1708   bool ignore_maybe_prior_trap;
1709   bool ignore_maybe_prior_recompile;
1710   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1711   query_update_method_data(trap_mdo, trap_bci,
1712                            (DeoptReason)reason,
1713                            NULL,
1714                            ignore_this_trap_count,
1715                            ignore_maybe_prior_trap,
1716                            ignore_maybe_prior_recompile);
1717 }
1718 
1719 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1720 
1721   // Still in Java no safepoints
1722   {
1723     // This enters VM and may safepoint
1724     uncommon_trap_inner(thread, trap_request);
1725   }
1726   return fetch_unroll_info_helper(thread);
1727 }
1728 
1729 // Local derived constants.
1730 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1731 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1732 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1733 
1734 //---------------------------trap_state_reason---------------------------------
1735 Deoptimization::DeoptReason
1736 Deoptimization::trap_state_reason(int trap_state) {
1737   // This assert provides the link between the width of DataLayout::trap_bits
1738   // and the encoding of "recorded" reasons.  It ensures there are enough
1739   // bits to store all needed reasons in the per-BCI MDO profile.
1740   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1741   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1742   trap_state -= recompile_bit;
1743   if (trap_state == DS_REASON_MASK) {
1744     return Reason_many;
1745   } else {
1746     assert((int)Reason_none == 0, "state=0 => Reason_none");
1747     return (DeoptReason)trap_state;
1748   }
1749 }
1750 //-------------------------trap_state_has_reason-------------------------------
1751 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1752   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1753   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1754   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1755   trap_state -= recompile_bit;
1756   if (trap_state == DS_REASON_MASK) {
1757     return -1;  // true, unspecifically (bottom of state lattice)
1758   } else if (trap_state == reason) {
1759     return 1;   // true, definitely
1760   } else if (trap_state == 0) {
1761     return 0;   // false, definitely (top of state lattice)
1762   } else {
1763     return 0;   // false, definitely
1764   }
1765 }
1766 //-------------------------trap_state_add_reason-------------------------------
1767 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1768   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1769   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1770   trap_state -= recompile_bit;
1771   if (trap_state == DS_REASON_MASK) {
1772     return trap_state + recompile_bit;     // already at state lattice bottom
1773   } else if (trap_state == reason) {
1774     return trap_state + recompile_bit;     // the condition is already true
1775   } else if (trap_state == 0) {
1776     return reason + recompile_bit;          // no condition has yet been true
1777   } else {
1778     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1779   }
1780 }
1781 //-----------------------trap_state_is_recompiled------------------------------
1782 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1783   return (trap_state & DS_RECOMPILE_BIT) != 0;
1784 }
1785 //-----------------------trap_state_set_recompiled-----------------------------
1786 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1787   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1788   else    return trap_state & ~DS_RECOMPILE_BIT;
1789 }
1790 //---------------------------format_trap_state---------------------------------
1791 // This is used for debugging and diagnostics, including LogFile output.
1792 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1793                                               int trap_state) {
1794   DeoptReason reason      = trap_state_reason(trap_state);
1795   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1796   // Re-encode the state from its decoded components.
1797   int decoded_state = 0;
1798   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1799     decoded_state = trap_state_add_reason(decoded_state, reason);
1800   if (recomp_flag)
1801     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1802   // If the state re-encodes properly, format it symbolically.
1803   // Because this routine is used for debugging and diagnostics,
1804   // be robust even if the state is a strange value.
1805   size_t len;
1806   if (decoded_state != trap_state) {
1807     // Random buggy state that doesn't decode??
1808     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1809   } else {
1810     len = jio_snprintf(buf, buflen, "%s%s",
1811                        trap_reason_name(reason),
1812                        recomp_flag ? " recompiled" : "");
1813   }
1814   if (len >= buflen)
1815     buf[buflen-1] = '\0';
1816   return buf;
1817 }
1818 
1819 
1820 //--------------------------------statics--------------------------------------
1821 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1822   // Note:  Keep this in sync. with enum DeoptReason.
1823   "none",
1824   "null_check",
1825   "null_assert",
1826   "range_check",
1827   "class_check",
1828   "array_check",
1829   "intrinsic",
1830   "bimorphic",
1831   "unloaded",
1832   "uninitialized",
1833   "unreached",
1834   "unhandled",
1835   "constraint",
1836   "div0_check",
1837   "age",
1838   "predicate",
1839   "loop_limit_check",
1840   "speculate_class_check",
1841   "speculate_null_check",
1842   "rtm_state_change",
1843   "tenured"
1844 };
1845 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1846   // Note:  Keep this in sync. with enum DeoptAction.
1847   "none",
1848   "maybe_recompile",
1849   "reinterpret",
1850   "make_not_entrant",
1851   "make_not_compilable"
1852 };
1853 
1854 const char* Deoptimization::trap_reason_name(int reason) {
1855   if (reason == Reason_many)  return "many";
1856   if ((uint)reason < Reason_LIMIT) {
1857     const char* name = _trap_reason_name[reason];
1858     assert(name != NULL, "trap reason name is undefined");
1859     return name;
1860   }
1861   static char buf[20];
1862   sprintf(buf, "reason%d", reason);
1863   return buf;
1864 }
1865 const char* Deoptimization::trap_action_name(int action) {
1866   if ((uint)action < Action_LIMIT) {
1867     const char* name = _trap_action_name[action];
1868     assert(name != NULL, "trap action name is undefined");
1869     return name;
1870   }
1871   static char buf[20];
1872   sprintf(buf, "action%d", action);
1873   return buf;
1874 }
1875 
1876 // This is used for debugging and diagnostics, including LogFile output.
1877 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1878                                                 int trap_request) {
1879   jint unloaded_class_index = trap_request_index(trap_request);
1880   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1881   const char* action = trap_action_name(trap_request_action(trap_request));
1882   size_t len;
1883   if (unloaded_class_index < 0) {
1884     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1885                        reason, action);
1886   } else {
1887     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1888                        reason, action, unloaded_class_index);
1889   }
1890   if (len >= buflen)
1891     buf[buflen-1] = '\0';
1892   return buf;
1893 }
1894 
1895 juint Deoptimization::_deoptimization_hist
1896         [Deoptimization::Reason_LIMIT]
1897     [1 + Deoptimization::Action_LIMIT]
1898         [Deoptimization::BC_CASE_LIMIT]
1899   = {0};
1900 
1901 enum {
1902   LSB_BITS = 8,
1903   LSB_MASK = right_n_bits(LSB_BITS)
1904 };
1905 
1906 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1907                                        Bytecodes::Code bc) {
1908   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1909   assert(action >= 0 && action < Action_LIMIT, "oob");
1910   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1911   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1912   juint* cases = _deoptimization_hist[reason][1+action];
1913   juint* bc_counter_addr = NULL;
1914   juint  bc_counter      = 0;
1915   // Look for an unused counter, or an exact match to this BC.
1916   if (bc != Bytecodes::_illegal) {
1917     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1918       juint* counter_addr = &cases[bc_case];
1919       juint  counter = *counter_addr;
1920       if ((counter == 0 && bc_counter_addr == NULL)
1921           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1922         // this counter is either free or is already devoted to this BC
1923         bc_counter_addr = counter_addr;
1924         bc_counter = counter | bc;
1925       }
1926     }
1927   }
1928   if (bc_counter_addr == NULL) {
1929     // Overflow, or no given bytecode.
1930     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1931     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1932   }
1933   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1934 }
1935 
1936 jint Deoptimization::total_deoptimization_count() {
1937   return _deoptimization_hist[Reason_none][0][0];
1938 }
1939 
1940 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1941   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1942   return _deoptimization_hist[reason][0][0];
1943 }
1944 
1945 void Deoptimization::print_statistics() {
1946   juint total = total_deoptimization_count();
1947   juint account = total;
1948   if (total != 0) {
1949     ttyLocker ttyl;
1950     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1951     tty->print_cr("Deoptimization traps recorded:");
1952     #define PRINT_STAT_LINE(name, r) \
1953       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1954     PRINT_STAT_LINE("total", total);
1955     // For each non-zero entry in the histogram, print the reason,
1956     // the action, and (if specifically known) the type of bytecode.
1957     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1958       for (int action = 0; action < Action_LIMIT; action++) {
1959         juint* cases = _deoptimization_hist[reason][1+action];
1960         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1961           juint counter = cases[bc_case];
1962           if (counter != 0) {
1963             char name[1*K];
1964             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1965             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1966               bc = Bytecodes::_illegal;
1967             sprintf(name, "%s/%s/%s",
1968                     trap_reason_name(reason),
1969                     trap_action_name(action),
1970                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1971             juint r = counter >> LSB_BITS;
1972             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1973             account -= r;
1974           }
1975         }
1976       }
1977     }
1978     if (account != 0) {
1979       PRINT_STAT_LINE("unaccounted", account);
1980     }
1981     #undef PRINT_STAT_LINE
1982     if (xtty != NULL)  xtty->tail("statistics");
1983   }
1984 }
1985 #else // COMPILER2 || SHARK
1986 
1987 
1988 // Stubs for C1 only system.
1989 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1990   return false;
1991 }
1992 
1993 const char* Deoptimization::trap_reason_name(int reason) {
1994   return "unknown";
1995 }
1996 
1997 void Deoptimization::print_statistics() {
1998   // no output
1999 }
2000 
2001 void
2002 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2003   // no udpate
2004 }
2005 
2006 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2007   return 0;
2008 }
2009 
2010 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2011                                        Bytecodes::Code bc) {
2012   // no update
2013 }
2014 
2015 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2016                                               int trap_state) {
2017   jio_snprintf(buf, buflen, "#%d", trap_state);
2018   return buf;
2019 }
2020 
2021 #endif // COMPILER2 || SHARK