/* * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_SPARC_VM_VM_VERSION_SPARC_HPP #define CPU_SPARC_VM_VM_VERSION_SPARC_HPP #include "runtime/globals_extension.hpp" #include "runtime/vm_version.hpp" class VM_Version: public Abstract_VM_Version { protected: enum Feature_Flag { v8_instructions = 0, hardware_mul32 = 1, hardware_div32 = 2, hardware_fsmuld = 3, hardware_popc = 4, v9_instructions = 5, vis1_instructions = 6, vis2_instructions = 7, sun4v_instructions = 8, blk_init_instructions = 9, fmaf_instructions = 10, fmau_instructions = 11, vis3_instructions = 12, cbcond_instructions = 13, sparc64_family = 14, M_family = 15, T_family = 16, T1_model = 17, sparc5_instructions = 18, aes_instructions = 19, sha1_instruction = 20, sha256_instruction = 21, sha512_instruction = 22 }; enum Feature_Flag_Set { unknown_m = 0, all_features_m = -1, v8_instructions_m = 1 << v8_instructions, hardware_mul32_m = 1 << hardware_mul32, hardware_div32_m = 1 << hardware_div32, hardware_fsmuld_m = 1 << hardware_fsmuld, hardware_popc_m = 1 << hardware_popc, v9_instructions_m = 1 << v9_instructions, vis1_instructions_m = 1 << vis1_instructions, vis2_instructions_m = 1 << vis2_instructions, sun4v_m = 1 << sun4v_instructions, blk_init_instructions_m = 1 << blk_init_instructions, fmaf_instructions_m = 1 << fmaf_instructions, fmau_instructions_m = 1 << fmau_instructions, vis3_instructions_m = 1 << vis3_instructions, cbcond_instructions_m = 1 << cbcond_instructions, sparc64_family_m = 1 << sparc64_family, M_family_m = 1 << M_family, T_family_m = 1 << T_family, T1_model_m = 1 << T1_model, sparc5_instructions_m = 1 << sparc5_instructions, aes_instructions_m = 1 << aes_instructions, sha1_instruction_m = 1 << sha1_instruction, sha256_instruction_m = 1 << sha256_instruction, sha512_instruction_m = 1 << sha512_instruction, generic_v8_m = v8_instructions_m | hardware_mul32_m | hardware_div32_m | hardware_fsmuld_m, generic_v9_m = generic_v8_m | v9_instructions_m, ultra3_m = generic_v9_m | vis1_instructions_m | vis2_instructions_m, // Temporary until we have something more accurate niagara1_unique_m = sun4v_m, niagara1_m = generic_v9_m | niagara1_unique_m }; static int _features; static const char* _features_str; static unsigned int _L2_cache_line_size; static void print_features(); static int determine_features(); static int platform_features(int features); // Returns true if the platform is in the niagara line (T series) static bool is_M_family(int features) { return (features & M_family_m) != 0; } static bool is_T_family(int features) { return (features & T_family_m) != 0; } static bool is_niagara() { return is_T_family(_features); } #ifdef ASSERT static bool is_niagara(int features) { // 'sun4v_m' may be defined on both Sun/Oracle Sparc CPUs as well as // on Fujitsu Sparc64 CPUs, but only Sun/Oracle Sparcs can be 'niagaras'. return (features & sun4v_m) != 0 && (features & sparc64_family_m) == 0; } #endif // Returns true if it is niagara1 (T1). static bool is_T1_model(int features) { return is_T_family(features) && ((features & T1_model_m) != 0); } static int maximum_niagara1_processor_count() { return 32; } public: // Initialization static void initialize(); // Instruction support static bool has_v8() { return (_features & v8_instructions_m) != 0; } static bool has_v9() { return (_features & v9_instructions_m) != 0; } static bool has_hardware_mul32() { return (_features & hardware_mul32_m) != 0; } static bool has_hardware_div32() { return (_features & hardware_div32_m) != 0; } static bool has_hardware_fsmuld() { return (_features & hardware_fsmuld_m) != 0; } static bool has_hardware_popc() { return (_features & hardware_popc_m) != 0; } static bool has_vis1() { return (_features & vis1_instructions_m) != 0; } static bool has_vis2() { return (_features & vis2_instructions_m) != 0; } static bool has_vis3() { return (_features & vis3_instructions_m) != 0; } static bool has_blk_init() { return (_features & blk_init_instructions_m) != 0; } static bool has_cbcond() { return (_features & cbcond_instructions_m) != 0; } static bool has_sparc5_instr() { return (_features & sparc5_instructions_m) != 0; } static bool has_aes() { return (_features & aes_instructions_m) != 0; } static bool has_sha1() { return (_features & sha1_instruction_m) != 0; } static bool has_sha256() { return (_features & sha256_instruction_m) != 0; } static bool has_sha512() { return (_features & sha512_instruction_m) != 0; } static bool supports_compare_and_exchange() { return has_v9(); } // Returns true if the platform is in the niagara line (T series) // and newer than the niagara1. static bool is_niagara_plus() { return is_T_family(_features) && !is_T1_model(_features); } static bool is_M_series() { return is_M_family(_features); } static bool is_T4() { return is_T_family(_features) && has_cbcond(); } static bool is_T7() { return is_T_family(_features) && has_sparc5_instr(); } // Fujitsu SPARC64 static bool is_sparc64() { return (_features & sparc64_family_m) != 0; } static bool is_sun4v() { return (_features & sun4v_m) != 0; } static bool is_ultra3() { return (_features & ultra3_m) == ultra3_m && !is_sun4v() && !is_sparc64(); } static bool has_fast_fxtof() { return is_niagara() || is_sparc64() || has_v9() && !is_ultra3(); } static bool has_fast_idiv() { return is_niagara_plus() || is_sparc64(); } // T4 and newer Sparc have fast RDPC instruction. static bool has_fast_rdpc() { return is_T4(); } // On T4 and newer Sparc BIS to the beginning of cache line always zeros it. static bool has_block_zeroing() { return has_blk_init() && is_T4(); } static const char* cpu_features() { return _features_str; } // default prefetch block size on sparc static intx prefetch_data_size() { return _L2_cache_line_size; } // Prefetch static intx prefetch_copy_interval_in_bytes() { intx interval = PrefetchCopyIntervalInBytes; return interval >= 0 ? interval : (has_v9() ? 512 : 0); } static intx prefetch_scan_interval_in_bytes() { intx interval = PrefetchScanIntervalInBytes; return interval >= 0 ? interval : (has_v9() ? 512 : 0); } static intx prefetch_fields_ahead() { intx count = PrefetchFieldsAhead; return count >= 0 ? count : (is_ultra3() ? 1 : 0); } static intx allocate_prefetch_distance() { // This method should be called before allocate_prefetch_style(). intx count = AllocatePrefetchDistance; if (count < 0) { // default is not defined ? count = 512; } return count; } static intx allocate_prefetch_style() { assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive"); // Return 0 if AllocatePrefetchDistance was not defined. return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0; } // Assembler testing static void allow_all(); static void revert(); // Override the Abstract_VM_Version implementation. static uint page_size_count() { return is_sun4v() ? 4 : 2; } // Calculates the number of parallel threads static unsigned int calc_parallel_worker_threads(); }; #endif // CPU_SPARC_VM_VM_VERSION_SPARC_HPP