1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CatchNode;
  55 class CatchProjNode;
  56 class CheckCastPPNode;
  57 class ClearArrayNode;
  58 class CmpNode;
  59 class CodeBuffer;
  60 class ConstraintCastNode;
  61 class ConNode;
  62 class CountedLoopNode;
  63 class CountedLoopEndNode;
  64 class DecodeNarrowPtrNode;
  65 class DecodeNNode;
  66 class DecodeNKlassNode;
  67 class EncodeNarrowPtrNode;
  68 class EncodePNode;
  69 class EncodePKlassNode;
  70 class FastLockNode;
  71 class FastUnlockNode;
  72 class IfNode;
  73 class IfFalseNode;
  74 class IfTrueNode;
  75 class InitializeNode;
  76 class JVMState;
  77 class JumpNode;
  78 class JumpProjNode;
  79 class LoadNode;
  80 class LoadStoreNode;
  81 class LockNode;
  82 class LoopNode;
  83 class MachBranchNode;
  84 class MachCallDynamicJavaNode;
  85 class MachCallJavaNode;
  86 class MachCallLeafNode;
  87 class MachCallNode;
  88 class MachCallRuntimeNode;
  89 class MachCallStaticJavaNode;
  90 class MachConstantBaseNode;
  91 class MachConstantNode;
  92 class MachGotoNode;
  93 class MachIfNode;
  94 class MachNode;
  95 class MachNullCheckNode;
  96 class MachProjNode;
  97 class MachReturnNode;
  98 class MachSafePointNode;
  99 class MachSpillCopyNode;
 100 class MachTempNode;
 101 class MachMergeNode;
 102 class Matcher;
 103 class MemBarNode;
 104 class MemBarStoreStoreNode;
 105 class MemNode;
 106 class MergeMemNode;
 107 class MulNode;
 108 class MultiNode;
 109 class MultiBranchNode;
 110 class NeverBranchNode;
 111 class Node;
 112 class Node_Array;
 113 class Node_List;
 114 class Node_Stack;
 115 class NullCheckNode;
 116 class OopMap;
 117 class ParmNode;
 118 class PCTableNode;
 119 class PhaseCCP;
 120 class PhaseGVN;
 121 class PhaseIterGVN;
 122 class PhaseRegAlloc;
 123 class PhaseTransform;
 124 class PhaseValues;
 125 class PhiNode;
 126 class Pipeline;
 127 class ProjNode;
 128 class RegMask;
 129 class RegionNode;
 130 class RootNode;
 131 class SafePointNode;
 132 class SafePointScalarObjectNode;
 133 class StartNode;
 134 class State;
 135 class StoreNode;
 136 class SubNode;
 137 class Type;
 138 class TypeNode;
 139 class UnlockNode;
 140 class VectorNode;
 141 class LoadVectorNode;
 142 class StoreVectorNode;
 143 class VectorSet;
 144 typedef void (*NFunc)(Node&,void*);
 145 extern "C" {
 146   typedef int (*C_sort_func_t)(const void *, const void *);
 147 }
 148 
 149 // The type of all node counts and indexes.
 150 // It must hold at least 16 bits, but must also be fast to load and store.
 151 // This type, if less than 32 bits, could limit the number of possible nodes.
 152 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 153 typedef unsigned int node_idx_t;
 154 
 155 
 156 #ifndef OPTO_DU_ITERATOR_ASSERT
 157 #ifdef ASSERT
 158 #define OPTO_DU_ITERATOR_ASSERT 1
 159 #else
 160 #define OPTO_DU_ITERATOR_ASSERT 0
 161 #endif
 162 #endif //OPTO_DU_ITERATOR_ASSERT
 163 
 164 #if OPTO_DU_ITERATOR_ASSERT
 165 class DUIterator;
 166 class DUIterator_Fast;
 167 class DUIterator_Last;
 168 #else
 169 typedef uint   DUIterator;
 170 typedef Node** DUIterator_Fast;
 171 typedef Node** DUIterator_Last;
 172 #endif
 173 
 174 // Node Sentinel
 175 #define NodeSentinel (Node*)-1
 176 
 177 // Unknown count frequency
 178 #define COUNT_UNKNOWN (-1.0f)
 179 
 180 //------------------------------Node-------------------------------------------
 181 // Nodes define actions in the program.  They create values, which have types.
 182 // They are both vertices in a directed graph and program primitives.  Nodes
 183 // are labeled; the label is the "opcode", the primitive function in the lambda
 184 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 185 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 186 // the Node's function.  These inputs also define a Type equation for the Node.
 187 // Solving these Type equations amounts to doing dataflow analysis.
 188 // Control and data are uniformly represented in the graph.  Finally, Nodes
 189 // have a unique dense integer index which is used to index into side arrays
 190 // whenever I have phase-specific information.
 191 
 192 class Node {
 193   friend class VMStructs;
 194 
 195   // Lots of restrictions on cloning Nodes
 196   Node(const Node&);            // not defined; linker error to use these
 197   Node &operator=(const Node &rhs);
 198 
 199 public:
 200   friend class Compile;
 201   #if OPTO_DU_ITERATOR_ASSERT
 202   friend class DUIterator_Common;
 203   friend class DUIterator;
 204   friend class DUIterator_Fast;
 205   friend class DUIterator_Last;
 206   #endif
 207 
 208   // Because Nodes come and go, I define an Arena of Node structures to pull
 209   // from.  This should allow fast access to node creation & deletion.  This
 210   // field is a local cache of a value defined in some "program fragment" for
 211   // which these Nodes are just a part of.
 212 
 213   // New Operator that takes a Compile pointer, this will eventually
 214   // be the "new" New operator.
 215   inline void* operator new( size_t x, Compile* C) throw() {
 216     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 217 #ifdef ASSERT
 218     n->_in = (Node**)n; // magic cookie for assertion check
 219 #endif
 220     n->_out = (Node**)C;
 221     return (void*)n;
 222   }
 223 
 224   // Delete is a NOP
 225   void operator delete( void *ptr ) {}
 226   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 227   void destruct();
 228 
 229   // Create a new Node.  Required is the number is of inputs required for
 230   // semantic correctness.
 231   Node( uint required );
 232 
 233   // Create a new Node with given input edges.
 234   // This version requires use of the "edge-count" new.
 235   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 236   Node( Node *n0 );
 237   Node( Node *n0, Node *n1 );
 238   Node( Node *n0, Node *n1, Node *n2 );
 239   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 240   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 242   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 243             Node *n4, Node *n5, Node *n6 );
 244 
 245   // Clone an inherited Node given only the base Node type.
 246   Node* clone() const;
 247 
 248   // Clone a Node, immediately supplying one or two new edges.
 249   // The first and second arguments, if non-null, replace in(1) and in(2),
 250   // respectively.
 251   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 252     Node* nn = clone();
 253     if (in1 != NULL)  nn->set_req(1, in1);
 254     if (in2 != NULL)  nn->set_req(2, in2);
 255     return nn;
 256   }
 257 
 258 private:
 259   // Shared setup for the above constructors.
 260   // Handles all interactions with Compile::current.
 261   // Puts initial values in all Node fields except _idx.
 262   // Returns the initial value for _idx, which cannot
 263   // be initialized by assignment.
 264   inline int Init(int req, Compile* C);
 265 
 266 //----------------- input edge handling
 267 protected:
 268   friend class PhaseCFG;        // Access to address of _in array elements
 269   Node **_in;                   // Array of use-def references to Nodes
 270   Node **_out;                  // Array of def-use references to Nodes
 271 
 272   // Input edges are split into two categories.  Required edges are required
 273   // for semantic correctness; order is important and NULLs are allowed.
 274   // Precedence edges are used to help determine execution order and are
 275   // added, e.g., for scheduling purposes.  They are unordered and not
 276   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 277   // are required, from _cnt to _max-1 are precedence edges.
 278   node_idx_t _cnt;              // Total number of required Node inputs.
 279 
 280   node_idx_t _max;              // Actual length of input array.
 281 
 282   // Output edges are an unordered list of def-use edges which exactly
 283   // correspond to required input edges which point from other nodes
 284   // to this one.  Thus the count of the output edges is the number of
 285   // users of this node.
 286   node_idx_t _outcnt;           // Total number of Node outputs.
 287 
 288   node_idx_t _outmax;           // Actual length of output array.
 289 
 290   // Grow the actual input array to the next larger power-of-2 bigger than len.
 291   void grow( uint len );
 292   // Grow the output array to the next larger power-of-2 bigger than len.
 293   void out_grow( uint len );
 294 
 295  public:
 296   // Each Node is assigned a unique small/dense number.  This number is used
 297   // to index into auxiliary arrays of data and bitvectors.
 298   // It is declared const to defend against inadvertant assignment,
 299   // since it is used by clients as a naked field.
 300   const node_idx_t _idx;
 301 
 302   // Get the (read-only) number of input edges
 303   uint req() const { return _cnt; }
 304   uint len() const { return _max; }
 305   // Get the (read-only) number of output edges
 306   uint outcnt() const { return _outcnt; }
 307 
 308 #if OPTO_DU_ITERATOR_ASSERT
 309   // Iterate over the out-edges of this node.  Deletions are illegal.
 310   inline DUIterator outs() const;
 311   // Use this when the out array might have changed to suppress asserts.
 312   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 313   // Does the node have an out at this position?  (Used for iteration.)
 314   inline bool has_out(DUIterator& i) const;
 315   inline Node*    out(DUIterator& i) const;
 316   // Iterate over the out-edges of this node.  All changes are illegal.
 317   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 318   inline Node*    fast_out(DUIterator_Fast& i) const;
 319   // Iterate over the out-edges of this node, deleting one at a time.
 320   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 321   inline Node*    last_out(DUIterator_Last& i) const;
 322   // The inline bodies of all these methods are after the iterator definitions.
 323 #else
 324   // Iterate over the out-edges of this node.  Deletions are illegal.
 325   // This iteration uses integral indexes, to decouple from array reallocations.
 326   DUIterator outs() const  { return 0; }
 327   // Use this when the out array might have changed to suppress asserts.
 328   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 329 
 330   // Reference to the i'th output Node.  Error if out of bounds.
 331   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 332   // Does the node have an out at this position?  (Used for iteration.)
 333   bool has_out(DUIterator i) const { return i < _outcnt; }
 334 
 335   // Iterate over the out-edges of this node.  All changes are illegal.
 336   // This iteration uses a pointer internal to the out array.
 337   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 338     Node** out = _out;
 339     // Assign a limit pointer to the reference argument:
 340     max = out + (ptrdiff_t)_outcnt;
 341     // Return the base pointer:
 342     return out;
 343   }
 344   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 345   // Iterate over the out-edges of this node, deleting one at a time.
 346   // This iteration uses a pointer internal to the out array.
 347   DUIterator_Last last_outs(DUIterator_Last& min) const {
 348     Node** out = _out;
 349     // Assign a limit pointer to the reference argument:
 350     min = out;
 351     // Return the pointer to the start of the iteration:
 352     return out + (ptrdiff_t)_outcnt - 1;
 353   }
 354   Node*    last_out(DUIterator_Last i) const  { return *i; }
 355 #endif
 356 
 357   // Reference to the i'th input Node.  Error if out of bounds.
 358   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
 359   // Reference to the i'th input Node.  NULL if out of bounds.
 360   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 361   // Reference to the i'th output Node.  Error if out of bounds.
 362   // Use this accessor sparingly.  We are going trying to use iterators instead.
 363   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 364   // Return the unique out edge.
 365   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 366   // Delete out edge at position 'i' by moving last out edge to position 'i'
 367   void  raw_del_out(uint i) {
 368     assert(i < _outcnt,"oob");
 369     assert(_outcnt > 0,"oob");
 370     #if OPTO_DU_ITERATOR_ASSERT
 371     // Record that a change happened here.
 372     debug_only(_last_del = _out[i]; ++_del_tick);
 373     #endif
 374     _out[i] = _out[--_outcnt];
 375     // Smash the old edge so it can't be used accidentally.
 376     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 377   }
 378 
 379 #ifdef ASSERT
 380   bool is_dead() const;
 381 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 382 #endif
 383   // Check whether node has become unreachable
 384   bool is_unreachable(PhaseIterGVN &igvn) const;
 385 
 386   // Set a required input edge, also updates corresponding output edge
 387   void add_req( Node *n ); // Append a NEW required input
 388   void add_req( Node *n0, Node *n1 ) {
 389     add_req(n0); add_req(n1); }
 390   void add_req( Node *n0, Node *n1, Node *n2 ) {
 391     add_req(n0); add_req(n1); add_req(n2); }
 392   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 393   void del_req( uint idx ); // Delete required edge & compact
 394   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 395   void ins_req( uint i, Node *n ); // Insert a NEW required input
 396   void set_req( uint i, Node *n ) {
 397     assert( is_not_dead(n), "can not use dead node");
 398     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
 399     assert( !VerifyHashTableKeys || _hash_lock == 0,
 400             "remove node from hash table before modifying it");
 401     Node** p = &_in[i];    // cache this._in, across the del_out call
 402     if (*p != NULL)  (*p)->del_out((Node *)this);
 403     (*p) = n;
 404     if (n != NULL)      n->add_out((Node *)this);
 405   }
 406   // Light version of set_req() to init inputs after node creation.
 407   void init_req( uint i, Node *n ) {
 408     assert( i == 0 && this == n ||
 409             is_not_dead(n), "can not use dead node");
 410     assert( i < _cnt, "oob");
 411     assert( !VerifyHashTableKeys || _hash_lock == 0,
 412             "remove node from hash table before modifying it");
 413     assert( _in[i] == NULL, "sanity");
 414     _in[i] = n;
 415     if (n != NULL)      n->add_out((Node *)this);
 416   }
 417   // Find first occurrence of n among my edges:
 418   int find_edge(Node* n);
 419   int replace_edge(Node* old, Node* neww);
 420   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 421   // NULL out all inputs to eliminate incoming Def-Use edges.
 422   // Return the number of edges between 'n' and 'this'
 423   int  disconnect_inputs(Node *n, Compile *c);
 424 
 425   // Quickly, return true if and only if I am Compile::current()->top().
 426   bool is_top() const {
 427     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 428     return (_out == NULL);
 429   }
 430   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 431   void setup_is_top();
 432 
 433   // Strip away casting.  (It is depth-limited.)
 434   Node* uncast() const;
 435   // Return whether two Nodes are equivalent, after stripping casting.
 436   bool eqv_uncast(const Node* n) const {
 437     return (this->uncast() == n->uncast());
 438   }
 439 
 440 private:
 441   static Node* uncast_helper(const Node* n);
 442 
 443   // Add an output edge to the end of the list
 444   void add_out( Node *n ) {
 445     if (is_top())  return;
 446     if( _outcnt == _outmax ) out_grow(_outcnt);
 447     _out[_outcnt++] = n;
 448   }
 449   // Delete an output edge
 450   void del_out( Node *n ) {
 451     if (is_top())  return;
 452     Node** outp = &_out[_outcnt];
 453     // Find and remove n
 454     do {
 455       assert(outp > _out, "Missing Def-Use edge");
 456     } while (*--outp != n);
 457     *outp = _out[--_outcnt];
 458     // Smash the old edge so it can't be used accidentally.
 459     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 460     // Record that a change happened here.
 461     #if OPTO_DU_ITERATOR_ASSERT
 462     debug_only(_last_del = n; ++_del_tick);
 463     #endif
 464   }
 465 
 466 public:
 467   // Globally replace this node by a given new node, updating all uses.
 468   void replace_by(Node* new_node);
 469   // Globally replace this node by a given new node, updating all uses
 470   // and cutting input edges of old node.
 471   void subsume_by(Node* new_node, Compile* c) {
 472     replace_by(new_node);
 473     disconnect_inputs(NULL, c);
 474   }
 475   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 476   // Find the one non-null required input.  RegionNode only
 477   Node *nonnull_req() const;
 478   // Add or remove precedence edges
 479   void add_prec( Node *n );
 480   void rm_prec( uint i );
 481   void set_prec( uint i, Node *n ) {
 482     assert( is_not_dead(n), "can not use dead node");
 483     assert( i >= _cnt, "not a precedence edge");
 484     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 485     _in[i] = n;
 486     if (n != NULL) n->add_out((Node *)this);
 487   }
 488   // Set this node's index, used by cisc_version to replace current node
 489   void set_idx(uint new_idx) {
 490     const node_idx_t* ref = &_idx;
 491     *(node_idx_t*)ref = new_idx;
 492   }
 493   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 494   void swap_edges(uint i1, uint i2) {
 495     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 496     // Def-Use info is unchanged
 497     Node* n1 = in(i1);
 498     Node* n2 = in(i2);
 499     _in[i1] = n2;
 500     _in[i2] = n1;
 501     // If this node is in the hash table, make sure it doesn't need a rehash.
 502     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 503   }
 504 
 505   // Iterators over input Nodes for a Node X are written as:
 506   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 507   // NOTE: Required edges can contain embedded NULL pointers.
 508 
 509 //----------------- Other Node Properties
 510 
 511   // Generate class id for some ideal nodes to avoid virtual query
 512   // methods is_<Node>().
 513   // Class id is the set of bits corresponded to the node class and all its
 514   // super classes so that queries for super classes are also valid.
 515   // Subclasses of the same super class have different assigned bit
 516   // (the third parameter in the macro DEFINE_CLASS_ID).
 517   // Classes with deeper hierarchy are declared first.
 518   // Classes with the same hierarchy depth are sorted by usage frequency.
 519   //
 520   // The query method masks the bits to cut off bits of subclasses
 521   // and then compare the result with the class id
 522   // (see the macro DEFINE_CLASS_QUERY below).
 523   //
 524   //  Class_MachCall=30, ClassMask_MachCall=31
 525   // 12               8               4               0
 526   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 527   //                                  |   |   |   |
 528   //                                  |   |   |   Bit_Mach=2
 529   //                                  |   |   Bit_MachReturn=4
 530   //                                  |   Bit_MachSafePoint=8
 531   //                                  Bit_MachCall=16
 532   //
 533   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 534   // 12               8               4               0
 535   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 536   //                              |   |   |
 537   //                              |   |   Bit_Region=8
 538   //                              |   Bit_Loop=16
 539   //                              Bit_CountedLoop=32
 540 
 541   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 542   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 543   Class_##cl = Class_##supcl + Bit_##cl , \
 544   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 545 
 546   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 547   // so that it's values fits into 16 bits.
 548   enum NodeClasses {
 549     Bit_Node   = 0x0000,
 550     Class_Node = 0x0000,
 551     ClassMask_Node = 0xFFFF,
 552 
 553     DEFINE_CLASS_ID(Multi, Node, 0)
 554       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 555         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 556           DEFINE_CLASS_ID(CallJava,         Call, 0)
 557             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 558             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 559           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 560             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 561           DEFINE_CLASS_ID(Allocate,         Call, 2)
 562             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 563           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 564             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 565             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 566       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 567         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 568           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 569           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 570         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 571           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 572         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 573       DEFINE_CLASS_ID(Start,       Multi, 2)
 574       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 575         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 576         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 577 
 578     DEFINE_CLASS_ID(Mach,  Node, 1)
 579       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 580         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 581           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 582             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 583               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 584               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 585             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 586               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 587       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 588         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 589         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 590         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 591       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 592       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 593       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 594       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 595       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 596 
 597     DEFINE_CLASS_ID(Type,  Node, 2)
 598       DEFINE_CLASS_ID(Phi,   Type, 0)
 599       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 600       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 601       DEFINE_CLASS_ID(CMove, Type, 3)
 602       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 603       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 604         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 605         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 606       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 607         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 608         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 609 
 610     DEFINE_CLASS_ID(Proj,  Node, 3)
 611       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 612       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 613       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 614       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 615       DEFINE_CLASS_ID(Parm,      Proj, 4)
 616       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 617 
 618     DEFINE_CLASS_ID(Mem,   Node, 4)
 619       DEFINE_CLASS_ID(Load,  Mem, 0)
 620         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 621       DEFINE_CLASS_ID(Store, Mem, 1)
 622         DEFINE_CLASS_ID(StoreVector, Store, 0)
 623       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 624 
 625     DEFINE_CLASS_ID(Region, Node, 5)
 626       DEFINE_CLASS_ID(Loop, Region, 0)
 627         DEFINE_CLASS_ID(Root,        Loop, 0)
 628         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 629 
 630     DEFINE_CLASS_ID(Sub,   Node, 6)
 631       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 632         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 633         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 634 
 635     DEFINE_CLASS_ID(MergeMem, Node, 7)
 636     DEFINE_CLASS_ID(Bool,     Node, 8)
 637     DEFINE_CLASS_ID(AddP,     Node, 9)
 638     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 639     DEFINE_CLASS_ID(Add,      Node, 11)
 640     DEFINE_CLASS_ID(Mul,      Node, 12)
 641     DEFINE_CLASS_ID(Vector,   Node, 13)
 642     DEFINE_CLASS_ID(ClearArray, Node, 14)
 643 
 644     _max_classes  = ClassMask_ClearArray
 645   };
 646   #undef DEFINE_CLASS_ID
 647 
 648   // Flags are sorted by usage frequency.
 649   enum NodeFlags {
 650     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 651     Flag_rematerialize               = Flag_is_Copy << 1,
 652     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 653     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 654     Flag_is_Con                      = Flag_is_macro << 1,
 655     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 656     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 657     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 658     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 659     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 660     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 661     Flag_is_expensive                = Flag_has_call << 1,
 662     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 663   };
 664 
 665 private:
 666   jushort _class_id;
 667   jushort _flags;
 668 
 669 protected:
 670   // These methods should be called from constructors only.
 671   void init_class_id(jushort c) {
 672     assert(c <= _max_classes, "invalid node class");
 673     _class_id = c; // cast out const
 674   }
 675   void init_flags(jushort fl) {
 676     assert(fl <= _max_flags, "invalid node flag");
 677     _flags |= fl;
 678   }
 679   void clear_flag(jushort fl) {
 680     assert(fl <= _max_flags, "invalid node flag");
 681     _flags &= ~fl;
 682   }
 683 
 684 public:
 685   const jushort class_id() const { return _class_id; }
 686 
 687   const jushort flags() const { return _flags; }
 688 
 689   // Return a dense integer opcode number
 690   virtual int Opcode() const;
 691 
 692   // Virtual inherited Node size
 693   virtual uint size_of() const;
 694 
 695   // Other interesting Node properties
 696   #define DEFINE_CLASS_QUERY(type)                           \
 697   bool is_##type() const {                                   \
 698     return ((_class_id & ClassMask_##type) == Class_##type); \
 699   }                                                          \
 700   type##Node *as_##type() const {                            \
 701     assert(is_##type(), "invalid node class");               \
 702     return (type##Node*)this;                                \
 703   }                                                          \
 704   type##Node* isa_##type() const {                           \
 705     return (is_##type()) ? as_##type() : NULL;               \
 706   }
 707 
 708   DEFINE_CLASS_QUERY(AbstractLock)
 709   DEFINE_CLASS_QUERY(Add)
 710   DEFINE_CLASS_QUERY(AddP)
 711   DEFINE_CLASS_QUERY(Allocate)
 712   DEFINE_CLASS_QUERY(AllocateArray)
 713   DEFINE_CLASS_QUERY(Bool)
 714   DEFINE_CLASS_QUERY(BoxLock)
 715   DEFINE_CLASS_QUERY(Call)
 716   DEFINE_CLASS_QUERY(CallDynamicJava)
 717   DEFINE_CLASS_QUERY(CallJava)
 718   DEFINE_CLASS_QUERY(CallLeaf)
 719   DEFINE_CLASS_QUERY(CallRuntime)
 720   DEFINE_CLASS_QUERY(CallStaticJava)
 721   DEFINE_CLASS_QUERY(Catch)
 722   DEFINE_CLASS_QUERY(CatchProj)
 723   DEFINE_CLASS_QUERY(CheckCastPP)
 724   DEFINE_CLASS_QUERY(ConstraintCast)
 725   DEFINE_CLASS_QUERY(ClearArray)
 726   DEFINE_CLASS_QUERY(CMove)
 727   DEFINE_CLASS_QUERY(Cmp)
 728   DEFINE_CLASS_QUERY(CountedLoop)
 729   DEFINE_CLASS_QUERY(CountedLoopEnd)
 730   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 731   DEFINE_CLASS_QUERY(DecodeN)
 732   DEFINE_CLASS_QUERY(DecodeNKlass)
 733   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 734   DEFINE_CLASS_QUERY(EncodeP)
 735   DEFINE_CLASS_QUERY(EncodePKlass)
 736   DEFINE_CLASS_QUERY(FastLock)
 737   DEFINE_CLASS_QUERY(FastUnlock)
 738   DEFINE_CLASS_QUERY(If)
 739   DEFINE_CLASS_QUERY(IfFalse)
 740   DEFINE_CLASS_QUERY(IfTrue)
 741   DEFINE_CLASS_QUERY(Initialize)
 742   DEFINE_CLASS_QUERY(Jump)
 743   DEFINE_CLASS_QUERY(JumpProj)
 744   DEFINE_CLASS_QUERY(Load)
 745   DEFINE_CLASS_QUERY(LoadStore)
 746   DEFINE_CLASS_QUERY(Lock)
 747   DEFINE_CLASS_QUERY(Loop)
 748   DEFINE_CLASS_QUERY(Mach)
 749   DEFINE_CLASS_QUERY(MachBranch)
 750   DEFINE_CLASS_QUERY(MachCall)
 751   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 752   DEFINE_CLASS_QUERY(MachCallJava)
 753   DEFINE_CLASS_QUERY(MachCallLeaf)
 754   DEFINE_CLASS_QUERY(MachCallRuntime)
 755   DEFINE_CLASS_QUERY(MachCallStaticJava)
 756   DEFINE_CLASS_QUERY(MachConstantBase)
 757   DEFINE_CLASS_QUERY(MachConstant)
 758   DEFINE_CLASS_QUERY(MachGoto)
 759   DEFINE_CLASS_QUERY(MachIf)
 760   DEFINE_CLASS_QUERY(MachNullCheck)
 761   DEFINE_CLASS_QUERY(MachProj)
 762   DEFINE_CLASS_QUERY(MachReturn)
 763   DEFINE_CLASS_QUERY(MachSafePoint)
 764   DEFINE_CLASS_QUERY(MachSpillCopy)
 765   DEFINE_CLASS_QUERY(MachTemp)
 766   DEFINE_CLASS_QUERY(MachMerge)
 767   DEFINE_CLASS_QUERY(Mem)
 768   DEFINE_CLASS_QUERY(MemBar)
 769   DEFINE_CLASS_QUERY(MemBarStoreStore)
 770   DEFINE_CLASS_QUERY(MergeMem)
 771   DEFINE_CLASS_QUERY(Mul)
 772   DEFINE_CLASS_QUERY(Multi)
 773   DEFINE_CLASS_QUERY(MultiBranch)
 774   DEFINE_CLASS_QUERY(Parm)
 775   DEFINE_CLASS_QUERY(PCTable)
 776   DEFINE_CLASS_QUERY(Phi)
 777   DEFINE_CLASS_QUERY(Proj)
 778   DEFINE_CLASS_QUERY(Region)
 779   DEFINE_CLASS_QUERY(Root)
 780   DEFINE_CLASS_QUERY(SafePoint)
 781   DEFINE_CLASS_QUERY(SafePointScalarObject)
 782   DEFINE_CLASS_QUERY(Start)
 783   DEFINE_CLASS_QUERY(Store)
 784   DEFINE_CLASS_QUERY(Sub)
 785   DEFINE_CLASS_QUERY(Type)
 786   DEFINE_CLASS_QUERY(Vector)
 787   DEFINE_CLASS_QUERY(LoadVector)
 788   DEFINE_CLASS_QUERY(StoreVector)
 789   DEFINE_CLASS_QUERY(Unlock)
 790 
 791   #undef DEFINE_CLASS_QUERY
 792 
 793   // duplicate of is_MachSpillCopy()
 794   bool is_SpillCopy () const {
 795     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 796   }
 797 
 798   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 799   // The data node which is safe to leave in dead loop during IGVN optimization.
 800   bool is_dead_loop_safe() const {
 801     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 802            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 803             (!is_Proj() || !in(0)->is_Allocate()));
 804   }
 805 
 806   // is_Copy() returns copied edge index (0 or 1)
 807   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 808 
 809   virtual bool is_CFG() const { return false; }
 810 
 811   // If this node is control-dependent on a test, can it be
 812   // rerouted to a dominating equivalent test?  This is usually
 813   // true of non-CFG nodes, but can be false for operations which
 814   // depend for their correct sequencing on more than one test.
 815   // (In that case, hoisting to a dominating test may silently
 816   // skip some other important test.)
 817   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 818 
 819   // When building basic blocks, I need to have a notion of block beginning
 820   // Nodes, next block selector Nodes (block enders), and next block
 821   // projections.  These calls need to work on their machine equivalents.  The
 822   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 823   bool is_block_start() const {
 824     if ( is_Region() )
 825       return this == (const Node*)in(0);
 826     else
 827       return is_Start();
 828   }
 829 
 830   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 831   // Goto and Return.  This call also returns the block ending Node.
 832   virtual const Node *is_block_proj() const;
 833 
 834   // The node is a "macro" node which needs to be expanded before matching
 835   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 836   // The node is expensive: the best control is set during loop opts
 837   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 838 
 839 //----------------- Optimization
 840 
 841   // Get the worst-case Type output for this Node.
 842   virtual const class Type *bottom_type() const;
 843 
 844   // If we find a better type for a node, try to record it permanently.
 845   // Return true if this node actually changed.
 846   // Be sure to do the hash_delete game in the "rehash" variant.
 847   void raise_bottom_type(const Type* new_type);
 848 
 849   // Get the address type with which this node uses and/or defs memory,
 850   // or NULL if none.  The address type is conservatively wide.
 851   // Returns non-null for calls, membars, loads, stores, etc.
 852   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 853   virtual const class TypePtr *adr_type() const { return NULL; }
 854 
 855   // Return an existing node which computes the same function as this node.
 856   // The optimistic combined algorithm requires this to return a Node which
 857   // is a small number of steps away (e.g., one of my inputs).
 858   virtual Node *Identity( PhaseTransform *phase );
 859 
 860   // Return the set of values this Node can take on at runtime.
 861   virtual const Type *Value( PhaseTransform *phase ) const;
 862 
 863   // Return a node which is more "ideal" than the current node.
 864   // The invariants on this call are subtle.  If in doubt, read the
 865   // treatise in node.cpp above the default implemention AND TEST WITH
 866   // +VerifyIterativeGVN!
 867   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 868 
 869   // Some nodes have specific Ideal subgraph transformations only if they are
 870   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 871   // for the transformations to happen.
 872   bool has_special_unique_user() const;
 873 
 874   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 875   Node* find_exact_control(Node* ctrl);
 876 
 877   // Check if 'this' node dominates or equal to 'sub'.
 878   bool dominates(Node* sub, Node_List &nlist);
 879 
 880 protected:
 881   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 882 public:
 883 
 884   // Idealize graph, using DU info.  Done after constant propagation
 885   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 886 
 887   // See if there is valid pipeline info
 888   static  const Pipeline *pipeline_class();
 889   virtual const Pipeline *pipeline() const;
 890 
 891   // Compute the latency from the def to this instruction of the ith input node
 892   uint latency(uint i);
 893 
 894   // Hash & compare functions, for pessimistic value numbering
 895 
 896   // If the hash function returns the special sentinel value NO_HASH,
 897   // the node is guaranteed never to compare equal to any other node.
 898   // If we accidentally generate a hash with value NO_HASH the node
 899   // won't go into the table and we'll lose a little optimization.
 900   enum { NO_HASH = 0 };
 901   virtual uint hash() const;
 902   virtual uint cmp( const Node &n ) const;
 903 
 904   // Operation appears to be iteratively computed (such as an induction variable)
 905   // It is possible for this operation to return false for a loop-varying
 906   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 907   bool is_iteratively_computed();
 908 
 909   // Determine if a node is Counted loop induction variable.
 910   // The method is defined in loopnode.cpp.
 911   const Node* is_loop_iv() const;
 912 
 913   // Return a node with opcode "opc" and same inputs as "this" if one can
 914   // be found; Otherwise return NULL;
 915   Node* find_similar(int opc);
 916 
 917   // Return the unique control out if only one. Null if none or more than one.
 918   Node* unique_ctrl_out();
 919 
 920 //----------------- Code Generation
 921 
 922   // Ideal register class for Matching.  Zero means unmatched instruction
 923   // (these are cloned instead of converted to machine nodes).
 924   virtual uint ideal_reg() const;
 925 
 926   static const uint NotAMachineReg;   // must be > max. machine register
 927 
 928   // Do we Match on this edge index or not?  Generally false for Control
 929   // and true for everything else.  Weird for calls & returns.
 930   virtual uint match_edge(uint idx) const;
 931 
 932   // Register class output is returned in
 933   virtual const RegMask &out_RegMask() const;
 934   // Register class input is expected in
 935   virtual const RegMask &in_RegMask(uint) const;
 936   // Should we clone rather than spill this instruction?
 937   bool rematerialize() const;
 938 
 939   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 940   virtual JVMState* jvms() const;
 941 
 942   // Print as assembly
 943   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 944   // Emit bytes starting at parameter 'ptr'
 945   // Bump 'ptr' by the number of output bytes
 946   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 947   // Size of instruction in bytes
 948   virtual uint size(PhaseRegAlloc *ra_) const;
 949 
 950   // Convenience function to extract an integer constant from a node.
 951   // If it is not an integer constant (either Con, CastII, or Mach),
 952   // return value_if_unknown.
 953   jint find_int_con(jint value_if_unknown) const {
 954     const TypeInt* t = find_int_type();
 955     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 956   }
 957   // Return the constant, knowing it is an integer constant already
 958   jint get_int() const {
 959     const TypeInt* t = find_int_type();
 960     guarantee(t != NULL, "must be con");
 961     return t->get_con();
 962   }
 963   // Here's where the work is done.  Can produce non-constant int types too.
 964   const TypeInt* find_int_type() const;
 965 
 966   // Same thing for long (and intptr_t, via type.hpp):
 967   jlong get_long() const {
 968     const TypeLong* t = find_long_type();
 969     guarantee(t != NULL, "must be con");
 970     return t->get_con();
 971   }
 972   jlong find_long_con(jint value_if_unknown) const {
 973     const TypeLong* t = find_long_type();
 974     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 975   }
 976   const TypeLong* find_long_type() const;
 977 
 978   const TypePtr* get_ptr_type() const;
 979 
 980   // These guys are called by code generated by ADLC:
 981   intptr_t get_ptr() const;
 982   intptr_t get_narrowcon() const;
 983   jdouble getd() const;
 984   jfloat getf() const;
 985 
 986   // Nodes which are pinned into basic blocks
 987   virtual bool pinned() const { return false; }
 988 
 989   // Nodes which use memory without consuming it, hence need antidependences
 990   // More specifically, needs_anti_dependence_check returns true iff the node
 991   // (a) does a load, and (b) does not perform a store (except perhaps to a
 992   // stack slot or some other unaliased location).
 993   bool needs_anti_dependence_check() const;
 994 
 995   // Return which operand this instruction may cisc-spill. In other words,
 996   // return operand position that can convert from reg to memory access
 997   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 998   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 999 
1000 //----------------- Graph walking
1001 public:
1002   // Walk and apply member functions recursively.
1003   // Supplied (this) pointer is root.
1004   void walk(NFunc pre, NFunc post, void *env);
1005   static void nop(Node &, void*); // Dummy empty function
1006   static void packregion( Node &n, void* );
1007 private:
1008   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1009 
1010 //----------------- Printing, etc
1011 public:
1012 #ifndef PRODUCT
1013   Node* find(int idx) const;         // Search the graph for the given idx.
1014   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1015   void dump() const { dump("\n"); }  // Print this node.
1016   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
1017   void dump(int depth) const;        // Print this node, recursively to depth d
1018   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1019   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
1020   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
1021   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
1022   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1023   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1024   void verify() const;               // Check Def-Use info for my subgraph
1025   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1026 
1027   // This call defines a class-unique string used to identify class instances
1028   virtual const char *Name() const;
1029 
1030   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1031   // RegMask Print Functions
1032   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1033   void dump_out_regmask() { out_RegMask().dump(); }
1034   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1035   void fast_dump() const {
1036     tty->print("%4d: %-17s", _idx, Name());
1037     for (uint i = 0; i < len(); i++)
1038       if (in(i))
1039         tty->print(" %4d", in(i)->_idx);
1040       else
1041         tty->print(" NULL");
1042     tty->print("\n");
1043   }
1044 #endif
1045 #ifdef ASSERT
1046   void verify_construction();
1047   bool verify_jvms(const JVMState* jvms) const;
1048   int  _debug_idx;                     // Unique value assigned to every node.
1049   int   debug_idx() const              { return _debug_idx; }
1050   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1051 
1052   Node* _debug_orig;                   // Original version of this, if any.
1053   Node*  debug_orig() const            { return _debug_orig; }
1054   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1055 
1056   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1057   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1058   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1059 
1060   static void init_NodeProperty();
1061 
1062   #if OPTO_DU_ITERATOR_ASSERT
1063   const Node* _last_del;               // The last deleted node.
1064   uint        _del_tick;               // Bumped when a deletion happens..
1065   #endif
1066 #endif
1067 };
1068 
1069 //-----------------------------------------------------------------------------
1070 // Iterators over DU info, and associated Node functions.
1071 
1072 #if OPTO_DU_ITERATOR_ASSERT
1073 
1074 // Common code for assertion checking on DU iterators.
1075 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1076 #ifdef ASSERT
1077  protected:
1078   bool         _vdui;               // cached value of VerifyDUIterators
1079   const Node*  _node;               // the node containing the _out array
1080   uint         _outcnt;             // cached node->_outcnt
1081   uint         _del_tick;           // cached node->_del_tick
1082   Node*        _last;               // last value produced by the iterator
1083 
1084   void sample(const Node* node);    // used by c'tor to set up for verifies
1085   void verify(const Node* node, bool at_end_ok = false);
1086   void verify_resync();
1087   void reset(const DUIterator_Common& that);
1088 
1089 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1090   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1091 #else
1092   #define I_VDUI_ONLY(i,x) { }
1093 #endif //ASSERT
1094 };
1095 
1096 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1097 
1098 // Default DU iterator.  Allows appends onto the out array.
1099 // Allows deletion from the out array only at the current point.
1100 // Usage:
1101 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1102 //    Node* y = x->out(i);
1103 //    ...
1104 //  }
1105 // Compiles in product mode to a unsigned integer index, which indexes
1106 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1107 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1108 // before continuing the loop.  You must delete only the last-produced
1109 // edge.  You must delete only a single copy of the last-produced edge,
1110 // or else you must delete all copies at once (the first time the edge
1111 // is produced by the iterator).
1112 class DUIterator : public DUIterator_Common {
1113   friend class Node;
1114 
1115   // This is the index which provides the product-mode behavior.
1116   // Whatever the product-mode version of the system does to the
1117   // DUI index is done to this index.  All other fields in
1118   // this class are used only for assertion checking.
1119   uint         _idx;
1120 
1121   #ifdef ASSERT
1122   uint         _refresh_tick;    // Records the refresh activity.
1123 
1124   void sample(const Node* node); // Initialize _refresh_tick etc.
1125   void verify(const Node* node, bool at_end_ok = false);
1126   void verify_increment();       // Verify an increment operation.
1127   void verify_resync();          // Verify that we can back up over a deletion.
1128   void verify_finish();          // Verify that the loop terminated properly.
1129   void refresh();                // Resample verification info.
1130   void reset(const DUIterator& that);  // Resample after assignment.
1131   #endif
1132 
1133   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1134     { _idx = 0;                         debug_only(sample(node)); }
1135 
1136  public:
1137   // initialize to garbage; clear _vdui to disable asserts
1138   DUIterator()
1139     { /*initialize to garbage*/         debug_only(_vdui = false); }
1140 
1141   void operator++(int dummy_to_specify_postfix_op)
1142     { _idx++;                           VDUI_ONLY(verify_increment()); }
1143 
1144   void operator--()
1145     { VDUI_ONLY(verify_resync());       --_idx; }
1146 
1147   ~DUIterator()
1148     { VDUI_ONLY(verify_finish()); }
1149 
1150   void operator=(const DUIterator& that)
1151     { _idx = that._idx;                 debug_only(reset(that)); }
1152 };
1153 
1154 DUIterator Node::outs() const
1155   { return DUIterator(this, 0); }
1156 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1157   { I_VDUI_ONLY(i, i.refresh());        return i; }
1158 bool Node::has_out(DUIterator& i) const
1159   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1160 Node*    Node::out(DUIterator& i) const
1161   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1162 
1163 
1164 // Faster DU iterator.  Disallows insertions into the out array.
1165 // Allows deletion from the out array only at the current point.
1166 // Usage:
1167 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1168 //    Node* y = x->fast_out(i);
1169 //    ...
1170 //  }
1171 // Compiles in product mode to raw Node** pointer arithmetic, with
1172 // no reloading of pointers from the original node x.  If you delete,
1173 // you must perform "--i; --imax" just before continuing the loop.
1174 // If you delete multiple copies of the same edge, you must decrement
1175 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1176 class DUIterator_Fast : public DUIterator_Common {
1177   friend class Node;
1178   friend class DUIterator_Last;
1179 
1180   // This is the pointer which provides the product-mode behavior.
1181   // Whatever the product-mode version of the system does to the
1182   // DUI pointer is done to this pointer.  All other fields in
1183   // this class are used only for assertion checking.
1184   Node**       _outp;
1185 
1186   #ifdef ASSERT
1187   void verify(const Node* node, bool at_end_ok = false);
1188   void verify_limit();
1189   void verify_resync();
1190   void verify_relimit(uint n);
1191   void reset(const DUIterator_Fast& that);
1192   #endif
1193 
1194   // Note:  offset must be signed, since -1 is sometimes passed
1195   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1196     { _outp = node->_out + offset;      debug_only(sample(node)); }
1197 
1198  public:
1199   // initialize to garbage; clear _vdui to disable asserts
1200   DUIterator_Fast()
1201     { /*initialize to garbage*/         debug_only(_vdui = false); }
1202 
1203   void operator++(int dummy_to_specify_postfix_op)
1204     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1205 
1206   void operator--()
1207     { VDUI_ONLY(verify_resync());       --_outp; }
1208 
1209   void operator-=(uint n)   // applied to the limit only
1210     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1211 
1212   bool operator<(DUIterator_Fast& limit) {
1213     I_VDUI_ONLY(*this, this->verify(_node, true));
1214     I_VDUI_ONLY(limit, limit.verify_limit());
1215     return _outp < limit._outp;
1216   }
1217 
1218   void operator=(const DUIterator_Fast& that)
1219     { _outp = that._outp;               debug_only(reset(that)); }
1220 };
1221 
1222 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1223   // Assign a limit pointer to the reference argument:
1224   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1225   // Return the base pointer:
1226   return DUIterator_Fast(this, 0);
1227 }
1228 Node* Node::fast_out(DUIterator_Fast& i) const {
1229   I_VDUI_ONLY(i, i.verify(this));
1230   return debug_only(i._last=) *i._outp;
1231 }
1232 
1233 
1234 // Faster DU iterator.  Requires each successive edge to be removed.
1235 // Does not allow insertion of any edges.
1236 // Usage:
1237 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1238 //    Node* y = x->last_out(i);
1239 //    ...
1240 //  }
1241 // Compiles in product mode to raw Node** pointer arithmetic, with
1242 // no reloading of pointers from the original node x.
1243 class DUIterator_Last : private DUIterator_Fast {
1244   friend class Node;
1245 
1246   #ifdef ASSERT
1247   void verify(const Node* node, bool at_end_ok = false);
1248   void verify_limit();
1249   void verify_step(uint num_edges);
1250   #endif
1251 
1252   // Note:  offset must be signed, since -1 is sometimes passed
1253   DUIterator_Last(const Node* node, ptrdiff_t offset)
1254     : DUIterator_Fast(node, offset) { }
1255 
1256   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1257   void operator<(int)                              {} // do not use
1258 
1259  public:
1260   DUIterator_Last() { }
1261   // initialize to garbage
1262 
1263   void operator--()
1264     { _outp--;              VDUI_ONLY(verify_step(1));  }
1265 
1266   void operator-=(uint n)
1267     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1268 
1269   bool operator>=(DUIterator_Last& limit) {
1270     I_VDUI_ONLY(*this, this->verify(_node, true));
1271     I_VDUI_ONLY(limit, limit.verify_limit());
1272     return _outp >= limit._outp;
1273   }
1274 
1275   void operator=(const DUIterator_Last& that)
1276     { DUIterator_Fast::operator=(that); }
1277 };
1278 
1279 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1280   // Assign a limit pointer to the reference argument:
1281   imin = DUIterator_Last(this, 0);
1282   // Return the initial pointer:
1283   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1284 }
1285 Node* Node::last_out(DUIterator_Last& i) const {
1286   I_VDUI_ONLY(i, i.verify(this));
1287   return debug_only(i._last=) *i._outp;
1288 }
1289 
1290 #endif //OPTO_DU_ITERATOR_ASSERT
1291 
1292 #undef I_VDUI_ONLY
1293 #undef VDUI_ONLY
1294 
1295 // An Iterator that truly follows the iterator pattern.  Doesn't
1296 // support deletion but could be made to.
1297 //
1298 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1299 //     Node* m = i.get();
1300 //
1301 class SimpleDUIterator : public StackObj {
1302  private:
1303   Node* node;
1304   DUIterator_Fast i;
1305   DUIterator_Fast imax;
1306  public:
1307   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1308   bool has_next() { return i < imax; }
1309   void next() { i++; }
1310   Node* get() { return node->fast_out(i); }
1311 };
1312 
1313 
1314 //-----------------------------------------------------------------------------
1315 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1316 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1317 // Note that the constructor just zeros things, and since I use Arena
1318 // allocation I do not need a destructor to reclaim storage.
1319 class Node_Array : public ResourceObj {
1320   friend class VMStructs;
1321 protected:
1322   Arena *_a;                    // Arena to allocate in
1323   uint   _max;
1324   Node **_nodes;
1325   void   grow( uint i );        // Grow array node to fit
1326 public:
1327   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1328     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1329     for( int i = 0; i < OptoNodeListSize; i++ ) {
1330       _nodes[i] = NULL;
1331     }
1332   }
1333 
1334   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1335   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1336   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1337   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1338   Node **adr() { return _nodes; }
1339   // Extend the mapping: index i maps to Node *n.
1340   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1341   void insert( uint i, Node *n );
1342   void remove( uint i );        // Remove, preserving order
1343   void sort( C_sort_func_t func);
1344   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1345   void clear();                 // Set all entries to NULL, keep storage
1346   uint Size() const { return _max; }
1347   void dump() const;
1348 };
1349 
1350 class Node_List : public Node_Array {
1351   friend class VMStructs;
1352   uint _cnt;
1353 public:
1354   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1355   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1356   bool contains(const Node* n) const {
1357     for (uint e = 0; e < size(); e++) {
1358       if (at(e) == n) return true;
1359     }
1360     return false;
1361   }
1362   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1363   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1364   void push( Node *b ) { map(_cnt++,b); }
1365   void yank( Node *n );         // Find and remove
1366   Node *pop() { return _nodes[--_cnt]; }
1367   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1368   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1369   uint size() const { return _cnt; }
1370   void dump() const;
1371 };
1372 
1373 //------------------------------Unique_Node_List-------------------------------
1374 class Unique_Node_List : public Node_List {
1375   friend class VMStructs;
1376   VectorSet _in_worklist;
1377   uint _clock_index;            // Index in list where to pop from next
1378 public:
1379   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1380   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1381 
1382   void remove( Node *n );
1383   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1384   VectorSet &member_set(){ return _in_worklist; }
1385 
1386   void push( Node *b ) {
1387     if( !_in_worklist.test_set(b->_idx) )
1388       Node_List::push(b);
1389   }
1390   Node *pop() {
1391     if( _clock_index >= size() ) _clock_index = 0;
1392     Node *b = at(_clock_index);
1393     map( _clock_index, Node_List::pop());
1394     if (size() != 0) _clock_index++; // Always start from 0
1395     _in_worklist >>= b->_idx;
1396     return b;
1397   }
1398   Node *remove( uint i ) {
1399     Node *b = Node_List::at(i);
1400     _in_worklist >>= b->_idx;
1401     map(i,Node_List::pop());
1402     return b;
1403   }
1404   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1405   void  clear() {
1406     _in_worklist.Clear();        // Discards storage but grows automatically
1407     Node_List::clear();
1408     _clock_index = 0;
1409   }
1410 
1411   // Used after parsing to remove useless nodes before Iterative GVN
1412   void remove_useless_nodes(VectorSet &useful);
1413 
1414 #ifndef PRODUCT
1415   void print_set() const { _in_worklist.print(); }
1416 #endif
1417 };
1418 
1419 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1420 inline void Compile::record_for_igvn(Node* n) {
1421   _for_igvn->push(n);
1422 }
1423 
1424 //------------------------------Node_Stack-------------------------------------
1425 class Node_Stack {
1426   friend class VMStructs;
1427 protected:
1428   struct INode {
1429     Node *node; // Processed node
1430     uint  indx; // Index of next node's child
1431   };
1432   INode *_inode_top; // tos, stack grows up
1433   INode *_inode_max; // End of _inodes == _inodes + _max
1434   INode *_inodes;    // Array storage for the stack
1435   Arena *_a;         // Arena to allocate in
1436   void grow();
1437 public:
1438   Node_Stack(int size) {
1439     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1440     _a = Thread::current()->resource_area();
1441     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1442     _inode_max = _inodes + max;
1443     _inode_top = _inodes - 1; // stack is empty
1444   }
1445 
1446   Node_Stack(Arena *a, int size) : _a(a) {
1447     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1448     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1449     _inode_max = _inodes + max;
1450     _inode_top = _inodes - 1; // stack is empty
1451   }
1452 
1453   void pop() {
1454     assert(_inode_top >= _inodes, "node stack underflow");
1455     --_inode_top;
1456   }
1457   void push(Node *n, uint i) {
1458     ++_inode_top;
1459     if (_inode_top >= _inode_max) grow();
1460     INode *top = _inode_top; // optimization
1461     top->node = n;
1462     top->indx = i;
1463   }
1464   Node *node() const {
1465     return _inode_top->node;
1466   }
1467   Node* node_at(uint i) const {
1468     assert(_inodes + i <= _inode_top, "in range");
1469     return _inodes[i].node;
1470   }
1471   uint index() const {
1472     return _inode_top->indx;
1473   }
1474   uint index_at(uint i) const {
1475     assert(_inodes + i <= _inode_top, "in range");
1476     return _inodes[i].indx;
1477   }
1478   void set_node(Node *n) {
1479     _inode_top->node = n;
1480   }
1481   void set_index(uint i) {
1482     _inode_top->indx = i;
1483   }
1484   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1485   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1486   bool is_nonempty() const { return (_inode_top >= _inodes); }
1487   bool is_empty() const { return (_inode_top < _inodes); }
1488   void clear() { _inode_top = _inodes - 1; } // retain storage
1489 
1490   // Node_Stack is used to map nodes.
1491   Node* find(uint idx) const;
1492 };
1493 
1494 
1495 //-----------------------------Node_Notes--------------------------------------
1496 // Debugging or profiling annotations loosely and sparsely associated
1497 // with some nodes.  See Compile::node_notes_at for the accessor.
1498 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1499   friend class VMStructs;
1500   JVMState* _jvms;
1501 
1502 public:
1503   Node_Notes(JVMState* jvms = NULL) {
1504     _jvms = jvms;
1505   }
1506 
1507   JVMState* jvms()            { return _jvms; }
1508   void  set_jvms(JVMState* x) {        _jvms = x; }
1509 
1510   // True if there is nothing here.
1511   bool is_clear() {
1512     return (_jvms == NULL);
1513   }
1514 
1515   // Make there be nothing here.
1516   void clear() {
1517     _jvms = NULL;
1518   }
1519 
1520   // Make a new, clean node notes.
1521   static Node_Notes* make(Compile* C) {
1522     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1523     nn->clear();
1524     return nn;
1525   }
1526 
1527   Node_Notes* clone(Compile* C) {
1528     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1529     (*nn) = (*this);
1530     return nn;
1531   }
1532 
1533   // Absorb any information from source.
1534   bool update_from(Node_Notes* source) {
1535     bool changed = false;
1536     if (source != NULL) {
1537       if (source->jvms() != NULL) {
1538         set_jvms(source->jvms());
1539         changed = true;
1540       }
1541     }
1542     return changed;
1543   }
1544 };
1545 
1546 // Inlined accessors for Compile::node_nodes that require the preceding class:
1547 inline Node_Notes*
1548 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1549                            int idx, bool can_grow) {
1550   assert(idx >= 0, "oob");
1551   int block_idx = (idx >> _log2_node_notes_block_size);
1552   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1553   if (grow_by >= 0) {
1554     if (!can_grow)  return NULL;
1555     grow_node_notes(arr, grow_by + 1);
1556   }
1557   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1558   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1559 }
1560 
1561 inline bool
1562 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1563   if (value == NULL || value->is_clear())
1564     return false;  // nothing to write => write nothing
1565   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1566   assert(loc != NULL, "");
1567   return loc->update_from(value);
1568 }
1569 
1570 
1571 //------------------------------TypeNode---------------------------------------
1572 // Node with a Type constant.
1573 class TypeNode : public Node {
1574 protected:
1575   virtual uint hash() const;    // Check the type
1576   virtual uint cmp( const Node &n ) const;
1577   virtual uint size_of() const; // Size is bigger
1578   const Type* const _type;
1579 public:
1580   void set_type(const Type* t) {
1581     assert(t != NULL, "sanity");
1582     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1583     *(const Type**)&_type = t;   // cast away const-ness
1584     // If this node is in the hash table, make sure it doesn't need a rehash.
1585     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1586   }
1587   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1588   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1589     init_class_id(Class_Type);
1590   }
1591   virtual const Type *Value( PhaseTransform *phase ) const;
1592   virtual const Type *bottom_type() const;
1593   virtual       uint  ideal_reg() const;
1594 #ifndef PRODUCT
1595   virtual void dump_spec(outputStream *st) const;
1596 #endif
1597 };
1598 
1599 #endif // SHARE_VM_OPTO_NODE_HPP