/* * Copyright (c) 2006, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "runtime/os.hpp" #include "vm_version_sparc.hpp" #include #include #include #include #include #include #include extern "C" static int PICL_visit_cpu_helper(picl_nodehdl_t nodeh, void *result); // Functions from the library we need (signatures should match those in picl.h) extern "C" { typedef int (*picl_initialize_func_t)(void); typedef int (*picl_shutdown_func_t)(void); typedef int (*picl_get_root_func_t)(picl_nodehdl_t *nodehandle); typedef int (*picl_walk_tree_by_class_func_t)(picl_nodehdl_t rooth, const char *classname, void *c_args, int (*callback_fn)(picl_nodehdl_t hdl, void *args)); typedef int (*picl_get_prop_by_name_func_t)(picl_nodehdl_t nodeh, const char *nm, picl_prophdl_t *ph); typedef int (*picl_get_propval_func_t)(picl_prophdl_t proph, void *valbuf, size_t sz); typedef int (*picl_get_propinfo_func_t)(picl_prophdl_t proph, picl_propinfo_t *pi); } class PICL { // Pointers to functions in the library picl_initialize_func_t _picl_initialize; picl_shutdown_func_t _picl_shutdown; picl_get_root_func_t _picl_get_root; picl_walk_tree_by_class_func_t _picl_walk_tree_by_class; picl_get_prop_by_name_func_t _picl_get_prop_by_name; picl_get_propval_func_t _picl_get_propval; picl_get_propinfo_func_t _picl_get_propinfo; // Handle to the library that is returned by dlopen void *_dl_handle; bool open_library(); void close_library(); template bool bind(FuncType& func, const char* name); bool bind_library_functions(); // Get a value of the integer property. The value in the tree can be either 32 or 64 bit // depending on the platform. The result is converted to int. int get_int_property(picl_nodehdl_t nodeh, const char* name, int* result) { picl_propinfo_t pinfo; picl_prophdl_t proph; if (_picl_get_prop_by_name(nodeh, name, &proph) != PICL_SUCCESS || _picl_get_propinfo(proph, &pinfo) != PICL_SUCCESS) { return PICL_FAILURE; } if (pinfo.type != PICL_PTYPE_INT && pinfo.type != PICL_PTYPE_UNSIGNED_INT) { assert(false, "Invalid property type"); return PICL_FAILURE; } if (pinfo.size == sizeof(int64_t)) { int64_t val; if (_picl_get_propval(proph, &val, sizeof(int64_t)) != PICL_SUCCESS) { return PICL_FAILURE; } *result = static_cast(val); } else if (pinfo.size == sizeof(int32_t)) { int32_t val; if (_picl_get_propval(proph, &val, sizeof(int32_t)) != PICL_SUCCESS) { return PICL_FAILURE; } *result = static_cast(val); } else { assert(false, "Unexpected integer property size"); return PICL_FAILURE; } return PICL_SUCCESS; } // Visitor and a state machine that visits integer properties and verifies that the // values are the same. Stores the unique value observed. class UniqueValueVisitor { PICL *_picl; enum { INITIAL, // Start state, no assignments happened ASSIGNED, // Assigned a value INCONSISTENT // Inconsistent value seen } _state; int _value; public: UniqueValueVisitor(PICL* picl) : _picl(picl), _state(INITIAL) { } int value() { assert(_state == ASSIGNED, "Precondition"); return _value; } void set_value(int value) { assert(_state == INITIAL, "Precondition"); _value = value; _state = ASSIGNED; } bool is_initial() { return _state == INITIAL; } bool is_assigned() { return _state == ASSIGNED; } bool is_inconsistent() { return _state == INCONSISTENT; } void set_inconsistent() { _state = INCONSISTENT; } bool visit(picl_nodehdl_t nodeh, const char* name) { assert(!is_inconsistent(), "Precondition"); int curr; if (_picl->get_int_property(nodeh, name, &curr) == PICL_SUCCESS) { if (!is_assigned()) { // first iteration set_value(curr); } else if (curr != value()) { // following iterations set_inconsistent(); } return true; } return false; } }; class CPUVisitor { UniqueValueVisitor _l1_visitor; UniqueValueVisitor _l2_visitor; int _limit; // number of times visit() can be run public: CPUVisitor(PICL *picl, int limit) : _l1_visitor(picl), _l2_visitor(picl), _limit(limit) {} static int visit(picl_nodehdl_t nodeh, void *arg) { CPUVisitor *cpu_visitor = static_cast(arg); UniqueValueVisitor* l1_visitor = cpu_visitor->l1_visitor(); UniqueValueVisitor* l2_visitor = cpu_visitor->l2_visitor(); if (!l1_visitor->is_inconsistent()) { l1_visitor->visit(nodeh, "l1-dcache-line-size"); } static const char* l2_data_cache_line_property_name = NULL; // One the first visit determine the name of the l2 cache line size property and memoize it. if (l2_data_cache_line_property_name == NULL) { assert(!l2_visitor->is_inconsistent(), "First iteration cannot be inconsistent"); l2_data_cache_line_property_name = "l2-cache-line-size"; if (!l2_visitor->visit(nodeh, l2_data_cache_line_property_name)) { l2_data_cache_line_property_name = "l2-dcache-line-size"; l2_visitor->visit(nodeh, l2_data_cache_line_property_name); } } else { if (!l2_visitor->is_inconsistent()) { l2_visitor->visit(nodeh, l2_data_cache_line_property_name); } } if (l1_visitor->is_inconsistent() && l2_visitor->is_inconsistent()) { return PICL_WALK_TERMINATE; } cpu_visitor->_limit--; if (cpu_visitor->_limit <= 0) { return PICL_WALK_TERMINATE; } return PICL_WALK_CONTINUE; } UniqueValueVisitor* l1_visitor() { return &_l1_visitor; } UniqueValueVisitor* l2_visitor() { return &_l2_visitor; } }; int _L1_data_cache_line_size; int _L2_data_cache_line_size; public: static int visit_cpu(picl_nodehdl_t nodeh, void *state) { return CPUVisitor::visit(nodeh, state); } PICL(bool is_fujitsu) : _L1_data_cache_line_size(0), _L2_data_cache_line_size(0), _dl_handle(NULL) { if (!open_library()) { return; } if (_picl_initialize() == PICL_SUCCESS) { picl_nodehdl_t rooth; if (_picl_get_root(&rooth) == PICL_SUCCESS) { const char* cpu_class = "cpu"; // If it's a Fujitsu machine, it's a "core" if (is_fujitsu) { cpu_class = "core"; } CPUVisitor cpu_visitor(this, os::processor_count()); _picl_walk_tree_by_class(rooth, cpu_class, &cpu_visitor, PICL_visit_cpu_helper); if (cpu_visitor.l1_visitor()->is_assigned()) { // Is there a value? _L1_data_cache_line_size = cpu_visitor.l1_visitor()->value(); } if (cpu_visitor.l2_visitor()->is_assigned()) { _L2_data_cache_line_size = cpu_visitor.l2_visitor()->value(); } } _picl_shutdown(); } close_library(); } unsigned int L1_data_cache_line_size() const { return _L1_data_cache_line_size; } unsigned int L2_data_cache_line_size() const { return _L2_data_cache_line_size; } }; extern "C" static int PICL_visit_cpu_helper(picl_nodehdl_t nodeh, void *result) { return PICL::visit_cpu(nodeh, result); } template bool PICL::bind(FuncType& func, const char* name) { func = reinterpret_cast(dlsym(_dl_handle, name)); return func != NULL; } bool PICL::bind_library_functions() { assert(_dl_handle != NULL, "library should be open"); return bind(_picl_initialize, "picl_initialize" ) && bind(_picl_shutdown, "picl_shutdown" ) && bind(_picl_get_root, "picl_get_root" ) && bind(_picl_walk_tree_by_class, "picl_walk_tree_by_class") && bind(_picl_get_prop_by_name, "picl_get_prop_by_name" ) && bind(_picl_get_propval, "picl_get_propval" ) && bind(_picl_get_propinfo, "picl_get_propinfo" ); } bool PICL::open_library() { _dl_handle = dlopen("libpicl.so.1", RTLD_LAZY); if (_dl_handle == NULL) { warning("PICL (libpicl.so.1) is missing. Performance will not be optimal."); return false; } if (!bind_library_functions()) { assert(false, "unexpected PICL API change"); close_library(); return false; } return true; } void PICL::close_library() { assert(_dl_handle != NULL, "library should be open"); dlclose(_dl_handle); _dl_handle = NULL; } // We need to keep these here as long as we have to build on Solaris // versions before 10. #ifndef SI_ARCHITECTURE_32 #define SI_ARCHITECTURE_32 516 /* basic 32-bit SI_ARCHITECTURE */ #endif #ifndef SI_ARCHITECTURE_64 #define SI_ARCHITECTURE_64 517 /* basic 64-bit SI_ARCHITECTURE */ #endif static void do_sysinfo(int si, const char* string, int* features, int mask) { char tmp; size_t bufsize = sysinfo(si, &tmp, 1); // All SI defines used below must be supported. guarantee(bufsize != -1, "must be supported"); char* buf = (char*) os::malloc(bufsize, mtInternal); if (buf == NULL) return; if (sysinfo(si, buf, bufsize) == bufsize) { // Compare the string. if (strcmp(buf, string) == 0) { *features |= mask; } } os::free(buf); } int VM_Version::platform_features(int features) { assert(os::Solaris::supports_getisax(), "getisax() must be available"); // Check 32-bit architecture. do_sysinfo(SI_ARCHITECTURE_32, "sparc", &features, v8_instructions_m); // Check 64-bit architecture. do_sysinfo(SI_ARCHITECTURE_64, "sparcv9", &features, generic_v9_m); // Extract valid instruction set extensions. uint_t avs[2]; uint_t avn = os::Solaris::getisax(avs, 2); assert(avn <= 2, "should return two or less av's"); uint_t av = avs[0]; #ifndef PRODUCT if (PrintMiscellaneous && Verbose) { tty->print("getisax(2) returned: " PTR32_FORMAT, av); if (avn > 1) { tty->print(", " PTR32_FORMAT, avs[1]); } tty->cr(); } #endif if (av & AV_SPARC_MUL32) features |= hardware_mul32_m; if (av & AV_SPARC_DIV32) features |= hardware_div32_m; if (av & AV_SPARC_FSMULD) features |= hardware_fsmuld_m; if (av & AV_SPARC_V8PLUS) features |= v9_instructions_m; if (av & AV_SPARC_POPC) features |= hardware_popc_m; if (av & AV_SPARC_VIS) features |= vis1_instructions_m; if (av & AV_SPARC_VIS2) features |= vis2_instructions_m; if (avn > 1) { uint_t av2 = avs[1]; #ifndef AV2_SPARC_SPARC5 #define AV2_SPARC_SPARC5 0x00000008 /* The 29 new fp and sub instructions */ #endif if (av2 & AV2_SPARC_SPARC5) features |= sparc5_instructions_m; } // We only build on Solaris 10 and up, but some of the values below // are not defined on all versions of Solaris 10, so we define them, // if necessary. #ifndef AV_SPARC_ASI_BLK_INIT #define AV_SPARC_ASI_BLK_INIT 0x0080 /* ASI_BLK_INIT_xxx ASI */ #endif if (av & AV_SPARC_ASI_BLK_INIT) features |= blk_init_instructions_m; #ifndef AV_SPARC_FMAF #define AV_SPARC_FMAF 0x0100 /* Fused Multiply-Add */ #endif if (av & AV_SPARC_FMAF) features |= fmaf_instructions_m; #ifndef AV_SPARC_FMAU #define AV_SPARC_FMAU 0x0200 /* Unfused Multiply-Add */ #endif if (av & AV_SPARC_FMAU) features |= fmau_instructions_m; #ifndef AV_SPARC_VIS3 #define AV_SPARC_VIS3 0x0400 /* VIS3 instruction set extensions */ #endif if (av & AV_SPARC_VIS3) features |= vis3_instructions_m; #ifndef AV_SPARC_CBCOND #define AV_SPARC_CBCOND 0x10000000 /* compare and branch instrs supported */ #endif if (av & AV_SPARC_CBCOND) features |= cbcond_instructions_m; #ifndef AV_SPARC_AES #define AV_SPARC_AES 0x00020000 /* aes instrs supported */ #endif if (av & AV_SPARC_AES) features |= aes_instructions_m; #ifndef AV_SPARC_SHA1 #define AV_SPARC_SHA1 0x00400000 /* sha1 instruction supported */ #endif if (av & AV_SPARC_SHA1) features |= sha1_instruction_m; #ifndef AV_SPARC_SHA256 #define AV_SPARC_SHA256 0x00800000 /* sha256 instruction supported */ #endif if (av & AV_SPARC_SHA256) features |= sha256_instruction_m; #ifndef AV_SPARC_SHA512 #define AV_SPARC_SHA512 0x01000000 /* sha512 instruction supported */ #endif if (av & AV_SPARC_SHA512) features |= sha512_instruction_m; // Determine the machine type. do_sysinfo(SI_MACHINE, "sun4v", &features, sun4v_m); { // Using kstat to determine the machine type. kstat_ctl_t* kc = kstat_open(); kstat_t* ksp = kstat_lookup(kc, (char*)"cpu_info", -1, NULL); const char* implementation = "UNKNOWN"; if (ksp != NULL) { if (kstat_read(kc, ksp, NULL) != -1 && ksp->ks_data != NULL) { kstat_named_t* knm = (kstat_named_t *)ksp->ks_data; for (int i = 0; i < ksp->ks_ndata; i++) { if (strcmp((const char*)&(knm[i].name),"implementation") == 0) { implementation = KSTAT_NAMED_STR_PTR(&knm[i]); #ifndef PRODUCT if (PrintMiscellaneous && Verbose) { tty->print_cr("cpu_info.implementation: %s", implementation); } #endif // Convert to UPPER case before compare. char* impl = os::strdup_check_oom(implementation); for (int i = 0; impl[i] != 0; i++) impl[i] = (char)toupper((uint)impl[i]); if (strstr(impl, "SPARC64") != NULL) { features |= sparc64_family_m; } else if (strstr(impl, "SPARC-M") != NULL) { // M-series SPARC is based on T-series. features |= (M_family_m | T_family_m); } else if (strstr(impl, "SPARC-T") != NULL) { features |= T_family_m; if (strstr(impl, "SPARC-T1") != NULL) { features |= T1_model_m; } } else { if (strstr(impl, "SPARC") == NULL) { #ifndef PRODUCT // kstat on Solaris 8 virtual machines (branded zones) // returns "(unsupported)" implementation. Solaris 8 is not // supported anymore, but include this check to be on the // safe side. warning("kstat cpu_info implementation = '%s', assume generic SPARC", impl); #endif implementation = "SPARC"; } } os::free((void*)impl); break; } } // for( } } assert(strcmp(implementation, "UNKNOWN") != 0, "unknown cpu info (changed kstat interface?)"); kstat_close(kc); } // Figure out cache line sizes using PICL PICL picl((features & sparc64_family_m) != 0); _L1_data_cache_line_size = picl.L1_data_cache_line_size(); _L2_data_cache_line_size = picl.L2_data_cache_line_size(); return features; }