1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "vmreg_x86.inline.hpp"
  42 
  43 
  44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  45 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  46 // fast versions of NegF/NegD and AbsF/AbsD.
  47 
  48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  50   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  51   // of 128-bits operands for SSE instructions.
  52   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  53   // Store the value to a 128-bits operand.
  54   operand[0] = lo;
  55   operand[1] = hi;
  56   return operand;
  57 }
  58 
  59 // Buffer for 128-bits masks used by SSE instructions.
  60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  61 
  62 // Static initialization during VM startup.
  63 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  65 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  67 
  68 
  69 
  70 NEEDS_CLEANUP // remove this definitions ?
  71 const Register IC_Klass    = rax;   // where the IC klass is cached
  72 const Register SYNC_header = rax;   // synchronization header
  73 const Register SHIFT_count = rcx;   // where count for shift operations must be
  74 
  75 #define __ _masm->
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2) {
  82   if (tmp1 == preserve) {
  83     assert_different_registers(tmp1, tmp2, extra);
  84     tmp1 = extra;
  85   } else if (tmp2 == preserve) {
  86     assert_different_registers(tmp1, tmp2, extra);
  87     tmp2 = extra;
  88   }
  89   assert_different_registers(preserve, tmp1, tmp2);
  90 }
  91 
  92 
  93 
  94 static void select_different_registers(Register preserve,
  95                                        Register extra,
  96                                        Register &tmp1,
  97                                        Register &tmp2,
  98                                        Register &tmp3) {
  99   if (tmp1 == preserve) {
 100     assert_different_registers(tmp1, tmp2, tmp3, extra);
 101     tmp1 = extra;
 102   } else if (tmp2 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp2 = extra;
 105   } else if (tmp3 == preserve) {
 106     assert_different_registers(tmp1, tmp2, tmp3, extra);
 107     tmp3 = extra;
 108   }
 109   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 110 }
 111 
 112 
 113 
 114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 115   if (opr->is_constant()) {
 116     LIR_Const* constant = opr->as_constant_ptr();
 117     switch (constant->type()) {
 118       case T_INT: {
 119         return true;
 120       }
 121 
 122       default:
 123         return false;
 124     }
 125   }
 126   return false;
 127 }
 128 
 129 
 130 LIR_Opr LIR_Assembler::receiverOpr() {
 131   return FrameMap::receiver_opr;
 132 }
 133 
 134 LIR_Opr LIR_Assembler::osrBufferPointer() {
 135   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 136 }
 137 
 138 //--------------fpu register translations-----------------------
 139 
 140 
 141 address LIR_Assembler::float_constant(float f) {
 142   address const_addr = __ float_constant(f);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 address LIR_Assembler::double_constant(double d) {
 153   address const_addr = __ double_constant(d);
 154   if (const_addr == NULL) {
 155     bailout("const section overflow");
 156     return __ code()->consts()->start();
 157   } else {
 158     return const_addr;
 159   }
 160 }
 161 
 162 
 163 void LIR_Assembler::set_24bit_FPU() {
 164   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 165 }
 166 
 167 void LIR_Assembler::reset_FPU() {
 168   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 169 }
 170 
 171 void LIR_Assembler::fpop() {
 172   __ fpop();
 173 }
 174 
 175 void LIR_Assembler::fxch(int i) {
 176   __ fxch(i);
 177 }
 178 
 179 void LIR_Assembler::fld(int i) {
 180   __ fld_s(i);
 181 }
 182 
 183 void LIR_Assembler::ffree(int i) {
 184   __ ffree(i);
 185 }
 186 
 187 void LIR_Assembler::breakpoint() {
 188   __ int3();
 189 }
 190 
 191 void LIR_Assembler::push(LIR_Opr opr) {
 192   if (opr->is_single_cpu()) {
 193     __ push_reg(opr->as_register());
 194   } else if (opr->is_double_cpu()) {
 195     NOT_LP64(__ push_reg(opr->as_register_hi()));
 196     __ push_reg(opr->as_register_lo());
 197   } else if (opr->is_stack()) {
 198     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 199   } else if (opr->is_constant()) {
 200     LIR_Const* const_opr = opr->as_constant_ptr();
 201     if (const_opr->type() == T_OBJECT) {
 202       __ push_oop(const_opr->as_jobject());
 203     } else if (const_opr->type() == T_INT) {
 204       __ push_jint(const_opr->as_jint());
 205     } else {
 206       ShouldNotReachHere();
 207     }
 208 
 209   } else {
 210     ShouldNotReachHere();
 211   }
 212 }
 213 
 214 void LIR_Assembler::pop(LIR_Opr opr) {
 215   if (opr->is_single_cpu()) {
 216     __ pop_reg(opr->as_register());
 217   } else {
 218     ShouldNotReachHere();
 219   }
 220 }
 221 
 222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 223   return addr->base()->is_illegal() && addr->index()->is_illegal();
 224 }
 225 
 226 //-------------------------------------------
 227 
 228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 229   return as_Address(addr, rscratch1);
 230 }
 231 
 232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 233   if (addr->base()->is_illegal()) {
 234     assert(addr->index()->is_illegal(), "must be illegal too");
 235     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 236     if (! __ reachable(laddr)) {
 237       __ movptr(tmp, laddr.addr());
 238       Address res(tmp, 0);
 239       return res;
 240     } else {
 241       return __ as_Address(laddr);
 242     }
 243   }
 244 
 245   Register base = addr->base()->as_pointer_register();
 246 
 247   if (addr->index()->is_illegal()) {
 248     return Address( base, addr->disp());
 249   } else if (addr->index()->is_cpu_register()) {
 250     Register index = addr->index()->as_pointer_register();
 251     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 252   } else if (addr->index()->is_constant()) {
 253     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 254     assert(Assembler::is_simm32(addr_offset), "must be");
 255 
 256     return Address(base, addr_offset);
 257   } else {
 258     Unimplemented();
 259     return Address();
 260   }
 261 }
 262 
 263 
 264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 265   Address base = as_Address(addr);
 266   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 267 }
 268 
 269 
 270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 271   return as_Address(addr);
 272 }
 273 
 274 
 275 void LIR_Assembler::osr_entry() {
 276   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 277   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 278   ValueStack* entry_state = osr_entry->state();
 279   int number_of_locks = entry_state->locks_size();
 280 
 281   // we jump here if osr happens with the interpreter
 282   // state set up to continue at the beginning of the
 283   // loop that triggered osr - in particular, we have
 284   // the following registers setup:
 285   //
 286   // rcx: osr buffer
 287   //
 288 
 289   // build frame
 290   ciMethod* m = compilation()->method();
 291   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 292 
 293   // OSR buffer is
 294   //
 295   // locals[nlocals-1..0]
 296   // monitors[0..number_of_locks]
 297   //
 298   // locals is a direct copy of the interpreter frame so in the osr buffer
 299   // so first slot in the local array is the last local from the interpreter
 300   // and last slot is local[0] (receiver) from the interpreter
 301   //
 302   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 303   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 304   // in the interpreter frame (the method lock if a sync method)
 305 
 306   // Initialize monitors in the compiled activation.
 307   //   rcx: pointer to osr buffer
 308   //
 309   // All other registers are dead at this point and the locals will be
 310   // copied into place by code emitted in the IR.
 311 
 312   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 313   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 314     int monitor_offset = BytesPerWord * method()->max_locals() +
 315       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 316     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 317     // the OSR buffer using 2 word entries: first the lock and then
 318     // the oop.
 319     for (int i = 0; i < number_of_locks; i++) {
 320       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 321 #ifdef ASSERT
 322       // verify the interpreter's monitor has a non-null object
 323       {
 324         Label L;
 325         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 326         __ jcc(Assembler::notZero, L);
 327         __ stop("locked object is NULL");
 328         __ bind(L);
 329       }
 330 #endif
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 332       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 334       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 335     }
 336   }
 337 }
 338 
 339 
 340 // inline cache check; done before the frame is built.
 341 int LIR_Assembler::check_icache() {
 342   Register receiver = FrameMap::receiver_opr->as_register();
 343   Register ic_klass = IC_Klass;
 344   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 345   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 346   if (!do_post_padding) {
 347     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 348     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 349   }
 350   int offset = __ offset();
 351   __ inline_cache_check(receiver, IC_Klass);
 352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 353   if (do_post_padding) {
 354     // force alignment after the cache check.
 355     // It's been verified to be aligned if !VerifyOops
 356     __ align(CodeEntryAlignment);
 357   }
 358   return offset;
 359 }
 360 
 361 
 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 363   jobject o = NULL;
 364   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 365   __ movoop(reg, o);
 366   patching_epilog(patch, lir_patch_normal, reg, info);
 367 }
 368 
 369 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 370   Metadata* o = NULL;
 371   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 372   __ mov_metadata(reg, o);
 373   patching_epilog(patch, lir_patch_normal, reg, info);
 374 }
 375 
 376 // This specifies the rsp decrement needed to build the frame
 377 int LIR_Assembler::initial_frame_size_in_bytes() const {
 378   // if rounding, must let FrameMap know!
 379 
 380   // The frame_map records size in slots (32bit word)
 381 
 382   // subtract two words to account for return address and link
 383   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 384 }
 385 
 386 
 387 int LIR_Assembler::emit_exception_handler() {
 388   // if the last instruction is a call (typically to do a throw which
 389   // is coming at the end after block reordering) the return address
 390   // must still point into the code area in order to avoid assertion
 391   // failures when searching for the corresponding bci => add a nop
 392   // (was bug 5/14/1999 - gri)
 393   __ nop();
 394 
 395   // generate code for exception handler
 396   address handler_base = __ start_a_stub(exception_handler_size());
 397   if (handler_base == NULL) {
 398     // not enough space left for the handler
 399     bailout("exception handler overflow");
 400     return -1;
 401   }
 402 
 403   int offset = code_offset();
 404 
 405   // the exception oop and pc are in rax, and rdx
 406   // no other registers need to be preserved, so invalidate them
 407   __ invalidate_registers(false, true, true, false, true, true);
 408 
 409   // check that there is really an exception
 410   __ verify_not_null_oop(rax);
 411 
 412   // search an exception handler (rax: exception oop, rdx: throwing pc)
 413   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 414   __ should_not_reach_here();
 415   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 416   __ end_a_stub();
 417 
 418   return offset;
 419 }
 420 
 421 
 422 // Emit the code to remove the frame from the stack in the exception
 423 // unwind path.
 424 int LIR_Assembler::emit_unwind_handler() {
 425 #ifndef PRODUCT
 426   if (CommentedAssembly) {
 427     _masm->block_comment("Unwind handler");
 428   }
 429 #endif
 430 
 431   int offset = code_offset();
 432 
 433   // Fetch the exception from TLS and clear out exception related thread state
 434   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 435   NOT_LP64(__ get_thread(rsi));
 436   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 437   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 438   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 439 
 440   __ bind(_unwind_handler_entry);
 441   __ verify_not_null_oop(rax);
 442   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 443     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 444   }
 445 
 446   // Preform needed unlocking
 447   MonitorExitStub* stub = NULL;
 448   if (method()->is_synchronized()) {
 449     monitor_address(0, FrameMap::rax_opr);
 450     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 451     __ unlock_object(rdi, rsi, rax, *stub->entry());
 452     __ bind(*stub->continuation());
 453   }
 454 
 455   if (compilation()->env()->dtrace_method_probes()) {
 456 #ifdef _LP64
 457     __ mov(rdi, r15_thread);
 458     __ mov_metadata(rsi, method()->constant_encoding());
 459 #else
 460     __ get_thread(rax);
 461     __ movptr(Address(rsp, 0), rax);
 462     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 463 #endif
 464     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 465   }
 466 
 467   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 468     __ mov(rax, rbx);  // Restore the exception
 469   }
 470 
 471   // remove the activation and dispatch to the unwind handler
 472   __ remove_frame(initial_frame_size_in_bytes());
 473   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 474 
 475   // Emit the slow path assembly
 476   if (stub != NULL) {
 477     stub->emit_code(this);
 478   }
 479 
 480   return offset;
 481 }
 482 
 483 
 484 int LIR_Assembler::emit_deopt_handler() {
 485   // if the last instruction is a call (typically to do a throw which
 486   // is coming at the end after block reordering) the return address
 487   // must still point into the code area in order to avoid assertion
 488   // failures when searching for the corresponding bci => add a nop
 489   // (was bug 5/14/1999 - gri)
 490   __ nop();
 491 
 492   // generate code for exception handler
 493   address handler_base = __ start_a_stub(deopt_handler_size());
 494   if (handler_base == NULL) {
 495     // not enough space left for the handler
 496     bailout("deopt handler overflow");
 497     return -1;
 498   }
 499 
 500   int offset = code_offset();
 501   InternalAddress here(__ pc());
 502 
 503   __ pushptr(here.addr());
 504   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 505   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 506   __ end_a_stub();
 507 
 508   return offset;
 509 }
 510 
 511 
 512 void LIR_Assembler::return_op(LIR_Opr result) {
 513   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 514   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 515     assert(result->fpu() == 0, "result must already be on TOS");
 516   }
 517 
 518   // Pop the stack before the safepoint code
 519   __ remove_frame(initial_frame_size_in_bytes());
 520 
 521   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 522     __ reserved_stack_check();
 523   }
 524 
 525   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 526 
 527   // Note: we do not need to round double result; float result has the right precision
 528   // the poll sets the condition code, but no data registers
 529   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 530 
 531   if (Assembler::is_polling_page_far()) {
 532     __ lea(rscratch1, polling_page);
 533     __ relocate(relocInfo::poll_return_type);
 534     __ testl(rax, Address(rscratch1, 0));
 535   } else {
 536     __ testl(rax, polling_page);
 537   }
 538   __ ret(0);
 539 }
 540 
 541 
 542 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 543   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 544   guarantee(info != NULL, "Shouldn't be NULL");
 545   int offset = __ offset();
 546   if (Assembler::is_polling_page_far()) {
 547     __ lea(rscratch1, polling_page);
 548     offset = __ offset();
 549     add_debug_info_for_branch(info);
 550     __ relocate(relocInfo::poll_type);
 551     __ testl(rax, Address(rscratch1, 0));
 552   } else {
 553     add_debug_info_for_branch(info);
 554     __ testl(rax, polling_page);
 555   }
 556   return offset;
 557 }
 558 
 559 
 560 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 561   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 562 }
 563 
 564 void LIR_Assembler::swap_reg(Register a, Register b) {
 565   __ xchgptr(a, b);
 566 }
 567 
 568 
 569 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 570   assert(src->is_constant(), "should not call otherwise");
 571   assert(dest->is_register(), "should not call otherwise");
 572   LIR_Const* c = src->as_constant_ptr();
 573 
 574   switch (c->type()) {
 575     case T_INT: {
 576       assert(patch_code == lir_patch_none, "no patching handled here");
 577       __ movl(dest->as_register(), c->as_jint());
 578       break;
 579     }
 580 
 581     case T_ADDRESS: {
 582       assert(patch_code == lir_patch_none, "no patching handled here");
 583       __ movptr(dest->as_register(), c->as_jint());
 584       break;
 585     }
 586 
 587     case T_LONG: {
 588       assert(patch_code == lir_patch_none, "no patching handled here");
 589 #ifdef _LP64
 590       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 591 #else
 592       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 593       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 594 #endif // _LP64
 595       break;
 596     }
 597 
 598     case T_OBJECT: {
 599       if (patch_code != lir_patch_none) {
 600         jobject2reg_with_patching(dest->as_register(), info);
 601       } else {
 602         __ movoop(dest->as_register(), c->as_jobject());
 603       }
 604       break;
 605     }
 606 
 607     case T_METADATA: {
 608       if (patch_code != lir_patch_none) {
 609         klass2reg_with_patching(dest->as_register(), info);
 610       } else {
 611         __ mov_metadata(dest->as_register(), c->as_metadata());
 612       }
 613       break;
 614     }
 615 
 616     case T_FLOAT: {
 617       if (dest->is_single_xmm()) {
 618         if (c->is_zero_float()) {
 619           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 620         } else {
 621           __ movflt(dest->as_xmm_float_reg(),
 622                    InternalAddress(float_constant(c->as_jfloat())));
 623         }
 624       } else {
 625         assert(dest->is_single_fpu(), "must be");
 626         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 627         if (c->is_zero_float()) {
 628           __ fldz();
 629         } else if (c->is_one_float()) {
 630           __ fld1();
 631         } else {
 632           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 633         }
 634       }
 635       break;
 636     }
 637 
 638     case T_DOUBLE: {
 639       if (dest->is_double_xmm()) {
 640         if (c->is_zero_double()) {
 641           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 642         } else {
 643           __ movdbl(dest->as_xmm_double_reg(),
 644                     InternalAddress(double_constant(c->as_jdouble())));
 645         }
 646       } else {
 647         assert(dest->is_double_fpu(), "must be");
 648         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 649         if (c->is_zero_double()) {
 650           __ fldz();
 651         } else if (c->is_one_double()) {
 652           __ fld1();
 653         } else {
 654           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 655         }
 656       }
 657       break;
 658     }
 659 
 660     default:
 661       ShouldNotReachHere();
 662   }
 663 }
 664 
 665 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 666   assert(src->is_constant(), "should not call otherwise");
 667   assert(dest->is_stack(), "should not call otherwise");
 668   LIR_Const* c = src->as_constant_ptr();
 669 
 670   switch (c->type()) {
 671     case T_INT:  // fall through
 672     case T_FLOAT:
 673       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 674       break;
 675 
 676     case T_ADDRESS:
 677       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 678       break;
 679 
 680     case T_OBJECT:
 681       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 682       break;
 683 
 684     case T_LONG:  // fall through
 685     case T_DOUBLE:
 686 #ifdef _LP64
 687       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 688                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 689 #else
 690       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 691                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 692       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 693                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 694 #endif // _LP64
 695       break;
 696 
 697     default:
 698       ShouldNotReachHere();
 699   }
 700 }
 701 
 702 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 703   assert(src->is_constant(), "should not call otherwise");
 704   assert(dest->is_address(), "should not call otherwise");
 705   LIR_Const* c = src->as_constant_ptr();
 706   LIR_Address* addr = dest->as_address_ptr();
 707 
 708   int null_check_here = code_offset();
 709   switch (type) {
 710     case T_INT:    // fall through
 711     case T_FLOAT:
 712       __ movl(as_Address(addr), c->as_jint_bits());
 713       break;
 714 
 715     case T_ADDRESS:
 716       __ movptr(as_Address(addr), c->as_jint_bits());
 717       break;
 718 
 719     case T_OBJECT:  // fall through
 720     case T_ARRAY:
 721       if (c->as_jobject() == NULL) {
 722         if (UseCompressedOops && !wide) {
 723           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 724         } else {
 725 #ifdef _LP64
 726           __ xorptr(rscratch1, rscratch1);
 727           null_check_here = code_offset();
 728           __ movptr(as_Address(addr), rscratch1);
 729 #else
 730           __ movptr(as_Address(addr), NULL_WORD);
 731 #endif
 732         }
 733       } else {
 734         if (is_literal_address(addr)) {
 735           ShouldNotReachHere();
 736           __ movoop(as_Address(addr, noreg), c->as_jobject());
 737         } else {
 738 #ifdef _LP64
 739           __ movoop(rscratch1, c->as_jobject());
 740           if (UseCompressedOops && !wide) {
 741             __ encode_heap_oop(rscratch1);
 742             null_check_here = code_offset();
 743             __ movl(as_Address_lo(addr), rscratch1);
 744           } else {
 745             null_check_here = code_offset();
 746             __ movptr(as_Address_lo(addr), rscratch1);
 747           }
 748 #else
 749           __ movoop(as_Address(addr), c->as_jobject());
 750 #endif
 751         }
 752       }
 753       break;
 754 
 755     case T_LONG:    // fall through
 756     case T_DOUBLE:
 757 #ifdef _LP64
 758       if (is_literal_address(addr)) {
 759         ShouldNotReachHere();
 760         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 761       } else {
 762         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 763         null_check_here = code_offset();
 764         __ movptr(as_Address_lo(addr), r10);
 765       }
 766 #else
 767       // Always reachable in 32bit so this doesn't produce useless move literal
 768       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 769       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 770 #endif // _LP64
 771       break;
 772 
 773     case T_BOOLEAN: // fall through
 774     case T_BYTE:
 775       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 776       break;
 777 
 778     case T_CHAR:    // fall through
 779     case T_SHORT:
 780       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 781       break;
 782 
 783     default:
 784       ShouldNotReachHere();
 785   };
 786 
 787   if (info != NULL) {
 788     add_debug_info_for_null_check(null_check_here, info);
 789   }
 790 }
 791 
 792 
 793 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 794   assert(src->is_register(), "should not call otherwise");
 795   assert(dest->is_register(), "should not call otherwise");
 796 
 797   // move between cpu-registers
 798   if (dest->is_single_cpu()) {
 799 #ifdef _LP64
 800     if (src->type() == T_LONG) {
 801       // Can do LONG -> OBJECT
 802       move_regs(src->as_register_lo(), dest->as_register());
 803       return;
 804     }
 805 #endif
 806     assert(src->is_single_cpu(), "must match");
 807     if (src->type() == T_OBJECT) {
 808       __ verify_oop(src->as_register());
 809     }
 810     move_regs(src->as_register(), dest->as_register());
 811 
 812   } else if (dest->is_double_cpu()) {
 813 #ifdef _LP64
 814     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 815       // Surprising to me but we can see move of a long to t_object
 816       __ verify_oop(src->as_register());
 817       move_regs(src->as_register(), dest->as_register_lo());
 818       return;
 819     }
 820 #endif
 821     assert(src->is_double_cpu(), "must match");
 822     Register f_lo = src->as_register_lo();
 823     Register f_hi = src->as_register_hi();
 824     Register t_lo = dest->as_register_lo();
 825     Register t_hi = dest->as_register_hi();
 826 #ifdef _LP64
 827     assert(f_hi == f_lo, "must be same");
 828     assert(t_hi == t_lo, "must be same");
 829     move_regs(f_lo, t_lo);
 830 #else
 831     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 832 
 833 
 834     if (f_lo == t_hi && f_hi == t_lo) {
 835       swap_reg(f_lo, f_hi);
 836     } else if (f_hi == t_lo) {
 837       assert(f_lo != t_hi, "overwriting register");
 838       move_regs(f_hi, t_hi);
 839       move_regs(f_lo, t_lo);
 840     } else {
 841       assert(f_hi != t_lo, "overwriting register");
 842       move_regs(f_lo, t_lo);
 843       move_regs(f_hi, t_hi);
 844     }
 845 #endif // LP64
 846 
 847     // special moves from fpu-register to xmm-register
 848     // necessary for method results
 849   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 850     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 851     __ fld_s(Address(rsp, 0));
 852   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 853     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 854     __ fld_d(Address(rsp, 0));
 855   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 856     __ fstp_s(Address(rsp, 0));
 857     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 858   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 859     __ fstp_d(Address(rsp, 0));
 860     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 861 
 862     // move between xmm-registers
 863   } else if (dest->is_single_xmm()) {
 864     assert(src->is_single_xmm(), "must match");
 865     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 866   } else if (dest->is_double_xmm()) {
 867     assert(src->is_double_xmm(), "must match");
 868     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 869 
 870     // move between fpu-registers (no instruction necessary because of fpu-stack)
 871   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 872     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 873     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 874   } else {
 875     ShouldNotReachHere();
 876   }
 877 }
 878 
 879 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 880   assert(src->is_register(), "should not call otherwise");
 881   assert(dest->is_stack(), "should not call otherwise");
 882 
 883   if (src->is_single_cpu()) {
 884     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 885     if (type == T_OBJECT || type == T_ARRAY) {
 886       __ verify_oop(src->as_register());
 887       __ movptr (dst, src->as_register());
 888     } else if (type == T_METADATA) {
 889       __ movptr (dst, src->as_register());
 890     } else {
 891       __ movl (dst, src->as_register());
 892     }
 893 
 894   } else if (src->is_double_cpu()) {
 895     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 896     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 897     __ movptr (dstLO, src->as_register_lo());
 898     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 899 
 900   } else if (src->is_single_xmm()) {
 901     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 902     __ movflt(dst_addr, src->as_xmm_float_reg());
 903 
 904   } else if (src->is_double_xmm()) {
 905     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 906     __ movdbl(dst_addr, src->as_xmm_double_reg());
 907 
 908   } else if (src->is_single_fpu()) {
 909     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 910     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 911     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 912     else                   __ fst_s  (dst_addr);
 913 
 914   } else if (src->is_double_fpu()) {
 915     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 916     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 917     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 918     else                   __ fst_d  (dst_addr);
 919 
 920   } else {
 921     ShouldNotReachHere();
 922   }
 923 }
 924 
 925 
 926 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 927   LIR_Address* to_addr = dest->as_address_ptr();
 928   PatchingStub* patch = NULL;
 929   Register compressed_src = rscratch1;
 930 
 931   if (type == T_ARRAY || type == T_OBJECT) {
 932     __ verify_oop(src->as_register());
 933 #ifdef _LP64
 934     if (UseCompressedOops && !wide) {
 935       __ movptr(compressed_src, src->as_register());
 936       __ encode_heap_oop(compressed_src);
 937       if (patch_code != lir_patch_none) {
 938         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 939       }
 940     }
 941 #endif
 942   }
 943 
 944   if (patch_code != lir_patch_none) {
 945     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 946     Address toa = as_Address(to_addr);
 947     assert(toa.disp() != 0, "must have");
 948   }
 949 
 950   int null_check_here = code_offset();
 951   switch (type) {
 952     case T_FLOAT: {
 953       if (src->is_single_xmm()) {
 954         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 955       } else {
 956         assert(src->is_single_fpu(), "must be");
 957         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 958         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 959         else                    __ fst_s (as_Address(to_addr));
 960       }
 961       break;
 962     }
 963 
 964     case T_DOUBLE: {
 965       if (src->is_double_xmm()) {
 966         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 967       } else {
 968         assert(src->is_double_fpu(), "must be");
 969         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 970         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
 971         else                    __ fst_d (as_Address(to_addr));
 972       }
 973       break;
 974     }
 975 
 976     case T_ARRAY:   // fall through
 977     case T_OBJECT:  // fall through
 978       if (UseCompressedOops && !wide) {
 979         __ movl(as_Address(to_addr), compressed_src);
 980       } else {
 981         __ movptr(as_Address(to_addr), src->as_register());
 982       }
 983       break;
 984     case T_METADATA:
 985       // We get here to store a method pointer to the stack to pass to
 986       // a dtrace runtime call. This can't work on 64 bit with
 987       // compressed klass ptrs: T_METADATA can be a compressed klass
 988       // ptr or a 64 bit method pointer.
 989       LP64_ONLY(ShouldNotReachHere());
 990       __ movptr(as_Address(to_addr), src->as_register());
 991       break;
 992     case T_ADDRESS:
 993       __ movptr(as_Address(to_addr), src->as_register());
 994       break;
 995     case T_INT:
 996       __ movl(as_Address(to_addr), src->as_register());
 997       break;
 998 
 999     case T_LONG: {
1000       Register from_lo = src->as_register_lo();
1001       Register from_hi = src->as_register_hi();
1002 #ifdef _LP64
1003       __ movptr(as_Address_lo(to_addr), from_lo);
1004 #else
1005       Register base = to_addr->base()->as_register();
1006       Register index = noreg;
1007       if (to_addr->index()->is_register()) {
1008         index = to_addr->index()->as_register();
1009       }
1010       if (base == from_lo || index == from_lo) {
1011         assert(base != from_hi, "can't be");
1012         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1013         __ movl(as_Address_hi(to_addr), from_hi);
1014         if (patch != NULL) {
1015           patching_epilog(patch, lir_patch_high, base, info);
1016           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1017           patch_code = lir_patch_low;
1018         }
1019         __ movl(as_Address_lo(to_addr), from_lo);
1020       } else {
1021         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1022         __ movl(as_Address_lo(to_addr), from_lo);
1023         if (patch != NULL) {
1024           patching_epilog(patch, lir_patch_low, base, info);
1025           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1026           patch_code = lir_patch_high;
1027         }
1028         __ movl(as_Address_hi(to_addr), from_hi);
1029       }
1030 #endif // _LP64
1031       break;
1032     }
1033 
1034     case T_BYTE:    // fall through
1035     case T_BOOLEAN: {
1036       Register src_reg = src->as_register();
1037       Address dst_addr = as_Address(to_addr);
1038       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1039       __ movb(dst_addr, src_reg);
1040       break;
1041     }
1042 
1043     case T_CHAR:    // fall through
1044     case T_SHORT:
1045       __ movw(as_Address(to_addr), src->as_register());
1046       break;
1047 
1048     default:
1049       ShouldNotReachHere();
1050   }
1051   if (info != NULL) {
1052     add_debug_info_for_null_check(null_check_here, info);
1053   }
1054 
1055   if (patch_code != lir_patch_none) {
1056     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1057   }
1058 }
1059 
1060 
1061 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1062   assert(src->is_stack(), "should not call otherwise");
1063   assert(dest->is_register(), "should not call otherwise");
1064 
1065   if (dest->is_single_cpu()) {
1066     if (type == T_ARRAY || type == T_OBJECT) {
1067       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1068       __ verify_oop(dest->as_register());
1069     } else if (type == T_METADATA) {
1070       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1071     } else {
1072       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1073     }
1074 
1075   } else if (dest->is_double_cpu()) {
1076     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1077     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1078     __ movptr(dest->as_register_lo(), src_addr_LO);
1079     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1080 
1081   } else if (dest->is_single_xmm()) {
1082     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1083     __ movflt(dest->as_xmm_float_reg(), src_addr);
1084 
1085   } else if (dest->is_double_xmm()) {
1086     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1087     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1088 
1089   } else if (dest->is_single_fpu()) {
1090     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1091     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1092     __ fld_s(src_addr);
1093 
1094   } else if (dest->is_double_fpu()) {
1095     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1096     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1097     __ fld_d(src_addr);
1098 
1099   } else {
1100     ShouldNotReachHere();
1101   }
1102 }
1103 
1104 
1105 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1106   if (src->is_single_stack()) {
1107     if (type == T_OBJECT || type == T_ARRAY) {
1108       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1109       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1110     } else {
1111 #ifndef _LP64
1112       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1113       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1114 #else
1115       //no pushl on 64bits
1116       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1117       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1118 #endif
1119     }
1120 
1121   } else if (src->is_double_stack()) {
1122 #ifdef _LP64
1123     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1124     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1125 #else
1126     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1127     // push and pop the part at src + wordSize, adding wordSize for the previous push
1128     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1129     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1130     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1131 #endif // _LP64
1132 
1133   } else {
1134     ShouldNotReachHere();
1135   }
1136 }
1137 
1138 
1139 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1140   assert(src->is_address(), "should not call otherwise");
1141   assert(dest->is_register(), "should not call otherwise");
1142 
1143   LIR_Address* addr = src->as_address_ptr();
1144   Address from_addr = as_Address(addr);
1145 
1146   if (addr->base()->type() == T_OBJECT) {
1147     __ verify_oop(addr->base()->as_pointer_register());
1148   }
1149 
1150   switch (type) {
1151     case T_BOOLEAN: // fall through
1152     case T_BYTE:    // fall through
1153     case T_CHAR:    // fall through
1154     case T_SHORT:
1155       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1156         // on pre P6 processors we may get partial register stalls
1157         // so blow away the value of to_rinfo before loading a
1158         // partial word into it.  Do it here so that it precedes
1159         // the potential patch point below.
1160         __ xorptr(dest->as_register(), dest->as_register());
1161       }
1162       break;
1163    default:
1164      break;
1165   }
1166 
1167   PatchingStub* patch = NULL;
1168   if (patch_code != lir_patch_none) {
1169     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1170     assert(from_addr.disp() != 0, "must have");
1171   }
1172   if (info != NULL) {
1173     add_debug_info_for_null_check_here(info);
1174   }
1175 
1176   switch (type) {
1177     case T_FLOAT: {
1178       if (dest->is_single_xmm()) {
1179         __ movflt(dest->as_xmm_float_reg(), from_addr);
1180       } else {
1181         assert(dest->is_single_fpu(), "must be");
1182         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1183         __ fld_s(from_addr);
1184       }
1185       break;
1186     }
1187 
1188     case T_DOUBLE: {
1189       if (dest->is_double_xmm()) {
1190         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1191       } else {
1192         assert(dest->is_double_fpu(), "must be");
1193         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1194         __ fld_d(from_addr);
1195       }
1196       break;
1197     }
1198 
1199     case T_OBJECT:  // fall through
1200     case T_ARRAY:   // fall through
1201       if (UseCompressedOops && !wide) {
1202         __ movl(dest->as_register(), from_addr);
1203       } else {
1204         __ movptr(dest->as_register(), from_addr);
1205       }
1206       break;
1207 
1208     case T_ADDRESS:
1209       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1210         __ movl(dest->as_register(), from_addr);
1211       } else {
1212         __ movptr(dest->as_register(), from_addr);
1213       }
1214       break;
1215     case T_INT:
1216       __ movl(dest->as_register(), from_addr);
1217       break;
1218 
1219     case T_LONG: {
1220       Register to_lo = dest->as_register_lo();
1221       Register to_hi = dest->as_register_hi();
1222 #ifdef _LP64
1223       __ movptr(to_lo, as_Address_lo(addr));
1224 #else
1225       Register base = addr->base()->as_register();
1226       Register index = noreg;
1227       if (addr->index()->is_register()) {
1228         index = addr->index()->as_register();
1229       }
1230       if ((base == to_lo && index == to_hi) ||
1231           (base == to_hi && index == to_lo)) {
1232         // addresses with 2 registers are only formed as a result of
1233         // array access so this code will never have to deal with
1234         // patches or null checks.
1235         assert(info == NULL && patch == NULL, "must be");
1236         __ lea(to_hi, as_Address(addr));
1237         __ movl(to_lo, Address(to_hi, 0));
1238         __ movl(to_hi, Address(to_hi, BytesPerWord));
1239       } else if (base == to_lo || index == to_lo) {
1240         assert(base != to_hi, "can't be");
1241         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1242         __ movl(to_hi, as_Address_hi(addr));
1243         if (patch != NULL) {
1244           patching_epilog(patch, lir_patch_high, base, info);
1245           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1246           patch_code = lir_patch_low;
1247         }
1248         __ movl(to_lo, as_Address_lo(addr));
1249       } else {
1250         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1251         __ movl(to_lo, as_Address_lo(addr));
1252         if (patch != NULL) {
1253           patching_epilog(patch, lir_patch_low, base, info);
1254           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1255           patch_code = lir_patch_high;
1256         }
1257         __ movl(to_hi, as_Address_hi(addr));
1258       }
1259 #endif // _LP64
1260       break;
1261     }
1262 
1263     case T_BOOLEAN: // fall through
1264     case T_BYTE: {
1265       Register dest_reg = dest->as_register();
1266       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1267       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1268         __ movsbl(dest_reg, from_addr);
1269       } else {
1270         __ movb(dest_reg, from_addr);
1271         __ shll(dest_reg, 24);
1272         __ sarl(dest_reg, 24);
1273       }
1274       break;
1275     }
1276 
1277     case T_CHAR: {
1278       Register dest_reg = dest->as_register();
1279       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1280       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1281         __ movzwl(dest_reg, from_addr);
1282       } else {
1283         __ movw(dest_reg, from_addr);
1284       }
1285       break;
1286     }
1287 
1288     case T_SHORT: {
1289       Register dest_reg = dest->as_register();
1290       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1291         __ movswl(dest_reg, from_addr);
1292       } else {
1293         __ movw(dest_reg, from_addr);
1294         __ shll(dest_reg, 16);
1295         __ sarl(dest_reg, 16);
1296       }
1297       break;
1298     }
1299 
1300     default:
1301       ShouldNotReachHere();
1302   }
1303 
1304   if (patch != NULL) {
1305     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1306   }
1307 
1308   if (type == T_ARRAY || type == T_OBJECT) {
1309 #ifdef _LP64
1310     if (UseCompressedOops && !wide) {
1311       __ decode_heap_oop(dest->as_register());
1312     }
1313 #endif
1314     __ verify_oop(dest->as_register());
1315   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1316 #ifdef _LP64
1317     if (UseCompressedClassPointers) {
1318       __ decode_klass_not_null(dest->as_register());
1319     }
1320 #endif
1321   }
1322 }
1323 
1324 
1325 NEEDS_CLEANUP; // This could be static?
1326 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1327   int elem_size = type2aelembytes(type);
1328   switch (elem_size) {
1329     case 1: return Address::times_1;
1330     case 2: return Address::times_2;
1331     case 4: return Address::times_4;
1332     case 8: return Address::times_8;
1333   }
1334   ShouldNotReachHere();
1335   return Address::no_scale;
1336 }
1337 
1338 
1339 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1340   switch (op->code()) {
1341     case lir_idiv:
1342     case lir_irem:
1343       arithmetic_idiv(op->code(),
1344                       op->in_opr1(),
1345                       op->in_opr2(),
1346                       op->in_opr3(),
1347                       op->result_opr(),
1348                       op->info());
1349       break;
1350     case lir_fmad:
1351       __ fmad(op->result_opr()->as_xmm_double_reg(),
1352               op->in_opr1()->as_xmm_double_reg(),
1353               op->in_opr2()->as_xmm_double_reg(),
1354               op->in_opr3()->as_xmm_double_reg());
1355       break;
1356     case lir_fmaf:
1357       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1358               op->in_opr1()->as_xmm_float_reg(),
1359               op->in_opr2()->as_xmm_float_reg(),
1360               op->in_opr3()->as_xmm_float_reg());
1361       break;
1362     default:      ShouldNotReachHere(); break;
1363   }
1364 }
1365 
1366 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1367 #ifdef ASSERT
1368   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1369   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1370   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1371 #endif
1372 
1373   if (op->cond() == lir_cond_always) {
1374     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1375     __ jmp (*(op->label()));
1376   } else {
1377     Assembler::Condition acond = Assembler::zero;
1378     if (op->code() == lir_cond_float_branch) {
1379       assert(op->ublock() != NULL, "must have unordered successor");
1380       __ jcc(Assembler::parity, *(op->ublock()->label()));
1381       switch(op->cond()) {
1382         case lir_cond_equal:        acond = Assembler::equal;      break;
1383         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1384         case lir_cond_less:         acond = Assembler::below;      break;
1385         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1386         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1387         case lir_cond_greater:      acond = Assembler::above;      break;
1388         default:                         ShouldNotReachHere();
1389       }
1390     } else {
1391       switch (op->cond()) {
1392         case lir_cond_equal:        acond = Assembler::equal;       break;
1393         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1394         case lir_cond_less:         acond = Assembler::less;        break;
1395         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1396         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1397         case lir_cond_greater:      acond = Assembler::greater;     break;
1398         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1399         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1400         default:                         ShouldNotReachHere();
1401       }
1402     }
1403     __ jcc(acond,*(op->label()));
1404   }
1405 }
1406 
1407 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1408   LIR_Opr src  = op->in_opr();
1409   LIR_Opr dest = op->result_opr();
1410 
1411   switch (op->bytecode()) {
1412     case Bytecodes::_i2l:
1413 #ifdef _LP64
1414       __ movl2ptr(dest->as_register_lo(), src->as_register());
1415 #else
1416       move_regs(src->as_register(), dest->as_register_lo());
1417       move_regs(src->as_register(), dest->as_register_hi());
1418       __ sarl(dest->as_register_hi(), 31);
1419 #endif // LP64
1420       break;
1421 
1422     case Bytecodes::_l2i:
1423 #ifdef _LP64
1424       __ movl(dest->as_register(), src->as_register_lo());
1425 #else
1426       move_regs(src->as_register_lo(), dest->as_register());
1427 #endif
1428       break;
1429 
1430     case Bytecodes::_i2b:
1431       move_regs(src->as_register(), dest->as_register());
1432       __ sign_extend_byte(dest->as_register());
1433       break;
1434 
1435     case Bytecodes::_i2c:
1436       move_regs(src->as_register(), dest->as_register());
1437       __ andl(dest->as_register(), 0xFFFF);
1438       break;
1439 
1440     case Bytecodes::_i2s:
1441       move_regs(src->as_register(), dest->as_register());
1442       __ sign_extend_short(dest->as_register());
1443       break;
1444 
1445 
1446     case Bytecodes::_f2d:
1447     case Bytecodes::_d2f:
1448       if (dest->is_single_xmm()) {
1449         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1450       } else if (dest->is_double_xmm()) {
1451         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1452       } else {
1453         assert(src->fpu() == dest->fpu(), "register must be equal");
1454         // do nothing (float result is rounded later through spilling)
1455       }
1456       break;
1457 
1458     case Bytecodes::_i2f:
1459     case Bytecodes::_i2d:
1460       if (dest->is_single_xmm()) {
1461         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1462       } else if (dest->is_double_xmm()) {
1463         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1464       } else {
1465         assert(dest->fpu() == 0, "result must be on TOS");
1466         __ movl(Address(rsp, 0), src->as_register());
1467         __ fild_s(Address(rsp, 0));
1468       }
1469       break;
1470 
1471     case Bytecodes::_f2i:
1472     case Bytecodes::_d2i:
1473       if (src->is_single_xmm()) {
1474         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1475       } else if (src->is_double_xmm()) {
1476         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1477       } else {
1478         assert(src->fpu() == 0, "input must be on TOS");
1479         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1480         __ fist_s(Address(rsp, 0));
1481         __ movl(dest->as_register(), Address(rsp, 0));
1482         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1483       }
1484 
1485       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1486       assert(op->stub() != NULL, "stub required");
1487       __ cmpl(dest->as_register(), 0x80000000);
1488       __ jcc(Assembler::equal, *op->stub()->entry());
1489       __ bind(*op->stub()->continuation());
1490       break;
1491 
1492     case Bytecodes::_l2f:
1493     case Bytecodes::_l2d:
1494       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1495       assert(dest->fpu() == 0, "result must be on TOS");
1496 
1497       __ movptr(Address(rsp, 0),            src->as_register_lo());
1498       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1499       __ fild_d(Address(rsp, 0));
1500       // float result is rounded later through spilling
1501       break;
1502 
1503     case Bytecodes::_f2l:
1504     case Bytecodes::_d2l:
1505       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1506       assert(src->fpu() == 0, "input must be on TOS");
1507       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1508 
1509       // instruction sequence too long to inline it here
1510       {
1511         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1512       }
1513       break;
1514 
1515     default: ShouldNotReachHere();
1516   }
1517 }
1518 
1519 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1520   if (op->init_check()) {
1521     __ cmpb(Address(op->klass()->as_register(),
1522                     InstanceKlass::init_state_offset()),
1523                     InstanceKlass::fully_initialized);
1524     add_debug_info_for_null_check_here(op->stub()->info());
1525     __ jcc(Assembler::notEqual, *op->stub()->entry());
1526   }
1527   __ allocate_object(op->obj()->as_register(),
1528                      op->tmp1()->as_register(),
1529                      op->tmp2()->as_register(),
1530                      op->header_size(),
1531                      op->object_size(),
1532                      op->klass()->as_register(),
1533                      *op->stub()->entry());
1534   __ bind(*op->stub()->continuation());
1535 }
1536 
1537 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1538   Register len =  op->len()->as_register();
1539   LP64_ONLY( __ movslq(len, len); )
1540 
1541   if (UseSlowPath ||
1542       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1543       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1544     __ jmp(*op->stub()->entry());
1545   } else {
1546     Register tmp1 = op->tmp1()->as_register();
1547     Register tmp2 = op->tmp2()->as_register();
1548     Register tmp3 = op->tmp3()->as_register();
1549     if (len == tmp1) {
1550       tmp1 = tmp3;
1551     } else if (len == tmp2) {
1552       tmp2 = tmp3;
1553     } else if (len == tmp3) {
1554       // everything is ok
1555     } else {
1556       __ mov(tmp3, len);
1557     }
1558     __ allocate_array(op->obj()->as_register(),
1559                       len,
1560                       tmp1,
1561                       tmp2,
1562                       arrayOopDesc::header_size(op->type()),
1563                       array_element_size(op->type()),
1564                       op->klass()->as_register(),
1565                       *op->stub()->entry());
1566   }
1567   __ bind(*op->stub()->continuation());
1568 }
1569 
1570 void LIR_Assembler::type_profile_helper(Register mdo,
1571                                         ciMethodData *md, ciProfileData *data,
1572                                         Register recv, Label* update_done) {
1573   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1574     Label next_test;
1575     // See if the receiver is receiver[n].
1576     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1577     __ jccb(Assembler::notEqual, next_test);
1578     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1579     __ addptr(data_addr, DataLayout::counter_increment);
1580     __ jmp(*update_done);
1581     __ bind(next_test);
1582   }
1583 
1584   // Didn't find receiver; find next empty slot and fill it in
1585   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1586     Label next_test;
1587     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1588     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1589     __ jccb(Assembler::notEqual, next_test);
1590     __ movptr(recv_addr, recv);
1591     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1592     __ jmp(*update_done);
1593     __ bind(next_test);
1594   }
1595 }
1596 
1597 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1598   // we always need a stub for the failure case.
1599   CodeStub* stub = op->stub();
1600   Register obj = op->object()->as_register();
1601   Register k_RInfo = op->tmp1()->as_register();
1602   Register klass_RInfo = op->tmp2()->as_register();
1603   Register dst = op->result_opr()->as_register();
1604   ciKlass* k = op->klass();
1605   Register Rtmp1 = noreg;
1606 
1607   // check if it needs to be profiled
1608   ciMethodData* md = NULL;
1609   ciProfileData* data = NULL;
1610 
1611   if (op->should_profile()) {
1612     ciMethod* method = op->profiled_method();
1613     assert(method != NULL, "Should have method");
1614     int bci = op->profiled_bci();
1615     md = method->method_data_or_null();
1616     assert(md != NULL, "Sanity");
1617     data = md->bci_to_data(bci);
1618     assert(data != NULL,                "need data for type check");
1619     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1620   }
1621   Label profile_cast_success, profile_cast_failure;
1622   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1623   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1624 
1625   if (obj == k_RInfo) {
1626     k_RInfo = dst;
1627   } else if (obj == klass_RInfo) {
1628     klass_RInfo = dst;
1629   }
1630   if (k->is_loaded() && !UseCompressedClassPointers) {
1631     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1632   } else {
1633     Rtmp1 = op->tmp3()->as_register();
1634     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1635   }
1636 
1637   assert_different_registers(obj, k_RInfo, klass_RInfo);
1638 
1639   __ cmpptr(obj, (int32_t)NULL_WORD);
1640   if (op->should_profile()) {
1641     Label not_null;
1642     __ jccb(Assembler::notEqual, not_null);
1643     // Object is null; update MDO and exit
1644     Register mdo  = klass_RInfo;
1645     __ mov_metadata(mdo, md->constant_encoding());
1646     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1647     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1648     __ orl(data_addr, header_bits);
1649     __ jmp(*obj_is_null);
1650     __ bind(not_null);
1651   } else {
1652     __ jcc(Assembler::equal, *obj_is_null);
1653   }
1654 
1655   if (!k->is_loaded()) {
1656     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1657   } else {
1658 #ifdef _LP64
1659     __ mov_metadata(k_RInfo, k->constant_encoding());
1660 #endif // _LP64
1661   }
1662   __ verify_oop(obj);
1663 
1664   if (op->fast_check()) {
1665     // get object class
1666     // not a safepoint as obj null check happens earlier
1667 #ifdef _LP64
1668     if (UseCompressedClassPointers) {
1669       __ load_klass(Rtmp1, obj);
1670       __ cmpptr(k_RInfo, Rtmp1);
1671     } else {
1672       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1673     }
1674 #else
1675     if (k->is_loaded()) {
1676       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1677     } else {
1678       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1679     }
1680 #endif
1681     __ jcc(Assembler::notEqual, *failure_target);
1682     // successful cast, fall through to profile or jump
1683   } else {
1684     // get object class
1685     // not a safepoint as obj null check happens earlier
1686     __ load_klass(klass_RInfo, obj);
1687     if (k->is_loaded()) {
1688       // See if we get an immediate positive hit
1689 #ifdef _LP64
1690       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1691 #else
1692       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1693 #endif // _LP64
1694       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1695         __ jcc(Assembler::notEqual, *failure_target);
1696         // successful cast, fall through to profile or jump
1697       } else {
1698         // See if we get an immediate positive hit
1699         __ jcc(Assembler::equal, *success_target);
1700         // check for self
1701 #ifdef _LP64
1702         __ cmpptr(klass_RInfo, k_RInfo);
1703 #else
1704         __ cmpklass(klass_RInfo, k->constant_encoding());
1705 #endif // _LP64
1706         __ jcc(Assembler::equal, *success_target);
1707 
1708         __ push(klass_RInfo);
1709 #ifdef _LP64
1710         __ push(k_RInfo);
1711 #else
1712         __ pushklass(k->constant_encoding());
1713 #endif // _LP64
1714         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1715         __ pop(klass_RInfo);
1716         __ pop(klass_RInfo);
1717         // result is a boolean
1718         __ cmpl(klass_RInfo, 0);
1719         __ jcc(Assembler::equal, *failure_target);
1720         // successful cast, fall through to profile or jump
1721       }
1722     } else {
1723       // perform the fast part of the checking logic
1724       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1725       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1726       __ push(klass_RInfo);
1727       __ push(k_RInfo);
1728       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1729       __ pop(klass_RInfo);
1730       __ pop(k_RInfo);
1731       // result is a boolean
1732       __ cmpl(k_RInfo, 0);
1733       __ jcc(Assembler::equal, *failure_target);
1734       // successful cast, fall through to profile or jump
1735     }
1736   }
1737   if (op->should_profile()) {
1738     Register mdo  = klass_RInfo, recv = k_RInfo;
1739     __ bind(profile_cast_success);
1740     __ mov_metadata(mdo, md->constant_encoding());
1741     __ load_klass(recv, obj);
1742     Label update_done;
1743     type_profile_helper(mdo, md, data, recv, success);
1744     __ jmp(*success);
1745 
1746     __ bind(profile_cast_failure);
1747     __ mov_metadata(mdo, md->constant_encoding());
1748     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1749     __ subptr(counter_addr, DataLayout::counter_increment);
1750     __ jmp(*failure);
1751   }
1752   __ jmp(*success);
1753 }
1754 
1755 
1756 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1757   LIR_Code code = op->code();
1758   if (code == lir_store_check) {
1759     Register value = op->object()->as_register();
1760     Register array = op->array()->as_register();
1761     Register k_RInfo = op->tmp1()->as_register();
1762     Register klass_RInfo = op->tmp2()->as_register();
1763     Register Rtmp1 = op->tmp3()->as_register();
1764 
1765     CodeStub* stub = op->stub();
1766 
1767     // check if it needs to be profiled
1768     ciMethodData* md = NULL;
1769     ciProfileData* data = NULL;
1770 
1771     if (op->should_profile()) {
1772       ciMethod* method = op->profiled_method();
1773       assert(method != NULL, "Should have method");
1774       int bci = op->profiled_bci();
1775       md = method->method_data_or_null();
1776       assert(md != NULL, "Sanity");
1777       data = md->bci_to_data(bci);
1778       assert(data != NULL,                "need data for type check");
1779       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1780     }
1781     Label profile_cast_success, profile_cast_failure, done;
1782     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1783     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1784 
1785     __ cmpptr(value, (int32_t)NULL_WORD);
1786     if (op->should_profile()) {
1787       Label not_null;
1788       __ jccb(Assembler::notEqual, not_null);
1789       // Object is null; update MDO and exit
1790       Register mdo  = klass_RInfo;
1791       __ mov_metadata(mdo, md->constant_encoding());
1792       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1793       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1794       __ orl(data_addr, header_bits);
1795       __ jmp(done);
1796       __ bind(not_null);
1797     } else {
1798       __ jcc(Assembler::equal, done);
1799     }
1800 
1801     add_debug_info_for_null_check_here(op->info_for_exception());
1802     __ load_klass(k_RInfo, array);
1803     __ load_klass(klass_RInfo, value);
1804 
1805     // get instance klass (it's already uncompressed)
1806     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1807     // perform the fast part of the checking logic
1808     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1809     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1810     __ push(klass_RInfo);
1811     __ push(k_RInfo);
1812     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1813     __ pop(klass_RInfo);
1814     __ pop(k_RInfo);
1815     // result is a boolean
1816     __ cmpl(k_RInfo, 0);
1817     __ jcc(Assembler::equal, *failure_target);
1818     // fall through to the success case
1819 
1820     if (op->should_profile()) {
1821       Register mdo  = klass_RInfo, recv = k_RInfo;
1822       __ bind(profile_cast_success);
1823       __ mov_metadata(mdo, md->constant_encoding());
1824       __ load_klass(recv, value);
1825       Label update_done;
1826       type_profile_helper(mdo, md, data, recv, &done);
1827       __ jmpb(done);
1828 
1829       __ bind(profile_cast_failure);
1830       __ mov_metadata(mdo, md->constant_encoding());
1831       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1832       __ subptr(counter_addr, DataLayout::counter_increment);
1833       __ jmp(*stub->entry());
1834     }
1835 
1836     __ bind(done);
1837   } else
1838     if (code == lir_checkcast) {
1839       Register obj = op->object()->as_register();
1840       Register dst = op->result_opr()->as_register();
1841       Label success;
1842       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1843       __ bind(success);
1844       if (dst != obj) {
1845         __ mov(dst, obj);
1846       }
1847     } else
1848       if (code == lir_instanceof) {
1849         Register obj = op->object()->as_register();
1850         Register dst = op->result_opr()->as_register();
1851         Label success, failure, done;
1852         emit_typecheck_helper(op, &success, &failure, &failure);
1853         __ bind(failure);
1854         __ xorptr(dst, dst);
1855         __ jmpb(done);
1856         __ bind(success);
1857         __ movptr(dst, 1);
1858         __ bind(done);
1859       } else {
1860         ShouldNotReachHere();
1861       }
1862 
1863 }
1864 
1865 
1866 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1867   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1868     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1869     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1870     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1871     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1872     Register addr = op->addr()->as_register();
1873     if (os::is_MP()) {
1874       __ lock();
1875     }
1876     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1877 
1878   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1879     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1880     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1881     Register newval = op->new_value()->as_register();
1882     Register cmpval = op->cmp_value()->as_register();
1883     assert(cmpval == rax, "wrong register");
1884     assert(newval != NULL, "new val must be register");
1885     assert(cmpval != newval, "cmp and new values must be in different registers");
1886     assert(cmpval != addr, "cmp and addr must be in different registers");
1887     assert(newval != addr, "new value and addr must be in different registers");
1888 
1889     if ( op->code() == lir_cas_obj) {
1890 #ifdef _LP64
1891       if (UseCompressedOops) {
1892         __ encode_heap_oop(cmpval);
1893         __ mov(rscratch1, newval);
1894         __ encode_heap_oop(rscratch1);
1895         if (os::is_MP()) {
1896           __ lock();
1897         }
1898         // cmpval (rax) is implicitly used by this instruction
1899         __ cmpxchgl(rscratch1, Address(addr, 0));
1900       } else
1901 #endif
1902       {
1903         if (os::is_MP()) {
1904           __ lock();
1905         }
1906         __ cmpxchgptr(newval, Address(addr, 0));
1907       }
1908     } else {
1909       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1910       if (os::is_MP()) {
1911         __ lock();
1912       }
1913       __ cmpxchgl(newval, Address(addr, 0));
1914     }
1915 #ifdef _LP64
1916   } else if (op->code() == lir_cas_long) {
1917     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1918     Register newval = op->new_value()->as_register_lo();
1919     Register cmpval = op->cmp_value()->as_register_lo();
1920     assert(cmpval == rax, "wrong register");
1921     assert(newval != NULL, "new val must be register");
1922     assert(cmpval != newval, "cmp and new values must be in different registers");
1923     assert(cmpval != addr, "cmp and addr must be in different registers");
1924     assert(newval != addr, "new value and addr must be in different registers");
1925     if (os::is_MP()) {
1926       __ lock();
1927     }
1928     __ cmpxchgq(newval, Address(addr, 0));
1929 #endif // _LP64
1930   } else {
1931     Unimplemented();
1932   }
1933 }
1934 
1935 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1936   Assembler::Condition acond, ncond;
1937   switch (condition) {
1938     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1939     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1940     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1941     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1942     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1943     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1944     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1945     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1946     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1947                                 ShouldNotReachHere();
1948   }
1949 
1950   if (opr1->is_cpu_register()) {
1951     reg2reg(opr1, result);
1952   } else if (opr1->is_stack()) {
1953     stack2reg(opr1, result, result->type());
1954   } else if (opr1->is_constant()) {
1955     const2reg(opr1, result, lir_patch_none, NULL);
1956   } else {
1957     ShouldNotReachHere();
1958   }
1959 
1960   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1961     // optimized version that does not require a branch
1962     if (opr2->is_single_cpu()) {
1963       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1964       __ cmov(ncond, result->as_register(), opr2->as_register());
1965     } else if (opr2->is_double_cpu()) {
1966       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1967       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1968       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1969       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1970     } else if (opr2->is_single_stack()) {
1971       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1972     } else if (opr2->is_double_stack()) {
1973       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1974       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
1975     } else {
1976       ShouldNotReachHere();
1977     }
1978 
1979   } else {
1980     Label skip;
1981     __ jcc (acond, skip);
1982     if (opr2->is_cpu_register()) {
1983       reg2reg(opr2, result);
1984     } else if (opr2->is_stack()) {
1985       stack2reg(opr2, result, result->type());
1986     } else if (opr2->is_constant()) {
1987       const2reg(opr2, result, lir_patch_none, NULL);
1988     } else {
1989       ShouldNotReachHere();
1990     }
1991     __ bind(skip);
1992   }
1993 }
1994 
1995 
1996 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1997   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1998 
1999   if (left->is_single_cpu()) {
2000     assert(left == dest, "left and dest must be equal");
2001     Register lreg = left->as_register();
2002 
2003     if (right->is_single_cpu()) {
2004       // cpu register - cpu register
2005       Register rreg = right->as_register();
2006       switch (code) {
2007         case lir_add: __ addl (lreg, rreg); break;
2008         case lir_sub: __ subl (lreg, rreg); break;
2009         case lir_mul: __ imull(lreg, rreg); break;
2010         default:      ShouldNotReachHere();
2011       }
2012 
2013     } else if (right->is_stack()) {
2014       // cpu register - stack
2015       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2016       switch (code) {
2017         case lir_add: __ addl(lreg, raddr); break;
2018         case lir_sub: __ subl(lreg, raddr); break;
2019         default:      ShouldNotReachHere();
2020       }
2021 
2022     } else if (right->is_constant()) {
2023       // cpu register - constant
2024       jint c = right->as_constant_ptr()->as_jint();
2025       switch (code) {
2026         case lir_add: {
2027           __ incrementl(lreg, c);
2028           break;
2029         }
2030         case lir_sub: {
2031           __ decrementl(lreg, c);
2032           break;
2033         }
2034         default: ShouldNotReachHere();
2035       }
2036 
2037     } else {
2038       ShouldNotReachHere();
2039     }
2040 
2041   } else if (left->is_double_cpu()) {
2042     assert(left == dest, "left and dest must be equal");
2043     Register lreg_lo = left->as_register_lo();
2044     Register lreg_hi = left->as_register_hi();
2045 
2046     if (right->is_double_cpu()) {
2047       // cpu register - cpu register
2048       Register rreg_lo = right->as_register_lo();
2049       Register rreg_hi = right->as_register_hi();
2050       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2051       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2052       switch (code) {
2053         case lir_add:
2054           __ addptr(lreg_lo, rreg_lo);
2055           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2056           break;
2057         case lir_sub:
2058           __ subptr(lreg_lo, rreg_lo);
2059           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2060           break;
2061         case lir_mul:
2062 #ifdef _LP64
2063           __ imulq(lreg_lo, rreg_lo);
2064 #else
2065           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2066           __ imull(lreg_hi, rreg_lo);
2067           __ imull(rreg_hi, lreg_lo);
2068           __ addl (rreg_hi, lreg_hi);
2069           __ mull (rreg_lo);
2070           __ addl (lreg_hi, rreg_hi);
2071 #endif // _LP64
2072           break;
2073         default:
2074           ShouldNotReachHere();
2075       }
2076 
2077     } else if (right->is_constant()) {
2078       // cpu register - constant
2079 #ifdef _LP64
2080       jlong c = right->as_constant_ptr()->as_jlong_bits();
2081       __ movptr(r10, (intptr_t) c);
2082       switch (code) {
2083         case lir_add:
2084           __ addptr(lreg_lo, r10);
2085           break;
2086         case lir_sub:
2087           __ subptr(lreg_lo, r10);
2088           break;
2089         default:
2090           ShouldNotReachHere();
2091       }
2092 #else
2093       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2094       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2095       switch (code) {
2096         case lir_add:
2097           __ addptr(lreg_lo, c_lo);
2098           __ adcl(lreg_hi, c_hi);
2099           break;
2100         case lir_sub:
2101           __ subptr(lreg_lo, c_lo);
2102           __ sbbl(lreg_hi, c_hi);
2103           break;
2104         default:
2105           ShouldNotReachHere();
2106       }
2107 #endif // _LP64
2108 
2109     } else {
2110       ShouldNotReachHere();
2111     }
2112 
2113   } else if (left->is_single_xmm()) {
2114     assert(left == dest, "left and dest must be equal");
2115     XMMRegister lreg = left->as_xmm_float_reg();
2116 
2117     if (right->is_single_xmm()) {
2118       XMMRegister rreg = right->as_xmm_float_reg();
2119       switch (code) {
2120         case lir_add: __ addss(lreg, rreg);  break;
2121         case lir_sub: __ subss(lreg, rreg);  break;
2122         case lir_mul_strictfp: // fall through
2123         case lir_mul: __ mulss(lreg, rreg);  break;
2124         case lir_div_strictfp: // fall through
2125         case lir_div: __ divss(lreg, rreg);  break;
2126         default: ShouldNotReachHere();
2127       }
2128     } else {
2129       Address raddr;
2130       if (right->is_single_stack()) {
2131         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2132       } else if (right->is_constant()) {
2133         // hack for now
2134         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2135       } else {
2136         ShouldNotReachHere();
2137       }
2138       switch (code) {
2139         case lir_add: __ addss(lreg, raddr);  break;
2140         case lir_sub: __ subss(lreg, raddr);  break;
2141         case lir_mul_strictfp: // fall through
2142         case lir_mul: __ mulss(lreg, raddr);  break;
2143         case lir_div_strictfp: // fall through
2144         case lir_div: __ divss(lreg, raddr);  break;
2145         default: ShouldNotReachHere();
2146       }
2147     }
2148 
2149   } else if (left->is_double_xmm()) {
2150     assert(left == dest, "left and dest must be equal");
2151 
2152     XMMRegister lreg = left->as_xmm_double_reg();
2153     if (right->is_double_xmm()) {
2154       XMMRegister rreg = right->as_xmm_double_reg();
2155       switch (code) {
2156         case lir_add: __ addsd(lreg, rreg);  break;
2157         case lir_sub: __ subsd(lreg, rreg);  break;
2158         case lir_mul_strictfp: // fall through
2159         case lir_mul: __ mulsd(lreg, rreg);  break;
2160         case lir_div_strictfp: // fall through
2161         case lir_div: __ divsd(lreg, rreg);  break;
2162         default: ShouldNotReachHere();
2163       }
2164     } else {
2165       Address raddr;
2166       if (right->is_double_stack()) {
2167         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2168       } else if (right->is_constant()) {
2169         // hack for now
2170         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2171       } else {
2172         ShouldNotReachHere();
2173       }
2174       switch (code) {
2175         case lir_add: __ addsd(lreg, raddr);  break;
2176         case lir_sub: __ subsd(lreg, raddr);  break;
2177         case lir_mul_strictfp: // fall through
2178         case lir_mul: __ mulsd(lreg, raddr);  break;
2179         case lir_div_strictfp: // fall through
2180         case lir_div: __ divsd(lreg, raddr);  break;
2181         default: ShouldNotReachHere();
2182       }
2183     }
2184 
2185   } else if (left->is_single_fpu()) {
2186     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2187 
2188     if (right->is_single_fpu()) {
2189       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2190 
2191     } else {
2192       assert(left->fpu_regnr() == 0, "left must be on TOS");
2193       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2194 
2195       Address raddr;
2196       if (right->is_single_stack()) {
2197         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2198       } else if (right->is_constant()) {
2199         address const_addr = float_constant(right->as_jfloat());
2200         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2201         // hack for now
2202         raddr = __ as_Address(InternalAddress(const_addr));
2203       } else {
2204         ShouldNotReachHere();
2205       }
2206 
2207       switch (code) {
2208         case lir_add: __ fadd_s(raddr); break;
2209         case lir_sub: __ fsub_s(raddr); break;
2210         case lir_mul_strictfp: // fall through
2211         case lir_mul: __ fmul_s(raddr); break;
2212         case lir_div_strictfp: // fall through
2213         case lir_div: __ fdiv_s(raddr); break;
2214         default:      ShouldNotReachHere();
2215       }
2216     }
2217 
2218   } else if (left->is_double_fpu()) {
2219     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2220 
2221     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2222       // Double values require special handling for strictfp mul/div on x86
2223       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2224       __ fmulp(left->fpu_regnrLo() + 1);
2225     }
2226 
2227     if (right->is_double_fpu()) {
2228       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2229 
2230     } else {
2231       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2232       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2233 
2234       Address raddr;
2235       if (right->is_double_stack()) {
2236         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2237       } else if (right->is_constant()) {
2238         // hack for now
2239         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2240       } else {
2241         ShouldNotReachHere();
2242       }
2243 
2244       switch (code) {
2245         case lir_add: __ fadd_d(raddr); break;
2246         case lir_sub: __ fsub_d(raddr); break;
2247         case lir_mul_strictfp: // fall through
2248         case lir_mul: __ fmul_d(raddr); break;
2249         case lir_div_strictfp: // fall through
2250         case lir_div: __ fdiv_d(raddr); break;
2251         default: ShouldNotReachHere();
2252       }
2253     }
2254 
2255     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2256       // Double values require special handling for strictfp mul/div on x86
2257       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2258       __ fmulp(dest->fpu_regnrLo() + 1);
2259     }
2260 
2261   } else if (left->is_single_stack() || left->is_address()) {
2262     assert(left == dest, "left and dest must be equal");
2263 
2264     Address laddr;
2265     if (left->is_single_stack()) {
2266       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2267     } else if (left->is_address()) {
2268       laddr = as_Address(left->as_address_ptr());
2269     } else {
2270       ShouldNotReachHere();
2271     }
2272 
2273     if (right->is_single_cpu()) {
2274       Register rreg = right->as_register();
2275       switch (code) {
2276         case lir_add: __ addl(laddr, rreg); break;
2277         case lir_sub: __ subl(laddr, rreg); break;
2278         default:      ShouldNotReachHere();
2279       }
2280     } else if (right->is_constant()) {
2281       jint c = right->as_constant_ptr()->as_jint();
2282       switch (code) {
2283         case lir_add: {
2284           __ incrementl(laddr, c);
2285           break;
2286         }
2287         case lir_sub: {
2288           __ decrementl(laddr, c);
2289           break;
2290         }
2291         default: ShouldNotReachHere();
2292       }
2293     } else {
2294       ShouldNotReachHere();
2295     }
2296 
2297   } else {
2298     ShouldNotReachHere();
2299   }
2300 }
2301 
2302 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2303   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2304   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2305   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2306 
2307   bool left_is_tos = (left_index == 0);
2308   bool dest_is_tos = (dest_index == 0);
2309   int non_tos_index = (left_is_tos ? right_index : left_index);
2310 
2311   switch (code) {
2312     case lir_add:
2313       if (pop_fpu_stack)       __ faddp(non_tos_index);
2314       else if (dest_is_tos)    __ fadd (non_tos_index);
2315       else                     __ fadda(non_tos_index);
2316       break;
2317 
2318     case lir_sub:
2319       if (left_is_tos) {
2320         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2321         else if (dest_is_tos)  __ fsub  (non_tos_index);
2322         else                   __ fsubra(non_tos_index);
2323       } else {
2324         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2325         else if (dest_is_tos)  __ fsubr (non_tos_index);
2326         else                   __ fsuba (non_tos_index);
2327       }
2328       break;
2329 
2330     case lir_mul_strictfp: // fall through
2331     case lir_mul:
2332       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2333       else if (dest_is_tos)    __ fmul (non_tos_index);
2334       else                     __ fmula(non_tos_index);
2335       break;
2336 
2337     case lir_div_strictfp: // fall through
2338     case lir_div:
2339       if (left_is_tos) {
2340         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2341         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2342         else                   __ fdivra(non_tos_index);
2343       } else {
2344         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2345         else if (dest_is_tos)  __ fdivr (non_tos_index);
2346         else                   __ fdiva (non_tos_index);
2347       }
2348       break;
2349 
2350     case lir_rem:
2351       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2352       __ fremr(noreg);
2353       break;
2354 
2355     default:
2356       ShouldNotReachHere();
2357   }
2358 }
2359 
2360 
2361 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2362   if (value->is_double_xmm()) {
2363     switch(code) {
2364       case lir_abs :
2365         {
2366           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2367             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2368           }
2369           __ andpd(dest->as_xmm_double_reg(),
2370                     ExternalAddress((address)double_signmask_pool));
2371         }
2372         break;
2373 
2374       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2375       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2376       default      : ShouldNotReachHere();
2377     }
2378 
2379   } else if (value->is_double_fpu()) {
2380     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2381     switch(code) {
2382       case lir_abs   : __ fabs() ; break;
2383       case lir_sqrt  : __ fsqrt(); break;
2384       default      : ShouldNotReachHere();
2385     }
2386   } else {
2387     Unimplemented();
2388   }
2389 }
2390 
2391 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2392   // assert(left->destroys_register(), "check");
2393   if (left->is_single_cpu()) {
2394     Register reg = left->as_register();
2395     if (right->is_constant()) {
2396       int val = right->as_constant_ptr()->as_jint();
2397       switch (code) {
2398         case lir_logic_and: __ andl (reg, val); break;
2399         case lir_logic_or:  __ orl  (reg, val); break;
2400         case lir_logic_xor: __ xorl (reg, val); break;
2401         default: ShouldNotReachHere();
2402       }
2403     } else if (right->is_stack()) {
2404       // added support for stack operands
2405       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2406       switch (code) {
2407         case lir_logic_and: __ andl (reg, raddr); break;
2408         case lir_logic_or:  __ orl  (reg, raddr); break;
2409         case lir_logic_xor: __ xorl (reg, raddr); break;
2410         default: ShouldNotReachHere();
2411       }
2412     } else {
2413       Register rright = right->as_register();
2414       switch (code) {
2415         case lir_logic_and: __ andptr (reg, rright); break;
2416         case lir_logic_or : __ orptr  (reg, rright); break;
2417         case lir_logic_xor: __ xorptr (reg, rright); break;
2418         default: ShouldNotReachHere();
2419       }
2420     }
2421     move_regs(reg, dst->as_register());
2422   } else {
2423     Register l_lo = left->as_register_lo();
2424     Register l_hi = left->as_register_hi();
2425     if (right->is_constant()) {
2426 #ifdef _LP64
2427       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2428       switch (code) {
2429         case lir_logic_and:
2430           __ andq(l_lo, rscratch1);
2431           break;
2432         case lir_logic_or:
2433           __ orq(l_lo, rscratch1);
2434           break;
2435         case lir_logic_xor:
2436           __ xorq(l_lo, rscratch1);
2437           break;
2438         default: ShouldNotReachHere();
2439       }
2440 #else
2441       int r_lo = right->as_constant_ptr()->as_jint_lo();
2442       int r_hi = right->as_constant_ptr()->as_jint_hi();
2443       switch (code) {
2444         case lir_logic_and:
2445           __ andl(l_lo, r_lo);
2446           __ andl(l_hi, r_hi);
2447           break;
2448         case lir_logic_or:
2449           __ orl(l_lo, r_lo);
2450           __ orl(l_hi, r_hi);
2451           break;
2452         case lir_logic_xor:
2453           __ xorl(l_lo, r_lo);
2454           __ xorl(l_hi, r_hi);
2455           break;
2456         default: ShouldNotReachHere();
2457       }
2458 #endif // _LP64
2459     } else {
2460 #ifdef _LP64
2461       Register r_lo;
2462       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2463         r_lo = right->as_register();
2464       } else {
2465         r_lo = right->as_register_lo();
2466       }
2467 #else
2468       Register r_lo = right->as_register_lo();
2469       Register r_hi = right->as_register_hi();
2470       assert(l_lo != r_hi, "overwriting registers");
2471 #endif
2472       switch (code) {
2473         case lir_logic_and:
2474           __ andptr(l_lo, r_lo);
2475           NOT_LP64(__ andptr(l_hi, r_hi);)
2476           break;
2477         case lir_logic_or:
2478           __ orptr(l_lo, r_lo);
2479           NOT_LP64(__ orptr(l_hi, r_hi);)
2480           break;
2481         case lir_logic_xor:
2482           __ xorptr(l_lo, r_lo);
2483           NOT_LP64(__ xorptr(l_hi, r_hi);)
2484           break;
2485         default: ShouldNotReachHere();
2486       }
2487     }
2488 
2489     Register dst_lo = dst->as_register_lo();
2490     Register dst_hi = dst->as_register_hi();
2491 
2492 #ifdef _LP64
2493     move_regs(l_lo, dst_lo);
2494 #else
2495     if (dst_lo == l_hi) {
2496       assert(dst_hi != l_lo, "overwriting registers");
2497       move_regs(l_hi, dst_hi);
2498       move_regs(l_lo, dst_lo);
2499     } else {
2500       assert(dst_lo != l_hi, "overwriting registers");
2501       move_regs(l_lo, dst_lo);
2502       move_regs(l_hi, dst_hi);
2503     }
2504 #endif // _LP64
2505   }
2506 }
2507 
2508 
2509 // we assume that rax, and rdx can be overwritten
2510 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2511 
2512   assert(left->is_single_cpu(),   "left must be register");
2513   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2514   assert(result->is_single_cpu(), "result must be register");
2515 
2516   //  assert(left->destroys_register(), "check");
2517   //  assert(right->destroys_register(), "check");
2518 
2519   Register lreg = left->as_register();
2520   Register dreg = result->as_register();
2521 
2522   if (right->is_constant()) {
2523     int divisor = right->as_constant_ptr()->as_jint();
2524     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2525     if (code == lir_idiv) {
2526       assert(lreg == rax, "must be rax,");
2527       assert(temp->as_register() == rdx, "tmp register must be rdx");
2528       __ cdql(); // sign extend into rdx:rax
2529       if (divisor == 2) {
2530         __ subl(lreg, rdx);
2531       } else {
2532         __ andl(rdx, divisor - 1);
2533         __ addl(lreg, rdx);
2534       }
2535       __ sarl(lreg, log2_intptr(divisor));
2536       move_regs(lreg, dreg);
2537     } else if (code == lir_irem) {
2538       Label done;
2539       __ mov(dreg, lreg);
2540       __ andl(dreg, 0x80000000 | (divisor - 1));
2541       __ jcc(Assembler::positive, done);
2542       __ decrement(dreg);
2543       __ orl(dreg, ~(divisor - 1));
2544       __ increment(dreg);
2545       __ bind(done);
2546     } else {
2547       ShouldNotReachHere();
2548     }
2549   } else {
2550     Register rreg = right->as_register();
2551     assert(lreg == rax, "left register must be rax,");
2552     assert(rreg != rdx, "right register must not be rdx");
2553     assert(temp->as_register() == rdx, "tmp register must be rdx");
2554 
2555     move_regs(lreg, rax);
2556 
2557     int idivl_offset = __ corrected_idivl(rreg);
2558     add_debug_info_for_div0(idivl_offset, info);
2559     if (code == lir_irem) {
2560       move_regs(rdx, dreg); // result is in rdx
2561     } else {
2562       move_regs(rax, dreg);
2563     }
2564   }
2565 }
2566 
2567 
2568 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2569   if (opr1->is_single_cpu()) {
2570     Register reg1 = opr1->as_register();
2571     if (opr2->is_single_cpu()) {
2572       // cpu register - cpu register
2573       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2574         __ cmpoop(reg1, opr2->as_register());
2575       } else {
2576         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2577         __ cmpl(reg1, opr2->as_register());
2578       }
2579     } else if (opr2->is_stack()) {
2580       // cpu register - stack
2581       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2582         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2583       } else {
2584         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2585       }
2586     } else if (opr2->is_constant()) {
2587       // cpu register - constant
2588       LIR_Const* c = opr2->as_constant_ptr();
2589       if (c->type() == T_INT) {
2590         __ cmpl(reg1, c->as_jint());
2591       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2592         // In 64bit oops are single register
2593         jobject o = c->as_jobject();
2594         if (o == NULL) {
2595           __ cmpptr(reg1, (int32_t)NULL_WORD);
2596         } else {
2597           __ cmpoop(reg1, o);
2598         }
2599       } else {
2600         fatal("unexpected type: %s", basictype_to_str(c->type()));
2601       }
2602       // cpu register - address
2603     } else if (opr2->is_address()) {
2604       if (op->info() != NULL) {
2605         add_debug_info_for_null_check_here(op->info());
2606       }
2607       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2608     } else {
2609       ShouldNotReachHere();
2610     }
2611 
2612   } else if(opr1->is_double_cpu()) {
2613     Register xlo = opr1->as_register_lo();
2614     Register xhi = opr1->as_register_hi();
2615     if (opr2->is_double_cpu()) {
2616 #ifdef _LP64
2617       __ cmpptr(xlo, opr2->as_register_lo());
2618 #else
2619       // cpu register - cpu register
2620       Register ylo = opr2->as_register_lo();
2621       Register yhi = opr2->as_register_hi();
2622       __ subl(xlo, ylo);
2623       __ sbbl(xhi, yhi);
2624       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2625         __ orl(xhi, xlo);
2626       }
2627 #endif // _LP64
2628     } else if (opr2->is_constant()) {
2629       // cpu register - constant 0
2630       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2631 #ifdef _LP64
2632       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2633 #else
2634       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2635       __ orl(xhi, xlo);
2636 #endif // _LP64
2637     } else {
2638       ShouldNotReachHere();
2639     }
2640 
2641   } else if (opr1->is_single_xmm()) {
2642     XMMRegister reg1 = opr1->as_xmm_float_reg();
2643     if (opr2->is_single_xmm()) {
2644       // xmm register - xmm register
2645       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2646     } else if (opr2->is_stack()) {
2647       // xmm register - stack
2648       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2649     } else if (opr2->is_constant()) {
2650       // xmm register - constant
2651       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2652     } else if (opr2->is_address()) {
2653       // xmm register - address
2654       if (op->info() != NULL) {
2655         add_debug_info_for_null_check_here(op->info());
2656       }
2657       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2658     } else {
2659       ShouldNotReachHere();
2660     }
2661 
2662   } else if (opr1->is_double_xmm()) {
2663     XMMRegister reg1 = opr1->as_xmm_double_reg();
2664     if (opr2->is_double_xmm()) {
2665       // xmm register - xmm register
2666       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2667     } else if (opr2->is_stack()) {
2668       // xmm register - stack
2669       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2670     } else if (opr2->is_constant()) {
2671       // xmm register - constant
2672       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2673     } else if (opr2->is_address()) {
2674       // xmm register - address
2675       if (op->info() != NULL) {
2676         add_debug_info_for_null_check_here(op->info());
2677       }
2678       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2679     } else {
2680       ShouldNotReachHere();
2681     }
2682 
2683   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2684     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2685     assert(opr2->is_fpu_register(), "both must be registers");
2686     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2687 
2688   } else if (opr1->is_address() && opr2->is_constant()) {
2689     LIR_Const* c = opr2->as_constant_ptr();
2690 #ifdef _LP64
2691     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2692       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2693       __ movoop(rscratch1, c->as_jobject());
2694     }
2695 #endif // LP64
2696     if (op->info() != NULL) {
2697       add_debug_info_for_null_check_here(op->info());
2698     }
2699     // special case: address - constant
2700     LIR_Address* addr = opr1->as_address_ptr();
2701     if (c->type() == T_INT) {
2702       __ cmpl(as_Address(addr), c->as_jint());
2703     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2704 #ifdef _LP64
2705       // %%% Make this explode if addr isn't reachable until we figure out a
2706       // better strategy by giving noreg as the temp for as_Address
2707       __ cmpoop(rscratch1, as_Address(addr, noreg));
2708 #else
2709       __ cmpoop(as_Address(addr), c->as_jobject());
2710 #endif // _LP64
2711     } else {
2712       ShouldNotReachHere();
2713     }
2714 
2715   } else {
2716     ShouldNotReachHere();
2717   }
2718 }
2719 
2720 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2721   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2722     if (left->is_single_xmm()) {
2723       assert(right->is_single_xmm(), "must match");
2724       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2725     } else if (left->is_double_xmm()) {
2726       assert(right->is_double_xmm(), "must match");
2727       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2728 
2729     } else {
2730       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2731       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2732 
2733       assert(left->fpu() == 0, "left must be on TOS");
2734       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2735                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2736     }
2737   } else {
2738     assert(code == lir_cmp_l2i, "check");
2739 #ifdef _LP64
2740     Label done;
2741     Register dest = dst->as_register();
2742     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2743     __ movl(dest, -1);
2744     __ jccb(Assembler::less, done);
2745     __ set_byte_if_not_zero(dest);
2746     __ movzbl(dest, dest);
2747     __ bind(done);
2748 #else
2749     __ lcmp2int(left->as_register_hi(),
2750                 left->as_register_lo(),
2751                 right->as_register_hi(),
2752                 right->as_register_lo());
2753     move_regs(left->as_register_hi(), dst->as_register());
2754 #endif // _LP64
2755   }
2756 }
2757 
2758 
2759 void LIR_Assembler::align_call(LIR_Code code) {
2760   if (os::is_MP()) {
2761     // make sure that the displacement word of the call ends up word aligned
2762     int offset = __ offset();
2763     switch (code) {
2764       case lir_static_call:
2765       case lir_optvirtual_call:
2766       case lir_dynamic_call:
2767         offset += NativeCall::displacement_offset;
2768         break;
2769       case lir_icvirtual_call:
2770         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2771       break;
2772       case lir_virtual_call:  // currently, sparc-specific for niagara
2773       default: ShouldNotReachHere();
2774     }
2775     __ align(BytesPerWord, offset);
2776   }
2777 }
2778 
2779 
2780 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2781   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2782          "must be aligned");
2783   __ call(AddressLiteral(op->addr(), rtype));
2784   add_call_info(code_offset(), op->info());
2785 }
2786 
2787 
2788 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2789   __ ic_call(op->addr());
2790   add_call_info(code_offset(), op->info());
2791   assert(!os::is_MP() ||
2792          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2793          "must be aligned");
2794 }
2795 
2796 
2797 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2798 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2799   ShouldNotReachHere();
2800 }
2801 
2802 
2803 void LIR_Assembler::emit_static_call_stub() {
2804   address call_pc = __ pc();
2805   address stub = __ start_a_stub(call_stub_size());
2806   if (stub == NULL) {
2807     bailout("static call stub overflow");
2808     return;
2809   }
2810 
2811   int start = __ offset();
2812   if (os::is_MP()) {
2813     // make sure that the displacement word of the call ends up word aligned
2814     __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2815   }
2816   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2817   __ mov_metadata(rbx, (Metadata*)NULL);
2818   // must be set to -1 at code generation time
2819   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2820   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2821   __ jump(RuntimeAddress(__ pc()));
2822 
2823   if (UseAOT) {
2824     // Trampoline to aot code
2825     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2826 #ifdef _LP64
2827     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2828 #else
2829     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2830 #endif
2831     __ jmp(rax);
2832   }
2833   assert(__ offset() - start <= call_stub_size(), "stub too big");
2834   __ end_a_stub();
2835 }
2836 
2837 
2838 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2839   assert(exceptionOop->as_register() == rax, "must match");
2840   assert(exceptionPC->as_register() == rdx, "must match");
2841 
2842   // exception object is not added to oop map by LinearScan
2843   // (LinearScan assumes that no oops are in fixed registers)
2844   info->add_register_oop(exceptionOop);
2845   Runtime1::StubID unwind_id;
2846 
2847   // get current pc information
2848   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2849   int pc_for_athrow_offset = __ offset();
2850   InternalAddress pc_for_athrow(__ pc());
2851   __ lea(exceptionPC->as_register(), pc_for_athrow);
2852   add_call_info(pc_for_athrow_offset, info); // for exception handler
2853 
2854   __ verify_not_null_oop(rax);
2855   // search an exception handler (rax: exception oop, rdx: throwing pc)
2856   if (compilation()->has_fpu_code()) {
2857     unwind_id = Runtime1::handle_exception_id;
2858   } else {
2859     unwind_id = Runtime1::handle_exception_nofpu_id;
2860   }
2861   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2862 
2863   // enough room for two byte trap
2864   __ nop();
2865 }
2866 
2867 
2868 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2869   assert(exceptionOop->as_register() == rax, "must match");
2870 
2871   __ jmp(_unwind_handler_entry);
2872 }
2873 
2874 
2875 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2876 
2877   // optimized version for linear scan:
2878   // * count must be already in ECX (guaranteed by LinearScan)
2879   // * left and dest must be equal
2880   // * tmp must be unused
2881   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2882   assert(left == dest, "left and dest must be equal");
2883   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2884 
2885   if (left->is_single_cpu()) {
2886     Register value = left->as_register();
2887     assert(value != SHIFT_count, "left cannot be ECX");
2888 
2889     switch (code) {
2890       case lir_shl:  __ shll(value); break;
2891       case lir_shr:  __ sarl(value); break;
2892       case lir_ushr: __ shrl(value); break;
2893       default: ShouldNotReachHere();
2894     }
2895   } else if (left->is_double_cpu()) {
2896     Register lo = left->as_register_lo();
2897     Register hi = left->as_register_hi();
2898     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2899 #ifdef _LP64
2900     switch (code) {
2901       case lir_shl:  __ shlptr(lo);        break;
2902       case lir_shr:  __ sarptr(lo);        break;
2903       case lir_ushr: __ shrptr(lo);        break;
2904       default: ShouldNotReachHere();
2905     }
2906 #else
2907 
2908     switch (code) {
2909       case lir_shl:  __ lshl(hi, lo);        break;
2910       case lir_shr:  __ lshr(hi, lo, true);  break;
2911       case lir_ushr: __ lshr(hi, lo, false); break;
2912       default: ShouldNotReachHere();
2913     }
2914 #endif // LP64
2915   } else {
2916     ShouldNotReachHere();
2917   }
2918 }
2919 
2920 
2921 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2922   if (dest->is_single_cpu()) {
2923     // first move left into dest so that left is not destroyed by the shift
2924     Register value = dest->as_register();
2925     count = count & 0x1F; // Java spec
2926 
2927     move_regs(left->as_register(), value);
2928     switch (code) {
2929       case lir_shl:  __ shll(value, count); break;
2930       case lir_shr:  __ sarl(value, count); break;
2931       case lir_ushr: __ shrl(value, count); break;
2932       default: ShouldNotReachHere();
2933     }
2934   } else if (dest->is_double_cpu()) {
2935 #ifndef _LP64
2936     Unimplemented();
2937 #else
2938     // first move left into dest so that left is not destroyed by the shift
2939     Register value = dest->as_register_lo();
2940     count = count & 0x1F; // Java spec
2941 
2942     move_regs(left->as_register_lo(), value);
2943     switch (code) {
2944       case lir_shl:  __ shlptr(value, count); break;
2945       case lir_shr:  __ sarptr(value, count); break;
2946       case lir_ushr: __ shrptr(value, count); break;
2947       default: ShouldNotReachHere();
2948     }
2949 #endif // _LP64
2950   } else {
2951     ShouldNotReachHere();
2952   }
2953 }
2954 
2955 
2956 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2957   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2958   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2959   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2960   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2961 }
2962 
2963 
2964 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2965   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2966   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2967   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2968   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
2969 }
2970 
2971 
2972 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2973   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2974   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2975   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2976   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
2977 }
2978 
2979 
2980 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
2981   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2982   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2983   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2984   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
2985 }
2986 
2987 
2988 // This code replaces a call to arraycopy; no exception may
2989 // be thrown in this code, they must be thrown in the System.arraycopy
2990 // activation frame; we could save some checks if this would not be the case
2991 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2992   ciArrayKlass* default_type = op->expected_type();
2993   Register src = op->src()->as_register();
2994   Register dst = op->dst()->as_register();
2995   Register src_pos = op->src_pos()->as_register();
2996   Register dst_pos = op->dst_pos()->as_register();
2997   Register length  = op->length()->as_register();
2998   Register tmp = op->tmp()->as_register();
2999 
3000   CodeStub* stub = op->stub();
3001   int flags = op->flags();
3002   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3003   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3004 
3005   // if we don't know anything, just go through the generic arraycopy
3006   if (default_type == NULL) {
3007     Label done;
3008     // save outgoing arguments on stack in case call to System.arraycopy is needed
3009     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3010     // for interpreter calling conventions. Now we have to do it in new style conventions.
3011     // For the moment until C1 gets the new register allocator I just force all the
3012     // args to the right place (except the register args) and then on the back side
3013     // reload the register args properly if we go slow path. Yuck
3014 
3015     // These are proper for the calling convention
3016     store_parameter(length, 2);
3017     store_parameter(dst_pos, 1);
3018     store_parameter(dst, 0);
3019 
3020     // these are just temporary placements until we need to reload
3021     store_parameter(src_pos, 3);
3022     store_parameter(src, 4);
3023     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3024 
3025     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3026 
3027     address copyfunc_addr = StubRoutines::generic_arraycopy();
3028 
3029     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3030 #ifdef _LP64
3031     // The arguments are in java calling convention so we can trivially shift them to C
3032     // convention
3033     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3034     __ mov(c_rarg0, j_rarg0);
3035     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3036     __ mov(c_rarg1, j_rarg1);
3037     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3038     __ mov(c_rarg2, j_rarg2);
3039     assert_different_registers(c_rarg3, j_rarg4);
3040     __ mov(c_rarg3, j_rarg3);
3041 #ifdef _WIN64
3042     // Allocate abi space for args but be sure to keep stack aligned
3043     __ subptr(rsp, 6*wordSize);
3044     store_parameter(j_rarg4, 4);
3045     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3046       __ call(RuntimeAddress(C_entry));
3047     } else {
3048 #ifndef PRODUCT
3049       if (PrintC1Statistics) {
3050         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3051       }
3052 #endif
3053       __ call(RuntimeAddress(copyfunc_addr));
3054     }
3055     __ addptr(rsp, 6*wordSize);
3056 #else
3057     __ mov(c_rarg4, j_rarg4);
3058     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3059       __ call(RuntimeAddress(C_entry));
3060     } else {
3061 #ifndef PRODUCT
3062       if (PrintC1Statistics) {
3063         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3064       }
3065 #endif
3066       __ call(RuntimeAddress(copyfunc_addr));
3067     }
3068 #endif // _WIN64
3069 #else
3070     __ push(length);
3071     __ push(dst_pos);
3072     __ push(dst);
3073     __ push(src_pos);
3074     __ push(src);
3075 
3076     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3077       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3078     } else {
3079 #ifndef PRODUCT
3080       if (PrintC1Statistics) {
3081         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3082       }
3083 #endif
3084       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3085     }
3086 
3087 #endif // _LP64
3088 
3089     __ cmpl(rax, 0);
3090     __ jcc(Assembler::equal, *stub->continuation());
3091 
3092     if (copyfunc_addr != NULL) {
3093       __ mov(tmp, rax);
3094       __ xorl(tmp, -1);
3095     }
3096 
3097     // Reload values from the stack so they are where the stub
3098     // expects them.
3099     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3100     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3101     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3102     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3103     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3104 
3105     if (copyfunc_addr != NULL) {
3106       __ subl(length, tmp);
3107       __ addl(src_pos, tmp);
3108       __ addl(dst_pos, tmp);
3109     }
3110     __ jmp(*stub->entry());
3111 
3112     __ bind(*stub->continuation());
3113     return;
3114   }
3115 
3116   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3117 
3118   int elem_size = type2aelembytes(basic_type);
3119   Address::ScaleFactor scale;
3120 
3121   switch (elem_size) {
3122     case 1 :
3123       scale = Address::times_1;
3124       break;
3125     case 2 :
3126       scale = Address::times_2;
3127       break;
3128     case 4 :
3129       scale = Address::times_4;
3130       break;
3131     case 8 :
3132       scale = Address::times_8;
3133       break;
3134     default:
3135       scale = Address::no_scale;
3136       ShouldNotReachHere();
3137   }
3138 
3139   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3140   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3141   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3142   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3143 
3144   // length and pos's are all sign extended at this point on 64bit
3145 
3146   // test for NULL
3147   if (flags & LIR_OpArrayCopy::src_null_check) {
3148     __ testptr(src, src);
3149     __ jcc(Assembler::zero, *stub->entry());
3150   }
3151   if (flags & LIR_OpArrayCopy::dst_null_check) {
3152     __ testptr(dst, dst);
3153     __ jcc(Assembler::zero, *stub->entry());
3154   }
3155 
3156   // If the compiler was not able to prove that exact type of the source or the destination
3157   // of the arraycopy is an array type, check at runtime if the source or the destination is
3158   // an instance type.
3159   if (flags & LIR_OpArrayCopy::type_check) {
3160     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3161       __ load_klass(tmp, dst);
3162       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3163       __ jcc(Assembler::greaterEqual, *stub->entry());
3164     }
3165 
3166     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3167       __ load_klass(tmp, src);
3168       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3169       __ jcc(Assembler::greaterEqual, *stub->entry());
3170     }
3171   }
3172 
3173   // check if negative
3174   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3175     __ testl(src_pos, src_pos);
3176     __ jcc(Assembler::less, *stub->entry());
3177   }
3178   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3179     __ testl(dst_pos, dst_pos);
3180     __ jcc(Assembler::less, *stub->entry());
3181   }
3182 
3183   if (flags & LIR_OpArrayCopy::src_range_check) {
3184     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3185     __ cmpl(tmp, src_length_addr);
3186     __ jcc(Assembler::above, *stub->entry());
3187   }
3188   if (flags & LIR_OpArrayCopy::dst_range_check) {
3189     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3190     __ cmpl(tmp, dst_length_addr);
3191     __ jcc(Assembler::above, *stub->entry());
3192   }
3193 
3194   if (flags & LIR_OpArrayCopy::length_positive_check) {
3195     __ testl(length, length);
3196     __ jcc(Assembler::less, *stub->entry());
3197   }
3198 
3199 #ifdef _LP64
3200   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3201   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3202 #endif
3203 
3204   if (flags & LIR_OpArrayCopy::type_check) {
3205     // We don't know the array types are compatible
3206     if (basic_type != T_OBJECT) {
3207       // Simple test for basic type arrays
3208       if (UseCompressedClassPointers) {
3209         __ movl(tmp, src_klass_addr);
3210         __ cmpl(tmp, dst_klass_addr);
3211       } else {
3212         __ movptr(tmp, src_klass_addr);
3213         __ cmpptr(tmp, dst_klass_addr);
3214       }
3215       __ jcc(Assembler::notEqual, *stub->entry());
3216     } else {
3217       // For object arrays, if src is a sub class of dst then we can
3218       // safely do the copy.
3219       Label cont, slow;
3220 
3221       __ push(src);
3222       __ push(dst);
3223 
3224       __ load_klass(src, src);
3225       __ load_klass(dst, dst);
3226 
3227       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3228 
3229       __ push(src);
3230       __ push(dst);
3231       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3232       __ pop(dst);
3233       __ pop(src);
3234 
3235       __ cmpl(src, 0);
3236       __ jcc(Assembler::notEqual, cont);
3237 
3238       __ bind(slow);
3239       __ pop(dst);
3240       __ pop(src);
3241 
3242       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3243       if (copyfunc_addr != NULL) { // use stub if available
3244         // src is not a sub class of dst so we have to do a
3245         // per-element check.
3246 
3247         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3248         if ((flags & mask) != mask) {
3249           // Check that at least both of them object arrays.
3250           assert(flags & mask, "one of the two should be known to be an object array");
3251 
3252           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3253             __ load_klass(tmp, src);
3254           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3255             __ load_klass(tmp, dst);
3256           }
3257           int lh_offset = in_bytes(Klass::layout_helper_offset());
3258           Address klass_lh_addr(tmp, lh_offset);
3259           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3260           __ cmpl(klass_lh_addr, objArray_lh);
3261           __ jcc(Assembler::notEqual, *stub->entry());
3262         }
3263 
3264        // Spill because stubs can use any register they like and it's
3265        // easier to restore just those that we care about.
3266        store_parameter(dst, 0);
3267        store_parameter(dst_pos, 1);
3268        store_parameter(length, 2);
3269        store_parameter(src_pos, 3);
3270        store_parameter(src, 4);
3271 
3272 #ifndef _LP64
3273         __ movptr(tmp, dst_klass_addr);
3274         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3275         __ push(tmp);
3276         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3277         __ push(tmp);
3278         __ push(length);
3279         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3280         __ push(tmp);
3281         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3282         __ push(tmp);
3283 
3284         __ call_VM_leaf(copyfunc_addr, 5);
3285 #else
3286         __ movl2ptr(length, length); //higher 32bits must be null
3287 
3288         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3289         assert_different_registers(c_rarg0, dst, dst_pos, length);
3290         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3291         assert_different_registers(c_rarg1, dst, length);
3292 
3293         __ mov(c_rarg2, length);
3294         assert_different_registers(c_rarg2, dst);
3295 
3296 #ifdef _WIN64
3297         // Allocate abi space for args but be sure to keep stack aligned
3298         __ subptr(rsp, 6*wordSize);
3299         __ load_klass(c_rarg3, dst);
3300         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3301         store_parameter(c_rarg3, 4);
3302         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3303         __ call(RuntimeAddress(copyfunc_addr));
3304         __ addptr(rsp, 6*wordSize);
3305 #else
3306         __ load_klass(c_rarg4, dst);
3307         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3308         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3309         __ call(RuntimeAddress(copyfunc_addr));
3310 #endif
3311 
3312 #endif
3313 
3314 #ifndef PRODUCT
3315         if (PrintC1Statistics) {
3316           Label failed;
3317           __ testl(rax, rax);
3318           __ jcc(Assembler::notZero, failed);
3319           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3320           __ bind(failed);
3321         }
3322 #endif
3323 
3324         __ testl(rax, rax);
3325         __ jcc(Assembler::zero, *stub->continuation());
3326 
3327 #ifndef PRODUCT
3328         if (PrintC1Statistics) {
3329           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3330         }
3331 #endif
3332 
3333         __ mov(tmp, rax);
3334 
3335         __ xorl(tmp, -1);
3336 
3337         // Restore previously spilled arguments
3338         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3339         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3340         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3341         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3342         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3343 
3344 
3345         __ subl(length, tmp);
3346         __ addl(src_pos, tmp);
3347         __ addl(dst_pos, tmp);
3348       }
3349 
3350       __ jmp(*stub->entry());
3351 
3352       __ bind(cont);
3353       __ pop(dst);
3354       __ pop(src);
3355     }
3356   }
3357 
3358 #ifdef ASSERT
3359   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3360     // Sanity check the known type with the incoming class.  For the
3361     // primitive case the types must match exactly with src.klass and
3362     // dst.klass each exactly matching the default type.  For the
3363     // object array case, if no type check is needed then either the
3364     // dst type is exactly the expected type and the src type is a
3365     // subtype which we can't check or src is the same array as dst
3366     // but not necessarily exactly of type default_type.
3367     Label known_ok, halt;
3368     __ mov_metadata(tmp, default_type->constant_encoding());
3369 #ifdef _LP64
3370     if (UseCompressedClassPointers) {
3371       __ encode_klass_not_null(tmp);
3372     }
3373 #endif
3374 
3375     if (basic_type != T_OBJECT) {
3376 
3377       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3378       else                   __ cmpptr(tmp, dst_klass_addr);
3379       __ jcc(Assembler::notEqual, halt);
3380       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3381       else                   __ cmpptr(tmp, src_klass_addr);
3382       __ jcc(Assembler::equal, known_ok);
3383     } else {
3384       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3385       else                   __ cmpptr(tmp, dst_klass_addr);
3386       __ jcc(Assembler::equal, known_ok);
3387       __ cmpptr(src, dst);
3388       __ jcc(Assembler::equal, known_ok);
3389     }
3390     __ bind(halt);
3391     __ stop("incorrect type information in arraycopy");
3392     __ bind(known_ok);
3393   }
3394 #endif
3395 
3396 #ifndef PRODUCT
3397   if (PrintC1Statistics) {
3398     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3399   }
3400 #endif
3401 
3402 #ifdef _LP64
3403   assert_different_registers(c_rarg0, dst, dst_pos, length);
3404   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3405   assert_different_registers(c_rarg1, length);
3406   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3407   __ mov(c_rarg2, length);
3408 
3409 #else
3410   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3411   store_parameter(tmp, 0);
3412   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3413   store_parameter(tmp, 1);
3414   store_parameter(length, 2);
3415 #endif // _LP64
3416 
3417   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3418   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3419   const char *name;
3420   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3421   __ call_VM_leaf(entry, 0);
3422 
3423   __ bind(*stub->continuation());
3424 }
3425 
3426 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3427   assert(op->crc()->is_single_cpu(),  "crc must be register");
3428   assert(op->val()->is_single_cpu(),  "byte value must be register");
3429   assert(op->result_opr()->is_single_cpu(), "result must be register");
3430   Register crc = op->crc()->as_register();
3431   Register val = op->val()->as_register();
3432   Register res = op->result_opr()->as_register();
3433 
3434   assert_different_registers(val, crc, res);
3435 
3436   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3437   __ notl(crc); // ~crc
3438   __ update_byte_crc32(crc, val, res);
3439   __ notl(crc); // ~crc
3440   __ mov(res, crc);
3441 }
3442 
3443 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3444   Register obj = op->obj_opr()->as_register();  // may not be an oop
3445   Register hdr = op->hdr_opr()->as_register();
3446   Register lock = op->lock_opr()->as_register();
3447   if (!UseFastLocking) {
3448     __ jmp(*op->stub()->entry());
3449   } else if (op->code() == lir_lock) {
3450     Register scratch = noreg;
3451     if (UseBiasedLocking) {
3452       scratch = op->scratch_opr()->as_register();
3453     }
3454     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3455     // add debug info for NullPointerException only if one is possible
3456     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3457     if (op->info() != NULL) {
3458       add_debug_info_for_null_check(null_check_offset, op->info());
3459     }
3460     // done
3461   } else if (op->code() == lir_unlock) {
3462     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3463     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3464   } else {
3465     Unimplemented();
3466   }
3467   __ bind(*op->stub()->continuation());
3468 }
3469 
3470 
3471 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3472   ciMethod* method = op->profiled_method();
3473   int bci          = op->profiled_bci();
3474   ciMethod* callee = op->profiled_callee();
3475 
3476   // Update counter for all call types
3477   ciMethodData* md = method->method_data_or_null();
3478   assert(md != NULL, "Sanity");
3479   ciProfileData* data = md->bci_to_data(bci);
3480   assert(data->is_CounterData(), "need CounterData for calls");
3481   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3482   Register mdo  = op->mdo()->as_register();
3483   __ mov_metadata(mdo, md->constant_encoding());
3484   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3485   Bytecodes::Code bc = method->java_code_at_bci(bci);
3486   const bool callee_is_static = callee->is_loaded() && callee->is_static();
3487   // Perform additional virtual call profiling for invokevirtual and
3488   // invokeinterface bytecodes
3489   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3490       !callee_is_static &&  // required for optimized MH invokes
3491       C1ProfileVirtualCalls) {
3492     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3493     Register recv = op->recv()->as_register();
3494     assert_different_registers(mdo, recv);
3495     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3496     ciKlass* known_klass = op->known_holder();
3497     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3498       // We know the type that will be seen at this call site; we can
3499       // statically update the MethodData* rather than needing to do
3500       // dynamic tests on the receiver type
3501 
3502       // NOTE: we should probably put a lock around this search to
3503       // avoid collisions by concurrent compilations
3504       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3505       uint i;
3506       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3507         ciKlass* receiver = vc_data->receiver(i);
3508         if (known_klass->equals(receiver)) {
3509           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3510           __ addptr(data_addr, DataLayout::counter_increment);
3511           return;
3512         }
3513       }
3514 
3515       // Receiver type not found in profile data; select an empty slot
3516 
3517       // Note that this is less efficient than it should be because it
3518       // always does a write to the receiver part of the
3519       // VirtualCallData rather than just the first time
3520       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3521         ciKlass* receiver = vc_data->receiver(i);
3522         if (receiver == NULL) {
3523           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3524           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3525           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3526           __ addptr(data_addr, DataLayout::counter_increment);
3527           return;
3528         }
3529       }
3530     } else {
3531       __ load_klass(recv, recv);
3532       Label update_done;
3533       type_profile_helper(mdo, md, data, recv, &update_done);
3534       // Receiver did not match any saved receiver and there is no empty row for it.
3535       // Increment total counter to indicate polymorphic case.
3536       __ addptr(counter_addr, DataLayout::counter_increment);
3537 
3538       __ bind(update_done);
3539     }
3540   } else {
3541     // Static call
3542     __ addptr(counter_addr, DataLayout::counter_increment);
3543   }
3544 }
3545 
3546 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3547   Register obj = op->obj()->as_register();
3548   Register tmp = op->tmp()->as_pointer_register();
3549   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3550   ciKlass* exact_klass = op->exact_klass();
3551   intptr_t current_klass = op->current_klass();
3552   bool not_null = op->not_null();
3553   bool no_conflict = op->no_conflict();
3554 
3555   Label update, next, none;
3556 
3557   bool do_null = !not_null;
3558   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3559   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3560 
3561   assert(do_null || do_update, "why are we here?");
3562   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3563 
3564   __ verify_oop(obj);
3565 
3566   if (tmp != obj) {
3567     __ mov(tmp, obj);
3568   }
3569   if (do_null) {
3570     __ testptr(tmp, tmp);
3571     __ jccb(Assembler::notZero, update);
3572     if (!TypeEntries::was_null_seen(current_klass)) {
3573       __ orptr(mdo_addr, TypeEntries::null_seen);
3574     }
3575     if (do_update) {
3576 #ifndef ASSERT
3577       __ jmpb(next);
3578     }
3579 #else
3580       __ jmp(next);
3581     }
3582   } else {
3583     __ testptr(tmp, tmp);
3584     __ jccb(Assembler::notZero, update);
3585     __ stop("unexpect null obj");
3586 #endif
3587   }
3588 
3589   __ bind(update);
3590 
3591   if (do_update) {
3592 #ifdef ASSERT
3593     if (exact_klass != NULL) {
3594       Label ok;
3595       __ load_klass(tmp, tmp);
3596       __ push(tmp);
3597       __ mov_metadata(tmp, exact_klass->constant_encoding());
3598       __ cmpptr(tmp, Address(rsp, 0));
3599       __ jccb(Assembler::equal, ok);
3600       __ stop("exact klass and actual klass differ");
3601       __ bind(ok);
3602       __ pop(tmp);
3603     }
3604 #endif
3605     if (!no_conflict) {
3606       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3607         if (exact_klass != NULL) {
3608           __ mov_metadata(tmp, exact_klass->constant_encoding());
3609         } else {
3610           __ load_klass(tmp, tmp);
3611         }
3612 
3613         __ xorptr(tmp, mdo_addr);
3614         __ testptr(tmp, TypeEntries::type_klass_mask);
3615         // klass seen before, nothing to do. The unknown bit may have been
3616         // set already but no need to check.
3617         __ jccb(Assembler::zero, next);
3618 
3619         __ testptr(tmp, TypeEntries::type_unknown);
3620         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3621 
3622         if (TypeEntries::is_type_none(current_klass)) {
3623           __ cmpptr(mdo_addr, 0);
3624           __ jccb(Assembler::equal, none);
3625           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3626           __ jccb(Assembler::equal, none);
3627           // There is a chance that the checks above (re-reading profiling
3628           // data from memory) fail if another thread has just set the
3629           // profiling to this obj's klass
3630           __ xorptr(tmp, mdo_addr);
3631           __ testptr(tmp, TypeEntries::type_klass_mask);
3632           __ jccb(Assembler::zero, next);
3633         }
3634       } else {
3635         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3636                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3637 
3638         __ movptr(tmp, mdo_addr);
3639         __ testptr(tmp, TypeEntries::type_unknown);
3640         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3641       }
3642 
3643       // different than before. Cannot keep accurate profile.
3644       __ orptr(mdo_addr, TypeEntries::type_unknown);
3645 
3646       if (TypeEntries::is_type_none(current_klass)) {
3647         __ jmpb(next);
3648 
3649         __ bind(none);
3650         // first time here. Set profile type.
3651         __ movptr(mdo_addr, tmp);
3652       }
3653     } else {
3654       // There's a single possible klass at this profile point
3655       assert(exact_klass != NULL, "should be");
3656       if (TypeEntries::is_type_none(current_klass)) {
3657         __ mov_metadata(tmp, exact_klass->constant_encoding());
3658         __ xorptr(tmp, mdo_addr);
3659         __ testptr(tmp, TypeEntries::type_klass_mask);
3660 #ifdef ASSERT
3661         __ jcc(Assembler::zero, next);
3662 
3663         {
3664           Label ok;
3665           __ push(tmp);
3666           __ cmpptr(mdo_addr, 0);
3667           __ jcc(Assembler::equal, ok);
3668           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3669           __ jcc(Assembler::equal, ok);
3670           // may have been set by another thread
3671           __ mov_metadata(tmp, exact_klass->constant_encoding());
3672           __ xorptr(tmp, mdo_addr);
3673           __ testptr(tmp, TypeEntries::type_mask);
3674           __ jcc(Assembler::zero, ok);
3675 
3676           __ stop("unexpected profiling mismatch");
3677           __ bind(ok);
3678           __ pop(tmp);
3679         }
3680 #else
3681         __ jccb(Assembler::zero, next);
3682 #endif
3683         // first time here. Set profile type.
3684         __ movptr(mdo_addr, tmp);
3685       } else {
3686         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3687                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3688 
3689         __ movptr(tmp, mdo_addr);
3690         __ testptr(tmp, TypeEntries::type_unknown);
3691         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3692 
3693         __ orptr(mdo_addr, TypeEntries::type_unknown);
3694       }
3695     }
3696 
3697     __ bind(next);
3698   }
3699 }
3700 
3701 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3702   Unimplemented();
3703 }
3704 
3705 
3706 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3707   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3708 }
3709 
3710 
3711 void LIR_Assembler::align_backward_branch_target() {
3712   __ align(BytesPerWord);
3713 }
3714 
3715 
3716 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3717   if (left->is_single_cpu()) {
3718     __ negl(left->as_register());
3719     move_regs(left->as_register(), dest->as_register());
3720 
3721   } else if (left->is_double_cpu()) {
3722     Register lo = left->as_register_lo();
3723 #ifdef _LP64
3724     Register dst = dest->as_register_lo();
3725     __ movptr(dst, lo);
3726     __ negptr(dst);
3727 #else
3728     Register hi = left->as_register_hi();
3729     __ lneg(hi, lo);
3730     if (dest->as_register_lo() == hi) {
3731       assert(dest->as_register_hi() != lo, "destroying register");
3732       move_regs(hi, dest->as_register_hi());
3733       move_regs(lo, dest->as_register_lo());
3734     } else {
3735       move_regs(lo, dest->as_register_lo());
3736       move_regs(hi, dest->as_register_hi());
3737     }
3738 #endif // _LP64
3739 
3740   } else if (dest->is_single_xmm()) {
3741     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3742       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3743     }
3744     if (UseAVX > 0) {
3745       __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
3746                    ExternalAddress((address)float_signflip_pool));
3747     } else {
3748       __ xorps(dest->as_xmm_float_reg(),
3749                ExternalAddress((address)float_signflip_pool));
3750     }
3751   } else if (dest->is_double_xmm()) {
3752     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3753       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3754     }
3755     if (UseAVX > 0) {
3756       __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
3757                    ExternalAddress((address)double_signflip_pool));
3758     } else {
3759       __ xorpd(dest->as_xmm_double_reg(),
3760                ExternalAddress((address)double_signflip_pool));
3761     }
3762   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3763     assert(left->fpu() == 0, "arg must be on TOS");
3764     assert(dest->fpu() == 0, "dest must be TOS");
3765     __ fchs();
3766 
3767   } else {
3768     ShouldNotReachHere();
3769   }
3770 }
3771 
3772 
3773 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3774   assert(addr->is_address() && dest->is_register(), "check");
3775   Register reg;
3776   reg = dest->as_pointer_register();
3777   __ lea(reg, as_Address(addr->as_address_ptr()));
3778 }
3779 
3780 
3781 
3782 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3783   assert(!tmp->is_valid(), "don't need temporary");
3784   __ call(RuntimeAddress(dest));
3785   if (info != NULL) {
3786     add_call_info_here(info);
3787   }
3788 }
3789 
3790 
3791 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3792   assert(type == T_LONG, "only for volatile long fields");
3793 
3794   if (info != NULL) {
3795     add_debug_info_for_null_check_here(info);
3796   }
3797 
3798   if (src->is_double_xmm()) {
3799     if (dest->is_double_cpu()) {
3800 #ifdef _LP64
3801       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3802 #else
3803       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3804       __ psrlq(src->as_xmm_double_reg(), 32);
3805       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3806 #endif // _LP64
3807     } else if (dest->is_double_stack()) {
3808       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3809     } else if (dest->is_address()) {
3810       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3811     } else {
3812       ShouldNotReachHere();
3813     }
3814 
3815   } else if (dest->is_double_xmm()) {
3816     if (src->is_double_stack()) {
3817       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3818     } else if (src->is_address()) {
3819       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3820     } else {
3821       ShouldNotReachHere();
3822     }
3823 
3824   } else if (src->is_double_fpu()) {
3825     assert(src->fpu_regnrLo() == 0, "must be TOS");
3826     if (dest->is_double_stack()) {
3827       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3828     } else if (dest->is_address()) {
3829       __ fistp_d(as_Address(dest->as_address_ptr()));
3830     } else {
3831       ShouldNotReachHere();
3832     }
3833 
3834   } else if (dest->is_double_fpu()) {
3835     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3836     if (src->is_double_stack()) {
3837       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3838     } else if (src->is_address()) {
3839       __ fild_d(as_Address(src->as_address_ptr()));
3840     } else {
3841       ShouldNotReachHere();
3842     }
3843   } else {
3844     ShouldNotReachHere();
3845   }
3846 }
3847 
3848 #ifdef ASSERT
3849 // emit run-time assertion
3850 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3851   assert(op->code() == lir_assert, "must be");
3852 
3853   if (op->in_opr1()->is_valid()) {
3854     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3855     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3856   } else {
3857     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3858     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3859   }
3860 
3861   Label ok;
3862   if (op->condition() != lir_cond_always) {
3863     Assembler::Condition acond = Assembler::zero;
3864     switch (op->condition()) {
3865       case lir_cond_equal:        acond = Assembler::equal;       break;
3866       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3867       case lir_cond_less:         acond = Assembler::less;        break;
3868       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3869       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3870       case lir_cond_greater:      acond = Assembler::greater;     break;
3871       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3872       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3873       default:                    ShouldNotReachHere();
3874     }
3875     __ jcc(acond, ok);
3876   }
3877   if (op->halt()) {
3878     const char* str = __ code_string(op->msg());
3879     __ stop(str);
3880   } else {
3881     breakpoint();
3882   }
3883   __ bind(ok);
3884 }
3885 #endif
3886 
3887 void LIR_Assembler::membar() {
3888   // QQQ sparc TSO uses this,
3889   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3890 }
3891 
3892 void LIR_Assembler::membar_acquire() {
3893   // No x86 machines currently require load fences
3894 }
3895 
3896 void LIR_Assembler::membar_release() {
3897   // No x86 machines currently require store fences
3898 }
3899 
3900 void LIR_Assembler::membar_loadload() {
3901   // no-op
3902   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3903 }
3904 
3905 void LIR_Assembler::membar_storestore() {
3906   // no-op
3907   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3908 }
3909 
3910 void LIR_Assembler::membar_loadstore() {
3911   // no-op
3912   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3913 }
3914 
3915 void LIR_Assembler::membar_storeload() {
3916   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3917 }
3918 
3919 void LIR_Assembler::on_spin_wait() {
3920   __ pause ();
3921 }
3922 
3923 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3924   assert(result_reg->is_register(), "check");
3925 #ifdef _LP64
3926   // __ get_thread(result_reg->as_register_lo());
3927   __ mov(result_reg->as_register(), r15_thread);
3928 #else
3929   __ get_thread(result_reg->as_register());
3930 #endif // _LP64
3931 }
3932 
3933 
3934 void LIR_Assembler::peephole(LIR_List*) {
3935   // do nothing for now
3936 }
3937 
3938 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3939   assert(data == dest, "xchg/xadd uses only 2 operands");
3940 
3941   if (data->type() == T_INT) {
3942     if (code == lir_xadd) {
3943       if (os::is_MP()) {
3944         __ lock();
3945       }
3946       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3947     } else {
3948       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3949     }
3950   } else if (data->is_oop()) {
3951     assert (code == lir_xchg, "xadd for oops");
3952     Register obj = data->as_register();
3953 #ifdef _LP64
3954     if (UseCompressedOops) {
3955       __ encode_heap_oop(obj);
3956       __ xchgl(obj, as_Address(src->as_address_ptr()));
3957       __ decode_heap_oop(obj);
3958     } else {
3959       __ xchgptr(obj, as_Address(src->as_address_ptr()));
3960     }
3961 #else
3962     __ xchgl(obj, as_Address(src->as_address_ptr()));
3963 #endif
3964   } else if (data->type() == T_LONG) {
3965 #ifdef _LP64
3966     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
3967     if (code == lir_xadd) {
3968       if (os::is_MP()) {
3969         __ lock();
3970       }
3971       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
3972     } else {
3973       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
3974     }
3975 #else
3976     ShouldNotReachHere();
3977 #endif
3978   } else {
3979     ShouldNotReachHere();
3980   }
3981 }
3982 
3983 #undef __