src/jdk.internal.vm.compiler/share/classes/org.graalvm.compiler.lir/src/org/graalvm/compiler/lir/constopt/ConstantTreeAnalyzer.java
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File hotspot Sdiff src/jdk.internal.vm.compiler/share/classes/org.graalvm.compiler.lir/src/org/graalvm/compiler/lir/constopt

src/jdk.internal.vm.compiler/share/classes/org.graalvm.compiler.lir/src/org/graalvm/compiler/lir/constopt/ConstantTreeAnalyzer.java

Print this page




  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 package org.graalvm.compiler.lir.constopt;
  24 
  25 import java.util.ArrayDeque;
  26 import java.util.ArrayList;
  27 import java.util.BitSet;
  28 import java.util.Deque;
  29 import java.util.List;
  30 
  31 import org.graalvm.compiler.core.common.cfg.AbstractBlockBase;
  32 import org.graalvm.compiler.debug.Debug;
  33 import org.graalvm.compiler.debug.Debug.Scope;
  34 import org.graalvm.compiler.debug.Indent;
  35 import org.graalvm.compiler.lir.constopt.ConstantTree.Flags;
  36 import org.graalvm.compiler.lir.constopt.ConstantTree.NodeCost;
  37 
  38 /**
  39  * Analyzes a {@link ConstantTree} and marks potential materialization positions.
  40  */
  41 public final class ConstantTreeAnalyzer {
  42     private final ConstantTree tree;
  43     private final BitSet visited;
  44 
  45     @SuppressWarnings("try")
  46     public static NodeCost analyze(ConstantTree tree, AbstractBlockBase<?> startBlock) {
  47         try (Scope s = Debug.scope("ConstantTreeAnalyzer")) {
  48             ConstantTreeAnalyzer analyzer = new ConstantTreeAnalyzer(tree);
  49             analyzer.analyzeBlocks(startBlock);
  50             return tree.getCost(startBlock);
  51         } catch (Throwable e) {
  52             throw Debug.handle(e);
  53         }
  54     }
  55 
  56     private ConstantTreeAnalyzer(ConstantTree tree) {
  57         this.tree = tree;
  58         this.visited = new BitSet(tree.size());
  59     }
  60 
  61     /**
  62      * Queues all relevant blocks for {@linkplain #process processing}.
  63      *
  64      * This is a worklist-style algorithm because a (more elegant) recursive implementation may
  65      * cause {@linkplain StackOverflowError stack overflows} on larger graphs.
  66      *
  67      * @param startBlock The start block of the dominator subtree.
  68      */
  69     @SuppressWarnings("try")
  70     private void analyzeBlocks(AbstractBlockBase<?> startBlock) {
  71         Deque<AbstractBlockBase<?>> worklist = new ArrayDeque<>();
  72         worklist.offerLast(startBlock);
  73         while (!worklist.isEmpty()) {
  74             AbstractBlockBase<?> block = worklist.pollLast();
  75             try (Indent i = Debug.logAndIndent(Debug.VERBOSE_LEVEL, "analyze: %s", block)) {
  76                 assert block != null : "worklist is empty!";
  77                 assert isMarked(block) : "Block not part of the dominator tree: " + block;
  78 
  79                 if (isLeafBlock(block)) {
  80                     Debug.log(Debug.VERBOSE_LEVEL, "leaf block");
  81                     leafCost(block);
  82                     continue;
  83                 }
  84 
  85                 if (!visited.get(block.getId())) {
  86                     // if not yet visited (and not a leaf block) process all children first!
  87                     Debug.log(Debug.VERBOSE_LEVEL, "not marked");
  88                     worklist.offerLast(block);
  89                     AbstractBlockBase<?> dominated = block.getFirstDominated();
  90                     while (dominated != null) {
  91                         filteredPush(worklist, dominated);
  92                         dominated = dominated.getDominatedSibling();
  93                     }
  94                     visited.set(block.getId());
  95                 } else {
  96                     Debug.log(Debug.VERBOSE_LEVEL, "marked");
  97                     // otherwise, process block
  98                     process(block);
  99                 }
 100             }
 101         }
 102     }
 103 
 104     /**
 105      * Calculates the cost of a {@code block}. It is assumed that all {@code children} have already
 106      * been {@linkplain #process processed}
 107      *
 108      * @param block The block to be processed.
 109      */
 110     private void process(AbstractBlockBase<?> block) {
 111         List<UseEntry> usages = new ArrayList<>();
 112         double bestCost = 0;
 113         int numMat = 0;
 114 
 115         // collect children costs
 116         AbstractBlockBase<?> child = block.getFirstDominated();


 143         NodeCost nodeCost = new NodeCost(bestCost, usages, numMat);
 144         tree.setCost(block, nodeCost);
 145     }
 146 
 147     /**
 148      * This is the cost function that decides whether a materialization should be inserted in the
 149      * current block.
 150      * <p>
 151      * Note that this function does not take into account if a materialization is required despite
 152      * the probabilities (e.g. there are usages in the current block).
 153      *
 154      * @param probabilityBlock Probability of the current block.
 155      * @param probabilityChildren Accumulated probability of the children.
 156      * @param numMat Number of materializations along the subtrees. We use {@code numMat - 1} to
 157      *            insert materializations as late as possible if the probabilities are the same.
 158      */
 159     private static boolean shouldMaterializerInCurrentBlock(double probabilityBlock, double probabilityChildren, int numMat) {
 160         return probabilityBlock * Math.pow(0.9, numMat - 1) < probabilityChildren;
 161     }
 162 
 163     private void filteredPush(Deque<AbstractBlockBase<?>> worklist, AbstractBlockBase<?> block) {
 164         if (isMarked(block)) {
 165             Debug.log(Debug.VERBOSE_LEVEL, "adding %s to the worklist", block);
 166             worklist.offerLast(block);
 167         }
 168     }
 169 
 170     private void leafCost(AbstractBlockBase<?> block) {
 171         tree.set(Flags.CANDIDATE, block);
 172         tree.getOrInitCost(block);
 173     }
 174 
 175     private boolean isMarked(AbstractBlockBase<?> block) {
 176         return tree.isMarked(block);
 177     }
 178 
 179     private boolean isLeafBlock(AbstractBlockBase<?> block) {
 180         return tree.isLeafBlock(block);
 181     }
 182 
 183 }


  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 package org.graalvm.compiler.lir.constopt;
  24 
  25 import java.util.ArrayDeque;
  26 import java.util.ArrayList;
  27 import java.util.BitSet;
  28 import java.util.Deque;
  29 import java.util.List;
  30 
  31 import org.graalvm.compiler.core.common.cfg.AbstractBlockBase;
  32 import org.graalvm.compiler.debug.DebugContext;

  33 import org.graalvm.compiler.debug.Indent;
  34 import org.graalvm.compiler.lir.constopt.ConstantTree.Flags;
  35 import org.graalvm.compiler.lir.constopt.ConstantTree.NodeCost;
  36 
  37 /**
  38  * Analyzes a {@link ConstantTree} and marks potential materialization positions.
  39  */
  40 public final class ConstantTreeAnalyzer {
  41     private final ConstantTree tree;
  42     private final BitSet visited;
  43 
  44     @SuppressWarnings("try")
  45     public static NodeCost analyze(DebugContext debug, ConstantTree tree, AbstractBlockBase<?> startBlock) {
  46         try (DebugContext.Scope s = debug.scope("ConstantTreeAnalyzer")) {
  47             ConstantTreeAnalyzer analyzer = new ConstantTreeAnalyzer(tree);
  48             analyzer.analyzeBlocks(debug, startBlock);
  49             return tree.getCost(startBlock);
  50         } catch (Throwable e) {
  51             throw debug.handle(e);
  52         }
  53     }
  54 
  55     private ConstantTreeAnalyzer(ConstantTree tree) {
  56         this.tree = tree;
  57         this.visited = new BitSet(tree.size());
  58     }
  59 
  60     /**
  61      * Queues all relevant blocks for {@linkplain #process processing}.
  62      *
  63      * This is a worklist-style algorithm because a (more elegant) recursive implementation may
  64      * cause {@linkplain StackOverflowError stack overflows} on larger graphs.
  65      *
  66      * @param startBlock The start block of the dominator subtree.
  67      */
  68     @SuppressWarnings("try")
  69     private void analyzeBlocks(DebugContext debug, AbstractBlockBase<?> startBlock) {
  70         Deque<AbstractBlockBase<?>> worklist = new ArrayDeque<>();
  71         worklist.offerLast(startBlock);
  72         while (!worklist.isEmpty()) {
  73             AbstractBlockBase<?> block = worklist.pollLast();
  74             try (Indent i = debug.logAndIndent(DebugContext.VERBOSE_LEVEL, "analyze: %s", block)) {
  75                 assert block != null : "worklist is empty!";
  76                 assert isMarked(block) : "Block not part of the dominator tree: " + block;
  77 
  78                 if (isLeafBlock(block)) {
  79                     debug.log(DebugContext.VERBOSE_LEVEL, "leaf block");
  80                     leafCost(block);
  81                     continue;
  82                 }
  83 
  84                 if (!visited.get(block.getId())) {
  85                     // if not yet visited (and not a leaf block) process all children first!
  86                     debug.log(DebugContext.VERBOSE_LEVEL, "not marked");
  87                     worklist.offerLast(block);
  88                     AbstractBlockBase<?> dominated = block.getFirstDominated();
  89                     while (dominated != null) {
  90                         filteredPush(debug, worklist, dominated);
  91                         dominated = dominated.getDominatedSibling();
  92                     }
  93                     visited.set(block.getId());
  94                 } else {
  95                     debug.log(DebugContext.VERBOSE_LEVEL, "marked");
  96                     // otherwise, process block
  97                     process(block);
  98                 }
  99             }
 100         }
 101     }
 102 
 103     /**
 104      * Calculates the cost of a {@code block}. It is assumed that all {@code children} have already
 105      * been {@linkplain #process processed}
 106      *
 107      * @param block The block to be processed.
 108      */
 109     private void process(AbstractBlockBase<?> block) {
 110         List<UseEntry> usages = new ArrayList<>();
 111         double bestCost = 0;
 112         int numMat = 0;
 113 
 114         // collect children costs
 115         AbstractBlockBase<?> child = block.getFirstDominated();


 142         NodeCost nodeCost = new NodeCost(bestCost, usages, numMat);
 143         tree.setCost(block, nodeCost);
 144     }
 145 
 146     /**
 147      * This is the cost function that decides whether a materialization should be inserted in the
 148      * current block.
 149      * <p>
 150      * Note that this function does not take into account if a materialization is required despite
 151      * the probabilities (e.g. there are usages in the current block).
 152      *
 153      * @param probabilityBlock Probability of the current block.
 154      * @param probabilityChildren Accumulated probability of the children.
 155      * @param numMat Number of materializations along the subtrees. We use {@code numMat - 1} to
 156      *            insert materializations as late as possible if the probabilities are the same.
 157      */
 158     private static boolean shouldMaterializerInCurrentBlock(double probabilityBlock, double probabilityChildren, int numMat) {
 159         return probabilityBlock * Math.pow(0.9, numMat - 1) < probabilityChildren;
 160     }
 161 
 162     private void filteredPush(DebugContext debug, Deque<AbstractBlockBase<?>> worklist, AbstractBlockBase<?> block) {
 163         if (isMarked(block)) {
 164             debug.log(DebugContext.VERBOSE_LEVEL, "adding %s to the worklist", block);
 165             worklist.offerLast(block);
 166         }
 167     }
 168 
 169     private void leafCost(AbstractBlockBase<?> block) {
 170         tree.set(Flags.CANDIDATE, block);
 171         tree.getOrInitCost(block);
 172     }
 173 
 174     private boolean isMarked(AbstractBlockBase<?> block) {
 175         return tree.isMarked(block);
 176     }
 177 
 178     private boolean isLeafBlock(AbstractBlockBase<?> block) {
 179         return tree.isLeafBlock(block);
 180     }
 181 
 182 }
src/jdk.internal.vm.compiler/share/classes/org.graalvm.compiler.lir/src/org/graalvm/compiler/lir/constopt/ConstantTreeAnalyzer.java
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File