1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _is_evex_instruction) {
 398     switch (_tuple_type) {
 399     case EVEX_FV:
 400       if ((_evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (_input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (_input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (_avx_vector_len >= AVX_128bit && _avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[_tuple_type + mod_idx][_avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   _is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x59: //mulpd
 774     case 0x6E: // movd
 775     case 0x7E: // movd
 776     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 777       debug_only(has_disp32 = true);
 778       break;
 779 
 780     case 0xAD: // shrd r, a, %cl
 781     case 0xAF: // imul r, a
 782     case 0xBE: // movsbl r, a (movsxb)
 783     case 0xBF: // movswl r, a (movsxw)
 784     case 0xB6: // movzbl r, a (movzxb)
 785     case 0xB7: // movzwl r, a (movzxw)
 786     case REP16(0x40): // cmovl cc, r, a
 787     case 0xB0: // cmpxchgb
 788     case 0xB1: // cmpxchg
 789     case 0xC1: // xaddl
 790     case 0xC7: // cmpxchg8
 791     case REP16(0x90): // setcc a
 792       debug_only(has_disp32 = true);
 793       // fall out of the switch to decode the address
 794       break;
 795 
 796     case 0xC4: // pinsrw r, a, #8
 797       debug_only(has_disp32 = true);
 798     case 0xC5: // pextrw r, r, #8
 799       tail_size = 1;  // the imm8
 800       break;
 801 
 802     case 0xAC: // shrd r, a, #8
 803       debug_only(has_disp32 = true);
 804       tail_size = 1;  // the imm8
 805       break;
 806 
 807     case REP16(0x80): // jcc rdisp32
 808       if (which == end_pc_operand)  return ip + 4;
 809       assert(which == call32_operand, "jcc has no disp32 or imm");
 810       return ip;
 811     default:
 812       ShouldNotReachHere();
 813     }
 814     break;
 815 
 816   case 0x81: // addl a, #32; addl r, #32
 817     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 818     // on 32bit in the case of cmpl, the imm might be an oop
 819     tail_size = 4;
 820     debug_only(has_disp32 = true); // has both kinds of operands!
 821     break;
 822 
 823   case 0x83: // addl a, #8; addl r, #8
 824     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 825     debug_only(has_disp32 = true); // has both kinds of operands!
 826     tail_size = 1;
 827     break;
 828 
 829   case 0x9B:
 830     switch (0xFF & *ip++) {
 831     case 0xD9: // fnstcw a
 832       debug_only(has_disp32 = true);
 833       break;
 834     default:
 835       ShouldNotReachHere();
 836     }
 837     break;
 838 
 839   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 840   case REP4(0x10): // adc...
 841   case REP4(0x20): // and...
 842   case REP4(0x30): // xor...
 843   case REP4(0x08): // or...
 844   case REP4(0x18): // sbb...
 845   case REP4(0x28): // sub...
 846   case 0xF7: // mull a
 847   case 0x8D: // lea r, a
 848   case 0x87: // xchg r, a
 849   case REP4(0x38): // cmp...
 850   case 0x85: // test r, a
 851     debug_only(has_disp32 = true); // has both kinds of operands!
 852     break;
 853 
 854   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 855   case 0xC6: // movb a, #8
 856   case 0x80: // cmpb a, #8
 857   case 0x6B: // imul r, a, #8
 858     debug_only(has_disp32 = true); // has both kinds of operands!
 859     tail_size = 1; // the imm8
 860     break;
 861 
 862   case 0xC4: // VEX_3bytes
 863   case 0xC5: // VEX_2bytes
 864     assert((UseAVX > 0), "shouldn't have VEX prefix");
 865     assert(ip == inst+1, "no prefixes allowed");
 866     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 867     // but they have prefix 0x0F and processed when 0x0F processed above.
 868     //
 869     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 870     // instructions (these instructions are not supported in 64-bit mode).
 871     // To distinguish them bits [7:6] are set in the VEX second byte since
 872     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 873     // those VEX bits REX and vvvv bits are inverted.
 874     //
 875     // Fortunately C2 doesn't generate these instructions so we don't need
 876     // to check for them in product version.
 877 
 878     // Check second byte
 879     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 880 
 881     // First byte
 882     if ((0xFF & *inst) == VEX_3bytes) {
 883       ip++; // third byte
 884       is_64bit = ((VEX_W & *ip) == VEX_W);
 885     }
 886     ip++; // opcode
 887     // To find the end of instruction (which == end_pc_operand).
 888     switch (0xFF & *ip) {
 889     case 0x61: // pcmpestri r, r/a, #8
 890     case 0x70: // pshufd r, r/a, #8
 891     case 0x73: // psrldq r, #8
 892       tail_size = 1;  // the imm8
 893       break;
 894     default:
 895       break;
 896     }
 897     ip++; // skip opcode
 898     debug_only(has_disp32 = true); // has both kinds of operands!
 899     break;
 900 
 901   case 0x62: // EVEX_4bytes
 902     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 903     assert(ip == inst+1, "no prefixes allowed");
 904     // no EVEX collisions, all instructions that have 0x62 opcodes
 905     // have EVEX versions and are subopcodes of 0x66
 906     ip++; // skip P0 and exmaine W in P1
 907     is_64bit = ((VEX_W & *ip) == VEX_W);
 908     ip++; // move to P2
 909     ip++; // skip P2, move to opcode
 910     // To find the end of instruction (which == end_pc_operand).
 911     switch (0xFF & *ip) {
 912     case 0x61: // pcmpestri r, r/a, #8
 913     case 0x70: // pshufd r, r/a, #8
 914     case 0x73: // psrldq r, #8
 915       tail_size = 1;  // the imm8
 916       break;
 917     default:
 918       break;
 919     }
 920     ip++; // skip opcode
 921     debug_only(has_disp32 = true); // has both kinds of operands!
 922     break;
 923 
 924   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 925   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 926   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 927   case 0xDD: // fld_d a; fst_d a; fstp_d a
 928   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 929   case 0xDF: // fild_d a; fistp_d a
 930   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 931   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 932   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 933     debug_only(has_disp32 = true);
 934     break;
 935 
 936   case 0xE8: // call rdisp32
 937   case 0xE9: // jmp  rdisp32
 938     if (which == end_pc_operand)  return ip + 4;
 939     assert(which == call32_operand, "call has no disp32 or imm");
 940     return ip;
 941 
 942   case 0xF0:                    // Lock
 943     assert(os::is_MP(), "only on MP");
 944     goto again_after_prefix;
 945 
 946   case 0xF3:                    // For SSE
 947   case 0xF2:                    // For SSE2
 948     switch (0xFF & *ip++) {
 949     case REX:
 950     case REX_B:
 951     case REX_X:
 952     case REX_XB:
 953     case REX_R:
 954     case REX_RB:
 955     case REX_RX:
 956     case REX_RXB:
 957     case REX_W:
 958     case REX_WB:
 959     case REX_WX:
 960     case REX_WXB:
 961     case REX_WR:
 962     case REX_WRB:
 963     case REX_WRX:
 964     case REX_WRXB:
 965       NOT_LP64(assert(false, "found 64bit prefix"));
 966       ip++;
 967     default:
 968       ip++;
 969     }
 970     debug_only(has_disp32 = true); // has both kinds of operands!
 971     break;
 972 
 973   default:
 974     ShouldNotReachHere();
 975 
 976 #undef REP8
 977 #undef REP16
 978   }
 979 
 980   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 981 #ifdef _LP64
 982   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 983 #else
 984   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 985   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 986 #endif // LP64
 987   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 988 
 989   // parse the output of emit_operand
 990   int op2 = 0xFF & *ip++;
 991   int base = op2 & 0x07;
 992   int op3 = -1;
 993   const int b100 = 4;
 994   const int b101 = 5;
 995   if (base == b100 && (op2 >> 6) != 3) {
 996     op3 = 0xFF & *ip++;
 997     base = op3 & 0x07;   // refetch the base
 998   }
 999   // now ip points at the disp (if any)
1000 
1001   switch (op2 >> 6) {
1002   case 0:
1003     // [00 reg  100][ss index base]
1004     // [00 reg  100][00   100  esp]
1005     // [00 reg base]
1006     // [00 reg  100][ss index  101][disp32]
1007     // [00 reg  101]               [disp32]
1008 
1009     if (base == b101) {
1010       if (which == disp32_operand)
1011         return ip;              // caller wants the disp32
1012       ip += 4;                  // skip the disp32
1013     }
1014     break;
1015 
1016   case 1:
1017     // [01 reg  100][ss index base][disp8]
1018     // [01 reg  100][00   100  esp][disp8]
1019     // [01 reg base]               [disp8]
1020     ip += 1;                    // skip the disp8
1021     break;
1022 
1023   case 2:
1024     // [10 reg  100][ss index base][disp32]
1025     // [10 reg  100][00   100  esp][disp32]
1026     // [10 reg base]               [disp32]
1027     if (which == disp32_operand)
1028       return ip;                // caller wants the disp32
1029     ip += 4;                    // skip the disp32
1030     break;
1031 
1032   case 3:
1033     // [11 reg base]  (not a memory addressing mode)
1034     break;
1035   }
1036 
1037   if (which == end_pc_operand) {
1038     return ip + tail_size;
1039   }
1040 
1041 #ifdef _LP64
1042   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1043 #else
1044   assert(which == imm_operand, "instruction has only an imm field");
1045 #endif // LP64
1046   return ip;
1047 }
1048 
1049 address Assembler::locate_next_instruction(address inst) {
1050   // Secretly share code with locate_operand:
1051   return locate_operand(inst, end_pc_operand);
1052 }
1053 
1054 
1055 #ifdef ASSERT
1056 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1057   address inst = inst_mark();
1058   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1059   address opnd;
1060 
1061   Relocation* r = rspec.reloc();
1062   if (r->type() == relocInfo::none) {
1063     return;
1064   } else if (r->is_call() || format == call32_operand) {
1065     // assert(format == imm32_operand, "cannot specify a nonzero format");
1066     opnd = locate_operand(inst, call32_operand);
1067   } else if (r->is_data()) {
1068     assert(format == imm_operand || format == disp32_operand
1069            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1070     opnd = locate_operand(inst, (WhichOperand)format);
1071   } else {
1072     assert(format == imm_operand, "cannot specify a format");
1073     return;
1074   }
1075   assert(opnd == pc(), "must put operand where relocs can find it");
1076 }
1077 #endif // ASSERT
1078 
1079 void Assembler::emit_operand32(Register reg, Address adr) {
1080   assert(reg->encoding() < 8, "no extended registers");
1081   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1082   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1083                adr._rspec);
1084 }
1085 
1086 void Assembler::emit_operand(Register reg, Address adr,
1087                              int rip_relative_correction) {
1088   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1089                adr._rspec,
1090                rip_relative_correction);
1091 }
1092 
1093 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1094   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1095                adr._rspec);
1096 }
1097 
1098 // MMX operations
1099 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1102 }
1103 
1104 // work around gcc (3.2.1-7a) bug
1105 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1106   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1107   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1108 }
1109 
1110 
1111 void Assembler::emit_farith(int b1, int b2, int i) {
1112   assert(isByte(b1) && isByte(b2), "wrong opcode");
1113   assert(0 <= i &&  i < 8, "illegal stack offset");
1114   emit_int8(b1);
1115   emit_int8(b2 + i);
1116 }
1117 
1118 
1119 // Now the Assembler instructions (identical for 32/64 bits)
1120 
1121 void Assembler::adcl(Address dst, int32_t imm32) {
1122   InstructionMark im(this);
1123   prefix(dst);
1124   emit_arith_operand(0x81, rdx, dst, imm32);
1125 }
1126 
1127 void Assembler::adcl(Address dst, Register src) {
1128   InstructionMark im(this);
1129   prefix(dst, src);
1130   emit_int8(0x11);
1131   emit_operand(src, dst);
1132 }
1133 
1134 void Assembler::adcl(Register dst, int32_t imm32) {
1135   prefix(dst);
1136   emit_arith(0x81, 0xD0, dst, imm32);
1137 }
1138 
1139 void Assembler::adcl(Register dst, Address src) {
1140   InstructionMark im(this);
1141   prefix(src, dst);
1142   emit_int8(0x13);
1143   emit_operand(dst, src);
1144 }
1145 
1146 void Assembler::adcl(Register dst, Register src) {
1147   (void) prefix_and_encode(dst->encoding(), src->encoding());
1148   emit_arith(0x13, 0xC0, dst, src);
1149 }
1150 
1151 void Assembler::addl(Address dst, int32_t imm32) {
1152   InstructionMark im(this);
1153   prefix(dst);
1154   emit_arith_operand(0x81, rax, dst, imm32);
1155 }
1156 
1157 void Assembler::addl(Address dst, Register src) {
1158   InstructionMark im(this);
1159   prefix(dst, src);
1160   emit_int8(0x01);
1161   emit_operand(src, dst);
1162 }
1163 
1164 void Assembler::addl(Register dst, int32_t imm32) {
1165   prefix(dst);
1166   emit_arith(0x81, 0xC0, dst, imm32);
1167 }
1168 
1169 void Assembler::addl(Register dst, Address src) {
1170   InstructionMark im(this);
1171   prefix(src, dst);
1172   emit_int8(0x03);
1173   emit_operand(dst, src);
1174 }
1175 
1176 void Assembler::addl(Register dst, Register src) {
1177   (void) prefix_and_encode(dst->encoding(), src->encoding());
1178   emit_arith(0x03, 0xC0, dst, src);
1179 }
1180 
1181 void Assembler::addr_nop_4() {
1182   assert(UseAddressNop, "no CPU support");
1183   // 4 bytes: NOP DWORD PTR [EAX+0]
1184   emit_int8(0x0F);
1185   emit_int8(0x1F);
1186   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1187   emit_int8(0);    // 8-bits offset (1 byte)
1188 }
1189 
1190 void Assembler::addr_nop_5() {
1191   assert(UseAddressNop, "no CPU support");
1192   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1193   emit_int8(0x0F);
1194   emit_int8(0x1F);
1195   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1196   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1197   emit_int8(0);    // 8-bits offset (1 byte)
1198 }
1199 
1200 void Assembler::addr_nop_7() {
1201   assert(UseAddressNop, "no CPU support");
1202   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1203   emit_int8(0x0F);
1204   emit_int8(0x1F);
1205   emit_int8((unsigned char)0x80);
1206                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1207   emit_int32(0);   // 32-bits offset (4 bytes)
1208 }
1209 
1210 void Assembler::addr_nop_8() {
1211   assert(UseAddressNop, "no CPU support");
1212   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1213   emit_int8(0x0F);
1214   emit_int8(0x1F);
1215   emit_int8((unsigned char)0x84);
1216                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1217   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1218   emit_int32(0);   // 32-bits offset (4 bytes)
1219 }
1220 
1221 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1223   if (VM_Version::supports_evex()) {
1224     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1225   } else {
1226     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1227   }
1228 }
1229 
1230 void Assembler::addsd(XMMRegister dst, Address src) {
1231   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1232   if (VM_Version::supports_evex()) {
1233     _tuple_type = EVEX_T1S;
1234     _input_size_in_bits = EVEX_64bit;
1235     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1236   } else {
1237     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1238   }
1239 }
1240 
1241 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1242   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1243   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1244 }
1245 
1246 void Assembler::addss(XMMRegister dst, Address src) {
1247   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1248   if (VM_Version::supports_evex()) {
1249     _tuple_type = EVEX_T1S;
1250     _input_size_in_bits = EVEX_32bit;
1251   }
1252   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1253 }
1254 
1255 void Assembler::aesdec(XMMRegister dst, Address src) {
1256   assert(VM_Version::supports_aes(), "");
1257   InstructionMark im(this);
1258   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1259               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1260   emit_int8((unsigned char)0xDE);
1261   emit_operand(dst, src);
1262 }
1263 
1264 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1265   assert(VM_Version::supports_aes(), "");
1266   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1267                                       VEX_OPCODE_0F_38,  /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1268   emit_int8((unsigned char)0xDE);
1269   emit_int8(0xC0 | encode);
1270 }
1271 
1272 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1273   assert(VM_Version::supports_aes(), "");
1274   InstructionMark im(this);
1275   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1276               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit,  /* legacy_mode */ true);
1277   emit_int8((unsigned char)0xDF);
1278   emit_operand(dst, src);
1279 }
1280 
1281 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1282   assert(VM_Version::supports_aes(), "");
1283   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1284                                       VEX_OPCODE_0F_38,  /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1285   emit_int8((unsigned char)0xDF);
1286   emit_int8((unsigned char)(0xC0 | encode));
1287 }
1288 
1289 void Assembler::aesenc(XMMRegister dst, Address src) {
1290   assert(VM_Version::supports_aes(), "");
1291   InstructionMark im(this);
1292   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1293               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1294   emit_int8((unsigned char)0xDC);
1295   emit_operand(dst, src);
1296 }
1297 
1298 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1299   assert(VM_Version::supports_aes(), "");
1300   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1301                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1302   emit_int8((unsigned char)0xDC);
1303   emit_int8(0xC0 | encode);
1304 }
1305 
1306 void Assembler::aesenclast(XMMRegister dst, Address src) {
1307   assert(VM_Version::supports_aes(), "");
1308   InstructionMark im(this);
1309   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1310               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit,  /* legacy_mode */ true);
1311   emit_int8((unsigned char)0xDD);
1312   emit_operand(dst, src);
1313 }
1314 
1315 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1316   assert(VM_Version::supports_aes(), "");
1317   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1318                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1319   emit_int8((unsigned char)0xDD);
1320   emit_int8((unsigned char)(0xC0 | encode));
1321 }
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38_legacy(dst, src1, src2);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38_legacy(rbx, dst, src);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38_legacy(rdx, dst, src);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38_legacy(rcx, dst, src);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     _tuple_type = EVEX_T1S;
1573     _input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     _tuple_type = EVEX_T1S;
1592     _input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1609 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1610 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1611 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1612 //
1613 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1614 //
1615 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1616 //
1617 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1618 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1619   assert(VM_Version::supports_sse4_2(), "");
1620   int8_t w = 0x01;
1621   Prefix p = Prefix_EMPTY;
1622 
1623   emit_int8((int8_t)0xF2);
1624   switch (sizeInBytes) {
1625   case 1:
1626     w = 0;
1627     break;
1628   case 2:
1629   case 4:
1630     break;
1631   LP64_ONLY(case 8:)
1632     // This instruction is not valid in 32 bits
1633     // Note:
1634     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1635     //
1636     // Page B - 72   Vol. 2C says
1637     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1638     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1639     //                                                                            F0!!!
1640     // while 3 - 208 Vol. 2A
1641     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1642     //
1643     // the 0 on a last bit is reserved for a different flavor of this instruction :
1644     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1645     p = REX_W;
1646     break;
1647   default:
1648     assert(0, "Unsupported value for a sizeInBytes argument");
1649     break;
1650   }
1651   LP64_ONLY(prefix(crc, v, p);)
1652   emit_int8((int8_t)0x0F);
1653   emit_int8(0x38);
1654   emit_int8((int8_t)(0xF0 | w));
1655   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1656 }
1657 
1658 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1659   assert(VM_Version::supports_sse4_2(), "");
1660   InstructionMark im(this);
1661   int8_t w = 0x01;
1662   Prefix p = Prefix_EMPTY;
1663 
1664   emit_int8((int8_t)0xF2);
1665   switch (sizeInBytes) {
1666   case 1:
1667     w = 0;
1668     break;
1669   case 2:
1670   case 4:
1671     break;
1672   LP64_ONLY(case 8:)
1673     // This instruction is not valid in 32 bits
1674     p = REX_W;
1675     break;
1676   default:
1677     assert(0, "Unsupported value for a sizeInBytes argument");
1678     break;
1679   }
1680   LP64_ONLY(prefix(crc, adr, p);)
1681   emit_int8((int8_t)0x0F);
1682   emit_int8(0x38);
1683   emit_int8((int8_t)(0xF0 | w));
1684   emit_operand(crc, adr);
1685 }
1686 
1687 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1688   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1689   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3, /* no_mask_reg */ false, /* legacy_mode */ true);
1690 }
1691 
1692 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1694   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ true);
1695 }
1696 
1697 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1698   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1699   if (VM_Version::supports_evex()) {
1700     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1701   } else {
1702     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1703   }
1704 }
1705 
1706 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1707   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1708   if (VM_Version::supports_evex()) {
1709     _tuple_type = EVEX_T1F;
1710     _input_size_in_bits = EVEX_64bit;
1711     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1712   } else {
1713     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1714   }
1715 }
1716 
1717 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1719   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VM_Version::supports_evex());
1720   emit_int8(0x2A);
1721   emit_int8((unsigned char)(0xC0 | encode));
1722 }
1723 
1724 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1725   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1726   if (VM_Version::supports_evex()) {
1727     _tuple_type = EVEX_T1S;
1728     _input_size_in_bits = EVEX_32bit;
1729     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
1730   } else {
1731     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1732   }
1733 }
1734 
1735 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1736   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1737   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
1738   emit_int8(0x2A);
1739   emit_int8((unsigned char)(0xC0 | encode));
1740 }
1741 
1742 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1743   if (VM_Version::supports_evex()) {
1744     _tuple_type = EVEX_T1S;
1745     _input_size_in_bits = EVEX_32bit;
1746   }
1747   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1748   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
1749 }
1750 
1751 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1752   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1753   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
1754   emit_int8(0x2A);
1755   emit_int8((unsigned char)(0xC0 | encode));
1756 }
1757 
1758 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1759   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1760   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1761 }
1762 
1763 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1764   if (VM_Version::supports_evex()) {
1765     _tuple_type = EVEX_T1S;
1766     _input_size_in_bits = EVEX_32bit;
1767   }
1768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1769   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1770 }
1771 
1772 
1773 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1774   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1775   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, /* no_mask_reg */ true);
1776   emit_int8(0x2C);
1777   emit_int8((unsigned char)(0xC0 | encode));
1778 }
1779 
1780 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1781   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1782   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, /* no_mask_reg */ true);
1783   emit_int8(0x2C);
1784   emit_int8((unsigned char)(0xC0 | encode));
1785 }
1786 
1787 void Assembler::decl(Address dst) {
1788   // Don't use it directly. Use MacroAssembler::decrement() instead.
1789   InstructionMark im(this);
1790   prefix(dst);
1791   emit_int8((unsigned char)0xFF);
1792   emit_operand(rcx, dst);
1793 }
1794 
1795 void Assembler::divsd(XMMRegister dst, Address src) {
1796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1797   if (VM_Version::supports_evex()) {
1798     _tuple_type = EVEX_T1S;
1799     _input_size_in_bits = EVEX_64bit;
1800     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1801   } else {
1802     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1803   }
1804 }
1805 
1806 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1807   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1808   if (VM_Version::supports_evex()) {
1809     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1810   } else {
1811     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1812   }
1813 }
1814 
1815 void Assembler::divss(XMMRegister dst, Address src) {
1816   if (VM_Version::supports_evex()) {
1817     _tuple_type = EVEX_T1S;
1818     _input_size_in_bits = EVEX_32bit;
1819   }
1820   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1821   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1822 }
1823 
1824 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1825   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1826   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1827 }
1828 
1829 void Assembler::emms() {
1830   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1831   emit_int8(0x0F);
1832   emit_int8(0x77);
1833 }
1834 
1835 void Assembler::hlt() {
1836   emit_int8((unsigned char)0xF4);
1837 }
1838 
1839 void Assembler::idivl(Register src) {
1840   int encode = prefix_and_encode(src->encoding());
1841   emit_int8((unsigned char)0xF7);
1842   emit_int8((unsigned char)(0xF8 | encode));
1843 }
1844 
1845 void Assembler::divl(Register src) { // Unsigned
1846   int encode = prefix_and_encode(src->encoding());
1847   emit_int8((unsigned char)0xF7);
1848   emit_int8((unsigned char)(0xF0 | encode));
1849 }
1850 
1851 void Assembler::imull(Register dst, Register src) {
1852   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1853   emit_int8(0x0F);
1854   emit_int8((unsigned char)0xAF);
1855   emit_int8((unsigned char)(0xC0 | encode));
1856 }
1857 
1858 
1859 void Assembler::imull(Register dst, Register src, int value) {
1860   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1861   if (is8bit(value)) {
1862     emit_int8(0x6B);
1863     emit_int8((unsigned char)(0xC0 | encode));
1864     emit_int8(value & 0xFF);
1865   } else {
1866     emit_int8(0x69);
1867     emit_int8((unsigned char)(0xC0 | encode));
1868     emit_int32(value);
1869   }
1870 }
1871 
1872 void Assembler::imull(Register dst, Address src) {
1873   InstructionMark im(this);
1874   prefix(src, dst);
1875   emit_int8(0x0F);
1876   emit_int8((unsigned char) 0xAF);
1877   emit_operand(dst, src);
1878 }
1879 
1880 
1881 void Assembler::incl(Address dst) {
1882   // Don't use it directly. Use MacroAssembler::increment() instead.
1883   InstructionMark im(this);
1884   prefix(dst);
1885   emit_int8((unsigned char)0xFF);
1886   emit_operand(rax, dst);
1887 }
1888 
1889 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1890   InstructionMark im(this);
1891   assert((0 <= cc) && (cc < 16), "illegal cc");
1892   if (L.is_bound()) {
1893     address dst = target(L);
1894     assert(dst != NULL, "jcc most probably wrong");
1895 
1896     const int short_size = 2;
1897     const int long_size = 6;
1898     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1899     if (maybe_short && is8bit(offs - short_size)) {
1900       // 0111 tttn #8-bit disp
1901       emit_int8(0x70 | cc);
1902       emit_int8((offs - short_size) & 0xFF);
1903     } else {
1904       // 0000 1111 1000 tttn #32-bit disp
1905       assert(is_simm32(offs - long_size),
1906              "must be 32bit offset (call4)");
1907       emit_int8(0x0F);
1908       emit_int8((unsigned char)(0x80 | cc));
1909       emit_int32(offs - long_size);
1910     }
1911   } else {
1912     // Note: could eliminate cond. jumps to this jump if condition
1913     //       is the same however, seems to be rather unlikely case.
1914     // Note: use jccb() if label to be bound is very close to get
1915     //       an 8-bit displacement
1916     L.add_patch_at(code(), locator());
1917     emit_int8(0x0F);
1918     emit_int8((unsigned char)(0x80 | cc));
1919     emit_int32(0);
1920   }
1921 }
1922 
1923 void Assembler::jccb(Condition cc, Label& L) {
1924   if (L.is_bound()) {
1925     const int short_size = 2;
1926     address entry = target(L);
1927 #ifdef ASSERT
1928     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1929     intptr_t delta = short_branch_delta();
1930     if (delta != 0) {
1931       dist += (dist < 0 ? (-delta) :delta);
1932     }
1933     assert(is8bit(dist), "Dispacement too large for a short jmp");
1934 #endif
1935     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1936     // 0111 tttn #8-bit disp
1937     emit_int8(0x70 | cc);
1938     emit_int8((offs - short_size) & 0xFF);
1939   } else {
1940     InstructionMark im(this);
1941     L.add_patch_at(code(), locator());
1942     emit_int8(0x70 | cc);
1943     emit_int8(0);
1944   }
1945 }
1946 
1947 void Assembler::jmp(Address adr) {
1948   InstructionMark im(this);
1949   prefix(adr);
1950   emit_int8((unsigned char)0xFF);
1951   emit_operand(rsp, adr);
1952 }
1953 
1954 void Assembler::jmp(Label& L, bool maybe_short) {
1955   if (L.is_bound()) {
1956     address entry = target(L);
1957     assert(entry != NULL, "jmp most probably wrong");
1958     InstructionMark im(this);
1959     const int short_size = 2;
1960     const int long_size = 5;
1961     intptr_t offs = entry - pc();
1962     if (maybe_short && is8bit(offs - short_size)) {
1963       emit_int8((unsigned char)0xEB);
1964       emit_int8((offs - short_size) & 0xFF);
1965     } else {
1966       emit_int8((unsigned char)0xE9);
1967       emit_int32(offs - long_size);
1968     }
1969   } else {
1970     // By default, forward jumps are always 32-bit displacements, since
1971     // we can't yet know where the label will be bound.  If you're sure that
1972     // the forward jump will not run beyond 256 bytes, use jmpb to
1973     // force an 8-bit displacement.
1974     InstructionMark im(this);
1975     L.add_patch_at(code(), locator());
1976     emit_int8((unsigned char)0xE9);
1977     emit_int32(0);
1978   }
1979 }
1980 
1981 void Assembler::jmp(Register entry) {
1982   int encode = prefix_and_encode(entry->encoding());
1983   emit_int8((unsigned char)0xFF);
1984   emit_int8((unsigned char)(0xE0 | encode));
1985 }
1986 
1987 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1988   InstructionMark im(this);
1989   emit_int8((unsigned char)0xE9);
1990   assert(dest != NULL, "must have a target");
1991   intptr_t disp = dest - (pc() + sizeof(int32_t));
1992   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1993   emit_data(disp, rspec.reloc(), call32_operand);
1994 }
1995 
1996 void Assembler::jmpb(Label& L) {
1997   if (L.is_bound()) {
1998     const int short_size = 2;
1999     address entry = target(L);
2000     assert(entry != NULL, "jmp most probably wrong");
2001 #ifdef ASSERT
2002     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2003     intptr_t delta = short_branch_delta();
2004     if (delta != 0) {
2005       dist += (dist < 0 ? (-delta) :delta);
2006     }
2007     assert(is8bit(dist), "Dispacement too large for a short jmp");
2008 #endif
2009     intptr_t offs = entry - pc();
2010     emit_int8((unsigned char)0xEB);
2011     emit_int8((offs - short_size) & 0xFF);
2012   } else {
2013     InstructionMark im(this);
2014     L.add_patch_at(code(), locator());
2015     emit_int8((unsigned char)0xEB);
2016     emit_int8(0);
2017   }
2018 }
2019 
2020 void Assembler::ldmxcsr( Address src) {
2021   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2022   InstructionMark im(this);
2023   prefix(src);
2024   emit_int8(0x0F);
2025   emit_int8((unsigned char)0xAE);
2026   emit_operand(as_Register(2), src);
2027 }
2028 
2029 void Assembler::leal(Register dst, Address src) {
2030   InstructionMark im(this);
2031 #ifdef _LP64
2032   emit_int8(0x67); // addr32
2033   prefix(src, dst);
2034 #endif // LP64
2035   emit_int8((unsigned char)0x8D);
2036   emit_operand(dst, src);
2037 }
2038 
2039 void Assembler::lfence() {
2040   emit_int8(0x0F);
2041   emit_int8((unsigned char)0xAE);
2042   emit_int8((unsigned char)0xE8);
2043 }
2044 
2045 void Assembler::lock() {
2046   emit_int8((unsigned char)0xF0);
2047 }
2048 
2049 void Assembler::lzcntl(Register dst, Register src) {
2050   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2051   emit_int8((unsigned char)0xF3);
2052   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2053   emit_int8(0x0F);
2054   emit_int8((unsigned char)0xBD);
2055   emit_int8((unsigned char)(0xC0 | encode));
2056 }
2057 
2058 // Emit mfence instruction
2059 void Assembler::mfence() {
2060   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2061   emit_int8(0x0F);
2062   emit_int8((unsigned char)0xAE);
2063   emit_int8((unsigned char)0xF0);
2064 }
2065 
2066 void Assembler::mov(Register dst, Register src) {
2067   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2068 }
2069 
2070 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2071   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2072   if (VM_Version::supports_avx512novl()) {
2073     int vector_len = AVX_512bit;
2074     int dst_enc = dst->encoding();
2075     int src_enc = src->encoding();
2076     int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F,
2077                                        /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
2078     emit_int8(0x28);
2079     emit_int8((unsigned char)(0xC0 | encode));
2080   } else if (VM_Version::supports_evex()) {
2081     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66);
2082   } else {
2083     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
2084   }
2085 }
2086 
2087 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2088   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2089   if (VM_Version::supports_avx512novl()) {
2090     int vector_len = AVX_512bit;
2091     int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, vector_len);
2092     emit_int8(0x28);
2093     emit_int8((unsigned char)(0xC0 | encode));
2094   } else {
2095     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2096   }
2097 }
2098 
2099 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2100   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2101   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
2102   emit_int8(0x16);
2103   emit_int8((unsigned char)(0xC0 | encode));
2104 }
2105 
2106 void Assembler::movb(Register dst, Address src) {
2107   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2108   InstructionMark im(this);
2109   prefix(src, dst, true);
2110   emit_int8((unsigned char)0x8A);
2111   emit_operand(dst, src);
2112 }
2113 
2114 void Assembler::kmovql(KRegister dst, KRegister src) {
2115   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2116   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2117                                       /* no_mask_reg */ true, VEX_OPCODE_0F, /* rex_w */ true);
2118   emit_int8((unsigned char)0x90);
2119   emit_int8((unsigned char)(0xC0 | encode));
2120 }
2121 
2122 void Assembler::kmovql(KRegister dst, Address src) {
2123   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2124   int dst_enc = dst->encoding();
2125   int nds_enc = 0;
2126   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2127              VEX_OPCODE_0F, /* vex_w */  true, AVX_128bit, /* legacy_mode */ true, /* no_reg_mask */ true);
2128   emit_int8((unsigned char)0x90);
2129   emit_operand((Register)dst, src);
2130 }
2131 
2132 void Assembler::kmovql(Address dst, KRegister src) {
2133   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2134   int src_enc = src->encoding();
2135   int nds_enc = 0;
2136   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2137              VEX_OPCODE_0F, /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_reg_mask */ true);
2138   emit_int8((unsigned char)0x90);
2139   emit_operand((Register)src, dst);
2140 }
2141 
2142 void Assembler::kmovql(KRegister dst, Register src) {
2143   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2144   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2145   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, /* no_mask_reg */ true,
2146                                       VEX_OPCODE_0F, /* legacy_mode */ !_legacy_mode_bw);
2147   emit_int8((unsigned char)0x92);
2148   emit_int8((unsigned char)(0xC0 | encode));
2149 }
2150 
2151 void Assembler::kmovdl(KRegister dst, Register src) {
2152   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2153   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2154   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, /* no_mask_reg */ true);
2155   emit_int8((unsigned char)0x92);
2156   emit_int8((unsigned char)(0xC0 | encode));
2157 }
2158 
2159 void Assembler::kmovwl(KRegister dst, Register src) {
2160   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2161   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
2162   emit_int8((unsigned char)0x92);
2163   emit_int8((unsigned char)(0xC0 | encode));
2164 }
2165 
2166 void Assembler::movb(Address dst, int imm8) {
2167   InstructionMark im(this);
2168    prefix(dst);
2169   emit_int8((unsigned char)0xC6);
2170   emit_operand(rax, dst, 1);
2171   emit_int8(imm8);
2172 }
2173 
2174 
2175 void Assembler::movb(Address dst, Register src) {
2176   assert(src->has_byte_register(), "must have byte register");
2177   InstructionMark im(this);
2178   prefix(dst, src, true);
2179   emit_int8((unsigned char)0x88);
2180   emit_operand(src, dst);
2181 }
2182 
2183 void Assembler::movdl(XMMRegister dst, Register src) {
2184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2185   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
2186   emit_int8(0x6E);
2187   emit_int8((unsigned char)(0xC0 | encode));
2188 }
2189 
2190 void Assembler::movdl(Register dst, XMMRegister src) {
2191   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2192   // swap src/dst to get correct prefix
2193   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, /* no_mask_reg */ true);
2194   emit_int8(0x7E);
2195   emit_int8((unsigned char)(0xC0 | encode));
2196 }
2197 
2198 void Assembler::movdl(XMMRegister dst, Address src) {
2199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2200   if (VM_Version::supports_evex()) {
2201     _tuple_type = EVEX_T1S;
2202     _input_size_in_bits = EVEX_32bit;
2203   }
2204   InstructionMark im(this);
2205   simd_prefix(dst, src, VEX_SIMD_66, /* no_reg_mask */ true);
2206   emit_int8(0x6E);
2207   emit_operand(dst, src);
2208 }
2209 
2210 void Assembler::movdl(Address dst, XMMRegister src) {
2211   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2212   if (VM_Version::supports_evex()) {
2213     _tuple_type = EVEX_T1S;
2214     _input_size_in_bits = EVEX_32bit;
2215   }
2216   InstructionMark im(this);
2217   simd_prefix(dst, src, VEX_SIMD_66, /* no_reg_mask */ true);
2218   emit_int8(0x7E);
2219   emit_operand(src, dst);
2220 }
2221 
2222 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2223   _instruction_uses_vl = true;
2224   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2225   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2226 }
2227 
2228 void Assembler::movdqa(XMMRegister dst, Address src) {
2229   _instruction_uses_vl = true;
2230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2231   if (VM_Version::supports_evex()) {
2232     _tuple_type = EVEX_FVM;
2233   }
2234   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2235 }
2236 
2237 void Assembler::movdqu(XMMRegister dst, Address src) {
2238   _instruction_uses_vl = true;
2239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2240   if (VM_Version::supports_evex()) {
2241     _tuple_type = EVEX_FVM;
2242   }
2243   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2244 }
2245 
2246 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2247   _instruction_uses_vl = true;
2248   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2249   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2250 }
2251 
2252 void Assembler::movdqu(Address dst, XMMRegister src) {
2253   _instruction_uses_vl = true;
2254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2255   if (VM_Version::supports_evex()) {
2256     _tuple_type = EVEX_FVM;
2257   }
2258   InstructionMark im(this);
2259   simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ false);
2260   emit_int8(0x7F);
2261   emit_operand(src, dst);
2262 }
2263 
2264 // Move Unaligned 256bit Vector
2265 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2266   _instruction_uses_vl = true;
2267   assert(UseAVX > 0, "");
2268   int vector_len = AVX_256bit;
2269   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2270   emit_int8(0x6F);
2271   emit_int8((unsigned char)(0xC0 | encode));
2272 }
2273 
2274 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2275   _instruction_uses_vl = true;
2276   assert(UseAVX > 0, "");
2277   if (VM_Version::supports_evex()) {
2278     _tuple_type = EVEX_FVM;
2279   }
2280   InstructionMark im(this);
2281   int vector_len = AVX_256bit;
2282   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2283   emit_int8(0x6F);
2284   emit_operand(dst, src);
2285 }
2286 
2287 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2288   _instruction_uses_vl = true;
2289   assert(UseAVX > 0, "");
2290   if (VM_Version::supports_evex()) {
2291     _tuple_type = EVEX_FVM;
2292   }
2293   InstructionMark im(this);
2294   int vector_len = AVX_256bit;
2295   // swap src<->dst for encoding
2296   assert(src != xnoreg, "sanity");
2297   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
2298   emit_int8(0x7F);
2299   emit_operand(src, dst);
2300 }
2301 
2302 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2303 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2304   _instruction_uses_vl = true;
2305   assert(UseAVX > 0, "");
2306   int src_enc = src->encoding();
2307   int dst_enc = dst->encoding();
2308   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2309                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
2310   emit_int8(0x6F);
2311   emit_int8((unsigned char)(0xC0 | encode));
2312 }
2313 
2314 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2315   _instruction_uses_vl = true;
2316   assert(UseAVX > 0, "");
2317   InstructionMark im(this);
2318   if (VM_Version::supports_evex()) {
2319     _tuple_type = EVEX_FVM;
2320   }
2321   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2322   emit_int8(0x6F);
2323   emit_operand(dst, src);
2324 }
2325 
2326 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2327   _instruction_uses_vl = true;
2328   assert(UseAVX > 0, "");
2329   InstructionMark im(this);
2330   assert(src != xnoreg, "sanity");
2331   if (VM_Version::supports_evex()) {
2332     _tuple_type = EVEX_FVM;
2333   }
2334   // swap src<->dst for encoding
2335   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
2336   emit_int8(0x7F);
2337   emit_operand(src, dst);
2338 }
2339 
2340 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2341   _instruction_uses_vl = true;
2342   assert(UseAVX > 0, "");
2343   int src_enc = src->encoding();
2344   int dst_enc = dst->encoding();
2345   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2346                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
2347   emit_int8(0x6F);
2348   emit_int8((unsigned char)(0xC0 | encode));
2349 }
2350 
2351 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2352   _instruction_uses_vl = true;
2353   assert(UseAVX > 2, "");
2354   InstructionMark im(this);
2355   _tuple_type = EVEX_FVM;
2356   vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2357   emit_int8(0x6F);
2358   emit_operand(dst, src);
2359 }
2360 
2361 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2362   _instruction_uses_vl = true;
2363   assert(UseAVX > 2, "");
2364   InstructionMark im(this);
2365   assert(src != xnoreg, "sanity");
2366   _tuple_type = EVEX_FVM;
2367   // swap src<->dst for encoding
2368   vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
2369   emit_int8(0x7F);
2370   emit_operand(src, dst);
2371 }
2372 
2373 // Uses zero extension on 64bit
2374 
2375 void Assembler::movl(Register dst, int32_t imm32) {
2376   int encode = prefix_and_encode(dst->encoding());
2377   emit_int8((unsigned char)(0xB8 | encode));
2378   emit_int32(imm32);
2379 }
2380 
2381 void Assembler::movl(Register dst, Register src) {
2382   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2383   emit_int8((unsigned char)0x8B);
2384   emit_int8((unsigned char)(0xC0 | encode));
2385 }
2386 
2387 void Assembler::movl(Register dst, Address src) {
2388   InstructionMark im(this);
2389   prefix(src, dst);
2390   emit_int8((unsigned char)0x8B);
2391   emit_operand(dst, src);
2392 }
2393 
2394 void Assembler::movl(Address dst, int32_t imm32) {
2395   InstructionMark im(this);
2396   prefix(dst);
2397   emit_int8((unsigned char)0xC7);
2398   emit_operand(rax, dst, 4);
2399   emit_int32(imm32);
2400 }
2401 
2402 void Assembler::movl(Address dst, Register src) {
2403   InstructionMark im(this);
2404   prefix(dst, src);
2405   emit_int8((unsigned char)0x89);
2406   emit_operand(src, dst);
2407 }
2408 
2409 // New cpus require to use movsd and movss to avoid partial register stall
2410 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2411 // The selection is done in MacroAssembler::movdbl() and movflt().
2412 void Assembler::movlpd(XMMRegister dst, Address src) {
2413   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2414   if (VM_Version::supports_evex()) {
2415     _tuple_type = EVEX_T1S;
2416     _input_size_in_bits = EVEX_32bit;
2417     emit_simd_arith_q(0x12, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
2418   } else {
2419     emit_simd_arith(0x12, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
2420   }
2421 }
2422 
2423 void Assembler::movq( MMXRegister dst, Address src ) {
2424   assert( VM_Version::supports_mmx(), "" );
2425   emit_int8(0x0F);
2426   emit_int8(0x6F);
2427   emit_operand(dst, src);
2428 }
2429 
2430 void Assembler::movq( Address dst, MMXRegister src ) {
2431   assert( VM_Version::supports_mmx(), "" );
2432   emit_int8(0x0F);
2433   emit_int8(0x7F);
2434   // workaround gcc (3.2.1-7a) bug
2435   // In that version of gcc with only an emit_operand(MMX, Address)
2436   // gcc will tail jump and try and reverse the parameters completely
2437   // obliterating dst in the process. By having a version available
2438   // that doesn't need to swap the args at the tail jump the bug is
2439   // avoided.
2440   emit_operand(dst, src);
2441 }
2442 
2443 void Assembler::movq(XMMRegister dst, Address src) {
2444   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2445   InstructionMark im(this);
2446   if (VM_Version::supports_evex()) {
2447     _tuple_type = EVEX_T1S;
2448     _input_size_in_bits = EVEX_64bit;
2449     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, /* no_mask_reg */ true);
2450   } else {
2451     simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
2452   }
2453   emit_int8(0x7E);
2454   emit_operand(dst, src);
2455 }
2456 
2457 void Assembler::movq(Address dst, XMMRegister src) {
2458   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2459   InstructionMark im(this);
2460   if (VM_Version::supports_evex()) {
2461     _tuple_type = EVEX_T1S;
2462     _input_size_in_bits = EVEX_64bit;
2463     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, /* no_mask_reg */ true,
2464                 VEX_OPCODE_0F, /* rex_w */ true);
2465   } else {
2466     simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
2467   }
2468   emit_int8((unsigned char)0xD6);
2469   emit_operand(src, dst);
2470 }
2471 
2472 void Assembler::movsbl(Register dst, Address src) { // movsxb
2473   InstructionMark im(this);
2474   prefix(src, dst);
2475   emit_int8(0x0F);
2476   emit_int8((unsigned char)0xBE);
2477   emit_operand(dst, src);
2478 }
2479 
2480 void Assembler::movsbl(Register dst, Register src) { // movsxb
2481   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2482   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2483   emit_int8(0x0F);
2484   emit_int8((unsigned char)0xBE);
2485   emit_int8((unsigned char)(0xC0 | encode));
2486 }
2487 
2488 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2489   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2490   if (VM_Version::supports_evex()) {
2491     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
2492   } else {
2493     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2494   }
2495 }
2496 
2497 void Assembler::movsd(XMMRegister dst, Address src) {
2498   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2499   if (VM_Version::supports_evex()) {
2500     _tuple_type = EVEX_T1S;
2501     _input_size_in_bits = EVEX_64bit;
2502     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
2503   } else {
2504     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2505   }
2506 }
2507 
2508 void Assembler::movsd(Address dst, XMMRegister src) {
2509   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2510   InstructionMark im(this);
2511   if (VM_Version::supports_evex()) {
2512     _tuple_type = EVEX_T1S;
2513     _input_size_in_bits = EVEX_64bit;
2514     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2515   } else {
2516     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, /* no_mask_reg */ false);
2517   }
2518   emit_int8(0x11);
2519   emit_operand(src, dst);
2520 }
2521 
2522 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2523   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2524   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
2525 }
2526 
2527 void Assembler::movss(XMMRegister dst, Address src) {
2528   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2529   if (VM_Version::supports_evex()) {
2530     _tuple_type = EVEX_T1S;
2531     _input_size_in_bits = EVEX_32bit;
2532   }
2533   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
2534 }
2535 
2536 void Assembler::movss(Address dst, XMMRegister src) {
2537   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2538   if (VM_Version::supports_evex()) {
2539     _tuple_type = EVEX_T1S;
2540     _input_size_in_bits = EVEX_32bit;
2541   }
2542   InstructionMark im(this);
2543   simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ false);
2544   emit_int8(0x11);
2545   emit_operand(src, dst);
2546 }
2547 
2548 void Assembler::movswl(Register dst, Address src) { // movsxw
2549   InstructionMark im(this);
2550   prefix(src, dst);
2551   emit_int8(0x0F);
2552   emit_int8((unsigned char)0xBF);
2553   emit_operand(dst, src);
2554 }
2555 
2556 void Assembler::movswl(Register dst, Register src) { // movsxw
2557   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2558   emit_int8(0x0F);
2559   emit_int8((unsigned char)0xBF);
2560   emit_int8((unsigned char)(0xC0 | encode));
2561 }
2562 
2563 void Assembler::movw(Address dst, int imm16) {
2564   InstructionMark im(this);
2565 
2566   emit_int8(0x66); // switch to 16-bit mode
2567   prefix(dst);
2568   emit_int8((unsigned char)0xC7);
2569   emit_operand(rax, dst, 2);
2570   emit_int16(imm16);
2571 }
2572 
2573 void Assembler::movw(Register dst, Address src) {
2574   InstructionMark im(this);
2575   emit_int8(0x66);
2576   prefix(src, dst);
2577   emit_int8((unsigned char)0x8B);
2578   emit_operand(dst, src);
2579 }
2580 
2581 void Assembler::movw(Address dst, Register src) {
2582   InstructionMark im(this);
2583   emit_int8(0x66);
2584   prefix(dst, src);
2585   emit_int8((unsigned char)0x89);
2586   emit_operand(src, dst);
2587 }
2588 
2589 void Assembler::movzbl(Register dst, Address src) { // movzxb
2590   InstructionMark im(this);
2591   prefix(src, dst);
2592   emit_int8(0x0F);
2593   emit_int8((unsigned char)0xB6);
2594   emit_operand(dst, src);
2595 }
2596 
2597 void Assembler::movzbl(Register dst, Register src) { // movzxb
2598   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2599   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2600   emit_int8(0x0F);
2601   emit_int8((unsigned char)0xB6);
2602   emit_int8(0xC0 | encode);
2603 }
2604 
2605 void Assembler::movzwl(Register dst, Address src) { // movzxw
2606   InstructionMark im(this);
2607   prefix(src, dst);
2608   emit_int8(0x0F);
2609   emit_int8((unsigned char)0xB7);
2610   emit_operand(dst, src);
2611 }
2612 
2613 void Assembler::movzwl(Register dst, Register src) { // movzxw
2614   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2615   emit_int8(0x0F);
2616   emit_int8((unsigned char)0xB7);
2617   emit_int8(0xC0 | encode);
2618 }
2619 
2620 void Assembler::mull(Address src) {
2621   InstructionMark im(this);
2622   prefix(src);
2623   emit_int8((unsigned char)0xF7);
2624   emit_operand(rsp, src);
2625 }
2626 
2627 void Assembler::mull(Register src) {
2628   int encode = prefix_and_encode(src->encoding());
2629   emit_int8((unsigned char)0xF7);
2630   emit_int8((unsigned char)(0xE0 | encode));
2631 }
2632 
2633 void Assembler::mulsd(XMMRegister dst, Address src) {
2634   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2635   if (VM_Version::supports_evex()) {
2636     _tuple_type = EVEX_T1S;
2637     _input_size_in_bits = EVEX_64bit;
2638     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2639   } else {
2640     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2641   }
2642 }
2643 
2644 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2645   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2646   if (VM_Version::supports_evex()) {
2647     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2648   } else {
2649     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2650   }
2651 }
2652 
2653 void Assembler::mulss(XMMRegister dst, Address src) {
2654   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2655   if (VM_Version::supports_evex()) {
2656     _tuple_type = EVEX_T1S;
2657     _input_size_in_bits = EVEX_32bit;
2658   }
2659   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2660 }
2661 
2662 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2663   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2664   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2665 }
2666 
2667 void Assembler::negl(Register dst) {
2668   int encode = prefix_and_encode(dst->encoding());
2669   emit_int8((unsigned char)0xF7);
2670   emit_int8((unsigned char)(0xD8 | encode));
2671 }
2672 
2673 void Assembler::nop(int i) {
2674 #ifdef ASSERT
2675   assert(i > 0, " ");
2676   // The fancy nops aren't currently recognized by debuggers making it a
2677   // pain to disassemble code while debugging. If asserts are on clearly
2678   // speed is not an issue so simply use the single byte traditional nop
2679   // to do alignment.
2680 
2681   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2682   return;
2683 
2684 #endif // ASSERT
2685 
2686   if (UseAddressNop && VM_Version::is_intel()) {
2687     //
2688     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2689     //  1: 0x90
2690     //  2: 0x66 0x90
2691     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2692     //  4: 0x0F 0x1F 0x40 0x00
2693     //  5: 0x0F 0x1F 0x44 0x00 0x00
2694     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2695     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2696     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2697     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2698     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2699     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2700 
2701     // The rest coding is Intel specific - don't use consecutive address nops
2702 
2703     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2704     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2705     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2706     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2707 
2708     while(i >= 15) {
2709       // For Intel don't generate consecutive addess nops (mix with regular nops)
2710       i -= 15;
2711       emit_int8(0x66);   // size prefix
2712       emit_int8(0x66);   // size prefix
2713       emit_int8(0x66);   // size prefix
2714       addr_nop_8();
2715       emit_int8(0x66);   // size prefix
2716       emit_int8(0x66);   // size prefix
2717       emit_int8(0x66);   // size prefix
2718       emit_int8((unsigned char)0x90);
2719                          // nop
2720     }
2721     switch (i) {
2722       case 14:
2723         emit_int8(0x66); // size prefix
2724       case 13:
2725         emit_int8(0x66); // size prefix
2726       case 12:
2727         addr_nop_8();
2728         emit_int8(0x66); // size prefix
2729         emit_int8(0x66); // size prefix
2730         emit_int8(0x66); // size prefix
2731         emit_int8((unsigned char)0x90);
2732                          // nop
2733         break;
2734       case 11:
2735         emit_int8(0x66); // size prefix
2736       case 10:
2737         emit_int8(0x66); // size prefix
2738       case 9:
2739         emit_int8(0x66); // size prefix
2740       case 8:
2741         addr_nop_8();
2742         break;
2743       case 7:
2744         addr_nop_7();
2745         break;
2746       case 6:
2747         emit_int8(0x66); // size prefix
2748       case 5:
2749         addr_nop_5();
2750         break;
2751       case 4:
2752         addr_nop_4();
2753         break;
2754       case 3:
2755         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2756         emit_int8(0x66); // size prefix
2757       case 2:
2758         emit_int8(0x66); // size prefix
2759       case 1:
2760         emit_int8((unsigned char)0x90);
2761                          // nop
2762         break;
2763       default:
2764         assert(i == 0, " ");
2765     }
2766     return;
2767   }
2768   if (UseAddressNop && VM_Version::is_amd()) {
2769     //
2770     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2771     //  1: 0x90
2772     //  2: 0x66 0x90
2773     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2774     //  4: 0x0F 0x1F 0x40 0x00
2775     //  5: 0x0F 0x1F 0x44 0x00 0x00
2776     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2777     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2778     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2779     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2780     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2781     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2782 
2783     // The rest coding is AMD specific - use consecutive address nops
2784 
2785     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2786     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2787     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2788     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2789     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2790     //     Size prefixes (0x66) are added for larger sizes
2791 
2792     while(i >= 22) {
2793       i -= 11;
2794       emit_int8(0x66); // size prefix
2795       emit_int8(0x66); // size prefix
2796       emit_int8(0x66); // size prefix
2797       addr_nop_8();
2798     }
2799     // Generate first nop for size between 21-12
2800     switch (i) {
2801       case 21:
2802         i -= 1;
2803         emit_int8(0x66); // size prefix
2804       case 20:
2805       case 19:
2806         i -= 1;
2807         emit_int8(0x66); // size prefix
2808       case 18:
2809       case 17:
2810         i -= 1;
2811         emit_int8(0x66); // size prefix
2812       case 16:
2813       case 15:
2814         i -= 8;
2815         addr_nop_8();
2816         break;
2817       case 14:
2818       case 13:
2819         i -= 7;
2820         addr_nop_7();
2821         break;
2822       case 12:
2823         i -= 6;
2824         emit_int8(0x66); // size prefix
2825         addr_nop_5();
2826         break;
2827       default:
2828         assert(i < 12, " ");
2829     }
2830 
2831     // Generate second nop for size between 11-1
2832     switch (i) {
2833       case 11:
2834         emit_int8(0x66); // size prefix
2835       case 10:
2836         emit_int8(0x66); // size prefix
2837       case 9:
2838         emit_int8(0x66); // size prefix
2839       case 8:
2840         addr_nop_8();
2841         break;
2842       case 7:
2843         addr_nop_7();
2844         break;
2845       case 6:
2846         emit_int8(0x66); // size prefix
2847       case 5:
2848         addr_nop_5();
2849         break;
2850       case 4:
2851         addr_nop_4();
2852         break;
2853       case 3:
2854         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2855         emit_int8(0x66); // size prefix
2856       case 2:
2857         emit_int8(0x66); // size prefix
2858       case 1:
2859         emit_int8((unsigned char)0x90);
2860                          // nop
2861         break;
2862       default:
2863         assert(i == 0, " ");
2864     }
2865     return;
2866   }
2867 
2868   // Using nops with size prefixes "0x66 0x90".
2869   // From AMD Optimization Guide:
2870   //  1: 0x90
2871   //  2: 0x66 0x90
2872   //  3: 0x66 0x66 0x90
2873   //  4: 0x66 0x66 0x66 0x90
2874   //  5: 0x66 0x66 0x90 0x66 0x90
2875   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2876   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2877   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2878   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2879   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2880   //
2881   while(i > 12) {
2882     i -= 4;
2883     emit_int8(0x66); // size prefix
2884     emit_int8(0x66);
2885     emit_int8(0x66);
2886     emit_int8((unsigned char)0x90);
2887                      // nop
2888   }
2889   // 1 - 12 nops
2890   if(i > 8) {
2891     if(i > 9) {
2892       i -= 1;
2893       emit_int8(0x66);
2894     }
2895     i -= 3;
2896     emit_int8(0x66);
2897     emit_int8(0x66);
2898     emit_int8((unsigned char)0x90);
2899   }
2900   // 1 - 8 nops
2901   if(i > 4) {
2902     if(i > 6) {
2903       i -= 1;
2904       emit_int8(0x66);
2905     }
2906     i -= 3;
2907     emit_int8(0x66);
2908     emit_int8(0x66);
2909     emit_int8((unsigned char)0x90);
2910   }
2911   switch (i) {
2912     case 4:
2913       emit_int8(0x66);
2914     case 3:
2915       emit_int8(0x66);
2916     case 2:
2917       emit_int8(0x66);
2918     case 1:
2919       emit_int8((unsigned char)0x90);
2920       break;
2921     default:
2922       assert(i == 0, " ");
2923   }
2924 }
2925 
2926 void Assembler::notl(Register dst) {
2927   int encode = prefix_and_encode(dst->encoding());
2928   emit_int8((unsigned char)0xF7);
2929   emit_int8((unsigned char)(0xD0 | encode));
2930 }
2931 
2932 void Assembler::orl(Address dst, int32_t imm32) {
2933   InstructionMark im(this);
2934   prefix(dst);
2935   emit_arith_operand(0x81, rcx, dst, imm32);
2936 }
2937 
2938 void Assembler::orl(Register dst, int32_t imm32) {
2939   prefix(dst);
2940   emit_arith(0x81, 0xC8, dst, imm32);
2941 }
2942 
2943 void Assembler::orl(Register dst, Address src) {
2944   InstructionMark im(this);
2945   prefix(src, dst);
2946   emit_int8(0x0B);
2947   emit_operand(dst, src);
2948 }
2949 
2950 void Assembler::orl(Register dst, Register src) {
2951   (void) prefix_and_encode(dst->encoding(), src->encoding());
2952   emit_arith(0x0B, 0xC0, dst, src);
2953 }
2954 
2955 void Assembler::orl(Address dst, Register src) {
2956   InstructionMark im(this);
2957   prefix(dst, src);
2958   emit_int8(0x09);
2959   emit_operand(src, dst);
2960 }
2961 
2962 void Assembler::packuswb(XMMRegister dst, Address src) {
2963   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2964   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2965   if (VM_Version::supports_evex()) {
2966     _tuple_type = EVEX_FV;
2967     _input_size_in_bits = EVEX_32bit;
2968   }
2969   emit_simd_arith(0x67, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
2970 }
2971 
2972 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2973   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2974   emit_simd_arith(0x67, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
2975 }
2976 
2977 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2978   assert(UseAVX > 0, "some form of AVX must be enabled");
2979   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
2980 }
2981 
2982 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2983   _instruction_uses_vl = true;
2984   assert(VM_Version::supports_avx2(), "");
2985   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
2986                                       VEX_OPCODE_0F_3A, /* rex_w */ true, vector_len);
2987   emit_int8(0x00);
2988   emit_int8(0xC0 | encode);
2989   emit_int8(imm8);
2990 }
2991 
2992 void Assembler::pause() {
2993   emit_int8((unsigned char)0xF3);
2994   emit_int8((unsigned char)0x90);
2995 }
2996 
2997 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2998   assert(VM_Version::supports_sse4_2(), "");
2999   InstructionMark im(this);
3000   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_3A,
3001               /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3002   emit_int8(0x61);
3003   emit_operand(dst, src);
3004   emit_int8(imm8);
3005 }
3006 
3007 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3008   assert(VM_Version::supports_sse4_2(), "");
3009   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
3010                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3011   emit_int8(0x61);
3012   emit_int8((unsigned char)(0xC0 | encode));
3013   emit_int8(imm8);
3014 }
3015 
3016 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3017   assert(VM_Version::supports_sse4_1(), "");
3018   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ true,
3019                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
3020   emit_int8(0x16);
3021   emit_int8((unsigned char)(0xC0 | encode));
3022   emit_int8(imm8);
3023 }
3024 
3025 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3026   assert(VM_Version::supports_sse4_1(), "");
3027   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, /* no_mask_reg */  true,
3028                                       VEX_OPCODE_0F_3A, /* rex_w */ true, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
3029   emit_int8(0x16);
3030   emit_int8((unsigned char)(0xC0 | encode));
3031   emit_int8(imm8);
3032 }
3033 
3034 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3035   assert(VM_Version::supports_sse2(), "");
3036   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ true,
3037                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3038   emit_int8(0x15);
3039   emit_int8((unsigned char)(0xC0 | encode));
3040   emit_int8(imm8);
3041 }
3042 
3043 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3044   assert(VM_Version::supports_sse4_1(), "");
3045   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, /* no_mask_reg */ true,
3046                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
3047   emit_int8(0x22);
3048   emit_int8((unsigned char)(0xC0 | encode));
3049   emit_int8(imm8);
3050 }
3051 
3052 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3053   assert(VM_Version::supports_sse4_1(), "");
3054   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, /* no_mask_reg */ true,
3055                                       VEX_OPCODE_0F_3A, /* rex_w */ true, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
3056   emit_int8(0x22);
3057   emit_int8((unsigned char)(0xC0 | encode));
3058   emit_int8(imm8);
3059 }
3060 
3061 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3062   assert(VM_Version::supports_sse2(), "");
3063   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, /* no_mask_reg */ true,
3064                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3065   emit_int8((unsigned char)0xC4);
3066   emit_int8((unsigned char)(0xC0 | encode));
3067   emit_int8(imm8);
3068 }
3069 
3070 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3071   assert(VM_Version::supports_sse4_1(), "");
3072   if (VM_Version::supports_evex()) {
3073     _tuple_type = EVEX_HVM;
3074   }
3075   InstructionMark im(this);
3076   simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_38);
3077   emit_int8(0x30);
3078   emit_operand(dst, src);
3079 }
3080 
3081 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3082   assert(VM_Version::supports_sse4_1(), "");
3083   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_38);
3084   emit_int8(0x30);
3085   emit_int8((unsigned char)(0xC0 | encode));
3086 }
3087 
3088 // generic
3089 void Assembler::pop(Register dst) {
3090   int encode = prefix_and_encode(dst->encoding());
3091   emit_int8(0x58 | encode);
3092 }
3093 
3094 void Assembler::popcntl(Register dst, Address src) {
3095   assert(VM_Version::supports_popcnt(), "must support");
3096   InstructionMark im(this);
3097   emit_int8((unsigned char)0xF3);
3098   prefix(src, dst);
3099   emit_int8(0x0F);
3100   emit_int8((unsigned char)0xB8);
3101   emit_operand(dst, src);
3102 }
3103 
3104 void Assembler::popcntl(Register dst, Register src) {
3105   assert(VM_Version::supports_popcnt(), "must support");
3106   emit_int8((unsigned char)0xF3);
3107   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3108   emit_int8(0x0F);
3109   emit_int8((unsigned char)0xB8);
3110   emit_int8((unsigned char)(0xC0 | encode));
3111 }
3112 
3113 void Assembler::popf() {
3114   emit_int8((unsigned char)0x9D);
3115 }
3116 
3117 #ifndef _LP64 // no 32bit push/pop on amd64
3118 void Assembler::popl(Address dst) {
3119   // NOTE: this will adjust stack by 8byte on 64bits
3120   InstructionMark im(this);
3121   prefix(dst);
3122   emit_int8((unsigned char)0x8F);
3123   emit_operand(rax, dst);
3124 }
3125 #endif
3126 
3127 void Assembler::prefetch_prefix(Address src) {
3128   prefix(src);
3129   emit_int8(0x0F);
3130 }
3131 
3132 void Assembler::prefetchnta(Address src) {
3133   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3134   InstructionMark im(this);
3135   prefetch_prefix(src);
3136   emit_int8(0x18);
3137   emit_operand(rax, src); // 0, src
3138 }
3139 
3140 void Assembler::prefetchr(Address src) {
3141   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3142   InstructionMark im(this);
3143   prefetch_prefix(src);
3144   emit_int8(0x0D);
3145   emit_operand(rax, src); // 0, src
3146 }
3147 
3148 void Assembler::prefetcht0(Address src) {
3149   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3150   InstructionMark im(this);
3151   prefetch_prefix(src);
3152   emit_int8(0x18);
3153   emit_operand(rcx, src); // 1, src
3154 }
3155 
3156 void Assembler::prefetcht1(Address src) {
3157   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3158   InstructionMark im(this);
3159   prefetch_prefix(src);
3160   emit_int8(0x18);
3161   emit_operand(rdx, src); // 2, src
3162 }
3163 
3164 void Assembler::prefetcht2(Address src) {
3165   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3166   InstructionMark im(this);
3167   prefetch_prefix(src);
3168   emit_int8(0x18);
3169   emit_operand(rbx, src); // 3, src
3170 }
3171 
3172 void Assembler::prefetchw(Address src) {
3173   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3174   InstructionMark im(this);
3175   prefetch_prefix(src);
3176   emit_int8(0x0D);
3177   emit_operand(rcx, src); // 1, src
3178 }
3179 
3180 void Assembler::prefix(Prefix p) {
3181   emit_int8(p);
3182 }
3183 
3184 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3185   assert(VM_Version::supports_ssse3(), "");
3186   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
3187                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3188   emit_int8(0x00);
3189   emit_int8((unsigned char)(0xC0 | encode));
3190 }
3191 
3192 void Assembler::pshufb(XMMRegister dst, Address src) {
3193   assert(VM_Version::supports_ssse3(), "");
3194   if (VM_Version::supports_evex()) {
3195     _tuple_type = EVEX_FVM;
3196   }
3197   InstructionMark im(this);
3198   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
3199               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3200   emit_int8(0x00);
3201   emit_operand(dst, src);
3202 }
3203 
3204 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3205   _instruction_uses_vl = true;
3206   assert(isByte(mode), "invalid value");
3207   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3208   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3209   emit_int8(mode & 0xFF);
3210 }
3211 
3212 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3213   _instruction_uses_vl = true;
3214   assert(isByte(mode), "invalid value");
3215   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3216   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3217   if (VM_Version::supports_evex()) {
3218     _tuple_type = EVEX_FV;
3219     _input_size_in_bits = EVEX_32bit;
3220   }
3221   InstructionMark im(this);
3222   simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ false);
3223   emit_int8(0x70);
3224   emit_operand(dst, src);
3225   emit_int8(mode & 0xFF);
3226 }
3227 
3228 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3229   assert(isByte(mode), "invalid value");
3230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3231   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
3232   emit_int8(mode & 0xFF);
3233 }
3234 
3235 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3236   assert(isByte(mode), "invalid value");
3237   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3238   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3239   if (VM_Version::supports_evex()) {
3240     _tuple_type = EVEX_FVM;
3241   }
3242   InstructionMark im(this);
3243   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, /* no_mask_reg */ false,
3244               VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3245   emit_int8(0x70);
3246   emit_operand(dst, src);
3247   emit_int8(mode & 0xFF);
3248 }
3249 
3250 void Assembler::psrldq(XMMRegister dst, int shift) {
3251   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3252   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3253   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3254   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, /* no_mask_reg */ true,
3255                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3256   emit_int8(0x73);
3257   emit_int8((unsigned char)(0xC0 | encode));
3258   emit_int8(shift);
3259 }
3260 
3261 void Assembler::pslldq(XMMRegister dst, int shift) {
3262   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3263   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3264   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3265   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, /* no_mask_reg */ true,
3266                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3267   emit_int8(0x73);
3268   emit_int8((unsigned char)(0xC0 | encode));
3269   emit_int8(shift);
3270 }
3271 
3272 void Assembler::ptest(XMMRegister dst, Address src) {
3273   assert(VM_Version::supports_sse4_1(), "");
3274   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3275   InstructionMark im(this);
3276   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
3277               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3278   emit_int8(0x17);
3279   emit_operand(dst, src);
3280 }
3281 
3282 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3283   assert(VM_Version::supports_sse4_1(), "");
3284   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
3285                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3286   emit_int8(0x17);
3287   emit_int8((unsigned char)(0xC0 | encode));
3288 }
3289 
3290 void Assembler::vptest(XMMRegister dst, Address src) {
3291   assert(VM_Version::supports_avx(), "");
3292   InstructionMark im(this);
3293   int vector_len = AVX_256bit;
3294   assert(dst != xnoreg, "sanity");
3295   int dst_enc = dst->encoding();
3296   // swap src<->dst for encoding
3297   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* rex_w */ false,
3298              vector_len, /* legacy_mode  */ true, /* no_mask_reg */ false);
3299   emit_int8(0x17);
3300   emit_operand(dst, src);
3301 }
3302 
3303 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3304   assert(VM_Version::supports_avx(), "");
3305   int vector_len = AVX_256bit;
3306   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
3307   emit_int8(0x17);
3308   emit_int8((unsigned char)(0xC0 | encode));
3309 }
3310 
3311 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3312   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3313   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3314   if (VM_Version::supports_evex()) {
3315     _tuple_type = EVEX_FVM;
3316   }
3317   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_vlbw);
3318 }
3319 
3320 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3321   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3322   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_vlbw);
3323 }
3324 
3325 void Assembler::punpckldq(XMMRegister dst, Address src) {
3326   _instruction_uses_vl = true;
3327   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3328   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3329   if (VM_Version::supports_evex()) {
3330     _tuple_type = EVEX_FV;
3331     _input_size_in_bits = EVEX_32bit;
3332   }
3333   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3334 }
3335 
3336 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3337   _instruction_uses_vl = true;
3338   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3339   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3340 }
3341 
3342 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3343   _instruction_uses_vl = true;
3344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3345   if (VM_Version::supports_evex()) {
3346     emit_simd_arith_q(0x6C, dst, src, VEX_SIMD_66);
3347   } else {
3348     emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3349   }
3350 }
3351 
3352 void Assembler::push(int32_t imm32) {
3353   // in 64bits we push 64bits onto the stack but only
3354   // take a 32bit immediate
3355   emit_int8(0x68);
3356   emit_int32(imm32);
3357 }
3358 
3359 void Assembler::push(Register src) {
3360   int encode = prefix_and_encode(src->encoding());
3361 
3362   emit_int8(0x50 | encode);
3363 }
3364 
3365 void Assembler::pushf() {
3366   emit_int8((unsigned char)0x9C);
3367 }
3368 
3369 #ifndef _LP64 // no 32bit push/pop on amd64
3370 void Assembler::pushl(Address src) {
3371   // Note this will push 64bit on 64bit
3372   InstructionMark im(this);
3373   prefix(src);
3374   emit_int8((unsigned char)0xFF);
3375   emit_operand(rsi, src);
3376 }
3377 #endif
3378 
3379 void Assembler::rcll(Register dst, int imm8) {
3380   assert(isShiftCount(imm8), "illegal shift count");
3381   int encode = prefix_and_encode(dst->encoding());
3382   if (imm8 == 1) {
3383     emit_int8((unsigned char)0xD1);
3384     emit_int8((unsigned char)(0xD0 | encode));
3385   } else {
3386     emit_int8((unsigned char)0xC1);
3387     emit_int8((unsigned char)0xD0 | encode);
3388     emit_int8(imm8);
3389   }
3390 }
3391 
3392 void Assembler::rdtsc() {
3393   emit_int8((unsigned char)0x0F);
3394   emit_int8((unsigned char)0x31);
3395 }
3396 
3397 // copies data from [esi] to [edi] using rcx pointer sized words
3398 // generic
3399 void Assembler::rep_mov() {
3400   emit_int8((unsigned char)0xF3);
3401   // MOVSQ
3402   LP64_ONLY(prefix(REX_W));
3403   emit_int8((unsigned char)0xA5);
3404 }
3405 
3406 // sets rcx bytes with rax, value at [edi]
3407 void Assembler::rep_stosb() {
3408   emit_int8((unsigned char)0xF3); // REP
3409   LP64_ONLY(prefix(REX_W));
3410   emit_int8((unsigned char)0xAA); // STOSB
3411 }
3412 
3413 // sets rcx pointer sized words with rax, value at [edi]
3414 // generic
3415 void Assembler::rep_stos() {
3416   emit_int8((unsigned char)0xF3); // REP
3417   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3418   emit_int8((unsigned char)0xAB);
3419 }
3420 
3421 // scans rcx pointer sized words at [edi] for occurance of rax,
3422 // generic
3423 void Assembler::repne_scan() { // repne_scan
3424   emit_int8((unsigned char)0xF2);
3425   // SCASQ
3426   LP64_ONLY(prefix(REX_W));
3427   emit_int8((unsigned char)0xAF);
3428 }
3429 
3430 #ifdef _LP64
3431 // scans rcx 4 byte words at [edi] for occurance of rax,
3432 // generic
3433 void Assembler::repne_scanl() { // repne_scan
3434   emit_int8((unsigned char)0xF2);
3435   // SCASL
3436   emit_int8((unsigned char)0xAF);
3437 }
3438 #endif
3439 
3440 void Assembler::ret(int imm16) {
3441   if (imm16 == 0) {
3442     emit_int8((unsigned char)0xC3);
3443   } else {
3444     emit_int8((unsigned char)0xC2);
3445     emit_int16(imm16);
3446   }
3447 }
3448 
3449 void Assembler::sahf() {
3450 #ifdef _LP64
3451   // Not supported in 64bit mode
3452   ShouldNotReachHere();
3453 #endif
3454   emit_int8((unsigned char)0x9E);
3455 }
3456 
3457 void Assembler::sarl(Register dst, int imm8) {
3458   int encode = prefix_and_encode(dst->encoding());
3459   assert(isShiftCount(imm8), "illegal shift count");
3460   if (imm8 == 1) {
3461     emit_int8((unsigned char)0xD1);
3462     emit_int8((unsigned char)(0xF8 | encode));
3463   } else {
3464     emit_int8((unsigned char)0xC1);
3465     emit_int8((unsigned char)(0xF8 | encode));
3466     emit_int8(imm8);
3467   }
3468 }
3469 
3470 void Assembler::sarl(Register dst) {
3471   int encode = prefix_and_encode(dst->encoding());
3472   emit_int8((unsigned char)0xD3);
3473   emit_int8((unsigned char)(0xF8 | encode));
3474 }
3475 
3476 void Assembler::sbbl(Address dst, int32_t imm32) {
3477   InstructionMark im(this);
3478   prefix(dst);
3479   emit_arith_operand(0x81, rbx, dst, imm32);
3480 }
3481 
3482 void Assembler::sbbl(Register dst, int32_t imm32) {
3483   prefix(dst);
3484   emit_arith(0x81, 0xD8, dst, imm32);
3485 }
3486 
3487 
3488 void Assembler::sbbl(Register dst, Address src) {
3489   InstructionMark im(this);
3490   prefix(src, dst);
3491   emit_int8(0x1B);
3492   emit_operand(dst, src);
3493 }
3494 
3495 void Assembler::sbbl(Register dst, Register src) {
3496   (void) prefix_and_encode(dst->encoding(), src->encoding());
3497   emit_arith(0x1B, 0xC0, dst, src);
3498 }
3499 
3500 void Assembler::setb(Condition cc, Register dst) {
3501   assert(0 <= cc && cc < 16, "illegal cc");
3502   int encode = prefix_and_encode(dst->encoding(), true);
3503   emit_int8(0x0F);
3504   emit_int8((unsigned char)0x90 | cc);
3505   emit_int8((unsigned char)(0xC0 | encode));
3506 }
3507 
3508 void Assembler::shll(Register dst, int imm8) {
3509   assert(isShiftCount(imm8), "illegal shift count");
3510   int encode = prefix_and_encode(dst->encoding());
3511   if (imm8 == 1 ) {
3512     emit_int8((unsigned char)0xD1);
3513     emit_int8((unsigned char)(0xE0 | encode));
3514   } else {
3515     emit_int8((unsigned char)0xC1);
3516     emit_int8((unsigned char)(0xE0 | encode));
3517     emit_int8(imm8);
3518   }
3519 }
3520 
3521 void Assembler::shll(Register dst) {
3522   int encode = prefix_and_encode(dst->encoding());
3523   emit_int8((unsigned char)0xD3);
3524   emit_int8((unsigned char)(0xE0 | encode));
3525 }
3526 
3527 void Assembler::shrl(Register dst, int imm8) {
3528   assert(isShiftCount(imm8), "illegal shift count");
3529   int encode = prefix_and_encode(dst->encoding());
3530   emit_int8((unsigned char)0xC1);
3531   emit_int8((unsigned char)(0xE8 | encode));
3532   emit_int8(imm8);
3533 }
3534 
3535 void Assembler::shrl(Register dst) {
3536   int encode = prefix_and_encode(dst->encoding());
3537   emit_int8((unsigned char)0xD3);
3538   emit_int8((unsigned char)(0xE8 | encode));
3539 }
3540 
3541 // copies a single word from [esi] to [edi]
3542 void Assembler::smovl() {
3543   emit_int8((unsigned char)0xA5);
3544 }
3545 
3546 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3547   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3548   if (VM_Version::supports_evex()) {
3549     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3550   } else {
3551     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3552   }
3553 }
3554 
3555 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3557   if (VM_Version::supports_evex()) {
3558     _tuple_type = EVEX_T1S;
3559     _input_size_in_bits = EVEX_64bit;
3560     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3561   } else {
3562     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3563   }
3564 }
3565 
3566 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3567   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3568   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3569 }
3570 
3571 void Assembler::std() {
3572   emit_int8((unsigned char)0xFD);
3573 }
3574 
3575 void Assembler::sqrtss(XMMRegister dst, Address src) {
3576   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3577   if (VM_Version::supports_evex()) {
3578     _tuple_type = EVEX_T1S;
3579     _input_size_in_bits = EVEX_32bit;
3580   }
3581   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3582 }
3583 
3584 void Assembler::stmxcsr( Address dst) {
3585   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3586   InstructionMark im(this);
3587   prefix(dst);
3588   emit_int8(0x0F);
3589   emit_int8((unsigned char)0xAE);
3590   emit_operand(as_Register(3), dst);
3591 }
3592 
3593 void Assembler::subl(Address dst, int32_t imm32) {
3594   InstructionMark im(this);
3595   prefix(dst);
3596   emit_arith_operand(0x81, rbp, dst, imm32);
3597 }
3598 
3599 void Assembler::subl(Address dst, Register src) {
3600   InstructionMark im(this);
3601   prefix(dst, src);
3602   emit_int8(0x29);
3603   emit_operand(src, dst);
3604 }
3605 
3606 void Assembler::subl(Register dst, int32_t imm32) {
3607   prefix(dst);
3608   emit_arith(0x81, 0xE8, dst, imm32);
3609 }
3610 
3611 // Force generation of a 4 byte immediate value even if it fits into 8bit
3612 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3613   prefix(dst);
3614   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3615 }
3616 
3617 void Assembler::subl(Register dst, Address src) {
3618   InstructionMark im(this);
3619   prefix(src, dst);
3620   emit_int8(0x2B);
3621   emit_operand(dst, src);
3622 }
3623 
3624 void Assembler::subl(Register dst, Register src) {
3625   (void) prefix_and_encode(dst->encoding(), src->encoding());
3626   emit_arith(0x2B, 0xC0, dst, src);
3627 }
3628 
3629 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3631   if (VM_Version::supports_evex()) {
3632     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3633   } else {
3634     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3635   }
3636 }
3637 
3638 void Assembler::subsd(XMMRegister dst, Address src) {
3639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3640   if (VM_Version::supports_evex()) {
3641     _tuple_type = EVEX_T1S;
3642     _input_size_in_bits = EVEX_64bit;
3643   }
3644   if (VM_Version::supports_evex()) {
3645     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3646   } else {
3647     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3648   }
3649 }
3650 
3651 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3652   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3653   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3654 }
3655 
3656 void Assembler::subss(XMMRegister dst, Address src) {
3657   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3658   if (VM_Version::supports_evex()) {
3659     _tuple_type = EVEX_T1S;
3660     _input_size_in_bits = EVEX_32bit;
3661   }
3662   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3663 }
3664 
3665 void Assembler::testb(Register dst, int imm8) {
3666   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3667   (void) prefix_and_encode(dst->encoding(), true);
3668   emit_arith_b(0xF6, 0xC0, dst, imm8);
3669 }
3670 
3671 void Assembler::testl(Register dst, int32_t imm32) {
3672   // not using emit_arith because test
3673   // doesn't support sign-extension of
3674   // 8bit operands
3675   int encode = dst->encoding();
3676   if (encode == 0) {
3677     emit_int8((unsigned char)0xA9);
3678   } else {
3679     encode = prefix_and_encode(encode);
3680     emit_int8((unsigned char)0xF7);
3681     emit_int8((unsigned char)(0xC0 | encode));
3682   }
3683   emit_int32(imm32);
3684 }
3685 
3686 void Assembler::testl(Register dst, Register src) {
3687   (void) prefix_and_encode(dst->encoding(), src->encoding());
3688   emit_arith(0x85, 0xC0, dst, src);
3689 }
3690 
3691 void Assembler::testl(Register dst, Address  src) {
3692   InstructionMark im(this);
3693   prefix(src, dst);
3694   emit_int8((unsigned char)0x85);
3695   emit_operand(dst, src);
3696 }
3697 
3698 void Assembler::tzcntl(Register dst, Register src) {
3699   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3700   emit_int8((unsigned char)0xF3);
3701   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3702   emit_int8(0x0F);
3703   emit_int8((unsigned char)0xBC);
3704   emit_int8((unsigned char)0xC0 | encode);
3705 }
3706 
3707 void Assembler::tzcntq(Register dst, Register src) {
3708   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3709   emit_int8((unsigned char)0xF3);
3710   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3711   emit_int8(0x0F);
3712   emit_int8((unsigned char)0xBC);
3713   emit_int8((unsigned char)(0xC0 | encode));
3714 }
3715 
3716 void Assembler::ucomisd(XMMRegister dst, Address src) {
3717   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3718   if (VM_Version::supports_evex()) {
3719     _tuple_type = EVEX_T1S;
3720     _input_size_in_bits = EVEX_64bit;
3721     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
3722   } else {
3723     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3724   }
3725 }
3726 
3727 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3728   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3729   if (VM_Version::supports_evex()) {
3730     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
3731   } else {
3732     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3733   }
3734 }
3735 
3736 void Assembler::ucomiss(XMMRegister dst, Address src) {
3737   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3738   if (VM_Version::supports_evex()) {
3739     _tuple_type = EVEX_T1S;
3740     _input_size_in_bits = EVEX_32bit;
3741   }
3742   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
3743 }
3744 
3745 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3746   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3747   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
3748 }
3749 
3750 void Assembler::xabort(int8_t imm8) {
3751   emit_int8((unsigned char)0xC6);
3752   emit_int8((unsigned char)0xF8);
3753   emit_int8((unsigned char)(imm8 & 0xFF));
3754 }
3755 
3756 void Assembler::xaddl(Address dst, Register src) {
3757   InstructionMark im(this);
3758   prefix(dst, src);
3759   emit_int8(0x0F);
3760   emit_int8((unsigned char)0xC1);
3761   emit_operand(src, dst);
3762 }
3763 
3764 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3765   InstructionMark im(this);
3766   relocate(rtype);
3767   if (abort.is_bound()) {
3768     address entry = target(abort);
3769     assert(entry != NULL, "abort entry NULL");
3770     intptr_t offset = entry - pc();
3771     emit_int8((unsigned char)0xC7);
3772     emit_int8((unsigned char)0xF8);
3773     emit_int32(offset - 6); // 2 opcode + 4 address
3774   } else {
3775     abort.add_patch_at(code(), locator());
3776     emit_int8((unsigned char)0xC7);
3777     emit_int8((unsigned char)0xF8);
3778     emit_int32(0);
3779   }
3780 }
3781 
3782 void Assembler::xchgl(Register dst, Address src) { // xchg
3783   InstructionMark im(this);
3784   prefix(src, dst);
3785   emit_int8((unsigned char)0x87);
3786   emit_operand(dst, src);
3787 }
3788 
3789 void Assembler::xchgl(Register dst, Register src) {
3790   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3791   emit_int8((unsigned char)0x87);
3792   emit_int8((unsigned char)(0xC0 | encode));
3793 }
3794 
3795 void Assembler::xend() {
3796   emit_int8((unsigned char)0x0F);
3797   emit_int8((unsigned char)0x01);
3798   emit_int8((unsigned char)0xD5);
3799 }
3800 
3801 void Assembler::xgetbv() {
3802   emit_int8(0x0F);
3803   emit_int8(0x01);
3804   emit_int8((unsigned char)0xD0);
3805 }
3806 
3807 void Assembler::xorl(Register dst, int32_t imm32) {
3808   prefix(dst);
3809   emit_arith(0x81, 0xF0, dst, imm32);
3810 }
3811 
3812 void Assembler::xorl(Register dst, Address src) {
3813   InstructionMark im(this);
3814   prefix(src, dst);
3815   emit_int8(0x33);
3816   emit_operand(dst, src);
3817 }
3818 
3819 void Assembler::xorl(Register dst, Register src) {
3820   (void) prefix_and_encode(dst->encoding(), src->encoding());
3821   emit_arith(0x33, 0xC0, dst, src);
3822 }
3823 
3824 
3825 // AVX 3-operands scalar float-point arithmetic instructions
3826 
3827 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3828   assert(VM_Version::supports_avx(), "");
3829   if (VM_Version::supports_evex()) {
3830     _tuple_type = EVEX_T1S;
3831     _input_size_in_bits = EVEX_64bit;
3832     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3833   } else {
3834     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3835   }
3836 }
3837 
3838 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3839   assert(VM_Version::supports_avx(), "");
3840   if (VM_Version::supports_evex()) {
3841     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3842   } else {
3843     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3844   }
3845 }
3846 
3847 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3848   assert(VM_Version::supports_avx(), "");
3849   if (VM_Version::supports_evex()) {
3850     _tuple_type = EVEX_T1S;
3851     _input_size_in_bits = EVEX_32bit;
3852   }
3853   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3854 }
3855 
3856 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3857   assert(VM_Version::supports_avx(), "");
3858   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3859 }
3860 
3861 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3862   assert(VM_Version::supports_avx(), "");
3863   if (VM_Version::supports_evex()) {
3864     _tuple_type = EVEX_T1S;
3865     _input_size_in_bits = EVEX_64bit;
3866     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3867   } else {
3868     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3869   }
3870 }
3871 
3872 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3873   assert(VM_Version::supports_avx(), "");
3874   if (VM_Version::supports_evex()) {
3875     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3876   } else {
3877     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3878   }
3879 }
3880 
3881 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3882   assert(VM_Version::supports_avx(), "");
3883   if (VM_Version::supports_evex()) {
3884     _tuple_type = EVEX_T1S;
3885     _input_size_in_bits = EVEX_32bit;
3886   }
3887   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3888 }
3889 
3890 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3891   assert(VM_Version::supports_avx(), "");
3892   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3893 }
3894 
3895 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3896   assert(VM_Version::supports_avx(), "");
3897   if (VM_Version::supports_evex()) {
3898     _tuple_type = EVEX_T1S;
3899     _input_size_in_bits = EVEX_64bit;
3900     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3901   } else {
3902     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3903   }
3904 }
3905 
3906 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3907   assert(VM_Version::supports_avx(), "");
3908   if (VM_Version::supports_evex()) {
3909     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3910   } else {
3911     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3912   }
3913 }
3914 
3915 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3916   assert(VM_Version::supports_avx(), "");
3917   if (VM_Version::supports_evex()) {
3918     _tuple_type = EVEX_T1S;
3919     _input_size_in_bits = EVEX_32bit;
3920   }
3921   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3922 }
3923 
3924 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3925   assert(VM_Version::supports_avx(), "");
3926   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3927 }
3928 
3929 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3930   assert(VM_Version::supports_avx(), "");
3931   if (VM_Version::supports_evex()) {
3932     _tuple_type = EVEX_T1S;
3933     _input_size_in_bits = EVEX_64bit;
3934     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3935   } else {
3936     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3937   }
3938 }
3939 
3940 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3941   assert(VM_Version::supports_avx(), "");
3942   if (VM_Version::supports_evex()) {
3943     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3944   } else {
3945     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3946   }
3947 }
3948 
3949 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3950   assert(VM_Version::supports_avx(), "");
3951   if (VM_Version::supports_evex()) {
3952     _tuple_type = EVEX_T1S;
3953     _input_size_in_bits = EVEX_32bit;
3954   }
3955   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3956 }
3957 
3958 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3959   assert(VM_Version::supports_avx(), "");
3960   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3961 }
3962 
3963 //====================VECTOR ARITHMETIC=====================================
3964 
3965 // Float-point vector arithmetic
3966 
3967 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3968   _instruction_uses_vl = true;
3969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3970   if (VM_Version::supports_evex()) {
3971     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3972   } else {
3973     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3974   }
3975 }
3976 
3977 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3978   _instruction_uses_vl = true;
3979   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3980   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3981 }
3982 
3983 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3984   _instruction_uses_vl = true;
3985   assert(VM_Version::supports_avx(), "");
3986   if (VM_Version::supports_evex()) {
3987     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3988   } else {
3989     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3990   }
3991 }
3992 
3993 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3994   _instruction_uses_vl = true;
3995   assert(VM_Version::supports_avx(), "");
3996   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3997 }
3998 
3999 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4000   _instruction_uses_vl = true;
4001   assert(VM_Version::supports_avx(), "");
4002   if (VM_Version::supports_evex()) {
4003     _tuple_type = EVEX_FV;
4004     _input_size_in_bits = EVEX_64bit;
4005     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
4006   } else {
4007     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
4008   }
4009 }
4010 
4011 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4012   _instruction_uses_vl = true;
4013   assert(VM_Version::supports_avx(), "");
4014   if (VM_Version::supports_evex()) {
4015     _tuple_type = EVEX_FV;
4016     _input_size_in_bits = EVEX_32bit;
4017   }
4018   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
4019 }
4020 
4021 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4022   _instruction_uses_vl = true;
4023   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4024   if (VM_Version::supports_evex()) {
4025     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
4026   } else {
4027     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
4028   }
4029 }
4030 
4031 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4032   _instruction_uses_vl = true;
4033   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4034   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
4035 }
4036 
4037 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4038   _instruction_uses_vl = true;
4039   assert(VM_Version::supports_avx(), "");
4040   if (VM_Version::supports_evex()) {
4041     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
4042   } else {
4043     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
4044   }
4045 }
4046 
4047 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4048   _instruction_uses_vl = true;
4049   assert(VM_Version::supports_avx(), "");
4050   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
4051 }
4052 
4053 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4054   _instruction_uses_vl = true;
4055   assert(VM_Version::supports_avx(), "");
4056   if (VM_Version::supports_evex()) {
4057     _tuple_type = EVEX_FV;
4058     _input_size_in_bits = EVEX_64bit;
4059     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
4060   } else {
4061     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
4062   }
4063 }
4064 
4065 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4066   _instruction_uses_vl = true;
4067   assert(VM_Version::supports_avx(), "");
4068   if (VM_Version::supports_evex()) {
4069     _tuple_type = EVEX_FV;
4070     _input_size_in_bits = EVEX_32bit;
4071   }
4072   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
4073 }
4074 
4075 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4076   _instruction_uses_vl = true;
4077   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4078   if (VM_Version::supports_evex()) {
4079     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
4080   } else {
4081     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
4082   }
4083 }
4084 
4085 void Assembler::mulpd(XMMRegister dst, Address src) {
4086   _instruction_uses_vl = true;
4087   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4088   if (VM_Version::supports_evex()) {
4089     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
4090   } else {
4091     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
4092   }
4093 }
4094 
4095 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4096   _instruction_uses_vl = true;
4097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4098   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
4099 }
4100 
4101 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4102   _instruction_uses_vl = true;
4103   assert(VM_Version::supports_avx(), "");
4104   if (VM_Version::supports_evex()) {
4105     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
4106   } else {
4107     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
4108   }
4109 }
4110 
4111 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4112   _instruction_uses_vl = true;
4113   assert(VM_Version::supports_avx(), "");
4114   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
4115 }
4116 
4117 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4118   _instruction_uses_vl = true;
4119   assert(VM_Version::supports_avx(), "");
4120   if (VM_Version::supports_evex()) {
4121     _tuple_type = EVEX_FV;
4122     _input_size_in_bits = EVEX_64bit;
4123     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
4124   } else {
4125     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
4126   }
4127 }
4128 
4129 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4130   _instruction_uses_vl = true;
4131   assert(VM_Version::supports_avx(), "");
4132   if (VM_Version::supports_evex()) {
4133     _tuple_type = EVEX_FV;
4134     _input_size_in_bits = EVEX_32bit;
4135   }
4136   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
4137 }
4138 
4139 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4140   _instruction_uses_vl = true;
4141   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4142   if (VM_Version::supports_evex()) {
4143     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
4144   } else {
4145     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
4146   }
4147 }
4148 
4149 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4150   _instruction_uses_vl = true;
4151   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4152   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
4153 }
4154 
4155 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4156   _instruction_uses_vl = true;
4157   assert(VM_Version::supports_avx(), "");
4158   if (VM_Version::supports_evex()) {
4159     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4160   } else {
4161     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4162   }
4163 }
4164 
4165 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4166   _instruction_uses_vl = true;
4167   assert(VM_Version::supports_avx(), "");
4168   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
4169 }
4170 
4171 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4172   _instruction_uses_vl = true;
4173   assert(VM_Version::supports_avx(), "");
4174   if (VM_Version::supports_evex()) {
4175     _tuple_type = EVEX_FV;
4176     _input_size_in_bits = EVEX_64bit;
4177     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4178   } else {
4179     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4180   }
4181 }
4182 
4183 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4184   _instruction_uses_vl = true;
4185   assert(VM_Version::supports_avx(), "");
4186   if (VM_Version::supports_evex()) {
4187     _tuple_type = EVEX_FV;
4188     _input_size_in_bits = EVEX_32bit;
4189   }
4190   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
4191 }
4192 
4193 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4194   _instruction_uses_vl = true;
4195   assert(VM_Version::supports_avx(), "");
4196   if (VM_Version::supports_evex()) {
4197     emit_vex_arith_q(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
4198   } else {
4199     emit_vex_arith(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
4200   }
4201 }
4202 
4203 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4204   _instruction_uses_vl = true;
4205   assert(VM_Version::supports_avx(), "");
4206   if (VM_Version::supports_evex()) {
4207     _tuple_type = EVEX_FV;
4208     _input_size_in_bits = EVEX_64bit;
4209     emit_vex_arith_q(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
4210   } else {
4211     emit_vex_arith(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
4212   }
4213 }
4214 
4215 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4216   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4217   if (VM_Version::supports_avx512dq()) {
4218     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4219   } else {
4220     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
4221   }
4222 }
4223 
4224 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4225   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4226   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4227 }
4228 
4229 void Assembler::andps(XMMRegister dst, Address src) {
4230   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4231   if (VM_Version::supports_evex()) {
4232     _tuple_type = EVEX_FV;
4233     _input_size_in_bits = EVEX_32bit;
4234   }
4235   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4236 }
4237 
4238 void Assembler::andpd(XMMRegister dst, Address src) {
4239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4240   if (VM_Version::supports_avx512dq()) {
4241     _tuple_type = EVEX_FV;
4242     _input_size_in_bits = EVEX_64bit;
4243     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4244   } else {
4245     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
4246   }
4247 }
4248 
4249 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4250   assert(VM_Version::supports_avx(), "");
4251   if (VM_Version::supports_avx512dq()) {
4252     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4253   } else {
4254     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
4255   }
4256 }
4257 
4258 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4259   assert(VM_Version::supports_avx(), "");
4260   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false,  /* legacy_mode */ _legacy_mode_dq);
4261 }
4262 
4263 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4264   assert(VM_Version::supports_avx(), "");
4265   if (VM_Version::supports_avx512dq()) {
4266     _tuple_type = EVEX_FV;
4267     _input_size_in_bits = EVEX_64bit;
4268     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4269   } else {
4270     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
4271   }
4272 }
4273 
4274 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4275   assert(VM_Version::supports_avx(), "");
4276   if (VM_Version::supports_evex()) {
4277     _tuple_type = EVEX_FV;
4278     _input_size_in_bits = EVEX_32bit;
4279   }
4280   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4281 }
4282 
4283 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4284   _instruction_uses_vl = true;
4285   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4286   if (VM_Version::supports_evex()) {
4287     emit_simd_arith_q(0x15, dst, src, VEX_SIMD_66);
4288   } else {
4289     emit_simd_arith(0x15, dst, src, VEX_SIMD_66);
4290   }
4291 }
4292 
4293 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4294   _instruction_uses_vl = true;
4295   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4296   if (VM_Version::supports_evex()) {
4297     emit_simd_arith_q(0x14, dst, src, VEX_SIMD_66);
4298   } else {
4299     emit_simd_arith(0x14, dst, src, VEX_SIMD_66);
4300   }
4301 }
4302 
4303 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4304   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4305   if (VM_Version::supports_avx512dq()) {
4306     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4307   } else {
4308     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
4309   }
4310 }
4311 
4312 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4314   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4315 }
4316 
4317 void Assembler::xorpd(XMMRegister dst, Address src) {
4318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4319   if (VM_Version::supports_avx512dq()) {
4320     _tuple_type = EVEX_FV;
4321     _input_size_in_bits = EVEX_64bit;
4322     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4323   } else {
4324     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
4325   }
4326 }
4327 
4328 void Assembler::xorps(XMMRegister dst, Address src) {
4329   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4330   if (VM_Version::supports_evex()) {
4331     _tuple_type = EVEX_FV;
4332     _input_size_in_bits = EVEX_32bit;
4333   }
4334   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4335 }
4336 
4337 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4338   assert(VM_Version::supports_avx(), "");
4339   if (VM_Version::supports_avx512dq()) {
4340     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4341   } else {
4342     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
4343   }
4344 }
4345 
4346 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4347   assert(VM_Version::supports_avx(), "");
4348   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4349 }
4350 
4351 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4352   assert(VM_Version::supports_avx(), "");
4353   if (VM_Version::supports_avx512dq()) {
4354     _tuple_type = EVEX_FV;
4355     _input_size_in_bits = EVEX_64bit;
4356     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4357   } else {
4358     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
4359   }
4360 }
4361 
4362 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4363   assert(VM_Version::supports_avx(), "");
4364   if (VM_Version::supports_evex()) {
4365     _tuple_type = EVEX_FV;
4366     _input_size_in_bits = EVEX_32bit;
4367   }
4368   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4369 }
4370 
4371 // Integer vector arithmetic
4372 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4373   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4374          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4375   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
4376   emit_int8(0x01);
4377   emit_int8((unsigned char)(0xC0 | encode));
4378 }
4379 
4380 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4381   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4382          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4383   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
4384   emit_int8(0x02);
4385   emit_int8((unsigned char)(0xC0 | encode));
4386 }
4387 
4388 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4389   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4390   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4391 }
4392 
4393 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4394   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4395   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4396 }
4397 
4398 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4399   _instruction_uses_vl = true;
4400   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4401   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4402 }
4403 
4404 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4405   _instruction_uses_vl = true;
4406   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4407   if (VM_Version::supports_evex()) {
4408     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4409   } else {
4410     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4411   }
4412 }
4413 
4414 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4415   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4416   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
4417                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
4418   emit_int8(0x01);
4419   emit_int8((unsigned char)(0xC0 | encode));
4420 }
4421 
4422 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4423   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4424   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
4425                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
4426   emit_int8(0x02);
4427   emit_int8((unsigned char)(0xC0 | encode));
4428 }
4429 
4430 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4431   assert(UseAVX > 0, "requires some form of AVX");
4432   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4433 }
4434 
4435 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4436   assert(UseAVX > 0, "requires some form of AVX");
4437   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4438 }
4439 
4440 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4441   _instruction_uses_vl = true;
4442   assert(UseAVX > 0, "requires some form of AVX");
4443   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4444 }
4445 
4446 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4447   _instruction_uses_vl = true;
4448   assert(UseAVX > 0, "requires some form of AVX");
4449   if (VM_Version::supports_evex()) {
4450     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4451   } else {
4452     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4453   }
4454 }
4455 
4456 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4457   assert(UseAVX > 0, "requires some form of AVX");
4458   if (VM_Version::supports_evex()) {
4459     _tuple_type = EVEX_FVM;
4460   }
4461   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4462 }
4463 
4464 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4465   assert(UseAVX > 0, "requires some form of AVX");
4466   if (VM_Version::supports_evex()) {
4467     _tuple_type = EVEX_FVM;
4468   }
4469   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4470 }
4471 
4472 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4473   _instruction_uses_vl = true;
4474   assert(UseAVX > 0, "requires some form of AVX");
4475   if (VM_Version::supports_evex()) {
4476     _tuple_type = EVEX_FV;
4477     _input_size_in_bits = EVEX_32bit;
4478   }
4479   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4480 }
4481 
4482 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4483   _instruction_uses_vl = true;
4484   assert(UseAVX > 0, "requires some form of AVX");
4485   if (VM_Version::supports_evex()) {
4486     _tuple_type = EVEX_FV;
4487     _input_size_in_bits = EVEX_64bit;
4488     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4489   } else {
4490     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4491   }
4492 }
4493 
4494 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4496   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4497 }
4498 
4499 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4500   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4501   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4502 }
4503 
4504 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4505   _instruction_uses_vl = true;
4506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4507   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4508 }
4509 
4510 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4511   _instruction_uses_vl = true;
4512   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4513   if (VM_Version::supports_evex()) {
4514     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4515   } else {
4516     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4517   }
4518 }
4519 
4520 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4521   assert(UseAVX > 0, "requires some form of AVX");
4522   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4523 }
4524 
4525 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4526   assert(UseAVX > 0, "requires some form of AVX");
4527   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4528 }
4529 
4530 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4531   _instruction_uses_vl = true;
4532   assert(UseAVX > 0, "requires some form of AVX");
4533   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4534 }
4535 
4536 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4537   _instruction_uses_vl = true;
4538   assert(UseAVX > 0, "requires some form of AVX");
4539   if (VM_Version::supports_evex()) {
4540     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4541   } else {
4542     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4543   }
4544 }
4545 
4546 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4547   assert(UseAVX > 0, "requires some form of AVX");
4548   if (VM_Version::supports_evex()) {
4549     _tuple_type = EVEX_FVM;
4550   }
4551   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4552 }
4553 
4554 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4555   assert(UseAVX > 0, "requires some form of AVX");
4556   if (VM_Version::supports_evex()) {
4557     _tuple_type = EVEX_FVM;
4558   }
4559   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4560 }
4561 
4562 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4563   _instruction_uses_vl = true;
4564   assert(UseAVX > 0, "requires some form of AVX");
4565   if (VM_Version::supports_evex()) {
4566     _tuple_type = EVEX_FV;
4567     _input_size_in_bits = EVEX_32bit;
4568   }
4569   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4570 }
4571 
4572 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4573   _instruction_uses_vl = true;
4574   assert(UseAVX > 0, "requires some form of AVX");
4575   if (VM_Version::supports_evex()) {
4576     _tuple_type = EVEX_FV;
4577     _input_size_in_bits = EVEX_64bit;
4578     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4579   } else {
4580     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4581   }
4582 }
4583 
4584 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4585   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4586   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4587 }
4588 
4589 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4590   _instruction_uses_vl = true;
4591   assert(VM_Version::supports_sse4_1(), "");
4592   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4593                                       /* no_mask_reg */ false, VEX_OPCODE_0F_38);
4594   emit_int8(0x40);
4595   emit_int8((unsigned char)(0xC0 | encode));
4596 }
4597 
4598 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4599   assert(UseAVX > 0, "requires some form of AVX");
4600   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4601 }
4602 
4603 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4604   _instruction_uses_vl = true;
4605   assert(UseAVX > 0, "requires some form of AVX");
4606   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
4607   emit_int8(0x40);
4608   emit_int8((unsigned char)(0xC0 | encode));
4609 }
4610 
4611 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4612   assert(UseAVX > 2, "requires some form of AVX");
4613   int src_enc = src->encoding();
4614   int dst_enc = dst->encoding();
4615   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4616   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_38,
4617                                      /* vex_w */ true, vector_len, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false);
4618   emit_int8(0x40);
4619   emit_int8((unsigned char)(0xC0 | encode));
4620 }
4621 
4622 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4623   assert(UseAVX > 0, "requires some form of AVX");
4624   if (VM_Version::supports_evex()) {
4625     _tuple_type = EVEX_FVM;
4626   }
4627   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4628 }
4629 
4630 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4631   _instruction_uses_vl = true;
4632   assert(UseAVX > 0, "requires some form of AVX");
4633   if (VM_Version::supports_evex()) {
4634     _tuple_type = EVEX_FV;
4635     _input_size_in_bits = EVEX_32bit;
4636   }
4637   InstructionMark im(this);
4638   int dst_enc = dst->encoding();
4639   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4640   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4641              VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
4642   emit_int8(0x40);
4643   emit_operand(dst, src);
4644 }
4645 
4646 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4647   assert(UseAVX > 0, "requires some form of AVX");
4648   if (VM_Version::supports_evex()) {
4649     _tuple_type = EVEX_FV;
4650     _input_size_in_bits = EVEX_64bit;
4651   }
4652   InstructionMark im(this);
4653   int dst_enc = dst->encoding();
4654   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4655   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4656              VEX_OPCODE_0F_38, /* vex_w */ true, vector_len, /* legacy_mode */ _legacy_mode_dq);
4657   emit_int8(0x40);
4658   emit_operand(dst, src);
4659 }
4660 
4661 // Shift packed integers left by specified number of bits.
4662 void Assembler::psllw(XMMRegister dst, int shift) {
4663   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4664   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4665   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F,
4666                                       /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
4667   emit_int8(0x71);
4668   emit_int8((unsigned char)(0xC0 | encode));
4669   emit_int8(shift & 0xFF);
4670 }
4671 
4672 void Assembler::pslld(XMMRegister dst, int shift) {
4673   _instruction_uses_vl = true;
4674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4675   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4676   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
4677   emit_int8(0x72);
4678   emit_int8((unsigned char)(0xC0 | encode));
4679   emit_int8(shift & 0xFF);
4680 }
4681 
4682 void Assembler::psllq(XMMRegister dst, int shift) {
4683   _instruction_uses_vl = true;
4684   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4685   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4686   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F, /* rex_w */ true);
4687   emit_int8(0x73);
4688   emit_int8((unsigned char)(0xC0 | encode));
4689   emit_int8(shift & 0xFF);
4690 }
4691 
4692 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4694   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4695 }
4696 
4697 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4698   _instruction_uses_vl = true;
4699   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4700   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4701 }
4702 
4703 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4704   _instruction_uses_vl = true;
4705   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4706   if (VM_Version::supports_evex()) {
4707     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4708   } else {
4709     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4710   }
4711 }
4712 
4713 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4714   assert(UseAVX > 0, "requires some form of AVX");
4715   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4716   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4717   emit_int8(shift & 0xFF);
4718 }
4719 
4720 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4721   _instruction_uses_vl = true;
4722   assert(UseAVX > 0, "requires some form of AVX");
4723   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4724   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4725   emit_int8(shift & 0xFF);
4726 }
4727 
4728 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4729   _instruction_uses_vl = true;
4730   assert(UseAVX > 0, "requires some form of AVX");
4731   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4732   if (VM_Version::supports_evex()) {
4733     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4734   } else {
4735     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4736   }
4737   emit_int8(shift & 0xFF);
4738 }
4739 
4740 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4741   assert(UseAVX > 0, "requires some form of AVX");
4742   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4743 }
4744 
4745 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4746   _instruction_uses_vl = true;
4747   assert(UseAVX > 0, "requires some form of AVX");
4748   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4749 }
4750 
4751 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4752   _instruction_uses_vl = true;
4753   assert(UseAVX > 0, "requires some form of AVX");
4754   if (VM_Version::supports_evex()) {
4755     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4756   } else {
4757     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4758   }
4759 }
4760 
4761 // Shift packed integers logically right by specified number of bits.
4762 void Assembler::psrlw(XMMRegister dst, int shift) {
4763   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4764   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4765   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
4766                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
4767   emit_int8(0x71);
4768   emit_int8((unsigned char)(0xC0 | encode));
4769   emit_int8(shift & 0xFF);
4770 }
4771 
4772 void Assembler::psrld(XMMRegister dst, int shift) {
4773   _instruction_uses_vl = true;
4774   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4775   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4776   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
4777   emit_int8(0x72);
4778   emit_int8((unsigned char)(0xC0 | encode));
4779   emit_int8(shift & 0xFF);
4780 }
4781 
4782 void Assembler::psrlq(XMMRegister dst, int shift) {
4783   _instruction_uses_vl = true;
4784   // Do not confuse it with psrldq SSE2 instruction which
4785   // shifts 128 bit value in xmm register by number of bytes.
4786   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4787   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4788   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
4789                                       VEX_OPCODE_0F, /* rex_w */ VM_Version::supports_evex());
4790   emit_int8(0x73);
4791   emit_int8((unsigned char)(0xC0 | encode));
4792   emit_int8(shift & 0xFF);
4793 }
4794 
4795 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4797   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4798 }
4799 
4800 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4801   _instruction_uses_vl = true;
4802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4803   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4804 }
4805 
4806 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4807   _instruction_uses_vl = true;
4808   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4809   if (VM_Version::supports_evex()) {
4810     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4811   } else {
4812     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4813   }
4814 }
4815 
4816 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4817   assert(UseAVX > 0, "requires some form of AVX");
4818   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4819   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4820   emit_int8(shift & 0xFF);
4821 }
4822 
4823 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4824   _instruction_uses_vl = true;
4825   assert(UseAVX > 0, "requires some form of AVX");
4826   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4827   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4828   emit_int8(shift & 0xFF);
4829 }
4830 
4831 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4832   _instruction_uses_vl = true;
4833   assert(UseAVX > 0, "requires some form of AVX");
4834   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4835   if (VM_Version::supports_evex()) {
4836     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4837   } else {
4838     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4839   }
4840   emit_int8(shift & 0xFF);
4841 }
4842 
4843 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4844   assert(UseAVX > 0, "requires some form of AVX");
4845   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4846 }
4847 
4848 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4849   _instruction_uses_vl = true;
4850   assert(UseAVX > 0, "requires some form of AVX");
4851   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4852 }
4853 
4854 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4855   _instruction_uses_vl = true;
4856   assert(UseAVX > 0, "requires some form of AVX");
4857   if (VM_Version::supports_evex()) {
4858     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4859   } else {
4860     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4861   }
4862 }
4863 
4864 // Shift packed integers arithmetically right by specified number of bits.
4865 void Assembler::psraw(XMMRegister dst, int shift) {
4866   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4867   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4868   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
4869                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
4870   emit_int8(0x71);
4871   emit_int8((unsigned char)(0xC0 | encode));
4872   emit_int8(shift & 0xFF);
4873 }
4874 
4875 void Assembler::psrad(XMMRegister dst, int shift) {
4876   _instruction_uses_vl = true;
4877   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4878   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4879   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
4880   emit_int8(0x72);
4881   emit_int8((unsigned char)(0xC0 | encode));
4882   emit_int8(shift & 0xFF);
4883 }
4884 
4885 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4887   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4888 }
4889 
4890 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4891   _instruction_uses_vl = true;
4892   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4893   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4894 }
4895 
4896 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4897   assert(UseAVX > 0, "requires some form of AVX");
4898   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4899   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4900   emit_int8(shift & 0xFF);
4901 }
4902 
4903 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4904   _instruction_uses_vl = true;
4905   assert(UseAVX > 0, "requires some form of AVX");
4906   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4907   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4908   emit_int8(shift & 0xFF);
4909 }
4910 
4911 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4912   assert(UseAVX > 0, "requires some form of AVX");
4913   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4914 }
4915 
4916 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4917   _instruction_uses_vl = true;
4918   assert(UseAVX > 0, "requires some form of AVX");
4919   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4920 }
4921 
4922 
4923 // logical operations packed integers
4924 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4925   _instruction_uses_vl = true;
4926   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4927   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4928 }
4929 
4930 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4931   _instruction_uses_vl = true;
4932   assert(UseAVX > 0, "requires some form of AVX");
4933   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4934 }
4935 
4936 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4937   _instruction_uses_vl = true;
4938   assert(UseAVX > 0, "requires some form of AVX");
4939   if (VM_Version::supports_evex()) {
4940     _tuple_type = EVEX_FV;
4941     _input_size_in_bits = EVEX_32bit;
4942   }
4943   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4944 }
4945 
4946 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
4947   _instruction_uses_vl = true;
4948   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4949   if (VM_Version::supports_evex()) {
4950     emit_simd_arith_q(0xDF, dst, src, VEX_SIMD_66);
4951   }
4952   else {
4953     emit_simd_arith(0xDF, dst, src, VEX_SIMD_66);
4954   }
4955 }
4956 
4957 void Assembler::por(XMMRegister dst, XMMRegister src) {
4958   _instruction_uses_vl = true;
4959   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4960   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4961 }
4962 
4963 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4964   _instruction_uses_vl = true;
4965   assert(UseAVX > 0, "requires some form of AVX");
4966   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4967 }
4968 
4969 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4970   _instruction_uses_vl = true;
4971   assert(UseAVX > 0, "requires some form of AVX");
4972   if (VM_Version::supports_evex()) {
4973     _tuple_type = EVEX_FV;
4974     _input_size_in_bits = EVEX_32bit;
4975   }
4976   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4977 }
4978 
4979 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4980   _instruction_uses_vl = true;
4981   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4982   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4983 }
4984 
4985 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4986   _instruction_uses_vl = true;
4987   assert(UseAVX > 0, "requires some form of AVX");
4988   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4989 }
4990 
4991 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4992   _instruction_uses_vl = true;
4993   assert(UseAVX > 0, "requires some form of AVX");
4994   if (VM_Version::supports_evex()) {
4995     _tuple_type = EVEX_FV;
4996     _input_size_in_bits = EVEX_32bit;
4997   }
4998   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4999 }
5000 
5001 
5002 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5003   assert(VM_Version::supports_avx(), "");
5004   int vector_len = AVX_256bit;
5005   if (VM_Version::supports_evex()) {
5006     vector_len = AVX_512bit;
5007   }
5008   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
5009   emit_int8(0x18);
5010   emit_int8((unsigned char)(0xC0 | encode));
5011   // 0x00 - insert into lower 128 bits
5012   // 0x01 - insert into upper 128 bits
5013   emit_int8(0x01);
5014 }
5015 
5016 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5017   assert(VM_Version::supports_evex(), "");
5018   int vector_len = AVX_512bit;
5019   int src_enc = src->encoding();
5020   int dst_enc = dst->encoding();
5021   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5022   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5023                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5024   emit_int8(0x1A);
5025   emit_int8((unsigned char)(0xC0 | encode));
5026   // 0x00 - insert into lower 256 bits
5027   // 0x01 - insert into upper 256 bits
5028   emit_int8(0x01);
5029 }
5030 
5031 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
5032   assert(VM_Version::supports_evex(), "");
5033   _tuple_type = EVEX_T4;
5034   _input_size_in_bits = EVEX_64bit;
5035   InstructionMark im(this);
5036   int vector_len = AVX_512bit;
5037   assert(dst != xnoreg, "sanity");
5038   int dst_enc = dst->encoding();
5039   // swap src<->dst for encoding
5040   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ true, vector_len);
5041   emit_int8(0x1A);
5042   emit_operand(dst, src);
5043   // 0x01 - insert into upper 128 bits
5044   emit_int8(0x01);
5045 }
5046 
5047 void Assembler::vinsertf32x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5048   assert(VM_Version::supports_evex(), "");
5049   int vector_len = AVX_512bit;
5050   int src_enc = src->encoding();
5051   int dst_enc = dst->encoding();
5052   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5053   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5054                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5055   emit_int8(0x18);
5056   emit_int8((unsigned char)(0xC0 | encode));
5057   // 0x00 - insert into q0 128 bits (0..127)
5058   // 0x01 - insert into q1 128 bits (128..255)
5059   // 0x02 - insert into q2 128 bits (256..383)
5060   // 0x03 - insert into q3 128 bits (384..511)
5061   emit_int8(value & 0x3);
5062 }
5063 
5064 void Assembler::vinsertf32x4h(XMMRegister dst, Address src, int value) {
5065   assert(VM_Version::supports_evex(), "");
5066   _tuple_type = EVEX_T4;
5067   _input_size_in_bits = EVEX_32bit;
5068   InstructionMark im(this);
5069   int vector_len = AVX_512bit;
5070   assert(dst != xnoreg, "sanity");
5071   int dst_enc = dst->encoding();
5072   // swap src<->dst for encoding
5073   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5074   emit_int8(0x18);
5075   emit_operand(dst, src);
5076   // 0x00 - insert into q0 128 bits (0..127)
5077   // 0x01 - insert into q1 128 bits (128..255)
5078   // 0x02 - insert into q2 128 bits (256..383)
5079   // 0x03 - insert into q3 128 bits (384..511)
5080   emit_int8(value & 0x3);
5081 }
5082 
5083 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
5084   assert(VM_Version::supports_avx(), "");
5085   int vector_len = AVX_256bit;
5086   if (VM_Version::supports_evex()) {
5087     _tuple_type = EVEX_T4;
5088     _input_size_in_bits = EVEX_32bit;
5089     vector_len = AVX_512bit;
5090   }
5091   InstructionMark im(this);
5092   assert(dst != xnoreg, "sanity");
5093   int dst_enc = dst->encoding();
5094   // swap src<->dst for encoding
5095   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5096   emit_int8(0x18);
5097   emit_operand(dst, src);
5098   // 0x01 - insert into upper 128 bits
5099   emit_int8(0x01);
5100 }
5101 
5102 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
5103   assert(VM_Version::supports_avx(), "");
5104   int vector_len = AVX_256bit;
5105   if (VM_Version::supports_evex()) {
5106     vector_len = AVX_512bit;
5107   }
5108   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
5109   emit_int8(0x19);
5110   emit_int8((unsigned char)(0xC0 | encode));
5111   // 0x00 - insert into lower 128 bits
5112   // 0x01 - insert into upper 128 bits
5113   emit_int8(0x01);
5114 }
5115 
5116 void Assembler::vextractf128h(Address dst, XMMRegister src) {
5117   assert(VM_Version::supports_avx(), "");
5118   int vector_len = AVX_256bit;
5119   if (VM_Version::supports_evex()) {
5120     _tuple_type = EVEX_T4;
5121     _input_size_in_bits = EVEX_32bit;
5122     vector_len = AVX_512bit;
5123   }
5124   InstructionMark im(this);
5125   assert(src != xnoreg, "sanity");
5126   int src_enc = src->encoding();
5127   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5128   emit_int8(0x19);
5129   emit_operand(src, dst);
5130   // 0x01 - extract from upper 128 bits
5131   emit_int8(0x01);
5132 }
5133 
5134 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5135   assert(VM_Version::supports_avx2(), "");
5136   int vector_len = AVX_256bit;
5137   if (VM_Version::supports_evex()) {
5138     vector_len = AVX_512bit;
5139   }
5140   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
5141   emit_int8(0x38);
5142   emit_int8((unsigned char)(0xC0 | encode));
5143   // 0x00 - insert into lower 128 bits
5144   // 0x01 - insert into upper 128 bits
5145   emit_int8(0x01);
5146 }
5147 
5148 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5149   assert(VM_Version::supports_evex(), "");
5150   int vector_len = AVX_512bit;
5151   int src_enc = src->encoding();
5152   int dst_enc = dst->encoding();
5153   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5154   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5155                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_reg_mask */ false);
5156   emit_int8(0x38);
5157   emit_int8((unsigned char)(0xC0 | encode));
5158   // 0x00 - insert into lower 256 bits
5159   // 0x01 - insert into upper 256 bits
5160   emit_int8(0x01);
5161 }
5162 
5163 void Assembler::vinserti128h(XMMRegister dst, Address src) {
5164   assert(VM_Version::supports_avx2(), "");
5165   int vector_len = AVX_256bit;
5166   if (VM_Version::supports_evex()) {
5167     _tuple_type = EVEX_T4;
5168     _input_size_in_bits = EVEX_32bit;
5169     vector_len = AVX_512bit;
5170   }
5171   InstructionMark im(this);
5172   assert(dst != xnoreg, "sanity");
5173   int dst_enc = dst->encoding();
5174   // swap src<->dst for encoding
5175   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5176   emit_int8(0x38);
5177   emit_operand(dst, src);
5178   // 0x01 - insert into upper 128 bits
5179   emit_int8(0x01);
5180 }
5181 
5182 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
5183   assert(VM_Version::supports_avx(), "");
5184   int vector_len = AVX_256bit;
5185   if (VM_Version::supports_evex()) {
5186     vector_len = AVX_512bit;
5187   }
5188   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
5189   emit_int8(0x39);
5190   emit_int8((unsigned char)(0xC0 | encode));
5191   // 0x00 - insert into lower 128 bits
5192   // 0x01 - insert into upper 128 bits
5193   emit_int8(0x01);
5194 }
5195 
5196 void Assembler::vextracti128h(Address dst, XMMRegister src) {
5197   assert(VM_Version::supports_avx2(), "");
5198   int vector_len = AVX_256bit;
5199   if (VM_Version::supports_evex()) {
5200     _tuple_type = EVEX_T4;
5201     _input_size_in_bits = EVEX_32bit;
5202     vector_len = AVX_512bit;
5203   }
5204   InstructionMark im(this);
5205   assert(src != xnoreg, "sanity");
5206   int src_enc = src->encoding();
5207   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5208   emit_int8(0x39);
5209   emit_operand(src, dst);
5210   // 0x01 - extract from upper 128 bits
5211   emit_int8(0x01);
5212 }
5213 
5214 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
5215   assert(VM_Version::supports_evex(), "");
5216   int vector_len = AVX_512bit;
5217   int src_enc = src->encoding();
5218   int dst_enc = dst->encoding();
5219   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5220                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5221   emit_int8(0x3B);
5222   emit_int8((unsigned char)(0xC0 | encode));
5223   // 0x01 - extract from upper 256 bits
5224   emit_int8(0x01);
5225 }
5226 
5227 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
5228   assert(VM_Version::supports_evex(), "");
5229   int vector_len = AVX_512bit;
5230   int src_enc = src->encoding();
5231   int dst_enc = dst->encoding();
5232   int encode;
5233   if (VM_Version::supports_avx512dq()) {
5234     encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5235                                    /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5236   } else {
5237     encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5238                                    /* vex_w */ false, vector_len, /* legacy_mode */ true, /* no_mask_reg */ false);
5239   }
5240   emit_int8(0x39);
5241   emit_int8((unsigned char)(0xC0 | encode));
5242   // 0x01 - extract from bits 255:128
5243   // 0x02 - extract from bits 383:256
5244   // 0x03 - extract from bits 511:384
5245   emit_int8(value & 0x3);
5246 }
5247 
5248 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
5249   assert(VM_Version::supports_evex(), "");
5250   int vector_len = AVX_512bit;
5251   int src_enc = src->encoding();
5252   int dst_enc = dst->encoding();
5253   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5254                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5255   emit_int8(0x1B);
5256   emit_int8((unsigned char)(0xC0 | encode));
5257   // 0x01 - extract from upper 256 bits
5258   emit_int8(0x01);
5259 }
5260 
5261 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
5262   assert(VM_Version::supports_evex(), "");
5263   _tuple_type = EVEX_T4;
5264   _input_size_in_bits = EVEX_64bit;
5265   InstructionMark im(this);
5266   int vector_len = AVX_512bit;
5267   assert(src != xnoreg, "sanity");
5268   int src_enc = src->encoding();
5269   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5270              /* vex_w */ true, vector_len);
5271   emit_int8(0x1B);
5272   emit_operand(src, dst);
5273   // 0x01 - extract from upper 256 bits
5274   emit_int8(0x01);
5275 }
5276 
5277 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
5278   assert(VM_Version::supports_evex(), "");
5279   int vector_len = AVX_512bit;
5280   int src_enc = src->encoding();
5281   int dst_enc = dst->encoding();
5282   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5283                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5284   emit_int8(0x19);
5285   emit_int8((unsigned char)(0xC0 | encode));
5286   // 0x00 - extract from bits 127:0
5287   // 0x01 - extract from bits 255:128
5288   // 0x02 - extract from bits 383:256
5289   // 0x03 - extract from bits 511:384
5290   emit_int8(value & 0x3);
5291 }
5292 
5293 void Assembler::vextractf32x4h(Address dst, XMMRegister src, int value) {
5294   assert(VM_Version::supports_evex(), "");
5295   _tuple_type = EVEX_T4;
5296   _input_size_in_bits = EVEX_32bit;
5297   InstructionMark im(this);
5298   int vector_len = AVX_512bit;
5299   assert(src != xnoreg, "sanity");
5300   int src_enc = src->encoding();
5301   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5302   emit_int8(0x19);
5303   emit_operand(src, dst);
5304   // 0x00 - extract from bits 127:0
5305   // 0x01 - extract from bits 255:128
5306   // 0x02 - extract from bits 383:256
5307   // 0x03 - extract from bits 511:384
5308   emit_int8(value & 0x3);
5309 }
5310 
5311 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
5312   assert(VM_Version::supports_evex(), "");
5313   int vector_len = AVX_512bit;
5314   int src_enc = src->encoding();
5315   int dst_enc = dst->encoding();
5316   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5317                                      /* vex_w */ !_legacy_mode_dq, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5318   emit_int8(0x19);
5319   emit_int8((unsigned char)(0xC0 | encode));
5320   // 0x01 - extract from bits 255:128
5321   // 0x02 - extract from bits 383:256
5322   // 0x03 - extract from bits 511:384
5323   emit_int8(value & 0x3);
5324 }
5325 
5326 // duplicate 4-bytes integer data from src into 8 locations in dest
5327 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
5328   _instruction_uses_vl = true;
5329   assert(UseAVX > 1, "");
5330   int vector_len = AVX_256bit;
5331   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
5332   emit_int8(0x58);
5333   emit_int8((unsigned char)(0xC0 | encode));
5334 }
5335 
5336 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5337 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
5338   _instruction_uses_vl = true;
5339   assert(UseAVX > 1, "");
5340   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
5341   emit_int8(0x78);
5342   emit_int8((unsigned char)(0xC0 | encode));
5343 }
5344 
5345 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5346   _instruction_uses_vl = true;
5347   assert(UseAVX > 1, "");
5348   _tuple_type = EVEX_T1S;
5349   _input_size_in_bits = EVEX_8bit;
5350   InstructionMark im(this);
5351   assert(dst != xnoreg, "sanity");
5352   int dst_enc = dst->encoding();
5353   // swap src<->dst for encoding
5354   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
5355   emit_int8(0x78);
5356   emit_operand(dst, src);
5357 }
5358 
5359 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5360 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5361   _instruction_uses_vl = true;
5362   assert(UseAVX > 1, "");
5363   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
5364   emit_int8(0x79);
5365   emit_int8((unsigned char)(0xC0 | encode));
5366 }
5367 
5368 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5369   _instruction_uses_vl = true;
5370   assert(UseAVX > 1, "");
5371   _tuple_type = EVEX_T1S;
5372   _input_size_in_bits = EVEX_16bit;
5373   InstructionMark im(this);
5374   assert(dst != xnoreg, "sanity");
5375   int dst_enc = dst->encoding();
5376   // swap src<->dst for encoding
5377   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
5378   emit_int8(0x79);
5379   emit_operand(dst, src);
5380 }
5381 
5382 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5383 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5384   _instruction_uses_vl = true;
5385   assert(UseAVX > 1, "");
5386   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
5387   emit_int8(0x58);
5388   emit_int8((unsigned char)(0xC0 | encode));
5389 }
5390 
5391 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5392   _instruction_uses_vl = true;
5393   assert(UseAVX > 1, "");
5394   _tuple_type = EVEX_T1S;
5395   _input_size_in_bits = EVEX_32bit;
5396   InstructionMark im(this);
5397   assert(dst != xnoreg, "sanity");
5398   int dst_enc = dst->encoding();
5399   // swap src<->dst for encoding
5400   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
5401   emit_int8(0x58);
5402   emit_operand(dst, src);
5403 }
5404 
5405 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5406 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5407   _instruction_uses_vl = true;
5408   assert(UseAVX > 1, "");
5409   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5410                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5411   emit_int8(0x59);
5412   emit_int8((unsigned char)(0xC0 | encode));
5413 }
5414 
5415 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5416   _instruction_uses_vl = true;
5417   assert(UseAVX > 1, "");
5418   _tuple_type = EVEX_T1S;
5419   _input_size_in_bits = EVEX_64bit;
5420   InstructionMark im(this);
5421   assert(dst != xnoreg, "sanity");
5422   int dst_enc = dst->encoding();
5423   // swap src<->dst for encoding
5424   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ true, vector_len);
5425   emit_int8(0x59);
5426   emit_operand(dst, src);
5427 }
5428 
5429 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5430 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5431   _instruction_uses_vl = true;
5432   assert(UseAVX > 1, "");
5433   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5434                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5435   emit_int8(0x18);
5436   emit_int8((unsigned char)(0xC0 | encode));
5437 }
5438 
5439 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5440   assert(UseAVX > 1, "");
5441   _tuple_type = EVEX_T1S;
5442   _input_size_in_bits = EVEX_32bit;
5443   InstructionMark im(this);
5444   assert(dst != xnoreg, "sanity");
5445   int dst_enc = dst->encoding();
5446   // swap src<->dst for encoding
5447   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
5448   emit_int8(0x18);
5449   emit_operand(dst, src);
5450 }
5451 
5452 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5453 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5454   _instruction_uses_vl = true;
5455   assert(UseAVX > 1, "");
5456   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5457                                      /*vex_w */ true, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5458   emit_int8(0x19);
5459   emit_int8((unsigned char)(0xC0 | encode));
5460 }
5461 
5462 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5463   _instruction_uses_vl = true;
5464   assert(UseAVX > 1, "");
5465   _tuple_type = EVEX_T1S;
5466   _input_size_in_bits = EVEX_64bit;
5467   InstructionMark im(this);
5468   assert(dst != xnoreg, "sanity");
5469   int dst_enc = dst->encoding();
5470   // swap src<->dst for encoding
5471   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ true, vector_len);
5472   emit_int8(0x19);
5473   emit_operand(dst, src);
5474 }
5475 
5476 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5477 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5478   _instruction_uses_vl = true;
5479   assert(VM_Version::supports_evex(), "");
5480   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5481                                      /*vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5482   emit_int8(0x7A);
5483   emit_int8((unsigned char)(0xC0 | encode));
5484 }
5485 
5486 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5487 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5488   _instruction_uses_vl = true;
5489   assert(VM_Version::supports_evex(), "");
5490   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5491                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5492   emit_int8(0x7B);
5493   emit_int8((unsigned char)(0xC0 | encode));
5494 }
5495 
5496 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5497 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5498   _instruction_uses_vl = true;
5499   assert(VM_Version::supports_evex(), "");
5500   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5501                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5502   emit_int8(0x7C);
5503   emit_int8((unsigned char)(0xC0 | encode));
5504 }
5505 
5506 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5507 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5508   _instruction_uses_vl = true;
5509   assert(VM_Version::supports_evex(), "");
5510   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5511                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5512   emit_int8(0x7C);
5513   emit_int8((unsigned char)(0xC0 | encode));
5514 }
5515 
5516 // Carry-Less Multiplication Quadword
5517 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5518   assert(VM_Version::supports_clmul(), "");
5519   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
5520                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
5521   emit_int8(0x44);
5522   emit_int8((unsigned char)(0xC0 | encode));
5523   emit_int8((unsigned char)mask);
5524 }
5525 
5526 // Carry-Less Multiplication Quadword
5527 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5528   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5529   int vector_len = AVX_128bit;
5530   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A, /* legacy_mode */ true);
5531   emit_int8(0x44);
5532   emit_int8((unsigned char)(0xC0 | encode));
5533   emit_int8((unsigned char)mask);
5534 }
5535 
5536 void Assembler::vzeroupper() {
5537   assert(VM_Version::supports_avx(), "");
5538   if (UseAVX < 3)
5539   {
5540     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5541     emit_int8(0x77);
5542   }
5543 }
5544 
5545 
5546 #ifndef _LP64
5547 // 32bit only pieces of the assembler
5548 
5549 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5550   // NO PREFIX AS NEVER 64BIT
5551   InstructionMark im(this);
5552   emit_int8((unsigned char)0x81);
5553   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5554   emit_data(imm32, rspec, 0);
5555 }
5556 
5557 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5558   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5559   InstructionMark im(this);
5560   emit_int8((unsigned char)0x81);
5561   emit_operand(rdi, src1);
5562   emit_data(imm32, rspec, 0);
5563 }
5564 
5565 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5566 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5567 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5568 void Assembler::cmpxchg8(Address adr) {
5569   InstructionMark im(this);
5570   emit_int8(0x0F);
5571   emit_int8((unsigned char)0xC7);
5572   emit_operand(rcx, adr);
5573 }
5574 
5575 void Assembler::decl(Register dst) {
5576   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5577  emit_int8(0x48 | dst->encoding());
5578 }
5579 
5580 #endif // _LP64
5581 
5582 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5583 
5584 void Assembler::fabs() {
5585   emit_int8((unsigned char)0xD9);
5586   emit_int8((unsigned char)0xE1);
5587 }
5588 
5589 void Assembler::fadd(int i) {
5590   emit_farith(0xD8, 0xC0, i);
5591 }
5592 
5593 void Assembler::fadd_d(Address src) {
5594   InstructionMark im(this);
5595   emit_int8((unsigned char)0xDC);
5596   emit_operand32(rax, src);
5597 }
5598 
5599 void Assembler::fadd_s(Address src) {
5600   InstructionMark im(this);
5601   emit_int8((unsigned char)0xD8);
5602   emit_operand32(rax, src);
5603 }
5604 
5605 void Assembler::fadda(int i) {
5606   emit_farith(0xDC, 0xC0, i);
5607 }
5608 
5609 void Assembler::faddp(int i) {
5610   emit_farith(0xDE, 0xC0, i);
5611 }
5612 
5613 void Assembler::fchs() {
5614   emit_int8((unsigned char)0xD9);
5615   emit_int8((unsigned char)0xE0);
5616 }
5617 
5618 void Assembler::fcom(int i) {
5619   emit_farith(0xD8, 0xD0, i);
5620 }
5621 
5622 void Assembler::fcomp(int i) {
5623   emit_farith(0xD8, 0xD8, i);
5624 }
5625 
5626 void Assembler::fcomp_d(Address src) {
5627   InstructionMark im(this);
5628   emit_int8((unsigned char)0xDC);
5629   emit_operand32(rbx, src);
5630 }
5631 
5632 void Assembler::fcomp_s(Address src) {
5633   InstructionMark im(this);
5634   emit_int8((unsigned char)0xD8);
5635   emit_operand32(rbx, src);
5636 }
5637 
5638 void Assembler::fcompp() {
5639   emit_int8((unsigned char)0xDE);
5640   emit_int8((unsigned char)0xD9);
5641 }
5642 
5643 void Assembler::fcos() {
5644   emit_int8((unsigned char)0xD9);
5645   emit_int8((unsigned char)0xFF);
5646 }
5647 
5648 void Assembler::fdecstp() {
5649   emit_int8((unsigned char)0xD9);
5650   emit_int8((unsigned char)0xF6);
5651 }
5652 
5653 void Assembler::fdiv(int i) {
5654   emit_farith(0xD8, 0xF0, i);
5655 }
5656 
5657 void Assembler::fdiv_d(Address src) {
5658   InstructionMark im(this);
5659   emit_int8((unsigned char)0xDC);
5660   emit_operand32(rsi, src);
5661 }
5662 
5663 void Assembler::fdiv_s(Address src) {
5664   InstructionMark im(this);
5665   emit_int8((unsigned char)0xD8);
5666   emit_operand32(rsi, src);
5667 }
5668 
5669 void Assembler::fdiva(int i) {
5670   emit_farith(0xDC, 0xF8, i);
5671 }
5672 
5673 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5674 //       is erroneous for some of the floating-point instructions below.
5675 
5676 void Assembler::fdivp(int i) {
5677   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5678 }
5679 
5680 void Assembler::fdivr(int i) {
5681   emit_farith(0xD8, 0xF8, i);
5682 }
5683 
5684 void Assembler::fdivr_d(Address src) {
5685   InstructionMark im(this);
5686   emit_int8((unsigned char)0xDC);
5687   emit_operand32(rdi, src);
5688 }
5689 
5690 void Assembler::fdivr_s(Address src) {
5691   InstructionMark im(this);
5692   emit_int8((unsigned char)0xD8);
5693   emit_operand32(rdi, src);
5694 }
5695 
5696 void Assembler::fdivra(int i) {
5697   emit_farith(0xDC, 0xF0, i);
5698 }
5699 
5700 void Assembler::fdivrp(int i) {
5701   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5702 }
5703 
5704 void Assembler::ffree(int i) {
5705   emit_farith(0xDD, 0xC0, i);
5706 }
5707 
5708 void Assembler::fild_d(Address adr) {
5709   InstructionMark im(this);
5710   emit_int8((unsigned char)0xDF);
5711   emit_operand32(rbp, adr);
5712 }
5713 
5714 void Assembler::fild_s(Address adr) {
5715   InstructionMark im(this);
5716   emit_int8((unsigned char)0xDB);
5717   emit_operand32(rax, adr);
5718 }
5719 
5720 void Assembler::fincstp() {
5721   emit_int8((unsigned char)0xD9);
5722   emit_int8((unsigned char)0xF7);
5723 }
5724 
5725 void Assembler::finit() {
5726   emit_int8((unsigned char)0x9B);
5727   emit_int8((unsigned char)0xDB);
5728   emit_int8((unsigned char)0xE3);
5729 }
5730 
5731 void Assembler::fist_s(Address adr) {
5732   InstructionMark im(this);
5733   emit_int8((unsigned char)0xDB);
5734   emit_operand32(rdx, adr);
5735 }
5736 
5737 void Assembler::fistp_d(Address adr) {
5738   InstructionMark im(this);
5739   emit_int8((unsigned char)0xDF);
5740   emit_operand32(rdi, adr);
5741 }
5742 
5743 void Assembler::fistp_s(Address adr) {
5744   InstructionMark im(this);
5745   emit_int8((unsigned char)0xDB);
5746   emit_operand32(rbx, adr);
5747 }
5748 
5749 void Assembler::fld1() {
5750   emit_int8((unsigned char)0xD9);
5751   emit_int8((unsigned char)0xE8);
5752 }
5753 
5754 void Assembler::fld_d(Address adr) {
5755   InstructionMark im(this);
5756   emit_int8((unsigned char)0xDD);
5757   emit_operand32(rax, adr);
5758 }
5759 
5760 void Assembler::fld_s(Address adr) {
5761   InstructionMark im(this);
5762   emit_int8((unsigned char)0xD9);
5763   emit_operand32(rax, adr);
5764 }
5765 
5766 
5767 void Assembler::fld_s(int index) {
5768   emit_farith(0xD9, 0xC0, index);
5769 }
5770 
5771 void Assembler::fld_x(Address adr) {
5772   InstructionMark im(this);
5773   emit_int8((unsigned char)0xDB);
5774   emit_operand32(rbp, adr);
5775 }
5776 
5777 void Assembler::fldcw(Address src) {
5778   InstructionMark im(this);
5779   emit_int8((unsigned char)0xD9);
5780   emit_operand32(rbp, src);
5781 }
5782 
5783 void Assembler::fldenv(Address src) {
5784   InstructionMark im(this);
5785   emit_int8((unsigned char)0xD9);
5786   emit_operand32(rsp, src);
5787 }
5788 
5789 void Assembler::fldlg2() {
5790   emit_int8((unsigned char)0xD9);
5791   emit_int8((unsigned char)0xEC);
5792 }
5793 
5794 void Assembler::fldln2() {
5795   emit_int8((unsigned char)0xD9);
5796   emit_int8((unsigned char)0xED);
5797 }
5798 
5799 void Assembler::fldz() {
5800   emit_int8((unsigned char)0xD9);
5801   emit_int8((unsigned char)0xEE);
5802 }
5803 
5804 void Assembler::flog() {
5805   fldln2();
5806   fxch();
5807   fyl2x();
5808 }
5809 
5810 void Assembler::flog10() {
5811   fldlg2();
5812   fxch();
5813   fyl2x();
5814 }
5815 
5816 void Assembler::fmul(int i) {
5817   emit_farith(0xD8, 0xC8, i);
5818 }
5819 
5820 void Assembler::fmul_d(Address src) {
5821   InstructionMark im(this);
5822   emit_int8((unsigned char)0xDC);
5823   emit_operand32(rcx, src);
5824 }
5825 
5826 void Assembler::fmul_s(Address src) {
5827   InstructionMark im(this);
5828   emit_int8((unsigned char)0xD8);
5829   emit_operand32(rcx, src);
5830 }
5831 
5832 void Assembler::fmula(int i) {
5833   emit_farith(0xDC, 0xC8, i);
5834 }
5835 
5836 void Assembler::fmulp(int i) {
5837   emit_farith(0xDE, 0xC8, i);
5838 }
5839 
5840 void Assembler::fnsave(Address dst) {
5841   InstructionMark im(this);
5842   emit_int8((unsigned char)0xDD);
5843   emit_operand32(rsi, dst);
5844 }
5845 
5846 void Assembler::fnstcw(Address src) {
5847   InstructionMark im(this);
5848   emit_int8((unsigned char)0x9B);
5849   emit_int8((unsigned char)0xD9);
5850   emit_operand32(rdi, src);
5851 }
5852 
5853 void Assembler::fnstsw_ax() {
5854   emit_int8((unsigned char)0xDF);
5855   emit_int8((unsigned char)0xE0);
5856 }
5857 
5858 void Assembler::fprem() {
5859   emit_int8((unsigned char)0xD9);
5860   emit_int8((unsigned char)0xF8);
5861 }
5862 
5863 void Assembler::fprem1() {
5864   emit_int8((unsigned char)0xD9);
5865   emit_int8((unsigned char)0xF5);
5866 }
5867 
5868 void Assembler::frstor(Address src) {
5869   InstructionMark im(this);
5870   emit_int8((unsigned char)0xDD);
5871   emit_operand32(rsp, src);
5872 }
5873 
5874 void Assembler::fsin() {
5875   emit_int8((unsigned char)0xD9);
5876   emit_int8((unsigned char)0xFE);
5877 }
5878 
5879 void Assembler::fsqrt() {
5880   emit_int8((unsigned char)0xD9);
5881   emit_int8((unsigned char)0xFA);
5882 }
5883 
5884 void Assembler::fst_d(Address adr) {
5885   InstructionMark im(this);
5886   emit_int8((unsigned char)0xDD);
5887   emit_operand32(rdx, adr);
5888 }
5889 
5890 void Assembler::fst_s(Address adr) {
5891   InstructionMark im(this);
5892   emit_int8((unsigned char)0xD9);
5893   emit_operand32(rdx, adr);
5894 }
5895 
5896 void Assembler::fstp_d(Address adr) {
5897   InstructionMark im(this);
5898   emit_int8((unsigned char)0xDD);
5899   emit_operand32(rbx, adr);
5900 }
5901 
5902 void Assembler::fstp_d(int index) {
5903   emit_farith(0xDD, 0xD8, index);
5904 }
5905 
5906 void Assembler::fstp_s(Address adr) {
5907   InstructionMark im(this);
5908   emit_int8((unsigned char)0xD9);
5909   emit_operand32(rbx, adr);
5910 }
5911 
5912 void Assembler::fstp_x(Address adr) {
5913   InstructionMark im(this);
5914   emit_int8((unsigned char)0xDB);
5915   emit_operand32(rdi, adr);
5916 }
5917 
5918 void Assembler::fsub(int i) {
5919   emit_farith(0xD8, 0xE0, i);
5920 }
5921 
5922 void Assembler::fsub_d(Address src) {
5923   InstructionMark im(this);
5924   emit_int8((unsigned char)0xDC);
5925   emit_operand32(rsp, src);
5926 }
5927 
5928 void Assembler::fsub_s(Address src) {
5929   InstructionMark im(this);
5930   emit_int8((unsigned char)0xD8);
5931   emit_operand32(rsp, src);
5932 }
5933 
5934 void Assembler::fsuba(int i) {
5935   emit_farith(0xDC, 0xE8, i);
5936 }
5937 
5938 void Assembler::fsubp(int i) {
5939   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5940 }
5941 
5942 void Assembler::fsubr(int i) {
5943   emit_farith(0xD8, 0xE8, i);
5944 }
5945 
5946 void Assembler::fsubr_d(Address src) {
5947   InstructionMark im(this);
5948   emit_int8((unsigned char)0xDC);
5949   emit_operand32(rbp, src);
5950 }
5951 
5952 void Assembler::fsubr_s(Address src) {
5953   InstructionMark im(this);
5954   emit_int8((unsigned char)0xD8);
5955   emit_operand32(rbp, src);
5956 }
5957 
5958 void Assembler::fsubra(int i) {
5959   emit_farith(0xDC, 0xE0, i);
5960 }
5961 
5962 void Assembler::fsubrp(int i) {
5963   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5964 }
5965 
5966 void Assembler::ftan() {
5967   emit_int8((unsigned char)0xD9);
5968   emit_int8((unsigned char)0xF2);
5969   emit_int8((unsigned char)0xDD);
5970   emit_int8((unsigned char)0xD8);
5971 }
5972 
5973 void Assembler::ftst() {
5974   emit_int8((unsigned char)0xD9);
5975   emit_int8((unsigned char)0xE4);
5976 }
5977 
5978 void Assembler::fucomi(int i) {
5979   // make sure the instruction is supported (introduced for P6, together with cmov)
5980   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5981   emit_farith(0xDB, 0xE8, i);
5982 }
5983 
5984 void Assembler::fucomip(int i) {
5985   // make sure the instruction is supported (introduced for P6, together with cmov)
5986   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5987   emit_farith(0xDF, 0xE8, i);
5988 }
5989 
5990 void Assembler::fwait() {
5991   emit_int8((unsigned char)0x9B);
5992 }
5993 
5994 void Assembler::fxch(int i) {
5995   emit_farith(0xD9, 0xC8, i);
5996 }
5997 
5998 void Assembler::fyl2x() {
5999   emit_int8((unsigned char)0xD9);
6000   emit_int8((unsigned char)0xF1);
6001 }
6002 
6003 void Assembler::frndint() {
6004   emit_int8((unsigned char)0xD9);
6005   emit_int8((unsigned char)0xFC);
6006 }
6007 
6008 void Assembler::f2xm1() {
6009   emit_int8((unsigned char)0xD9);
6010   emit_int8((unsigned char)0xF0);
6011 }
6012 
6013 void Assembler::fldl2e() {
6014   emit_int8((unsigned char)0xD9);
6015   emit_int8((unsigned char)0xEA);
6016 }
6017 
6018 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6019 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6020 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6021 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6022 
6023 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6024 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6025   if (pre > 0) {
6026     emit_int8(simd_pre[pre]);
6027   }
6028   if (rex_w) {
6029     prefixq(adr, xreg);
6030   } else {
6031     prefix(adr, xreg);
6032   }
6033   if (opc > 0) {
6034     emit_int8(0x0F);
6035     int opc2 = simd_opc[opc];
6036     if (opc2 > 0) {
6037       emit_int8(opc2);
6038     }
6039   }
6040 }
6041 
6042 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6043   if (pre > 0) {
6044     emit_int8(simd_pre[pre]);
6045   }
6046   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
6047                           prefix_and_encode(dst_enc, src_enc);
6048   if (opc > 0) {
6049     emit_int8(0x0F);
6050     int opc2 = simd_opc[opc];
6051     if (opc2 > 0) {
6052       emit_int8(opc2);
6053     }
6054   }
6055   return encode;
6056 }
6057 
6058 
6059 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
6060   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6061     prefix(VEX_3bytes);
6062 
6063     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6064     byte1 = (~byte1) & 0xE0;
6065     byte1 |= opc;
6066     emit_int8(byte1);
6067 
6068     int byte2 = ((~nds_enc) & 0xf) << 3;
6069     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6070     emit_int8(byte2);
6071   } else {
6072     prefix(VEX_2bytes);
6073 
6074     int byte1 = vex_r ? VEX_R : 0;
6075     byte1 = (~byte1) & 0x80;
6076     byte1 |= ((~nds_enc) & 0xf) << 3;
6077     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6078     emit_int8(byte1);
6079   }
6080 }
6081 
6082 // This is a 4 byte encoding
6083 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
6084                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
6085                             bool is_extended_context, bool is_merge_context,
6086                             int vector_len, bool no_mask_reg ){
6087   // EVEX 0x62 prefix
6088   prefix(EVEX_4bytes);
6089   _evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
6090 
6091   // P0: byte 2, initialized to RXBR`00mm
6092   // instead of not'd
6093   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6094   byte2 = (~byte2) & 0xF0;
6095   // confine opc opcode extensions in mm bits to lower two bits
6096   // of form {0F, 0F_38, 0F_3A}
6097   byte2 |= opc;
6098   emit_int8(byte2);
6099 
6100   // P1: byte 3 as Wvvvv1pp
6101   int byte3 = ((~nds_enc) & 0xf) << 3;
6102   // p[10] is always 1
6103   byte3 |= EVEX_F;
6104   byte3 |= (vex_w & 1) << 7;
6105   // confine pre opcode extensions in pp bits to lower two bits
6106   // of form {66, F3, F2}
6107   byte3 |= pre;
6108   emit_int8(byte3);
6109 
6110   // P2: byte 4 as zL'Lbv'aaa
6111   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6112   // EVEX.v` for extending EVEX.vvvv or VIDX
6113   byte4 |= (evex_v ? 0: EVEX_V);
6114   // third EXEC.b for broadcast actions
6115   byte4 |= (is_extended_context ? EVEX_Rb : 0);
6116   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6117   byte4 |= ((vector_len) & 0x3) << 5;
6118   // last is EVEX.z for zero/merge actions
6119   byte4 |= (is_merge_context ? EVEX_Z : 0);
6120   emit_int8(byte4);
6121 }
6122 
6123 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
6124                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
6125   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6126   bool vex_b = adr.base_needs_rex();
6127   bool vex_x = adr.index_needs_rex();
6128   _avx_vector_len = vector_len;
6129 
6130   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6131   if (_legacy_mode_vl && _instruction_uses_vl) {
6132     switch (vector_len) {
6133     case AVX_128bit:
6134     case AVX_256bit:
6135       legacy_mode = true;
6136       break;
6137     }
6138   }
6139 
6140   if ((UseAVX > 2) && (legacy_mode == false))
6141   {
6142     bool evex_r = (xreg_enc >= 16);
6143     bool evex_v = (nds_enc >= 16);
6144     _is_evex_instruction = true;
6145     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
6146   } else {
6147     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
6148   }
6149   _instruction_uses_vl = false;
6150 }
6151 
6152 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
6153                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
6154   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
6155   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
6156   bool vex_x = false;
6157   _avx_vector_len = vector_len;
6158 
6159   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6160   if (_legacy_mode_vl && _instruction_uses_vl) {
6161     switch (vector_len) {
6162     case AVX_128bit:
6163     case AVX_256bit:
6164       legacy_mode = true;
6165       break;
6166     }
6167   }
6168 
6169   if ((UseAVX > 2) && (legacy_mode == false))
6170   {
6171     bool evex_r = (dst_enc >= 16);
6172     bool evex_v = (nds_enc >= 16);
6173     // can use vex_x as bank extender on rm encoding
6174     vex_x = (src_enc >= 16);
6175     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
6176   } else {
6177     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
6178   }
6179 
6180   _instruction_uses_vl = false;
6181 
6182   // return modrm byte components for operands
6183   return (((dst_enc & 7) << 3) | (src_enc & 7));
6184 }
6185 
6186 
6187 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
6188                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
6189   if (UseAVX > 0) {
6190     int xreg_enc = xreg->encoding();
6191     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
6192     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
6193   } else {
6194     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
6195     rex_prefix(adr, xreg, pre, opc, rex_w);
6196   }
6197 }
6198 
6199 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
6200                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
6201   int dst_enc = dst->encoding();
6202   int src_enc = src->encoding();
6203   if (UseAVX > 0) {
6204     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6205     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
6206   } else {
6207     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
6208     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
6209   }
6210 }
6211 
6212 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
6213                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
6214   int dst_enc = dst->encoding();
6215   int src_enc = src->encoding();
6216   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6217   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
6218 }
6219 
6220 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
6221                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
6222   int dst_enc = dst->encoding();
6223   int src_enc = src->encoding();
6224   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6225   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
6226 }
6227 
6228 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
6229   InstructionMark im(this);
6230   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
6231   emit_int8(opcode);
6232   emit_operand(dst, src);
6233 }
6234 
6235 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
6236   InstructionMark im(this);
6237   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
6238   emit_int8(opcode);
6239   emit_operand(dst, src);
6240 }
6241 
6242 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
6243   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
6244   emit_int8(opcode);
6245   emit_int8((unsigned char)(0xC0 | encode));
6246 }
6247 
6248 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
6249   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
6250   emit_int8(opcode);
6251   emit_int8((unsigned char)(0xC0 | encode));
6252 }
6253 
6254 // Versions with no second source register (non-destructive source).
6255 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
6256   InstructionMark im(this);
6257   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
6258   emit_int8(opcode);
6259   emit_operand(dst, src);
6260 }
6261 
6262 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
6263   InstructionMark im(this);
6264   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
6265   emit_int8(opcode);
6266   emit_operand(dst, src);
6267 }
6268 
6269 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
6270   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
6271   emit_int8(opcode);
6272   emit_int8((unsigned char)(0xC0 | encode));
6273 }
6274 
6275 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
6276   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true);
6277   emit_int8(opcode);
6278   emit_int8((unsigned char)(0xC0 | encode));
6279 }
6280 
6281 // 3-operands AVX instructions
6282 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
6283                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
6284   InstructionMark im(this);
6285   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
6286   emit_int8(opcode);
6287   emit_operand(dst, src);
6288 }
6289 
6290 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
6291                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
6292   InstructionMark im(this);
6293   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
6294   emit_int8(opcode);
6295   emit_operand(dst, src);
6296 }
6297 
6298 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
6299                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
6300   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, legacy_mode, no_mask_reg);
6301   emit_int8(opcode);
6302   emit_int8((unsigned char)(0xC0 | encode));
6303 }
6304 
6305 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
6306                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
6307   int src_enc = src->encoding();
6308   int dst_enc = dst->encoding();
6309   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6310   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
6311   emit_int8(opcode);
6312   emit_int8((unsigned char)(0xC0 | encode));
6313 }
6314 
6315 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
6316   assert(VM_Version::supports_avx(), "");
6317   assert(!VM_Version::supports_evex(), "");
6318   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F, /* no_mask_reg */ false);
6319   emit_int8((unsigned char)0xC2);
6320   emit_int8((unsigned char)(0xC0 | encode));
6321   emit_int8((unsigned char)(0xF & cop));
6322 }
6323 
6324 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
6325   assert(VM_Version::supports_avx(), "");
6326   assert(!VM_Version::supports_evex(), "");
6327   int encode = vex_prefix_and_encode(dst, nds, src1, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A, /* no_mask_reg */ false);
6328   emit_int8((unsigned char)0x4B);
6329   emit_int8((unsigned char)(0xC0 | encode));
6330   int src2_enc = src2->encoding();
6331   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
6332 }
6333 
6334 
6335 #ifndef _LP64
6336 
6337 void Assembler::incl(Register dst) {
6338   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6339   emit_int8(0x40 | dst->encoding());
6340 }
6341 
6342 void Assembler::lea(Register dst, Address src) {
6343   leal(dst, src);
6344 }
6345 
6346 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6347   InstructionMark im(this);
6348   emit_int8((unsigned char)0xC7);
6349   emit_operand(rax, dst);
6350   emit_data((int)imm32, rspec, 0);
6351 }
6352 
6353 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6354   InstructionMark im(this);
6355   int encode = prefix_and_encode(dst->encoding());
6356   emit_int8((unsigned char)(0xB8 | encode));
6357   emit_data((int)imm32, rspec, 0);
6358 }
6359 
6360 void Assembler::popa() { // 32bit
6361   emit_int8(0x61);
6362 }
6363 
6364 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
6365   InstructionMark im(this);
6366   emit_int8(0x68);
6367   emit_data(imm32, rspec, 0);
6368 }
6369 
6370 void Assembler::pusha() { // 32bit
6371   emit_int8(0x60);
6372 }
6373 
6374 void Assembler::set_byte_if_not_zero(Register dst) {
6375   emit_int8(0x0F);
6376   emit_int8((unsigned char)0x95);
6377   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6378 }
6379 
6380 void Assembler::shldl(Register dst, Register src) {
6381   emit_int8(0x0F);
6382   emit_int8((unsigned char)0xA5);
6383   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6384 }
6385 
6386 // 0F A4 / r ib
6387 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
6388   emit_int8(0x0F);
6389   emit_int8((unsigned char)0xA4);
6390   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6391   emit_int8(imm8);
6392 }
6393 
6394 void Assembler::shrdl(Register dst, Register src) {
6395   emit_int8(0x0F);
6396   emit_int8((unsigned char)0xAD);
6397   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6398 }
6399 
6400 #else // LP64
6401 
6402 void Assembler::set_byte_if_not_zero(Register dst) {
6403   int enc = prefix_and_encode(dst->encoding(), true);
6404   emit_int8(0x0F);
6405   emit_int8((unsigned char)0x95);
6406   emit_int8((unsigned char)(0xE0 | enc));
6407 }
6408 
6409 // 64bit only pieces of the assembler
6410 // This should only be used by 64bit instructions that can use rip-relative
6411 // it cannot be used by instructions that want an immediate value.
6412 
6413 bool Assembler::reachable(AddressLiteral adr) {
6414   int64_t disp;
6415   // None will force a 64bit literal to the code stream. Likely a placeholder
6416   // for something that will be patched later and we need to certain it will
6417   // always be reachable.
6418   if (adr.reloc() == relocInfo::none) {
6419     return false;
6420   }
6421   if (adr.reloc() == relocInfo::internal_word_type) {
6422     // This should be rip relative and easily reachable.
6423     return true;
6424   }
6425   if (adr.reloc() == relocInfo::virtual_call_type ||
6426       adr.reloc() == relocInfo::opt_virtual_call_type ||
6427       adr.reloc() == relocInfo::static_call_type ||
6428       adr.reloc() == relocInfo::static_stub_type ) {
6429     // This should be rip relative within the code cache and easily
6430     // reachable until we get huge code caches. (At which point
6431     // ic code is going to have issues).
6432     return true;
6433   }
6434   if (adr.reloc() != relocInfo::external_word_type &&
6435       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6436       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6437       adr.reloc() != relocInfo::runtime_call_type ) {
6438     return false;
6439   }
6440 
6441   // Stress the correction code
6442   if (ForceUnreachable) {
6443     // Must be runtimecall reloc, see if it is in the codecache
6444     // Flipping stuff in the codecache to be unreachable causes issues
6445     // with things like inline caches where the additional instructions
6446     // are not handled.
6447     if (CodeCache::find_blob(adr._target) == NULL) {
6448       return false;
6449     }
6450   }
6451   // For external_word_type/runtime_call_type if it is reachable from where we
6452   // are now (possibly a temp buffer) and where we might end up
6453   // anywhere in the codeCache then we are always reachable.
6454   // This would have to change if we ever save/restore shared code
6455   // to be more pessimistic.
6456   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6457   if (!is_simm32(disp)) return false;
6458   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6459   if (!is_simm32(disp)) return false;
6460 
6461   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6462 
6463   // Because rip relative is a disp + address_of_next_instruction and we
6464   // don't know the value of address_of_next_instruction we apply a fudge factor
6465   // to make sure we will be ok no matter the size of the instruction we get placed into.
6466   // We don't have to fudge the checks above here because they are already worst case.
6467 
6468   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6469   // + 4 because better safe than sorry.
6470   const int fudge = 12 + 4;
6471   if (disp < 0) {
6472     disp -= fudge;
6473   } else {
6474     disp += fudge;
6475   }
6476   return is_simm32(disp);
6477 }
6478 
6479 // Check if the polling page is not reachable from the code cache using rip-relative
6480 // addressing.
6481 bool Assembler::is_polling_page_far() {
6482   intptr_t addr = (intptr_t)os::get_polling_page();
6483   return ForceUnreachable ||
6484          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6485          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6486 }
6487 
6488 void Assembler::emit_data64(jlong data,
6489                             relocInfo::relocType rtype,
6490                             int format) {
6491   if (rtype == relocInfo::none) {
6492     emit_int64(data);
6493   } else {
6494     emit_data64(data, Relocation::spec_simple(rtype), format);
6495   }
6496 }
6497 
6498 void Assembler::emit_data64(jlong data,
6499                             RelocationHolder const& rspec,
6500                             int format) {
6501   assert(imm_operand == 0, "default format must be immediate in this file");
6502   assert(imm_operand == format, "must be immediate");
6503   assert(inst_mark() != NULL, "must be inside InstructionMark");
6504   // Do not use AbstractAssembler::relocate, which is not intended for
6505   // embedded words.  Instead, relocate to the enclosing instruction.
6506   code_section()->relocate(inst_mark(), rspec, format);
6507 #ifdef ASSERT
6508   check_relocation(rspec, format);
6509 #endif
6510   emit_int64(data);
6511 }
6512 
6513 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6514   if (reg_enc >= 8) {
6515     prefix(REX_B);
6516     reg_enc -= 8;
6517   } else if (byteinst && reg_enc >= 4) {
6518     prefix(REX);
6519   }
6520   return reg_enc;
6521 }
6522 
6523 int Assembler::prefixq_and_encode(int reg_enc) {
6524   if (reg_enc < 8) {
6525     prefix(REX_W);
6526   } else {
6527     prefix(REX_WB);
6528     reg_enc -= 8;
6529   }
6530   return reg_enc;
6531 }
6532 
6533 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
6534   if (dst_enc < 8) {
6535     if (src_enc >= 8) {
6536       prefix(REX_B);
6537       src_enc -= 8;
6538     } else if (byteinst && src_enc >= 4) {
6539       prefix(REX);
6540     }
6541   } else {
6542     if (src_enc < 8) {
6543       prefix(REX_R);
6544     } else {
6545       prefix(REX_RB);
6546       src_enc -= 8;
6547     }
6548     dst_enc -= 8;
6549   }
6550   return dst_enc << 3 | src_enc;
6551 }
6552 
6553 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6554   if (dst_enc < 8) {
6555     if (src_enc < 8) {
6556       prefix(REX_W);
6557     } else {
6558       prefix(REX_WB);
6559       src_enc -= 8;
6560     }
6561   } else {
6562     if (src_enc < 8) {
6563       prefix(REX_WR);
6564     } else {
6565       prefix(REX_WRB);
6566       src_enc -= 8;
6567     }
6568     dst_enc -= 8;
6569   }
6570   return dst_enc << 3 | src_enc;
6571 }
6572 
6573 void Assembler::prefix(Register reg) {
6574   if (reg->encoding() >= 8) {
6575     prefix(REX_B);
6576   }
6577 }
6578 
6579 void Assembler::prefix(Register dst, Register src, Prefix p) {
6580   if (src->encoding() >= 8) {
6581     p = (Prefix)(p | REX_B);
6582   }
6583   if (dst->encoding() >= 8) {
6584     p = (Prefix)( p | REX_R);
6585   }
6586   if (p != Prefix_EMPTY) {
6587     // do not generate an empty prefix
6588     prefix(p);
6589   }
6590 }
6591 
6592 void Assembler::prefix(Register dst, Address adr, Prefix p) {
6593   if (adr.base_needs_rex()) {
6594     if (adr.index_needs_rex()) {
6595       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6596     } else {
6597       prefix(REX_B);
6598     }
6599   } else {
6600     if (adr.index_needs_rex()) {
6601       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6602     }
6603   }
6604   if (dst->encoding() >= 8) {
6605     p = (Prefix)(p | REX_R);
6606   }
6607   if (p != Prefix_EMPTY) {
6608     // do not generate an empty prefix
6609     prefix(p);
6610   }
6611 }
6612 
6613 void Assembler::prefix(Address adr) {
6614   if (adr.base_needs_rex()) {
6615     if (adr.index_needs_rex()) {
6616       prefix(REX_XB);
6617     } else {
6618       prefix(REX_B);
6619     }
6620   } else {
6621     if (adr.index_needs_rex()) {
6622       prefix(REX_X);
6623     }
6624   }
6625 }
6626 
6627 void Assembler::prefixq(Address adr) {
6628   if (adr.base_needs_rex()) {
6629     if (adr.index_needs_rex()) {
6630       prefix(REX_WXB);
6631     } else {
6632       prefix(REX_WB);
6633     }
6634   } else {
6635     if (adr.index_needs_rex()) {
6636       prefix(REX_WX);
6637     } else {
6638       prefix(REX_W);
6639     }
6640   }
6641 }
6642 
6643 
6644 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6645   if (reg->encoding() < 8) {
6646     if (adr.base_needs_rex()) {
6647       if (adr.index_needs_rex()) {
6648         prefix(REX_XB);
6649       } else {
6650         prefix(REX_B);
6651       }
6652     } else {
6653       if (adr.index_needs_rex()) {
6654         prefix(REX_X);
6655       } else if (byteinst && reg->encoding() >= 4 ) {
6656         prefix(REX);
6657       }
6658     }
6659   } else {
6660     if (adr.base_needs_rex()) {
6661       if (adr.index_needs_rex()) {
6662         prefix(REX_RXB);
6663       } else {
6664         prefix(REX_RB);
6665       }
6666     } else {
6667       if (adr.index_needs_rex()) {
6668         prefix(REX_RX);
6669       } else {
6670         prefix(REX_R);
6671       }
6672     }
6673   }
6674 }
6675 
6676 void Assembler::prefixq(Address adr, Register src) {
6677   if (src->encoding() < 8) {
6678     if (adr.base_needs_rex()) {
6679       if (adr.index_needs_rex()) {
6680         prefix(REX_WXB);
6681       } else {
6682         prefix(REX_WB);
6683       }
6684     } else {
6685       if (adr.index_needs_rex()) {
6686         prefix(REX_WX);
6687       } else {
6688         prefix(REX_W);
6689       }
6690     }
6691   } else {
6692     if (adr.base_needs_rex()) {
6693       if (adr.index_needs_rex()) {
6694         prefix(REX_WRXB);
6695       } else {
6696         prefix(REX_WRB);
6697       }
6698     } else {
6699       if (adr.index_needs_rex()) {
6700         prefix(REX_WRX);
6701       } else {
6702         prefix(REX_WR);
6703       }
6704     }
6705   }
6706 }
6707 
6708 void Assembler::prefix(Address adr, XMMRegister reg) {
6709   if (reg->encoding() < 8) {
6710     if (adr.base_needs_rex()) {
6711       if (adr.index_needs_rex()) {
6712         prefix(REX_XB);
6713       } else {
6714         prefix(REX_B);
6715       }
6716     } else {
6717       if (adr.index_needs_rex()) {
6718         prefix(REX_X);
6719       }
6720     }
6721   } else {
6722     if (adr.base_needs_rex()) {
6723       if (adr.index_needs_rex()) {
6724         prefix(REX_RXB);
6725       } else {
6726         prefix(REX_RB);
6727       }
6728     } else {
6729       if (adr.index_needs_rex()) {
6730         prefix(REX_RX);
6731       } else {
6732         prefix(REX_R);
6733       }
6734     }
6735   }
6736 }
6737 
6738 void Assembler::prefixq(Address adr, XMMRegister src) {
6739   if (src->encoding() < 8) {
6740     if (adr.base_needs_rex()) {
6741       if (adr.index_needs_rex()) {
6742         prefix(REX_WXB);
6743       } else {
6744         prefix(REX_WB);
6745       }
6746     } else {
6747       if (adr.index_needs_rex()) {
6748         prefix(REX_WX);
6749       } else {
6750         prefix(REX_W);
6751       }
6752     }
6753   } else {
6754     if (adr.base_needs_rex()) {
6755       if (adr.index_needs_rex()) {
6756         prefix(REX_WRXB);
6757       } else {
6758         prefix(REX_WRB);
6759       }
6760     } else {
6761       if (adr.index_needs_rex()) {
6762         prefix(REX_WRX);
6763       } else {
6764         prefix(REX_WR);
6765       }
6766     }
6767   }
6768 }
6769 
6770 void Assembler::adcq(Register dst, int32_t imm32) {
6771   (void) prefixq_and_encode(dst->encoding());
6772   emit_arith(0x81, 0xD0, dst, imm32);
6773 }
6774 
6775 void Assembler::adcq(Register dst, Address src) {
6776   InstructionMark im(this);
6777   prefixq(src, dst);
6778   emit_int8(0x13);
6779   emit_operand(dst, src);
6780 }
6781 
6782 void Assembler::adcq(Register dst, Register src) {
6783   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6784   emit_arith(0x13, 0xC0, dst, src);
6785 }
6786 
6787 void Assembler::addq(Address dst, int32_t imm32) {
6788   InstructionMark im(this);
6789   prefixq(dst);
6790   emit_arith_operand(0x81, rax, dst,imm32);
6791 }
6792 
6793 void Assembler::addq(Address dst, Register src) {
6794   InstructionMark im(this);
6795   prefixq(dst, src);
6796   emit_int8(0x01);
6797   emit_operand(src, dst);
6798 }
6799 
6800 void Assembler::addq(Register dst, int32_t imm32) {
6801   (void) prefixq_and_encode(dst->encoding());
6802   emit_arith(0x81, 0xC0, dst, imm32);
6803 }
6804 
6805 void Assembler::addq(Register dst, Address src) {
6806   InstructionMark im(this);
6807   prefixq(src, dst);
6808   emit_int8(0x03);
6809   emit_operand(dst, src);
6810 }
6811 
6812 void Assembler::addq(Register dst, Register src) {
6813   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6814   emit_arith(0x03, 0xC0, dst, src);
6815 }
6816 
6817 void Assembler::adcxq(Register dst, Register src) {
6818   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6819   emit_int8((unsigned char)0x66);
6820   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6821   emit_int8(0x0F);
6822   emit_int8(0x38);
6823   emit_int8((unsigned char)0xF6);
6824   emit_int8((unsigned char)(0xC0 | encode));
6825 }
6826 
6827 void Assembler::adoxq(Register dst, Register src) {
6828   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6829   emit_int8((unsigned char)0xF3);
6830   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6831   emit_int8(0x0F);
6832   emit_int8(0x38);
6833   emit_int8((unsigned char)0xF6);
6834   emit_int8((unsigned char)(0xC0 | encode));
6835 }
6836 
6837 void Assembler::andq(Address dst, int32_t imm32) {
6838   InstructionMark im(this);
6839   prefixq(dst);
6840   emit_int8((unsigned char)0x81);
6841   emit_operand(rsp, dst, 4);
6842   emit_int32(imm32);
6843 }
6844 
6845 void Assembler::andq(Register dst, int32_t imm32) {
6846   (void) prefixq_and_encode(dst->encoding());
6847   emit_arith(0x81, 0xE0, dst, imm32);
6848 }
6849 
6850 void Assembler::andq(Register dst, Address src) {
6851   InstructionMark im(this);
6852   prefixq(src, dst);
6853   emit_int8(0x23);
6854   emit_operand(dst, src);
6855 }
6856 
6857 void Assembler::andq(Register dst, Register src) {
6858   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6859   emit_arith(0x23, 0xC0, dst, src);
6860 }
6861 
6862 void Assembler::andnq(Register dst, Register src1, Register src2) {
6863   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6864   int encode = vex_prefix_0F38_and_encode_q_legacy(dst, src1, src2);
6865   emit_int8((unsigned char)0xF2);
6866   emit_int8((unsigned char)(0xC0 | encode));
6867 }
6868 
6869 void Assembler::andnq(Register dst, Register src1, Address src2) {
6870   InstructionMark im(this);
6871   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6872   vex_prefix_0F38_q_legacy(dst, src1, src2);
6873   emit_int8((unsigned char)0xF2);
6874   emit_operand(dst, src2);
6875 }
6876 
6877 void Assembler::bsfq(Register dst, Register src) {
6878   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6879   emit_int8(0x0F);
6880   emit_int8((unsigned char)0xBC);
6881   emit_int8((unsigned char)(0xC0 | encode));
6882 }
6883 
6884 void Assembler::bsrq(Register dst, Register src) {
6885   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6886   emit_int8(0x0F);
6887   emit_int8((unsigned char)0xBD);
6888   emit_int8((unsigned char)(0xC0 | encode));
6889 }
6890 
6891 void Assembler::bswapq(Register reg) {
6892   int encode = prefixq_and_encode(reg->encoding());
6893   emit_int8(0x0F);
6894   emit_int8((unsigned char)(0xC8 | encode));
6895 }
6896 
6897 void Assembler::blsiq(Register dst, Register src) {
6898   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6899   int encode = vex_prefix_0F38_and_encode_q_legacy(rbx, dst, src);
6900   emit_int8((unsigned char)0xF3);
6901   emit_int8((unsigned char)(0xC0 | encode));
6902 }
6903 
6904 void Assembler::blsiq(Register dst, Address src) {
6905   InstructionMark im(this);
6906   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6907   vex_prefix_0F38_q_legacy(rbx, dst, src);
6908   emit_int8((unsigned char)0xF3);
6909   emit_operand(rbx, src);
6910 }
6911 
6912 void Assembler::blsmskq(Register dst, Register src) {
6913   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6914   int encode = vex_prefix_0F38_and_encode_q_legacy(rdx, dst, src);
6915   emit_int8((unsigned char)0xF3);
6916   emit_int8((unsigned char)(0xC0 | encode));
6917 }
6918 
6919 void Assembler::blsmskq(Register dst, Address src) {
6920   InstructionMark im(this);
6921   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6922   vex_prefix_0F38_q_legacy(rdx, dst, src);
6923   emit_int8((unsigned char)0xF3);
6924   emit_operand(rdx, src);
6925 }
6926 
6927 void Assembler::blsrq(Register dst, Register src) {
6928   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6929   int encode = vex_prefix_0F38_and_encode_q_legacy(rcx, dst, src);
6930   emit_int8((unsigned char)0xF3);
6931   emit_int8((unsigned char)(0xC0 | encode));
6932 }
6933 
6934 void Assembler::blsrq(Register dst, Address src) {
6935   InstructionMark im(this);
6936   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6937   vex_prefix_0F38_q_legacy(rcx, dst, src);
6938   emit_int8((unsigned char)0xF3);
6939   emit_operand(rcx, src);
6940 }
6941 
6942 void Assembler::cdqq() {
6943   prefix(REX_W);
6944   emit_int8((unsigned char)0x99);
6945 }
6946 
6947 void Assembler::clflush(Address adr) {
6948   prefix(adr);
6949   emit_int8(0x0F);
6950   emit_int8((unsigned char)0xAE);
6951   emit_operand(rdi, adr);
6952 }
6953 
6954 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6955   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6956   emit_int8(0x0F);
6957   emit_int8(0x40 | cc);
6958   emit_int8((unsigned char)(0xC0 | encode));
6959 }
6960 
6961 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6962   InstructionMark im(this);
6963   prefixq(src, dst);
6964   emit_int8(0x0F);
6965   emit_int8(0x40 | cc);
6966   emit_operand(dst, src);
6967 }
6968 
6969 void Assembler::cmpq(Address dst, int32_t imm32) {
6970   InstructionMark im(this);
6971   prefixq(dst);
6972   emit_int8((unsigned char)0x81);
6973   emit_operand(rdi, dst, 4);
6974   emit_int32(imm32);
6975 }
6976 
6977 void Assembler::cmpq(Register dst, int32_t imm32) {
6978   (void) prefixq_and_encode(dst->encoding());
6979   emit_arith(0x81, 0xF8, dst, imm32);
6980 }
6981 
6982 void Assembler::cmpq(Address dst, Register src) {
6983   InstructionMark im(this);
6984   prefixq(dst, src);
6985   emit_int8(0x3B);
6986   emit_operand(src, dst);
6987 }
6988 
6989 void Assembler::cmpq(Register dst, Register src) {
6990   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6991   emit_arith(0x3B, 0xC0, dst, src);
6992 }
6993 
6994 void Assembler::cmpq(Register dst, Address  src) {
6995   InstructionMark im(this);
6996   prefixq(src, dst);
6997   emit_int8(0x3B);
6998   emit_operand(dst, src);
6999 }
7000 
7001 void Assembler::cmpxchgq(Register reg, Address adr) {
7002   InstructionMark im(this);
7003   prefixq(adr, reg);
7004   emit_int8(0x0F);
7005   emit_int8((unsigned char)0xB1);
7006   emit_operand(reg, adr);
7007 }
7008 
7009 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7010   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7011   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
7012   emit_int8(0x2A);
7013   emit_int8((unsigned char)(0xC0 | encode));
7014 }
7015 
7016 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7017   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7018   if (VM_Version::supports_evex()) {
7019     _tuple_type = EVEX_T1S;
7020     _input_size_in_bits = EVEX_32bit;
7021   }
7022   InstructionMark im(this);
7023   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
7024   emit_int8(0x2A);
7025   emit_operand(dst, src);
7026 }
7027 
7028 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7029   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7030   if (VM_Version::supports_evex()) {
7031     _tuple_type = EVEX_T1S;
7032     _input_size_in_bits = EVEX_32bit;
7033   }
7034   InstructionMark im(this);
7035   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
7036   emit_int8(0x2A);
7037   emit_operand(dst, src);
7038 }
7039 
7040 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7041   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7042   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, /* no_mask_reg */ true);
7043   emit_int8(0x2C);
7044   emit_int8((unsigned char)(0xC0 | encode));
7045 }
7046 
7047 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7048   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7049   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, /* no_mask_reg */ true);
7050   emit_int8(0x2C);
7051   emit_int8((unsigned char)(0xC0 | encode));
7052 }
7053 
7054 void Assembler::decl(Register dst) {
7055   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7056   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7057   int encode = prefix_and_encode(dst->encoding());
7058   emit_int8((unsigned char)0xFF);
7059   emit_int8((unsigned char)(0xC8 | encode));
7060 }
7061 
7062 void Assembler::decq(Register dst) {
7063   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7064   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7065   int encode = prefixq_and_encode(dst->encoding());
7066   emit_int8((unsigned char)0xFF);
7067   emit_int8(0xC8 | encode);
7068 }
7069 
7070 void Assembler::decq(Address dst) {
7071   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7072   InstructionMark im(this);
7073   prefixq(dst);
7074   emit_int8((unsigned char)0xFF);
7075   emit_operand(rcx, dst);
7076 }
7077 
7078 void Assembler::fxrstor(Address src) {
7079   prefixq(src);
7080   emit_int8(0x0F);
7081   emit_int8((unsigned char)0xAE);
7082   emit_operand(as_Register(1), src);
7083 }
7084 
7085 void Assembler::xrstor(Address src) {
7086   prefixq(src);
7087   emit_int8(0x0F);
7088   emit_int8((unsigned char)0xAE);
7089   emit_operand(as_Register(5), src);
7090 }
7091 
7092 void Assembler::fxsave(Address dst) {
7093   prefixq(dst);
7094   emit_int8(0x0F);
7095   emit_int8((unsigned char)0xAE);
7096   emit_operand(as_Register(0), dst);
7097 }
7098 
7099 void Assembler::xsave(Address dst) {
7100   prefixq(dst);
7101   emit_int8(0x0F);
7102   emit_int8((unsigned char)0xAE);
7103   emit_operand(as_Register(4), dst);
7104 }
7105 
7106 void Assembler::idivq(Register src) {
7107   int encode = prefixq_and_encode(src->encoding());
7108   emit_int8((unsigned char)0xF7);
7109   emit_int8((unsigned char)(0xF8 | encode));
7110 }
7111 
7112 void Assembler::imulq(Register dst, Register src) {
7113   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7114   emit_int8(0x0F);
7115   emit_int8((unsigned char)0xAF);
7116   emit_int8((unsigned char)(0xC0 | encode));
7117 }
7118 
7119 void Assembler::imulq(Register dst, Register src, int value) {
7120   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7121   if (is8bit(value)) {
7122     emit_int8(0x6B);
7123     emit_int8((unsigned char)(0xC0 | encode));
7124     emit_int8(value & 0xFF);
7125   } else {
7126     emit_int8(0x69);
7127     emit_int8((unsigned char)(0xC0 | encode));
7128     emit_int32(value);
7129   }
7130 }
7131 
7132 void Assembler::imulq(Register dst, Address src) {
7133   InstructionMark im(this);
7134   prefixq(src, dst);
7135   emit_int8(0x0F);
7136   emit_int8((unsigned char) 0xAF);
7137   emit_operand(dst, src);
7138 }
7139 
7140 void Assembler::incl(Register dst) {
7141   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7142   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7143   int encode = prefix_and_encode(dst->encoding());
7144   emit_int8((unsigned char)0xFF);
7145   emit_int8((unsigned char)(0xC0 | encode));
7146 }
7147 
7148 void Assembler::incq(Register dst) {
7149   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7150   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7151   int encode = prefixq_and_encode(dst->encoding());
7152   emit_int8((unsigned char)0xFF);
7153   emit_int8((unsigned char)(0xC0 | encode));
7154 }
7155 
7156 void Assembler::incq(Address dst) {
7157   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7158   InstructionMark im(this);
7159   prefixq(dst);
7160   emit_int8((unsigned char)0xFF);
7161   emit_operand(rax, dst);
7162 }
7163 
7164 void Assembler::lea(Register dst, Address src) {
7165   leaq(dst, src);
7166 }
7167 
7168 void Assembler::leaq(Register dst, Address src) {
7169   InstructionMark im(this);
7170   prefixq(src, dst);
7171   emit_int8((unsigned char)0x8D);
7172   emit_operand(dst, src);
7173 }
7174 
7175 void Assembler::mov64(Register dst, int64_t imm64) {
7176   InstructionMark im(this);
7177   int encode = prefixq_and_encode(dst->encoding());
7178   emit_int8((unsigned char)(0xB8 | encode));
7179   emit_int64(imm64);
7180 }
7181 
7182 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7183   InstructionMark im(this);
7184   int encode = prefixq_and_encode(dst->encoding());
7185   emit_int8(0xB8 | encode);
7186   emit_data64(imm64, rspec);
7187 }
7188 
7189 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7190   InstructionMark im(this);
7191   int encode = prefix_and_encode(dst->encoding());
7192   emit_int8((unsigned char)(0xB8 | encode));
7193   emit_data((int)imm32, rspec, narrow_oop_operand);
7194 }
7195 
7196 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7197   InstructionMark im(this);
7198   prefix(dst);
7199   emit_int8((unsigned char)0xC7);
7200   emit_operand(rax, dst, 4);
7201   emit_data((int)imm32, rspec, narrow_oop_operand);
7202 }
7203 
7204 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7205   InstructionMark im(this);
7206   int encode = prefix_and_encode(src1->encoding());
7207   emit_int8((unsigned char)0x81);
7208   emit_int8((unsigned char)(0xF8 | encode));
7209   emit_data((int)imm32, rspec, narrow_oop_operand);
7210 }
7211 
7212 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7213   InstructionMark im(this);
7214   prefix(src1);
7215   emit_int8((unsigned char)0x81);
7216   emit_operand(rax, src1, 4);
7217   emit_data((int)imm32, rspec, narrow_oop_operand);
7218 }
7219 
7220 void Assembler::lzcntq(Register dst, Register src) {
7221   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
7222   emit_int8((unsigned char)0xF3);
7223   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7224   emit_int8(0x0F);
7225   emit_int8((unsigned char)0xBD);
7226   emit_int8((unsigned char)(0xC0 | encode));
7227 }
7228 
7229 void Assembler::movdq(XMMRegister dst, Register src) {
7230   // table D-1 says MMX/SSE2
7231   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7232   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
7233   emit_int8(0x6E);
7234   emit_int8((unsigned char)(0xC0 | encode));
7235 }
7236 
7237 void Assembler::movdq(Register dst, XMMRegister src) {
7238   // table D-1 says MMX/SSE2
7239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7240   // swap src/dst to get correct prefix
7241   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, /* no_mask_reg */ true);
7242   emit_int8(0x7E);
7243   emit_int8((unsigned char)(0xC0 | encode));
7244 }
7245 
7246 void Assembler::movq(Register dst, Register src) {
7247   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7248   emit_int8((unsigned char)0x8B);
7249   emit_int8((unsigned char)(0xC0 | encode));
7250 }
7251 
7252 void Assembler::movq(Register dst, Address src) {
7253   InstructionMark im(this);
7254   prefixq(src, dst);
7255   emit_int8((unsigned char)0x8B);
7256   emit_operand(dst, src);
7257 }
7258 
7259 void Assembler::movq(Address dst, Register src) {
7260   InstructionMark im(this);
7261   prefixq(dst, src);
7262   emit_int8((unsigned char)0x89);
7263   emit_operand(src, dst);
7264 }
7265 
7266 void Assembler::movsbq(Register dst, Address src) {
7267   InstructionMark im(this);
7268   prefixq(src, dst);
7269   emit_int8(0x0F);
7270   emit_int8((unsigned char)0xBE);
7271   emit_operand(dst, src);
7272 }
7273 
7274 void Assembler::movsbq(Register dst, Register src) {
7275   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7276   emit_int8(0x0F);
7277   emit_int8((unsigned char)0xBE);
7278   emit_int8((unsigned char)(0xC0 | encode));
7279 }
7280 
7281 void Assembler::movslq(Register dst, int32_t imm32) {
7282   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
7283   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
7284   // as a result we shouldn't use until tested at runtime...
7285   ShouldNotReachHere();
7286   InstructionMark im(this);
7287   int encode = prefixq_and_encode(dst->encoding());
7288   emit_int8((unsigned char)(0xC7 | encode));
7289   emit_int32(imm32);
7290 }
7291 
7292 void Assembler::movslq(Address dst, int32_t imm32) {
7293   assert(is_simm32(imm32), "lost bits");
7294   InstructionMark im(this);
7295   prefixq(dst);
7296   emit_int8((unsigned char)0xC7);
7297   emit_operand(rax, dst, 4);
7298   emit_int32(imm32);
7299 }
7300 
7301 void Assembler::movslq(Register dst, Address src) {
7302   InstructionMark im(this);
7303   prefixq(src, dst);
7304   emit_int8(0x63);
7305   emit_operand(dst, src);
7306 }
7307 
7308 void Assembler::movslq(Register dst, Register src) {
7309   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7310   emit_int8(0x63);
7311   emit_int8((unsigned char)(0xC0 | encode));
7312 }
7313 
7314 void Assembler::movswq(Register dst, Address src) {
7315   InstructionMark im(this);
7316   prefixq(src, dst);
7317   emit_int8(0x0F);
7318   emit_int8((unsigned char)0xBF);
7319   emit_operand(dst, src);
7320 }
7321 
7322 void Assembler::movswq(Register dst, Register src) {
7323   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7324   emit_int8((unsigned char)0x0F);
7325   emit_int8((unsigned char)0xBF);
7326   emit_int8((unsigned char)(0xC0 | encode));
7327 }
7328 
7329 void Assembler::movzbq(Register dst, Address src) {
7330   InstructionMark im(this);
7331   prefixq(src, dst);
7332   emit_int8((unsigned char)0x0F);
7333   emit_int8((unsigned char)0xB6);
7334   emit_operand(dst, src);
7335 }
7336 
7337 void Assembler::movzbq(Register dst, Register src) {
7338   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7339   emit_int8(0x0F);
7340   emit_int8((unsigned char)0xB6);
7341   emit_int8(0xC0 | encode);
7342 }
7343 
7344 void Assembler::movzwq(Register dst, Address src) {
7345   InstructionMark im(this);
7346   prefixq(src, dst);
7347   emit_int8((unsigned char)0x0F);
7348   emit_int8((unsigned char)0xB7);
7349   emit_operand(dst, src);
7350 }
7351 
7352 void Assembler::movzwq(Register dst, Register src) {
7353   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7354   emit_int8((unsigned char)0x0F);
7355   emit_int8((unsigned char)0xB7);
7356   emit_int8((unsigned char)(0xC0 | encode));
7357 }
7358 
7359 void Assembler::mulq(Address src) {
7360   InstructionMark im(this);
7361   prefixq(src);
7362   emit_int8((unsigned char)0xF7);
7363   emit_operand(rsp, src);
7364 }
7365 
7366 void Assembler::mulq(Register src) {
7367   int encode = prefixq_and_encode(src->encoding());
7368   emit_int8((unsigned char)0xF7);
7369   emit_int8((unsigned char)(0xE0 | encode));
7370 }
7371 
7372 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
7373   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7374   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38,
7375                                     /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_mask_reg */ false);
7376   emit_int8((unsigned char)0xF6);
7377   emit_int8((unsigned char)(0xC0 | encode));
7378 }
7379 
7380 void Assembler::negq(Register dst) {
7381   int encode = prefixq_and_encode(dst->encoding());
7382   emit_int8((unsigned char)0xF7);
7383   emit_int8((unsigned char)(0xD8 | encode));
7384 }
7385 
7386 void Assembler::notq(Register dst) {
7387   int encode = prefixq_and_encode(dst->encoding());
7388   emit_int8((unsigned char)0xF7);
7389   emit_int8((unsigned char)(0xD0 | encode));
7390 }
7391 
7392 void Assembler::orq(Address dst, int32_t imm32) {
7393   InstructionMark im(this);
7394   prefixq(dst);
7395   emit_int8((unsigned char)0x81);
7396   emit_operand(rcx, dst, 4);
7397   emit_int32(imm32);
7398 }
7399 
7400 void Assembler::orq(Register dst, int32_t imm32) {
7401   (void) prefixq_and_encode(dst->encoding());
7402   emit_arith(0x81, 0xC8, dst, imm32);
7403 }
7404 
7405 void Assembler::orq(Register dst, Address src) {
7406   InstructionMark im(this);
7407   prefixq(src, dst);
7408   emit_int8(0x0B);
7409   emit_operand(dst, src);
7410 }
7411 
7412 void Assembler::orq(Register dst, Register src) {
7413   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7414   emit_arith(0x0B, 0xC0, dst, src);
7415 }
7416 
7417 void Assembler::popa() { // 64bit
7418   movq(r15, Address(rsp, 0));
7419   movq(r14, Address(rsp, wordSize));
7420   movq(r13, Address(rsp, 2 * wordSize));
7421   movq(r12, Address(rsp, 3 * wordSize));
7422   movq(r11, Address(rsp, 4 * wordSize));
7423   movq(r10, Address(rsp, 5 * wordSize));
7424   movq(r9,  Address(rsp, 6 * wordSize));
7425   movq(r8,  Address(rsp, 7 * wordSize));
7426   movq(rdi, Address(rsp, 8 * wordSize));
7427   movq(rsi, Address(rsp, 9 * wordSize));
7428   movq(rbp, Address(rsp, 10 * wordSize));
7429   // skip rsp
7430   movq(rbx, Address(rsp, 12 * wordSize));
7431   movq(rdx, Address(rsp, 13 * wordSize));
7432   movq(rcx, Address(rsp, 14 * wordSize));
7433   movq(rax, Address(rsp, 15 * wordSize));
7434 
7435   addq(rsp, 16 * wordSize);
7436 }
7437 
7438 void Assembler::popcntq(Register dst, Address src) {
7439   assert(VM_Version::supports_popcnt(), "must support");
7440   InstructionMark im(this);
7441   emit_int8((unsigned char)0xF3);
7442   prefixq(src, dst);
7443   emit_int8((unsigned char)0x0F);
7444   emit_int8((unsigned char)0xB8);
7445   emit_operand(dst, src);
7446 }
7447 
7448 void Assembler::popcntq(Register dst, Register src) {
7449   assert(VM_Version::supports_popcnt(), "must support");
7450   emit_int8((unsigned char)0xF3);
7451   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7452   emit_int8((unsigned char)0x0F);
7453   emit_int8((unsigned char)0xB8);
7454   emit_int8((unsigned char)(0xC0 | encode));
7455 }
7456 
7457 void Assembler::popq(Address dst) {
7458   InstructionMark im(this);
7459   prefixq(dst);
7460   emit_int8((unsigned char)0x8F);
7461   emit_operand(rax, dst);
7462 }
7463 
7464 void Assembler::pusha() { // 64bit
7465   // we have to store original rsp.  ABI says that 128 bytes
7466   // below rsp are local scratch.
7467   movq(Address(rsp, -5 * wordSize), rsp);
7468 
7469   subq(rsp, 16 * wordSize);
7470 
7471   movq(Address(rsp, 15 * wordSize), rax);
7472   movq(Address(rsp, 14 * wordSize), rcx);
7473   movq(Address(rsp, 13 * wordSize), rdx);
7474   movq(Address(rsp, 12 * wordSize), rbx);
7475   // skip rsp
7476   movq(Address(rsp, 10 * wordSize), rbp);
7477   movq(Address(rsp, 9 * wordSize), rsi);
7478   movq(Address(rsp, 8 * wordSize), rdi);
7479   movq(Address(rsp, 7 * wordSize), r8);
7480   movq(Address(rsp, 6 * wordSize), r9);
7481   movq(Address(rsp, 5 * wordSize), r10);
7482   movq(Address(rsp, 4 * wordSize), r11);
7483   movq(Address(rsp, 3 * wordSize), r12);
7484   movq(Address(rsp, 2 * wordSize), r13);
7485   movq(Address(rsp, wordSize), r14);
7486   movq(Address(rsp, 0), r15);
7487 }
7488 
7489 void Assembler::pushq(Address src) {
7490   InstructionMark im(this);
7491   prefixq(src);
7492   emit_int8((unsigned char)0xFF);
7493   emit_operand(rsi, src);
7494 }
7495 
7496 void Assembler::rclq(Register dst, int imm8) {
7497   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7498   int encode = prefixq_and_encode(dst->encoding());
7499   if (imm8 == 1) {
7500     emit_int8((unsigned char)0xD1);
7501     emit_int8((unsigned char)(0xD0 | encode));
7502   } else {
7503     emit_int8((unsigned char)0xC1);
7504     emit_int8((unsigned char)(0xD0 | encode));
7505     emit_int8(imm8);
7506   }
7507 }
7508 
7509 void Assembler::rcrq(Register dst, int imm8) {
7510   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7511   int encode = prefixq_and_encode(dst->encoding());
7512   if (imm8 == 1) {
7513     emit_int8((unsigned char)0xD1);
7514     emit_int8((unsigned char)(0xD8 | encode));
7515   } else {
7516     emit_int8((unsigned char)0xC1);
7517     emit_int8((unsigned char)(0xD8 | encode));
7518     emit_int8(imm8);
7519   }
7520 }
7521 
7522 void Assembler::rorq(Register dst, int imm8) {
7523   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7524   int encode = prefixq_and_encode(dst->encoding());
7525   if (imm8 == 1) {
7526     emit_int8((unsigned char)0xD1);
7527     emit_int8((unsigned char)(0xC8 | encode));
7528   } else {
7529     emit_int8((unsigned char)0xC1);
7530     emit_int8((unsigned char)(0xc8 | encode));
7531     emit_int8(imm8);
7532   }
7533 }
7534 
7535 void Assembler::rorxq(Register dst, Register src, int imm8) {
7536   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7537   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A,
7538                                      /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_mask_reg */ false);
7539   emit_int8((unsigned char)0xF0);
7540   emit_int8((unsigned char)(0xC0 | encode));
7541   emit_int8(imm8);
7542 }
7543 
7544 void Assembler::sarq(Register dst, int imm8) {
7545   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7546   int encode = prefixq_and_encode(dst->encoding());
7547   if (imm8 == 1) {
7548     emit_int8((unsigned char)0xD1);
7549     emit_int8((unsigned char)(0xF8 | encode));
7550   } else {
7551     emit_int8((unsigned char)0xC1);
7552     emit_int8((unsigned char)(0xF8 | encode));
7553     emit_int8(imm8);
7554   }
7555 }
7556 
7557 void Assembler::sarq(Register dst) {
7558   int encode = prefixq_and_encode(dst->encoding());
7559   emit_int8((unsigned char)0xD3);
7560   emit_int8((unsigned char)(0xF8 | encode));
7561 }
7562 
7563 void Assembler::sbbq(Address dst, int32_t imm32) {
7564   InstructionMark im(this);
7565   prefixq(dst);
7566   emit_arith_operand(0x81, rbx, dst, imm32);
7567 }
7568 
7569 void Assembler::sbbq(Register dst, int32_t imm32) {
7570   (void) prefixq_and_encode(dst->encoding());
7571   emit_arith(0x81, 0xD8, dst, imm32);
7572 }
7573 
7574 void Assembler::sbbq(Register dst, Address src) {
7575   InstructionMark im(this);
7576   prefixq(src, dst);
7577   emit_int8(0x1B);
7578   emit_operand(dst, src);
7579 }
7580 
7581 void Assembler::sbbq(Register dst, Register src) {
7582   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7583   emit_arith(0x1B, 0xC0, dst, src);
7584 }
7585 
7586 void Assembler::shlq(Register dst, int imm8) {
7587   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7588   int encode = prefixq_and_encode(dst->encoding());
7589   if (imm8 == 1) {
7590     emit_int8((unsigned char)0xD1);
7591     emit_int8((unsigned char)(0xE0 | encode));
7592   } else {
7593     emit_int8((unsigned char)0xC1);
7594     emit_int8((unsigned char)(0xE0 | encode));
7595     emit_int8(imm8);
7596   }
7597 }
7598 
7599 void Assembler::shlq(Register dst) {
7600   int encode = prefixq_and_encode(dst->encoding());
7601   emit_int8((unsigned char)0xD3);
7602   emit_int8((unsigned char)(0xE0 | encode));
7603 }
7604 
7605 void Assembler::shrq(Register dst, int imm8) {
7606   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7607   int encode = prefixq_and_encode(dst->encoding());
7608   emit_int8((unsigned char)0xC1);
7609   emit_int8((unsigned char)(0xE8 | encode));
7610   emit_int8(imm8);
7611 }
7612 
7613 void Assembler::shrq(Register dst) {
7614   int encode = prefixq_and_encode(dst->encoding());
7615   emit_int8((unsigned char)0xD3);
7616   emit_int8(0xE8 | encode);
7617 }
7618 
7619 void Assembler::subq(Address dst, int32_t imm32) {
7620   InstructionMark im(this);
7621   prefixq(dst);
7622   emit_arith_operand(0x81, rbp, dst, imm32);
7623 }
7624 
7625 void Assembler::subq(Address dst, Register src) {
7626   InstructionMark im(this);
7627   prefixq(dst, src);
7628   emit_int8(0x29);
7629   emit_operand(src, dst);
7630 }
7631 
7632 void Assembler::subq(Register dst, int32_t imm32) {
7633   (void) prefixq_and_encode(dst->encoding());
7634   emit_arith(0x81, 0xE8, dst, imm32);
7635 }
7636 
7637 // Force generation of a 4 byte immediate value even if it fits into 8bit
7638 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7639   (void) prefixq_and_encode(dst->encoding());
7640   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7641 }
7642 
7643 void Assembler::subq(Register dst, Address src) {
7644   InstructionMark im(this);
7645   prefixq(src, dst);
7646   emit_int8(0x2B);
7647   emit_operand(dst, src);
7648 }
7649 
7650 void Assembler::subq(Register dst, Register src) {
7651   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7652   emit_arith(0x2B, 0xC0, dst, src);
7653 }
7654 
7655 void Assembler::testq(Register dst, int32_t imm32) {
7656   // not using emit_arith because test
7657   // doesn't support sign-extension of
7658   // 8bit operands
7659   int encode = dst->encoding();
7660   if (encode == 0) {
7661     prefix(REX_W);
7662     emit_int8((unsigned char)0xA9);
7663   } else {
7664     encode = prefixq_and_encode(encode);
7665     emit_int8((unsigned char)0xF7);
7666     emit_int8((unsigned char)(0xC0 | encode));
7667   }
7668   emit_int32(imm32);
7669 }
7670 
7671 void Assembler::testq(Register dst, Register src) {
7672   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7673   emit_arith(0x85, 0xC0, dst, src);
7674 }
7675 
7676 void Assembler::xaddq(Address dst, Register src) {
7677   InstructionMark im(this);
7678   prefixq(dst, src);
7679   emit_int8(0x0F);
7680   emit_int8((unsigned char)0xC1);
7681   emit_operand(src, dst);
7682 }
7683 
7684 void Assembler::xchgq(Register dst, Address src) {
7685   InstructionMark im(this);
7686   prefixq(src, dst);
7687   emit_int8((unsigned char)0x87);
7688   emit_operand(dst, src);
7689 }
7690 
7691 void Assembler::xchgq(Register dst, Register src) {
7692   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7693   emit_int8((unsigned char)0x87);
7694   emit_int8((unsigned char)(0xc0 | encode));
7695 }
7696 
7697 void Assembler::xorq(Register dst, Register src) {
7698   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7699   emit_arith(0x33, 0xC0, dst, src);
7700 }
7701 
7702 void Assembler::xorq(Register dst, Address src) {
7703   InstructionMark im(this);
7704   prefixq(src, dst);
7705   emit_int8(0x33);
7706   emit_operand(dst, src);
7707 }
7708 
7709 #endif // !LP64