1 /*
   2  * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "compiler/compileLog.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/convertnode.hpp"
  32 #include "opto/divnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/memnode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/opaquenode.hpp"
  38 #include "opto/superword.hpp"
  39 #include "opto/vectornode.hpp"
  40 
  41 //
  42 //                  S U P E R W O R D   T R A N S F O R M
  43 //=============================================================================
  44 
  45 //------------------------------SuperWord---------------------------
  46 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  47   _phase(phase),
  48   _igvn(phase->_igvn),
  49   _arena(phase->C->comp_arena()),
  50   _packset(arena(), 8,  0, NULL),         // packs for the current block
  51   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  52   _block(arena(), 8,  0, NULL),           // nodes in current block
  53   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  54   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  55   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  56   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  57   _clone_map(phase->C->clone_map()),      // map of nodes created in cloning
  58   _align_to_ref(NULL),                    // memory reference to align vectors to
  59   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  60   _dg(_arena),                            // dependence graph
  61   _visited(arena()),                      // visited node set
  62   _post_visited(arena()),                 // post visited node set
  63   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  64   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  65   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  66   _lpt(NULL),                             // loop tree node
  67   _lp(NULL),                              // LoopNode
  68   _bb(NULL),                              // basic block
  69   _iv(NULL),                              // induction var
  70   _race_possible(false),                  // cases where SDMU is true
  71   _early_return(true),                    // analysis evaluations routine
  72   _num_work_vecs(0),                      // amount of vector work we have
  73   _num_reductions(0),                     // amount of reduction work we have
  74   _do_vector_loop(phase->C->do_vector_loop()),  // whether to do vectorization/simd style
  75   _ii_first(-1),                          // first loop generation index - only if do_vector_loop()
  76   _ii_last(-1),                           // last loop generation index - only if do_vector_loop()
  77   _ii_order(arena(), 8, 0, 0)
  78 {
  79 #ifndef PRODUCT
  80   _vector_loop_debug = 0;
  81   if (_phase->C->method() != NULL) {
  82     _phase->C->method()->has_option_value("VectorizeDebug", _vector_loop_debug);
  83   }
  84   _CountedLoopReserveKit_debug = 0;
  85   if (_phase->C->method() != NULL) {
  86     _phase->C->method()->has_option_value("DoReserveCopyInSuperWordDebug", _CountedLoopReserveKit_debug);
  87   }
  88 #endif
  89 }
  90 
  91 //------------------------------transform_loop---------------------------
  92 void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
  93   assert(UseSuperWord, "should be");
  94   // Do vectors exist on this architecture?
  95   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
  96 
  97   assert(lpt->_head->is_CountedLoop(), "must be");
  98   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
  99 
 100   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
 101 
 102   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
 103   // Check for no control flow in body (other than exit)
 104   Node *cl_exit = cl->loopexit();
 105   if (cl_exit->in(0) != lpt->_head) return;
 106 
 107   // Make sure the are no extra control users of the loop backedge
 108   if (cl->back_control()->outcnt() != 1) {
 109     return;
 110   }
 111 
 112   // We only re-enter slp when we vector mapped a queried loop and we want to
 113   // continue unrolling, in this case, slp is not subsequently done.
 114   if (cl->do_unroll_only()) return;
 115 
 116   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
 117   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
 118   if (pre_end == NULL) return;
 119   Node *pre_opaq1 = pre_end->limit();
 120   if (pre_opaq1->Opcode() != Op_Opaque1) return;
 121 
 122   init(); // initialize data structures
 123 
 124   set_lpt(lpt);
 125   set_lp(cl);
 126 
 127   // For now, define one block which is the entire loop body
 128   set_bb(cl);
 129 
 130   if (do_optimization) {
 131     assert(_packset.length() == 0, "packset must be empty");
 132     SLP_extract();
 133   }
 134 }
 135 
 136 //------------------------------early unrolling analysis------------------------------
 137 void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
 138   bool is_slp = true;
 139   ResourceMark rm;
 140   size_t ignored_size = lpt()->_body.size();
 141   int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
 142   Node_Stack nstack((int)ignored_size);
 143   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 144   Node *cl_exit = cl->loopexit();
 145 
 146   // First clear the entries
 147   for (uint i = 0; i < lpt()->_body.size(); i++) {
 148     ignored_loop_nodes[i] = -1;
 149   }
 150 
 151   int max_vector = Matcher::max_vector_size(T_INT);
 152 
 153   // Process the loop, some/all of the stack entries will not be in order, ergo
 154   // need to preprocess the ignored initial state before we process the loop
 155   for (uint i = 0; i < lpt()->_body.size(); i++) {
 156     Node* n = lpt()->_body.at(i);
 157     if (n == cl->incr() ||
 158       n->is_reduction() ||
 159       n->is_AddP() ||
 160       n->is_Cmp() ||
 161       n->is_IfTrue() ||
 162       n->is_CountedLoop() ||
 163       (n == cl_exit)) {
 164       ignored_loop_nodes[i] = n->_idx;
 165       continue;
 166     }
 167 
 168     if (n->is_If()) {
 169       IfNode *iff = n->as_If();
 170       if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
 171         if (lpt()->is_loop_exit(iff)) {
 172           ignored_loop_nodes[i] = n->_idx;
 173           continue;
 174         }
 175       }
 176     }
 177 
 178     if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
 179       Node* n_tail = n->in(LoopNode::LoopBackControl);
 180       if (n_tail != n->in(LoopNode::EntryControl)) {
 181         if (!n_tail->is_Mem()) {
 182           is_slp = false;
 183           break;
 184         }
 185       }
 186     }
 187 
 188     // This must happen after check of phi/if
 189     if (n->is_Phi() || n->is_If()) {
 190       ignored_loop_nodes[i] = n->_idx;
 191       continue;
 192     }
 193 
 194     if (n->is_LoadStore() || n->is_MergeMem() ||
 195       (n->is_Proj() && !n->as_Proj()->is_CFG())) {
 196       is_slp = false;
 197       break;
 198     }
 199 
 200     // Ignore nodes with non-primitive type.
 201     BasicType bt;
 202     if (n->is_Mem()) {
 203       bt = n->as_Mem()->memory_type();
 204     } else {
 205       bt = n->bottom_type()->basic_type();
 206     }
 207     if (is_java_primitive(bt) == false) {
 208       ignored_loop_nodes[i] = n->_idx;
 209       continue;
 210     }
 211 
 212     if (n->is_Mem()) {
 213       MemNode* current = n->as_Mem();
 214       Node* adr = n->in(MemNode::Address);
 215       Node* n_ctrl = _phase->get_ctrl(adr);
 216 
 217       // save a queue of post process nodes
 218       if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
 219         // Process the memory expression
 220         int stack_idx = 0;
 221         bool have_side_effects = true;
 222         if (adr->is_AddP() == false) {
 223           nstack.push(adr, stack_idx++);
 224         } else {
 225           // Mark the components of the memory operation in nstack
 226           SWPointer p1(current, this, &nstack, true);
 227           have_side_effects = p1.node_stack()->is_nonempty();
 228         }
 229 
 230         // Process the pointer stack
 231         while (have_side_effects) {
 232           Node* pointer_node = nstack.node();
 233           for (uint j = 0; j < lpt()->_body.size(); j++) {
 234             Node* cur_node = lpt()->_body.at(j);
 235             if (cur_node == pointer_node) {
 236               ignored_loop_nodes[j] = cur_node->_idx;
 237               break;
 238             }
 239           }
 240           nstack.pop();
 241           have_side_effects = nstack.is_nonempty();
 242         }
 243       }
 244     }
 245   }
 246 
 247   if (is_slp) {
 248     // Now we try to find the maximum supported consistent vector which the machine
 249     // description can use
 250     for (uint i = 0; i < lpt()->_body.size(); i++) {
 251       if (ignored_loop_nodes[i] != -1) continue;
 252 
 253       BasicType bt;
 254       Node* n = lpt()->_body.at(i);
 255       if (n->is_Mem()) {
 256         bt = n->as_Mem()->memory_type();
 257       } else {
 258         bt = n->bottom_type()->basic_type();
 259       }
 260       if (is_java_primitive(bt) == false) continue;
 261 
 262       int cur_max_vector = Matcher::max_vector_size(bt);
 263 
 264       // If a max vector exists which is not larger than _local_loop_unroll_factor
 265       // stop looking, we already have the max vector to map to.
 266       if (cur_max_vector < local_loop_unroll_factor) {
 267         is_slp = false;
 268         NOT_PRODUCT(if (TraceSuperWordLoopUnrollAnalysis) tty->print_cr("slp analysis fails: unroll limit greater than max vector\n"));
 269         break;
 270       }
 271 
 272       // Map the maximal common vector
 273       if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
 274         if (cur_max_vector < max_vector) {
 275           max_vector = cur_max_vector;
 276         }
 277       }
 278     }
 279     if (is_slp) {
 280       local_loop_unroll_factor = max_vector;
 281       cl->mark_passed_slp();
 282     }
 283     cl->mark_was_slp();
 284     cl->set_slp_max_unroll(local_loop_unroll_factor);
 285   }
 286 }
 287 
 288 //------------------------------SLP_extract---------------------------
 289 // Extract the superword level parallelism
 290 //
 291 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
 292 //    this list from first to last, all definitions are visited before their uses.
 293 //
 294 // 2) A point-to-point dependence graph is constructed between memory references.
 295 //    This simplies the upcoming "independence" checker.
 296 //
 297 // 3) The maximum depth in the node graph from the beginning of the block
 298 //    to each node is computed.  This is used to prune the graph search
 299 //    in the independence checker.
 300 //
 301 // 4) For integer types, the necessary bit width is propagated backwards
 302 //    from stores to allow packed operations on byte, char, and short
 303 //    integers.  This reverses the promotion to type "int" that javac
 304 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 305 //
 306 // 5) One of the memory references is picked to be an aligned vector reference.
 307 //    The pre-loop trip count is adjusted to align this reference in the
 308 //    unrolled body.
 309 //
 310 // 6) The initial set of pack pairs is seeded with memory references.
 311 //
 312 // 7) The set of pack pairs is extended by following use->def and def->use links.
 313 //
 314 // 8) The pairs are combined into vector sized packs.
 315 //
 316 // 9) Reorder the memory slices to co-locate members of the memory packs.
 317 //
 318 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 319 //    inserting scalar promotion, vector creation from multiple scalars, and
 320 //    extraction of scalar values from vectors.
 321 //
 322 void SuperWord::SLP_extract() {
 323 
 324 #ifndef PRODUCT
 325   if (_do_vector_loop && TraceSuperWord) {
 326     tty->print("SuperWord::SLP_extract\n");
 327     tty->print("input loop\n");
 328     _lpt->dump_head();
 329     _lpt->dump();
 330     for (uint i = 0; i < _lpt->_body.size(); i++) {
 331       _lpt->_body.at(i)->dump();
 332     }
 333   }
 334 #endif
 335   // Ready the block
 336   if (!construct_bb()) {
 337     return; // Exit if no interesting nodes or complex graph.
 338   }
 339   // build    _dg, _disjoint_ptrs
 340   dependence_graph();
 341 
 342   // compute function depth(Node*)
 343   compute_max_depth();
 344 
 345   if (_do_vector_loop) {
 346     if (mark_generations() != -1) {
 347       hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
 348 
 349       if (!construct_bb()) {
 350         return; // Exit if no interesting nodes or complex graph.
 351       }
 352       dependence_graph();
 353       compute_max_depth();
 354     }
 355 
 356 #ifndef PRODUCT
 357     if (TraceSuperWord) {
 358       tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
 359       _lpt->dump_head();
 360       for (int j = 0; j < _block.length(); j++) {
 361         Node* n = _block.at(j);
 362         int d = depth(n);
 363         for (int i = 0;  i < d; i++) tty->print("%s", "  ");
 364         tty->print("%d :", d);
 365         n->dump();
 366       }
 367     }
 368 #endif
 369   }
 370 
 371   compute_vector_element_type();
 372 
 373   // Attempt vectorization
 374 
 375   find_adjacent_refs();
 376 
 377   extend_packlist();
 378 
 379   if (_do_vector_loop) {
 380     if (_packset.length() == 0) {
 381 #ifndef PRODUCT
 382       if (TraceSuperWord) {
 383         tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
 384       }
 385 #endif
 386       pack_parallel();
 387     }
 388   }
 389 
 390   combine_packs();
 391 
 392   construct_my_pack_map();
 393 
 394   filter_packs();
 395 
 396   schedule();
 397 
 398   output();
 399 }
 400 
 401 //------------------------------find_adjacent_refs---------------------------
 402 // Find the adjacent memory references and create pack pairs for them.
 403 // This is the initial set of packs that will then be extended by
 404 // following use->def and def->use links.  The align positions are
 405 // assigned relative to the reference "align_to_ref"
 406 void SuperWord::find_adjacent_refs() {
 407   // Get list of memory operations
 408   Node_List memops;
 409   for (int i = 0; i < _block.length(); i++) {
 410     Node* n = _block.at(i);
 411     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
 412         is_java_primitive(n->as_Mem()->memory_type())) {
 413       int align = memory_alignment(n->as_Mem(), 0);
 414       if (align != bottom_align) {
 415         memops.push(n);
 416       }
 417     }
 418   }
 419 
 420   Node_List align_to_refs;
 421   int best_iv_adjustment = 0;
 422   MemNode* best_align_to_mem_ref = NULL;
 423 
 424   while (memops.size() != 0) {
 425     // Find a memory reference to align to.
 426     MemNode* mem_ref = find_align_to_ref(memops);
 427     if (mem_ref == NULL) break;
 428     align_to_refs.push(mem_ref);
 429     int iv_adjustment = get_iv_adjustment(mem_ref);
 430 
 431     if (best_align_to_mem_ref == NULL) {
 432       // Set memory reference which is the best from all memory operations
 433       // to be used for alignment. The pre-loop trip count is modified to align
 434       // this reference to a vector-aligned address.
 435       best_align_to_mem_ref = mem_ref;
 436       best_iv_adjustment = iv_adjustment;
 437       NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 438     }
 439 
 440     SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 441     // Set alignment relative to "align_to_ref" for all related memory operations.
 442     for (int i = memops.size() - 1; i >= 0; i--) {
 443       MemNode* s = memops.at(i)->as_Mem();
 444       if (isomorphic(s, mem_ref) &&
 445            (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
 446         SWPointer p2(s, this, NULL, false);
 447         if (p2.comparable(align_to_ref_p)) {
 448           int align = memory_alignment(s, iv_adjustment);
 449           set_alignment(s, align);
 450         }
 451       }
 452     }
 453 
 454     // Create initial pack pairs of memory operations for which
 455     // alignment is set and vectors will be aligned.
 456     bool create_pack = true;
 457     if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
 458       if (!Matcher::misaligned_vectors_ok()) {
 459         int vw = vector_width(mem_ref);
 460         int vw_best = vector_width(best_align_to_mem_ref);
 461         if (vw > vw_best) {
 462           // Do not vectorize a memory access with more elements per vector
 463           // if unaligned memory access is not allowed because number of
 464           // iterations in pre-loop will be not enough to align it.
 465           create_pack = false;
 466         } else {
 467           SWPointer p2(best_align_to_mem_ref, this, NULL, false);
 468           if (align_to_ref_p.invar() != p2.invar()) {
 469             // Do not vectorize memory accesses with different invariants
 470             // if unaligned memory accesses are not allowed.
 471             create_pack = false;
 472           }
 473         }
 474       }
 475     } else {
 476       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 477         // Can't allow vectorization of unaligned memory accesses with the
 478         // same type since it could be overlapped accesses to the same array.
 479         create_pack = false;
 480       } else {
 481         // Allow independent (different type) unaligned memory operations
 482         // if HW supports them.
 483         if (!Matcher::misaligned_vectors_ok()) {
 484           create_pack = false;
 485         } else {
 486           // Check if packs of the same memory type but
 487           // with a different alignment were created before.
 488           for (uint i = 0; i < align_to_refs.size(); i++) {
 489             MemNode* mr = align_to_refs.at(i)->as_Mem();
 490             if (same_velt_type(mr, mem_ref) &&
 491                 memory_alignment(mr, iv_adjustment) != 0)
 492               create_pack = false;
 493           }
 494         }
 495       }
 496     }
 497     if (create_pack) {
 498       for (uint i = 0; i < memops.size(); i++) {
 499         Node* s1 = memops.at(i);
 500         int align = alignment(s1);
 501         if (align == top_align) continue;
 502         for (uint j = 0; j < memops.size(); j++) {
 503           Node* s2 = memops.at(j);
 504           if (alignment(s2) == top_align) continue;
 505           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 506             if (stmts_can_pack(s1, s2, align)) {
 507               Node_List* pair = new Node_List();
 508               pair->push(s1);
 509               pair->push(s2);
 510               if (!_do_vector_loop || same_origin_idx(s1, s2)) {
 511                 _packset.append(pair);
 512               }
 513             }
 514           }
 515         }
 516       }
 517     } else { // Don't create unaligned pack
 518       // First, remove remaining memory ops of the same type from the list.
 519       for (int i = memops.size() - 1; i >= 0; i--) {
 520         MemNode* s = memops.at(i)->as_Mem();
 521         if (same_velt_type(s, mem_ref)) {
 522           memops.remove(i);
 523         }
 524       }
 525 
 526       // Second, remove already constructed packs of the same type.
 527       for (int i = _packset.length() - 1; i >= 0; i--) {
 528         Node_List* p = _packset.at(i);
 529         MemNode* s = p->at(0)->as_Mem();
 530         if (same_velt_type(s, mem_ref)) {
 531           remove_pack_at(i);
 532         }
 533       }
 534 
 535       // If needed find the best memory reference for loop alignment again.
 536       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 537         // Put memory ops from remaining packs back on memops list for
 538         // the best alignment search.
 539         uint orig_msize = memops.size();
 540         for (int i = 0; i < _packset.length(); i++) {
 541           Node_List* p = _packset.at(i);
 542           MemNode* s = p->at(0)->as_Mem();
 543           assert(!same_velt_type(s, mem_ref), "sanity");
 544           memops.push(s);
 545         }
 546         MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
 547         if (best_align_to_mem_ref == NULL) {
 548           NOT_PRODUCT(if (TraceSuperWord) tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");)
 549           break;
 550         }
 551         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
 552         NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 553         // Restore list.
 554         while (memops.size() > orig_msize)
 555           (void)memops.pop();
 556       }
 557     } // unaligned memory accesses
 558 
 559     // Remove used mem nodes.
 560     for (int i = memops.size() - 1; i >= 0; i--) {
 561       MemNode* m = memops.at(i)->as_Mem();
 562       if (alignment(m) != top_align) {
 563         memops.remove(i);
 564       }
 565     }
 566 
 567   } // while (memops.size() != 0
 568   set_align_to_ref(best_align_to_mem_ref);
 569 
 570 #ifndef PRODUCT
 571   if (TraceSuperWord) {
 572     tty->print_cr("\nAfter find_adjacent_refs");
 573     print_packset();
 574   }
 575 #endif
 576 }
 577 
 578 #ifndef PRODUCT
 579 void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
 580   if (is_trace_adjacent()) {
 581     tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
 582        best_align_to_mem_ref->_idx, best_iv_adjustment);
 583        best_align_to_mem_ref->dump();
 584   }
 585 }
 586 #endif
 587 
 588 //------------------------------find_align_to_ref---------------------------
 589 // Find a memory reference to align the loop induction variable to.
 590 // Looks first at stores then at loads, looking for a memory reference
 591 // with the largest number of references similar to it.
 592 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
 593   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 594 
 595   // Count number of comparable memory ops
 596   for (uint i = 0; i < memops.size(); i++) {
 597     MemNode* s1 = memops.at(i)->as_Mem();
 598     SWPointer p1(s1, this, NULL, false);
 599     // Discard if pre loop can't align this reference
 600     if (!ref_is_alignable(p1)) {
 601       *cmp_ct.adr_at(i) = 0;
 602       continue;
 603     }
 604     for (uint j = i+1; j < memops.size(); j++) {
 605       MemNode* s2 = memops.at(j)->as_Mem();
 606       if (isomorphic(s1, s2)) {
 607         SWPointer p2(s2, this, NULL, false);
 608         if (p1.comparable(p2)) {
 609           (*cmp_ct.adr_at(i))++;
 610           (*cmp_ct.adr_at(j))++;
 611         }
 612       }
 613     }
 614   }
 615 
 616   // Find Store (or Load) with the greatest number of "comparable" references,
 617   // biggest vector size, smallest data size and smallest iv offset.
 618   int max_ct        = 0;
 619   int max_vw        = 0;
 620   int max_idx       = -1;
 621   int min_size      = max_jint;
 622   int min_iv_offset = max_jint;
 623   for (uint j = 0; j < memops.size(); j++) {
 624     MemNode* s = memops.at(j)->as_Mem();
 625     if (s->is_Store()) {
 626       int vw = vector_width_in_bytes(s);
 627       assert(vw > 1, "sanity");
 628       SWPointer p(s, this, NULL, false);
 629       if (cmp_ct.at(j) >  max_ct ||
 630           cmp_ct.at(j) == max_ct &&
 631             (vw >  max_vw ||
 632              vw == max_vw &&
 633               (data_size(s) <  min_size ||
 634                data_size(s) == min_size &&
 635                  (p.offset_in_bytes() < min_iv_offset)))) {
 636         max_ct = cmp_ct.at(j);
 637         max_vw = vw;
 638         max_idx = j;
 639         min_size = data_size(s);
 640         min_iv_offset = p.offset_in_bytes();
 641       }
 642     }
 643   }
 644   // If no stores, look at loads
 645   if (max_ct == 0) {
 646     for (uint j = 0; j < memops.size(); j++) {
 647       MemNode* s = memops.at(j)->as_Mem();
 648       if (s->is_Load()) {
 649         int vw = vector_width_in_bytes(s);
 650         assert(vw > 1, "sanity");
 651         SWPointer p(s, this, NULL, false);
 652         if (cmp_ct.at(j) >  max_ct ||
 653             cmp_ct.at(j) == max_ct &&
 654               (vw >  max_vw ||
 655                vw == max_vw &&
 656                 (data_size(s) <  min_size ||
 657                  data_size(s) == min_size &&
 658                    (p.offset_in_bytes() < min_iv_offset)))) {
 659           max_ct = cmp_ct.at(j);
 660           max_vw = vw;
 661           max_idx = j;
 662           min_size = data_size(s);
 663           min_iv_offset = p.offset_in_bytes();
 664         }
 665       }
 666     }
 667   }
 668 
 669 #ifdef ASSERT
 670   if (TraceSuperWord && Verbose) {
 671     tty->print_cr("\nVector memops after find_align_to_ref");
 672     for (uint i = 0; i < memops.size(); i++) {
 673       MemNode* s = memops.at(i)->as_Mem();
 674       s->dump();
 675     }
 676   }
 677 #endif
 678 
 679   if (max_ct > 0) {
 680 #ifdef ASSERT
 681     if (TraceSuperWord) {
 682       tty->print("\nVector align to node: ");
 683       memops.at(max_idx)->as_Mem()->dump();
 684     }
 685 #endif
 686     return memops.at(max_idx)->as_Mem();
 687   }
 688   return NULL;
 689 }
 690 
 691 //------------------------------ref_is_alignable---------------------------
 692 // Can the preloop align the reference to position zero in the vector?
 693 bool SuperWord::ref_is_alignable(SWPointer& p) {
 694   if (!p.has_iv()) {
 695     return true;   // no induction variable
 696   }
 697   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 698   assert(pre_end != NULL, "we must have a correct pre-loop");
 699   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 700   int preloop_stride = pre_end->stride_con();
 701 
 702   int span = preloop_stride * p.scale_in_bytes();
 703   int mem_size = p.memory_size();
 704   int offset   = p.offset_in_bytes();
 705   // Stride one accesses are alignable if offset is aligned to memory operation size.
 706   // Offset can be unaligned when UseUnalignedAccesses is used.
 707   if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
 708     return true;
 709   }
 710   // If the initial offset from start of the object is computable,
 711   // check if the pre-loop can align the final offset accordingly.
 712   //
 713   // In other words: Can we find an i such that the offset
 714   // after i pre-loop iterations is aligned to vw?
 715   //   (init_offset + pre_loop) % vw == 0              (1)
 716   // where
 717   //   pre_loop = i * span
 718   // is the number of bytes added to the offset by i pre-loop iterations.
 719   //
 720   // For this to hold we need pre_loop to increase init_offset by
 721   //   pre_loop = vw - (init_offset % vw)
 722   //
 723   // This is only possible if pre_loop is divisible by span because each
 724   // pre-loop iteration increases the initial offset by 'span' bytes:
 725   //   (vw - (init_offset % vw)) % span == 0
 726   //
 727   int vw = vector_width_in_bytes(p.mem());
 728   assert(vw > 1, "sanity");
 729   Node* init_nd = pre_end->init_trip();
 730   if (init_nd->is_Con() && p.invar() == NULL) {
 731     int init = init_nd->bottom_type()->is_int()->get_con();
 732     int init_offset = init * p.scale_in_bytes() + offset;
 733     assert(init_offset >= 0, "positive offset from object start");
 734     if (vw % span == 0) {
 735       // If vm is a multiple of span, we use formula (1).
 736       if (span > 0) {
 737         return (vw - (init_offset % vw)) % span == 0;
 738       } else {
 739         assert(span < 0, "nonzero stride * scale");
 740         return (init_offset % vw) % -span == 0;
 741       }
 742     } else if (span % vw == 0) {
 743       // If span is a multiple of vw, we can simplify formula (1) to:
 744       //   (init_offset + i * span) % vw == 0
 745       //     =>
 746       //   (init_offset % vw) + ((i * span) % vw) == 0
 747       //     =>
 748       //   init_offset % vw == 0
 749       //
 750       // Because we add a multiple of vw to the initial offset, the final
 751       // offset is a multiple of vw if and only if init_offset is a multiple.
 752       //
 753       return (init_offset % vw) == 0;
 754     }
 755   }
 756   return false;
 757 }
 758 
 759 //---------------------------get_iv_adjustment---------------------------
 760 // Calculate loop's iv adjustment for this memory ops.
 761 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
 762   SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 763   int offset = align_to_ref_p.offset_in_bytes();
 764   int scale  = align_to_ref_p.scale_in_bytes();
 765   int elt_size = align_to_ref_p.memory_size();
 766   int vw       = vector_width_in_bytes(mem_ref);
 767   assert(vw > 1, "sanity");
 768   int iv_adjustment;
 769   if (scale != 0) {
 770     int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
 771     // At least one iteration is executed in pre-loop by default. As result
 772     // several iterations are needed to align memory operations in main-loop even
 773     // if offset is 0.
 774     int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
 775     assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
 776            err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
 777     iv_adjustment = iv_adjustment_in_bytes/elt_size;
 778   } else {
 779     // This memory op is not dependent on iv (scale == 0)
 780     iv_adjustment = 0;
 781   }
 782 
 783 #ifndef PRODUCT
 784   if (TraceSuperWord) {
 785     tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
 786       mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
 787     mem_ref->dump();
 788   }
 789 #endif
 790   return iv_adjustment;
 791 }
 792 
 793 //---------------------------dependence_graph---------------------------
 794 // Construct dependency graph.
 795 // Add dependence edges to load/store nodes for memory dependence
 796 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
 797 void SuperWord::dependence_graph() {
 798   // First, assign a dependence node to each memory node
 799   for (int i = 0; i < _block.length(); i++ ) {
 800     Node *n = _block.at(i);
 801     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
 802       _dg.make_node(n);
 803     }
 804   }
 805 
 806   // For each memory slice, create the dependences
 807   for (int i = 0; i < _mem_slice_head.length(); i++) {
 808     Node* n      = _mem_slice_head.at(i);
 809     Node* n_tail = _mem_slice_tail.at(i);
 810 
 811     // Get slice in predecessor order (last is first)
 812     mem_slice_preds(n_tail, n, _nlist);
 813 
 814 #ifndef PRODUCT
 815     if(TraceSuperWord && Verbose) {
 816       tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
 817       for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 818         _nlist.at(j)->dump();
 819       }
 820     }
 821 #endif
 822     // Make the slice dependent on the root
 823     DepMem* slice = _dg.dep(n);
 824     _dg.make_edge(_dg.root(), slice);
 825 
 826     // Create a sink for the slice
 827     DepMem* slice_sink = _dg.make_node(NULL);
 828     _dg.make_edge(slice_sink, _dg.tail());
 829 
 830     // Now visit each pair of memory ops, creating the edges
 831     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 832       Node* s1 = _nlist.at(j);
 833 
 834       // If no dependency yet, use slice
 835       if (_dg.dep(s1)->in_cnt() == 0) {
 836         _dg.make_edge(slice, s1);
 837       }
 838       SWPointer p1(s1->as_Mem(), this, NULL, false);
 839       bool sink_dependent = true;
 840       for (int k = j - 1; k >= 0; k--) {
 841         Node* s2 = _nlist.at(k);
 842         if (s1->is_Load() && s2->is_Load())
 843           continue;
 844         SWPointer p2(s2->as_Mem(), this, NULL, false);
 845 
 846         int cmp = p1.cmp(p2);
 847         if (SuperWordRTDepCheck &&
 848             p1.base() != p2.base() && p1.valid() && p2.valid()) {
 849           // Create a runtime check to disambiguate
 850           OrderedPair pp(p1.base(), p2.base());
 851           _disjoint_ptrs.append_if_missing(pp);
 852         } else if (!SWPointer::not_equal(cmp)) {
 853           // Possibly same address
 854           _dg.make_edge(s1, s2);
 855           sink_dependent = false;
 856         }
 857       }
 858       if (sink_dependent) {
 859         _dg.make_edge(s1, slice_sink);
 860       }
 861     }
 862 #ifndef PRODUCT
 863     if (TraceSuperWord) {
 864       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
 865       for (int q = 0; q < _nlist.length(); q++) {
 866         _dg.print(_nlist.at(q));
 867       }
 868       tty->cr();
 869     }
 870 #endif
 871     _nlist.clear();
 872   }
 873 
 874 #ifndef PRODUCT
 875   if (TraceSuperWord) {
 876     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
 877     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
 878       _disjoint_ptrs.at(r).print();
 879       tty->cr();
 880     }
 881     tty->cr();
 882   }
 883 #endif
 884 }
 885 
 886 //---------------------------mem_slice_preds---------------------------
 887 // Return a memory slice (node list) in predecessor order starting at "start"
 888 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
 889   assert(preds.length() == 0, "start empty");
 890   Node* n = start;
 891   Node* prev = NULL;
 892   while (true) {
 893     NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
 894     assert(in_bb(n), "must be in block");
 895     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 896       Node* out = n->fast_out(i);
 897       if (out->is_Load()) {
 898         if (in_bb(out)) {
 899           preds.push(out);
 900           NOT_PRODUCT(if (TraceSuperWord && Verbose) tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);)
 901         }
 902       } else {
 903         // FIXME
 904         if (out->is_MergeMem() && !in_bb(out)) {
 905           // Either unrolling is causing a memory edge not to disappear,
 906           // or need to run igvn.optimize() again before SLP
 907         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
 908           // Ditto.  Not sure what else to check further.
 909         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
 910           // StoreCM has an input edge used as a precedence edge.
 911           // Maybe an issue when oop stores are vectorized.
 912         } else {
 913           assert(out == prev || prev == NULL, "no branches off of store slice");
 914         }
 915       }//else
 916     }//for
 917     if (n == stop) break;
 918     preds.push(n);
 919     NOT_PRODUCT(if (TraceSuperWord && Verbose) tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);)
 920     prev = n;
 921     assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name()));
 922     n = n->in(MemNode::Memory);
 923   }
 924 }
 925 
 926 //------------------------------stmts_can_pack---------------------------
 927 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
 928 // s1 aligned at "align"
 929 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
 930 
 931   // Do not use superword for non-primitives
 932   BasicType bt1 = velt_basic_type(s1);
 933   BasicType bt2 = velt_basic_type(s2);
 934   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
 935     return false;
 936   if (Matcher::max_vector_size(bt1) < 2) {
 937     return false; // No vectors for this type
 938   }
 939 
 940   if (isomorphic(s1, s2)) {
 941     if (independent(s1, s2) || reduction(s1, s2)) {
 942       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
 943         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
 944           int s1_align = alignment(s1);
 945           int s2_align = alignment(s2);
 946           if (s1_align == top_align || s1_align == align) {
 947             if (s2_align == top_align || s2_align == align + data_size(s1)) {
 948               return true;
 949             }
 950           }
 951         }
 952       }
 953     }
 954   }
 955   return false;
 956 }
 957 
 958 //------------------------------exists_at---------------------------
 959 // Does s exist in a pack at position pos?
 960 bool SuperWord::exists_at(Node* s, uint pos) {
 961   for (int i = 0; i < _packset.length(); i++) {
 962     Node_List* p = _packset.at(i);
 963     if (p->at(pos) == s) {
 964       return true;
 965     }
 966   }
 967   return false;
 968 }
 969 
 970 //------------------------------are_adjacent_refs---------------------------
 971 // Is s1 immediately before s2 in memory?
 972 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
 973   if (!s1->is_Mem() || !s2->is_Mem()) return false;
 974   if (!in_bb(s1)    || !in_bb(s2))    return false;
 975 
 976   // Do not use superword for non-primitives
 977   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
 978       !is_java_primitive(s2->as_Mem()->memory_type())) {
 979     return false;
 980   }
 981 
 982   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
 983   // only pack memops that are in the same alias set until that's fixed.
 984   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
 985       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
 986     return false;
 987   SWPointer p1(s1->as_Mem(), this, NULL, false);
 988   SWPointer p2(s2->as_Mem(), this, NULL, false);
 989   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
 990   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
 991   return diff == data_size(s1);
 992 }
 993 
 994 //------------------------------isomorphic---------------------------
 995 // Are s1 and s2 similar?
 996 bool SuperWord::isomorphic(Node* s1, Node* s2) {
 997   if (s1->Opcode() != s2->Opcode()) return false;
 998   if (s1->req() != s2->req()) return false;
 999   if (s1->in(0) != s2->in(0)) return false;
1000   if (!same_velt_type(s1, s2)) return false;
1001   return true;
1002 }
1003 
1004 //------------------------------independent---------------------------
1005 // Is there no data path from s1 to s2 or s2 to s1?
1006 bool SuperWord::independent(Node* s1, Node* s2) {
1007   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
1008   int d1 = depth(s1);
1009   int d2 = depth(s2);
1010   if (d1 == d2) return s1 != s2;
1011   Node* deep    = d1 > d2 ? s1 : s2;
1012   Node* shallow = d1 > d2 ? s2 : s1;
1013 
1014   visited_clear();
1015 
1016   return independent_path(shallow, deep);
1017 }
1018 
1019 //------------------------------reduction---------------------------
1020 // Is there a data path between s1 and s2 and the nodes reductions?
1021 bool SuperWord::reduction(Node* s1, Node* s2) {
1022   bool retValue = false;
1023   int d1 = depth(s1);
1024   int d2 = depth(s2);
1025   if (d1 + 1 == d2) {
1026     if (s1->is_reduction() && s2->is_reduction()) {
1027       // This is an ordered set, so s1 should define s2
1028       for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1029         Node* t1 = s1->fast_out(i);
1030         if (t1 == s2) {
1031           // both nodes are reductions and connected
1032           retValue = true;
1033         }
1034       }
1035     }
1036   }
1037 
1038   return retValue;
1039 }
1040 
1041 //------------------------------independent_path------------------------------
1042 // Helper for independent
1043 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
1044   if (dp >= 1000) return false; // stop deep recursion
1045   visited_set(deep);
1046   int shal_depth = depth(shallow);
1047   assert(shal_depth <= depth(deep), "must be");
1048   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
1049     Node* pred = preds.current();
1050     if (in_bb(pred) && !visited_test(pred)) {
1051       if (shallow == pred) {
1052         return false;
1053       }
1054       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
1055         return false;
1056       }
1057     }
1058   }
1059   return true;
1060 }
1061 
1062 //------------------------------set_alignment---------------------------
1063 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
1064   set_alignment(s1, align);
1065   if (align == top_align || align == bottom_align) {
1066     set_alignment(s2, align);
1067   } else {
1068     set_alignment(s2, align + data_size(s1));
1069   }
1070 }
1071 
1072 //------------------------------data_size---------------------------
1073 int SuperWord::data_size(Node* s) {
1074   int bsize = type2aelembytes(velt_basic_type(s));
1075   assert(bsize != 0, "valid size");
1076   return bsize;
1077 }
1078 
1079 //------------------------------extend_packlist---------------------------
1080 // Extend packset by following use->def and def->use links from pack members.
1081 void SuperWord::extend_packlist() {
1082   bool changed;
1083   do {
1084     packset_sort(_packset.length());
1085     changed = false;
1086     for (int i = 0; i < _packset.length(); i++) {
1087       Node_List* p = _packset.at(i);
1088       changed |= follow_use_defs(p);
1089       changed |= follow_def_uses(p);
1090     }
1091   } while (changed);
1092 
1093   if (_race_possible) {
1094     for (int i = 0; i < _packset.length(); i++) {
1095       Node_List* p = _packset.at(i);
1096       order_def_uses(p);
1097     }
1098   }
1099 
1100 #ifndef PRODUCT
1101   if (TraceSuperWord) {
1102     tty->print_cr("\nAfter extend_packlist");
1103     print_packset();
1104   }
1105 #endif
1106 }
1107 
1108 //------------------------------follow_use_defs---------------------------
1109 // Extend the packset by visiting operand definitions of nodes in pack p
1110 bool SuperWord::follow_use_defs(Node_List* p) {
1111   assert(p->size() == 2, "just checking");
1112   Node* s1 = p->at(0);
1113   Node* s2 = p->at(1);
1114   assert(s1->req() == s2->req(), "just checking");
1115   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1116 
1117   if (s1->is_Load()) return false;
1118 
1119   int align = alignment(s1);
1120   bool changed = false;
1121   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
1122   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
1123   for (int j = start; j < end; j++) {
1124     Node* t1 = s1->in(j);
1125     Node* t2 = s2->in(j);
1126     if (!in_bb(t1) || !in_bb(t2))
1127       continue;
1128     if (stmts_can_pack(t1, t2, align)) {
1129       if (est_savings(t1, t2) >= 0) {
1130         Node_List* pair = new Node_List();
1131         pair->push(t1);
1132         pair->push(t2);
1133         _packset.append(pair);
1134         set_alignment(t1, t2, align);
1135         changed = true;
1136       }
1137     }
1138   }
1139   return changed;
1140 }
1141 
1142 //------------------------------follow_def_uses---------------------------
1143 // Extend the packset by visiting uses of nodes in pack p
1144 bool SuperWord::follow_def_uses(Node_List* p) {
1145   bool changed = false;
1146   Node* s1 = p->at(0);
1147   Node* s2 = p->at(1);
1148   assert(p->size() == 2, "just checking");
1149   assert(s1->req() == s2->req(), "just checking");
1150   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1151 
1152   if (s1->is_Store()) return false;
1153 
1154   int align = alignment(s1);
1155   int savings = -1;
1156   int num_s1_uses = 0;
1157   Node* u1 = NULL;
1158   Node* u2 = NULL;
1159   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1160     Node* t1 = s1->fast_out(i);
1161     num_s1_uses++;
1162     if (!in_bb(t1)) continue;
1163     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1164       Node* t2 = s2->fast_out(j);
1165       if (!in_bb(t2)) continue;
1166       if (!opnd_positions_match(s1, t1, s2, t2))
1167         continue;
1168       if (stmts_can_pack(t1, t2, align)) {
1169         int my_savings = est_savings(t1, t2);
1170         if (my_savings > savings) {
1171           savings = my_savings;
1172           u1 = t1;
1173           u2 = t2;
1174         }
1175       }
1176     }
1177   }
1178   if (num_s1_uses > 1) {
1179     _race_possible = true;
1180   }
1181   if (savings >= 0) {
1182     Node_List* pair = new Node_List();
1183     pair->push(u1);
1184     pair->push(u2);
1185     _packset.append(pair);
1186     set_alignment(u1, u2, align);
1187     changed = true;
1188   }
1189   return changed;
1190 }
1191 
1192 //------------------------------order_def_uses---------------------------
1193 // For extended packsets, ordinally arrange uses packset by major component
1194 void SuperWord::order_def_uses(Node_List* p) {
1195   Node* s1 = p->at(0);
1196 
1197   if (s1->is_Store()) return;
1198 
1199   // reductions are always managed beforehand
1200   if (s1->is_reduction()) return;
1201 
1202   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1203     Node* t1 = s1->fast_out(i);
1204 
1205     // Only allow operand swap on commuting operations
1206     if (!t1->is_Add() && !t1->is_Mul()) {
1207       break;
1208     }
1209 
1210     // Now find t1's packset
1211     Node_List* p2 = NULL;
1212     for (int j = 0; j < _packset.length(); j++) {
1213       p2 = _packset.at(j);
1214       Node* first = p2->at(0);
1215       if (t1 == first) {
1216         break;
1217       }
1218       p2 = NULL;
1219     }
1220     // Arrange all sub components by the major component
1221     if (p2 != NULL) {
1222       for (uint j = 1; j < p->size(); j++) {
1223         Node* d1 = p->at(j);
1224         Node* u1 = p2->at(j);
1225         opnd_positions_match(s1, t1, d1, u1);
1226       }
1227     }
1228   }
1229 }
1230 
1231 //---------------------------opnd_positions_match-------------------------
1232 // Is the use of d1 in u1 at the same operand position as d2 in u2?
1233 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
1234   // check reductions to see if they are marshalled to represent the reduction
1235   // operator in a specified opnd
1236   if (u1->is_reduction() && u2->is_reduction()) {
1237     // ensure reductions have phis and reduction definitions feeding the 1st operand
1238     Node* first = u1->in(2);
1239     if (first->is_Phi() || first->is_reduction()) {
1240       u1->swap_edges(1, 2);
1241     }
1242     // ensure reductions have phis and reduction definitions feeding the 1st operand
1243     first = u2->in(2);
1244     if (first->is_Phi() || first->is_reduction()) {
1245       u2->swap_edges(1, 2);
1246     }
1247     return true;
1248   }
1249 
1250   uint ct = u1->req();
1251   if (ct != u2->req()) return false;
1252   uint i1 = 0;
1253   uint i2 = 0;
1254   do {
1255     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
1256     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
1257     if (i1 != i2) {
1258       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
1259         // Further analysis relies on operands position matching.
1260         u2->swap_edges(i1, i2);
1261       } else {
1262         return false;
1263       }
1264     }
1265   } while (i1 < ct);
1266   return true;
1267 }
1268 
1269 //------------------------------est_savings---------------------------
1270 // Estimate the savings from executing s1 and s2 as a pack
1271 int SuperWord::est_savings(Node* s1, Node* s2) {
1272   int save_in = 2 - 1; // 2 operations per instruction in packed form
1273 
1274   // inputs
1275   for (uint i = 1; i < s1->req(); i++) {
1276     Node* x1 = s1->in(i);
1277     Node* x2 = s2->in(i);
1278     if (x1 != x2) {
1279       if (are_adjacent_refs(x1, x2)) {
1280         save_in += adjacent_profit(x1, x2);
1281       } else if (!in_packset(x1, x2)) {
1282         save_in -= pack_cost(2);
1283       } else {
1284         save_in += unpack_cost(2);
1285       }
1286     }
1287   }
1288 
1289   // uses of result
1290   uint ct = 0;
1291   int save_use = 0;
1292   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1293     Node* s1_use = s1->fast_out(i);
1294     for (int j = 0; j < _packset.length(); j++) {
1295       Node_List* p = _packset.at(j);
1296       if (p->at(0) == s1_use) {
1297         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1298           Node* s2_use = s2->fast_out(k);
1299           if (p->at(p->size()-1) == s2_use) {
1300             ct++;
1301             if (are_adjacent_refs(s1_use, s2_use)) {
1302               save_use += adjacent_profit(s1_use, s2_use);
1303             }
1304           }
1305         }
1306       }
1307     }
1308   }
1309 
1310   if (ct < s1->outcnt()) save_use += unpack_cost(1);
1311   if (ct < s2->outcnt()) save_use += unpack_cost(1);
1312 
1313   return MAX2(save_in, save_use);
1314 }
1315 
1316 //------------------------------costs---------------------------
1317 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
1318 int SuperWord::pack_cost(int ct)   { return ct; }
1319 int SuperWord::unpack_cost(int ct) { return ct; }
1320 
1321 //------------------------------combine_packs---------------------------
1322 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
1323 void SuperWord::combine_packs() {
1324   bool changed = true;
1325   // Combine packs regardless max vector size.
1326   while (changed) {
1327     changed = false;
1328     for (int i = 0; i < _packset.length(); i++) {
1329       Node_List* p1 = _packset.at(i);
1330       if (p1 == NULL) continue;
1331       // Because of sorting we can start at i + 1
1332       for (int j = i + 1; j < _packset.length(); j++) {
1333         Node_List* p2 = _packset.at(j);
1334         if (p2 == NULL) continue;
1335         if (i == j) continue;
1336         if (p1->at(p1->size()-1) == p2->at(0)) {
1337           for (uint k = 1; k < p2->size(); k++) {
1338             p1->push(p2->at(k));
1339           }
1340           _packset.at_put(j, NULL);
1341           changed = true;
1342         }
1343       }
1344     }
1345   }
1346 
1347   // Split packs which have size greater then max vector size.
1348   for (int i = 0; i < _packset.length(); i++) {
1349     Node_List* p1 = _packset.at(i);
1350     if (p1 != NULL) {
1351       BasicType bt = velt_basic_type(p1->at(0));
1352       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1353       assert(is_power_of_2(max_vlen), "sanity");
1354       uint psize = p1->size();
1355       if (!is_power_of_2(psize)) {
1356         // Skip pack which can't be vector.
1357         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
1358         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
1359         _packset.at_put(i, NULL);
1360         continue;
1361       }
1362       if (psize > max_vlen) {
1363         Node_List* pack = new Node_List();
1364         for (uint j = 0; j < psize; j++) {
1365           pack->push(p1->at(j));
1366           if (pack->size() >= max_vlen) {
1367             assert(is_power_of_2(pack->size()), "sanity");
1368             _packset.append(pack);
1369             pack = new Node_List();
1370           }
1371         }
1372         _packset.at_put(i, NULL);
1373       }
1374     }
1375   }
1376 
1377   // Compress list.
1378   for (int i = _packset.length() - 1; i >= 0; i--) {
1379     Node_List* p1 = _packset.at(i);
1380     if (p1 == NULL) {
1381       _packset.remove_at(i);
1382     }
1383   }
1384 
1385 #ifndef PRODUCT
1386   if (TraceSuperWord) {
1387     tty->print_cr("\nAfter combine_packs");
1388     print_packset();
1389   }
1390 #endif
1391 }
1392 
1393 //-----------------------------construct_my_pack_map--------------------------
1394 // Construct the map from nodes to packs.  Only valid after the
1395 // point where a node is only in one pack (after combine_packs).
1396 void SuperWord::construct_my_pack_map() {
1397   Node_List* rslt = NULL;
1398   for (int i = 0; i < _packset.length(); i++) {
1399     Node_List* p = _packset.at(i);
1400     for (uint j = 0; j < p->size(); j++) {
1401       Node* s = p->at(j);
1402       assert(my_pack(s) == NULL, "only in one pack");
1403       set_my_pack(s, p);
1404     }
1405   }
1406 }
1407 
1408 //------------------------------filter_packs---------------------------
1409 // Remove packs that are not implemented or not profitable.
1410 void SuperWord::filter_packs() {
1411   // Remove packs that are not implemented
1412   for (int i = _packset.length() - 1; i >= 0; i--) {
1413     Node_List* pk = _packset.at(i);
1414     bool impl = implemented(pk);
1415     if (!impl) {
1416 #ifndef PRODUCT
1417       if (TraceSuperWord && Verbose) {
1418         tty->print_cr("Unimplemented");
1419         pk->at(0)->dump();
1420       }
1421 #endif
1422       remove_pack_at(i);
1423     }
1424     Node *n = pk->at(0);
1425     if (n->is_reduction()) {
1426       _num_reductions++;
1427     } else {
1428       _num_work_vecs++;
1429     }
1430   }
1431 
1432   // Remove packs that are not profitable
1433   bool changed;
1434   do {
1435     changed = false;
1436     for (int i = _packset.length() - 1; i >= 0; i--) {
1437       Node_List* pk = _packset.at(i);
1438       bool prof = profitable(pk);
1439       if (!prof) {
1440 #ifndef PRODUCT
1441         if (TraceSuperWord && Verbose) {
1442           tty->print_cr("Unprofitable");
1443           pk->at(0)->dump();
1444         }
1445 #endif
1446         remove_pack_at(i);
1447         changed = true;
1448       }
1449     }
1450   } while (changed);
1451 
1452 #ifndef PRODUCT
1453   if (TraceSuperWord) {
1454     tty->print_cr("\nAfter filter_packs");
1455     print_packset();
1456     tty->cr();
1457   }
1458 #endif
1459 }
1460 
1461 //------------------------------implemented---------------------------
1462 // Can code be generated for pack p?
1463 bool SuperWord::implemented(Node_List* p) {
1464   bool retValue = false;
1465   Node* p0 = p->at(0);
1466   if (p0 != NULL) {
1467     int opc = p0->Opcode();
1468     uint size = p->size();
1469     if (p0->is_reduction()) {
1470       const Type *arith_type = p0->bottom_type();
1471       // Length 2 reductions of INT/LONG do not offer performance benefits
1472       if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
1473         retValue = false;
1474       } else {
1475         retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1476       }
1477     } else {
1478       retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1479     }
1480   }
1481   return retValue;
1482 }
1483 
1484 //------------------------------same_inputs--------------------------
1485 // For pack p, are all idx operands the same?
1486 static bool same_inputs(Node_List* p, int idx) {
1487   Node* p0 = p->at(0);
1488   uint vlen = p->size();
1489   Node* p0_def = p0->in(idx);
1490   for (uint i = 1; i < vlen; i++) {
1491     Node* pi = p->at(i);
1492     Node* pi_def = pi->in(idx);
1493     if (p0_def != pi_def)
1494       return false;
1495   }
1496   return true;
1497 }
1498 
1499 //------------------------------profitable---------------------------
1500 // For pack p, are all operands and all uses (with in the block) vector?
1501 bool SuperWord::profitable(Node_List* p) {
1502   Node* p0 = p->at(0);
1503   uint start, end;
1504   VectorNode::vector_operands(p0, &start, &end);
1505 
1506   // Return false if some inputs are not vectors or vectors with different
1507   // size or alignment.
1508   // Also, for now, return false if not scalar promotion case when inputs are
1509   // the same. Later, implement PackNode and allow differing, non-vector inputs
1510   // (maybe just the ones from outside the block.)
1511   for (uint i = start; i < end; i++) {
1512     if (!is_vector_use(p0, i))
1513       return false;
1514   }
1515   // Check if reductions are connected
1516   if (p0->is_reduction()) {
1517     Node* second_in = p0->in(2);
1518     Node_List* second_pk = my_pack(second_in);
1519     if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
1520       // Remove reduction flag if no parent pack or if not enough work
1521       // to cover reduction expansion overhead
1522       p0->remove_flag(Node::Flag_is_reduction);
1523       return false;
1524     } else if (second_pk->size() != p->size()) {
1525       return false;
1526     }
1527   }
1528   if (VectorNode::is_shift(p0)) {
1529     // For now, return false if shift count is vector or not scalar promotion
1530     // case (different shift counts) because it is not supported yet.
1531     Node* cnt = p0->in(2);
1532     Node_List* cnt_pk = my_pack(cnt);
1533     if (cnt_pk != NULL)
1534       return false;
1535     if (!same_inputs(p, 2))
1536       return false;
1537   }
1538   if (!p0->is_Store()) {
1539     // For now, return false if not all uses are vector.
1540     // Later, implement ExtractNode and allow non-vector uses (maybe
1541     // just the ones outside the block.)
1542     for (uint i = 0; i < p->size(); i++) {
1543       Node* def = p->at(i);
1544       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1545         Node* use = def->fast_out(j);
1546         for (uint k = 0; k < use->req(); k++) {
1547           Node* n = use->in(k);
1548           if (def == n) {
1549             // reductions can be loop carried dependences
1550             if (def->is_reduction() && use->is_Phi())
1551               continue;
1552             if (!is_vector_use(use, k)) {
1553               return false;
1554             }
1555           }
1556         }
1557       }
1558     }
1559   }
1560   return true;
1561 }
1562 
1563 //------------------------------schedule---------------------------
1564 // Adjust the memory graph for the packed operations
1565 void SuperWord::schedule() {
1566 
1567   // Co-locate in the memory graph the members of each memory pack
1568   for (int i = 0; i < _packset.length(); i++) {
1569     co_locate_pack(_packset.at(i));
1570   }
1571 }
1572 
1573 //-------------------------------remove_and_insert-------------------
1574 // Remove "current" from its current position in the memory graph and insert
1575 // it after the appropriate insertion point (lip or uip).
1576 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
1577                                   Node *uip, Unique_Node_List &sched_before) {
1578   Node* my_mem = current->in(MemNode::Memory);
1579   bool sched_up = sched_before.member(current);
1580 
1581   // remove current_store from its current position in the memmory graph
1582   for (DUIterator i = current->outs(); current->has_out(i); i++) {
1583     Node* use = current->out(i);
1584     if (use->is_Mem()) {
1585       assert(use->in(MemNode::Memory) == current, "must be");
1586       if (use == prev) { // connect prev to my_mem
1587           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
1588           --i; //deleted this edge; rescan position
1589       } else if (sched_before.member(use)) {
1590         if (!sched_up) { // Will be moved together with current
1591           _igvn.replace_input_of(use, MemNode::Memory, uip);
1592           --i; //deleted this edge; rescan position
1593         }
1594       } else {
1595         if (sched_up) { // Will be moved together with current
1596           _igvn.replace_input_of(use, MemNode::Memory, lip);
1597           --i; //deleted this edge; rescan position
1598         }
1599       }
1600     }
1601   }
1602 
1603   Node *insert_pt =  sched_up ?  uip : lip;
1604 
1605   // all uses of insert_pt's memory state should use current's instead
1606   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
1607     Node* use = insert_pt->out(i);
1608     if (use->is_Mem()) {
1609       assert(use->in(MemNode::Memory) == insert_pt, "must be");
1610       _igvn.replace_input_of(use, MemNode::Memory, current);
1611       --i; //deleted this edge; rescan position
1612     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
1613       uint pos; //lip (lower insert point) must be the last one in the memory slice
1614       for (pos=1; pos < use->req(); pos++) {
1615         if (use->in(pos) == insert_pt) break;
1616       }
1617       _igvn.replace_input_of(use, pos, current);
1618       --i;
1619     }
1620   }
1621 
1622   //connect current to insert_pt
1623   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
1624 }
1625 
1626 //------------------------------co_locate_pack----------------------------------
1627 // To schedule a store pack, we need to move any sandwiched memory ops either before
1628 // or after the pack, based upon dependence information:
1629 // (1) If any store in the pack depends on the sandwiched memory op, the
1630 //     sandwiched memory op must be scheduled BEFORE the pack;
1631 // (2) If a sandwiched memory op depends on any store in the pack, the
1632 //     sandwiched memory op must be scheduled AFTER the pack;
1633 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
1634 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
1635 //     scheduled before the pack, memB must also be scheduled before the pack;
1636 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
1637 //     schedule this store AFTER the pack
1638 // (5) We know there is no dependence cycle, so there in no other case;
1639 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
1640 //
1641 // To schedule a load pack, we use the memory state of either the first or the last load in
1642 // the pack, based on the dependence constraint.
1643 void SuperWord::co_locate_pack(Node_List* pk) {
1644   if (pk->at(0)->is_Store()) {
1645     MemNode* first     = executed_first(pk)->as_Mem();
1646     MemNode* last      = executed_last(pk)->as_Mem();
1647     Unique_Node_List schedule_before_pack;
1648     Unique_Node_List memops;
1649 
1650     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
1651     MemNode* previous  = last;
1652     while (true) {
1653       assert(in_bb(current), "stay in block");
1654       memops.push(previous);
1655       for (DUIterator i = current->outs(); current->has_out(i); i++) {
1656         Node* use = current->out(i);
1657         if (use->is_Mem() && use != previous)
1658           memops.push(use);
1659       }
1660       if (current == first) break;
1661       previous = current;
1662       current  = current->in(MemNode::Memory)->as_Mem();
1663     }
1664 
1665     // determine which memory operations should be scheduled before the pack
1666     for (uint i = 1; i < memops.size(); i++) {
1667       Node *s1 = memops.at(i);
1668       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
1669         for (uint j = 0; j< i; j++) {
1670           Node *s2 = memops.at(j);
1671           if (!independent(s1, s2)) {
1672             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
1673               schedule_before_pack.push(s1); // s1 must be scheduled before
1674               Node_List* mem_pk = my_pack(s1);
1675               if (mem_pk != NULL) {
1676                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
1677                   Node* s = mem_pk->at(ii);  // follow partner
1678                   if (memops.member(s) && !schedule_before_pack.member(s))
1679                     schedule_before_pack.push(s);
1680                 }
1681               }
1682               break;
1683             }
1684           }
1685         }
1686       }
1687     }
1688 
1689     Node*    upper_insert_pt = first->in(MemNode::Memory);
1690     // Following code moves loads connected to upper_insert_pt below aliased stores.
1691     // Collect such loads here and reconnect them back to upper_insert_pt later.
1692     memops.clear();
1693     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
1694       Node* use = upper_insert_pt->out(i);
1695       if (use->is_Mem() && !use->is_Store()) {
1696         memops.push(use);
1697       }
1698     }
1699 
1700     MemNode* lower_insert_pt = last;
1701     previous                 = last; //previous store in pk
1702     current                  = last->in(MemNode::Memory)->as_Mem();
1703 
1704     // start scheduling from "last" to "first"
1705     while (true) {
1706       assert(in_bb(current), "stay in block");
1707       assert(in_pack(previous, pk), "previous stays in pack");
1708       Node* my_mem = current->in(MemNode::Memory);
1709 
1710       if (in_pack(current, pk)) {
1711         // Forward users of my memory state (except "previous) to my input memory state
1712         for (DUIterator i = current->outs(); current->has_out(i); i++) {
1713           Node* use = current->out(i);
1714           if (use->is_Mem() && use != previous) {
1715             assert(use->in(MemNode::Memory) == current, "must be");
1716             if (schedule_before_pack.member(use)) {
1717               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
1718             } else {
1719               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
1720             }
1721             --i; // deleted this edge; rescan position
1722           }
1723         }
1724         previous = current;
1725       } else { // !in_pack(current, pk) ==> a sandwiched store
1726         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
1727       }
1728 
1729       if (current == first) break;
1730       current = my_mem->as_Mem();
1731     } // end while
1732 
1733     // Reconnect loads back to upper_insert_pt.
1734     for (uint i = 0; i < memops.size(); i++) {
1735       Node *ld = memops.at(i);
1736       if (ld->in(MemNode::Memory) != upper_insert_pt) {
1737         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
1738       }
1739     }
1740   } else if (pk->at(0)->is_Load()) { //load
1741     // all loads in the pack should have the same memory state. By default,
1742     // we use the memory state of the last load. However, if any load could
1743     // not be moved down due to the dependence constraint, we use the memory
1744     // state of the first load.
1745     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
1746     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
1747     bool schedule_last = true;
1748     for (uint i = 0; i < pk->size(); i++) {
1749       Node* ld = pk->at(i);
1750       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
1751            current=current->in(MemNode::Memory)) {
1752         assert(current != first_mem, "corrupted memory graph");
1753         if(current->is_Mem() && !independent(current, ld)){
1754           schedule_last = false; // a later store depends on this load
1755           break;
1756         }
1757       }
1758     }
1759 
1760     Node* mem_input = schedule_last ? last_mem : first_mem;
1761     _igvn.hash_delete(mem_input);
1762     // Give each load the same memory state
1763     for (uint i = 0; i < pk->size(); i++) {
1764       LoadNode* ld = pk->at(i)->as_Load();
1765       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
1766     }
1767   }
1768 }
1769 
1770 #ifndef PRODUCT
1771 void SuperWord::print_loop(bool whole) {
1772   Node_Stack stack(_arena, _phase->C->unique() >> 2);
1773   Node_List rpo_list;
1774   VectorSet visited(_arena);
1775   visited.set(lpt()->_head->_idx);
1776   _phase->rpo(lpt()->_head, stack, visited, rpo_list);
1777   _phase->dump(lpt(), rpo_list.size(), rpo_list );
1778   if(whole) {
1779     tty->print_cr("\n Whole loop tree");
1780     _phase->dump();
1781     tty->print_cr(" End of whole loop tree\n");
1782   }
1783 }
1784 #endif
1785 
1786 //------------------------------output---------------------------
1787 // Convert packs into vector node operations
1788 void SuperWord::output() {
1789   if (_packset.length() == 0) return;
1790 
1791 #ifndef PRODUCT
1792   if (TraceLoopOpts) {
1793     tty->print("SuperWord::output    ");
1794     lpt()->dump_head();
1795   }
1796 #endif
1797 
1798   // MUST ENSURE main loop's initial value is properly aligned:
1799   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
1800 
1801   align_initial_loop_index(align_to_ref());
1802 
1803   // Insert extract (unpack) operations for scalar uses
1804   for (int i = 0; i < _packset.length(); i++) {
1805     insert_extracts(_packset.at(i));
1806   }
1807 
1808   Compile* C = _phase->C;
1809   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
1810   uint max_vlen_in_bytes = 0;
1811   uint max_vlen = 0;
1812 
1813   NOT_PRODUCT(if(_CountedLoopReserveKit_debug > 0) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
1814 
1815   CountedLoopReserveKit make_reversable(_phase, _lpt, DoReserveCopyInSuperWord);
1816 
1817   NOT_PRODUCT(if(_CountedLoopReserveKit_debug > 0) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
1818 
1819   if (DoReserveCopyInSuperWord && !make_reversable.has_reserved()) {
1820     NOT_PRODUCT({tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
1821     return;
1822   }
1823 
1824   for (int i = 0; i < _block.length(); i++) {
1825     Node* n = _block.at(i);
1826     Node_List* p = my_pack(n);
1827     if (p && n == executed_last(p)) {
1828       uint vlen = p->size();
1829       uint vlen_in_bytes = 0;
1830       Node* vn = NULL;
1831       Node* low_adr = p->at(0);
1832       Node* first   = executed_first(p);
1833       int   opc = n->Opcode();
1834       if (n->is_Load()) {
1835         Node* ctl = n->in(MemNode::Control);
1836         Node* mem = first->in(MemNode::Memory);
1837         SWPointer p1(n->as_Mem(), this, NULL, false);
1838         // Identify the memory dependency for the new loadVector node by
1839         // walking up through memory chain.
1840         // This is done to give flexibility to the new loadVector node so that
1841         // it can move above independent storeVector nodes.
1842         while (mem->is_StoreVector()) {
1843           SWPointer p2(mem->as_Mem(), this, NULL, false);
1844           int cmp = p1.cmp(p2);
1845           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
1846             mem = mem->in(MemNode::Memory);
1847           } else {
1848             break; // dependent memory
1849           }
1850         }
1851         Node* adr = low_adr->in(MemNode::Address);
1852         const TypePtr* atyp = n->adr_type();
1853         vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
1854         vlen_in_bytes = vn->as_LoadVector()->memory_size();
1855       } else if (n->is_Store()) {
1856         // Promote value to be stored to vector
1857         Node* val = vector_opd(p, MemNode::ValueIn);
1858         Node* ctl = n->in(MemNode::Control);
1859         Node* mem = first->in(MemNode::Memory);
1860         Node* adr = low_adr->in(MemNode::Address);
1861         const TypePtr* atyp = n->adr_type();
1862         vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
1863         vlen_in_bytes = vn->as_StoreVector()->memory_size();
1864       } else if (n->req() == 3) {
1865         // Promote operands to vector
1866         Node* in1 = NULL;
1867         bool node_isa_reduction = n->is_reduction();
1868         if (node_isa_reduction) {
1869           // the input to the first reduction operation is retained
1870           in1 = low_adr->in(1);
1871         } else {
1872           in1 = vector_opd(p, 1);
1873         }
1874         Node* in2 = vector_opd(p, 2);
1875         if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
1876           // Move invariant vector input into second position to avoid register spilling.
1877           Node* tmp = in1;
1878           in1 = in2;
1879           in2 = tmp;
1880         }
1881         if (node_isa_reduction) {
1882           const Type *arith_type = n->bottom_type();
1883           vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
1884           if (in2->is_Load()) {
1885             vlen_in_bytes = in2->as_LoadVector()->memory_size();
1886           } else {
1887             vlen_in_bytes = in2->as_Vector()->length_in_bytes();
1888           }
1889         } else {
1890           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
1891           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
1892         }
1893       } else if (opc == Op_SqrtD || opc == Op_AbsF || opc == Op_AbsD || opc == Op_NegF || opc == Op_NegD) {
1894         // Promote operand to vector (Sqrt/Abs/Neg are 2 address instructions)
1895         Node* in = vector_opd(p, 1);
1896         vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
1897         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
1898       } else {
1899         ShouldNotReachHere();
1900       }
1901       assert(vn != NULL, "sanity");
1902       _igvn.register_new_node_with_optimizer(vn);
1903       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
1904       for (uint j = 0; j < p->size(); j++) {
1905         Node* pm = p->at(j);
1906         _igvn.replace_node(pm, vn);
1907       }
1908       _igvn._worklist.push(vn);
1909 
1910       if (vlen_in_bytes > max_vlen_in_bytes) {
1911         max_vlen = vlen;
1912         max_vlen_in_bytes = vlen_in_bytes;
1913       }
1914 #ifdef ASSERT
1915       if (TraceNewVectors) {
1916         tty->print("new Vector node: ");
1917         vn->dump();
1918       }
1919 #endif
1920     }
1921   }
1922   C->set_max_vector_size(max_vlen_in_bytes);
1923 
1924   if (SuperWordLoopUnrollAnalysis) {
1925     if (cl->has_passed_slp()) {
1926       uint slp_max_unroll_factor = cl->slp_max_unroll();
1927       if (slp_max_unroll_factor == max_vlen) {
1928         NOT_PRODUCT(if (TraceSuperWordLoopUnrollAnalysis) tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte));
1929         // For atomic unrolled loops which are vector mapped, instigate more unrolling.
1930         cl->set_notpassed_slp();
1931         C->set_major_progress();
1932         cl->mark_do_unroll_only();
1933       }
1934     }
1935   }
1936 
1937   if (DoReserveCopyInSuperWord) {
1938     make_reversable.use_new();
1939   }
1940   NOT_PRODUCT(if(_CountedLoopReserveKit_debug > 0) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
1941   return;
1942 }
1943 
1944 //------------------------------vector_opd---------------------------
1945 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
1946 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
1947   Node* p0 = p->at(0);
1948   uint vlen = p->size();
1949   Node* opd = p0->in(opd_idx);
1950 
1951   if (same_inputs(p, opd_idx)) {
1952     if (opd->is_Vector() || opd->is_LoadVector()) {
1953       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
1954       return opd; // input is matching vector
1955     }
1956     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
1957       Compile* C = _phase->C;
1958       Node* cnt = opd;
1959       // Vector instructions do not mask shift count, do it here.
1960       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
1961       const TypeInt* t = opd->find_int_type();
1962       if (t != NULL && t->is_con()) {
1963         juint shift = t->get_con();
1964         if (shift > mask) { // Unsigned cmp
1965           cnt = ConNode::make(TypeInt::make(shift & mask));
1966         }
1967       } else {
1968         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
1969           cnt = ConNode::make(TypeInt::make(mask));
1970           _igvn.register_new_node_with_optimizer(cnt);
1971           cnt = new AndINode(opd, cnt);
1972           _igvn.register_new_node_with_optimizer(cnt);
1973           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
1974         }
1975         assert(opd->bottom_type()->isa_int(), "int type only");
1976         // Move non constant shift count into vector register.
1977         cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
1978       }
1979       if (cnt != opd) {
1980         _igvn.register_new_node_with_optimizer(cnt);
1981         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
1982       }
1983       return cnt;
1984     }
1985     assert(!opd->is_StoreVector(), "such vector is not expected here");
1986     // Convert scalar input to vector with the same number of elements as
1987     // p0's vector. Use p0's type because size of operand's container in
1988     // vector should match p0's size regardless operand's size.
1989     const Type* p0_t = velt_type(p0);
1990     VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
1991 
1992     _igvn.register_new_node_with_optimizer(vn);
1993     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
1994 #ifdef ASSERT
1995     if (TraceNewVectors) {
1996       tty->print("new Vector node: ");
1997       vn->dump();
1998     }
1999 #endif
2000     return vn;
2001   }
2002 
2003   // Insert pack operation
2004   BasicType bt = velt_basic_type(p0);
2005   PackNode* pk = PackNode::make(opd, vlen, bt);
2006   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
2007 
2008   for (uint i = 1; i < vlen; i++) {
2009     Node* pi = p->at(i);
2010     Node* in = pi->in(opd_idx);
2011     assert(my_pack(in) == NULL, "Should already have been unpacked");
2012     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
2013     pk->add_opd(in);
2014   }
2015   _igvn.register_new_node_with_optimizer(pk);
2016   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
2017 #ifdef ASSERT
2018   if (TraceNewVectors) {
2019     tty->print("new Vector node: ");
2020     pk->dump();
2021   }
2022 #endif
2023   return pk;
2024 }
2025 
2026 //------------------------------insert_extracts---------------------------
2027 // If a use of pack p is not a vector use, then replace the
2028 // use with an extract operation.
2029 void SuperWord::insert_extracts(Node_List* p) {
2030   if (p->at(0)->is_Store()) return;
2031   assert(_n_idx_list.is_empty(), "empty (node,index) list");
2032 
2033   // Inspect each use of each pack member.  For each use that is
2034   // not a vector use, replace the use with an extract operation.
2035 
2036   for (uint i = 0; i < p->size(); i++) {
2037     Node* def = p->at(i);
2038     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2039       Node* use = def->fast_out(j);
2040       for (uint k = 0; k < use->req(); k++) {
2041         Node* n = use->in(k);
2042         if (def == n) {
2043           if (!is_vector_use(use, k)) {
2044             _n_idx_list.push(use, k);
2045           }
2046         }
2047       }
2048     }
2049   }
2050 
2051   while (_n_idx_list.is_nonempty()) {
2052     Node* use = _n_idx_list.node();
2053     int   idx = _n_idx_list.index();
2054     _n_idx_list.pop();
2055     Node* def = use->in(idx);
2056 
2057     if (def->is_reduction()) continue;
2058 
2059     // Insert extract operation
2060     _igvn.hash_delete(def);
2061     int def_pos = alignment(def) / data_size(def);
2062 
2063     Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
2064     _igvn.register_new_node_with_optimizer(ex);
2065     _phase->set_ctrl(ex, _phase->get_ctrl(def));
2066     _igvn.replace_input_of(use, idx, ex);
2067     _igvn._worklist.push(def);
2068 
2069     bb_insert_after(ex, bb_idx(def));
2070     set_velt_type(ex, velt_type(def));
2071   }
2072 }
2073 
2074 //------------------------------is_vector_use---------------------------
2075 // Is use->in(u_idx) a vector use?
2076 bool SuperWord::is_vector_use(Node* use, int u_idx) {
2077   Node_List* u_pk = my_pack(use);
2078   if (u_pk == NULL) return false;
2079   if (use->is_reduction()) return true;
2080   Node* def = use->in(u_idx);
2081   Node_List* d_pk = my_pack(def);
2082   if (d_pk == NULL) {
2083     // check for scalar promotion
2084     Node* n = u_pk->at(0)->in(u_idx);
2085     for (uint i = 1; i < u_pk->size(); i++) {
2086       if (u_pk->at(i)->in(u_idx) != n) return false;
2087     }
2088     return true;
2089   }
2090   if (u_pk->size() != d_pk->size())
2091     return false;
2092   for (uint i = 0; i < u_pk->size(); i++) {
2093     Node* ui = u_pk->at(i);
2094     Node* di = d_pk->at(i);
2095     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
2096       return false;
2097   }
2098   return true;
2099 }
2100 
2101 //------------------------------construct_bb---------------------------
2102 // Construct reverse postorder list of block members
2103 bool SuperWord::construct_bb() {
2104   Node* entry = bb();
2105 
2106   assert(_stk.length() == 0,            "stk is empty");
2107   assert(_block.length() == 0,          "block is empty");
2108   assert(_data_entry.length() == 0,     "data_entry is empty");
2109   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
2110   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
2111 
2112   // Find non-control nodes with no inputs from within block,
2113   // create a temporary map from node _idx to bb_idx for use
2114   // by the visited and post_visited sets,
2115   // and count number of nodes in block.
2116   int bb_ct = 0;
2117   for (uint i = 0; i < lpt()->_body.size(); i++) {
2118     Node *n = lpt()->_body.at(i);
2119     set_bb_idx(n, i); // Create a temporary map
2120     if (in_bb(n)) {
2121       if (n->is_LoadStore() || n->is_MergeMem() ||
2122           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
2123         // Bailout if the loop has LoadStore, MergeMem or data Proj
2124         // nodes. Superword optimization does not work with them.
2125         return false;
2126       }
2127       bb_ct++;
2128       if (!n->is_CFG()) {
2129         bool found = false;
2130         for (uint j = 0; j < n->req(); j++) {
2131           Node* def = n->in(j);
2132           if (def && in_bb(def)) {
2133             found = true;
2134             break;
2135           }
2136         }
2137         if (!found) {
2138           assert(n != entry, "can't be entry");
2139           _data_entry.push(n);
2140         }
2141       }
2142     }
2143   }
2144 
2145   // Find memory slices (head and tail)
2146   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
2147     Node *n = lp()->fast_out(i);
2148     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
2149       Node* n_tail  = n->in(LoopNode::LoopBackControl);
2150       if (n_tail != n->in(LoopNode::EntryControl)) {
2151         if (!n_tail->is_Mem()) {
2152           assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name()));
2153           return false; // Bailout
2154         }
2155         _mem_slice_head.push(n);
2156         _mem_slice_tail.push(n_tail);
2157       }
2158     }
2159   }
2160 
2161   // Create an RPO list of nodes in block
2162 
2163   visited_clear();
2164   post_visited_clear();
2165 
2166   // Push all non-control nodes with no inputs from within block, then control entry
2167   for (int j = 0; j < _data_entry.length(); j++) {
2168     Node* n = _data_entry.at(j);
2169     visited_set(n);
2170     _stk.push(n);
2171   }
2172   visited_set(entry);
2173   _stk.push(entry);
2174 
2175   // Do a depth first walk over out edges
2176   int rpo_idx = bb_ct - 1;
2177   int size;
2178   int reduction_uses = 0;
2179   while ((size = _stk.length()) > 0) {
2180     Node* n = _stk.top(); // Leave node on stack
2181     if (!visited_test_set(n)) {
2182       // forward arc in graph
2183     } else if (!post_visited_test(n)) {
2184       // cross or back arc
2185       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2186         Node *use = n->fast_out(i);
2187         if (in_bb(use) && !visited_test(use) &&
2188             // Don't go around backedge
2189             (!use->is_Phi() || n == entry)) {
2190           if (use->is_reduction()) {
2191             // First see if we can map the reduction on the given system we are on, then
2192             // make a data entry operation for each reduction we see.
2193             BasicType bt = use->bottom_type()->basic_type();
2194             if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
2195               reduction_uses++;
2196             }
2197           }
2198           _stk.push(use);
2199         }
2200       }
2201       if (_stk.length() == size) {
2202         // There were no additional uses, post visit node now
2203         _stk.pop(); // Remove node from stack
2204         assert(rpo_idx >= 0, "");
2205         _block.at_put_grow(rpo_idx, n);
2206         rpo_idx--;
2207         post_visited_set(n);
2208         assert(rpo_idx >= 0 || _stk.is_empty(), "");
2209       }
2210     } else {
2211       _stk.pop(); // Remove post-visited node from stack
2212     }
2213   }//while
2214 
2215   int ii_current = -1;
2216   unsigned int load_idx = (unsigned int)-1;
2217   _ii_order.clear();
2218   // Create real map of block indices for nodes
2219   for (int j = 0; j < _block.length(); j++) {
2220     Node* n = _block.at(j);
2221     set_bb_idx(n, j);
2222     if (_do_vector_loop && n->is_Load()) {
2223       if (ii_current == -1) {
2224         ii_current = _clone_map.gen(n->_idx);
2225         _ii_order.push(ii_current);
2226         load_idx = _clone_map.idx(n->_idx);
2227       } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
2228         ii_current = _clone_map.gen(n->_idx);
2229         _ii_order.push(ii_current);
2230       }
2231     }
2232   }//for
2233 
2234   // Ensure extra info is allocated.
2235   initialize_bb();
2236 
2237 #ifndef PRODUCT
2238   if (_vector_loop_debug && _ii_order.length() > 0) {
2239     tty->print("SuperWord::construct_bb: List of generations: ");
2240     for (int jj = 0; jj < _ii_order.length(); ++jj) {
2241       tty->print("  %d:%d", jj, _ii_order.at(jj));
2242     }
2243     tty->print_cr(" ");
2244   }
2245   if (TraceSuperWord) {
2246     print_bb();
2247     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
2248     for (int m = 0; m < _data_entry.length(); m++) {
2249       tty->print("%3d ", m);
2250       _data_entry.at(m)->dump();
2251     }
2252     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
2253     for (int m = 0; m < _mem_slice_head.length(); m++) {
2254       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
2255       tty->print("    ");    _mem_slice_tail.at(m)->dump();
2256     }
2257   }
2258 #endif
2259   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
2260   return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
2261 }
2262 
2263 //------------------------------initialize_bb---------------------------
2264 // Initialize per node info
2265 void SuperWord::initialize_bb() {
2266   Node* last = _block.at(_block.length() - 1);
2267   grow_node_info(bb_idx(last));
2268 }
2269 
2270 //------------------------------bb_insert_after---------------------------
2271 // Insert n into block after pos
2272 void SuperWord::bb_insert_after(Node* n, int pos) {
2273   int n_pos = pos + 1;
2274   // Make room
2275   for (int i = _block.length() - 1; i >= n_pos; i--) {
2276     _block.at_put_grow(i+1, _block.at(i));
2277   }
2278   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
2279     _node_info.at_put_grow(j+1, _node_info.at(j));
2280   }
2281   // Set value
2282   _block.at_put_grow(n_pos, n);
2283   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
2284   // Adjust map from node->_idx to _block index
2285   for (int i = n_pos; i < _block.length(); i++) {
2286     set_bb_idx(_block.at(i), i);
2287   }
2288 }
2289 
2290 //------------------------------compute_max_depth---------------------------
2291 // Compute max depth for expressions from beginning of block
2292 // Use to prune search paths during test for independence.
2293 void SuperWord::compute_max_depth() {
2294   int ct = 0;
2295   bool again;
2296   do {
2297     again = false;
2298     for (int i = 0; i < _block.length(); i++) {
2299       Node* n = _block.at(i);
2300       if (!n->is_Phi()) {
2301         int d_orig = depth(n);
2302         int d_in   = 0;
2303         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
2304           Node* pred = preds.current();
2305           if (in_bb(pred)) {
2306             d_in = MAX2(d_in, depth(pred));
2307           }
2308         }
2309         if (d_in + 1 != d_orig) {
2310           set_depth(n, d_in + 1);
2311           again = true;
2312         }
2313       }
2314     }
2315     ct++;
2316   } while (again);
2317 #ifndef PRODUCT
2318   if (TraceSuperWord && Verbose)
2319     tty->print_cr("compute_max_depth iterated: %d times", ct);
2320 #endif
2321 }
2322 
2323 //-------------------------compute_vector_element_type-----------------------
2324 // Compute necessary vector element type for expressions
2325 // This propagates backwards a narrower integer type when the
2326 // upper bits of the value are not needed.
2327 // Example:  char a,b,c;  a = b + c;
2328 // Normally the type of the add is integer, but for packed character
2329 // operations the type of the add needs to be char.
2330 void SuperWord::compute_vector_element_type() {
2331 #ifndef PRODUCT
2332   if (TraceSuperWord && Verbose)
2333     tty->print_cr("\ncompute_velt_type:");
2334 #endif
2335 
2336   // Initial type
2337   for (int i = 0; i < _block.length(); i++) {
2338     Node* n = _block.at(i);
2339     set_velt_type(n, container_type(n));
2340   }
2341 
2342   // Propagate integer narrowed type backwards through operations
2343   // that don't depend on higher order bits
2344   for (int i = _block.length() - 1; i >= 0; i--) {
2345     Node* n = _block.at(i);
2346     // Only integer types need be examined
2347     const Type* vtn = velt_type(n);
2348     if (vtn->basic_type() == T_INT) {
2349       uint start, end;
2350       VectorNode::vector_operands(n, &start, &end);
2351 
2352       for (uint j = start; j < end; j++) {
2353         Node* in  = n->in(j);
2354         // Don't propagate through a memory
2355         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
2356             data_size(n) < data_size(in)) {
2357           bool same_type = true;
2358           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
2359             Node *use = in->fast_out(k);
2360             if (!in_bb(use) || !same_velt_type(use, n)) {
2361               same_type = false;
2362               break;
2363             }
2364           }
2365           if (same_type) {
2366             // For right shifts of small integer types (bool, byte, char, short)
2367             // we need precise information about sign-ness. Only Load nodes have
2368             // this information because Store nodes are the same for signed and
2369             // unsigned values. And any arithmetic operation after a load may
2370             // expand a value to signed Int so such right shifts can't be used
2371             // because vector elements do not have upper bits of Int.
2372             const Type* vt = vtn;
2373             if (VectorNode::is_shift(in)) {
2374               Node* load = in->in(1);
2375               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
2376                 vt = velt_type(load);
2377               } else if (in->Opcode() != Op_LShiftI) {
2378                 // Widen type to Int to avoid creation of right shift vector
2379                 // (align + data_size(s1) check in stmts_can_pack() will fail).
2380                 // Note, left shifts work regardless type.
2381                 vt = TypeInt::INT;
2382               }
2383             }
2384             set_velt_type(in, vt);
2385           }
2386         }
2387       }
2388     }
2389   }
2390 #ifndef PRODUCT
2391   if (TraceSuperWord && Verbose) {
2392     for (int i = 0; i < _block.length(); i++) {
2393       Node* n = _block.at(i);
2394       velt_type(n)->dump();
2395       tty->print("\t");
2396       n->dump();
2397     }
2398   }
2399 #endif
2400 }
2401 
2402 //------------------------------memory_alignment---------------------------
2403 // Alignment within a vector memory reference
2404 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
2405   #ifndef PRODUCT
2406     if(TraceSuperWord && Verbose) {
2407       tty->print("SuperWord::memory_alignment within a vector memory reference for %d:  ", s->_idx); s->dump();
2408     }
2409   #endif
2410   NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
2411   SWPointer p(s, this, NULL, false);
2412   if (!p.valid()) {
2413     NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
2414     return bottom_align;
2415   }
2416   int vw = vector_width_in_bytes(s);
2417   if (vw < 2) {
2418     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
2419     return bottom_align; // No vectors for this type
2420   }
2421   int offset  = p.offset_in_bytes();
2422   offset     += iv_adjust*p.memory_size();
2423   int off_rem = offset % vw;
2424   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
2425   NOT_PRODUCT(if(TraceSuperWord && Verbose) tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);)
2426   return off_mod;
2427 }
2428 
2429 //---------------------------container_type---------------------------
2430 // Smallest type containing range of values
2431 const Type* SuperWord::container_type(Node* n) {
2432   if (n->is_Mem()) {
2433     BasicType bt = n->as_Mem()->memory_type();
2434     if (n->is_Store() && (bt == T_CHAR)) {
2435       // Use T_SHORT type instead of T_CHAR for stored values because any
2436       // preceding arithmetic operation extends values to signed Int.
2437       bt = T_SHORT;
2438     }
2439     if (n->Opcode() == Op_LoadUB) {
2440       // Adjust type for unsigned byte loads, it is important for right shifts.
2441       // T_BOOLEAN is used because there is no basic type representing type
2442       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
2443       // size (one byte) and sign is important.
2444       bt = T_BOOLEAN;
2445     }
2446     return Type::get_const_basic_type(bt);
2447   }
2448   const Type* t = _igvn.type(n);
2449   if (t->basic_type() == T_INT) {
2450     // A narrow type of arithmetic operations will be determined by
2451     // propagating the type of memory operations.
2452     return TypeInt::INT;
2453   }
2454   return t;
2455 }
2456 
2457 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
2458   const Type* vt1 = velt_type(n1);
2459   const Type* vt2 = velt_type(n2);
2460   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
2461     // Compare vectors element sizes for integer types.
2462     return data_size(n1) == data_size(n2);
2463   }
2464   return vt1 == vt2;
2465 }
2466 
2467 //------------------------------in_packset---------------------------
2468 // Are s1 and s2 in a pack pair and ordered as s1,s2?
2469 bool SuperWord::in_packset(Node* s1, Node* s2) {
2470   for (int i = 0; i < _packset.length(); i++) {
2471     Node_List* p = _packset.at(i);
2472     assert(p->size() == 2, "must be");
2473     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
2474       return true;
2475     }
2476   }
2477   return false;
2478 }
2479 
2480 //------------------------------in_pack---------------------------
2481 // Is s in pack p?
2482 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
2483   for (uint i = 0; i < p->size(); i++) {
2484     if (p->at(i) == s) {
2485       return p;
2486     }
2487   }
2488   return NULL;
2489 }
2490 
2491 //------------------------------remove_pack_at---------------------------
2492 // Remove the pack at position pos in the packset
2493 void SuperWord::remove_pack_at(int pos) {
2494   Node_List* p = _packset.at(pos);
2495   for (uint i = 0; i < p->size(); i++) {
2496     Node* s = p->at(i);
2497     set_my_pack(s, NULL);
2498   }
2499   _packset.remove_at(pos);
2500 }
2501 
2502 void SuperWord::packset_sort(int n) {
2503   // simple bubble sort so that we capitalize with O(n) when its already sorted
2504   while (n != 0) {
2505     bool swapped = false;
2506     for (int i = 1; i < n; i++) {
2507       Node_List* q_low = _packset.at(i-1);
2508       Node_List* q_i = _packset.at(i);
2509 
2510       // only swap when we find something to swap
2511       if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
2512         Node_List* t = q_i;
2513         *(_packset.adr_at(i)) = q_low;
2514         *(_packset.adr_at(i-1)) = q_i;
2515         swapped = true;
2516       }
2517     }
2518     if (swapped == false) break;
2519     n--;
2520   }
2521 }
2522 
2523 //------------------------------executed_first---------------------------
2524 // Return the node executed first in pack p.  Uses the RPO block list
2525 // to determine order.
2526 Node* SuperWord::executed_first(Node_List* p) {
2527   Node* n = p->at(0);
2528   int n_rpo = bb_idx(n);
2529   for (uint i = 1; i < p->size(); i++) {
2530     Node* s = p->at(i);
2531     int s_rpo = bb_idx(s);
2532     if (s_rpo < n_rpo) {
2533       n = s;
2534       n_rpo = s_rpo;
2535     }
2536   }
2537   return n;
2538 }
2539 
2540 //------------------------------executed_last---------------------------
2541 // Return the node executed last in pack p.
2542 Node* SuperWord::executed_last(Node_List* p) {
2543   Node* n = p->at(0);
2544   int n_rpo = bb_idx(n);
2545   for (uint i = 1; i < p->size(); i++) {
2546     Node* s = p->at(i);
2547     int s_rpo = bb_idx(s);
2548     if (s_rpo > n_rpo) {
2549       n = s;
2550       n_rpo = s_rpo;
2551     }
2552   }
2553   return n;
2554 }
2555 
2556 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
2557   LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
2558   for (uint i = 0; i < p->size(); i++) {
2559     Node* n = p->at(i);
2560     assert(n->is_Load(), "only meaningful for loads");
2561     if (!n->depends_only_on_test()) {
2562       dep = LoadNode::Pinned;
2563     }
2564   }
2565   return dep;
2566 }
2567 
2568 
2569 //----------------------------align_initial_loop_index---------------------------
2570 // Adjust pre-loop limit so that in main loop, a load/store reference
2571 // to align_to_ref will be a position zero in the vector.
2572 //   (iv + k) mod vector_align == 0
2573 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
2574   CountedLoopNode *main_head = lp()->as_CountedLoop();
2575   assert(main_head->is_main_loop(), "");
2576   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
2577   assert(pre_end != NULL, "we must have a correct pre-loop");
2578   Node *pre_opaq1 = pre_end->limit();
2579   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
2580   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
2581   Node *lim0 = pre_opaq->in(1);
2582 
2583   // Where we put new limit calculations
2584   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
2585 
2586   // Ensure the original loop limit is available from the
2587   // pre-loop Opaque1 node.
2588   Node *orig_limit = pre_opaq->original_loop_limit();
2589   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
2590 
2591   SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
2592   assert(align_to_ref_p.valid(), "sanity");
2593 
2594   // Given:
2595   //     lim0 == original pre loop limit
2596   //     V == v_align (power of 2)
2597   //     invar == extra invariant piece of the address expression
2598   //     e == offset [ +/- invar ]
2599   //
2600   // When reassociating expressions involving '%' the basic rules are:
2601   //     (a - b) % k == 0   =>  a % k == b % k
2602   // and:
2603   //     (a + b) % k == 0   =>  a % k == (k - b) % k
2604   //
2605   // For stride > 0 && scale > 0,
2606   //   Derive the new pre-loop limit "lim" such that the two constraints:
2607   //     (1) lim = lim0 + N           (where N is some positive integer < V)
2608   //     (2) (e + lim) % V == 0
2609   //   are true.
2610   //
2611   //   Substituting (1) into (2),
2612   //     (e + lim0 + N) % V == 0
2613   //   solve for N:
2614   //     N = (V - (e + lim0)) % V
2615   //   substitute back into (1), so that new limit
2616   //     lim = lim0 + (V - (e + lim0)) % V
2617   //
2618   // For stride > 0 && scale < 0
2619   //   Constraints:
2620   //     lim = lim0 + N
2621   //     (e - lim) % V == 0
2622   //   Solving for lim:
2623   //     (e - lim0 - N) % V == 0
2624   //     N = (e - lim0) % V
2625   //     lim = lim0 + (e - lim0) % V
2626   //
2627   // For stride < 0 && scale > 0
2628   //   Constraints:
2629   //     lim = lim0 - N
2630   //     (e + lim) % V == 0
2631   //   Solving for lim:
2632   //     (e + lim0 - N) % V == 0
2633   //     N = (e + lim0) % V
2634   //     lim = lim0 - (e + lim0) % V
2635   //
2636   // For stride < 0 && scale < 0
2637   //   Constraints:
2638   //     lim = lim0 - N
2639   //     (e - lim) % V == 0
2640   //   Solving for lim:
2641   //     (e - lim0 + N) % V == 0
2642   //     N = (V - (e - lim0)) % V
2643   //     lim = lim0 - (V - (e - lim0)) % V
2644 
2645   int vw = vector_width_in_bytes(align_to_ref);
2646   int stride   = iv_stride();
2647   int scale    = align_to_ref_p.scale_in_bytes();
2648   int elt_size = align_to_ref_p.memory_size();
2649   int v_align  = vw / elt_size;
2650   assert(v_align > 1, "sanity");
2651   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
2652   Node *offsn  = _igvn.intcon(offset);
2653 
2654   Node *e = offsn;
2655   if (align_to_ref_p.invar() != NULL) {
2656     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
2657     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
2658     Node* aref     = new URShiftINode(align_to_ref_p.invar(), log2_elt);
2659     _igvn.register_new_node_with_optimizer(aref);
2660     _phase->set_ctrl(aref, pre_ctrl);
2661     if (align_to_ref_p.negate_invar()) {
2662       e = new SubINode(e, aref);
2663     } else {
2664       e = new AddINode(e, aref);
2665     }
2666     _igvn.register_new_node_with_optimizer(e);
2667     _phase->set_ctrl(e, pre_ctrl);
2668   }
2669   if (vw > ObjectAlignmentInBytes) {
2670     // incorporate base e +/- base && Mask >>> log2(elt)
2671     Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base());
2672     _igvn.register_new_node_with_optimizer(xbase);
2673 #ifdef _LP64
2674     xbase  = new ConvL2INode(xbase);
2675     _igvn.register_new_node_with_optimizer(xbase);
2676 #endif
2677     Node* mask = _igvn.intcon(vw-1);
2678     Node* masked_xbase  = new AndINode(xbase, mask);
2679     _igvn.register_new_node_with_optimizer(masked_xbase);
2680     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
2681     Node* bref     = new URShiftINode(masked_xbase, log2_elt);
2682     _igvn.register_new_node_with_optimizer(bref);
2683     _phase->set_ctrl(bref, pre_ctrl);
2684     e = new AddINode(e, bref);
2685     _igvn.register_new_node_with_optimizer(e);
2686     _phase->set_ctrl(e, pre_ctrl);
2687   }
2688 
2689   // compute e +/- lim0
2690   if (scale < 0) {
2691     e = new SubINode(e, lim0);
2692   } else {
2693     e = new AddINode(e, lim0);
2694   }
2695   _igvn.register_new_node_with_optimizer(e);
2696   _phase->set_ctrl(e, pre_ctrl);
2697 
2698   if (stride * scale > 0) {
2699     // compute V - (e +/- lim0)
2700     Node* va  = _igvn.intcon(v_align);
2701     e = new SubINode(va, e);
2702     _igvn.register_new_node_with_optimizer(e);
2703     _phase->set_ctrl(e, pre_ctrl);
2704   }
2705   // compute N = (exp) % V
2706   Node* va_msk = _igvn.intcon(v_align - 1);
2707   Node* N = new AndINode(e, va_msk);
2708   _igvn.register_new_node_with_optimizer(N);
2709   _phase->set_ctrl(N, pre_ctrl);
2710 
2711   //   substitute back into (1), so that new limit
2712   //     lim = lim0 + N
2713   Node* lim;
2714   if (stride < 0) {
2715     lim = new SubINode(lim0, N);
2716   } else {
2717     lim = new AddINode(lim0, N);
2718   }
2719   _igvn.register_new_node_with_optimizer(lim);
2720   _phase->set_ctrl(lim, pre_ctrl);
2721   Node* constrained =
2722     (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
2723                  : (Node*) new MaxINode(lim, orig_limit);
2724   _igvn.register_new_node_with_optimizer(constrained);
2725   _phase->set_ctrl(constrained, pre_ctrl);
2726   _igvn.hash_delete(pre_opaq);
2727   pre_opaq->set_req(1, constrained);
2728 }
2729 
2730 //----------------------------get_pre_loop_end---------------------------
2731 // Find pre loop end from main loop.  Returns null if none.
2732 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
2733   Node* ctrl = cl->in(LoopNode::EntryControl);
2734   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
2735   Node* iffm = ctrl->in(0);
2736   if (!iffm->is_If()) return NULL;
2737   Node* bolzm = iffm->in(1);
2738   if (!bolzm->is_Bool()) return NULL;
2739   Node* cmpzm = bolzm->in(1);
2740   if (!cmpzm->is_Cmp()) return NULL;
2741   Node* opqzm = cmpzm->in(2);
2742   // Can not optimize a loop if zero-trip Opaque1 node is optimized
2743   // away and then another round of loop opts attempted.
2744   if (opqzm->Opcode() != Op_Opaque1) {
2745     return NULL;
2746   }
2747   Node* p_f = iffm->in(0);
2748   if (!p_f->is_IfFalse()) return NULL;
2749   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
2750   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
2751   CountedLoopNode* loop_node = pre_end->loopnode();
2752   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
2753   return pre_end;
2754 }
2755 
2756 
2757 //------------------------------init---------------------------
2758 void SuperWord::init() {
2759   _dg.init();
2760   _packset.clear();
2761   _disjoint_ptrs.clear();
2762   _block.clear();
2763   _data_entry.clear();
2764   _mem_slice_head.clear();
2765   _mem_slice_tail.clear();
2766   _iteration_first.clear();
2767   _iteration_last.clear();
2768   _node_info.clear();
2769   _align_to_ref = NULL;
2770   _lpt = NULL;
2771   _lp = NULL;
2772   _bb = NULL;
2773   _iv = NULL;
2774   _race_possible = 0;
2775   _early_return = false;
2776   _num_work_vecs = 0;
2777   _num_reductions = 0;
2778 }
2779 
2780 //------------------------------restart---------------------------
2781 void SuperWord::restart() {
2782   _dg.init();
2783   _packset.clear();
2784   _disjoint_ptrs.clear();
2785   _block.clear();
2786   _data_entry.clear();
2787   _mem_slice_head.clear();
2788   _mem_slice_tail.clear();
2789   _node_info.clear();
2790 }
2791 
2792 //------------------------------print_packset---------------------------
2793 void SuperWord::print_packset() {
2794 #ifndef PRODUCT
2795   tty->print_cr("packset");
2796   for (int i = 0; i < _packset.length(); i++) {
2797     tty->print_cr("Pack: %d", i);
2798     Node_List* p = _packset.at(i);
2799     print_pack(p);
2800   }
2801 #endif
2802 }
2803 
2804 //------------------------------print_pack---------------------------
2805 void SuperWord::print_pack(Node_List* p) {
2806   for (uint i = 0; i < p->size(); i++) {
2807     print_stmt(p->at(i));
2808   }
2809 }
2810 
2811 //------------------------------print_bb---------------------------
2812 void SuperWord::print_bb() {
2813 #ifndef PRODUCT
2814   tty->print_cr("\nBlock");
2815   for (int i = 0; i < _block.length(); i++) {
2816     Node* n = _block.at(i);
2817     tty->print("%d ", i);
2818     if (n) {
2819       n->dump();
2820     }
2821   }
2822 #endif
2823 }
2824 
2825 //------------------------------print_stmt---------------------------
2826 void SuperWord::print_stmt(Node* s) {
2827 #ifndef PRODUCT
2828   tty->print(" align: %d \t", alignment(s));
2829   s->dump();
2830 #endif
2831 }
2832 
2833 //------------------------------blank---------------------------
2834 char* SuperWord::blank(uint depth) {
2835   static char blanks[101];
2836   assert(depth < 101, "too deep");
2837   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
2838   blanks[depth] = '\0';
2839   return blanks;
2840 }
2841 
2842 
2843 //==============================SWPointer===========================
2844 #ifndef PRODUCT
2845 int SWPointer::Tracer::_depth = 0;
2846 #endif
2847 //----------------------------SWPointer------------------------
2848 SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
2849   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
2850   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
2851   _nstack(nstack), _analyze_only(analyze_only),
2852   _stack_idx(0)
2853 #ifndef PRODUCT
2854   , _tracer(slp)
2855 #endif
2856 {
2857   NOT_PRODUCT(_tracer.ctor_1(mem);)
2858 
2859   Node* adr = mem->in(MemNode::Address);
2860   if (!adr->is_AddP()) {
2861     assert(!valid(), "too complex");
2862     return;
2863   }
2864   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
2865   Node* base = adr->in(AddPNode::Base);
2866   // The base address should be loop invariant
2867   if (!invariant(base)) {
2868     assert(!valid(), "base address is loop variant");
2869     return;
2870   }
2871   //unsafe reference could not be aligned appropriately without runtime checking
2872   if (base == NULL || base->bottom_type() == Type::TOP) {
2873     assert(!valid(), "unsafe access");
2874     return;
2875   }
2876 
2877   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
2878   NOT_PRODUCT(_tracer.ctor_2(adr);)
2879 
2880   int i;
2881   for (i = 0; i < 3; i++) {
2882     NOT_PRODUCT(_tracer.ctor_3(adr, i);)
2883 
2884     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
2885       assert(!valid(), "too complex");
2886       return;
2887     }
2888     adr = adr->in(AddPNode::Address);
2889     NOT_PRODUCT(_tracer.ctor_4(adr, i);)
2890 
2891     if (base == adr || !adr->is_AddP()) {
2892       NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
2893       break; // stop looking at addp's
2894     }
2895   }
2896   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
2897   NOT_PRODUCT(_tracer.ctor_6(mem);)
2898 
2899   _base = base;
2900   _adr  = adr;
2901   assert(valid(), "Usable");
2902 }
2903 
2904 // Following is used to create a temporary object during
2905 // the pattern match of an address expression.
2906 SWPointer::SWPointer(SWPointer* p) :
2907   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
2908   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
2909   _nstack(p->_nstack), _analyze_only(p->_analyze_only),
2910   _stack_idx(p->_stack_idx)
2911   #ifndef PRODUCT
2912   , _tracer(p->_slp)
2913   #endif
2914 {}
2915 
2916 
2917 bool SWPointer::invariant(Node* n) {
2918   NOT_PRODUCT(Tracer::Depth dd;)
2919   Node *n_c = phase()->get_ctrl(n);
2920   NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
2921   return !lpt()->is_member(phase()->get_loop(n_c));
2922 }
2923 //------------------------scaled_iv_plus_offset--------------------
2924 // Match: k*iv + offset
2925 // where: k is a constant that maybe zero, and
2926 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
2927 bool SWPointer::scaled_iv_plus_offset(Node* n) {
2928   NOT_PRODUCT(Tracer::Depth ddd;)
2929   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
2930 
2931   if (scaled_iv(n)) {
2932     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
2933     return true;
2934   }
2935 
2936   if (offset_plus_k(n)) {
2937     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
2938     return true;
2939   }
2940 
2941   int opc = n->Opcode();
2942   if (opc == Op_AddI) {
2943     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
2944       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
2945       return true;
2946     }
2947     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
2948       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
2949       return true;
2950     }
2951   } else if (opc == Op_SubI) {
2952     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
2953       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
2954       return true;
2955     }
2956     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
2957       _scale *= -1;
2958       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
2959       return true;
2960     }
2961   }
2962 
2963   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
2964   return false;
2965 }
2966 
2967 //----------------------------scaled_iv------------------------
2968 // Match: k*iv where k is a constant that's not zero
2969 bool SWPointer::scaled_iv(Node* n) {
2970   NOT_PRODUCT(Tracer::Depth ddd;)
2971   NOT_PRODUCT(_tracer.scaled_iv_1(n);)
2972 
2973   if (_scale != 0) { // already found a scale
2974     NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
2975     return false;
2976   }
2977 
2978   if (n == iv()) {
2979     _scale = 1;
2980     NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
2981     return true;
2982   }
2983   if (_analyze_only && (invariant(n) == false)) {
2984     _nstack->push(n, _stack_idx++);
2985   }
2986 
2987   int opc = n->Opcode();
2988   if (opc == Op_MulI) {
2989     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2990       _scale = n->in(2)->get_int();
2991       NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
2992       return true;
2993     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
2994       _scale = n->in(1)->get_int();
2995       NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
2996       return true;
2997     }
2998   } else if (opc == Op_LShiftI) {
2999     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3000       _scale = 1 << n->in(2)->get_int();
3001       NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
3002       return true;
3003     }
3004   } else if (opc == Op_ConvI2L) {
3005     if (scaled_iv_plus_offset(n->in(1))) {
3006       NOT_PRODUCT(_tracer.scaled_iv_7(n);)
3007       return true;
3008     }
3009   } else if (opc == Op_LShiftL) {
3010     if (!has_iv() && _invar == NULL) {
3011       // Need to preserve the current _offset value, so
3012       // create a temporary object for this expression subtree.
3013       // Hacky, so should re-engineer the address pattern match.
3014       NOT_PRODUCT(Tracer::Depth dddd;)
3015       SWPointer tmp(this);
3016       NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
3017 
3018       if (tmp.scaled_iv_plus_offset(n->in(1))) {
3019         if (tmp._invar == NULL || _slp->do_vector_loop()) {
3020           int mult = 1 << n->in(2)->get_int();
3021           _scale   = tmp._scale  * mult;
3022           _offset += tmp._offset * mult;
3023           NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
3024           return true;
3025         }
3026       }
3027     }
3028   }
3029   NOT_PRODUCT(_tracer.scaled_iv_10(n);)
3030   return false;
3031 }
3032 
3033 //----------------------------offset_plus_k------------------------
3034 // Match: offset is (k [+/- invariant])
3035 // where k maybe zero and invariant is optional, but not both.
3036 bool SWPointer::offset_plus_k(Node* n, bool negate) {
3037   NOT_PRODUCT(Tracer::Depth ddd;)
3038   NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
3039 
3040   int opc = n->Opcode();
3041   if (opc == Op_ConI) {
3042     _offset += negate ? -(n->get_int()) : n->get_int();
3043     NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
3044     return true;
3045   } else if (opc == Op_ConL) {
3046     // Okay if value fits into an int
3047     const TypeLong* t = n->find_long_type();
3048     if (t->higher_equal(TypeLong::INT)) {
3049       jlong loff = n->get_long();
3050       jint  off  = (jint)loff;
3051       _offset += negate ? -off : loff;
3052       NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
3053       return true;
3054     }
3055     NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
3056     return false;
3057   }
3058   if (_invar != NULL) { // already has an invariant
3059     NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
3060     return false;
3061   }
3062 
3063   if (_analyze_only && (invariant(n) == false)) {
3064     _nstack->push(n, _stack_idx++);
3065   }
3066   if (opc == Op_AddI) {
3067     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3068       _negate_invar = negate;
3069       _invar = n->in(1);
3070       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3071       NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
3072       return true;
3073     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3074       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3075       _negate_invar = negate;
3076       _invar = n->in(2);
3077       NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
3078       return true;
3079     }
3080   }
3081   if (opc == Op_SubI) {
3082     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3083       _negate_invar = negate;
3084       _invar = n->in(1);
3085       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3086       NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
3087       return true;
3088     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3089       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3090       _negate_invar = !negate;
3091       _invar = n->in(2);
3092       NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
3093       return true;
3094     }
3095   }
3096   if (invariant(n)) {
3097     if (opc == Op_ConvI2L) {
3098       n = n->in(1);
3099     }
3100     _negate_invar = negate;
3101     _invar = n;
3102     NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
3103     return true;
3104   }
3105 
3106   NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
3107   return false;
3108 }
3109 
3110 //----------------------------print------------------------
3111 void SWPointer::print() {
3112 #ifndef PRODUCT
3113   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
3114              _base != NULL ? _base->_idx : 0,
3115              _adr  != NULL ? _adr->_idx  : 0,
3116              _scale, _offset,
3117              _negate_invar?'-':'+',
3118              _invar != NULL ? _invar->_idx : 0);
3119 #endif
3120 }
3121 
3122 //----------------------------tracing------------------------
3123 #ifndef PRODUCT
3124 void SWPointer::Tracer::print_depth() {
3125   for (int ii = 0; ii<_depth; ++ii) tty->print("  ");
3126 }
3127 
3128 void SWPointer::Tracer::ctor_1 (Node* mem) {
3129   if(_slp->is_trace_alignment()) {
3130     print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
3131   }
3132 }
3133 
3134 void SWPointer::Tracer::ctor_2(Node* adr) {
3135   if(_slp->is_trace_alignment()) {
3136     //store_depth();
3137     inc_depth();
3138     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
3139     inc_depth();
3140     print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
3141   }
3142 }
3143 
3144 void SWPointer::Tracer::ctor_3(Node* adr, int i) {
3145   if(_slp->is_trace_alignment()) {
3146     inc_depth();
3147     Node* offset = adr->in(AddPNode::Offset);
3148     print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
3149   }
3150 }
3151 
3152 void SWPointer::Tracer::ctor_4(Node* adr, int i) {
3153   if(_slp->is_trace_alignment()) {
3154     inc_depth();
3155     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
3156   }
3157 }
3158 
3159 void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
3160   if(_slp->is_trace_alignment()) {
3161     inc_depth();
3162     if (base == adr) {
3163       print_depth(); tty->print_cr("  \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
3164     } else if (!adr->is_AddP()) {
3165       print_depth(); tty->print_cr("  \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
3166     }
3167   }
3168 }
3169 
3170 void SWPointer::Tracer::ctor_6(Node* mem) {
3171   if(_slp->is_trace_alignment()) {
3172     //restore_depth();
3173     print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
3174   }
3175 }
3176 
3177 void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
3178   if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
3179     int is_member =  _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
3180     int in_bb     =  _slp->in_bb(n);
3181     print_depth(); tty->print("  \\ ");  tty->print_cr(" %d SWPointer::invariant  conditions differ: n_c %d", n->_idx, n_c->_idx);
3182     print_depth(); tty->print("  \\ ");  tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
3183     print_depth(); tty->print("  \\ ");  n->dump();
3184     print_depth(); tty->print("  \\ ");  n_c->dump();
3185   }
3186 }
3187 
3188 void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
3189   if(_slp->is_trace_alignment()) {
3190     print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
3191     n->dump();
3192   }
3193 }
3194 
3195 void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
3196   if(_slp->is_trace_alignment()) {
3197     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3198   }
3199 }
3200 
3201 void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
3202   if(_slp->is_trace_alignment()) {
3203     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3204   }
3205 }
3206 
3207 void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
3208   if(_slp->is_trace_alignment()) {
3209     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3210     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3211     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3212   }
3213 }
3214 
3215 void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
3216   if(_slp->is_trace_alignment()) {
3217     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3218     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3219     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3220   }
3221 }
3222 
3223 void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
3224   if(_slp->is_trace_alignment()) {
3225     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3226     print_depth(); tty->print("  \\  %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3227     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3228   }
3229 }
3230 
3231 void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
3232   if(_slp->is_trace_alignment()) {
3233     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3234     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3235     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3236   }
3237 }
3238 
3239 void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
3240   if(_slp->is_trace_alignment()) {
3241     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
3242   }
3243 }
3244 
3245 void SWPointer::Tracer::scaled_iv_1(Node* n) {
3246   if(_slp->is_trace_alignment()) {
3247     print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
3248   }
3249 }
3250 
3251 void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
3252   if(_slp->is_trace_alignment()) {
3253     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
3254     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
3255   }
3256 }
3257 
3258 void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
3259   if(_slp->is_trace_alignment()) {
3260     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
3261   }
3262 }
3263 
3264 void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
3265   if(_slp->is_trace_alignment()) {
3266     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3267     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3268     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3269   }
3270 }
3271 
3272 void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
3273   if(_slp->is_trace_alignment()) {
3274     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3275     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
3276     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3277   }
3278 }
3279 
3280 void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
3281   if(_slp->is_trace_alignment()) {
3282     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
3283     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3284     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3285   }
3286 }
3287 
3288 void SWPointer::Tracer::scaled_iv_7(Node* n) {
3289   if(_slp->is_trace_alignment()) {
3290     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
3291     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
3292     inc_depth(); inc_depth();
3293     print_depth(); n->in(1)->dump();
3294     dec_depth(); dec_depth();
3295   }
3296 }
3297 
3298 void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
3299   if(_slp->is_trace_alignment()) {
3300     print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
3301   }
3302 }
3303 
3304 void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
3305   if(_slp->is_trace_alignment()) {
3306     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
3307     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
3308     n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
3309     inc_depth(); inc_depth();
3310     print_depth(); n->in(1)->dump();
3311     print_depth(); n->in(2)->dump();
3312     dec_depth(); dec_depth();
3313   }
3314 }
3315 
3316 void SWPointer::Tracer::scaled_iv_10(Node* n) {
3317   if(_slp->is_trace_alignment()) {
3318     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
3319   }
3320 }
3321 
3322 void SWPointer::Tracer::offset_plus_k_1(Node* n) {
3323   if(_slp->is_trace_alignment()) {
3324     print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
3325   }
3326 }
3327 
3328 void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
3329   if(_slp->is_trace_alignment()) {
3330     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
3331   }
3332 }
3333 
3334 void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
3335   if(_slp->is_trace_alignment()) {
3336     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
3337   }
3338 }
3339 
3340 void SWPointer::Tracer::offset_plus_k_4(Node* n) {
3341   if(_slp->is_trace_alignment()) {
3342     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
3343     print_depth(); tty->print_cr("  \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
3344   }
3345 }
3346 
3347 void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
3348   if(_slp->is_trace_alignment()) {
3349     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
3350     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
3351   }
3352 }
3353 
3354 void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3355   if(_slp->is_trace_alignment()) {
3356     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3357     n->_idx, _negate_invar, _invar->_idx, _offset);
3358     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3359     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
3360   }
3361 }
3362 
3363 void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3364   if(_slp->is_trace_alignment()) {
3365     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3366     n->_idx, _negate_invar, _invar->_idx, _offset);
3367     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3368     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
3369   }
3370 }
3371 
3372 void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3373   if(_slp->is_trace_alignment()) {
3374     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3375     n->_idx, _negate_invar, _invar->_idx, _offset);
3376     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3377     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
3378   }
3379 }
3380 
3381 void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3382   if(_slp->is_trace_alignment()) {
3383     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
3384     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3385     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
3386   }
3387 }
3388 
3389 void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3390   if(_slp->is_trace_alignment()) {
3391     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
3392     print_depth(); tty->print_cr("  \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
3393   }
3394 }
3395 
3396 void SWPointer::Tracer::offset_plus_k_11(Node* n) {
3397   if(_slp->is_trace_alignment()) {
3398     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
3399   }
3400 }
3401 
3402 #endif
3403 // ========================= OrderedPair =====================
3404 
3405 const OrderedPair OrderedPair::initial;
3406 
3407 // ========================= SWNodeInfo =====================
3408 
3409 const SWNodeInfo SWNodeInfo::initial;
3410 
3411 
3412 // ============================ DepGraph ===========================
3413 
3414 //------------------------------make_node---------------------------
3415 // Make a new dependence graph node for an ideal node.
3416 DepMem* DepGraph::make_node(Node* node) {
3417   DepMem* m = new (_arena) DepMem(node);
3418   if (node != NULL) {
3419     assert(_map.at_grow(node->_idx) == NULL, "one init only");
3420     _map.at_put_grow(node->_idx, m);
3421   }
3422   return m;
3423 }
3424 
3425 //------------------------------make_edge---------------------------
3426 // Make a new dependence graph edge from dpred -> dsucc
3427 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
3428   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
3429   dpred->set_out_head(e);
3430   dsucc->set_in_head(e);
3431   return e;
3432 }
3433 
3434 // ========================== DepMem ========================
3435 
3436 //------------------------------in_cnt---------------------------
3437 int DepMem::in_cnt() {
3438   int ct = 0;
3439   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
3440   return ct;
3441 }
3442 
3443 //------------------------------out_cnt---------------------------
3444 int DepMem::out_cnt() {
3445   int ct = 0;
3446   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
3447   return ct;
3448 }
3449 
3450 //------------------------------print-----------------------------
3451 void DepMem::print() {
3452 #ifndef PRODUCT
3453   tty->print("  DepNode %d (", _node->_idx);
3454   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
3455     Node* pred = p->pred()->node();
3456     tty->print(" %d", pred != NULL ? pred->_idx : 0);
3457   }
3458   tty->print(") [");
3459   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
3460     Node* succ = s->succ()->node();
3461     tty->print(" %d", succ != NULL ? succ->_idx : 0);
3462   }
3463   tty->print_cr(" ]");
3464 #endif
3465 }
3466 
3467 // =========================== DepEdge =========================
3468 
3469 //------------------------------DepPreds---------------------------
3470 void DepEdge::print() {
3471 #ifndef PRODUCT
3472   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
3473 #endif
3474 }
3475 
3476 // =========================== DepPreds =========================
3477 // Iterator over predecessor edges in the dependence graph.
3478 
3479 //------------------------------DepPreds---------------------------
3480 DepPreds::DepPreds(Node* n, DepGraph& dg) {
3481   _n = n;
3482   _done = false;
3483   if (_n->is_Store() || _n->is_Load()) {
3484     _next_idx = MemNode::Address;
3485     _end_idx  = n->req();
3486     _dep_next = dg.dep(_n)->in_head();
3487   } else if (_n->is_Mem()) {
3488     _next_idx = 0;
3489     _end_idx  = 0;
3490     _dep_next = dg.dep(_n)->in_head();
3491   } else {
3492     _next_idx = 1;
3493     _end_idx  = _n->req();
3494     _dep_next = NULL;
3495   }
3496   next();
3497 }
3498 
3499 //------------------------------next---------------------------
3500 void DepPreds::next() {
3501   if (_dep_next != NULL) {
3502     _current  = _dep_next->pred()->node();
3503     _dep_next = _dep_next->next_in();
3504   } else if (_next_idx < _end_idx) {
3505     _current  = _n->in(_next_idx++);
3506   } else {
3507     _done = true;
3508   }
3509 }
3510 
3511 // =========================== DepSuccs =========================
3512 // Iterator over successor edges in the dependence graph.
3513 
3514 //------------------------------DepSuccs---------------------------
3515 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
3516   _n = n;
3517   _done = false;
3518   if (_n->is_Load()) {
3519     _next_idx = 0;
3520     _end_idx  = _n->outcnt();
3521     _dep_next = dg.dep(_n)->out_head();
3522   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
3523     _next_idx = 0;
3524     _end_idx  = 0;
3525     _dep_next = dg.dep(_n)->out_head();
3526   } else {
3527     _next_idx = 0;
3528     _end_idx  = _n->outcnt();
3529     _dep_next = NULL;
3530   }
3531   next();
3532 }
3533 
3534 //-------------------------------next---------------------------
3535 void DepSuccs::next() {
3536   if (_dep_next != NULL) {
3537     _current  = _dep_next->succ()->node();
3538     _dep_next = _dep_next->next_out();
3539   } else if (_next_idx < _end_idx) {
3540     _current  = _n->raw_out(_next_idx++);
3541   } else {
3542     _done = true;
3543   }
3544 }
3545 
3546 //
3547 // --------------------------------- vectorization/simd -----------------------------------
3548 //
3549 bool SuperWord::same_origin_idx(Node* a, Node* b) const {
3550   return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
3551 }
3552 bool SuperWord::same_generation(Node* a, Node* b) const {
3553   return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
3554 }
3555 
3556 Node*  SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
3557   assert(in_bb(ld), "must be in block");
3558   if (_clone_map.gen(ld->_idx) == _ii_first) {
3559 #ifndef PRODUCT
3560     if (_vector_loop_debug) {
3561       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
3562         _clone_map.gen(ld->_idx));
3563     }
3564 #endif
3565     return NULL; //we think that any ld in the first gen being vectorizable
3566   }
3567 
3568   Node* mem = ld->in(MemNode::Memory);
3569   if (mem->outcnt() <= 1) {
3570     // we don't want to remove the only edge from mem node to load
3571 #ifndef PRODUCT
3572     if (_vector_loop_debug) {
3573       tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
3574         mem->_idx, ld->_idx);
3575       ld->dump();
3576       mem->dump();
3577     }
3578 #endif
3579     return NULL;
3580   }
3581   if (!in_bb(mem) || same_generation(mem, ld)) {
3582 #ifndef PRODUCT
3583     if (_vector_loop_debug) {
3584       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
3585         _clone_map.gen(mem->_idx));
3586     }
3587 #endif
3588     return NULL; // does not depend on loop volatile node or depends on the same generation
3589   }
3590 
3591   //otherwise first node should depend on mem-phi
3592   Node* first = first_node(ld);
3593   assert(first->is_Load(), "must be Load");
3594   Node* phi = first->as_Load()->in(MemNode::Memory);
3595   if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
3596 #ifndef PRODUCT
3597     if (_vector_loop_debug) {
3598       tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
3599       ld->dump();
3600       first->dump();
3601     }
3602 #endif
3603     return NULL;
3604   }
3605 
3606   Node* tail = 0;
3607   for (int m = 0; m < _mem_slice_head.length(); m++) {
3608     if (_mem_slice_head.at(m) == phi) {
3609       tail = _mem_slice_tail.at(m);
3610     }
3611   }
3612   if (tail == 0) { //test that found phi is in the list  _mem_slice_head
3613 #ifndef PRODUCT
3614     if (_vector_loop_debug) {
3615       tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
3616         ld->_idx, phi->_idx);
3617       ld->dump();
3618       phi->dump();
3619     }
3620 #endif
3621     return NULL;
3622   }
3623 
3624   // now all conditions are met
3625   return phi;
3626 }
3627 
3628 Node* SuperWord::first_node(Node* nd) {
3629   for (int ii = 0; ii < _iteration_first.length(); ii++) {
3630     Node* nnn = _iteration_first.at(ii);
3631     if (same_origin_idx(nnn, nd)) {
3632 #ifndef PRODUCT
3633       if (_vector_loop_debug) {
3634         tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
3635           nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
3636       }
3637 #endif
3638       return nnn;
3639     }
3640   }
3641 
3642 #ifndef PRODUCT
3643   if (_vector_loop_debug) {
3644     tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
3645       nd->_idx, _clone_map.idx(nd->_idx));
3646   }
3647 #endif
3648   return 0;
3649 }
3650 
3651 Node* SuperWord::last_node(Node* nd) {
3652   for (int ii = 0; ii < _iteration_last.length(); ii++) {
3653     Node* nnn = _iteration_last.at(ii);
3654     if (same_origin_idx(nnn, nd)) {
3655 #ifndef PRODUCT
3656       if (_vector_loop_debug) {
3657         tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
3658           _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
3659       }
3660 #endif
3661       return nnn;
3662     }
3663   }
3664   return 0;
3665 }
3666 
3667 int SuperWord::mark_generations() {
3668   Node *ii_err = 0, *tail_err;
3669   for (int i = 0; i < _mem_slice_head.length(); i++) {
3670     Node* phi  = _mem_slice_head.at(i);
3671     assert(phi->is_Phi(), "must be phi");
3672 
3673     Node* tail = _mem_slice_tail.at(i);
3674     if (_ii_last == -1) {
3675       tail_err = tail;
3676       _ii_last = _clone_map.gen(tail->_idx);
3677     }
3678     else if (_ii_last != _clone_map.gen(tail->_idx)) {
3679 #ifndef PRODUCT
3680       if (TraceSuperWord && Verbose) {
3681         tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
3682         tail->dump();
3683         tail_err->dump();
3684       }
3685 #endif
3686       return -1;
3687     }
3688 
3689     // find first iteration in the loop
3690     for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
3691       Node* ii = phi->fast_out(i);
3692       if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
3693         if (_ii_first == -1) {
3694           ii_err = ii;
3695           _ii_first = _clone_map.gen(ii->_idx);
3696         } else if (_ii_first != _clone_map.gen(ii->_idx)) {
3697 #ifndef PRODUCT
3698           if (TraceSuperWord && Verbose) {
3699             tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
3700             ii->dump();
3701             if (ii_err!= 0) {
3702               ii_err->dump();
3703             }
3704           }
3705 #endif
3706           return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
3707         }
3708       }
3709     }//for (DUIterator_Fast imax,
3710   }//for (int i...
3711 
3712   if (_ii_first == -1 || _ii_last == -1) {
3713 #ifndef PRODUCT
3714     if (TraceSuperWord && Verbose) {
3715       tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
3716     }
3717 #endif
3718     return -1; // something vent wrong
3719   }
3720   // collect nodes in the first and last generations
3721   assert(_iteration_first.length() == 0, "_iteration_first must be empty");
3722   assert(_iteration_last.length() == 0, "_iteration_last must be empty");
3723   for (int j = 0; j < _block.length(); j++) {
3724     Node* n = _block.at(j);
3725     node_idx_t gen = _clone_map.gen(n->_idx);
3726     if ((signed)gen == _ii_first) {
3727       _iteration_first.push(n);
3728     } else if ((signed)gen == _ii_last) {
3729       _iteration_last.push(n);
3730     }
3731   }
3732 
3733   // building order of iterations
3734   if (_ii_order.length() == 0 && ii_err != 0) {
3735     assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
3736     Node* nd = ii_err;
3737     while(_clone_map.gen(nd->_idx) != _ii_last) {
3738       _ii_order.push(_clone_map.gen(nd->_idx));
3739       bool found = false;
3740       for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
3741         Node* use = nd->fast_out(i);
3742         if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
3743           found = true;
3744           nd = use;
3745           break;
3746         }
3747       }//for
3748 
3749       if (found == false) {
3750 #ifndef PRODUCT
3751         if (TraceSuperWord && Verbose) {
3752           tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
3753         }
3754 #endif
3755         _ii_order.clear();
3756         return -1;
3757       }
3758     } //while
3759     _ii_order.push(_clone_map.gen(nd->_idx));
3760   }
3761 
3762 #ifndef PRODUCT
3763   if (_vector_loop_debug) {
3764     tty->print_cr("SuperWord::mark_generations");
3765     tty->print_cr("First generation (%d) nodes:", _ii_first);
3766     for (int ii = 0; ii < _iteration_first.length(); ii++)  _iteration_first.at(ii)->dump();
3767     tty->print_cr("Last generation (%d) nodes:", _ii_last);
3768     for (int ii = 0; ii < _iteration_last.length(); ii++)  _iteration_last.at(ii)->dump();
3769     tty->print_cr(" ");
3770 
3771     tty->print("SuperWord::List of generations: ");
3772     for (int jj = 0; jj < _ii_order.length(); ++jj) {
3773       tty->print("%d:%d ", jj, _ii_order.at(jj));
3774     }
3775     tty->print_cr(" ");
3776   }
3777 #endif
3778 
3779   return _ii_first;
3780 }
3781 
3782 bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
3783   assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
3784   assert(same_origin_idx(gold, fix), "should be clones of the same node");
3785   Node* gin1 = gold->in(1);
3786   Node* gin2 = gold->in(2);
3787   Node* fin1 = fix->in(1);
3788   Node* fin2 = fix->in(2);
3789   bool swapped = false;
3790 
3791   if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
3792     if (same_origin_idx(gin1, fin1) &&
3793         same_origin_idx(gin2, fin2)) {
3794       return true; // nothing to fix
3795     }
3796     if (same_origin_idx(gin1, fin2) &&
3797         same_origin_idx(gin2, fin1)) {
3798       fix->swap_edges(1, 2);
3799       swapped = true;
3800     }
3801   }
3802   // at least one input comes from outside of bb
3803   if (gin1->_idx == fin1->_idx)  {
3804     return true; // nothing to fix
3805   }
3806   if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx))  { //swapping is expensive, check condition first
3807     fix->swap_edges(1, 2);
3808     swapped = true;
3809   }
3810 
3811   if (swapped) {
3812 #ifndef PRODUCT
3813     if (_vector_loop_debug) {
3814       tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
3815     }
3816 #endif
3817     return true;
3818   }
3819 
3820 #ifndef PRODUCT
3821   if (TraceSuperWord && Verbose) {
3822     tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
3823   }
3824 #endif
3825   return false;
3826 }
3827 
3828 bool SuperWord::pack_parallel() {
3829 #ifndef PRODUCT
3830   if (_vector_loop_debug) {
3831     tty->print_cr("SuperWord::pack_parallel: START");
3832   }
3833 #endif
3834 
3835   _packset.clear();
3836 
3837   for (int ii = 0; ii < _iteration_first.length(); ii++) {
3838     Node* nd = _iteration_first.at(ii);
3839     if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
3840       Node_List* pk = new Node_List();
3841       pk->push(nd);
3842       for (int gen = 1; gen < _ii_order.length(); ++gen) {
3843         for (int kk = 0; kk < _block.length(); kk++) {
3844           Node* clone = _block.at(kk);
3845           if (same_origin_idx(clone, nd) &&
3846               _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
3847             if (nd->is_Add() || nd->is_Mul()) {
3848               fix_commutative_inputs(nd, clone);
3849             }
3850             pk->push(clone);
3851             if (pk->size() == 4) {
3852               _packset.append(pk);
3853 #ifndef PRODUCT
3854               if (_vector_loop_debug) {
3855                 tty->print_cr("SuperWord::pack_parallel: added pack ");
3856                 pk->dump();
3857               }
3858 #endif
3859               if (_clone_map.gen(clone->_idx) != _ii_last) {
3860                 pk = new Node_List();
3861               }
3862             }
3863             break;
3864           }
3865         }
3866       }//for
3867     }//if
3868   }//for
3869 
3870 #ifndef PRODUCT
3871   if (_vector_loop_debug) {
3872     tty->print_cr("SuperWord::pack_parallel: END");
3873   }
3874 #endif
3875 
3876   return true;
3877 }
3878 
3879 bool SuperWord::hoist_loads_in_graph() {
3880   GrowableArray<Node*> loads;
3881 
3882 #ifndef PRODUCT
3883   if (_vector_loop_debug) {
3884     tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
3885   }
3886 #endif
3887 
3888   for (int i = 0; i < _mem_slice_head.length(); i++) {
3889     Node* n = _mem_slice_head.at(i);
3890     if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
3891 #ifndef PRODUCT
3892       if (TraceSuperWord && Verbose) {
3893         tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
3894       }
3895 #endif
3896       continue;
3897     }
3898 
3899 #ifndef PRODUCT
3900     if (_vector_loop_debug) {
3901       tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d  = _mem_slice_head.at(%d);", n->_idx, i);
3902     }
3903 #endif
3904 
3905     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3906       Node* ld = n->fast_out(i);
3907       if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
3908         for (int i = 0; i < _block.length(); i++) {
3909           Node* ld2 = _block.at(i);
3910           if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
3911               !same_generation(ld, ld2)) { // <= do not collect the first generation ld
3912 #ifndef PRODUCT
3913             if (_vector_loop_debug) {
3914               tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
3915                 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
3916             }
3917 #endif
3918             // could not do on-the-fly, since iterator is immutable
3919             loads.push(ld2);
3920           }
3921         }// for
3922       }//if
3923     }//for (DUIterator_Fast imax,
3924   }//for (int i = 0; i
3925 
3926   for (int i = 0; i < loads.length(); i++) {
3927     LoadNode* ld = loads.at(i)->as_Load();
3928     Node* phi = find_phi_for_mem_dep(ld);
3929     if (phi != NULL) {
3930 #ifndef PRODUCT
3931       if (_vector_loop_debug) {
3932         tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
3933           MemNode::Memory, ld->_idx, phi->_idx);
3934       }
3935 #endif
3936       _igvn.replace_input_of(ld, MemNode::Memory, phi);
3937     }
3938   }//for
3939 
3940   restart(); // invalidate all basic structures, since we rebuilt the graph
3941 
3942 #ifndef PRODUCT
3943   if (TraceSuperWord && Verbose) {
3944     tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
3945   }
3946 #endif
3947   return true;
3948 }
3949