1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/powerOfTwo.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 
 114 #ifndef _GNU_SOURCE
 115   #define _GNU_SOURCE
 116   #include <sched.h>
 117   #undef _GNU_SOURCE
 118 #else
 119   #include <sched.h>
 120 #endif
 121 
 122 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 123 // getrusage() is prepared to handle the associated failure.
 124 #ifndef RUSAGE_THREAD
 125   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 126 #endif
 127 
 128 #define MAX_PATH    (2 * K)
 129 
 130 #define MAX_SECS 100000000
 131 
 132 // for timer info max values which include all bits
 133 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 134 
 135 enum CoredumpFilterBit {
 136   FILE_BACKED_PVT_BIT = 1 << 2,
 137   FILE_BACKED_SHARED_BIT = 1 << 3,
 138   LARGEPAGES_BIT = 1 << 6,
 139   DAX_SHARED_BIT = 1 << 8
 140 };
 141 
 142 ////////////////////////////////////////////////////////////////////////////////
 143 // global variables
 144 julong os::Linux::_physical_memory = 0;
 145 
 146 address   os::Linux::_initial_thread_stack_bottom = NULL;
 147 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 148 
 149 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 150 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 151 pthread_t os::Linux::_main_thread;
 152 int os::Linux::_page_size = -1;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 const char * os::Linux::_glibc_version = NULL;
 155 const char * os::Linux::_libpthread_version = NULL;
 156 
 157 static jlong initial_time_count=0;
 158 
 159 static int clock_tics_per_sec = 100;
 160 
 161 // If the VM might have been created on the primordial thread, we need to resolve the
 162 // primordial thread stack bounds and check if the current thread might be the
 163 // primordial thread in places. If we know that the primordial thread is never used,
 164 // such as when the VM was created by one of the standard java launchers, we can
 165 // avoid this
 166 static bool suppress_primordial_thread_resolution = false;
 167 
 168 // For diagnostics to print a message once. see run_periodic_checks
 169 static sigset_t check_signal_done;
 170 static bool check_signals = true;
 171 
 172 // Signal number used to suspend/resume a thread
 173 
 174 // do not use any signal number less than SIGSEGV, see 4355769
 175 static int SR_signum = SIGUSR2;
 176 sigset_t SR_sigset;
 177 
 178 // utility functions
 179 
 180 static int SR_initialize();
 181 
 182 julong os::available_memory() {
 183   return Linux::available_memory();
 184 }
 185 
 186 julong os::Linux::available_memory() {
 187   // values in struct sysinfo are "unsigned long"
 188   struct sysinfo si;
 189   julong avail_mem;
 190 
 191   if (OSContainer::is_containerized()) {
 192     jlong mem_limit, mem_usage;
 193     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 194       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 195                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 196     }
 197     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 198       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 199     }
 200     if (mem_limit > 0 && mem_usage > 0 ) {
 201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 202       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 203       return avail_mem;
 204     }
 205   }
 206 
 207   sysinfo(&si);
 208   avail_mem = (julong)si.freeram * si.mem_unit;
 209   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 210   return avail_mem;
 211 }
 212 
 213 julong os::physical_memory() {
 214   jlong phys_mem = 0;
 215   if (OSContainer::is_containerized()) {
 216     jlong mem_limit;
 217     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 218       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 219       return mem_limit;
 220     }
 221     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 222                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 223   }
 224 
 225   phys_mem = Linux::physical_memory();
 226   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 227   return phys_mem;
 228 }
 229 
 230 static uint64_t initial_total_ticks = 0;
 231 static uint64_t initial_steal_ticks = 0;
 232 static bool     has_initial_tick_info = false;
 233 
 234 static void next_line(FILE *f) {
 235   int c;
 236   do {
 237     c = fgetc(f);
 238   } while (c != '\n' && c != EOF);
 239 }
 240 
 241 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 242   FILE*         fh;
 243   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 244   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 245   // irq: time  servicing interrupts; softirq: time servicing softirqs
 246   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 247   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 248   uint64_t      stealTicks = 0;
 249   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 250   // control of the Linux kernel
 251   uint64_t      guestNiceTicks = 0;
 252   int           logical_cpu = -1;
 253   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 254   int           n;
 255 
 256   memset(pticks, 0, sizeof(CPUPerfTicks));
 257 
 258   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 259     return false;
 260   }
 261 
 262   if (which_logical_cpu == -1) {
 263     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 264             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " ",
 266             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 267             &iowTicks, &irqTicks, &sirqTicks,
 268             &stealTicks, &guestNiceTicks);
 269   } else {
 270     // Move to next line
 271     next_line(fh);
 272 
 273     // find the line for requested cpu faster to just iterate linefeeds?
 274     for (int i = 0; i < which_logical_cpu; i++) {
 275       next_line(fh);
 276     }
 277 
 278     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 279                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " ",
 281                &logical_cpu, &userTicks, &niceTicks,
 282                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 283                &stealTicks, &guestNiceTicks);
 284   }
 285 
 286   fclose(fh);
 287   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 288     return false;
 289   }
 290   pticks->used       = userTicks + niceTicks;
 291   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 292   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 293                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 294 
 295   if (n > required_tickinfo_count + 3) {
 296     pticks->steal = stealTicks;
 297     pticks->has_steal_ticks = true;
 298   } else {
 299     pticks->steal = 0;
 300     pticks->has_steal_ticks = false;
 301   }
 302 
 303   return true;
 304 }
 305 
 306 // Return true if user is running as root.
 307 
 308 bool os::have_special_privileges() {
 309   static bool init = false;
 310   static bool privileges = false;
 311   if (!init) {
 312     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 313     init = true;
 314   }
 315   return privileges;
 316 }
 317 
 318 
 319 #ifndef SYS_gettid
 320 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 321   #ifdef __ia64__
 322     #define SYS_gettid 1105
 323   #else
 324     #ifdef __i386__
 325       #define SYS_gettid 224
 326     #else
 327       #ifdef __amd64__
 328         #define SYS_gettid 186
 329       #else
 330         #ifdef __sparc__
 331           #define SYS_gettid 143
 332         #else
 333           #error define gettid for the arch
 334         #endif
 335       #endif
 336     #endif
 337   #endif
 338 #endif
 339 
 340 
 341 // pid_t gettid()
 342 //
 343 // Returns the kernel thread id of the currently running thread. Kernel
 344 // thread id is used to access /proc.
 345 pid_t os::Linux::gettid() {
 346   int rslt = syscall(SYS_gettid);
 347   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 348   return (pid_t)rslt;
 349 }
 350 
 351 // Most versions of linux have a bug where the number of processors are
 352 // determined by looking at the /proc file system.  In a chroot environment,
 353 // the system call returns 1.
 354 static bool unsafe_chroot_detected = false;
 355 static const char *unstable_chroot_error = "/proc file system not found.\n"
 356                      "Java may be unstable running multithreaded in a chroot "
 357                      "environment on Linux when /proc filesystem is not mounted.";
 358 
 359 void os::Linux::initialize_system_info() {
 360   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 361   if (processor_count() == 1) {
 362     pid_t pid = os::Linux::gettid();
 363     char fname[32];
 364     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 365     FILE *fp = fopen(fname, "r");
 366     if (fp == NULL) {
 367       unsafe_chroot_detected = true;
 368     } else {
 369       fclose(fp);
 370     }
 371   }
 372   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 373   assert(processor_count() > 0, "linux error");
 374 }
 375 
 376 void os::init_system_properties_values() {
 377   // The next steps are taken in the product version:
 378   //
 379   // Obtain the JAVA_HOME value from the location of libjvm.so.
 380   // This library should be located at:
 381   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 382   //
 383   // If "/jre/lib/" appears at the right place in the path, then we
 384   // assume libjvm.so is installed in a JDK and we use this path.
 385   //
 386   // Otherwise exit with message: "Could not create the Java virtual machine."
 387   //
 388   // The following extra steps are taken in the debugging version:
 389   //
 390   // If "/jre/lib/" does NOT appear at the right place in the path
 391   // instead of exit check for $JAVA_HOME environment variable.
 392   //
 393   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 394   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 395   // it looks like libjvm.so is installed there
 396   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 397   //
 398   // Otherwise exit.
 399   //
 400   // Important note: if the location of libjvm.so changes this
 401   // code needs to be changed accordingly.
 402 
 403   // See ld(1):
 404   //      The linker uses the following search paths to locate required
 405   //      shared libraries:
 406   //        1: ...
 407   //        ...
 408   //        7: The default directories, normally /lib and /usr/lib.
 409 #ifndef OVERRIDE_LIBPATH
 410   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 411     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 412   #else
 413     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 414   #endif
 415 #else
 416   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 417 #endif
 418 
 419 // Base path of extensions installed on the system.
 420 #define SYS_EXT_DIR     "/usr/java/packages"
 421 #define EXTENSIONS_DIR  "/lib/ext"
 422 
 423   // Buffer that fits several sprintfs.
 424   // Note that the space for the colon and the trailing null are provided
 425   // by the nulls included by the sizeof operator.
 426   const size_t bufsize =
 427     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 428          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 429   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 430 
 431   // sysclasspath, java_home, dll_dir
 432   {
 433     char *pslash;
 434     os::jvm_path(buf, bufsize);
 435 
 436     // Found the full path to libjvm.so.
 437     // Now cut the path to <java_home>/jre if we can.
 438     pslash = strrchr(buf, '/');
 439     if (pslash != NULL) {
 440       *pslash = '\0';            // Get rid of /libjvm.so.
 441     }
 442     pslash = strrchr(buf, '/');
 443     if (pslash != NULL) {
 444       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 445     }
 446     Arguments::set_dll_dir(buf);
 447 
 448     if (pslash != NULL) {
 449       pslash = strrchr(buf, '/');
 450       if (pslash != NULL) {
 451         *pslash = '\0';        // Get rid of /lib.
 452       }
 453     }
 454     Arguments::set_java_home(buf);
 455     if (!set_boot_path('/', ':')) {
 456       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 457     }
 458   }
 459 
 460   // Where to look for native libraries.
 461   //
 462   // Note: Due to a legacy implementation, most of the library path
 463   // is set in the launcher. This was to accomodate linking restrictions
 464   // on legacy Linux implementations (which are no longer supported).
 465   // Eventually, all the library path setting will be done here.
 466   //
 467   // However, to prevent the proliferation of improperly built native
 468   // libraries, the new path component /usr/java/packages is added here.
 469   // Eventually, all the library path setting will be done here.
 470   {
 471     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 472     // should always exist (until the legacy problem cited above is
 473     // addressed).
 474     const char *v = ::getenv("LD_LIBRARY_PATH");
 475     const char *v_colon = ":";
 476     if (v == NULL) { v = ""; v_colon = ""; }
 477     // That's +1 for the colon and +1 for the trailing '\0'.
 478     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 479                                              strlen(v) + 1 +
 480                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 481                                              mtInternal);
 482     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 483     Arguments::set_library_path(ld_library_path);
 484     FREE_C_HEAP_ARRAY(char, ld_library_path);
 485   }
 486 
 487   // Extensions directories.
 488   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 489   Arguments::set_ext_dirs(buf);
 490 
 491   FREE_C_HEAP_ARRAY(char, buf);
 492 
 493 #undef DEFAULT_LIBPATH
 494 #undef SYS_EXT_DIR
 495 #undef EXTENSIONS_DIR
 496 }
 497 
 498 ////////////////////////////////////////////////////////////////////////////////
 499 // breakpoint support
 500 
 501 void os::breakpoint() {
 502   BREAKPOINT;
 503 }
 504 
 505 extern "C" void breakpoint() {
 506   // use debugger to set breakpoint here
 507 }
 508 
 509 ////////////////////////////////////////////////////////////////////////////////
 510 // signal support
 511 
 512 debug_only(static bool signal_sets_initialized = false);
 513 static sigset_t unblocked_sigs, vm_sigs;
 514 
 515 void os::Linux::signal_sets_init() {
 516   // Should also have an assertion stating we are still single-threaded.
 517   assert(!signal_sets_initialized, "Already initialized");
 518   // Fill in signals that are necessarily unblocked for all threads in
 519   // the VM. Currently, we unblock the following signals:
 520   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 521   //                         by -Xrs (=ReduceSignalUsage));
 522   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 523   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 524   // the dispositions or masks wrt these signals.
 525   // Programs embedding the VM that want to use the above signals for their
 526   // own purposes must, at this time, use the "-Xrs" option to prevent
 527   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 528   // (See bug 4345157, and other related bugs).
 529   // In reality, though, unblocking these signals is really a nop, since
 530   // these signals are not blocked by default.
 531   sigemptyset(&unblocked_sigs);
 532   sigaddset(&unblocked_sigs, SIGILL);
 533   sigaddset(&unblocked_sigs, SIGSEGV);
 534   sigaddset(&unblocked_sigs, SIGBUS);
 535   sigaddset(&unblocked_sigs, SIGFPE);
 536 #if defined(PPC64)
 537   sigaddset(&unblocked_sigs, SIGTRAP);
 538 #endif
 539   sigaddset(&unblocked_sigs, SR_signum);
 540 
 541   if (!ReduceSignalUsage) {
 542     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 543       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 544     }
 545     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 547     }
 548     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 549       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 550     }
 551   }
 552   // Fill in signals that are blocked by all but the VM thread.
 553   sigemptyset(&vm_sigs);
 554   if (!ReduceSignalUsage) {
 555     sigaddset(&vm_sigs, BREAK_SIGNAL);
 556   }
 557   debug_only(signal_sets_initialized = true);
 558 
 559 }
 560 
 561 // These are signals that are unblocked while a thread is running Java.
 562 // (For some reason, they get blocked by default.)
 563 sigset_t* os::Linux::unblocked_signals() {
 564   assert(signal_sets_initialized, "Not initialized");
 565   return &unblocked_sigs;
 566 }
 567 
 568 // These are the signals that are blocked while a (non-VM) thread is
 569 // running Java. Only the VM thread handles these signals.
 570 sigset_t* os::Linux::vm_signals() {
 571   assert(signal_sets_initialized, "Not initialized");
 572   return &vm_sigs;
 573 }
 574 
 575 void os::Linux::hotspot_sigmask(Thread* thread) {
 576 
 577   //Save caller's signal mask before setting VM signal mask
 578   sigset_t caller_sigmask;
 579   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 580 
 581   OSThread* osthread = thread->osthread();
 582   osthread->set_caller_sigmask(caller_sigmask);
 583 
 584   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 585 
 586   if (!ReduceSignalUsage) {
 587     if (thread->is_VM_thread()) {
 588       // Only the VM thread handles BREAK_SIGNAL ...
 589       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 590     } else {
 591       // ... all other threads block BREAK_SIGNAL
 592       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 593     }
 594   }
 595 }
 596 
 597 //////////////////////////////////////////////////////////////////////////////
 598 // detecting pthread library
 599 
 600 void os::Linux::libpthread_init() {
 601   // Save glibc and pthread version strings.
 602 #if !defined(_CS_GNU_LIBC_VERSION) || \
 603     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 604   #error "glibc too old (< 2.3.2)"
 605 #endif
 606 
 607   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 608   assert(n > 0, "cannot retrieve glibc version");
 609   char *str = (char *)malloc(n, mtInternal);
 610   confstr(_CS_GNU_LIBC_VERSION, str, n);
 611   os::Linux::set_glibc_version(str);
 612 
 613   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 614   assert(n > 0, "cannot retrieve pthread version");
 615   str = (char *)malloc(n, mtInternal);
 616   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 617   os::Linux::set_libpthread_version(str);
 618 }
 619 
 620 /////////////////////////////////////////////////////////////////////////////
 621 // thread stack expansion
 622 
 623 // os::Linux::manually_expand_stack() takes care of expanding the thread
 624 // stack. Note that this is normally not needed: pthread stacks allocate
 625 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 626 // committed. Therefore it is not necessary to expand the stack manually.
 627 //
 628 // Manually expanding the stack was historically needed on LinuxThreads
 629 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 630 // it is kept to deal with very rare corner cases:
 631 //
 632 // For one, user may run the VM on an own implementation of threads
 633 // whose stacks are - like the old LinuxThreads - implemented using
 634 // mmap(MAP_GROWSDOWN).
 635 //
 636 // Also, this coding may be needed if the VM is running on the primordial
 637 // thread. Normally we avoid running on the primordial thread; however,
 638 // user may still invoke the VM on the primordial thread.
 639 //
 640 // The following historical comment describes the details about running
 641 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 642 
 643 
 644 // Force Linux kernel to expand current thread stack. If "bottom" is close
 645 // to the stack guard, caller should block all signals.
 646 //
 647 // MAP_GROWSDOWN:
 648 //   A special mmap() flag that is used to implement thread stacks. It tells
 649 //   kernel that the memory region should extend downwards when needed. This
 650 //   allows early versions of LinuxThreads to only mmap the first few pages
 651 //   when creating a new thread. Linux kernel will automatically expand thread
 652 //   stack as needed (on page faults).
 653 //
 654 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 655 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 656 //   region, it's hard to tell if the fault is due to a legitimate stack
 657 //   access or because of reading/writing non-exist memory (e.g. buffer
 658 //   overrun). As a rule, if the fault happens below current stack pointer,
 659 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 660 //   application (see Linux kernel fault.c).
 661 //
 662 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 663 //   stack overflow detection.
 664 //
 665 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 666 //   not use MAP_GROWSDOWN.
 667 //
 668 // To get around the problem and allow stack banging on Linux, we need to
 669 // manually expand thread stack after receiving the SIGSEGV.
 670 //
 671 // There are two ways to expand thread stack to address "bottom", we used
 672 // both of them in JVM before 1.5:
 673 //   1. adjust stack pointer first so that it is below "bottom", and then
 674 //      touch "bottom"
 675 //   2. mmap() the page in question
 676 //
 677 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 678 // if current sp is already near the lower end of page 101, and we need to
 679 // call mmap() to map page 100, it is possible that part of the mmap() frame
 680 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 681 // That will destroy the mmap() frame and cause VM to crash.
 682 //
 683 // The following code works by adjusting sp first, then accessing the "bottom"
 684 // page to force a page fault. Linux kernel will then automatically expand the
 685 // stack mapping.
 686 //
 687 // _expand_stack_to() assumes its frame size is less than page size, which
 688 // should always be true if the function is not inlined.
 689 
 690 static void NOINLINE _expand_stack_to(address bottom) {
 691   address sp;
 692   size_t size;
 693   volatile char *p;
 694 
 695   // Adjust bottom to point to the largest address within the same page, it
 696   // gives us a one-page buffer if alloca() allocates slightly more memory.
 697   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 698   bottom += os::Linux::page_size() - 1;
 699 
 700   // sp might be slightly above current stack pointer; if that's the case, we
 701   // will alloca() a little more space than necessary, which is OK. Don't use
 702   // os::current_stack_pointer(), as its result can be slightly below current
 703   // stack pointer, causing us to not alloca enough to reach "bottom".
 704   sp = (address)&sp;
 705 
 706   if (sp > bottom) {
 707     size = sp - bottom;
 708     p = (volatile char *)alloca(size);
 709     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 710     p[0] = '\0';
 711   }
 712 }
 713 
 714 void os::Linux::expand_stack_to(address bottom) {
 715   _expand_stack_to(bottom);
 716 }
 717 
 718 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 719   assert(t!=NULL, "just checking");
 720   assert(t->osthread()->expanding_stack(), "expand should be set");
 721   assert(t->stack_base() != NULL, "stack_base was not initialized");
 722 
 723   if (t->is_in_usable_stack(addr)) {
 724     sigset_t mask_all, old_sigset;
 725     sigfillset(&mask_all);
 726     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 727     _expand_stack_to(addr);
 728     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 729     return true;
 730   }
 731   return false;
 732 }
 733 
 734 //////////////////////////////////////////////////////////////////////////////
 735 // create new thread
 736 
 737 // Thread start routine for all newly created threads
 738 static void *thread_native_entry(Thread *thread) {
 739 
 740   thread->record_stack_base_and_size();
 741 
 742   // Try to randomize the cache line index of hot stack frames.
 743   // This helps when threads of the same stack traces evict each other's
 744   // cache lines. The threads can be either from the same JVM instance, or
 745   // from different JVM instances. The benefit is especially true for
 746   // processors with hyperthreading technology.
 747   static int counter = 0;
 748   int pid = os::current_process_id();
 749   alloca(((pid ^ counter++) & 7) * 128);
 750 
 751   thread->initialize_thread_current();
 752 
 753   OSThread* osthread = thread->osthread();
 754   Monitor* sync = osthread->startThread_lock();
 755 
 756   osthread->set_thread_id(os::current_thread_id());
 757 
 758   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 759     os::current_thread_id(), (uintx) pthread_self());
 760 
 761   if (UseNUMA) {
 762     int lgrp_id = os::numa_get_group_id();
 763     if (lgrp_id != -1) {
 764       thread->set_lgrp_id(lgrp_id);
 765     }
 766   }
 767   // initialize signal mask for this thread
 768   os::Linux::hotspot_sigmask(thread);
 769 
 770   // initialize floating point control register
 771   os::Linux::init_thread_fpu_state();
 772 
 773   // handshaking with parent thread
 774   {
 775     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 776 
 777     // notify parent thread
 778     osthread->set_state(INITIALIZED);
 779     sync->notify_all();
 780 
 781     // wait until os::start_thread()
 782     while (osthread->get_state() == INITIALIZED) {
 783       sync->wait_without_safepoint_check();
 784     }
 785   }
 786 
 787   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 788 
 789   // call one more level start routine
 790   thread->call_run();
 791 
 792   // Note: at this point the thread object may already have deleted itself.
 793   // Prevent dereferencing it from here on out.
 794   thread = NULL;
 795 
 796   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 797     os::current_thread_id(), (uintx) pthread_self());
 798 
 799   return 0;
 800 }
 801 
 802 // On Linux, glibc places static TLS blocks (for __thread variables) on
 803 // the thread stack. This decreases the stack size actually available
 804 // to threads.
 805 //
 806 // For large static TLS sizes, this may cause threads to malfunction due
 807 // to insufficient stack space. This is a well-known issue in glibc:
 808 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 809 //
 810 // As a workaround, we call a private but assumed-stable glibc function,
 811 // __pthread_get_minstack() to obtain the minstack size and derive the
 812 // static TLS size from it. We then increase the user requested stack
 813 // size by this TLS size.
 814 //
 815 // Due to compatibility concerns, this size adjustment is opt-in and
 816 // controlled via AdjustStackSizeForTLS.
 817 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 818 
 819 GetMinStack _get_minstack_func = NULL;
 820 
 821 static void get_minstack_init() {
 822   _get_minstack_func =
 823         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 824   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 825                        _get_minstack_func == NULL ? "failed" : "succeeded");
 826 }
 827 
 828 // Returns the size of the static TLS area glibc puts on thread stacks.
 829 // The value is cached on first use, which occurs when the first thread
 830 // is created during VM initialization.
 831 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 832   size_t tls_size = 0;
 833   if (_get_minstack_func != NULL) {
 834     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 835     size_t minstack_size = _get_minstack_func(attr);
 836 
 837     // Remove non-TLS area size included in minstack size returned
 838     // by __pthread_get_minstack() to get the static TLS size.
 839     // In glibc before 2.27, minstack size includes guard_size.
 840     // In glibc 2.27 and later, guard_size is automatically added
 841     // to the stack size by pthread_create and is no longer included
 842     // in minstack size. In both cases, the guard_size is taken into
 843     // account, so there is no need to adjust the result for that.
 844     //
 845     // Although __pthread_get_minstack() is a private glibc function,
 846     // it is expected to have a stable behavior across future glibc
 847     // versions while glibc still allocates the static TLS blocks off
 848     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 849     //
 850     // size_t
 851     // __pthread_get_minstack (const pthread_attr_t *attr)
 852     // {
 853     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 854     // }
 855     //
 856     //
 857     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 858     // if check is done for precaution.
 859     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 860       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 861     }
 862   }
 863 
 864   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 865                        tls_size);
 866   return tls_size;
 867 }
 868 
 869 bool os::create_thread(Thread* thread, ThreadType thr_type,
 870                        size_t req_stack_size) {
 871   assert(thread->osthread() == NULL, "caller responsible");
 872 
 873   // Allocate the OSThread object
 874   OSThread* osthread = new OSThread(NULL, NULL);
 875   if (osthread == NULL) {
 876     return false;
 877   }
 878 
 879   // set the correct thread state
 880   osthread->set_thread_type(thr_type);
 881 
 882   // Initial state is ALLOCATED but not INITIALIZED
 883   osthread->set_state(ALLOCATED);
 884 
 885   thread->set_osthread(osthread);
 886 
 887   // init thread attributes
 888   pthread_attr_t attr;
 889   pthread_attr_init(&attr);
 890   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 891 
 892   // Calculate stack size if it's not specified by caller.
 893   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 894   // In glibc versions prior to 2.7 the guard size mechanism
 895   // is not implemented properly. The posix standard requires adding
 896   // the size of the guard pages to the stack size, instead Linux
 897   // takes the space out of 'stacksize'. Thus we adapt the requested
 898   // stack_size by the size of the guard pages to mimick proper
 899   // behaviour. However, be careful not to end up with a size
 900   // of zero due to overflow. Don't add the guard page in that case.
 901   size_t guard_size = os::Linux::default_guard_size(thr_type);
 902   // Configure glibc guard page. Must happen before calling
 903   // get_static_tls_area_size(), which uses the guard_size.
 904   pthread_attr_setguardsize(&attr, guard_size);
 905 
 906   size_t stack_adjust_size = 0;
 907   if (AdjustStackSizeForTLS) {
 908     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 909     stack_adjust_size += get_static_tls_area_size(&attr);
 910   } else {
 911     stack_adjust_size += guard_size;
 912   }
 913 
 914   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 915   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 916     stack_size += stack_adjust_size;
 917   }
 918   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 919 
 920   int status = pthread_attr_setstacksize(&attr, stack_size);
 921   assert_status(status == 0, status, "pthread_attr_setstacksize");
 922 
 923   ThreadState state;
 924 
 925   {
 926     pthread_t tid;
 927     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 928 
 929     char buf[64];
 930     if (ret == 0) {
 931       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 932         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 933     } else {
 934       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 935         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 936       // Log some OS information which might explain why creating the thread failed.
 937       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 938       LogStream st(Log(os, thread)::info());
 939       os::Posix::print_rlimit_info(&st);
 940       os::print_memory_info(&st);
 941       os::Linux::print_proc_sys_info(&st);
 942       os::Linux::print_container_info(&st);
 943     }
 944 
 945     pthread_attr_destroy(&attr);
 946 
 947     if (ret != 0) {
 948       // Need to clean up stuff we've allocated so far
 949       thread->set_osthread(NULL);
 950       delete osthread;
 951       return false;
 952     }
 953 
 954     // Store pthread info into the OSThread
 955     osthread->set_pthread_id(tid);
 956 
 957     // Wait until child thread is either initialized or aborted
 958     {
 959       Monitor* sync_with_child = osthread->startThread_lock();
 960       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 961       while ((state = osthread->get_state()) == ALLOCATED) {
 962         sync_with_child->wait_without_safepoint_check();
 963       }
 964     }
 965   }
 966 
 967   // Aborted due to thread limit being reached
 968   if (state == ZOMBIE) {
 969     thread->set_osthread(NULL);
 970     delete osthread;
 971     return false;
 972   }
 973 
 974   // The thread is returned suspended (in state INITIALIZED),
 975   // and is started higher up in the call chain
 976   assert(state == INITIALIZED, "race condition");
 977   return true;
 978 }
 979 
 980 /////////////////////////////////////////////////////////////////////////////
 981 // attach existing thread
 982 
 983 // bootstrap the main thread
 984 bool os::create_main_thread(JavaThread* thread) {
 985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 986   return create_attached_thread(thread);
 987 }
 988 
 989 bool os::create_attached_thread(JavaThread* thread) {
 990 #ifdef ASSERT
 991   thread->verify_not_published();
 992 #endif
 993 
 994   // Allocate the OSThread object
 995   OSThread* osthread = new OSThread(NULL, NULL);
 996 
 997   if (osthread == NULL) {
 998     return false;
 999   }
1000 
1001   // Store pthread info into the OSThread
1002   osthread->set_thread_id(os::Linux::gettid());
1003   osthread->set_pthread_id(::pthread_self());
1004 
1005   // initialize floating point control register
1006   os::Linux::init_thread_fpu_state();
1007 
1008   // Initial thread state is RUNNABLE
1009   osthread->set_state(RUNNABLE);
1010 
1011   thread->set_osthread(osthread);
1012 
1013   if (UseNUMA) {
1014     int lgrp_id = os::numa_get_group_id();
1015     if (lgrp_id != -1) {
1016       thread->set_lgrp_id(lgrp_id);
1017     }
1018   }
1019 
1020   if (os::is_primordial_thread()) {
1021     // If current thread is primordial thread, its stack is mapped on demand,
1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023     // the entire stack region to avoid SEGV in stack banging.
1024     // It is also useful to get around the heap-stack-gap problem on SuSE
1025     // kernel (see 4821821 for details). We first expand stack to the top
1026     // of yellow zone, then enable stack yellow zone (order is significant,
1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028     // is no gap between the last two virtual memory regions.
1029 
1030     JavaThread *jt = (JavaThread *)thread;
1031     address addr = jt->stack_reserved_zone_base();
1032     assert(addr != NULL, "initialization problem?");
1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034 
1035     osthread->set_expanding_stack();
1036     os::Linux::manually_expand_stack(jt, addr);
1037     osthread->clear_expanding_stack();
1038   }
1039 
1040   // initialize signal mask for this thread
1041   // and save the caller's signal mask
1042   os::Linux::hotspot_sigmask(thread);
1043 
1044   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1045     os::current_thread_id(), (uintx) pthread_self());
1046 
1047   return true;
1048 }
1049 
1050 void os::pd_start_thread(Thread* thread) {
1051   OSThread * osthread = thread->osthread();
1052   assert(osthread->get_state() != INITIALIZED, "just checking");
1053   Monitor* sync_with_child = osthread->startThread_lock();
1054   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1055   sync_with_child->notify();
1056 }
1057 
1058 // Free Linux resources related to the OSThread
1059 void os::free_thread(OSThread* osthread) {
1060   assert(osthread != NULL, "osthread not set");
1061 
1062   // We are told to free resources of the argument thread,
1063   // but we can only really operate on the current thread.
1064   assert(Thread::current()->osthread() == osthread,
1065          "os::free_thread but not current thread");
1066 
1067 #ifdef ASSERT
1068   sigset_t current;
1069   sigemptyset(&current);
1070   pthread_sigmask(SIG_SETMASK, NULL, &current);
1071   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1072 #endif
1073 
1074   // Restore caller's signal mask
1075   sigset_t sigmask = osthread->caller_sigmask();
1076   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1077 
1078   delete osthread;
1079 }
1080 
1081 //////////////////////////////////////////////////////////////////////////////
1082 // primordial thread
1083 
1084 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1085 bool os::is_primordial_thread(void) {
1086   if (suppress_primordial_thread_resolution) {
1087     return false;
1088   }
1089   char dummy;
1090   // If called before init complete, thread stack bottom will be null.
1091   // Can be called if fatal error occurs before initialization.
1092   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1093   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1094          os::Linux::initial_thread_stack_size()   != 0,
1095          "os::init did not locate primordial thread's stack region");
1096   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1097       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1098                         os::Linux::initial_thread_stack_size()) {
1099     return true;
1100   } else {
1101     return false;
1102   }
1103 }
1104 
1105 // Find the virtual memory area that contains addr
1106 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1107   FILE *fp = fopen("/proc/self/maps", "r");
1108   if (fp) {
1109     address low, high;
1110     while (!feof(fp)) {
1111       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1112         if (low <= addr && addr < high) {
1113           if (vma_low)  *vma_low  = low;
1114           if (vma_high) *vma_high = high;
1115           fclose(fp);
1116           return true;
1117         }
1118       }
1119       for (;;) {
1120         int ch = fgetc(fp);
1121         if (ch == EOF || ch == (int)'\n') break;
1122       }
1123     }
1124     fclose(fp);
1125   }
1126   return false;
1127 }
1128 
1129 // Locate primordial thread stack. This special handling of primordial thread stack
1130 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1131 // bogus value for the primordial process thread. While the launcher has created
1132 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1133 // JNI invocation API from a primordial thread.
1134 void os::Linux::capture_initial_stack(size_t max_size) {
1135 
1136   // max_size is either 0 (which means accept OS default for thread stacks) or
1137   // a user-specified value known to be at least the minimum needed. If we
1138   // are actually on the primordial thread we can make it appear that we have a
1139   // smaller max_size stack by inserting the guard pages at that location. But we
1140   // cannot do anything to emulate a larger stack than what has been provided by
1141   // the OS or threading library. In fact if we try to use a stack greater than
1142   // what is set by rlimit then we will crash the hosting process.
1143 
1144   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1145   // If this is "unlimited" then it will be a huge value.
1146   struct rlimit rlim;
1147   getrlimit(RLIMIT_STACK, &rlim);
1148   size_t stack_size = rlim.rlim_cur;
1149 
1150   // 6308388: a bug in ld.so will relocate its own .data section to the
1151   //   lower end of primordial stack; reduce ulimit -s value a little bit
1152   //   so we won't install guard page on ld.so's data section.
1153   //   But ensure we don't underflow the stack size - allow 1 page spare
1154   if (stack_size >= (size_t)(3 * page_size())) {
1155     stack_size -= 2 * page_size();
1156   }
1157 
1158   // Try to figure out where the stack base (top) is. This is harder.
1159   //
1160   // When an application is started, glibc saves the initial stack pointer in
1161   // a global variable "__libc_stack_end", which is then used by system
1162   // libraries. __libc_stack_end should be pretty close to stack top. The
1163   // variable is available since the very early days. However, because it is
1164   // a private interface, it could disappear in the future.
1165   //
1166   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1167   // to __libc_stack_end, it is very close to stack top, but isn't the real
1168   // stack top. Note that /proc may not exist if VM is running as a chroot
1169   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1170   // /proc/<pid>/stat could change in the future (though unlikely).
1171   //
1172   // We try __libc_stack_end first. If that doesn't work, look for
1173   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1174   // as a hint, which should work well in most cases.
1175 
1176   uintptr_t stack_start;
1177 
1178   // try __libc_stack_end first
1179   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1180   if (p && *p) {
1181     stack_start = *p;
1182   } else {
1183     // see if we can get the start_stack field from /proc/self/stat
1184     FILE *fp;
1185     int pid;
1186     char state;
1187     int ppid;
1188     int pgrp;
1189     int session;
1190     int nr;
1191     int tpgrp;
1192     unsigned long flags;
1193     unsigned long minflt;
1194     unsigned long cminflt;
1195     unsigned long majflt;
1196     unsigned long cmajflt;
1197     unsigned long utime;
1198     unsigned long stime;
1199     long cutime;
1200     long cstime;
1201     long prio;
1202     long nice;
1203     long junk;
1204     long it_real;
1205     uintptr_t start;
1206     uintptr_t vsize;
1207     intptr_t rss;
1208     uintptr_t rsslim;
1209     uintptr_t scodes;
1210     uintptr_t ecode;
1211     int i;
1212 
1213     // Figure what the primordial thread stack base is. Code is inspired
1214     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1215     // followed by command name surrounded by parentheses, state, etc.
1216     char stat[2048];
1217     int statlen;
1218 
1219     fp = fopen("/proc/self/stat", "r");
1220     if (fp) {
1221       statlen = fread(stat, 1, 2047, fp);
1222       stat[statlen] = '\0';
1223       fclose(fp);
1224 
1225       // Skip pid and the command string. Note that we could be dealing with
1226       // weird command names, e.g. user could decide to rename java launcher
1227       // to "java 1.4.2 :)", then the stat file would look like
1228       //                1234 (java 1.4.2 :)) R ... ...
1229       // We don't really need to know the command string, just find the last
1230       // occurrence of ")" and then start parsing from there. See bug 4726580.
1231       char * s = strrchr(stat, ')');
1232 
1233       i = 0;
1234       if (s) {
1235         // Skip blank chars
1236         do { s++; } while (s && isspace(*s));
1237 
1238 #define _UFM UINTX_FORMAT
1239 #define _DFM INTX_FORMAT
1240 
1241         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1242         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1243         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1244                    &state,          // 3  %c
1245                    &ppid,           // 4  %d
1246                    &pgrp,           // 5  %d
1247                    &session,        // 6  %d
1248                    &nr,             // 7  %d
1249                    &tpgrp,          // 8  %d
1250                    &flags,          // 9  %lu
1251                    &minflt,         // 10 %lu
1252                    &cminflt,        // 11 %lu
1253                    &majflt,         // 12 %lu
1254                    &cmajflt,        // 13 %lu
1255                    &utime,          // 14 %lu
1256                    &stime,          // 15 %lu
1257                    &cutime,         // 16 %ld
1258                    &cstime,         // 17 %ld
1259                    &prio,           // 18 %ld
1260                    &nice,           // 19 %ld
1261                    &junk,           // 20 %ld
1262                    &it_real,        // 21 %ld
1263                    &start,          // 22 UINTX_FORMAT
1264                    &vsize,          // 23 UINTX_FORMAT
1265                    &rss,            // 24 INTX_FORMAT
1266                    &rsslim,         // 25 UINTX_FORMAT
1267                    &scodes,         // 26 UINTX_FORMAT
1268                    &ecode,          // 27 UINTX_FORMAT
1269                    &stack_start);   // 28 UINTX_FORMAT
1270       }
1271 
1272 #undef _UFM
1273 #undef _DFM
1274 
1275       if (i != 28 - 2) {
1276         assert(false, "Bad conversion from /proc/self/stat");
1277         // product mode - assume we are the primordial thread, good luck in the
1278         // embedded case.
1279         warning("Can't detect primordial thread stack location - bad conversion");
1280         stack_start = (uintptr_t) &rlim;
1281       }
1282     } else {
1283       // For some reason we can't open /proc/self/stat (for example, running on
1284       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1285       // most cases, so don't abort:
1286       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1287       stack_start = (uintptr_t) &rlim;
1288     }
1289   }
1290 
1291   // Now we have a pointer (stack_start) very close to the stack top, the
1292   // next thing to do is to figure out the exact location of stack top. We
1293   // can find out the virtual memory area that contains stack_start by
1294   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1295   // and its upper limit is the real stack top. (again, this would fail if
1296   // running inside chroot, because /proc may not exist.)
1297 
1298   uintptr_t stack_top;
1299   address low, high;
1300   if (find_vma((address)stack_start, &low, &high)) {
1301     // success, "high" is the true stack top. (ignore "low", because initial
1302     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1303     stack_top = (uintptr_t)high;
1304   } else {
1305     // failed, likely because /proc/self/maps does not exist
1306     warning("Can't detect primordial thread stack location - find_vma failed");
1307     // best effort: stack_start is normally within a few pages below the real
1308     // stack top, use it as stack top, and reduce stack size so we won't put
1309     // guard page outside stack.
1310     stack_top = stack_start;
1311     stack_size -= 16 * page_size();
1312   }
1313 
1314   // stack_top could be partially down the page so align it
1315   stack_top = align_up(stack_top, page_size());
1316 
1317   // Allowed stack value is minimum of max_size and what we derived from rlimit
1318   if (max_size > 0) {
1319     _initial_thread_stack_size = MIN2(max_size, stack_size);
1320   } else {
1321     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1322     // clamp it at 8MB as we do on Solaris
1323     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1324   }
1325   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1326   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1327 
1328   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1329 
1330   if (log_is_enabled(Info, os, thread)) {
1331     // See if we seem to be on primordial process thread
1332     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1333                       uintptr_t(&rlim) < stack_top;
1334 
1335     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1336                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1337                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1338                          stack_top, intptr_t(_initial_thread_stack_bottom));
1339   }
1340 }
1341 
1342 ////////////////////////////////////////////////////////////////////////////////
1343 // time support
1344 
1345 #ifndef SUPPORTS_CLOCK_MONOTONIC
1346 #error "Build platform doesn't support clock_gettime and related functionality"
1347 #endif
1348 
1349 // Time since start-up in seconds to a fine granularity.
1350 // Used by VMSelfDestructTimer and the MemProfiler.
1351 double os::elapsedTime() {
1352 
1353   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1354 }
1355 
1356 jlong os::elapsed_counter() {
1357   return javaTimeNanos() - initial_time_count;
1358 }
1359 
1360 jlong os::elapsed_frequency() {
1361   return NANOSECS_PER_SEC; // nanosecond resolution
1362 }
1363 
1364 bool os::supports_vtime() { return true; }
1365 
1366 double os::elapsedVTime() {
1367   struct rusage usage;
1368   int retval = getrusage(RUSAGE_THREAD, &usage);
1369   if (retval == 0) {
1370     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1371   } else {
1372     // better than nothing, but not much
1373     return elapsedTime();
1374   }
1375 }
1376 
1377 jlong os::javaTimeMillis() {
1378   timeval time;
1379   int status = gettimeofday(&time, NULL);
1380   assert(status != -1, "linux error");
1381   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1382 }
1383 
1384 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1385   timeval time;
1386   int status = gettimeofday(&time, NULL);
1387   assert(status != -1, "linux error");
1388   seconds = jlong(time.tv_sec);
1389   nanos = jlong(time.tv_usec) * 1000;
1390 }
1391 
1392 void os::Linux::fast_thread_clock_init() {
1393   if (!UseLinuxPosixThreadCPUClocks) {
1394     return;
1395   }
1396   clockid_t clockid;
1397   struct timespec tp;
1398   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1399       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1400 
1401   // Switch to using fast clocks for thread cpu time if
1402   // the clock_getres() returns 0 error code.
1403   // Note, that some kernels may support the current thread
1404   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1405   // returned by the pthread_getcpuclockid().
1406   // If the fast Posix clocks are supported then the clock_getres()
1407   // must return at least tp.tv_sec == 0 which means a resolution
1408   // better than 1 sec. This is extra check for reliability.
1409 
1410   if (pthread_getcpuclockid_func &&
1411       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1412       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1413     _supports_fast_thread_cpu_time = true;
1414     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1415   }
1416 }
1417 
1418 jlong os::javaTimeNanos() {
1419   if (os::supports_monotonic_clock()) {
1420     struct timespec tp;
1421     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1422     assert(status == 0, "gettime error");
1423     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1424     return result;
1425   } else {
1426     timeval time;
1427     int status = gettimeofday(&time, NULL);
1428     assert(status != -1, "linux error");
1429     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1430     return 1000 * usecs;
1431   }
1432 }
1433 
1434 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1435   if (os::supports_monotonic_clock()) {
1436     info_ptr->max_value = ALL_64_BITS;
1437 
1438     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1439     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1440     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1441   } else {
1442     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1443     info_ptr->max_value = ALL_64_BITS;
1444 
1445     // gettimeofday is a real time clock so it skips
1446     info_ptr->may_skip_backward = true;
1447     info_ptr->may_skip_forward = true;
1448   }
1449 
1450   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1451 }
1452 
1453 // Return the real, user, and system times in seconds from an
1454 // arbitrary fixed point in the past.
1455 bool os::getTimesSecs(double* process_real_time,
1456                       double* process_user_time,
1457                       double* process_system_time) {
1458   struct tms ticks;
1459   clock_t real_ticks = times(&ticks);
1460 
1461   if (real_ticks == (clock_t) (-1)) {
1462     return false;
1463   } else {
1464     double ticks_per_second = (double) clock_tics_per_sec;
1465     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1466     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1467     *process_real_time = ((double) real_ticks) / ticks_per_second;
1468 
1469     return true;
1470   }
1471 }
1472 
1473 
1474 char * os::local_time_string(char *buf, size_t buflen) {
1475   struct tm t;
1476   time_t long_time;
1477   time(&long_time);
1478   localtime_r(&long_time, &t);
1479   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1480                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1481                t.tm_hour, t.tm_min, t.tm_sec);
1482   return buf;
1483 }
1484 
1485 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1486   return localtime_r(clock, res);
1487 }
1488 
1489 ////////////////////////////////////////////////////////////////////////////////
1490 // runtime exit support
1491 
1492 // Note: os::shutdown() might be called very early during initialization, or
1493 // called from signal handler. Before adding something to os::shutdown(), make
1494 // sure it is async-safe and can handle partially initialized VM.
1495 void os::shutdown() {
1496 
1497   // allow PerfMemory to attempt cleanup of any persistent resources
1498   perfMemory_exit();
1499 
1500   // needs to remove object in file system
1501   AttachListener::abort();
1502 
1503   // flush buffered output, finish log files
1504   ostream_abort();
1505 
1506   // Check for abort hook
1507   abort_hook_t abort_hook = Arguments::abort_hook();
1508   if (abort_hook != NULL) {
1509     abort_hook();
1510   }
1511 
1512 }
1513 
1514 // Note: os::abort() might be called very early during initialization, or
1515 // called from signal handler. Before adding something to os::abort(), make
1516 // sure it is async-safe and can handle partially initialized VM.
1517 void os::abort(bool dump_core, void* siginfo, const void* context) {
1518   os::shutdown();
1519   if (dump_core) {
1520     if (DumpPrivateMappingsInCore) {
1521       ClassLoader::close_jrt_image();
1522     }
1523 #ifndef PRODUCT
1524     fdStream out(defaultStream::output_fd());
1525     out.print_raw("Current thread is ");
1526     char buf[16];
1527     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1528     out.print_raw_cr(buf);
1529     out.print_raw_cr("Dumping core ...");
1530 #endif
1531     ::abort(); // dump core
1532   }
1533 
1534   ::exit(1);
1535 }
1536 
1537 // Die immediately, no exit hook, no abort hook, no cleanup.
1538 // Dump a core file, if possible, for debugging.
1539 void os::die() {
1540   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1541     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1542     // and don't take the time to generate a core file.
1543     os::signal_raise(SIGKILL);
1544   } else {
1545     ::abort();
1546   }
1547 }
1548 
1549 // thread_id is kernel thread id (similar to Solaris LWP id)
1550 intx os::current_thread_id() { return os::Linux::gettid(); }
1551 int os::current_process_id() {
1552   return ::getpid();
1553 }
1554 
1555 // DLL functions
1556 
1557 const char* os::dll_file_extension() { return ".so"; }
1558 
1559 // This must be hard coded because it's the system's temporary
1560 // directory not the java application's temp directory, ala java.io.tmpdir.
1561 const char* os::get_temp_directory() { return "/tmp"; }
1562 
1563 static bool file_exists(const char* filename) {
1564   struct stat statbuf;
1565   if (filename == NULL || strlen(filename) == 0) {
1566     return false;
1567   }
1568   return os::stat(filename, &statbuf) == 0;
1569 }
1570 
1571 // check if addr is inside libjvm.so
1572 bool os::address_is_in_vm(address addr) {
1573   static address libjvm_base_addr;
1574   Dl_info dlinfo;
1575 
1576   if (libjvm_base_addr == NULL) {
1577     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1578       libjvm_base_addr = (address)dlinfo.dli_fbase;
1579     }
1580     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1581   }
1582 
1583   if (dladdr((void *)addr, &dlinfo) != 0) {
1584     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1585   }
1586 
1587   return false;
1588 }
1589 
1590 bool os::dll_address_to_function_name(address addr, char *buf,
1591                                       int buflen, int *offset,
1592                                       bool demangle) {
1593   // buf is not optional, but offset is optional
1594   assert(buf != NULL, "sanity check");
1595 
1596   Dl_info dlinfo;
1597 
1598   if (dladdr((void*)addr, &dlinfo) != 0) {
1599     // see if we have a matching symbol
1600     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1601       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1602         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1603       }
1604       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1605       return true;
1606     }
1607     // no matching symbol so try for just file info
1608     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1609       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1610                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1611         return true;
1612       }
1613     }
1614   }
1615 
1616   buf[0] = '\0';
1617   if (offset != NULL) *offset = -1;
1618   return false;
1619 }
1620 
1621 struct _address_to_library_name {
1622   address addr;          // input : memory address
1623   size_t  buflen;        //         size of fname
1624   char*   fname;         // output: library name
1625   address base;          //         library base addr
1626 };
1627 
1628 static int address_to_library_name_callback(struct dl_phdr_info *info,
1629                                             size_t size, void *data) {
1630   int i;
1631   bool found = false;
1632   address libbase = NULL;
1633   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1634 
1635   // iterate through all loadable segments
1636   for (i = 0; i < info->dlpi_phnum; i++) {
1637     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1638     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1639       // base address of a library is the lowest address of its loaded
1640       // segments.
1641       if (libbase == NULL || libbase > segbase) {
1642         libbase = segbase;
1643       }
1644       // see if 'addr' is within current segment
1645       if (segbase <= d->addr &&
1646           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1647         found = true;
1648       }
1649     }
1650   }
1651 
1652   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1653   // so dll_address_to_library_name() can fall through to use dladdr() which
1654   // can figure out executable name from argv[0].
1655   if (found && info->dlpi_name && info->dlpi_name[0]) {
1656     d->base = libbase;
1657     if (d->fname) {
1658       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1659     }
1660     return 1;
1661   }
1662   return 0;
1663 }
1664 
1665 bool os::dll_address_to_library_name(address addr, char* buf,
1666                                      int buflen, int* offset) {
1667   // buf is not optional, but offset is optional
1668   assert(buf != NULL, "sanity check");
1669 
1670   Dl_info dlinfo;
1671   struct _address_to_library_name data;
1672 
1673   // There is a bug in old glibc dladdr() implementation that it could resolve
1674   // to wrong library name if the .so file has a base address != NULL. Here
1675   // we iterate through the program headers of all loaded libraries to find
1676   // out which library 'addr' really belongs to. This workaround can be
1677   // removed once the minimum requirement for glibc is moved to 2.3.x.
1678   data.addr = addr;
1679   data.fname = buf;
1680   data.buflen = buflen;
1681   data.base = NULL;
1682   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1683 
1684   if (rslt) {
1685     // buf already contains library name
1686     if (offset) *offset = addr - data.base;
1687     return true;
1688   }
1689   if (dladdr((void*)addr, &dlinfo) != 0) {
1690     if (dlinfo.dli_fname != NULL) {
1691       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1692     }
1693     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1694       *offset = addr - (address)dlinfo.dli_fbase;
1695     }
1696     return true;
1697   }
1698 
1699   buf[0] = '\0';
1700   if (offset) *offset = -1;
1701   return false;
1702 }
1703 
1704 // Loads .dll/.so and
1705 // in case of error it checks if .dll/.so was built for the
1706 // same architecture as Hotspot is running on
1707 
1708 
1709 // Remember the stack's state. The Linux dynamic linker will change
1710 // the stack to 'executable' at most once, so we must safepoint only once.
1711 bool os::Linux::_stack_is_executable = false;
1712 
1713 // VM operation that loads a library.  This is necessary if stack protection
1714 // of the Java stacks can be lost during loading the library.  If we
1715 // do not stop the Java threads, they can stack overflow before the stacks
1716 // are protected again.
1717 class VM_LinuxDllLoad: public VM_Operation {
1718  private:
1719   const char *_filename;
1720   char *_ebuf;
1721   int _ebuflen;
1722   void *_lib;
1723  public:
1724   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1725     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1726   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1727   void doit() {
1728     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1729     os::Linux::_stack_is_executable = true;
1730   }
1731   void* loaded_library() { return _lib; }
1732 };
1733 
1734 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1735   void * result = NULL;
1736   bool load_attempted = false;
1737 
1738   log_info(os)("attempting shared library load of %s", filename);
1739 
1740   // Check whether the library to load might change execution rights
1741   // of the stack. If they are changed, the protection of the stack
1742   // guard pages will be lost. We need a safepoint to fix this.
1743   //
1744   // See Linux man page execstack(8) for more info.
1745   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1746     if (!ElfFile::specifies_noexecstack(filename)) {
1747       if (!is_init_completed()) {
1748         os::Linux::_stack_is_executable = true;
1749         // This is OK - No Java threads have been created yet, and hence no
1750         // stack guard pages to fix.
1751         //
1752         // Dynamic loader will make all stacks executable after
1753         // this function returns, and will not do that again.
1754         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1755       } else {
1756         warning("You have loaded library %s which might have disabled stack guard. "
1757                 "The VM will try to fix the stack guard now.\n"
1758                 "It's highly recommended that you fix the library with "
1759                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1760                 filename);
1761 
1762         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1763         JavaThread *jt = JavaThread::current();
1764         if (jt->thread_state() != _thread_in_native) {
1765           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1766           // that requires ExecStack. Cannot enter safe point. Let's give up.
1767           warning("Unable to fix stack guard. Giving up.");
1768         } else {
1769           if (!LoadExecStackDllInVMThread) {
1770             // This is for the case where the DLL has an static
1771             // constructor function that executes JNI code. We cannot
1772             // load such DLLs in the VMThread.
1773             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1774           }
1775 
1776           ThreadInVMfromNative tiv(jt);
1777           debug_only(VMNativeEntryWrapper vew;)
1778 
1779           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1780           VMThread::execute(&op);
1781           if (LoadExecStackDllInVMThread) {
1782             result = op.loaded_library();
1783           }
1784           load_attempted = true;
1785         }
1786       }
1787     }
1788   }
1789 
1790   if (!load_attempted) {
1791     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1792   }
1793 
1794   if (result != NULL) {
1795     // Successful loading
1796     return result;
1797   }
1798 
1799   Elf32_Ehdr elf_head;
1800   int diag_msg_max_length=ebuflen-strlen(ebuf);
1801   char* diag_msg_buf=ebuf+strlen(ebuf);
1802 
1803   if (diag_msg_max_length==0) {
1804     // No more space in ebuf for additional diagnostics message
1805     return NULL;
1806   }
1807 
1808 
1809   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1810 
1811   if (file_descriptor < 0) {
1812     // Can't open library, report dlerror() message
1813     return NULL;
1814   }
1815 
1816   bool failed_to_read_elf_head=
1817     (sizeof(elf_head)!=
1818      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1819 
1820   ::close(file_descriptor);
1821   if (failed_to_read_elf_head) {
1822     // file i/o error - report dlerror() msg
1823     return NULL;
1824   }
1825 
1826   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1827     // handle invalid/out of range endianness values
1828     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1829       return NULL;
1830     }
1831 
1832 #if defined(VM_LITTLE_ENDIAN)
1833     // VM is LE, shared object BE
1834     elf_head.e_machine = be16toh(elf_head.e_machine);
1835 #else
1836     // VM is BE, shared object LE
1837     elf_head.e_machine = le16toh(elf_head.e_machine);
1838 #endif
1839   }
1840 
1841   typedef struct {
1842     Elf32_Half    code;         // Actual value as defined in elf.h
1843     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1844     unsigned char elf_class;    // 32 or 64 bit
1845     unsigned char endianness;   // MSB or LSB
1846     char*         name;         // String representation
1847   } arch_t;
1848 
1849 #ifndef EM_486
1850   #define EM_486          6               /* Intel 80486 */
1851 #endif
1852 #ifndef EM_AARCH64
1853   #define EM_AARCH64    183               /* ARM AARCH64 */
1854 #endif
1855 
1856   static const arch_t arch_array[]={
1857     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1858     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1859     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1860     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1861     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1862     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1863     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1864     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1865 #if defined(VM_LITTLE_ENDIAN)
1866     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1867     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1868 #else
1869     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1870     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1871 #endif
1872     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1873     // we only support 64 bit z architecture
1874     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1875     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1876     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1877     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1878     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1879     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1880     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1881   };
1882 
1883 #if  (defined IA32)
1884   static  Elf32_Half running_arch_code=EM_386;
1885 #elif   (defined AMD64) || (defined X32)
1886   static  Elf32_Half running_arch_code=EM_X86_64;
1887 #elif  (defined IA64)
1888   static  Elf32_Half running_arch_code=EM_IA_64;
1889 #elif  (defined __sparc) && (defined _LP64)
1890   static  Elf32_Half running_arch_code=EM_SPARCV9;
1891 #elif  (defined __sparc) && (!defined _LP64)
1892   static  Elf32_Half running_arch_code=EM_SPARC;
1893 #elif  (defined __powerpc64__)
1894   static  Elf32_Half running_arch_code=EM_PPC64;
1895 #elif  (defined __powerpc__)
1896   static  Elf32_Half running_arch_code=EM_PPC;
1897 #elif  (defined AARCH64)
1898   static  Elf32_Half running_arch_code=EM_AARCH64;
1899 #elif  (defined ARM)
1900   static  Elf32_Half running_arch_code=EM_ARM;
1901 #elif  (defined S390)
1902   static  Elf32_Half running_arch_code=EM_S390;
1903 #elif  (defined ALPHA)
1904   static  Elf32_Half running_arch_code=EM_ALPHA;
1905 #elif  (defined MIPSEL)
1906   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1907 #elif  (defined PARISC)
1908   static  Elf32_Half running_arch_code=EM_PARISC;
1909 #elif  (defined MIPS)
1910   static  Elf32_Half running_arch_code=EM_MIPS;
1911 #elif  (defined M68K)
1912   static  Elf32_Half running_arch_code=EM_68K;
1913 #elif  (defined SH)
1914   static  Elf32_Half running_arch_code=EM_SH;
1915 #else
1916     #error Method os::dll_load requires that one of following is defined:\
1917         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1918 #endif
1919 
1920   // Identify compatibility class for VM's architecture and library's architecture
1921   // Obtain string descriptions for architectures
1922 
1923   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1924   int running_arch_index=-1;
1925 
1926   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1927     if (running_arch_code == arch_array[i].code) {
1928       running_arch_index    = i;
1929     }
1930     if (lib_arch.code == arch_array[i].code) {
1931       lib_arch.compat_class = arch_array[i].compat_class;
1932       lib_arch.name         = arch_array[i].name;
1933     }
1934   }
1935 
1936   assert(running_arch_index != -1,
1937          "Didn't find running architecture code (running_arch_code) in arch_array");
1938   if (running_arch_index == -1) {
1939     // Even though running architecture detection failed
1940     // we may still continue with reporting dlerror() message
1941     return NULL;
1942   }
1943 
1944   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1945     if (lib_arch.name != NULL) {
1946       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1947                  " (Possible cause: can't load %s .so on a %s platform)",
1948                  lib_arch.name, arch_array[running_arch_index].name);
1949     } else {
1950       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1951                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1952                  lib_arch.code, arch_array[running_arch_index].name);
1953     }
1954     return NULL;
1955   }
1956 
1957   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1958     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1959     return NULL;
1960   }
1961 
1962   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1963   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1964     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1965     return NULL;
1966   }
1967 
1968   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1969     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1970                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1971                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1972     return NULL;
1973   }
1974 
1975   return NULL;
1976 }
1977 
1978 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1979                                 int ebuflen) {
1980   void * result = ::dlopen(filename, RTLD_LAZY);
1981   if (result == NULL) {
1982     const char* error_report = ::dlerror();
1983     if (error_report == NULL) {
1984       error_report = "dlerror returned no error description";
1985     }
1986     if (ebuf != NULL && ebuflen > 0) {
1987       ::strncpy(ebuf, error_report, ebuflen-1);
1988       ebuf[ebuflen-1]='\0';
1989     }
1990     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1991     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1992   } else {
1993     Events::log(NULL, "Loaded shared library %s", filename);
1994     log_info(os)("shared library load of %s was successful", filename);
1995   }
1996   return result;
1997 }
1998 
1999 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2000                                        int ebuflen) {
2001   void * result = NULL;
2002   if (LoadExecStackDllInVMThread) {
2003     result = dlopen_helper(filename, ebuf, ebuflen);
2004   }
2005 
2006   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2007   // library that requires an executable stack, or which does not have this
2008   // stack attribute set, dlopen changes the stack attribute to executable. The
2009   // read protection of the guard pages gets lost.
2010   //
2011   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2012   // may have been queued at the same time.
2013 
2014   if (!_stack_is_executable) {
2015     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2016       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2017           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2018         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2019           warning("Attempt to reguard stack yellow zone failed.");
2020         }
2021       }
2022     }
2023   }
2024 
2025   return result;
2026 }
2027 
2028 void* os::dll_lookup(void* handle, const char* name) {
2029   void* res = dlsym(handle, name);
2030   return res;
2031 }
2032 
2033 void* os::get_default_process_handle() {
2034   return (void*)::dlopen(NULL, RTLD_LAZY);
2035 }
2036 
2037 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2038   int fd = ::open(filename, O_RDONLY);
2039   if (fd == -1) {
2040     return false;
2041   }
2042 
2043   if (hdr != NULL) {
2044     st->print_cr("%s", hdr);
2045   }
2046 
2047   char buf[33];
2048   int bytes;
2049   buf[32] = '\0';
2050   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2051     st->print_raw(buf, bytes);
2052   }
2053 
2054   ::close(fd);
2055 
2056   return true;
2057 }
2058 
2059 void os::print_dll_info(outputStream *st) {
2060   st->print_cr("Dynamic libraries:");
2061 
2062   char fname[32];
2063   pid_t pid = os::Linux::gettid();
2064 
2065   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2066 
2067   if (!_print_ascii_file(fname, st)) {
2068     st->print("Can not get library information for pid = %d\n", pid);
2069   }
2070 }
2071 
2072 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2073   FILE *procmapsFile = NULL;
2074 
2075   // Open the procfs maps file for the current process
2076   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2077     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2078     char line[PATH_MAX + 100];
2079 
2080     // Read line by line from 'file'
2081     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2082       u8 base, top, offset, inode;
2083       char permissions[5];
2084       char device[6];
2085       char name[sizeof(line)];
2086 
2087       // Parse fields from line
2088       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
2089              &base, &top, permissions, &offset, device, &inode, name);
2090       // the last entry 'name' is empty for some entries, so we might have 6 matches instead of 7 for some lines
2091       if (matches < 6) continue;
2092       if (matches == 6) name[0] = '\0';
2093 
2094       // Filter by device id '00:00' so that we only get file system mapped files.
2095       if (strcmp(device, "00:00") != 0) {
2096 
2097         // Call callback with the fields of interest
2098         if(callback(name, (address)base, (address)top, param)) {
2099           // Oops abort, callback aborted
2100           fclose(procmapsFile);
2101           return 1;
2102         }
2103       }
2104     }
2105     fclose(procmapsFile);
2106   }
2107   return 0;
2108 }
2109 
2110 void os::print_os_info_brief(outputStream* st) {
2111   os::Linux::print_distro_info(st);
2112 
2113   os::Posix::print_uname_info(st);
2114 
2115   os::Linux::print_libversion_info(st);
2116 
2117 }
2118 
2119 void os::print_os_info(outputStream* st) {
2120   st->print("OS:");
2121 
2122   os::Linux::print_distro_info(st);
2123 
2124   os::Posix::print_uname_info(st);
2125 
2126   os::Linux::print_uptime_info(st);
2127 
2128   // Print warning if unsafe chroot environment detected
2129   if (unsafe_chroot_detected) {
2130     st->print("WARNING!! ");
2131     st->print_cr("%s", unstable_chroot_error);
2132   }
2133 
2134   os::Linux::print_libversion_info(st);
2135 
2136   os::Posix::print_rlimit_info(st);
2137 
2138   os::Posix::print_load_average(st);
2139 
2140   os::Linux::print_full_memory_info(st);
2141 
2142   os::Linux::print_proc_sys_info(st);
2143 
2144   os::Linux::print_ld_preload_file(st);
2145 
2146   os::Linux::print_container_info(st);
2147 
2148   VM_Version::print_platform_virtualization_info(st);
2149 
2150   os::Linux::print_steal_info(st);
2151 }
2152 
2153 // Try to identify popular distros.
2154 // Most Linux distributions have a /etc/XXX-release file, which contains
2155 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2156 // file that also contains the OS version string. Some have more than one
2157 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2158 // /etc/redhat-release.), so the order is important.
2159 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2160 // their own specific XXX-release file as well as a redhat-release file.
2161 // Because of this the XXX-release file needs to be searched for before the
2162 // redhat-release file.
2163 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2164 // search for redhat-release / SuSE-release needs to be before lsb-release.
2165 // Since the lsb-release file is the new standard it needs to be searched
2166 // before the older style release files.
2167 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2168 // next to last resort.  The os-release file is a new standard that contains
2169 // distribution information and the system-release file seems to be an old
2170 // standard that has been replaced by the lsb-release and os-release files.
2171 // Searching for the debian_version file is the last resort.  It contains
2172 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2173 // "Debian " is printed before the contents of the debian_version file.
2174 
2175 const char* distro_files[] = {
2176   "/etc/oracle-release",
2177   "/etc/mandriva-release",
2178   "/etc/mandrake-release",
2179   "/etc/sun-release",
2180   "/etc/redhat-release",
2181   "/etc/SuSE-release",
2182   "/etc/lsb-release",
2183   "/etc/turbolinux-release",
2184   "/etc/gentoo-release",
2185   "/etc/ltib-release",
2186   "/etc/angstrom-version",
2187   "/etc/system-release",
2188   "/etc/os-release",
2189   NULL };
2190 
2191 void os::Linux::print_distro_info(outputStream* st) {
2192   for (int i = 0;; i++) {
2193     const char* file = distro_files[i];
2194     if (file == NULL) {
2195       break;  // done
2196     }
2197     // If file prints, we found it.
2198     if (_print_ascii_file(file, st)) {
2199       return;
2200     }
2201   }
2202 
2203   if (file_exists("/etc/debian_version")) {
2204     st->print("Debian ");
2205     _print_ascii_file("/etc/debian_version", st);
2206   } else {
2207     st->print("Linux");
2208   }
2209   st->cr();
2210 }
2211 
2212 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2213   char buf[256];
2214   while (fgets(buf, sizeof(buf), fp)) {
2215     // Edit out extra stuff in expected format
2216     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2217       char* ptr = strstr(buf, "\"");  // the name is in quotes
2218       if (ptr != NULL) {
2219         ptr++; // go beyond first quote
2220         char* nl = strchr(ptr, '\"');
2221         if (nl != NULL) *nl = '\0';
2222         strncpy(distro, ptr, length);
2223       } else {
2224         ptr = strstr(buf, "=");
2225         ptr++; // go beyond equals then
2226         char* nl = strchr(ptr, '\n');
2227         if (nl != NULL) *nl = '\0';
2228         strncpy(distro, ptr, length);
2229       }
2230       return;
2231     } else if (get_first_line) {
2232       char* nl = strchr(buf, '\n');
2233       if (nl != NULL) *nl = '\0';
2234       strncpy(distro, buf, length);
2235       return;
2236     }
2237   }
2238   // print last line and close
2239   char* nl = strchr(buf, '\n');
2240   if (nl != NULL) *nl = '\0';
2241   strncpy(distro, buf, length);
2242 }
2243 
2244 static void parse_os_info(char* distro, size_t length, const char* file) {
2245   FILE* fp = fopen(file, "r");
2246   if (fp != NULL) {
2247     // if suse format, print out first line
2248     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2249     parse_os_info_helper(fp, distro, length, get_first_line);
2250     fclose(fp);
2251   }
2252 }
2253 
2254 void os::get_summary_os_info(char* buf, size_t buflen) {
2255   for (int i = 0;; i++) {
2256     const char* file = distro_files[i];
2257     if (file == NULL) {
2258       break; // ran out of distro_files
2259     }
2260     if (file_exists(file)) {
2261       parse_os_info(buf, buflen, file);
2262       return;
2263     }
2264   }
2265   // special case for debian
2266   if (file_exists("/etc/debian_version")) {
2267     strncpy(buf, "Debian ", buflen);
2268     if (buflen > 7) {
2269       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2270     }
2271   } else {
2272     strncpy(buf, "Linux", buflen);
2273   }
2274 }
2275 
2276 void os::Linux::print_libversion_info(outputStream* st) {
2277   // libc, pthread
2278   st->print("libc:");
2279   st->print("%s ", os::Linux::glibc_version());
2280   st->print("%s ", os::Linux::libpthread_version());
2281   st->cr();
2282 }
2283 
2284 void os::Linux::print_proc_sys_info(outputStream* st) {
2285   st->cr();
2286   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2287   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2288   st->cr();
2289   st->cr();
2290 
2291   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2292   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2293   st->cr();
2294   st->cr();
2295 
2296   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2297   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2298   st->cr();
2299   st->cr();
2300 }
2301 
2302 void os::Linux::print_full_memory_info(outputStream* st) {
2303   st->print("\n/proc/meminfo:\n");
2304   _print_ascii_file("/proc/meminfo", st);
2305   st->cr();
2306 }
2307 
2308 void os::Linux::print_ld_preload_file(outputStream* st) {
2309   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2310   st->cr();
2311 }
2312 
2313 void os::Linux::print_uptime_info(outputStream* st) {
2314   struct sysinfo sinfo;
2315   int ret = sysinfo(&sinfo);
2316   if (ret == 0) {
2317     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2318   }
2319 }
2320 
2321 
2322 void os::Linux::print_container_info(outputStream* st) {
2323   if (!OSContainer::is_containerized()) {
2324     return;
2325   }
2326 
2327   st->print("container (cgroup) information:\n");
2328 
2329   const char *p_ct = OSContainer::container_type();
2330   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2331 
2332   char *p = OSContainer::cpu_cpuset_cpus();
2333   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2334   free(p);
2335 
2336   p = OSContainer::cpu_cpuset_memory_nodes();
2337   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2338   free(p);
2339 
2340   int i = OSContainer::active_processor_count();
2341   st->print("active_processor_count: ");
2342   if (i > 0) {
2343     st->print("%d\n", i);
2344   } else {
2345     st->print("not supported\n");
2346   }
2347 
2348   i = OSContainer::cpu_quota();
2349   st->print("cpu_quota: ");
2350   if (i > 0) {
2351     st->print("%d\n", i);
2352   } else {
2353     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2354   }
2355 
2356   i = OSContainer::cpu_period();
2357   st->print("cpu_period: ");
2358   if (i > 0) {
2359     st->print("%d\n", i);
2360   } else {
2361     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2362   }
2363 
2364   i = OSContainer::cpu_shares();
2365   st->print("cpu_shares: ");
2366   if (i > 0) {
2367     st->print("%d\n", i);
2368   } else {
2369     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2370   }
2371 
2372   jlong j = OSContainer::memory_limit_in_bytes();
2373   st->print("memory_limit_in_bytes: ");
2374   if (j > 0) {
2375     st->print(JLONG_FORMAT "\n", j);
2376   } else {
2377     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2378   }
2379 
2380   j = OSContainer::memory_and_swap_limit_in_bytes();
2381   st->print("memory_and_swap_limit_in_bytes: ");
2382   if (j > 0) {
2383     st->print(JLONG_FORMAT "\n", j);
2384   } else {
2385     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2386   }
2387 
2388   j = OSContainer::memory_soft_limit_in_bytes();
2389   st->print("memory_soft_limit_in_bytes: ");
2390   if (j > 0) {
2391     st->print(JLONG_FORMAT "\n", j);
2392   } else {
2393     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2394   }
2395 
2396   j = OSContainer::OSContainer::memory_usage_in_bytes();
2397   st->print("memory_usage_in_bytes: ");
2398   if (j > 0) {
2399     st->print(JLONG_FORMAT "\n", j);
2400   } else {
2401     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2402   }
2403 
2404   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2405   st->print("memory_max_usage_in_bytes: ");
2406   if (j > 0) {
2407     st->print(JLONG_FORMAT "\n", j);
2408   } else {
2409     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2410   }
2411   st->cr();
2412 }
2413 
2414 void os::Linux::print_steal_info(outputStream* st) {
2415   if (has_initial_tick_info) {
2416     CPUPerfTicks pticks;
2417     bool res = os::Linux::get_tick_information(&pticks, -1);
2418 
2419     if (res && pticks.has_steal_ticks) {
2420       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2421       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2422       double steal_ticks_perc = 0.0;
2423       if (total_ticks_difference != 0) {
2424         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2425       }
2426       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2427       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2428     }
2429   }
2430 }
2431 
2432 void os::print_memory_info(outputStream* st) {
2433 
2434   st->print("Memory:");
2435   st->print(" %dk page", os::vm_page_size()>>10);
2436 
2437   // values in struct sysinfo are "unsigned long"
2438   struct sysinfo si;
2439   sysinfo(&si);
2440 
2441   st->print(", physical " UINT64_FORMAT "k",
2442             os::physical_memory() >> 10);
2443   st->print("(" UINT64_FORMAT "k free)",
2444             os::available_memory() >> 10);
2445   st->print(", swap " UINT64_FORMAT "k",
2446             ((jlong)si.totalswap * si.mem_unit) >> 10);
2447   st->print("(" UINT64_FORMAT "k free)",
2448             ((jlong)si.freeswap * si.mem_unit) >> 10);
2449   st->cr();
2450 }
2451 
2452 // Print the first "model name" line and the first "flags" line
2453 // that we find and nothing more. We assume "model name" comes
2454 // before "flags" so if we find a second "model name", then the
2455 // "flags" field is considered missing.
2456 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2457 #if defined(IA32) || defined(AMD64)
2458   // Other platforms have less repetitive cpuinfo files
2459   FILE *fp = fopen("/proc/cpuinfo", "r");
2460   if (fp) {
2461     while (!feof(fp)) {
2462       if (fgets(buf, buflen, fp)) {
2463         // Assume model name comes before flags
2464         bool model_name_printed = false;
2465         if (strstr(buf, "model name") != NULL) {
2466           if (!model_name_printed) {
2467             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2468             st->print_raw(buf);
2469             model_name_printed = true;
2470           } else {
2471             // model name printed but not flags?  Odd, just return
2472             fclose(fp);
2473             return true;
2474           }
2475         }
2476         // print the flags line too
2477         if (strstr(buf, "flags") != NULL) {
2478           st->print_raw(buf);
2479           fclose(fp);
2480           return true;
2481         }
2482       }
2483     }
2484     fclose(fp);
2485   }
2486 #endif // x86 platforms
2487   return false;
2488 }
2489 
2490 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2491   // Only print the model name if the platform provides this as a summary
2492   if (!print_model_name_and_flags(st, buf, buflen)) {
2493     st->print("\n/proc/cpuinfo:\n");
2494     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2495       st->print_cr("  <Not Available>");
2496     }
2497   }
2498 }
2499 
2500 #if defined(AMD64) || defined(IA32) || defined(X32)
2501 const char* search_string = "model name";
2502 #elif defined(M68K)
2503 const char* search_string = "CPU";
2504 #elif defined(PPC64)
2505 const char* search_string = "cpu";
2506 #elif defined(S390)
2507 const char* search_string = "machine =";
2508 #elif defined(SPARC)
2509 const char* search_string = "cpu";
2510 #else
2511 const char* search_string = "Processor";
2512 #endif
2513 
2514 // Parses the cpuinfo file for string representing the model name.
2515 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2516   FILE* fp = fopen("/proc/cpuinfo", "r");
2517   if (fp != NULL) {
2518     while (!feof(fp)) {
2519       char buf[256];
2520       if (fgets(buf, sizeof(buf), fp)) {
2521         char* start = strstr(buf, search_string);
2522         if (start != NULL) {
2523           char *ptr = start + strlen(search_string);
2524           char *end = buf + strlen(buf);
2525           while (ptr != end) {
2526              // skip whitespace and colon for the rest of the name.
2527              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2528                break;
2529              }
2530              ptr++;
2531           }
2532           if (ptr != end) {
2533             // reasonable string, get rid of newline and keep the rest
2534             char* nl = strchr(buf, '\n');
2535             if (nl != NULL) *nl = '\0';
2536             strncpy(cpuinfo, ptr, length);
2537             fclose(fp);
2538             return;
2539           }
2540         }
2541       }
2542     }
2543     fclose(fp);
2544   }
2545   // cpuinfo not found or parsing failed, just print generic string.  The entire
2546   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2547 #if   defined(AARCH64)
2548   strncpy(cpuinfo, "AArch64", length);
2549 #elif defined(AMD64)
2550   strncpy(cpuinfo, "x86_64", length);
2551 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2552   strncpy(cpuinfo, "ARM", length);
2553 #elif defined(IA32)
2554   strncpy(cpuinfo, "x86_32", length);
2555 #elif defined(IA64)
2556   strncpy(cpuinfo, "IA64", length);
2557 #elif defined(PPC)
2558   strncpy(cpuinfo, "PPC64", length);
2559 #elif defined(S390)
2560   strncpy(cpuinfo, "S390", length);
2561 #elif defined(SPARC)
2562   strncpy(cpuinfo, "sparcv9", length);
2563 #elif defined(ZERO_LIBARCH)
2564   strncpy(cpuinfo, ZERO_LIBARCH, length);
2565 #else
2566   strncpy(cpuinfo, "unknown", length);
2567 #endif
2568 }
2569 
2570 static void print_signal_handler(outputStream* st, int sig,
2571                                  char* buf, size_t buflen);
2572 
2573 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2574   st->print_cr("Signal Handlers:");
2575   print_signal_handler(st, SIGSEGV, buf, buflen);
2576   print_signal_handler(st, SIGBUS , buf, buflen);
2577   print_signal_handler(st, SIGFPE , buf, buflen);
2578   print_signal_handler(st, SIGPIPE, buf, buflen);
2579   print_signal_handler(st, SIGXFSZ, buf, buflen);
2580   print_signal_handler(st, SIGILL , buf, buflen);
2581   print_signal_handler(st, SR_signum, buf, buflen);
2582   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2583   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2584   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2585   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2586 #if defined(PPC64)
2587   print_signal_handler(st, SIGTRAP, buf, buflen);
2588 #endif
2589 }
2590 
2591 static char saved_jvm_path[MAXPATHLEN] = {0};
2592 
2593 // Find the full path to the current module, libjvm.so
2594 void os::jvm_path(char *buf, jint buflen) {
2595   // Error checking.
2596   if (buflen < MAXPATHLEN) {
2597     assert(false, "must use a large-enough buffer");
2598     buf[0] = '\0';
2599     return;
2600   }
2601   // Lazy resolve the path to current module.
2602   if (saved_jvm_path[0] != 0) {
2603     strcpy(buf, saved_jvm_path);
2604     return;
2605   }
2606 
2607   char dli_fname[MAXPATHLEN];
2608   bool ret = dll_address_to_library_name(
2609                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2610                                          dli_fname, sizeof(dli_fname), NULL);
2611   assert(ret, "cannot locate libjvm");
2612   char *rp = NULL;
2613   if (ret && dli_fname[0] != '\0') {
2614     rp = os::Posix::realpath(dli_fname, buf, buflen);
2615   }
2616   if (rp == NULL) {
2617     return;
2618   }
2619 
2620   if (Arguments::sun_java_launcher_is_altjvm()) {
2621     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2622     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2623     // If "/jre/lib/" appears at the right place in the string, then
2624     // assume we are installed in a JDK and we're done. Otherwise, check
2625     // for a JAVA_HOME environment variable and fix up the path so it
2626     // looks like libjvm.so is installed there (append a fake suffix
2627     // hotspot/libjvm.so).
2628     const char *p = buf + strlen(buf) - 1;
2629     for (int count = 0; p > buf && count < 5; ++count) {
2630       for (--p; p > buf && *p != '/'; --p)
2631         /* empty */ ;
2632     }
2633 
2634     if (strncmp(p, "/jre/lib/", 9) != 0) {
2635       // Look for JAVA_HOME in the environment.
2636       char* java_home_var = ::getenv("JAVA_HOME");
2637       if (java_home_var != NULL && java_home_var[0] != 0) {
2638         char* jrelib_p;
2639         int len;
2640 
2641         // Check the current module name "libjvm.so".
2642         p = strrchr(buf, '/');
2643         if (p == NULL) {
2644           return;
2645         }
2646         assert(strstr(p, "/libjvm") == p, "invalid library name");
2647 
2648         rp = os::Posix::realpath(java_home_var, buf, buflen);
2649         if (rp == NULL) {
2650           return;
2651         }
2652 
2653         // determine if this is a legacy image or modules image
2654         // modules image doesn't have "jre" subdirectory
2655         len = strlen(buf);
2656         assert(len < buflen, "Ran out of buffer room");
2657         jrelib_p = buf + len;
2658         snprintf(jrelib_p, buflen-len, "/jre/lib");
2659         if (0 != access(buf, F_OK)) {
2660           snprintf(jrelib_p, buflen-len, "/lib");
2661         }
2662 
2663         if (0 == access(buf, F_OK)) {
2664           // Use current module name "libjvm.so"
2665           len = strlen(buf);
2666           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2667         } else {
2668           // Go back to path of .so
2669           rp = os::Posix::realpath(dli_fname, buf, buflen);
2670           if (rp == NULL) {
2671             return;
2672           }
2673         }
2674       }
2675     }
2676   }
2677 
2678   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2679   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2680 }
2681 
2682 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2683   // no prefix required, not even "_"
2684 }
2685 
2686 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2687   // no suffix required
2688 }
2689 
2690 ////////////////////////////////////////////////////////////////////////////////
2691 // sun.misc.Signal support
2692 
2693 static void UserHandler(int sig, void *siginfo, void *context) {
2694   // Ctrl-C is pressed during error reporting, likely because the error
2695   // handler fails to abort. Let VM die immediately.
2696   if (sig == SIGINT && VMError::is_error_reported()) {
2697     os::die();
2698   }
2699 
2700   os::signal_notify(sig);
2701 }
2702 
2703 void* os::user_handler() {
2704   return CAST_FROM_FN_PTR(void*, UserHandler);
2705 }
2706 
2707 extern "C" {
2708   typedef void (*sa_handler_t)(int);
2709   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2710 }
2711 
2712 void* os::signal(int signal_number, void* handler) {
2713   struct sigaction sigAct, oldSigAct;
2714 
2715   sigfillset(&(sigAct.sa_mask));
2716   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2717   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2718 
2719   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2720     // -1 means registration failed
2721     return (void *)-1;
2722   }
2723 
2724   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2725 }
2726 
2727 void os::signal_raise(int signal_number) {
2728   ::raise(signal_number);
2729 }
2730 
2731 // The following code is moved from os.cpp for making this
2732 // code platform specific, which it is by its very nature.
2733 
2734 // Will be modified when max signal is changed to be dynamic
2735 int os::sigexitnum_pd() {
2736   return NSIG;
2737 }
2738 
2739 // a counter for each possible signal value
2740 static volatile jint pending_signals[NSIG+1] = { 0 };
2741 
2742 // Linux(POSIX) specific hand shaking semaphore.
2743 static Semaphore* sig_sem = NULL;
2744 static PosixSemaphore sr_semaphore;
2745 
2746 static void jdk_misc_signal_init() {
2747   // Initialize signal structures
2748   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2749 
2750   // Initialize signal semaphore
2751   sig_sem = new Semaphore();
2752 }
2753 
2754 void os::signal_notify(int sig) {
2755   if (sig_sem != NULL) {
2756     Atomic::inc(&pending_signals[sig]);
2757     sig_sem->signal();
2758   } else {
2759     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2760     // initialization isn't called.
2761     assert(ReduceSignalUsage, "signal semaphore should be created");
2762   }
2763 }
2764 
2765 static int check_pending_signals() {
2766   for (;;) {
2767     for (int i = 0; i < NSIG + 1; i++) {
2768       jint n = pending_signals[i];
2769       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2770         return i;
2771       }
2772     }
2773     JavaThread *thread = JavaThread::current();
2774     ThreadBlockInVM tbivm(thread);
2775 
2776     bool threadIsSuspended;
2777     do {
2778       thread->set_suspend_equivalent();
2779       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2780       sig_sem->wait();
2781 
2782       // were we externally suspended while we were waiting?
2783       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2784       if (threadIsSuspended) {
2785         // The semaphore has been incremented, but while we were waiting
2786         // another thread suspended us. We don't want to continue running
2787         // while suspended because that would surprise the thread that
2788         // suspended us.
2789         sig_sem->signal();
2790 
2791         thread->java_suspend_self();
2792       }
2793     } while (threadIsSuspended);
2794   }
2795 }
2796 
2797 int os::signal_wait() {
2798   return check_pending_signals();
2799 }
2800 
2801 ////////////////////////////////////////////////////////////////////////////////
2802 // Virtual Memory
2803 
2804 int os::vm_page_size() {
2805   // Seems redundant as all get out
2806   assert(os::Linux::page_size() != -1, "must call os::init");
2807   return os::Linux::page_size();
2808 }
2809 
2810 // Solaris allocates memory by pages.
2811 int os::vm_allocation_granularity() {
2812   assert(os::Linux::page_size() != -1, "must call os::init");
2813   return os::Linux::page_size();
2814 }
2815 
2816 // Rationale behind this function:
2817 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2818 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2819 //  samples for JITted code. Here we create private executable mapping over the code cache
2820 //  and then we can use standard (well, almost, as mapping can change) way to provide
2821 //  info for the reporting script by storing timestamp and location of symbol
2822 void linux_wrap_code(char* base, size_t size) {
2823   static volatile jint cnt = 0;
2824 
2825   if (!UseOprofile) {
2826     return;
2827   }
2828 
2829   char buf[PATH_MAX+1];
2830   int num = Atomic::add(&cnt, 1);
2831 
2832   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2833            os::get_temp_directory(), os::current_process_id(), num);
2834   unlink(buf);
2835 
2836   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2837 
2838   if (fd != -1) {
2839     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2840     if (rv != (off_t)-1) {
2841       if (::write(fd, "", 1) == 1) {
2842         mmap(base, size,
2843              PROT_READ|PROT_WRITE|PROT_EXEC,
2844              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2845       }
2846     }
2847     ::close(fd);
2848     unlink(buf);
2849   }
2850 }
2851 
2852 static bool recoverable_mmap_error(int err) {
2853   // See if the error is one we can let the caller handle. This
2854   // list of errno values comes from JBS-6843484. I can't find a
2855   // Linux man page that documents this specific set of errno
2856   // values so while this list currently matches Solaris, it may
2857   // change as we gain experience with this failure mode.
2858   switch (err) {
2859   case EBADF:
2860   case EINVAL:
2861   case ENOTSUP:
2862     // let the caller deal with these errors
2863     return true;
2864 
2865   default:
2866     // Any remaining errors on this OS can cause our reserved mapping
2867     // to be lost. That can cause confusion where different data
2868     // structures think they have the same memory mapped. The worst
2869     // scenario is if both the VM and a library think they have the
2870     // same memory mapped.
2871     return false;
2872   }
2873 }
2874 
2875 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2876                                     int err) {
2877   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2878           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2879           os::strerror(err), err);
2880 }
2881 
2882 static void warn_fail_commit_memory(char* addr, size_t size,
2883                                     size_t alignment_hint, bool exec,
2884                                     int err) {
2885   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2886           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2887           alignment_hint, exec, os::strerror(err), err);
2888 }
2889 
2890 // NOTE: Linux kernel does not really reserve the pages for us.
2891 //       All it does is to check if there are enough free pages
2892 //       left at the time of mmap(). This could be a potential
2893 //       problem.
2894 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2895   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2896   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2897                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2898   if (res != (uintptr_t) MAP_FAILED) {
2899     if (UseNUMAInterleaving) {
2900       numa_make_global(addr, size);
2901     }
2902     return 0;
2903   }
2904 
2905   int err = errno;  // save errno from mmap() call above
2906 
2907   if (!recoverable_mmap_error(err)) {
2908     warn_fail_commit_memory(addr, size, exec, err);
2909     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2910   }
2911 
2912   return err;
2913 }
2914 
2915 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2916   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2917 }
2918 
2919 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2920                                   const char* mesg) {
2921   assert(mesg != NULL, "mesg must be specified");
2922   int err = os::Linux::commit_memory_impl(addr, size, exec);
2923   if (err != 0) {
2924     // the caller wants all commit errors to exit with the specified mesg:
2925     warn_fail_commit_memory(addr, size, exec, err);
2926     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2927   }
2928 }
2929 
2930 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2931 #ifndef MAP_HUGETLB
2932   #define MAP_HUGETLB 0x40000
2933 #endif
2934 
2935 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2936 #ifndef MADV_HUGEPAGE
2937   #define MADV_HUGEPAGE 14
2938 #endif
2939 
2940 int os::Linux::commit_memory_impl(char* addr, size_t size,
2941                                   size_t alignment_hint, bool exec) {
2942   int err = os::Linux::commit_memory_impl(addr, size, exec);
2943   if (err == 0) {
2944     realign_memory(addr, size, alignment_hint);
2945   }
2946   return err;
2947 }
2948 
2949 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2950                           bool exec) {
2951   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2952 }
2953 
2954 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2955                                   size_t alignment_hint, bool exec,
2956                                   const char* mesg) {
2957   assert(mesg != NULL, "mesg must be specified");
2958   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2959   if (err != 0) {
2960     // the caller wants all commit errors to exit with the specified mesg:
2961     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2962     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2963   }
2964 }
2965 
2966 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2967   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2968     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2969     // be supported or the memory may already be backed by huge pages.
2970     ::madvise(addr, bytes, MADV_HUGEPAGE);
2971   }
2972 }
2973 
2974 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2975   // This method works by doing an mmap over an existing mmaping and effectively discarding
2976   // the existing pages. However it won't work for SHM-based large pages that cannot be
2977   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2978   // small pages on top of the SHM segment. This method always works for small pages, so we
2979   // allow that in any case.
2980   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2981     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2982   }
2983 }
2984 
2985 void os::numa_make_global(char *addr, size_t bytes) {
2986   Linux::numa_interleave_memory(addr, bytes);
2987 }
2988 
2989 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2990 // bind policy to MPOL_PREFERRED for the current thread.
2991 #define USE_MPOL_PREFERRED 0
2992 
2993 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2994   // To make NUMA and large pages more robust when both enabled, we need to ease
2995   // the requirements on where the memory should be allocated. MPOL_BIND is the
2996   // default policy and it will force memory to be allocated on the specified
2997   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2998   // the specified node, but will not force it. Using this policy will prevent
2999   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
3000   // free large pages.
3001   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3002   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3003 }
3004 
3005 bool os::numa_topology_changed() { return false; }
3006 
3007 size_t os::numa_get_groups_num() {
3008   // Return just the number of nodes in which it's possible to allocate memory
3009   // (in numa terminology, configured nodes).
3010   return Linux::numa_num_configured_nodes();
3011 }
3012 
3013 int os::numa_get_group_id() {
3014   int cpu_id = Linux::sched_getcpu();
3015   if (cpu_id != -1) {
3016     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3017     if (lgrp_id != -1) {
3018       return lgrp_id;
3019     }
3020   }
3021   return 0;
3022 }
3023 
3024 int os::numa_get_group_id_for_address(const void* address) {
3025   void** pages = const_cast<void**>(&address);
3026   int id = -1;
3027 
3028   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3029     return -1;
3030   }
3031   if (id < 0) {
3032     return -1;
3033   }
3034   return id;
3035 }
3036 
3037 int os::Linux::get_existing_num_nodes() {
3038   int node;
3039   int highest_node_number = Linux::numa_max_node();
3040   int num_nodes = 0;
3041 
3042   // Get the total number of nodes in the system including nodes without memory.
3043   for (node = 0; node <= highest_node_number; node++) {
3044     if (is_node_in_existing_nodes(node)) {
3045       num_nodes++;
3046     }
3047   }
3048   return num_nodes;
3049 }
3050 
3051 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3052   int highest_node_number = Linux::numa_max_node();
3053   size_t i = 0;
3054 
3055   // Map all node ids in which it is possible to allocate memory. Also nodes are
3056   // not always consecutively available, i.e. available from 0 to the highest
3057   // node number. If the nodes have been bound explicitly using numactl membind,
3058   // then allocate memory from those nodes only.
3059   for (int node = 0; node <= highest_node_number; node++) {
3060     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3061       ids[i++] = node;
3062     }
3063   }
3064   return i;
3065 }
3066 
3067 bool os::get_page_info(char *start, page_info* info) {
3068   return false;
3069 }
3070 
3071 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3072                      page_info* page_found) {
3073   return end;
3074 }
3075 
3076 
3077 int os::Linux::sched_getcpu_syscall(void) {
3078   unsigned int cpu = 0;
3079   int retval = -1;
3080 
3081 #if defined(IA32)
3082   #ifndef SYS_getcpu
3083     #define SYS_getcpu 318
3084   #endif
3085   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3086 #elif defined(AMD64)
3087 // Unfortunately we have to bring all these macros here from vsyscall.h
3088 // to be able to compile on old linuxes.
3089   #define __NR_vgetcpu 2
3090   #define VSYSCALL_START (-10UL << 20)
3091   #define VSYSCALL_SIZE 1024
3092   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3093   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3094   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3095   retval = vgetcpu(&cpu, NULL, NULL);
3096 #endif
3097 
3098   return (retval == -1) ? retval : cpu;
3099 }
3100 
3101 void os::Linux::sched_getcpu_init() {
3102   // sched_getcpu() should be in libc.
3103   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3104                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3105 
3106   // If it's not, try a direct syscall.
3107   if (sched_getcpu() == -1) {
3108     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3109                                     (void*)&sched_getcpu_syscall));
3110   }
3111 
3112   if (sched_getcpu() == -1) {
3113     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3114   }
3115 }
3116 
3117 // Something to do with the numa-aware allocator needs these symbols
3118 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3119 extern "C" JNIEXPORT void numa_error(char *where) { }
3120 
3121 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3122 // load symbol from base version instead.
3123 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3124   void *f = dlvsym(handle, name, "libnuma_1.1");
3125   if (f == NULL) {
3126     f = dlsym(handle, name);
3127   }
3128   return f;
3129 }
3130 
3131 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3132 // Return NULL if the symbol is not defined in this particular version.
3133 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3134   return dlvsym(handle, name, "libnuma_1.2");
3135 }
3136 
3137 bool os::Linux::libnuma_init() {
3138   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3139     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3140     if (handle != NULL) {
3141       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3142                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3143       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3144                                        libnuma_dlsym(handle, "numa_max_node")));
3145       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3146                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3147       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3148                                         libnuma_dlsym(handle, "numa_available")));
3149       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3150                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3151       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3152                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3153       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3154                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3155       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3156                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3157       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3158                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3159       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3160                                        libnuma_dlsym(handle, "numa_distance")));
3161       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3162                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3163       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3164                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3165       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3166                                          libnuma_dlsym(handle, "numa_move_pages")));
3167       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3168                                             libnuma_dlsym(handle, "numa_set_preferred")));
3169 
3170       if (numa_available() != -1) {
3171         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3172         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3173         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3174         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3175         set_numa_membind_bitmask(_numa_get_membind());
3176         // Create an index -> node mapping, since nodes are not always consecutive
3177         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3178         rebuild_nindex_to_node_map();
3179         // Create a cpu -> node mapping
3180         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3181         rebuild_cpu_to_node_map();
3182         return true;
3183       }
3184     }
3185   }
3186   return false;
3187 }
3188 
3189 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3190   // Creating guard page is very expensive. Java thread has HotSpot
3191   // guard pages, only enable glibc guard page for non-Java threads.
3192   // (Remember: compiler thread is a Java thread, too!)
3193   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3194 }
3195 
3196 void os::Linux::rebuild_nindex_to_node_map() {
3197   int highest_node_number = Linux::numa_max_node();
3198 
3199   nindex_to_node()->clear();
3200   for (int node = 0; node <= highest_node_number; node++) {
3201     if (Linux::is_node_in_existing_nodes(node)) {
3202       nindex_to_node()->append(node);
3203     }
3204   }
3205 }
3206 
3207 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3208 // The table is later used in get_node_by_cpu().
3209 void os::Linux::rebuild_cpu_to_node_map() {
3210   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3211                               // in libnuma (possible values are starting from 16,
3212                               // and continuing up with every other power of 2, but less
3213                               // than the maximum number of CPUs supported by kernel), and
3214                               // is a subject to change (in libnuma version 2 the requirements
3215                               // are more reasonable) we'll just hardcode the number they use
3216                               // in the library.
3217   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3218 
3219   size_t cpu_num = processor_count();
3220   size_t cpu_map_size = NCPUS / BitsPerCLong;
3221   size_t cpu_map_valid_size =
3222     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3223 
3224   cpu_to_node()->clear();
3225   cpu_to_node()->at_grow(cpu_num - 1);
3226 
3227   size_t node_num = get_existing_num_nodes();
3228 
3229   int distance = 0;
3230   int closest_distance = INT_MAX;
3231   int closest_node = 0;
3232   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3233   for (size_t i = 0; i < node_num; i++) {
3234     // Check if node is configured (not a memory-less node). If it is not, find
3235     // the closest configured node. Check also if node is bound, i.e. it's allowed
3236     // to allocate memory from the node. If it's not allowed, map cpus in that node
3237     // to the closest node from which memory allocation is allowed.
3238     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3239         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3240       closest_distance = INT_MAX;
3241       // Check distance from all remaining nodes in the system. Ignore distance
3242       // from itself, from another non-configured node, and from another non-bound
3243       // node.
3244       for (size_t m = 0; m < node_num; m++) {
3245         if (m != i &&
3246             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3247             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3248           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3249           // If a closest node is found, update. There is always at least one
3250           // configured and bound node in the system so there is always at least
3251           // one node close.
3252           if (distance != 0 && distance < closest_distance) {
3253             closest_distance = distance;
3254             closest_node = nindex_to_node()->at(m);
3255           }
3256         }
3257       }
3258      } else {
3259        // Current node is already a configured node.
3260        closest_node = nindex_to_node()->at(i);
3261      }
3262 
3263     // Get cpus from the original node and map them to the closest node. If node
3264     // is a configured node (not a memory-less node), then original node and
3265     // closest node are the same.
3266     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3267       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3268         if (cpu_map[j] != 0) {
3269           for (size_t k = 0; k < BitsPerCLong; k++) {
3270             if (cpu_map[j] & (1UL << k)) {
3271               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3272             }
3273           }
3274         }
3275       }
3276     }
3277   }
3278   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3279 }
3280 
3281 int os::Linux::get_node_by_cpu(int cpu_id) {
3282   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3283     return cpu_to_node()->at(cpu_id);
3284   }
3285   return -1;
3286 }
3287 
3288 GrowableArray<int>* os::Linux::_cpu_to_node;
3289 GrowableArray<int>* os::Linux::_nindex_to_node;
3290 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3291 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3292 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3293 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3294 os::Linux::numa_available_func_t os::Linux::_numa_available;
3295 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3296 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3297 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3298 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3299 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3300 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3301 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3302 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3303 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3304 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3305 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3306 unsigned long* os::Linux::_numa_all_nodes;
3307 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3308 struct bitmask* os::Linux::_numa_nodes_ptr;
3309 struct bitmask* os::Linux::_numa_interleave_bitmask;
3310 struct bitmask* os::Linux::_numa_membind_bitmask;
3311 
3312 bool os::pd_uncommit_memory(char* addr, size_t size) {
3313   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3314                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3315   return res  != (uintptr_t) MAP_FAILED;
3316 }
3317 
3318 static address get_stack_commited_bottom(address bottom, size_t size) {
3319   address nbot = bottom;
3320   address ntop = bottom + size;
3321 
3322   size_t page_sz = os::vm_page_size();
3323   unsigned pages = size / page_sz;
3324 
3325   unsigned char vec[1];
3326   unsigned imin = 1, imax = pages + 1, imid;
3327   int mincore_return_value = 0;
3328 
3329   assert(imin <= imax, "Unexpected page size");
3330 
3331   while (imin < imax) {
3332     imid = (imax + imin) / 2;
3333     nbot = ntop - (imid * page_sz);
3334 
3335     // Use a trick with mincore to check whether the page is mapped or not.
3336     // mincore sets vec to 1 if page resides in memory and to 0 if page
3337     // is swapped output but if page we are asking for is unmapped
3338     // it returns -1,ENOMEM
3339     mincore_return_value = mincore(nbot, page_sz, vec);
3340 
3341     if (mincore_return_value == -1) {
3342       // Page is not mapped go up
3343       // to find first mapped page
3344       if (errno != EAGAIN) {
3345         assert(errno == ENOMEM, "Unexpected mincore errno");
3346         imax = imid;
3347       }
3348     } else {
3349       // Page is mapped go down
3350       // to find first not mapped page
3351       imin = imid + 1;
3352     }
3353   }
3354 
3355   nbot = nbot + page_sz;
3356 
3357   // Adjust stack bottom one page up if last checked page is not mapped
3358   if (mincore_return_value == -1) {
3359     nbot = nbot + page_sz;
3360   }
3361 
3362   return nbot;
3363 }
3364 
3365 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3366   int mincore_return_value;
3367   const size_t stripe = 1024;  // query this many pages each time
3368   unsigned char vec[stripe + 1];
3369   // set a guard
3370   vec[stripe] = 'X';
3371 
3372   const size_t page_sz = os::vm_page_size();
3373   size_t pages = size / page_sz;
3374 
3375   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3376   assert(is_aligned(size, page_sz), "Size must be page aligned");
3377 
3378   committed_start = NULL;
3379 
3380   int loops = (pages + stripe - 1) / stripe;
3381   int committed_pages = 0;
3382   address loop_base = start;
3383   bool found_range = false;
3384 
3385   for (int index = 0; index < loops && !found_range; index ++) {
3386     assert(pages > 0, "Nothing to do");
3387     int pages_to_query = (pages >= stripe) ? stripe : pages;
3388     pages -= pages_to_query;
3389 
3390     // Get stable read
3391     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3392 
3393     // During shutdown, some memory goes away without properly notifying NMT,
3394     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3395     // Bailout and return as not committed for now.
3396     if (mincore_return_value == -1 && errno == ENOMEM) {
3397       return false;
3398     }
3399 
3400     assert(vec[stripe] == 'X', "overflow guard");
3401     assert(mincore_return_value == 0, "Range must be valid");
3402     // Process this stripe
3403     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3404       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3405         // End of current contiguous region
3406         if (committed_start != NULL) {
3407           found_range = true;
3408           break;
3409         }
3410       } else { // committed
3411         // Start of region
3412         if (committed_start == NULL) {
3413           committed_start = loop_base + page_sz * vecIdx;
3414         }
3415         committed_pages ++;
3416       }
3417     }
3418 
3419     loop_base += pages_to_query * page_sz;
3420   }
3421 
3422   if (committed_start != NULL) {
3423     assert(committed_pages > 0, "Must have committed region");
3424     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3425     assert(committed_start >= start && committed_start < start + size, "Out of range");
3426     committed_size = page_sz * committed_pages;
3427     return true;
3428   } else {
3429     assert(committed_pages == 0, "Should not have committed region");
3430     return false;
3431   }
3432 }
3433 
3434 
3435 // Linux uses a growable mapping for the stack, and if the mapping for
3436 // the stack guard pages is not removed when we detach a thread the
3437 // stack cannot grow beyond the pages where the stack guard was
3438 // mapped.  If at some point later in the process the stack expands to
3439 // that point, the Linux kernel cannot expand the stack any further
3440 // because the guard pages are in the way, and a segfault occurs.
3441 //
3442 // However, it's essential not to split the stack region by unmapping
3443 // a region (leaving a hole) that's already part of the stack mapping,
3444 // so if the stack mapping has already grown beyond the guard pages at
3445 // the time we create them, we have to truncate the stack mapping.
3446 // So, we need to know the extent of the stack mapping when
3447 // create_stack_guard_pages() is called.
3448 
3449 // We only need this for stacks that are growable: at the time of
3450 // writing thread stacks don't use growable mappings (i.e. those
3451 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3452 // only applies to the main thread.
3453 
3454 // If the (growable) stack mapping already extends beyond the point
3455 // where we're going to put our guard pages, truncate the mapping at
3456 // that point by munmap()ping it.  This ensures that when we later
3457 // munmap() the guard pages we don't leave a hole in the stack
3458 // mapping. This only affects the main/primordial thread
3459 
3460 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3461   if (os::is_primordial_thread()) {
3462     // As we manually grow stack up to bottom inside create_attached_thread(),
3463     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3464     // we don't need to do anything special.
3465     // Check it first, before calling heavy function.
3466     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3467     unsigned char vec[1];
3468 
3469     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3470       // Fallback to slow path on all errors, including EAGAIN
3471       stack_extent = (uintptr_t) get_stack_commited_bottom(
3472                                                            os::Linux::initial_thread_stack_bottom(),
3473                                                            (size_t)addr - stack_extent);
3474     }
3475 
3476     if (stack_extent < (uintptr_t)addr) {
3477       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3478     }
3479   }
3480 
3481   return os::commit_memory(addr, size, !ExecMem);
3482 }
3483 
3484 // If this is a growable mapping, remove the guard pages entirely by
3485 // munmap()ping them.  If not, just call uncommit_memory(). This only
3486 // affects the main/primordial thread, but guard against future OS changes.
3487 // It's safe to always unmap guard pages for primordial thread because we
3488 // always place it right after end of the mapped region.
3489 
3490 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3491   uintptr_t stack_extent, stack_base;
3492 
3493   if (os::is_primordial_thread()) {
3494     return ::munmap(addr, size) == 0;
3495   }
3496 
3497   return os::uncommit_memory(addr, size);
3498 }
3499 
3500 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3501 // at 'requested_addr'. If there are existing memory mappings at the same
3502 // location, however, they will be overwritten. If 'fixed' is false,
3503 // 'requested_addr' is only treated as a hint, the return value may or
3504 // may not start from the requested address. Unlike Linux mmap(), this
3505 // function returns NULL to indicate failure.
3506 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3507   char * addr;
3508   int flags;
3509 
3510   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3511   if (fixed) {
3512     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3513     flags |= MAP_FIXED;
3514   }
3515 
3516   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3517   // touch an uncommitted page. Otherwise, the read/write might
3518   // succeed if we have enough swap space to back the physical page.
3519   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3520                        flags, -1, 0);
3521 
3522   return addr == MAP_FAILED ? NULL : addr;
3523 }
3524 
3525 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3526 //   (req_addr != NULL) or with a given alignment.
3527 //  - bytes shall be a multiple of alignment.
3528 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3529 //  - alignment sets the alignment at which memory shall be allocated.
3530 //     It must be a multiple of allocation granularity.
3531 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3532 //  req_addr or NULL.
3533 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3534 
3535   size_t extra_size = bytes;
3536   if (req_addr == NULL && alignment > 0) {
3537     extra_size += alignment;
3538   }
3539 
3540   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3541     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3542     -1, 0);
3543   if (start == MAP_FAILED) {
3544     start = NULL;
3545   } else {
3546     if (req_addr != NULL) {
3547       if (start != req_addr) {
3548         ::munmap(start, extra_size);
3549         start = NULL;
3550       }
3551     } else {
3552       char* const start_aligned = align_up(start, alignment);
3553       char* const end_aligned = start_aligned + bytes;
3554       char* const end = start + extra_size;
3555       if (start_aligned > start) {
3556         ::munmap(start, start_aligned - start);
3557       }
3558       if (end_aligned < end) {
3559         ::munmap(end_aligned, end - end_aligned);
3560       }
3561       start = start_aligned;
3562     }
3563   }
3564   return start;
3565 }
3566 
3567 static int anon_munmap(char * addr, size_t size) {
3568   return ::munmap(addr, size) == 0;
3569 }
3570 
3571 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3572                             size_t alignment_hint) {
3573   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3574 }
3575 
3576 bool os::pd_release_memory(char* addr, size_t size) {
3577   return anon_munmap(addr, size);
3578 }
3579 
3580 static bool linux_mprotect(char* addr, size_t size, int prot) {
3581   // Linux wants the mprotect address argument to be page aligned.
3582   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3583 
3584   // According to SUSv3, mprotect() should only be used with mappings
3585   // established by mmap(), and mmap() always maps whole pages. Unaligned
3586   // 'addr' likely indicates problem in the VM (e.g. trying to change
3587   // protection of malloc'ed or statically allocated memory). Check the
3588   // caller if you hit this assert.
3589   assert(addr == bottom, "sanity check");
3590 
3591   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3592   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3593   return ::mprotect(bottom, size, prot) == 0;
3594 }
3595 
3596 // Set protections specified
3597 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3598                         bool is_committed) {
3599   unsigned int p = 0;
3600   switch (prot) {
3601   case MEM_PROT_NONE: p = PROT_NONE; break;
3602   case MEM_PROT_READ: p = PROT_READ; break;
3603   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3604   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3605   default:
3606     ShouldNotReachHere();
3607   }
3608   // is_committed is unused.
3609   return linux_mprotect(addr, bytes, p);
3610 }
3611 
3612 bool os::guard_memory(char* addr, size_t size) {
3613   return linux_mprotect(addr, size, PROT_NONE);
3614 }
3615 
3616 bool os::unguard_memory(char* addr, size_t size) {
3617   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3618 }
3619 
3620 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3621                                                     size_t page_size) {
3622   bool result = false;
3623   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3624                  MAP_ANONYMOUS|MAP_PRIVATE,
3625                  -1, 0);
3626   if (p != MAP_FAILED) {
3627     void *aligned_p = align_up(p, page_size);
3628 
3629     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3630 
3631     munmap(p, page_size * 2);
3632   }
3633 
3634   if (warn && !result) {
3635     warning("TransparentHugePages is not supported by the operating system.");
3636   }
3637 
3638   return result;
3639 }
3640 
3641 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3642   bool result = false;
3643   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3644                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3645                  -1, 0);
3646 
3647   if (p != MAP_FAILED) {
3648     // We don't know if this really is a huge page or not.
3649     FILE *fp = fopen("/proc/self/maps", "r");
3650     if (fp) {
3651       while (!feof(fp)) {
3652         char chars[257];
3653         long x = 0;
3654         if (fgets(chars, sizeof(chars), fp)) {
3655           if (sscanf(chars, "%lx-%*x", &x) == 1
3656               && x == (long)p) {
3657             if (strstr (chars, "hugepage")) {
3658               result = true;
3659               break;
3660             }
3661           }
3662         }
3663       }
3664       fclose(fp);
3665     }
3666     munmap(p, page_size);
3667   }
3668 
3669   if (warn && !result) {
3670     warning("HugeTLBFS is not supported by the operating system.");
3671   }
3672 
3673   return result;
3674 }
3675 
3676 // From the coredump_filter documentation:
3677 //
3678 // - (bit 0) anonymous private memory
3679 // - (bit 1) anonymous shared memory
3680 // - (bit 2) file-backed private memory
3681 // - (bit 3) file-backed shared memory
3682 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3683 //           effective only if the bit 2 is cleared)
3684 // - (bit 5) hugetlb private memory
3685 // - (bit 6) hugetlb shared memory
3686 // - (bit 7) dax private memory
3687 // - (bit 8) dax shared memory
3688 //
3689 static void set_coredump_filter(CoredumpFilterBit bit) {
3690   FILE *f;
3691   long cdm;
3692 
3693   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3694     return;
3695   }
3696 
3697   if (fscanf(f, "%lx", &cdm) != 1) {
3698     fclose(f);
3699     return;
3700   }
3701 
3702   long saved_cdm = cdm;
3703   rewind(f);
3704   cdm |= bit;
3705 
3706   if (cdm != saved_cdm) {
3707     fprintf(f, "%#lx", cdm);
3708   }
3709 
3710   fclose(f);
3711 }
3712 
3713 // Large page support
3714 
3715 static size_t _large_page_size = 0;
3716 
3717 size_t os::Linux::find_large_page_size() {
3718   size_t large_page_size = 0;
3719 
3720   // large_page_size on Linux is used to round up heap size. x86 uses either
3721   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3722   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3723   // page as large as 256M.
3724   //
3725   // Here we try to figure out page size by parsing /proc/meminfo and looking
3726   // for a line with the following format:
3727   //    Hugepagesize:     2048 kB
3728   //
3729   // If we can't determine the value (e.g. /proc is not mounted, or the text
3730   // format has been changed), we'll use the largest page size supported by
3731   // the processor.
3732 
3733 #ifndef ZERO
3734   large_page_size =
3735     AARCH64_ONLY(2 * M)
3736     AMD64_ONLY(2 * M)
3737     ARM32_ONLY(2 * M)
3738     IA32_ONLY(4 * M)
3739     IA64_ONLY(256 * M)
3740     PPC_ONLY(4 * M)
3741     S390_ONLY(1 * M)
3742     SPARC_ONLY(4 * M);
3743 #endif // ZERO
3744 
3745   FILE *fp = fopen("/proc/meminfo", "r");
3746   if (fp) {
3747     while (!feof(fp)) {
3748       int x = 0;
3749       char buf[16];
3750       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3751         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3752           large_page_size = x * K;
3753           break;
3754         }
3755       } else {
3756         // skip to next line
3757         for (;;) {
3758           int ch = fgetc(fp);
3759           if (ch == EOF || ch == (int)'\n') break;
3760         }
3761       }
3762     }
3763     fclose(fp);
3764   }
3765 
3766   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3767     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3768             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3769             proper_unit_for_byte_size(large_page_size));
3770   }
3771 
3772   return large_page_size;
3773 }
3774 
3775 size_t os::Linux::setup_large_page_size() {
3776   _large_page_size = Linux::find_large_page_size();
3777   const size_t default_page_size = (size_t)Linux::page_size();
3778   if (_large_page_size > default_page_size) {
3779     _page_sizes[0] = _large_page_size;
3780     _page_sizes[1] = default_page_size;
3781     _page_sizes[2] = 0;
3782   }
3783 
3784   return _large_page_size;
3785 }
3786 
3787 bool os::Linux::setup_large_page_type(size_t page_size) {
3788   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3789       FLAG_IS_DEFAULT(UseSHM) &&
3790       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3791 
3792     // The type of large pages has not been specified by the user.
3793 
3794     // Try UseHugeTLBFS and then UseSHM.
3795     UseHugeTLBFS = UseSHM = true;
3796 
3797     // Don't try UseTransparentHugePages since there are known
3798     // performance issues with it turned on. This might change in the future.
3799     UseTransparentHugePages = false;
3800   }
3801 
3802   if (UseTransparentHugePages) {
3803     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3804     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3805       UseHugeTLBFS = false;
3806       UseSHM = false;
3807       return true;
3808     }
3809     UseTransparentHugePages = false;
3810   }
3811 
3812   if (UseHugeTLBFS) {
3813     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3814     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3815       UseSHM = false;
3816       return true;
3817     }
3818     UseHugeTLBFS = false;
3819   }
3820 
3821   return UseSHM;
3822 }
3823 
3824 void os::large_page_init() {
3825   if (!UseLargePages &&
3826       !UseTransparentHugePages &&
3827       !UseHugeTLBFS &&
3828       !UseSHM) {
3829     // Not using large pages.
3830     return;
3831   }
3832 
3833   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3834     // The user explicitly turned off large pages.
3835     // Ignore the rest of the large pages flags.
3836     UseTransparentHugePages = false;
3837     UseHugeTLBFS = false;
3838     UseSHM = false;
3839     return;
3840   }
3841 
3842   size_t large_page_size = Linux::setup_large_page_size();
3843   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3844 
3845   set_coredump_filter(LARGEPAGES_BIT);
3846 }
3847 
3848 #ifndef SHM_HUGETLB
3849   #define SHM_HUGETLB 04000
3850 #endif
3851 
3852 #define shm_warning_format(format, ...)              \
3853   do {                                               \
3854     if (UseLargePages &&                             \
3855         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3856          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3857          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3858       warning(format, __VA_ARGS__);                  \
3859     }                                                \
3860   } while (0)
3861 
3862 #define shm_warning(str) shm_warning_format("%s", str)
3863 
3864 #define shm_warning_with_errno(str)                \
3865   do {                                             \
3866     int err = errno;                               \
3867     shm_warning_format(str " (error = %d)", err);  \
3868   } while (0)
3869 
3870 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3871   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3872 
3873   if (!is_aligned(alignment, SHMLBA)) {
3874     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3875     return NULL;
3876   }
3877 
3878   // To ensure that we get 'alignment' aligned memory from shmat,
3879   // we pre-reserve aligned virtual memory and then attach to that.
3880 
3881   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3882   if (pre_reserved_addr == NULL) {
3883     // Couldn't pre-reserve aligned memory.
3884     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3885     return NULL;
3886   }
3887 
3888   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3889   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3890 
3891   if ((intptr_t)addr == -1) {
3892     int err = errno;
3893     shm_warning_with_errno("Failed to attach shared memory.");
3894 
3895     assert(err != EACCES, "Unexpected error");
3896     assert(err != EIDRM,  "Unexpected error");
3897     assert(err != EINVAL, "Unexpected error");
3898 
3899     // Since we don't know if the kernel unmapped the pre-reserved memory area
3900     // we can't unmap it, since that would potentially unmap memory that was
3901     // mapped from other threads.
3902     return NULL;
3903   }
3904 
3905   return addr;
3906 }
3907 
3908 static char* shmat_at_address(int shmid, char* req_addr) {
3909   if (!is_aligned(req_addr, SHMLBA)) {
3910     assert(false, "Requested address needs to be SHMLBA aligned");
3911     return NULL;
3912   }
3913 
3914   char* addr = (char*)shmat(shmid, req_addr, 0);
3915 
3916   if ((intptr_t)addr == -1) {
3917     shm_warning_with_errno("Failed to attach shared memory.");
3918     return NULL;
3919   }
3920 
3921   return addr;
3922 }
3923 
3924 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3925   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3926   if (req_addr != NULL) {
3927     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3928     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3929     return shmat_at_address(shmid, req_addr);
3930   }
3931 
3932   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3933   // return large page size aligned memory addresses when req_addr == NULL.
3934   // However, if the alignment is larger than the large page size, we have
3935   // to manually ensure that the memory returned is 'alignment' aligned.
3936   if (alignment > os::large_page_size()) {
3937     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3938     return shmat_with_alignment(shmid, bytes, alignment);
3939   } else {
3940     return shmat_at_address(shmid, NULL);
3941   }
3942 }
3943 
3944 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3945                                             char* req_addr, bool exec) {
3946   // "exec" is passed in but not used.  Creating the shared image for
3947   // the code cache doesn't have an SHM_X executable permission to check.
3948   assert(UseLargePages && UseSHM, "only for SHM large pages");
3949   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3950   assert(is_aligned(req_addr, alignment), "Unaligned address");
3951 
3952   if (!is_aligned(bytes, os::large_page_size())) {
3953     return NULL; // Fallback to small pages.
3954   }
3955 
3956   // Create a large shared memory region to attach to based on size.
3957   // Currently, size is the total size of the heap.
3958   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3959   if (shmid == -1) {
3960     // Possible reasons for shmget failure:
3961     // 1. shmmax is too small for Java heap.
3962     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3963     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3964     // 2. not enough large page memory.
3965     //    > check available large pages: cat /proc/meminfo
3966     //    > increase amount of large pages:
3967     //          echo new_value > /proc/sys/vm/nr_hugepages
3968     //      Note 1: different Linux may use different name for this property,
3969     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3970     //      Note 2: it's possible there's enough physical memory available but
3971     //            they are so fragmented after a long run that they can't
3972     //            coalesce into large pages. Try to reserve large pages when
3973     //            the system is still "fresh".
3974     shm_warning_with_errno("Failed to reserve shared memory.");
3975     return NULL;
3976   }
3977 
3978   // Attach to the region.
3979   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3980 
3981   // Remove shmid. If shmat() is successful, the actual shared memory segment
3982   // will be deleted when it's detached by shmdt() or when the process
3983   // terminates. If shmat() is not successful this will remove the shared
3984   // segment immediately.
3985   shmctl(shmid, IPC_RMID, NULL);
3986 
3987   return addr;
3988 }
3989 
3990 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3991                                         int error) {
3992   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3993 
3994   bool warn_on_failure = UseLargePages &&
3995       (!FLAG_IS_DEFAULT(UseLargePages) ||
3996        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3997        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3998 
3999   if (warn_on_failure) {
4000     char msg[128];
4001     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4002                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4003     warning("%s", msg);
4004   }
4005 }
4006 
4007 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4008                                                         char* req_addr,
4009                                                         bool exec) {
4010   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4011   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4012   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4013 
4014   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4015   char* addr = (char*)::mmap(req_addr, bytes, prot,
4016                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
4017                              -1, 0);
4018 
4019   if (addr == MAP_FAILED) {
4020     warn_on_large_pages_failure(req_addr, bytes, errno);
4021     return NULL;
4022   }
4023 
4024   assert(is_aligned(addr, os::large_page_size()), "Must be");
4025 
4026   return addr;
4027 }
4028 
4029 // Reserve memory using mmap(MAP_HUGETLB).
4030 //  - bytes shall be a multiple of alignment.
4031 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4032 //  - alignment sets the alignment at which memory shall be allocated.
4033 //     It must be a multiple of allocation granularity.
4034 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4035 //  req_addr or NULL.
4036 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4037                                                          size_t alignment,
4038                                                          char* req_addr,
4039                                                          bool exec) {
4040   size_t large_page_size = os::large_page_size();
4041   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4042 
4043   assert(is_aligned(req_addr, alignment), "Must be");
4044   assert(is_aligned(bytes, alignment), "Must be");
4045 
4046   // First reserve - but not commit - the address range in small pages.
4047   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4048 
4049   if (start == NULL) {
4050     return NULL;
4051   }
4052 
4053   assert(is_aligned(start, alignment), "Must be");
4054 
4055   char* end = start + bytes;
4056 
4057   // Find the regions of the allocated chunk that can be promoted to large pages.
4058   char* lp_start = align_up(start, large_page_size);
4059   char* lp_end   = align_down(end, large_page_size);
4060 
4061   size_t lp_bytes = lp_end - lp_start;
4062 
4063   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4064 
4065   if (lp_bytes == 0) {
4066     // The mapped region doesn't even span the start and the end of a large page.
4067     // Fall back to allocate a non-special area.
4068     ::munmap(start, end - start);
4069     return NULL;
4070   }
4071 
4072   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4073 
4074   void* result;
4075 
4076   // Commit small-paged leading area.
4077   if (start != lp_start) {
4078     result = ::mmap(start, lp_start - start, prot,
4079                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4080                     -1, 0);
4081     if (result == MAP_FAILED) {
4082       ::munmap(lp_start, end - lp_start);
4083       return NULL;
4084     }
4085   }
4086 
4087   // Commit large-paged area.
4088   result = ::mmap(lp_start, lp_bytes, prot,
4089                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4090                   -1, 0);
4091   if (result == MAP_FAILED) {
4092     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4093     // If the mmap above fails, the large pages region will be unmapped and we
4094     // have regions before and after with small pages. Release these regions.
4095     //
4096     // |  mapped  |  unmapped  |  mapped  |
4097     // ^          ^            ^          ^
4098     // start      lp_start     lp_end     end
4099     //
4100     ::munmap(start, lp_start - start);
4101     ::munmap(lp_end, end - lp_end);
4102     return NULL;
4103   }
4104 
4105   // Commit small-paged trailing area.
4106   if (lp_end != end) {
4107     result = ::mmap(lp_end, end - lp_end, prot,
4108                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4109                     -1, 0);
4110     if (result == MAP_FAILED) {
4111       ::munmap(start, lp_end - start);
4112       return NULL;
4113     }
4114   }
4115 
4116   return start;
4117 }
4118 
4119 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4120                                                    size_t alignment,
4121                                                    char* req_addr,
4122                                                    bool exec) {
4123   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4124   assert(is_aligned(req_addr, alignment), "Must be");
4125   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4126   assert(is_power_of_2(os::large_page_size()), "Must be");
4127   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4128 
4129   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4130     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4131   } else {
4132     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4133   }
4134 }
4135 
4136 char* os::reserve_memory_special(size_t bytes, size_t alignment,
4137                                  char* req_addr, bool exec) {
4138   assert(UseLargePages, "only for large pages");
4139 
4140   char* addr;
4141   if (UseSHM) {
4142     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4143   } else {
4144     assert(UseHugeTLBFS, "must be");
4145     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4146   }
4147 
4148   if (addr != NULL) {
4149     if (UseNUMAInterleaving) {
4150       numa_make_global(addr, bytes);
4151     }
4152 
4153     // The memory is committed
4154     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4155   }
4156 
4157   return addr;
4158 }
4159 
4160 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4161   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4162   return shmdt(base) == 0;
4163 }
4164 
4165 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4166   return pd_release_memory(base, bytes);
4167 }
4168 
4169 bool os::release_memory_special(char* base, size_t bytes) {
4170   bool res;
4171   if (MemTracker::tracking_level() > NMT_minimal) {
4172     Tracker tkr(Tracker::release);
4173     res = os::Linux::release_memory_special_impl(base, bytes);
4174     if (res) {
4175       tkr.record((address)base, bytes);
4176     }
4177 
4178   } else {
4179     res = os::Linux::release_memory_special_impl(base, bytes);
4180   }
4181   return res;
4182 }
4183 
4184 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
4185   assert(UseLargePages, "only for large pages");
4186   bool res;
4187 
4188   if (UseSHM) {
4189     res = os::Linux::release_memory_special_shm(base, bytes);
4190   } else {
4191     assert(UseHugeTLBFS, "must be");
4192     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4193   }
4194   return res;
4195 }
4196 
4197 size_t os::large_page_size() {
4198   return _large_page_size;
4199 }
4200 
4201 // With SysV SHM the entire memory region must be allocated as shared
4202 // memory.
4203 // HugeTLBFS allows application to commit large page memory on demand.
4204 // However, when committing memory with HugeTLBFS fails, the region
4205 // that was supposed to be committed will lose the old reservation
4206 // and allow other threads to steal that memory region. Because of this
4207 // behavior we can't commit HugeTLBFS memory.
4208 bool os::can_commit_large_page_memory() {
4209   return UseTransparentHugePages;
4210 }
4211 
4212 bool os::can_execute_large_page_memory() {
4213   return UseTransparentHugePages || UseHugeTLBFS;
4214 }
4215 
4216 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4217   assert(file_desc >= 0, "file_desc is not valid");
4218   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4219   if (result != NULL) {
4220     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4221       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4222     }
4223   }
4224   return result;
4225 }
4226 
4227 // Reserve memory at an arbitrary address, only if that area is
4228 // available (and not reserved for something else).
4229 
4230 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4231   // Assert only that the size is a multiple of the page size, since
4232   // that's all that mmap requires, and since that's all we really know
4233   // about at this low abstraction level.  If we need higher alignment,
4234   // we can either pass an alignment to this method or verify alignment
4235   // in one of the methods further up the call chain.  See bug 5044738.
4236   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4237 
4238   // Repeatedly allocate blocks until the block is allocated at the
4239   // right spot.
4240 
4241   // Linux mmap allows caller to pass an address as hint; give it a try first,
4242   // if kernel honors the hint then we can return immediately.
4243   char * addr = anon_mmap(requested_addr, bytes, false);
4244   if (addr == requested_addr) {
4245     return requested_addr;
4246   }
4247 
4248   if (addr != NULL) {
4249     // mmap() is successful but it fails to reserve at the requested address
4250     anon_munmap(addr, bytes);
4251   }
4252 
4253   return NULL;
4254 }
4255 
4256 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4257 void os::infinite_sleep() {
4258   while (true) {    // sleep forever ...
4259     ::sleep(100);   // ... 100 seconds at a time
4260   }
4261 }
4262 
4263 // Used to convert frequent JVM_Yield() to nops
4264 bool os::dont_yield() {
4265   return DontYieldALot;
4266 }
4267 
4268 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4269 // actually give up the CPU. Since skip buddy (v2.6.28):
4270 //
4271 // * Sets the yielding task as skip buddy for current CPU's run queue.
4272 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4273 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4274 //
4275 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4276 // getting re-scheduled immediately.
4277 //
4278 void os::naked_yield() {
4279   sched_yield();
4280 }
4281 
4282 ////////////////////////////////////////////////////////////////////////////////
4283 // thread priority support
4284 
4285 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4286 // only supports dynamic priority, static priority must be zero. For real-time
4287 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4288 // However, for large multi-threaded applications, SCHED_RR is not only slower
4289 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4290 // of 5 runs - Sep 2005).
4291 //
4292 // The following code actually changes the niceness of kernel-thread/LWP. It
4293 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4294 // not the entire user process, and user level threads are 1:1 mapped to kernel
4295 // threads. It has always been the case, but could change in the future. For
4296 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4297 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4298 // (e.g., root privilege or CAP_SYS_NICE capability).
4299 
4300 int os::java_to_os_priority[CriticalPriority + 1] = {
4301   19,              // 0 Entry should never be used
4302 
4303    4,              // 1 MinPriority
4304    3,              // 2
4305    2,              // 3
4306 
4307    1,              // 4
4308    0,              // 5 NormPriority
4309   -1,              // 6
4310 
4311   -2,              // 7
4312   -3,              // 8
4313   -4,              // 9 NearMaxPriority
4314 
4315   -5,              // 10 MaxPriority
4316 
4317   -5               // 11 CriticalPriority
4318 };
4319 
4320 static int prio_init() {
4321   if (ThreadPriorityPolicy == 1) {
4322     if (geteuid() != 0) {
4323       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4324         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4325                 "e.g., being the root user. If the necessary permission is not " \
4326                 "possessed, changes to priority will be silently ignored.");
4327       }
4328     }
4329   }
4330   if (UseCriticalJavaThreadPriority) {
4331     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4332   }
4333   return 0;
4334 }
4335 
4336 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4337   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4338 
4339   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4340   return (ret == 0) ? OS_OK : OS_ERR;
4341 }
4342 
4343 OSReturn os::get_native_priority(const Thread* const thread,
4344                                  int *priority_ptr) {
4345   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4346     *priority_ptr = java_to_os_priority[NormPriority];
4347     return OS_OK;
4348   }
4349 
4350   errno = 0;
4351   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4352   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4353 }
4354 
4355 ////////////////////////////////////////////////////////////////////////////////
4356 // suspend/resume support
4357 
4358 //  The low-level signal-based suspend/resume support is a remnant from the
4359 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4360 //  within hotspot. Currently used by JFR's OSThreadSampler
4361 //
4362 //  The remaining code is greatly simplified from the more general suspension
4363 //  code that used to be used.
4364 //
4365 //  The protocol is quite simple:
4366 //  - suspend:
4367 //      - sends a signal to the target thread
4368 //      - polls the suspend state of the osthread using a yield loop
4369 //      - target thread signal handler (SR_handler) sets suspend state
4370 //        and blocks in sigsuspend until continued
4371 //  - resume:
4372 //      - sets target osthread state to continue
4373 //      - sends signal to end the sigsuspend loop in the SR_handler
4374 //
4375 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4376 //  but is checked for NULL in SR_handler as a thread termination indicator.
4377 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4378 //
4379 //  Note that resume_clear_context() and suspend_save_context() are needed
4380 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4381 //  which in part is used by:
4382 //    - Forte Analyzer: AsyncGetCallTrace()
4383 //    - StackBanging: get_frame_at_stack_banging_point()
4384 
4385 static void resume_clear_context(OSThread *osthread) {
4386   osthread->set_ucontext(NULL);
4387   osthread->set_siginfo(NULL);
4388 }
4389 
4390 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4391                                  ucontext_t* context) {
4392   osthread->set_ucontext(context);
4393   osthread->set_siginfo(siginfo);
4394 }
4395 
4396 // Handler function invoked when a thread's execution is suspended or
4397 // resumed. We have to be careful that only async-safe functions are
4398 // called here (Note: most pthread functions are not async safe and
4399 // should be avoided.)
4400 //
4401 // Note: sigwait() is a more natural fit than sigsuspend() from an
4402 // interface point of view, but sigwait() prevents the signal hander
4403 // from being run. libpthread would get very confused by not having
4404 // its signal handlers run and prevents sigwait()'s use with the
4405 // mutex granting granting signal.
4406 //
4407 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4408 //
4409 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4410   // Save and restore errno to avoid confusing native code with EINTR
4411   // after sigsuspend.
4412   int old_errno = errno;
4413 
4414   Thread* thread = Thread::current_or_null_safe();
4415   assert(thread != NULL, "Missing current thread in SR_handler");
4416 
4417   // On some systems we have seen signal delivery get "stuck" until the signal
4418   // mask is changed as part of thread termination. Check that the current thread
4419   // has not already terminated (via SR_lock()) - else the following assertion
4420   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4421   // destructor has completed.
4422 
4423   if (thread->SR_lock() == NULL) {
4424     return;
4425   }
4426 
4427   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4428 
4429   OSThread* osthread = thread->osthread();
4430 
4431   os::SuspendResume::State current = osthread->sr.state();
4432   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4433     suspend_save_context(osthread, siginfo, context);
4434 
4435     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4436     os::SuspendResume::State state = osthread->sr.suspended();
4437     if (state == os::SuspendResume::SR_SUSPENDED) {
4438       sigset_t suspend_set;  // signals for sigsuspend()
4439       sigemptyset(&suspend_set);
4440       // get current set of blocked signals and unblock resume signal
4441       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4442       sigdelset(&suspend_set, SR_signum);
4443 
4444       sr_semaphore.signal();
4445       // wait here until we are resumed
4446       while (1) {
4447         sigsuspend(&suspend_set);
4448 
4449         os::SuspendResume::State result = osthread->sr.running();
4450         if (result == os::SuspendResume::SR_RUNNING) {
4451           sr_semaphore.signal();
4452           break;
4453         }
4454       }
4455 
4456     } else if (state == os::SuspendResume::SR_RUNNING) {
4457       // request was cancelled, continue
4458     } else {
4459       ShouldNotReachHere();
4460     }
4461 
4462     resume_clear_context(osthread);
4463   } else if (current == os::SuspendResume::SR_RUNNING) {
4464     // request was cancelled, continue
4465   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4466     // ignore
4467   } else {
4468     // ignore
4469   }
4470 
4471   errno = old_errno;
4472 }
4473 
4474 static int SR_initialize() {
4475   struct sigaction act;
4476   char *s;
4477 
4478   // Get signal number to use for suspend/resume
4479   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4480     int sig = ::strtol(s, 0, 10);
4481     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4482         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4483       SR_signum = sig;
4484     } else {
4485       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4486               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4487     }
4488   }
4489 
4490   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4491          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4492 
4493   sigemptyset(&SR_sigset);
4494   sigaddset(&SR_sigset, SR_signum);
4495 
4496   // Set up signal handler for suspend/resume
4497   act.sa_flags = SA_RESTART|SA_SIGINFO;
4498   act.sa_handler = (void (*)(int)) SR_handler;
4499 
4500   // SR_signum is blocked by default.
4501   // 4528190 - We also need to block pthread restart signal (32 on all
4502   // supported Linux platforms). Note that LinuxThreads need to block
4503   // this signal for all threads to work properly. So we don't have
4504   // to use hard-coded signal number when setting up the mask.
4505   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4506 
4507   if (sigaction(SR_signum, &act, 0) == -1) {
4508     return -1;
4509   }
4510 
4511   // Save signal flag
4512   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4513   return 0;
4514 }
4515 
4516 static int sr_notify(OSThread* osthread) {
4517   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4518   assert_status(status == 0, status, "pthread_kill");
4519   return status;
4520 }
4521 
4522 // "Randomly" selected value for how long we want to spin
4523 // before bailing out on suspending a thread, also how often
4524 // we send a signal to a thread we want to resume
4525 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4526 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4527 
4528 // returns true on success and false on error - really an error is fatal
4529 // but this seems the normal response to library errors
4530 static bool do_suspend(OSThread* osthread) {
4531   assert(osthread->sr.is_running(), "thread should be running");
4532   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4533 
4534   // mark as suspended and send signal
4535   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4536     // failed to switch, state wasn't running?
4537     ShouldNotReachHere();
4538     return false;
4539   }
4540 
4541   if (sr_notify(osthread) != 0) {
4542     ShouldNotReachHere();
4543   }
4544 
4545   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4546   while (true) {
4547     if (sr_semaphore.timedwait(2)) {
4548       break;
4549     } else {
4550       // timeout
4551       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4552       if (cancelled == os::SuspendResume::SR_RUNNING) {
4553         return false;
4554       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4555         // make sure that we consume the signal on the semaphore as well
4556         sr_semaphore.wait();
4557         break;
4558       } else {
4559         ShouldNotReachHere();
4560         return false;
4561       }
4562     }
4563   }
4564 
4565   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4566   return true;
4567 }
4568 
4569 static void do_resume(OSThread* osthread) {
4570   assert(osthread->sr.is_suspended(), "thread should be suspended");
4571   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4572 
4573   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4574     // failed to switch to WAKEUP_REQUEST
4575     ShouldNotReachHere();
4576     return;
4577   }
4578 
4579   while (true) {
4580     if (sr_notify(osthread) == 0) {
4581       if (sr_semaphore.timedwait(2)) {
4582         if (osthread->sr.is_running()) {
4583           return;
4584         }
4585       }
4586     } else {
4587       ShouldNotReachHere();
4588     }
4589   }
4590 
4591   guarantee(osthread->sr.is_running(), "Must be running!");
4592 }
4593 
4594 ///////////////////////////////////////////////////////////////////////////////////
4595 // signal handling (except suspend/resume)
4596 
4597 // This routine may be used by user applications as a "hook" to catch signals.
4598 // The user-defined signal handler must pass unrecognized signals to this
4599 // routine, and if it returns true (non-zero), then the signal handler must
4600 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4601 // routine will never retun false (zero), but instead will execute a VM panic
4602 // routine kill the process.
4603 //
4604 // If this routine returns false, it is OK to call it again.  This allows
4605 // the user-defined signal handler to perform checks either before or after
4606 // the VM performs its own checks.  Naturally, the user code would be making
4607 // a serious error if it tried to handle an exception (such as a null check
4608 // or breakpoint) that the VM was generating for its own correct operation.
4609 //
4610 // This routine may recognize any of the following kinds of signals:
4611 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4612 // It should be consulted by handlers for any of those signals.
4613 //
4614 // The caller of this routine must pass in the three arguments supplied
4615 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4616 // field of the structure passed to sigaction().  This routine assumes that
4617 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4618 //
4619 // Note that the VM will print warnings if it detects conflicting signal
4620 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4621 //
4622 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4623                                                  siginfo_t* siginfo,
4624                                                  void* ucontext,
4625                                                  int abort_if_unrecognized);
4626 
4627 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4628   assert(info != NULL && uc != NULL, "it must be old kernel");
4629   int orig_errno = errno;  // Preserve errno value over signal handler.
4630   JVM_handle_linux_signal(sig, info, uc, true);
4631   errno = orig_errno;
4632 }
4633 
4634 
4635 // This boolean allows users to forward their own non-matching signals
4636 // to JVM_handle_linux_signal, harmlessly.
4637 bool os::Linux::signal_handlers_are_installed = false;
4638 
4639 // For signal-chaining
4640 bool os::Linux::libjsig_is_loaded = false;
4641 typedef struct sigaction *(*get_signal_t)(int);
4642 get_signal_t os::Linux::get_signal_action = NULL;
4643 
4644 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4645   struct sigaction *actp = NULL;
4646 
4647   if (libjsig_is_loaded) {
4648     // Retrieve the old signal handler from libjsig
4649     actp = (*get_signal_action)(sig);
4650   }
4651   if (actp == NULL) {
4652     // Retrieve the preinstalled signal handler from jvm
4653     actp = os::Posix::get_preinstalled_handler(sig);
4654   }
4655 
4656   return actp;
4657 }
4658 
4659 static bool call_chained_handler(struct sigaction *actp, int sig,
4660                                  siginfo_t *siginfo, void *context) {
4661   // Call the old signal handler
4662   if (actp->sa_handler == SIG_DFL) {
4663     // It's more reasonable to let jvm treat it as an unexpected exception
4664     // instead of taking the default action.
4665     return false;
4666   } else if (actp->sa_handler != SIG_IGN) {
4667     if ((actp->sa_flags & SA_NODEFER) == 0) {
4668       // automaticlly block the signal
4669       sigaddset(&(actp->sa_mask), sig);
4670     }
4671 
4672     sa_handler_t hand = NULL;
4673     sa_sigaction_t sa = NULL;
4674     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4675     // retrieve the chained handler
4676     if (siginfo_flag_set) {
4677       sa = actp->sa_sigaction;
4678     } else {
4679       hand = actp->sa_handler;
4680     }
4681 
4682     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4683       actp->sa_handler = SIG_DFL;
4684     }
4685 
4686     // try to honor the signal mask
4687     sigset_t oset;
4688     sigemptyset(&oset);
4689     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4690 
4691     // call into the chained handler
4692     if (siginfo_flag_set) {
4693       (*sa)(sig, siginfo, context);
4694     } else {
4695       (*hand)(sig);
4696     }
4697 
4698     // restore the signal mask
4699     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4700   }
4701   // Tell jvm's signal handler the signal is taken care of.
4702   return true;
4703 }
4704 
4705 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4706   bool chained = false;
4707   // signal-chaining
4708   if (UseSignalChaining) {
4709     struct sigaction *actp = get_chained_signal_action(sig);
4710     if (actp != NULL) {
4711       chained = call_chained_handler(actp, sig, siginfo, context);
4712     }
4713   }
4714   return chained;
4715 }
4716 
4717 // for diagnostic
4718 int sigflags[NSIG];
4719 
4720 int os::Linux::get_our_sigflags(int sig) {
4721   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4722   return sigflags[sig];
4723 }
4724 
4725 void os::Linux::set_our_sigflags(int sig, int flags) {
4726   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4727   if (sig > 0 && sig < NSIG) {
4728     sigflags[sig] = flags;
4729   }
4730 }
4731 
4732 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4733   // Check for overwrite.
4734   struct sigaction oldAct;
4735   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4736 
4737   void* oldhand = oldAct.sa_sigaction
4738                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4739                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4740   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4741       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4742       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4743     if (AllowUserSignalHandlers || !set_installed) {
4744       // Do not overwrite; user takes responsibility to forward to us.
4745       return;
4746     } else if (UseSignalChaining) {
4747       // save the old handler in jvm
4748       os::Posix::save_preinstalled_handler(sig, oldAct);
4749       // libjsig also interposes the sigaction() call below and saves the
4750       // old sigaction on it own.
4751     } else {
4752       fatal("Encountered unexpected pre-existing sigaction handler "
4753             "%#lx for signal %d.", (long)oldhand, sig);
4754     }
4755   }
4756 
4757   struct sigaction sigAct;
4758   sigfillset(&(sigAct.sa_mask));
4759   sigAct.sa_handler = SIG_DFL;
4760   if (!set_installed) {
4761     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4762   } else {
4763     sigAct.sa_sigaction = signalHandler;
4764     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4765   }
4766   // Save flags, which are set by ours
4767   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4768   sigflags[sig] = sigAct.sa_flags;
4769 
4770   int ret = sigaction(sig, &sigAct, &oldAct);
4771   assert(ret == 0, "check");
4772 
4773   void* oldhand2  = oldAct.sa_sigaction
4774                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4775                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4776   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4777 }
4778 
4779 // install signal handlers for signals that HotSpot needs to
4780 // handle in order to support Java-level exception handling.
4781 
4782 void os::Linux::install_signal_handlers() {
4783   if (!signal_handlers_are_installed) {
4784     signal_handlers_are_installed = true;
4785 
4786     // signal-chaining
4787     typedef void (*signal_setting_t)();
4788     signal_setting_t begin_signal_setting = NULL;
4789     signal_setting_t end_signal_setting = NULL;
4790     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4791                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4792     if (begin_signal_setting != NULL) {
4793       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4794                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4795       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4796                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4797       libjsig_is_loaded = true;
4798       assert(UseSignalChaining, "should enable signal-chaining");
4799     }
4800     if (libjsig_is_loaded) {
4801       // Tell libjsig jvm is setting signal handlers
4802       (*begin_signal_setting)();
4803     }
4804 
4805     set_signal_handler(SIGSEGV, true);
4806     set_signal_handler(SIGPIPE, true);
4807     set_signal_handler(SIGBUS, true);
4808     set_signal_handler(SIGILL, true);
4809     set_signal_handler(SIGFPE, true);
4810 #if defined(PPC64)
4811     set_signal_handler(SIGTRAP, true);
4812 #endif
4813     set_signal_handler(SIGXFSZ, true);
4814 
4815     if (libjsig_is_loaded) {
4816       // Tell libjsig jvm finishes setting signal handlers
4817       (*end_signal_setting)();
4818     }
4819 
4820     // We don't activate signal checker if libjsig is in place, we trust ourselves
4821     // and if UserSignalHandler is installed all bets are off.
4822     // Log that signal checking is off only if -verbose:jni is specified.
4823     if (CheckJNICalls) {
4824       if (libjsig_is_loaded) {
4825         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4826         check_signals = false;
4827       }
4828       if (AllowUserSignalHandlers) {
4829         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4830         check_signals = false;
4831       }
4832     }
4833   }
4834 }
4835 
4836 // This is the fastest way to get thread cpu time on Linux.
4837 // Returns cpu time (user+sys) for any thread, not only for current.
4838 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4839 // It might work on 2.6.10+ with a special kernel/glibc patch.
4840 // For reference, please, see IEEE Std 1003.1-2004:
4841 //   http://www.unix.org/single_unix_specification
4842 
4843 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4844   struct timespec tp;
4845   int rc = os::Posix::clock_gettime(clockid, &tp);
4846   assert(rc == 0, "clock_gettime is expected to return 0 code");
4847 
4848   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4849 }
4850 
4851 /////
4852 // glibc on Linux platform uses non-documented flag
4853 // to indicate, that some special sort of signal
4854 // trampoline is used.
4855 // We will never set this flag, and we should
4856 // ignore this flag in our diagnostic
4857 #ifdef SIGNIFICANT_SIGNAL_MASK
4858   #undef SIGNIFICANT_SIGNAL_MASK
4859 #endif
4860 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4861 
4862 static const char* get_signal_handler_name(address handler,
4863                                            char* buf, int buflen) {
4864   int offset = 0;
4865   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4866   if (found) {
4867     // skip directory names
4868     const char *p1, *p2;
4869     p1 = buf;
4870     size_t len = strlen(os::file_separator());
4871     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4872     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4873   } else {
4874     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4875   }
4876   return buf;
4877 }
4878 
4879 static void print_signal_handler(outputStream* st, int sig,
4880                                  char* buf, size_t buflen) {
4881   struct sigaction sa;
4882 
4883   sigaction(sig, NULL, &sa);
4884 
4885   // See comment for SIGNIFICANT_SIGNAL_MASK define
4886   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4887 
4888   st->print("%s: ", os::exception_name(sig, buf, buflen));
4889 
4890   address handler = (sa.sa_flags & SA_SIGINFO)
4891     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4892     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4893 
4894   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4895     st->print("SIG_DFL");
4896   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4897     st->print("SIG_IGN");
4898   } else {
4899     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4900   }
4901 
4902   st->print(", sa_mask[0]=");
4903   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4904 
4905   address rh = VMError::get_resetted_sighandler(sig);
4906   // May be, handler was resetted by VMError?
4907   if (rh != NULL) {
4908     handler = rh;
4909     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4910   }
4911 
4912   st->print(", sa_flags=");
4913   os::Posix::print_sa_flags(st, sa.sa_flags);
4914 
4915   // Check: is it our handler?
4916   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4917       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4918     // It is our signal handler
4919     // check for flags, reset system-used one!
4920     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4921       st->print(
4922                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4923                 os::Linux::get_our_sigflags(sig));
4924     }
4925   }
4926   st->cr();
4927 }
4928 
4929 
4930 #define DO_SIGNAL_CHECK(sig)                      \
4931   do {                                            \
4932     if (!sigismember(&check_signal_done, sig)) {  \
4933       os::Linux::check_signal_handler(sig);       \
4934     }                                             \
4935   } while (0)
4936 
4937 // This method is a periodic task to check for misbehaving JNI applications
4938 // under CheckJNI, we can add any periodic checks here
4939 
4940 void os::run_periodic_checks() {
4941   if (check_signals == false) return;
4942 
4943   // SEGV and BUS if overridden could potentially prevent
4944   // generation of hs*.log in the event of a crash, debugging
4945   // such a case can be very challenging, so we absolutely
4946   // check the following for a good measure:
4947   DO_SIGNAL_CHECK(SIGSEGV);
4948   DO_SIGNAL_CHECK(SIGILL);
4949   DO_SIGNAL_CHECK(SIGFPE);
4950   DO_SIGNAL_CHECK(SIGBUS);
4951   DO_SIGNAL_CHECK(SIGPIPE);
4952   DO_SIGNAL_CHECK(SIGXFSZ);
4953 #if defined(PPC64)
4954   DO_SIGNAL_CHECK(SIGTRAP);
4955 #endif
4956 
4957   // ReduceSignalUsage allows the user to override these handlers
4958   // see comments at the very top and jvm_md.h
4959   if (!ReduceSignalUsage) {
4960     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4961     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4962     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4963     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4964   }
4965 
4966   DO_SIGNAL_CHECK(SR_signum);
4967 }
4968 
4969 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4970 
4971 static os_sigaction_t os_sigaction = NULL;
4972 
4973 void os::Linux::check_signal_handler(int sig) {
4974   char buf[O_BUFLEN];
4975   address jvmHandler = NULL;
4976 
4977 
4978   struct sigaction act;
4979   if (os_sigaction == NULL) {
4980     // only trust the default sigaction, in case it has been interposed
4981     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4982     if (os_sigaction == NULL) return;
4983   }
4984 
4985   os_sigaction(sig, (struct sigaction*)NULL, &act);
4986 
4987 
4988   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4989 
4990   address thisHandler = (act.sa_flags & SA_SIGINFO)
4991     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4992     : CAST_FROM_FN_PTR(address, act.sa_handler);
4993 
4994 
4995   switch (sig) {
4996   case SIGSEGV:
4997   case SIGBUS:
4998   case SIGFPE:
4999   case SIGPIPE:
5000   case SIGILL:
5001   case SIGXFSZ:
5002     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5003     break;
5004 
5005   case SHUTDOWN1_SIGNAL:
5006   case SHUTDOWN2_SIGNAL:
5007   case SHUTDOWN3_SIGNAL:
5008   case BREAK_SIGNAL:
5009     jvmHandler = (address)user_handler();
5010     break;
5011 
5012   default:
5013     if (sig == SR_signum) {
5014       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5015     } else {
5016       return;
5017     }
5018     break;
5019   }
5020 
5021   if (thisHandler != jvmHandler) {
5022     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5023     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5024     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5025     // No need to check this sig any longer
5026     sigaddset(&check_signal_done, sig);
5027     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5028     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5029       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5030                     exception_name(sig, buf, O_BUFLEN));
5031     }
5032   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5033     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5034     tty->print("expected:");
5035     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5036     tty->cr();
5037     tty->print("  found:");
5038     os::Posix::print_sa_flags(tty, act.sa_flags);
5039     tty->cr();
5040     // No need to check this sig any longer
5041     sigaddset(&check_signal_done, sig);
5042   }
5043 
5044   // Dump all the signal
5045   if (sigismember(&check_signal_done, sig)) {
5046     print_signal_handlers(tty, buf, O_BUFLEN);
5047   }
5048 }
5049 
5050 extern void report_error(char* file_name, int line_no, char* title,
5051                          char* format, ...);
5052 
5053 // this is called _before_ most of the global arguments have been parsed
5054 void os::init(void) {
5055   char dummy;   // used to get a guess on initial stack address
5056 
5057   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5058 
5059   init_random(1234567);
5060 
5061   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5062   if (Linux::page_size() == -1) {
5063     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5064           os::strerror(errno));
5065   }
5066   init_page_sizes((size_t) Linux::page_size());
5067 
5068   Linux::initialize_system_info();
5069 
5070   os::Linux::CPUPerfTicks pticks;
5071   bool res = os::Linux::get_tick_information(&pticks, -1);
5072 
5073   if (res && pticks.has_steal_ticks) {
5074     has_initial_tick_info = true;
5075     initial_total_ticks = pticks.total;
5076     initial_steal_ticks = pticks.steal;
5077   }
5078 
5079   // _main_thread points to the thread that created/loaded the JVM.
5080   Linux::_main_thread = pthread_self();
5081 
5082   // retrieve entry point for pthread_setname_np
5083   Linux::_pthread_setname_np =
5084     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5085 
5086   os::Posix::init();
5087 
5088   initial_time_count = javaTimeNanos();
5089 
5090   // Always warn if no monotonic clock available
5091   if (!os::Posix::supports_monotonic_clock()) {
5092     warning("No monotonic clock was available - timed services may "    \
5093             "be adversely affected if the time-of-day clock changes");
5094   }
5095 }
5096 
5097 // To install functions for atexit system call
5098 extern "C" {
5099   static void perfMemory_exit_helper() {
5100     perfMemory_exit();
5101   }
5102 }
5103 
5104 void os::pd_init_container_support() {
5105   OSContainer::init();
5106 }
5107 
5108 void os::Linux::numa_init() {
5109 
5110   // Java can be invoked as
5111   // 1. Without numactl and heap will be allocated/configured on all nodes as
5112   //    per the system policy.
5113   // 2. With numactl --interleave:
5114   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5115   //      API for membind case bitmask is reset.
5116   //      Interleave is only hint and Kernel can fallback to other nodes if
5117   //      no memory is available on the target nodes.
5118   // 3. With numactl --membind:
5119   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5120   //      interleave case returns bitmask of all nodes.
5121   // numa_all_nodes_ptr holds bitmask of all nodes.
5122   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5123   // bitmask when externally configured to run on all or fewer nodes.
5124 
5125   if (!Linux::libnuma_init()) {
5126     UseNUMA = false;
5127   } else {
5128     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5129       // If there's only one node (they start from 0) or if the process
5130       // is bound explicitly to a single node using membind, disable NUMA unless
5131       // user explicilty forces NUMA optimizations on single-node/UMA systems
5132       UseNUMA = ForceNUMA;
5133     } else {
5134 
5135       LogTarget(Info,os) log;
5136       LogStream ls(log);
5137 
5138       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5139 
5140       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5141       const char* numa_mode = "membind";
5142 
5143       if (Linux::is_running_in_interleave_mode()) {
5144         bmp = Linux::_numa_interleave_bitmask;
5145         numa_mode = "interleave";
5146       }
5147 
5148       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5149                " Heap will be configured using NUMA memory nodes:", numa_mode);
5150 
5151       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5152         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5153           ls.print(" %d", node);
5154         }
5155       }
5156     }
5157   }
5158 
5159   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5160     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5161     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5162     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5163     // and disable adaptive resizing.
5164     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5165       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5166               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5167       UseAdaptiveSizePolicy = false;
5168       UseAdaptiveNUMAChunkSizing = false;
5169     }
5170   }
5171 }
5172 
5173 // this is called _after_ the global arguments have been parsed
5174 jint os::init_2(void) {
5175 
5176   // This could be set after os::Posix::init() but all platforms
5177   // have to set it the same so we have to mirror Solaris.
5178   DEBUG_ONLY(os::set_mutex_init_done();)
5179 
5180   os::Posix::init_2();
5181 
5182   Linux::fast_thread_clock_init();
5183 
5184   // initialize suspend/resume support - must do this before signal_sets_init()
5185   if (SR_initialize() != 0) {
5186     perror("SR_initialize failed");
5187     return JNI_ERR;
5188   }
5189 
5190   Linux::signal_sets_init();
5191   Linux::install_signal_handlers();
5192   // Initialize data for jdk.internal.misc.Signal
5193   if (!ReduceSignalUsage) {
5194     jdk_misc_signal_init();
5195   }
5196 
5197   if (AdjustStackSizeForTLS) {
5198     get_minstack_init();
5199   }
5200 
5201   // Check and sets minimum stack sizes against command line options
5202   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5203     return JNI_ERR;
5204   }
5205 
5206 #if defined(IA32)
5207   // Need to ensure we've determined the process's initial stack to
5208   // perform the workaround
5209   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5210   workaround_expand_exec_shield_cs_limit();
5211 #else
5212   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5213   if (!suppress_primordial_thread_resolution) {
5214     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5215   }
5216 #endif
5217 
5218   Linux::libpthread_init();
5219   Linux::sched_getcpu_init();
5220   log_info(os)("HotSpot is running with %s, %s",
5221                Linux::glibc_version(), Linux::libpthread_version());
5222 
5223   if (UseNUMA) {
5224     Linux::numa_init();
5225   }
5226 
5227   if (MaxFDLimit) {
5228     // set the number of file descriptors to max. print out error
5229     // if getrlimit/setrlimit fails but continue regardless.
5230     struct rlimit nbr_files;
5231     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5232     if (status != 0) {
5233       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5234     } else {
5235       nbr_files.rlim_cur = nbr_files.rlim_max;
5236       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5237       if (status != 0) {
5238         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5239       }
5240     }
5241   }
5242 
5243   // at-exit methods are called in the reverse order of their registration.
5244   // atexit functions are called on return from main or as a result of a
5245   // call to exit(3C). There can be only 32 of these functions registered
5246   // and atexit() does not set errno.
5247 
5248   if (PerfAllowAtExitRegistration) {
5249     // only register atexit functions if PerfAllowAtExitRegistration is set.
5250     // atexit functions can be delayed until process exit time, which
5251     // can be problematic for embedded VM situations. Embedded VMs should
5252     // call DestroyJavaVM() to assure that VM resources are released.
5253 
5254     // note: perfMemory_exit_helper atexit function may be removed in
5255     // the future if the appropriate cleanup code can be added to the
5256     // VM_Exit VMOperation's doit method.
5257     if (atexit(perfMemory_exit_helper) != 0) {
5258       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5259     }
5260   }
5261 
5262   // initialize thread priority policy
5263   prio_init();
5264 
5265   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5266     set_coredump_filter(DAX_SHARED_BIT);
5267   }
5268 
5269   if (DumpPrivateMappingsInCore) {
5270     set_coredump_filter(FILE_BACKED_PVT_BIT);
5271   }
5272 
5273   if (DumpSharedMappingsInCore) {
5274     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5275   }
5276 
5277   return JNI_OK;
5278 }
5279 
5280 // Mark the polling page as unreadable
5281 void os::make_polling_page_unreadable(void) {
5282   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5283     fatal("Could not disable polling page");
5284   }
5285 }
5286 
5287 // Mark the polling page as readable
5288 void os::make_polling_page_readable(void) {
5289   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5290     fatal("Could not enable polling page");
5291   }
5292 }
5293 
5294 // older glibc versions don't have this macro (which expands to
5295 // an optimized bit-counting function) so we have to roll our own
5296 #ifndef CPU_COUNT
5297 
5298 static int _cpu_count(const cpu_set_t* cpus) {
5299   int count = 0;
5300   // only look up to the number of configured processors
5301   for (int i = 0; i < os::processor_count(); i++) {
5302     if (CPU_ISSET(i, cpus)) {
5303       count++;
5304     }
5305   }
5306   return count;
5307 }
5308 
5309 #define CPU_COUNT(cpus) _cpu_count(cpus)
5310 
5311 #endif // CPU_COUNT
5312 
5313 // Get the current number of available processors for this process.
5314 // This value can change at any time during a process's lifetime.
5315 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5316 // If it appears there may be more than 1024 processors then we do a
5317 // dynamic check - see 6515172 for details.
5318 // If anything goes wrong we fallback to returning the number of online
5319 // processors - which can be greater than the number available to the process.
5320 int os::Linux::active_processor_count() {
5321   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5322   cpu_set_t* cpus_p = &cpus;
5323   int cpus_size = sizeof(cpu_set_t);
5324 
5325   int configured_cpus = os::processor_count();  // upper bound on available cpus
5326   int cpu_count = 0;
5327 
5328 // old build platforms may not support dynamic cpu sets
5329 #ifdef CPU_ALLOC
5330 
5331   // To enable easy testing of the dynamic path on different platforms we
5332   // introduce a diagnostic flag: UseCpuAllocPath
5333   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5334     // kernel may use a mask bigger than cpu_set_t
5335     log_trace(os)("active_processor_count: using dynamic path %s"
5336                   "- configured processors: %d",
5337                   UseCpuAllocPath ? "(forced) " : "",
5338                   configured_cpus);
5339     cpus_p = CPU_ALLOC(configured_cpus);
5340     if (cpus_p != NULL) {
5341       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5342       // zero it just to be safe
5343       CPU_ZERO_S(cpus_size, cpus_p);
5344     }
5345     else {
5346        // failed to allocate so fallback to online cpus
5347        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5348        log_trace(os)("active_processor_count: "
5349                      "CPU_ALLOC failed (%s) - using "
5350                      "online processor count: %d",
5351                      os::strerror(errno), online_cpus);
5352        return online_cpus;
5353     }
5354   }
5355   else {
5356     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5357                   configured_cpus);
5358   }
5359 #else // CPU_ALLOC
5360 // these stubs won't be executed
5361 #define CPU_COUNT_S(size, cpus) -1
5362 #define CPU_FREE(cpus)
5363 
5364   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5365                 configured_cpus);
5366 #endif // CPU_ALLOC
5367 
5368   // pid 0 means the current thread - which we have to assume represents the process
5369   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5370     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5371       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5372     }
5373     else {
5374       cpu_count = CPU_COUNT(cpus_p);
5375     }
5376     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5377   }
5378   else {
5379     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5380     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5381             "which may exceed available processors", os::strerror(errno), cpu_count);
5382   }
5383 
5384   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5385     CPU_FREE(cpus_p);
5386   }
5387 
5388   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5389   return cpu_count;
5390 }
5391 
5392 // Determine the active processor count from one of
5393 // three different sources:
5394 //
5395 // 1. User option -XX:ActiveProcessorCount
5396 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5397 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5398 //
5399 // Option 1, if specified, will always override.
5400 // If the cgroup subsystem is active and configured, we
5401 // will return the min of the cgroup and option 2 results.
5402 // This is required since tools, such as numactl, that
5403 // alter cpu affinity do not update cgroup subsystem
5404 // cpuset configuration files.
5405 int os::active_processor_count() {
5406   // User has overridden the number of active processors
5407   if (ActiveProcessorCount > 0) {
5408     log_trace(os)("active_processor_count: "
5409                   "active processor count set by user : %d",
5410                   ActiveProcessorCount);
5411     return ActiveProcessorCount;
5412   }
5413 
5414   int active_cpus;
5415   if (OSContainer::is_containerized()) {
5416     active_cpus = OSContainer::active_processor_count();
5417     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5418                    active_cpus);
5419   } else {
5420     active_cpus = os::Linux::active_processor_count();
5421   }
5422 
5423   return active_cpus;
5424 }
5425 
5426 uint os::processor_id() {
5427   const int id = Linux::sched_getcpu();
5428   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5429   return (uint)id;
5430 }
5431 
5432 void os::set_native_thread_name(const char *name) {
5433   if (Linux::_pthread_setname_np) {
5434     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5435     snprintf(buf, sizeof(buf), "%s", name);
5436     buf[sizeof(buf) - 1] = '\0';
5437     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5438     // ERANGE should not happen; all other errors should just be ignored.
5439     assert(rc != ERANGE, "pthread_setname_np failed");
5440   }
5441 }
5442 
5443 bool os::bind_to_processor(uint processor_id) {
5444   // Not yet implemented.
5445   return false;
5446 }
5447 
5448 ///
5449 
5450 void os::SuspendedThreadTask::internal_do_task() {
5451   if (do_suspend(_thread->osthread())) {
5452     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5453     do_task(context);
5454     do_resume(_thread->osthread());
5455   }
5456 }
5457 
5458 ////////////////////////////////////////////////////////////////////////////////
5459 // debug support
5460 
5461 bool os::find(address addr, outputStream* st) {
5462   Dl_info dlinfo;
5463   memset(&dlinfo, 0, sizeof(dlinfo));
5464   if (dladdr(addr, &dlinfo) != 0) {
5465     st->print(PTR_FORMAT ": ", p2i(addr));
5466     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5467       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5468                 p2i(addr) - p2i(dlinfo.dli_saddr));
5469     } else if (dlinfo.dli_fbase != NULL) {
5470       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5471     } else {
5472       st->print("<absolute address>");
5473     }
5474     if (dlinfo.dli_fname != NULL) {
5475       st->print(" in %s", dlinfo.dli_fname);
5476     }
5477     if (dlinfo.dli_fbase != NULL) {
5478       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5479     }
5480     st->cr();
5481 
5482     if (Verbose) {
5483       // decode some bytes around the PC
5484       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5485       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5486       address       lowest = (address) dlinfo.dli_sname;
5487       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5488       if (begin < lowest)  begin = lowest;
5489       Dl_info dlinfo2;
5490       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5491           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5492         end = (address) dlinfo2.dli_saddr;
5493       }
5494       Disassembler::decode(begin, end, st);
5495     }
5496     return true;
5497   }
5498   return false;
5499 }
5500 
5501 ////////////////////////////////////////////////////////////////////////////////
5502 // misc
5503 
5504 // This does not do anything on Linux. This is basically a hook for being
5505 // able to use structured exception handling (thread-local exception filters)
5506 // on, e.g., Win32.
5507 void
5508 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5509                          JavaCallArguments* args, Thread* thread) {
5510   f(value, method, args, thread);
5511 }
5512 
5513 void os::print_statistics() {
5514 }
5515 
5516 bool os::message_box(const char* title, const char* message) {
5517   int i;
5518   fdStream err(defaultStream::error_fd());
5519   for (i = 0; i < 78; i++) err.print_raw("=");
5520   err.cr();
5521   err.print_raw_cr(title);
5522   for (i = 0; i < 78; i++) err.print_raw("-");
5523   err.cr();
5524   err.print_raw_cr(message);
5525   for (i = 0; i < 78; i++) err.print_raw("=");
5526   err.cr();
5527 
5528   char buf[16];
5529   // Prevent process from exiting upon "read error" without consuming all CPU
5530   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5531 
5532   return buf[0] == 'y' || buf[0] == 'Y';
5533 }
5534 
5535 // Is a (classpath) directory empty?
5536 bool os::dir_is_empty(const char* path) {
5537   DIR *dir = NULL;
5538   struct dirent *ptr;
5539 
5540   dir = opendir(path);
5541   if (dir == NULL) return true;
5542 
5543   // Scan the directory
5544   bool result = true;
5545   while (result && (ptr = readdir(dir)) != NULL) {
5546     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5547       result = false;
5548     }
5549   }
5550   closedir(dir);
5551   return result;
5552 }
5553 
5554 // This code originates from JDK's sysOpen and open64_w
5555 // from src/solaris/hpi/src/system_md.c
5556 
5557 int os::open(const char *path, int oflag, int mode) {
5558   if (strlen(path) > MAX_PATH - 1) {
5559     errno = ENAMETOOLONG;
5560     return -1;
5561   }
5562 
5563   // All file descriptors that are opened in the Java process and not
5564   // specifically destined for a subprocess should have the close-on-exec
5565   // flag set.  If we don't set it, then careless 3rd party native code
5566   // might fork and exec without closing all appropriate file descriptors
5567   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5568   // turn might:
5569   //
5570   // - cause end-of-file to fail to be detected on some file
5571   //   descriptors, resulting in mysterious hangs, or
5572   //
5573   // - might cause an fopen in the subprocess to fail on a system
5574   //   suffering from bug 1085341.
5575   //
5576   // (Yes, the default setting of the close-on-exec flag is a Unix
5577   // design flaw)
5578   //
5579   // See:
5580   // 1085341: 32-bit stdio routines should support file descriptors >255
5581   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5582   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5583   //
5584   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5585   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5586   // because it saves a system call and removes a small window where the flag
5587   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5588   // and we fall back to using FD_CLOEXEC (see below).
5589 #ifdef O_CLOEXEC
5590   oflag |= O_CLOEXEC;
5591 #endif
5592 
5593   int fd = ::open64(path, oflag, mode);
5594   if (fd == -1) return -1;
5595 
5596   //If the open succeeded, the file might still be a directory
5597   {
5598     struct stat64 buf64;
5599     int ret = ::fstat64(fd, &buf64);
5600     int st_mode = buf64.st_mode;
5601 
5602     if (ret != -1) {
5603       if ((st_mode & S_IFMT) == S_IFDIR) {
5604         errno = EISDIR;
5605         ::close(fd);
5606         return -1;
5607       }
5608     } else {
5609       ::close(fd);
5610       return -1;
5611     }
5612   }
5613 
5614 #ifdef FD_CLOEXEC
5615   // Validate that the use of the O_CLOEXEC flag on open above worked.
5616   // With recent kernels, we will perform this check exactly once.
5617   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5618   if (!O_CLOEXEC_is_known_to_work) {
5619     int flags = ::fcntl(fd, F_GETFD);
5620     if (flags != -1) {
5621       if ((flags & FD_CLOEXEC) != 0)
5622         O_CLOEXEC_is_known_to_work = 1;
5623       else
5624         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5625     }
5626   }
5627 #endif
5628 
5629   return fd;
5630 }
5631 
5632 
5633 // create binary file, rewriting existing file if required
5634 int os::create_binary_file(const char* path, bool rewrite_existing) {
5635   int oflags = O_WRONLY | O_CREAT;
5636   if (!rewrite_existing) {
5637     oflags |= O_EXCL;
5638   }
5639   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5640 }
5641 
5642 // return current position of file pointer
5643 jlong os::current_file_offset(int fd) {
5644   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5645 }
5646 
5647 // move file pointer to the specified offset
5648 jlong os::seek_to_file_offset(int fd, jlong offset) {
5649   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5650 }
5651 
5652 // This code originates from JDK's sysAvailable
5653 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5654 
5655 int os::available(int fd, jlong *bytes) {
5656   jlong cur, end;
5657   int mode;
5658   struct stat64 buf64;
5659 
5660   if (::fstat64(fd, &buf64) >= 0) {
5661     mode = buf64.st_mode;
5662     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5663       int n;
5664       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5665         *bytes = n;
5666         return 1;
5667       }
5668     }
5669   }
5670   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5671     return 0;
5672   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5673     return 0;
5674   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5675     return 0;
5676   }
5677   *bytes = end - cur;
5678   return 1;
5679 }
5680 
5681 // Map a block of memory.
5682 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5683                         char *addr, size_t bytes, bool read_only,
5684                         bool allow_exec) {
5685   int prot;
5686   int flags = MAP_PRIVATE;
5687 
5688   if (read_only) {
5689     prot = PROT_READ;
5690   } else {
5691     prot = PROT_READ | PROT_WRITE;
5692   }
5693 
5694   if (allow_exec) {
5695     prot |= PROT_EXEC;
5696   }
5697 
5698   if (addr != NULL) {
5699     flags |= MAP_FIXED;
5700   }
5701 
5702   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5703                                      fd, file_offset);
5704   if (mapped_address == MAP_FAILED) {
5705     return NULL;
5706   }
5707   return mapped_address;
5708 }
5709 
5710 
5711 // Remap a block of memory.
5712 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5713                           char *addr, size_t bytes, bool read_only,
5714                           bool allow_exec) {
5715   // same as map_memory() on this OS
5716   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5717                         allow_exec);
5718 }
5719 
5720 
5721 // Unmap a block of memory.
5722 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5723   return munmap(addr, bytes) == 0;
5724 }
5725 
5726 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5727 
5728 static jlong fast_cpu_time(Thread *thread) {
5729     clockid_t clockid;
5730     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5731                                               &clockid);
5732     if (rc == 0) {
5733       return os::Linux::fast_thread_cpu_time(clockid);
5734     } else {
5735       // It's possible to encounter a terminated native thread that failed
5736       // to detach itself from the VM - which should result in ESRCH.
5737       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5738       return -1;
5739     }
5740 }
5741 
5742 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5743 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5744 // of a thread.
5745 //
5746 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5747 // the fast estimate available on the platform.
5748 
5749 jlong os::current_thread_cpu_time() {
5750   if (os::Linux::supports_fast_thread_cpu_time()) {
5751     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5752   } else {
5753     // return user + sys since the cost is the same
5754     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5755   }
5756 }
5757 
5758 jlong os::thread_cpu_time(Thread* thread) {
5759   // consistent with what current_thread_cpu_time() returns
5760   if (os::Linux::supports_fast_thread_cpu_time()) {
5761     return fast_cpu_time(thread);
5762   } else {
5763     return slow_thread_cpu_time(thread, true /* user + sys */);
5764   }
5765 }
5766 
5767 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5768   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5769     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5770   } else {
5771     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5772   }
5773 }
5774 
5775 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5776   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5777     return fast_cpu_time(thread);
5778   } else {
5779     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5780   }
5781 }
5782 
5783 //  -1 on error.
5784 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5785   pid_t  tid = thread->osthread()->thread_id();
5786   char *s;
5787   char stat[2048];
5788   int statlen;
5789   char proc_name[64];
5790   int count;
5791   long sys_time, user_time;
5792   char cdummy;
5793   int idummy;
5794   long ldummy;
5795   FILE *fp;
5796 
5797   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5798   fp = fopen(proc_name, "r");
5799   if (fp == NULL) return -1;
5800   statlen = fread(stat, 1, 2047, fp);
5801   stat[statlen] = '\0';
5802   fclose(fp);
5803 
5804   // Skip pid and the command string. Note that we could be dealing with
5805   // weird command names, e.g. user could decide to rename java launcher
5806   // to "java 1.4.2 :)", then the stat file would look like
5807   //                1234 (java 1.4.2 :)) R ... ...
5808   // We don't really need to know the command string, just find the last
5809   // occurrence of ")" and then start parsing from there. See bug 4726580.
5810   s = strrchr(stat, ')');
5811   if (s == NULL) return -1;
5812 
5813   // Skip blank chars
5814   do { s++; } while (s && isspace(*s));
5815 
5816   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5817                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5818                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5819                  &user_time, &sys_time);
5820   if (count != 13) return -1;
5821   if (user_sys_cpu_time) {
5822     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5823   } else {
5824     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5825   }
5826 }
5827 
5828 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5829   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5830   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5831   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5832   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5833 }
5834 
5835 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5836   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5837   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5838   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5839   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5840 }
5841 
5842 bool os::is_thread_cpu_time_supported() {
5843   return true;
5844 }
5845 
5846 // System loadavg support.  Returns -1 if load average cannot be obtained.
5847 // Linux doesn't yet have a (official) notion of processor sets,
5848 // so just return the system wide load average.
5849 int os::loadavg(double loadavg[], int nelem) {
5850   return ::getloadavg(loadavg, nelem);
5851 }
5852 
5853 void os::pause() {
5854   char filename[MAX_PATH];
5855   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5856     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5857   } else {
5858     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5859   }
5860 
5861   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5862   if (fd != -1) {
5863     struct stat buf;
5864     ::close(fd);
5865     while (::stat(filename, &buf) == 0) {
5866       (void)::poll(NULL, 0, 100);
5867     }
5868   } else {
5869     jio_fprintf(stderr,
5870                 "Could not open pause file '%s', continuing immediately.\n", filename);
5871   }
5872 }
5873 
5874 extern char** environ;
5875 
5876 // Run the specified command in a separate process. Return its exit value,
5877 // or -1 on failure (e.g. can't fork a new process).
5878 // Unlike system(), this function can be called from signal handler. It
5879 // doesn't block SIGINT et al.
5880 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5881   const char * argv[4] = {"sh", "-c", cmd, NULL};
5882 
5883   pid_t pid ;
5884 
5885   if (use_vfork_if_available) {
5886     pid = vfork();
5887   } else {
5888     pid = fork();
5889   }
5890 
5891   if (pid < 0) {
5892     // fork failed
5893     return -1;
5894 
5895   } else if (pid == 0) {
5896     // child process
5897 
5898     execve("/bin/sh", (char* const*)argv, environ);
5899 
5900     // execve failed
5901     _exit(-1);
5902 
5903   } else  {
5904     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5905     // care about the actual exit code, for now.
5906 
5907     int status;
5908 
5909     // Wait for the child process to exit.  This returns immediately if
5910     // the child has already exited. */
5911     while (waitpid(pid, &status, 0) < 0) {
5912       switch (errno) {
5913       case ECHILD: return 0;
5914       case EINTR: break;
5915       default: return -1;
5916       }
5917     }
5918 
5919     if (WIFEXITED(status)) {
5920       // The child exited normally; get its exit code.
5921       return WEXITSTATUS(status);
5922     } else if (WIFSIGNALED(status)) {
5923       // The child exited because of a signal
5924       // The best value to return is 0x80 + signal number,
5925       // because that is what all Unix shells do, and because
5926       // it allows callers to distinguish between process exit and
5927       // process death by signal.
5928       return 0x80 + WTERMSIG(status);
5929     } else {
5930       // Unknown exit code; pass it through
5931       return status;
5932     }
5933   }
5934 }
5935 
5936 // Get the default path to the core file
5937 // Returns the length of the string
5938 int os::get_core_path(char* buffer, size_t bufferSize) {
5939   /*
5940    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5941    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5942    */
5943   const int core_pattern_len = 129;
5944   char core_pattern[core_pattern_len] = {0};
5945 
5946   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5947   if (core_pattern_file == -1) {
5948     return -1;
5949   }
5950 
5951   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5952   ::close(core_pattern_file);
5953   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5954     return -1;
5955   }
5956   if (core_pattern[ret-1] == '\n') {
5957     core_pattern[ret-1] = '\0';
5958   } else {
5959     core_pattern[ret] = '\0';
5960   }
5961 
5962   // Replace the %p in the core pattern with the process id. NOTE: we do this
5963   // only if the pattern doesn't start with "|", and we support only one %p in
5964   // the pattern.
5965   char *pid_pos = strstr(core_pattern, "%p");
5966   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5967   int written;
5968 
5969   if (core_pattern[0] == '/') {
5970     if (pid_pos != NULL) {
5971       *pid_pos = '\0';
5972       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5973                              current_process_id(), tail);
5974     } else {
5975       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5976     }
5977   } else {
5978     char cwd[PATH_MAX];
5979 
5980     const char* p = get_current_directory(cwd, PATH_MAX);
5981     if (p == NULL) {
5982       return -1;
5983     }
5984 
5985     if (core_pattern[0] == '|') {
5986       written = jio_snprintf(buffer, bufferSize,
5987                              "\"%s\" (or dumping to %s/core.%d)",
5988                              &core_pattern[1], p, current_process_id());
5989     } else if (pid_pos != NULL) {
5990       *pid_pos = '\0';
5991       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5992                              current_process_id(), tail);
5993     } else {
5994       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5995     }
5996   }
5997 
5998   if (written < 0) {
5999     return -1;
6000   }
6001 
6002   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6003     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6004 
6005     if (core_uses_pid_file != -1) {
6006       char core_uses_pid = 0;
6007       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6008       ::close(core_uses_pid_file);
6009 
6010       if (core_uses_pid == '1') {
6011         jio_snprintf(buffer + written, bufferSize - written,
6012                                           ".%d", current_process_id());
6013       }
6014     }
6015   }
6016 
6017   return strlen(buffer);
6018 }
6019 
6020 bool os::start_debugging(char *buf, int buflen) {
6021   int len = (int)strlen(buf);
6022   char *p = &buf[len];
6023 
6024   jio_snprintf(p, buflen-len,
6025                "\n\n"
6026                "Do you want to debug the problem?\n\n"
6027                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6028                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6029                "Otherwise, press RETURN to abort...",
6030                os::current_process_id(), os::current_process_id(),
6031                os::current_thread_id(), os::current_thread_id());
6032 
6033   bool yes = os::message_box("Unexpected Error", buf);
6034 
6035   if (yes) {
6036     // yes, user asked VM to launch debugger
6037     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6038                  os::current_process_id(), os::current_process_id());
6039 
6040     os::fork_and_exec(buf);
6041     yes = false;
6042   }
6043   return yes;
6044 }
6045 
6046 
6047 // Java/Compiler thread:
6048 //
6049 //   Low memory addresses
6050 // P0 +------------------------+
6051 //    |                        |\  Java thread created by VM does not have glibc
6052 //    |    glibc guard page    | - guard page, attached Java thread usually has
6053 //    |                        |/  1 glibc guard page.
6054 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6055 //    |                        |\
6056 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6057 //    |                        |/
6058 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6059 //    |                        |\
6060 //    |      Normal Stack      | -
6061 //    |                        |/
6062 // P2 +------------------------+ Thread::stack_base()
6063 //
6064 // Non-Java thread:
6065 //
6066 //   Low memory addresses
6067 // P0 +------------------------+
6068 //    |                        |\
6069 //    |  glibc guard page      | - usually 1 page
6070 //    |                        |/
6071 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6072 //    |                        |\
6073 //    |      Normal Stack      | -
6074 //    |                        |/
6075 // P2 +------------------------+ Thread::stack_base()
6076 //
6077 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6078 //    returned from pthread_attr_getstack().
6079 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6080 //    of the stack size given in pthread_attr. We work around this for
6081 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6082 //
6083 #ifndef ZERO
6084 static void current_stack_region(address * bottom, size_t * size) {
6085   if (os::is_primordial_thread()) {
6086     // primordial thread needs special handling because pthread_getattr_np()
6087     // may return bogus value.
6088     *bottom = os::Linux::initial_thread_stack_bottom();
6089     *size   = os::Linux::initial_thread_stack_size();
6090   } else {
6091     pthread_attr_t attr;
6092 
6093     int rslt = pthread_getattr_np(pthread_self(), &attr);
6094 
6095     // JVM needs to know exact stack location, abort if it fails
6096     if (rslt != 0) {
6097       if (rslt == ENOMEM) {
6098         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6099       } else {
6100         fatal("pthread_getattr_np failed with error = %d", rslt);
6101       }
6102     }
6103 
6104     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6105       fatal("Cannot locate current stack attributes!");
6106     }
6107 
6108     // Work around NPTL stack guard error.
6109     size_t guard_size = 0;
6110     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6111     if (rslt != 0) {
6112       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6113     }
6114     *bottom += guard_size;
6115     *size   -= guard_size;
6116 
6117     pthread_attr_destroy(&attr);
6118 
6119   }
6120   assert(os::current_stack_pointer() >= *bottom &&
6121          os::current_stack_pointer() < *bottom + *size, "just checking");
6122 }
6123 
6124 address os::current_stack_base() {
6125   address bottom;
6126   size_t size;
6127   current_stack_region(&bottom, &size);
6128   return (bottom + size);
6129 }
6130 
6131 size_t os::current_stack_size() {
6132   // This stack size includes the usable stack and HotSpot guard pages
6133   // (for the threads that have Hotspot guard pages).
6134   address bottom;
6135   size_t size;
6136   current_stack_region(&bottom, &size);
6137   return size;
6138 }
6139 #endif
6140 
6141 static inline struct timespec get_mtime(const char* filename) {
6142   struct stat st;
6143   int ret = os::stat(filename, &st);
6144   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6145   return st.st_mtim;
6146 }
6147 
6148 int os::compare_file_modified_times(const char* file1, const char* file2) {
6149   struct timespec filetime1 = get_mtime(file1);
6150   struct timespec filetime2 = get_mtime(file2);
6151   int diff = filetime1.tv_sec - filetime2.tv_sec;
6152   if (diff == 0) {
6153     return filetime1.tv_nsec - filetime2.tv_nsec;
6154   }
6155   return diff;
6156 }
6157 
6158 bool os::supports_map_sync() {
6159   return true;
6160 }
6161 
6162 /////////////// Unit tests ///////////////
6163 
6164 #ifndef PRODUCT
6165 
6166 class TestReserveMemorySpecial : AllStatic {
6167  public:
6168   static void small_page_write(void* addr, size_t size) {
6169     size_t page_size = os::vm_page_size();
6170 
6171     char* end = (char*)addr + size;
6172     for (char* p = (char*)addr; p < end; p += page_size) {
6173       *p = 1;
6174     }
6175   }
6176 
6177   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6178     if (!UseHugeTLBFS) {
6179       return;
6180     }
6181 
6182     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6183 
6184     if (addr != NULL) {
6185       small_page_write(addr, size);
6186 
6187       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6188     }
6189   }
6190 
6191   static void test_reserve_memory_special_huge_tlbfs_only() {
6192     if (!UseHugeTLBFS) {
6193       return;
6194     }
6195 
6196     size_t lp = os::large_page_size();
6197 
6198     for (size_t size = lp; size <= lp * 10; size += lp) {
6199       test_reserve_memory_special_huge_tlbfs_only(size);
6200     }
6201   }
6202 
6203   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6204     size_t lp = os::large_page_size();
6205     size_t ag = os::vm_allocation_granularity();
6206 
6207     // sizes to test
6208     const size_t sizes[] = {
6209       lp, lp + ag, lp + lp / 2, lp * 2,
6210       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6211       lp * 10, lp * 10 + lp / 2
6212     };
6213     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6214 
6215     // For each size/alignment combination, we test three scenarios:
6216     // 1) with req_addr == NULL
6217     // 2) with a non-null req_addr at which we expect to successfully allocate
6218     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6219     //    expect the allocation to either fail or to ignore req_addr
6220 
6221     // Pre-allocate two areas; they shall be as large as the largest allocation
6222     //  and aligned to the largest alignment we will be testing.
6223     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6224     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6225       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6226       -1, 0);
6227     assert(mapping1 != MAP_FAILED, "should work");
6228 
6229     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6230       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6231       -1, 0);
6232     assert(mapping2 != MAP_FAILED, "should work");
6233 
6234     // Unmap the first mapping, but leave the second mapping intact: the first
6235     // mapping will serve as a value for a "good" req_addr (case 2). The second
6236     // mapping, still intact, as "bad" req_addr (case 3).
6237     ::munmap(mapping1, mapping_size);
6238 
6239     // Case 1
6240     for (int i = 0; i < num_sizes; i++) {
6241       const size_t size = sizes[i];
6242       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6243         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6244         if (p != NULL) {
6245           assert(is_aligned(p, alignment), "must be");
6246           small_page_write(p, size);
6247           os::Linux::release_memory_special_huge_tlbfs(p, size);
6248         }
6249       }
6250     }
6251 
6252     // Case 2
6253     for (int i = 0; i < num_sizes; i++) {
6254       const size_t size = sizes[i];
6255       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6256         char* const req_addr = align_up(mapping1, alignment);
6257         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6258         if (p != NULL) {
6259           assert(p == req_addr, "must be");
6260           small_page_write(p, size);
6261           os::Linux::release_memory_special_huge_tlbfs(p, size);
6262         }
6263       }
6264     }
6265 
6266     // Case 3
6267     for (int i = 0; i < num_sizes; i++) {
6268       const size_t size = sizes[i];
6269       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6270         char* const req_addr = align_up(mapping2, alignment);
6271         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6272         // as the area around req_addr contains already existing mappings, the API should always
6273         // return NULL (as per contract, it cannot return another address)
6274         assert(p == NULL, "must be");
6275       }
6276     }
6277 
6278     ::munmap(mapping2, mapping_size);
6279 
6280   }
6281 
6282   static void test_reserve_memory_special_huge_tlbfs() {
6283     if (!UseHugeTLBFS) {
6284       return;
6285     }
6286 
6287     test_reserve_memory_special_huge_tlbfs_only();
6288     test_reserve_memory_special_huge_tlbfs_mixed();
6289   }
6290 
6291   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6292     if (!UseSHM) {
6293       return;
6294     }
6295 
6296     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6297 
6298     if (addr != NULL) {
6299       assert(is_aligned(addr, alignment), "Check");
6300       assert(is_aligned(addr, os::large_page_size()), "Check");
6301 
6302       small_page_write(addr, size);
6303 
6304       os::Linux::release_memory_special_shm(addr, size);
6305     }
6306   }
6307 
6308   static void test_reserve_memory_special_shm() {
6309     size_t lp = os::large_page_size();
6310     size_t ag = os::vm_allocation_granularity();
6311 
6312     for (size_t size = ag; size < lp * 3; size += ag) {
6313       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6314         test_reserve_memory_special_shm(size, alignment);
6315       }
6316     }
6317   }
6318 
6319   static void test() {
6320     test_reserve_memory_special_huge_tlbfs();
6321     test_reserve_memory_special_shm();
6322   }
6323 };
6324 
6325 void TestReserveMemorySpecial_test() {
6326   TestReserveMemorySpecial::test();
6327 }
6328 
6329 #endif