1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/heapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/typeArrayOop.inline.hpp"
  51 #include "opto/ad.hpp"
  52 #include "opto/addnode.hpp"
  53 #include "opto/callnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/graphKit.hpp"
  56 #include "opto/machnode.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/vframe.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vframe_hp.hpp"
  72 #include "utilities/copy.hpp"
  73 #include "utilities/preserveException.hpp"
  74 
  75 
  76 // For debugging purposes:
  77 //  To force FullGCALot inside a runtime function, add the following two lines
  78 //
  79 //  Universe::release_fullgc_alot_dummy();
  80 //  MarkSweep::invoke(0, "Debugging");
  81 //
  82 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  83 
  84 
  85 
  86 
  87 // Compiled code entry points
  88 address OptoRuntime::_new_instance_Java                           = NULL;
  89 address OptoRuntime::_new_array_Java                              = NULL;
  90 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  91 address OptoRuntime::_multianewarray2_Java                        = NULL;
  92 address OptoRuntime::_multianewarray3_Java                        = NULL;
  93 address OptoRuntime::_multianewarray4_Java                        = NULL;
  94 address OptoRuntime::_multianewarray5_Java                        = NULL;
  95 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  96 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  97 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  98 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  99 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 100 address OptoRuntime::_monitor_notify_Java                         = NULL;
 101 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 102 address OptoRuntime::_rethrow_Java                                = NULL;
 103 
 104 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 105 address OptoRuntime::_register_finalizer_Java                     = NULL;
 106 
 107 ExceptionBlob* OptoRuntime::_exception_blob;
 108 
 109 // This should be called in an assertion at the start of OptoRuntime routines
 110 // which are entered from compiled code (all of them)
 111 #ifdef ASSERT
 112 static bool check_compiled_frame(JavaThread* thread) {
 113   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 114   RegisterMap map(thread, false);
 115   frame caller = thread->last_frame().sender(&map);
 116   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 117   return true;
 118 }
 119 #endif // ASSERT
 120 
 121 
 122 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 123   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 124   if (var == NULL) { return false; }
 125 
 126 bool OptoRuntime::generate(ciEnv* env) {
 127 
 128   generate_exception_blob();
 129 
 130   // Note: tls: Means fetching the return oop out of the thread-local storage
 131   //
 132   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 133   // -------------------------------------------------------------------------------------------------------------------------------
 134   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 135   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 136   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 137   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 138   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 139   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 141   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 142   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 143   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 144   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 145   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 146   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 147   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 148 
 149   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 150   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 151 
 152   return true;
 153 }
 154 
 155 #undef gen
 156 
 157 
 158 // Helper method to do generation of RunTimeStub's
 159 address OptoRuntime::generate_stub( ciEnv* env,
 160                                     TypeFunc_generator gen, address C_function,
 161                                     const char *name, int is_fancy_jump,
 162                                     bool pass_tls,
 163                                     bool save_argument_registers,
 164                                     bool return_pc) {
 165 
 166   // Matching the default directive, we currently have no method to match.
 167   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 168   ResourceMark rm;
 169   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 170   DirectivesStack::release(directive);
 171   return  C.stub_entry_point();
 172 }
 173 
 174 const char* OptoRuntime::stub_name(address entry) {
 175 #ifndef PRODUCT
 176   CodeBlob* cb = CodeCache::find_blob(entry);
 177   RuntimeStub* rs =(RuntimeStub *)cb;
 178   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 179   return rs->name();
 180 #else
 181   // Fast implementation for product mode (maybe it should be inlined too)
 182   return "runtime stub";
 183 #endif
 184 }
 185 
 186 
 187 //=============================================================================
 188 // Opto compiler runtime routines
 189 //=============================================================================
 190 
 191 
 192 //=============================allocation======================================
 193 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 194 // and try allocation again.
 195 
 196 // object allocation
 197 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 198   JRT_BLOCK;
 199 #ifndef PRODUCT
 200   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 201 #endif
 202   assert(check_compiled_frame(thread), "incorrect caller");
 203   JvmtiSampledObjectAllocEventCollector collector;
 204 
 205   // These checks are cheap to make and support reflective allocation.
 206   int lh = klass->layout_helper();
 207   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 208     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 209     klass->check_valid_for_instantiation(false, THREAD);
 210     if (!HAS_PENDING_EXCEPTION) {
 211       InstanceKlass::cast(klass)->initialize(THREAD);
 212     }
 213   }
 214 
 215   if (!HAS_PENDING_EXCEPTION) {
 216     // Scavenge and allocate an instance.
 217     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 218     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 219     thread->set_vm_result(result);
 220 
 221     // Pass oops back through thread local storage.  Our apparent type to Java
 222     // is that we return an oop, but we can block on exit from this routine and
 223     // a GC can trash the oop in C's return register.  The generated stub will
 224     // fetch the oop from TLS after any possible GC.
 225   }
 226 
 227   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 228   JRT_BLOCK_END;
 229 
 230   // inform GC that we won't do card marks for initializing writes.
 231   SharedRuntime::on_slowpath_allocation_exit(thread);
 232 JRT_END
 233 
 234 
 235 // array allocation
 236 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 237   JRT_BLOCK;
 238 #ifndef PRODUCT
 239   SharedRuntime::_new_array_ctr++;            // new array requires GC
 240 #endif
 241   assert(check_compiled_frame(thread), "incorrect caller");
 242   JvmtiSampledObjectAllocEventCollector collector;
 243 
 244   // Scavenge and allocate an instance.
 245   oop result;
 246 
 247   if (array_type->is_typeArray_klass()) {
 248     // The oopFactory likes to work with the element type.
 249     // (We could bypass the oopFactory, since it doesn't add much value.)
 250     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 251     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 252   } else {
 253     // Although the oopFactory likes to work with the elem_type,
 254     // the compiler prefers the array_type, since it must already have
 255     // that latter value in hand for the fast path.
 256     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 257     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 258     result = oopFactory::new_objArray(elem_type, len, THREAD);
 259   }
 260 
 261   // Pass oops back through thread local storage.  Our apparent type to Java
 262   // is that we return an oop, but we can block on exit from this routine and
 263   // a GC can trash the oop in C's return register.  The generated stub will
 264   // fetch the oop from TLS after any possible GC.
 265   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 266   thread->set_vm_result(result);
 267   JRT_BLOCK_END;
 268 
 269   // inform GC that we won't do card marks for initializing writes.
 270   SharedRuntime::on_slowpath_allocation_exit(thread);
 271 JRT_END
 272 
 273 // array allocation without zeroing
 274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 275   JRT_BLOCK;
 276 #ifndef PRODUCT
 277   SharedRuntime::_new_array_ctr++;            // new array requires GC
 278 #endif
 279   assert(check_compiled_frame(thread), "incorrect caller");
 280 
 281   // Scavenge and allocate an instance.
 282   oop result;
 283 
 284   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 285   // The oopFactory likes to work with the element type.
 286   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 287   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 288 
 289   // Pass oops back through thread local storage.  Our apparent type to Java
 290   // is that we return an oop, but we can block on exit from this routine and
 291   // a GC can trash the oop in C's return register.  The generated stub will
 292   // fetch the oop from TLS after any possible GC.
 293   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 294   thread->set_vm_result(result);
 295   JRT_BLOCK_END;
 296 
 297 
 298   // inform GC that we won't do card marks for initializing writes.
 299   SharedRuntime::on_slowpath_allocation_exit(thread);
 300 
 301   oop result = thread->vm_result();
 302   if ((len > 0) && (result != NULL) &&
 303       is_deoptimized_caller_frame(thread)) {
 304     // Zero array here if the caller is deoptimized.
 305     int size = ((typeArrayOop)result)->object_size();
 306     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 307     const size_t hs = arrayOopDesc::header_size(elem_type);
 308     // Align to next 8 bytes to avoid trashing arrays's length.
 309     const size_t aligned_hs = align_object_offset(hs);
 310     HeapWord* obj = (HeapWord*)result;
 311     if (aligned_hs > hs) {
 312       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 313     }
 314     // Optimized zeroing.
 315     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 316   }
 317 
 318 JRT_END
 319 
 320 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 321 
 322 // multianewarray for 2 dimensions
 323 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 324   JvmtiSampledObjectAllocEventCollector collector;
 325 #ifndef PRODUCT
 326   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 327 #endif
 328   assert(check_compiled_frame(thread), "incorrect caller");
 329   assert(elem_type->is_klass(), "not a class");
 330   jint dims[2];
 331   dims[0] = len1;
 332   dims[1] = len2;
 333   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 334   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 335   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 336   thread->set_vm_result(obj);
 337 JRT_END
 338 
 339 // multianewarray for 3 dimensions
 340 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 341   JvmtiSampledObjectAllocEventCollector collector;
 342 #ifndef PRODUCT
 343   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 344 #endif
 345   assert(check_compiled_frame(thread), "incorrect caller");
 346   assert(elem_type->is_klass(), "not a class");
 347   jint dims[3];
 348   dims[0] = len1;
 349   dims[1] = len2;
 350   dims[2] = len3;
 351   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 352   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 353   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 354   thread->set_vm_result(obj);
 355 JRT_END
 356 
 357 // multianewarray for 4 dimensions
 358 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 359   JvmtiSampledObjectAllocEventCollector collector;
 360 #ifndef PRODUCT
 361   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 362 #endif
 363   assert(check_compiled_frame(thread), "incorrect caller");
 364   assert(elem_type->is_klass(), "not a class");
 365   jint dims[4];
 366   dims[0] = len1;
 367   dims[1] = len2;
 368   dims[2] = len3;
 369   dims[3] = len4;
 370   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 371   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 372   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 373   thread->set_vm_result(obj);
 374 JRT_END
 375 
 376 // multianewarray for 5 dimensions
 377 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 378   JvmtiSampledObjectAllocEventCollector collector;
 379 #ifndef PRODUCT
 380   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 381 #endif
 382   assert(check_compiled_frame(thread), "incorrect caller");
 383   assert(elem_type->is_klass(), "not a class");
 384   jint dims[5];
 385   dims[0] = len1;
 386   dims[1] = len2;
 387   dims[2] = len3;
 388   dims[3] = len4;
 389   dims[4] = len5;
 390   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 391   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 392   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 393   thread->set_vm_result(obj);
 394 JRT_END
 395 
 396 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 397   assert(check_compiled_frame(thread), "incorrect caller");
 398   assert(elem_type->is_klass(), "not a class");
 399   assert(oop(dims)->is_typeArray(), "not an array");
 400 
 401   ResourceMark rm;
 402   jint len = dims->length();
 403   assert(len > 0, "Dimensions array should contain data");
 404   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 405   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 406   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 407 
 408   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 409   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 410   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 411   thread->set_vm_result(obj);
 412 JRT_END
 413 
 414 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 415 
 416   // Very few notify/notifyAll operations find any threads on the waitset, so
 417   // the dominant fast-path is to simply return.
 418   // Relatedly, it's critical that notify/notifyAll be fast in order to
 419   // reduce lock hold times.
 420   if (!SafepointSynchronize::is_synchronizing()) {
 421     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 422       return;
 423     }
 424   }
 425 
 426   // This is the case the fast-path above isn't provisioned to handle.
 427   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 428   // (The fast-path is just a degenerate variant of the slow-path).
 429   // Perform the dreaded state transition and pass control into the slow-path.
 430   JRT_BLOCK;
 431   Handle h_obj(THREAD, obj);
 432   ObjectSynchronizer::notify(h_obj, CHECK);
 433   JRT_BLOCK_END;
 434 JRT_END
 435 
 436 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 437 
 438   if (!SafepointSynchronize::is_synchronizing() ) {
 439     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 440       return;
 441     }
 442   }
 443 
 444   // This is the case the fast-path above isn't provisioned to handle.
 445   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 446   // (The fast-path is just a degenerate variant of the slow-path).
 447   // Perform the dreaded state transition and pass control into the slow-path.
 448   JRT_BLOCK;
 449   Handle h_obj(THREAD, obj);
 450   ObjectSynchronizer::notifyall(h_obj, CHECK);
 451   JRT_BLOCK_END;
 452 JRT_END
 453 
 454 const TypeFunc *OptoRuntime::new_instance_Type() {
 455   // create input type (domain)
 456   const Type **fields = TypeTuple::fields(1);
 457   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 458   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 459 
 460   // create result type (range)
 461   fields = TypeTuple::fields(1);
 462   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 463 
 464   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 465 
 466   return TypeFunc::make(domain, range);
 467 }
 468 
 469 
 470 const TypeFunc *OptoRuntime::athrow_Type() {
 471   // create input type (domain)
 472   const Type **fields = TypeTuple::fields(1);
 473   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 474   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 475 
 476   // create result type (range)
 477   fields = TypeTuple::fields(0);
 478 
 479   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 480 
 481   return TypeFunc::make(domain, range);
 482 }
 483 
 484 
 485 const TypeFunc *OptoRuntime::new_array_Type() {
 486   // create input type (domain)
 487   const Type **fields = TypeTuple::fields(2);
 488   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 489   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 490   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 491 
 492   // create result type (range)
 493   fields = TypeTuple::fields(1);
 494   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 495 
 496   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 497 
 498   return TypeFunc::make(domain, range);
 499 }
 500 
 501 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 502   // create input type (domain)
 503   const int nargs = ndim + 1;
 504   const Type **fields = TypeTuple::fields(nargs);
 505   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 506   for( int i = 1; i < nargs; i++ )
 507     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 508   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 509 
 510   // create result type (range)
 511   fields = TypeTuple::fields(1);
 512   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 513   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 514 
 515   return TypeFunc::make(domain, range);
 516 }
 517 
 518 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 519   return multianewarray_Type(2);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 523   return multianewarray_Type(3);
 524 }
 525 
 526 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 527   return multianewarray_Type(4);
 528 }
 529 
 530 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 531   return multianewarray_Type(5);
 532 }
 533 
 534 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 535   // create input type (domain)
 536   const Type **fields = TypeTuple::fields(2);
 537   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 538   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 539   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 540 
 541   // create result type (range)
 542   fields = TypeTuple::fields(1);
 543   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 544   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 545 
 546   return TypeFunc::make(domain, range);
 547 }
 548 
 549 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 550   const Type **fields = TypeTuple::fields(2);
 551   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 552   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 553   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 554 
 555   // create result type (range)
 556   fields = TypeTuple::fields(0);
 557   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 558 
 559   return TypeFunc::make(domain, range);
 560 }
 561 
 562 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 563 
 564   const Type **fields = TypeTuple::fields(2);
 565   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 566   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 567   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 568 
 569   // create result type (range)
 570   fields = TypeTuple::fields(0);
 571   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 572 
 573   return TypeFunc::make(domain, range);
 574 }
 575 
 576 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 577   // create input type (domain)
 578   const Type **fields = TypeTuple::fields(1);
 579   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 580   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 581 
 582   // create result type (range)
 583   fields = TypeTuple::fields(0);
 584   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 585 
 586   return TypeFunc::make(domain, range);
 587 }
 588 
 589 //-----------------------------------------------------------------------------
 590 // Monitor Handling
 591 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 592   // create input type (domain)
 593   const Type **fields = TypeTuple::fields(2);
 594   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 595   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 596   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 597 
 598   // create result type (range)
 599   fields = TypeTuple::fields(0);
 600 
 601   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 602 
 603   return TypeFunc::make(domain,range);
 604 }
 605 
 606 
 607 //-----------------------------------------------------------------------------
 608 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 609   // create input type (domain)
 610   const Type **fields = TypeTuple::fields(3);
 611   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 612   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 613   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 614   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 615 
 616   // create result type (range)
 617   fields = TypeTuple::fields(0);
 618 
 619   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 620 
 621   return TypeFunc::make(domain, range);
 622 }
 623 
 624 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 625   // create input type (domain)
 626   const Type **fields = TypeTuple::fields(1);
 627   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 628   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 629 
 630   // create result type (range)
 631   fields = TypeTuple::fields(0);
 632   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 633   return TypeFunc::make(domain, range);
 634 }
 635 
 636 const TypeFunc* OptoRuntime::flush_windows_Type() {
 637   // create input type (domain)
 638   const Type** fields = TypeTuple::fields(1);
 639   fields[TypeFunc::Parms+0] = NULL; // void
 640   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 641 
 642   // create result type
 643   fields = TypeTuple::fields(1);
 644   fields[TypeFunc::Parms+0] = NULL; // void
 645   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 646 
 647   return TypeFunc::make(domain, range);
 648 }
 649 
 650 const TypeFunc* OptoRuntime::l2f_Type() {
 651   // create input type (domain)
 652   const Type **fields = TypeTuple::fields(2);
 653   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 654   fields[TypeFunc::Parms+1] = Type::HALF;
 655   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 656 
 657   // create result type (range)
 658   fields = TypeTuple::fields(1);
 659   fields[TypeFunc::Parms+0] = Type::FLOAT;
 660   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 661 
 662   return TypeFunc::make(domain, range);
 663 }
 664 
 665 const TypeFunc* OptoRuntime::modf_Type() {
 666   const Type **fields = TypeTuple::fields(2);
 667   fields[TypeFunc::Parms+0] = Type::FLOAT;
 668   fields[TypeFunc::Parms+1] = Type::FLOAT;
 669   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 670 
 671   // create result type (range)
 672   fields = TypeTuple::fields(1);
 673   fields[TypeFunc::Parms+0] = Type::FLOAT;
 674 
 675   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 676 
 677   return TypeFunc::make(domain, range);
 678 }
 679 
 680 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 681   // create input type (domain)
 682   const Type **fields = TypeTuple::fields(2);
 683   // Symbol* name of class to be loaded
 684   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 685   fields[TypeFunc::Parms+1] = Type::HALF;
 686   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 687 
 688   // create result type (range)
 689   fields = TypeTuple::fields(2);
 690   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 691   fields[TypeFunc::Parms+1] = Type::HALF;
 692   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 693 
 694   return TypeFunc::make(domain, range);
 695 }
 696 
 697 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 698   const Type **fields = TypeTuple::fields(4);
 699   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 700   fields[TypeFunc::Parms+1] = Type::HALF;
 701   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 702   fields[TypeFunc::Parms+3] = Type::HALF;
 703   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 704 
 705   // create result type (range)
 706   fields = TypeTuple::fields(2);
 707   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 708   fields[TypeFunc::Parms+1] = Type::HALF;
 709   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 710 
 711   return TypeFunc::make(domain, range);
 712 }
 713 
 714 //-------------- currentTimeMillis, currentTimeNanos, etc
 715 
 716 const TypeFunc* OptoRuntime::void_long_Type() {
 717   // create input type (domain)
 718   const Type **fields = TypeTuple::fields(0);
 719   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 720 
 721   // create result type (range)
 722   fields = TypeTuple::fields(2);
 723   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 724   fields[TypeFunc::Parms+1] = Type::HALF;
 725   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 726 
 727   return TypeFunc::make(domain, range);
 728 }
 729 
 730 // arraycopy stub variations:
 731 enum ArrayCopyType {
 732   ac_fast,                      // void(ptr, ptr, size_t)
 733   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 734   ac_slow,                      // void(ptr, int, ptr, int, int)
 735   ac_generic                    //  int(ptr, int, ptr, int, int)
 736 };
 737 
 738 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 739   // create input type (domain)
 740   int num_args      = (act == ac_fast ? 3 : 5);
 741   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 742   int argcnt = num_args;
 743   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 744   const Type** fields = TypeTuple::fields(argcnt);
 745   int argp = TypeFunc::Parms;
 746   fields[argp++] = TypePtr::NOTNULL;    // src
 747   if (num_size_args == 0) {
 748     fields[argp++] = TypeInt::INT;      // src_pos
 749   }
 750   fields[argp++] = TypePtr::NOTNULL;    // dest
 751   if (num_size_args == 0) {
 752     fields[argp++] = TypeInt::INT;      // dest_pos
 753     fields[argp++] = TypeInt::INT;      // length
 754   }
 755   while (num_size_args-- > 0) {
 756     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 757     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 758   }
 759   if (act == ac_checkcast) {
 760     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 761   }
 762   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 763   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 764 
 765   // create result type if needed
 766   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 767   fields = TypeTuple::fields(1);
 768   if (retcnt == 0)
 769     fields[TypeFunc::Parms+0] = NULL; // void
 770   else
 771     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 772   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 773   return TypeFunc::make(domain, range);
 774 }
 775 
 776 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 777   // This signature is simple:  Two base pointers and a size_t.
 778   return make_arraycopy_Type(ac_fast);
 779 }
 780 
 781 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 782   // An extension of fast_arraycopy_Type which adds type checking.
 783   return make_arraycopy_Type(ac_checkcast);
 784 }
 785 
 786 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 787   // This signature is exactly the same as System.arraycopy.
 788   // There are no intptr_t (int/long) arguments.
 789   return make_arraycopy_Type(ac_slow);
 790 }
 791 
 792 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 793   // This signature is like System.arraycopy, except that it returns status.
 794   return make_arraycopy_Type(ac_generic);
 795 }
 796 
 797 
 798 const TypeFunc* OptoRuntime::array_fill_Type() {
 799   const Type** fields;
 800   int argp = TypeFunc::Parms;
 801   // create input type (domain): pointer, int, size_t
 802   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 803   fields[argp++] = TypePtr::NOTNULL;
 804   fields[argp++] = TypeInt::INT;
 805   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 806   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 807   const TypeTuple *domain = TypeTuple::make(argp, fields);
 808 
 809   // create result type
 810   fields = TypeTuple::fields(1);
 811   fields[TypeFunc::Parms+0] = NULL; // void
 812   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 813 
 814   return TypeFunc::make(domain, range);
 815 }
 816 
 817 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 818 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 819   // create input type (domain)
 820   int num_args      = 3;
 821   if (Matcher::pass_original_key_for_aes()) {
 822     num_args = 4;
 823   }
 824   int argcnt = num_args;
 825   const Type** fields = TypeTuple::fields(argcnt);
 826   int argp = TypeFunc::Parms;
 827   fields[argp++] = TypePtr::NOTNULL;    // src
 828   fields[argp++] = TypePtr::NOTNULL;    // dest
 829   fields[argp++] = TypePtr::NOTNULL;    // k array
 830   if (Matcher::pass_original_key_for_aes()) {
 831     fields[argp++] = TypePtr::NOTNULL;    // original k array
 832   }
 833   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 834   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 835 
 836   // no result type needed
 837   fields = TypeTuple::fields(1);
 838   fields[TypeFunc::Parms+0] = NULL; // void
 839   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 840   return TypeFunc::make(domain, range);
 841 }
 842 
 843 /**
 844  * int updateBytesCRC32(int crc, byte* b, int len)
 845  */
 846 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 847   // create input type (domain)
 848   int num_args      = 3;
 849   int argcnt = num_args;
 850   const Type** fields = TypeTuple::fields(argcnt);
 851   int argp = TypeFunc::Parms;
 852   fields[argp++] = TypeInt::INT;        // crc
 853   fields[argp++] = TypePtr::NOTNULL;    // src
 854   fields[argp++] = TypeInt::INT;        // len
 855   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 856   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 857 
 858   // result type needed
 859   fields = TypeTuple::fields(1);
 860   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 861   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 862   return TypeFunc::make(domain, range);
 863 }
 864 
 865 /**
 866  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 867  */
 868 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 869   // create input type (domain)
 870   int num_args      = 4;
 871   int argcnt = num_args;
 872   const Type** fields = TypeTuple::fields(argcnt);
 873   int argp = TypeFunc::Parms;
 874   fields[argp++] = TypeInt::INT;        // crc
 875   fields[argp++] = TypePtr::NOTNULL;    // buf
 876   fields[argp++] = TypeInt::INT;        // len
 877   fields[argp++] = TypePtr::NOTNULL;    // table
 878   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 879   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 880 
 881   // result type needed
 882   fields = TypeTuple::fields(1);
 883   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 884   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 885   return TypeFunc::make(domain, range);
 886 }
 887 
 888 /**
 889 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 890 */
 891 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 892   // create input type (domain)
 893   int num_args      = 3;
 894   int argcnt = num_args;
 895   const Type** fields = TypeTuple::fields(argcnt);
 896   int argp = TypeFunc::Parms;
 897   fields[argp++] = TypeInt::INT;        // crc
 898   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 899   fields[argp++] = TypeInt::INT;        // len
 900   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 901   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 902 
 903   // result type needed
 904   fields = TypeTuple::fields(1);
 905   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 906   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 907   return TypeFunc::make(domain, range);
 908 }
 909 
 910 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 911 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 912   // create input type (domain)
 913   int num_args      = 5;
 914   if (Matcher::pass_original_key_for_aes()) {
 915     num_args = 6;
 916   }
 917   int argcnt = num_args;
 918   const Type** fields = TypeTuple::fields(argcnt);
 919   int argp = TypeFunc::Parms;
 920   fields[argp++] = TypePtr::NOTNULL;    // src
 921   fields[argp++] = TypePtr::NOTNULL;    // dest
 922   fields[argp++] = TypePtr::NOTNULL;    // k array
 923   fields[argp++] = TypePtr::NOTNULL;    // r array
 924   fields[argp++] = TypeInt::INT;        // src len
 925   if (Matcher::pass_original_key_for_aes()) {
 926     fields[argp++] = TypePtr::NOTNULL;    // original k array
 927   }
 928   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 929   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 930 
 931   // returning cipher len (int)
 932   fields = TypeTuple::fields(1);
 933   fields[TypeFunc::Parms+0] = TypeInt::INT;
 934   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 935   return TypeFunc::make(domain, range);
 936 }
 937 
 938 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 939 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 940   // create input type (domain)
 941   int num_args = 7;
 942   if (Matcher::pass_original_key_for_aes()) {
 943     num_args = 8;
 944   }
 945   int argcnt = num_args;
 946   const Type** fields = TypeTuple::fields(argcnt);
 947   int argp = TypeFunc::Parms;
 948   fields[argp++] = TypePtr::NOTNULL; // src
 949   fields[argp++] = TypePtr::NOTNULL; // dest
 950   fields[argp++] = TypePtr::NOTNULL; // k array
 951   fields[argp++] = TypePtr::NOTNULL; // counter array
 952   fields[argp++] = TypeInt::INT; // src len
 953   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 954   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 955   if (Matcher::pass_original_key_for_aes()) {
 956     fields[argp++] = TypePtr::NOTNULL; // original k array
 957   }
 958   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 959   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 960   // returning cipher len (int)
 961   fields = TypeTuple::fields(1);
 962   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 963   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 964   return TypeFunc::make(domain, range);
 965 }
 966 
 967 /*
 968  * void implCompress(byte[] buf, int ofs)
 969  */
 970 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 971   // create input type (domain)
 972   int num_args = 2;
 973   int argcnt = num_args;
 974   const Type** fields = TypeTuple::fields(argcnt);
 975   int argp = TypeFunc::Parms;
 976   fields[argp++] = TypePtr::NOTNULL; // buf
 977   fields[argp++] = TypePtr::NOTNULL; // state
 978   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 979   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 980 
 981   // no result type needed
 982   fields = TypeTuple::fields(1);
 983   fields[TypeFunc::Parms+0] = NULL; // void
 984   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 985   return TypeFunc::make(domain, range);
 986 }
 987 
 988 /*
 989  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 990  */
 991 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 992   // create input type (domain)
 993   int num_args = 4;
 994   int argcnt = num_args;
 995   const Type** fields = TypeTuple::fields(argcnt);
 996   int argp = TypeFunc::Parms;
 997   fields[argp++] = TypePtr::NOTNULL; // buf
 998   fields[argp++] = TypePtr::NOTNULL; // state
 999   fields[argp++] = TypeInt::INT;     // ofs
1000   fields[argp++] = TypeInt::INT;     // limit
1001   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1002   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1003 
1004   // returning ofs (int)
1005   fields = TypeTuple::fields(1);
1006   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1007   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1008   return TypeFunc::make(domain, range);
1009 }
1010 
1011 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1012   // create input type (domain)
1013   int num_args      = 6;
1014   int argcnt = num_args;
1015   const Type** fields = TypeTuple::fields(argcnt);
1016   int argp = TypeFunc::Parms;
1017   fields[argp++] = TypePtr::NOTNULL;    // x
1018   fields[argp++] = TypeInt::INT;        // xlen
1019   fields[argp++] = TypePtr::NOTNULL;    // y
1020   fields[argp++] = TypeInt::INT;        // ylen
1021   fields[argp++] = TypePtr::NOTNULL;    // z
1022   fields[argp++] = TypeInt::INT;        // zlen
1023   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1024   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1025 
1026   // no result type needed
1027   fields = TypeTuple::fields(1);
1028   fields[TypeFunc::Parms+0] = NULL;
1029   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1030   return TypeFunc::make(domain, range);
1031 }
1032 
1033 const TypeFunc* OptoRuntime::squareToLen_Type() {
1034   // create input type (domain)
1035   int num_args      = 4;
1036   int argcnt = num_args;
1037   const Type** fields = TypeTuple::fields(argcnt);
1038   int argp = TypeFunc::Parms;
1039   fields[argp++] = TypePtr::NOTNULL;    // x
1040   fields[argp++] = TypeInt::INT;        // len
1041   fields[argp++] = TypePtr::NOTNULL;    // z
1042   fields[argp++] = TypeInt::INT;        // zlen
1043   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1044   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1045 
1046   // no result type needed
1047   fields = TypeTuple::fields(1);
1048   fields[TypeFunc::Parms+0] = NULL;
1049   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1050   return TypeFunc::make(domain, range);
1051 }
1052 
1053 // for mulAdd calls, 2 pointers and 3 ints, returning int
1054 const TypeFunc* OptoRuntime::mulAdd_Type() {
1055   // create input type (domain)
1056   int num_args      = 5;
1057   int argcnt = num_args;
1058   const Type** fields = TypeTuple::fields(argcnt);
1059   int argp = TypeFunc::Parms;
1060   fields[argp++] = TypePtr::NOTNULL;    // out
1061   fields[argp++] = TypePtr::NOTNULL;    // in
1062   fields[argp++] = TypeInt::INT;        // offset
1063   fields[argp++] = TypeInt::INT;        // len
1064   fields[argp++] = TypeInt::INT;        // k
1065   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1066   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1067 
1068   // returning carry (int)
1069   fields = TypeTuple::fields(1);
1070   fields[TypeFunc::Parms+0] = TypeInt::INT;
1071   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1072   return TypeFunc::make(domain, range);
1073 }
1074 
1075 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1076   // create input type (domain)
1077   int num_args      = 7;
1078   int argcnt = num_args;
1079   const Type** fields = TypeTuple::fields(argcnt);
1080   int argp = TypeFunc::Parms;
1081   fields[argp++] = TypePtr::NOTNULL;    // a
1082   fields[argp++] = TypePtr::NOTNULL;    // b
1083   fields[argp++] = TypePtr::NOTNULL;    // n
1084   fields[argp++] = TypeInt::INT;        // len
1085   fields[argp++] = TypeLong::LONG;      // inv
1086   fields[argp++] = Type::HALF;
1087   fields[argp++] = TypePtr::NOTNULL;    // result
1088   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1089   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1090 
1091   // result type needed
1092   fields = TypeTuple::fields(1);
1093   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1094 
1095   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1096   return TypeFunc::make(domain, range);
1097 }
1098 
1099 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1100   // create input type (domain)
1101   int num_args      = 6;
1102   int argcnt = num_args;
1103   const Type** fields = TypeTuple::fields(argcnt);
1104   int argp = TypeFunc::Parms;
1105   fields[argp++] = TypePtr::NOTNULL;    // a
1106   fields[argp++] = TypePtr::NOTNULL;    // n
1107   fields[argp++] = TypeInt::INT;        // len
1108   fields[argp++] = TypeLong::LONG;      // inv
1109   fields[argp++] = Type::HALF;
1110   fields[argp++] = TypePtr::NOTNULL;    // result
1111   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1112   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1113 
1114   // result type needed
1115   fields = TypeTuple::fields(1);
1116   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1117 
1118   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1119   return TypeFunc::make(domain, range);
1120 }
1121 
1122 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1123   // create input type (domain)
1124   int num_args = 4;
1125   int argcnt = num_args;
1126   const Type** fields = TypeTuple::fields(argcnt);
1127   int argp = TypeFunc::Parms;
1128   fields[argp++] = TypePtr::NOTNULL;    // obja
1129   fields[argp++] = TypePtr::NOTNULL;    // objb
1130   fields[argp++] = TypeInt::INT;        // length, number of elements
1131   fields[argp++] = TypeInt::INT;        // log2scale, element size
1132   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1133   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1134 
1135   //return mismatch index (int)
1136   fields = TypeTuple::fields(1);
1137   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1138   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1139   return TypeFunc::make(domain, range);
1140 }
1141 
1142 // GHASH block processing
1143 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1144     int argcnt = 4;
1145 
1146     const Type** fields = TypeTuple::fields(argcnt);
1147     int argp = TypeFunc::Parms;
1148     fields[argp++] = TypePtr::NOTNULL;    // state
1149     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1150     fields[argp++] = TypePtr::NOTNULL;    // data
1151     fields[argp++] = TypeInt::INT;        // blocks
1152     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1153     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1154 
1155     // result type needed
1156     fields = TypeTuple::fields(1);
1157     fields[TypeFunc::Parms+0] = NULL; // void
1158     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1159     return TypeFunc::make(domain, range);
1160 }
1161 
1162 //------------- Interpreter state access for on stack replacement
1163 const TypeFunc* OptoRuntime::osr_end_Type() {
1164   // create input type (domain)
1165   const Type **fields = TypeTuple::fields(1);
1166   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1167   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1168 
1169   // create result type
1170   fields = TypeTuple::fields(1);
1171   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1172   fields[TypeFunc::Parms+0] = NULL; // void
1173   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1174   return TypeFunc::make(domain, range);
1175 }
1176 
1177 //-------------- methodData update helpers
1178 
1179 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1180   // create input type (domain)
1181   const Type **fields = TypeTuple::fields(2);
1182   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1183   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1184   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1185 
1186   // create result type
1187   fields = TypeTuple::fields(1);
1188   fields[TypeFunc::Parms+0] = NULL; // void
1189   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1190   return TypeFunc::make(domain,range);
1191 }
1192 
1193 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1194   if (receiver == NULL) return;
1195   Klass* receiver_klass = receiver->klass();
1196 
1197   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1198   int empty_row = -1;           // free row, if any is encountered
1199 
1200   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1201   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1202     // if (vc->receiver(row) == receiver_klass)
1203     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1204     intptr_t row_recv = *(mdp + receiver_off);
1205     if (row_recv == (intptr_t) receiver_klass) {
1206       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1207       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1208       *(mdp + count_off) += DataLayout::counter_increment;
1209       return;
1210     } else if (row_recv == 0) {
1211       // else if (vc->receiver(row) == NULL)
1212       empty_row = (int) row;
1213     }
1214   }
1215 
1216   if (empty_row != -1) {
1217     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1218     // vc->set_receiver(empty_row, receiver_klass);
1219     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1220     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1221     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1222     *(mdp + count_off) = DataLayout::counter_increment;
1223   } else {
1224     // Receiver did not match any saved receiver and there is no empty row for it.
1225     // Increment total counter to indicate polymorphic case.
1226     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1227     *count_p += DataLayout::counter_increment;
1228   }
1229 JRT_END
1230 
1231 //-------------------------------------------------------------------------------------
1232 // register policy
1233 
1234 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1235   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1236   switch (register_save_policy[reg]) {
1237     case 'C': return false; //SOC
1238     case 'E': return true ; //SOE
1239     case 'N': return false; //NS
1240     case 'A': return false; //AS
1241   }
1242   ShouldNotReachHere();
1243   return false;
1244 }
1245 
1246 //-----------------------------------------------------------------------
1247 // Exceptions
1248 //
1249 
1250 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1251 
1252 // The method is an entry that is always called by a C++ method not
1253 // directly from compiled code. Compiled code will call the C++ method following.
1254 // We can't allow async exception to be installed during  exception processing.
1255 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1256 
1257   // Do not confuse exception_oop with pending_exception. The exception_oop
1258   // is only used to pass arguments into the method. Not for general
1259   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1260   // the runtime stubs checks this on exit.
1261   assert(thread->exception_oop() != NULL, "exception oop is found");
1262   address handler_address = NULL;
1263 
1264   Handle exception(thread, thread->exception_oop());
1265   address pc = thread->exception_pc();
1266 
1267   // Clear out the exception oop and pc since looking up an
1268   // exception handler can cause class loading, which might throw an
1269   // exception and those fields are expected to be clear during
1270   // normal bytecode execution.
1271   thread->clear_exception_oop_and_pc();
1272 
1273   LogTarget(Info, exceptions) lt;
1274   if (lt.is_enabled()) {
1275     ResourceMark rm;
1276     LogStream ls(lt);
1277     trace_exception(&ls, exception(), pc, "");
1278   }
1279 
1280   // for AbortVMOnException flag
1281   Exceptions::debug_check_abort(exception);
1282 
1283 #ifdef ASSERT
1284   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1285     // should throw an exception here
1286     ShouldNotReachHere();
1287   }
1288 #endif
1289 
1290   // new exception handling: this method is entered only from adapters
1291   // exceptions from compiled java methods are handled in compiled code
1292   // using rethrow node
1293 
1294   nm = CodeCache::find_nmethod(pc);
1295   assert(nm != NULL, "No NMethod found");
1296   if (nm->is_native_method()) {
1297     fatal("Native method should not have path to exception handling");
1298   } else {
1299     // we are switching to old paradigm: search for exception handler in caller_frame
1300     // instead in exception handler of caller_frame.sender()
1301 
1302     if (JvmtiExport::can_post_on_exceptions()) {
1303       // "Full-speed catching" is not necessary here,
1304       // since we're notifying the VM on every catch.
1305       // Force deoptimization and the rest of the lookup
1306       // will be fine.
1307       deoptimize_caller_frame(thread);
1308     }
1309 
1310     // Check the stack guard pages.  If enabled, look for handler in this frame;
1311     // otherwise, forcibly unwind the frame.
1312     //
1313     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1314     bool force_unwind = !thread->reguard_stack();
1315     bool deopting = false;
1316     if (nm->is_deopt_pc(pc)) {
1317       deopting = true;
1318       RegisterMap map(thread, false);
1319       frame deoptee = thread->last_frame().sender(&map);
1320       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1321       // Adjust the pc back to the original throwing pc
1322       pc = deoptee.pc();
1323     }
1324 
1325     // If we are forcing an unwind because of stack overflow then deopt is
1326     // irrelevant since we are throwing the frame away anyway.
1327 
1328     if (deopting && !force_unwind) {
1329       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1330     } else {
1331 
1332       handler_address =
1333         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1334 
1335       if (handler_address == NULL) {
1336         bool recursive_exception = false;
1337         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1338         assert (handler_address != NULL, "must have compiled handler");
1339         // Update the exception cache only when the unwind was not forced
1340         // and there didn't happen another exception during the computation of the
1341         // compiled exception handler. Checking for exception oop equality is not
1342         // sufficient because some exceptions are pre-allocated and reused.
1343         if (!force_unwind && !recursive_exception) {
1344           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1345         }
1346       } else {
1347 #ifdef ASSERT
1348         bool recursive_exception = false;
1349         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1350         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1351                  p2i(handler_address), p2i(computed_address));
1352 #endif
1353       }
1354     }
1355 
1356     thread->set_exception_pc(pc);
1357     thread->set_exception_handler_pc(handler_address);
1358 
1359     // Check if the exception PC is a MethodHandle call site.
1360     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1361   }
1362 
1363   // Restore correct return pc.  Was saved above.
1364   thread->set_exception_oop(exception());
1365   return handler_address;
1366 
1367 JRT_END
1368 
1369 // We are entering here from exception_blob
1370 // If there is a compiled exception handler in this method, we will continue there;
1371 // otherwise we will unwind the stack and continue at the caller of top frame method
1372 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1373 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1374 // we looked up the handler for has been deoptimized in the meantime. If it has been
1375 // we must not use the handler and instead return the deopt blob.
1376 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1377 //
1378 // We are in Java not VM and in debug mode we have a NoHandleMark
1379 //
1380 #ifndef PRODUCT
1381   SharedRuntime::_find_handler_ctr++;          // find exception handler
1382 #endif
1383   debug_only(NoHandleMark __hm;)
1384   nmethod* nm = NULL;
1385   address handler_address = NULL;
1386   {
1387     // Enter the VM
1388 
1389     ResetNoHandleMark rnhm;
1390     handler_address = handle_exception_C_helper(thread, nm);
1391   }
1392 
1393   // Back in java: Use no oops, DON'T safepoint
1394 
1395   // Now check to see if the handler we are returning is in a now
1396   // deoptimized frame
1397 
1398   if (nm != NULL) {
1399     RegisterMap map(thread, false);
1400     frame caller = thread->last_frame().sender(&map);
1401 #ifdef ASSERT
1402     assert(caller.is_compiled_frame(), "must be");
1403 #endif // ASSERT
1404     if (caller.is_deoptimized_frame()) {
1405       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1406     }
1407   }
1408   return handler_address;
1409 }
1410 
1411 //------------------------------rethrow----------------------------------------
1412 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1413 // is either throwing or rethrowing an exception.  The callee-save registers
1414 // have been restored, synchronized objects have been unlocked and the callee
1415 // stack frame has been removed.  The return address was passed in.
1416 // Exception oop is passed as the 1st argument.  This routine is then called
1417 // from the stub.  On exit, we know where to jump in the caller's code.
1418 // After this C code exits, the stub will pop his frame and end in a jump
1419 // (instead of a return).  We enter the caller's default handler.
1420 //
1421 // This must be JRT_LEAF:
1422 //     - caller will not change its state as we cannot block on exit,
1423 //       therefore raw_exception_handler_for_return_address is all it takes
1424 //       to handle deoptimized blobs
1425 //
1426 // However, there needs to be a safepoint check in the middle!  So compiled
1427 // safepoints are completely watertight.
1428 //
1429 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1430 //
1431 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1432 //
1433 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1434 #ifndef PRODUCT
1435   SharedRuntime::_rethrow_ctr++;               // count rethrows
1436 #endif
1437   assert (exception != NULL, "should have thrown a NULLPointerException");
1438 #ifdef ASSERT
1439   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1440     // should throw an exception here
1441     ShouldNotReachHere();
1442   }
1443 #endif
1444 
1445   thread->set_vm_result(exception);
1446   // Frame not compiled (handles deoptimization blob)
1447   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1448 }
1449 
1450 
1451 const TypeFunc *OptoRuntime::rethrow_Type() {
1452   // create input type (domain)
1453   const Type **fields = TypeTuple::fields(1);
1454   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1455   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1456 
1457   // create result type (range)
1458   fields = TypeTuple::fields(1);
1459   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1460   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1461 
1462   return TypeFunc::make(domain, range);
1463 }
1464 
1465 
1466 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1467   // Deoptimize the caller before continuing, as the compiled
1468   // exception handler table may not be valid.
1469   if (!StressCompiledExceptionHandlers && doit) {
1470     deoptimize_caller_frame(thread);
1471   }
1472 }
1473 
1474 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1475   // Called from within the owner thread, so no need for safepoint
1476   RegisterMap reg_map(thread);
1477   frame stub_frame = thread->last_frame();
1478   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1479   frame caller_frame = stub_frame.sender(&reg_map);
1480 
1481   // Deoptimize the caller frame.
1482   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1483 }
1484 
1485 
1486 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1487   // Called from within the owner thread, so no need for safepoint
1488   RegisterMap reg_map(thread);
1489   frame stub_frame = thread->last_frame();
1490   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1491   frame caller_frame = stub_frame.sender(&reg_map);
1492   return caller_frame.is_deoptimized_frame();
1493 }
1494 
1495 
1496 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1497   // create input type (domain)
1498   const Type **fields = TypeTuple::fields(1);
1499   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1500   // // The JavaThread* is passed to each routine as the last argument
1501   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1502   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1503 
1504   // create result type (range)
1505   fields = TypeTuple::fields(0);
1506 
1507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1508 
1509   return TypeFunc::make(domain,range);
1510 }
1511 
1512 
1513 //-----------------------------------------------------------------------------
1514 // Dtrace support.  entry and exit probes have the same signature
1515 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1516   // create input type (domain)
1517   const Type **fields = TypeTuple::fields(2);
1518   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1519   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1520   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1521 
1522   // create result type (range)
1523   fields = TypeTuple::fields(0);
1524 
1525   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1526 
1527   return TypeFunc::make(domain,range);
1528 }
1529 
1530 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1531   // create input type (domain)
1532   const Type **fields = TypeTuple::fields(2);
1533   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1534   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1535 
1536   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1537 
1538   // create result type (range)
1539   fields = TypeTuple::fields(0);
1540 
1541   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1542 
1543   return TypeFunc::make(domain,range);
1544 }
1545 
1546 
1547 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1548   assert(oopDesc::is_oop(obj), "must be a valid oop");
1549   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1550   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1551 JRT_END
1552 
1553 //-----------------------------------------------------------------------------
1554 
1555 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1556 
1557 //
1558 // dump the collected NamedCounters.
1559 //
1560 void OptoRuntime::print_named_counters() {
1561   int total_lock_count = 0;
1562   int eliminated_lock_count = 0;
1563 
1564   NamedCounter* c = _named_counters;
1565   while (c) {
1566     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1567       int count = c->count();
1568       if (count > 0) {
1569         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1570         if (Verbose) {
1571           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1572         }
1573         total_lock_count += count;
1574         if (eliminated) {
1575           eliminated_lock_count += count;
1576         }
1577       }
1578     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1579       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1580       if (blc->nonzero()) {
1581         tty->print_cr("%s", c->name());
1582         blc->print_on(tty);
1583       }
1584 #if INCLUDE_RTM_OPT
1585     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1586       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1587       if (rlc->nonzero()) {
1588         tty->print_cr("%s", c->name());
1589         rlc->print_on(tty);
1590       }
1591 #endif
1592     }
1593     c = c->next();
1594   }
1595   if (total_lock_count > 0) {
1596     tty->print_cr("dynamic locks: %d", total_lock_count);
1597     if (eliminated_lock_count) {
1598       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1599                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1600     }
1601   }
1602 }
1603 
1604 //
1605 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1606 //  name which consists of method@line for the inlining tree.
1607 //
1608 
1609 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1610   int max_depth = youngest_jvms->depth();
1611 
1612   // Visit scopes from youngest to oldest.
1613   bool first = true;
1614   stringStream st;
1615   for (int depth = max_depth; depth >= 1; depth--) {
1616     JVMState* jvms = youngest_jvms->of_depth(depth);
1617     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1618     if (!first) {
1619       st.print(" ");
1620     } else {
1621       first = false;
1622     }
1623     int bci = jvms->bci();
1624     if (bci < 0) bci = 0;
1625     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1626     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1627   }
1628   NamedCounter* c;
1629   if (tag == NamedCounter::BiasedLockingCounter) {
1630     c = new BiasedLockingNamedCounter(st.as_string());
1631   } else if (tag == NamedCounter::RTMLockingCounter) {
1632     c = new RTMLockingNamedCounter(st.as_string());
1633   } else {
1634     c = new NamedCounter(st.as_string(), tag);
1635   }
1636 
1637   // atomically add the new counter to the head of the list.  We only
1638   // add counters so this is safe.
1639   NamedCounter* head;
1640   do {
1641     c->set_next(NULL);
1642     head = _named_counters;
1643     c->set_next(head);
1644   } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1645   return c;
1646 }
1647 
1648 int trace_exception_counter = 0;
1649 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1650   trace_exception_counter++;
1651   stringStream tempst;
1652 
1653   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1654   exception_oop->print_value_on(&tempst);
1655   tempst.print(" in ");
1656   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1657   if (blob->is_compiled()) {
1658     CompiledMethod* cm = blob->as_compiled_method_or_null();
1659     cm->method()->print_value_on(&tempst);
1660   } else if (blob->is_runtime_stub()) {
1661     tempst.print("<runtime-stub>");
1662   } else {
1663     tempst.print("<unknown>");
1664   }
1665   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1666   tempst.print("]");
1667 
1668   st->print_raw_cr(tempst.as_string());
1669 }