1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/metaspaceShared.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "oops/instanceKlass.hpp"
  52 #include "oops/objArrayOop.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "oops/symbol.hpp"
  55 #include "oops/typeArrayOop.inline.hpp"
  56 #include "oops/verifyOopClosure.hpp"
  57 #include "prims/jvm_misc.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "prims/jvmtiThreadState.hpp"
  60 #include "prims/privilegedStack.hpp"
  61 #include "runtime/arguments.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/biasedLocking.hpp"
  64 #include "runtime/commandLineFlagConstraintList.hpp"
  65 #include "runtime/commandLineFlagWriteableList.hpp"
  66 #include "runtime/commandLineFlagRangeList.hpp"
  67 #include "runtime/deoptimization.hpp"
  68 #include "runtime/frame.inline.hpp"
  69 #include "runtime/globals.hpp"
  70 #include "runtime/handshake.hpp"
  71 #include "runtime/init.hpp"
  72 #include "runtime/interfaceSupport.inline.hpp"
  73 #include "runtime/java.hpp"
  74 #include "runtime/javaCalls.hpp"
  75 #include "runtime/jniHandles.inline.hpp"
  76 #include "runtime/jniPeriodicChecker.hpp"
  77 #include "runtime/memprofiler.hpp"
  78 #include "runtime/mutexLocker.hpp"
  79 #include "runtime/objectMonitor.hpp"
  80 #include "runtime/orderAccess.inline.hpp"
  81 #include "runtime/osThread.hpp"
  82 #include "runtime/prefetch.inline.hpp"
  83 #include "runtime/safepoint.hpp"
  84 #include "runtime/safepointMechanism.inline.hpp"
  85 #include "runtime/sharedRuntime.hpp"
  86 #include "runtime/statSampler.hpp"
  87 #include "runtime/stubRoutines.hpp"
  88 #include "runtime/sweeper.hpp"
  89 #include "runtime/task.hpp"
  90 #include "runtime/thread.inline.hpp"
  91 #include "runtime/threadCritical.hpp"
  92 #include "runtime/threadSMR.inline.hpp"
  93 #include "runtime/timer.hpp"
  94 #include "runtime/timerTrace.hpp"
  95 #include "runtime/vframe.hpp"
  96 #include "runtime/vframeArray.hpp"
  97 #include "runtime/vframe_hp.hpp"
  98 #include "runtime/vmThread.hpp"
  99 #include "runtime/vm_operations.hpp"
 100 #include "runtime/vm_version.hpp"
 101 #include "services/attachListener.hpp"
 102 #include "services/management.hpp"
 103 #include "services/memTracker.hpp"
 104 #include "services/threadService.hpp"
 105 #include "trace/traceMacros.hpp"
 106 #include "trace/tracing.hpp"
 107 #include "utilities/align.hpp"
 108 #include "utilities/defaultStream.hpp"
 109 #include "utilities/dtrace.hpp"
 110 #include "utilities/events.hpp"
 111 #include "utilities/macros.hpp"
 112 #include "utilities/preserveException.hpp"
 113 #include "utilities/vmError.hpp"
 114 #if INCLUDE_ALL_GCS
 115 #include "gc/cms/concurrentMarkSweepThread.hpp"
 116 #include "gc/g1/concurrentMarkThread.inline.hpp"
 117 #include "gc/parallel/pcTasks.hpp"
 118 #endif // INCLUDE_ALL_GCS
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmciCompiler.hpp"
 121 #include "jvmci/jvmciRuntime.hpp"
 122 #include "logging/logHandle.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 
 135 // Initialization after module runtime initialization
 136 void universe_post_module_init();  // must happen after call_initPhase2
 137 
 138 #ifdef DTRACE_ENABLED
 139 
 140 // Only bother with this argument setup if dtrace is available
 141 
 142   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 143   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 144 
 145   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 146     {                                                                      \
 147       ResourceMark rm(this);                                               \
 148       int len = 0;                                                         \
 149       const char* name = (javathread)->get_thread_name();                  \
 150       len = strlen(name);                                                  \
 151       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 152         (char *) name, len,                                                \
 153         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 154         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 155         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 156     }
 157 
 158 #else //  ndef DTRACE_ENABLED
 159 
 160   #define DTRACE_THREAD_PROBE(probe, javathread)
 161 
 162 #endif // ndef DTRACE_ENABLED
 163 
 164 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 165 // Current thread is maintained as a thread-local variable
 166 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 167 #endif
 168 // Class hierarchy
 169 // - Thread
 170 //   - VMThread
 171 //   - WatcherThread
 172 //   - ConcurrentMarkSweepThread
 173 //   - JavaThread
 174 //     - CompilerThread
 175 
 176 // ======= Thread ========
 177 // Support for forcing alignment of thread objects for biased locking
 178 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 179   if (UseBiasedLocking) {
 180     const int alignment = markOopDesc::biased_lock_alignment;
 181     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 182     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 183                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 184                                                          AllocFailStrategy::RETURN_NULL);
 185     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 186     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 187            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 188            "JavaThread alignment code overflowed allocated storage");
 189     if (aligned_addr != real_malloc_addr) {
 190       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 191                               p2i(real_malloc_addr),
 192                               p2i(aligned_addr));
 193     }
 194     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 195     return aligned_addr;
 196   } else {
 197     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 198                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 199   }
 200 }
 201 
 202 void Thread::operator delete(void* p) {
 203   if (UseBiasedLocking) {
 204     FreeHeap(((Thread*) p)->_real_malloc_address);
 205   } else {
 206     FreeHeap(p);
 207   }
 208 }
 209 
 210 void JavaThread::smr_delete() {
 211   if (_on_thread_list) {
 212     ThreadsSMRSupport::smr_delete(this);
 213   } else {
 214     delete this;
 215   }
 216 }
 217 
 218 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 219 // JavaThread
 220 
 221 
 222 Thread::Thread() {
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   _heap_sampler.set_thread(this);
 240 
 241   // This initial value ==> never claimed.
 242   _oops_do_parity = 0;
 243   _threads_hazard_ptr = NULL;
 244   _nested_threads_hazard_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   debug_only(_allow_allocation_count = 0;)
 253   NOT_PRODUCT(_allow_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _num_nested_signal = 0;
 263   omFreeList = NULL;
 264   omFreeCount = 0;
 265   omFreeProvision = 32;
 266   omInUseList = NULL;
 267   omInUseCount = 0;
 268 
 269 #ifdef ASSERT
 270   _visited_for_critical_count = false;
 271 #endif
 272 
 273   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 274                          Monitor::_safepoint_check_sometimes);
 275   _suspend_flags = 0;
 276 
 277   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 278   _hashStateX = os::random();
 279   _hashStateY = 842502087;
 280   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 281   _hashStateW = 273326509;
 282 
 283   _OnTrap   = 0;
 284   _schedctl = NULL;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _SleepEvent  = ParkEvent::Allocate(this);
 297   _MutexEvent  = ParkEvent::Allocate(this);
 298   _MuxEvent    = ParkEvent::Allocate(this);
 299 
 300 #ifdef CHECK_UNHANDLED_OOPS
 301   if (CheckUnhandledOops) {
 302     _unhandled_oops = new UnhandledOops(this);
 303   }
 304 #endif // CHECK_UNHANDLED_OOPS
 305 #ifdef ASSERT
 306   if (UseBiasedLocking) {
 307     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 308     assert(this == _real_malloc_address ||
 309            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 310            "bug in forced alignment of thread objects");
 311   }
 312 #endif // ASSERT
 313 }
 314 
 315 void Thread::initialize_thread_current() {
 316 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 317   assert(_thr_current == NULL, "Thread::current already initialized");
 318   _thr_current = this;
 319 #endif
 320   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 321   ThreadLocalStorage::set_thread(this);
 322   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 323 }
 324 
 325 void Thread::clear_thread_current() {
 326   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 327 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 328   _thr_current = NULL;
 329 #endif
 330   ThreadLocalStorage::set_thread(NULL);
 331 }
 332 
 333 void Thread::record_stack_base_and_size() {
 334   set_stack_base(os::current_stack_base());
 335   set_stack_size(os::current_stack_size());
 336   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 337   // in initialize_thread(). Without the adjustment, stack size is
 338   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 339   // So far, only Solaris has real implementation of initialize_thread().
 340   //
 341   // set up any platform-specific state.
 342   os::initialize_thread(this);
 343 
 344   // Set stack limits after thread is initialized.
 345   if (is_Java_thread()) {
 346     ((JavaThread*) this)->set_stack_overflow_limit();
 347     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 348   }
 349 #if INCLUDE_NMT
 350   // record thread's native stack, stack grows downward
 351   MemTracker::record_thread_stack(stack_end(), stack_size());
 352 #endif // INCLUDE_NMT
 353   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 354     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 355     os::current_thread_id(), p2i(stack_base() - stack_size()),
 356     p2i(stack_base()), stack_size()/1024);
 357 }
 358 
 359 
 360 Thread::~Thread() {
 361   EVENT_THREAD_DESTRUCT(this);
 362 
 363   // stack_base can be NULL if the thread is never started or exited before
 364   // record_stack_base_and_size called. Although, we would like to ensure
 365   // that all started threads do call record_stack_base_and_size(), there is
 366   // not proper way to enforce that.
 367 #if INCLUDE_NMT
 368   if (_stack_base != NULL) {
 369     MemTracker::release_thread_stack(stack_end(), stack_size());
 370 #ifdef ASSERT
 371     set_stack_base(NULL);
 372 #endif
 373   }
 374 #endif // INCLUDE_NMT
 375 
 376   // deallocate data structures
 377   delete resource_area();
 378   // since the handle marks are using the handle area, we have to deallocated the root
 379   // handle mark before deallocating the thread's handle area,
 380   assert(last_handle_mark() != NULL, "check we have an element");
 381   delete last_handle_mark();
 382   assert(last_handle_mark() == NULL, "check we have reached the end");
 383 
 384   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 385   // We NULL out the fields for good hygiene.
 386   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 387   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 388   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 389   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 390 
 391   delete handle_area();
 392   delete metadata_handles();
 393 
 394   // SR_handler uses this as a termination indicator -
 395   // needs to happen before os::free_thread()
 396   delete _SR_lock;
 397   _SR_lock = NULL;
 398 
 399   // osthread() can be NULL, if creation of thread failed.
 400   if (osthread() != NULL) os::free_thread(osthread());
 401 
 402   // clear Thread::current if thread is deleting itself.
 403   // Needed to ensure JNI correctly detects non-attached threads.
 404   if (this == Thread::current()) {
 405     clear_thread_current();
 406   }
 407 
 408   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 409 }
 410 
 411 // NOTE: dummy function for assertion purpose.
 412 void Thread::run() {
 413   ShouldNotReachHere();
 414 }
 415 
 416 #ifdef ASSERT
 417 // A JavaThread is considered "dangling" if it is not the current
 418 // thread, has been added the Threads list, the system is not at a
 419 // safepoint and the Thread is not "protected".
 420 //
 421 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 422   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 423          !((JavaThread *) thread)->on_thread_list() ||
 424          SafepointSynchronize::is_at_safepoint() ||
 425          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 426          "possibility of dangling Thread pointer");
 427 }
 428 #endif
 429 
 430 ThreadPriority Thread::get_priority(const Thread* const thread) {
 431   ThreadPriority priority;
 432   // Can return an error!
 433   (void)os::get_priority(thread, priority);
 434   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 435   return priority;
 436 }
 437 
 438 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 439   debug_only(check_for_dangling_thread_pointer(thread);)
 440   // Can return an error!
 441   (void)os::set_priority(thread, priority);
 442 }
 443 
 444 
 445 void Thread::start(Thread* thread) {
 446   // Start is different from resume in that its safety is guaranteed by context or
 447   // being called from a Java method synchronized on the Thread object.
 448   if (!DisableStartThread) {
 449     if (thread->is_Java_thread()) {
 450       // Initialize the thread state to RUNNABLE before starting this thread.
 451       // Can not set it after the thread started because we do not know the
 452       // exact thread state at that time. It could be in MONITOR_WAIT or
 453       // in SLEEPING or some other state.
 454       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 455                                           java_lang_Thread::RUNNABLE);
 456     }
 457     os::start_thread(thread);
 458   }
 459 }
 460 
 461 // Enqueue a VM_Operation to do the job for us - sometime later
 462 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 463   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 464   VMThread::execute(vm_stop);
 465 }
 466 
 467 
 468 // Check if an external suspend request has completed (or has been
 469 // cancelled). Returns true if the thread is externally suspended and
 470 // false otherwise.
 471 //
 472 // The bits parameter returns information about the code path through
 473 // the routine. Useful for debugging:
 474 //
 475 // set in is_ext_suspend_completed():
 476 // 0x00000001 - routine was entered
 477 // 0x00000010 - routine return false at end
 478 // 0x00000100 - thread exited (return false)
 479 // 0x00000200 - suspend request cancelled (return false)
 480 // 0x00000400 - thread suspended (return true)
 481 // 0x00001000 - thread is in a suspend equivalent state (return true)
 482 // 0x00002000 - thread is native and walkable (return true)
 483 // 0x00004000 - thread is native_trans and walkable (needed retry)
 484 //
 485 // set in wait_for_ext_suspend_completion():
 486 // 0x00010000 - routine was entered
 487 // 0x00020000 - suspend request cancelled before loop (return false)
 488 // 0x00040000 - thread suspended before loop (return true)
 489 // 0x00080000 - suspend request cancelled in loop (return false)
 490 // 0x00100000 - thread suspended in loop (return true)
 491 // 0x00200000 - suspend not completed during retry loop (return false)
 492 
 493 // Helper class for tracing suspend wait debug bits.
 494 //
 495 // 0x00000100 indicates that the target thread exited before it could
 496 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 497 // 0x00080000 each indicate a cancelled suspend request so they don't
 498 // count as wait failures either.
 499 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 500 
 501 class TraceSuspendDebugBits : public StackObj {
 502  private:
 503   JavaThread * jt;
 504   bool         is_wait;
 505   bool         called_by_wait;  // meaningful when !is_wait
 506   uint32_t *   bits;
 507 
 508  public:
 509   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 510                         uint32_t *_bits) {
 511     jt             = _jt;
 512     is_wait        = _is_wait;
 513     called_by_wait = _called_by_wait;
 514     bits           = _bits;
 515   }
 516 
 517   ~TraceSuspendDebugBits() {
 518     if (!is_wait) {
 519 #if 1
 520       // By default, don't trace bits for is_ext_suspend_completed() calls.
 521       // That trace is very chatty.
 522       return;
 523 #else
 524       if (!called_by_wait) {
 525         // If tracing for is_ext_suspend_completed() is enabled, then only
 526         // trace calls to it from wait_for_ext_suspend_completion()
 527         return;
 528       }
 529 #endif
 530     }
 531 
 532     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 533       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 534         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 535         ResourceMark rm;
 536 
 537         tty->print_cr(
 538                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 539                       jt->get_thread_name(), *bits);
 540 
 541         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 542       }
 543     }
 544   }
 545 };
 546 #undef DEBUG_FALSE_BITS
 547 
 548 
 549 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 550                                           uint32_t *bits) {
 551   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 552 
 553   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 554   bool do_trans_retry;           // flag to force the retry
 555 
 556   *bits |= 0x00000001;
 557 
 558   do {
 559     do_trans_retry = false;
 560 
 561     if (is_exiting()) {
 562       // Thread is in the process of exiting. This is always checked
 563       // first to reduce the risk of dereferencing a freed JavaThread.
 564       *bits |= 0x00000100;
 565       return false;
 566     }
 567 
 568     if (!is_external_suspend()) {
 569       // Suspend request is cancelled. This is always checked before
 570       // is_ext_suspended() to reduce the risk of a rogue resume
 571       // confusing the thread that made the suspend request.
 572       *bits |= 0x00000200;
 573       return false;
 574     }
 575 
 576     if (is_ext_suspended()) {
 577       // thread is suspended
 578       *bits |= 0x00000400;
 579       return true;
 580     }
 581 
 582     // Now that we no longer do hard suspends of threads running
 583     // native code, the target thread can be changing thread state
 584     // while we are in this routine:
 585     //
 586     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 587     //
 588     // We save a copy of the thread state as observed at this moment
 589     // and make our decision about suspend completeness based on the
 590     // copy. This closes the race where the thread state is seen as
 591     // _thread_in_native_trans in the if-thread_blocked check, but is
 592     // seen as _thread_blocked in if-thread_in_native_trans check.
 593     JavaThreadState save_state = thread_state();
 594 
 595     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 596       // If the thread's state is _thread_blocked and this blocking
 597       // condition is known to be equivalent to a suspend, then we can
 598       // consider the thread to be externally suspended. This means that
 599       // the code that sets _thread_blocked has been modified to do
 600       // self-suspension if the blocking condition releases. We also
 601       // used to check for CONDVAR_WAIT here, but that is now covered by
 602       // the _thread_blocked with self-suspension check.
 603       //
 604       // Return true since we wouldn't be here unless there was still an
 605       // external suspend request.
 606       *bits |= 0x00001000;
 607       return true;
 608     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 609       // Threads running native code will self-suspend on native==>VM/Java
 610       // transitions. If its stack is walkable (should always be the case
 611       // unless this function is called before the actual java_suspend()
 612       // call), then the wait is done.
 613       *bits |= 0x00002000;
 614       return true;
 615     } else if (!called_by_wait && !did_trans_retry &&
 616                save_state == _thread_in_native_trans &&
 617                frame_anchor()->walkable()) {
 618       // The thread is transitioning from thread_in_native to another
 619       // thread state. check_safepoint_and_suspend_for_native_trans()
 620       // will force the thread to self-suspend. If it hasn't gotten
 621       // there yet we may have caught the thread in-between the native
 622       // code check above and the self-suspend. Lucky us. If we were
 623       // called by wait_for_ext_suspend_completion(), then it
 624       // will be doing the retries so we don't have to.
 625       //
 626       // Since we use the saved thread state in the if-statement above,
 627       // there is a chance that the thread has already transitioned to
 628       // _thread_blocked by the time we get here. In that case, we will
 629       // make a single unnecessary pass through the logic below. This
 630       // doesn't hurt anything since we still do the trans retry.
 631 
 632       *bits |= 0x00004000;
 633 
 634       // Once the thread leaves thread_in_native_trans for another
 635       // thread state, we break out of this retry loop. We shouldn't
 636       // need this flag to prevent us from getting back here, but
 637       // sometimes paranoia is good.
 638       did_trans_retry = true;
 639 
 640       // We wait for the thread to transition to a more usable state.
 641       for (int i = 1; i <= SuspendRetryCount; i++) {
 642         // We used to do an "os::yield_all(i)" call here with the intention
 643         // that yielding would increase on each retry. However, the parameter
 644         // is ignored on Linux which means the yield didn't scale up. Waiting
 645         // on the SR_lock below provides a much more predictable scale up for
 646         // the delay. It also provides a simple/direct point to check for any
 647         // safepoint requests from the VMThread
 648 
 649         // temporarily drops SR_lock while doing wait with safepoint check
 650         // (if we're a JavaThread - the WatcherThread can also call this)
 651         // and increase delay with each retry
 652         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 653 
 654         // check the actual thread state instead of what we saved above
 655         if (thread_state() != _thread_in_native_trans) {
 656           // the thread has transitioned to another thread state so
 657           // try all the checks (except this one) one more time.
 658           do_trans_retry = true;
 659           break;
 660         }
 661       } // end retry loop
 662 
 663 
 664     }
 665   } while (do_trans_retry);
 666 
 667   *bits |= 0x00000010;
 668   return false;
 669 }
 670 
 671 // Wait for an external suspend request to complete (or be cancelled).
 672 // Returns true if the thread is externally suspended and false otherwise.
 673 //
 674 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 675                                                  uint32_t *bits) {
 676   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 677                              false /* !called_by_wait */, bits);
 678 
 679   // local flag copies to minimize SR_lock hold time
 680   bool is_suspended;
 681   bool pending;
 682   uint32_t reset_bits;
 683 
 684   // set a marker so is_ext_suspend_completed() knows we are the caller
 685   *bits |= 0x00010000;
 686 
 687   // We use reset_bits to reinitialize the bits value at the top of
 688   // each retry loop. This allows the caller to make use of any
 689   // unused bits for their own marking purposes.
 690   reset_bits = *bits;
 691 
 692   {
 693     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 694     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 695                                             delay, bits);
 696     pending = is_external_suspend();
 697   }
 698   // must release SR_lock to allow suspension to complete
 699 
 700   if (!pending) {
 701     // A cancelled suspend request is the only false return from
 702     // is_ext_suspend_completed() that keeps us from entering the
 703     // retry loop.
 704     *bits |= 0x00020000;
 705     return false;
 706   }
 707 
 708   if (is_suspended) {
 709     *bits |= 0x00040000;
 710     return true;
 711   }
 712 
 713   for (int i = 1; i <= retries; i++) {
 714     *bits = reset_bits;  // reinit to only track last retry
 715 
 716     // We used to do an "os::yield_all(i)" call here with the intention
 717     // that yielding would increase on each retry. However, the parameter
 718     // is ignored on Linux which means the yield didn't scale up. Waiting
 719     // on the SR_lock below provides a much more predictable scale up for
 720     // the delay. It also provides a simple/direct point to check for any
 721     // safepoint requests from the VMThread
 722 
 723     {
 724       MutexLocker ml(SR_lock());
 725       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 726       // can also call this)  and increase delay with each retry
 727       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 728 
 729       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 730                                               delay, bits);
 731 
 732       // It is possible for the external suspend request to be cancelled
 733       // (by a resume) before the actual suspend operation is completed.
 734       // Refresh our local copy to see if we still need to wait.
 735       pending = is_external_suspend();
 736     }
 737 
 738     if (!pending) {
 739       // A cancelled suspend request is the only false return from
 740       // is_ext_suspend_completed() that keeps us from staying in the
 741       // retry loop.
 742       *bits |= 0x00080000;
 743       return false;
 744     }
 745 
 746     if (is_suspended) {
 747       *bits |= 0x00100000;
 748       return true;
 749     }
 750   } // end retry loop
 751 
 752   // thread did not suspend after all our retries
 753   *bits |= 0x00200000;
 754   return false;
 755 }
 756 
 757 // Called from API entry points which perform stack walking. If the
 758 // associated JavaThread is the current thread, then wait_for_suspend
 759 // is not used. Otherwise, it determines if we should wait for the
 760 // "other" thread to complete external suspension. (NOTE: in future
 761 // releases the suspension mechanism should be reimplemented so this
 762 // is not necessary.)
 763 //
 764 bool
 765 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 766   if (this != JavaThread::current()) {
 767     // "other" threads require special handling.
 768     if (wait_for_suspend) {
 769       // We are allowed to wait for the external suspend to complete
 770       // so give the other thread a chance to get suspended.
 771       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 772                                            SuspendRetryDelay, bits)) {
 773         // Didn't make it so let the caller know.
 774         return false;
 775       }
 776     }
 777     // We aren't allowed to wait for the external suspend to complete
 778     // so if the other thread isn't externally suspended we need to
 779     // let the caller know.
 780     else if (!is_ext_suspend_completed_with_lock(bits)) {
 781       return false;
 782     }
 783   }
 784 
 785   return true;
 786 }
 787 
 788 #ifndef PRODUCT
 789 void JavaThread::record_jump(address target, address instr, const char* file,
 790                              int line) {
 791 
 792   // This should not need to be atomic as the only way for simultaneous
 793   // updates is via interrupts. Even then this should be rare or non-existent
 794   // and we don't care that much anyway.
 795 
 796   int index = _jmp_ring_index;
 797   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 798   _jmp_ring[index]._target = (intptr_t) target;
 799   _jmp_ring[index]._instruction = (intptr_t) instr;
 800   _jmp_ring[index]._file = file;
 801   _jmp_ring[index]._line = line;
 802 }
 803 #endif // PRODUCT
 804 
 805 void Thread::interrupt(Thread* thread) {
 806   debug_only(check_for_dangling_thread_pointer(thread);)
 807   os::interrupt(thread);
 808 }
 809 
 810 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 811   debug_only(check_for_dangling_thread_pointer(thread);)
 812   // Note:  If clear_interrupted==false, this simply fetches and
 813   // returns the value of the field osthread()->interrupted().
 814   return os::is_interrupted(thread, clear_interrupted);
 815 }
 816 
 817 
 818 // GC Support
 819 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 820   int thread_parity = _oops_do_parity;
 821   if (thread_parity != strong_roots_parity) {
 822     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 823     if (res == thread_parity) {
 824       return true;
 825     } else {
 826       guarantee(res == strong_roots_parity, "Or else what?");
 827       return false;
 828     }
 829   }
 830   return false;
 831 }
 832 
 833 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 834   active_handles()->oops_do(f);
 835   // Do oop for ThreadShadow
 836   f->do_oop((oop*)&_pending_exception);
 837   handle_area()->oops_do(f);
 838 
 839   if (MonitorInUseLists) {
 840     // When using thread local monitor lists, we scan them here,
 841     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 842     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 843   }
 844 }
 845 
 846 void Thread::metadata_handles_do(void f(Metadata*)) {
 847   // Only walk the Handles in Thread.
 848   if (metadata_handles() != NULL) {
 849     for (int i = 0; i< metadata_handles()->length(); i++) {
 850       f(metadata_handles()->at(i));
 851     }
 852   }
 853 }
 854 
 855 void Thread::print_on(outputStream* st) const {
 856   // get_priority assumes osthread initialized
 857   if (osthread() != NULL) {
 858     int os_prio;
 859     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 860       st->print("os_prio=%d ", os_prio);
 861     }
 862     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 863     osthread()->print_on(st);
 864   }
 865   if (_threads_hazard_ptr != NULL) {
 866     st->print("_threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 867   }
 868   if (_nested_threads_hazard_ptr != NULL) {
 869     print_nested_threads_hazard_ptrs_on(st);
 870   }
 871   st->print(" ");
 872   debug_only(if (WizardMode) print_owned_locks_on(st);)
 873 }
 874 
 875 void Thread::print_nested_threads_hazard_ptrs_on(outputStream* st) const {
 876   assert(_nested_threads_hazard_ptr != NULL, "must be set to print");
 877 
 878   if (EnableThreadSMRStatistics) {
 879     st->print(", _nested_threads_hazard_ptr_cnt=%u", _nested_threads_hazard_ptr_cnt);
 880   }
 881   st->print(", _nested_threads_hazard_ptrs=");
 882   for (NestedThreadsList* node = _nested_threads_hazard_ptr; node != NULL;
 883        node = node->next()) {
 884     if (node != _nested_threads_hazard_ptr) {
 885       // First node does not need a comma-space separator.
 886       st->print(", ");
 887     }
 888     st->print(INTPTR_FORMAT, p2i(node->t_list()));
 889   }
 890 }
 891 
 892 // Thread::print_on_error() is called by fatal error handler. Don't use
 893 // any lock or allocate memory.
 894 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 895   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 896 
 897   if (is_VM_thread())                 { st->print("VMThread"); }
 898   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 899   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 900   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 901   else                                { st->print("Thread"); }
 902 
 903   if (is_Named_thread()) {
 904     st->print(" \"%s\"", name());
 905   }
 906 
 907   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 908             p2i(stack_end()), p2i(stack_base()));
 909 
 910   if (osthread()) {
 911     st->print(" [id=%d]", osthread()->thread_id());
 912   }
 913 
 914   if (_threads_hazard_ptr != NULL) {
 915     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 916   }
 917   if (_nested_threads_hazard_ptr != NULL) {
 918     print_nested_threads_hazard_ptrs_on(st);
 919   }
 920 }
 921 
 922 void Thread::print_value_on(outputStream* st) const {
 923   if (is_Named_thread()) {
 924     st->print(" \"%s\" ", name());
 925   }
 926   st->print(INTPTR_FORMAT, p2i(this));   // print address
 927 }
 928 
 929 #ifdef ASSERT
 930 void Thread::print_owned_locks_on(outputStream* st) const {
 931   Monitor *cur = _owned_locks;
 932   if (cur == NULL) {
 933     st->print(" (no locks) ");
 934   } else {
 935     st->print_cr(" Locks owned:");
 936     while (cur) {
 937       cur->print_on(st);
 938       cur = cur->next();
 939     }
 940   }
 941 }
 942 
 943 static int ref_use_count  = 0;
 944 
 945 bool Thread::owns_locks_but_compiled_lock() const {
 946   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 947     if (cur != Compile_lock) return true;
 948   }
 949   return false;
 950 }
 951 
 952 
 953 #endif
 954 
 955 #ifndef PRODUCT
 956 
 957 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 958 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 959 // no threads which allow_vm_block's are held
 960 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 961   // Check if current thread is allowed to block at a safepoint
 962   if (!(_allow_safepoint_count == 0)) {
 963     fatal("Possible safepoint reached by thread that does not allow it");
 964   }
 965   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 966     fatal("LEAF method calling lock?");
 967   }
 968 
 969 #ifdef ASSERT
 970   if (potential_vm_operation && is_Java_thread()
 971       && !Universe::is_bootstrapping()) {
 972     // Make sure we do not hold any locks that the VM thread also uses.
 973     // This could potentially lead to deadlocks
 974     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 975       // Threads_lock is special, since the safepoint synchronization will not start before this is
 976       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 977       // since it is used to transfer control between JavaThreads and the VMThread
 978       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 979       if ((cur->allow_vm_block() &&
 980            cur != Threads_lock &&
 981            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 982            cur != VMOperationRequest_lock &&
 983            cur != VMOperationQueue_lock) ||
 984            cur->rank() == Mutex::special) {
 985         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 986       }
 987     }
 988   }
 989 
 990   if (GCALotAtAllSafepoints) {
 991     // We could enter a safepoint here and thus have a gc
 992     InterfaceSupport::check_gc_alot();
 993   }
 994 #endif
 995 }
 996 #endif
 997 
 998 bool Thread::is_in_stack(address adr) const {
 999   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1000   address end = os::current_stack_pointer();
1001   // Allow non Java threads to call this without stack_base
1002   if (_stack_base == NULL) return true;
1003   if (stack_base() >= adr && adr >= end) return true;
1004 
1005   return false;
1006 }
1007 
1008 bool Thread::is_in_usable_stack(address adr) const {
1009   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1010   size_t usable_stack_size = _stack_size - stack_guard_size;
1011 
1012   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1013 }
1014 
1015 
1016 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1017 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1018 // used for compilation in the future. If that change is made, the need for these methods
1019 // should be revisited, and they should be removed if possible.
1020 
1021 bool Thread::is_lock_owned(address adr) const {
1022   return on_local_stack(adr);
1023 }
1024 
1025 bool Thread::set_as_starting_thread() {
1026   // NOTE: this must be called inside the main thread.
1027   return os::create_main_thread((JavaThread*)this);
1028 }
1029 
1030 static void initialize_class(Symbol* class_name, TRAPS) {
1031   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1032   InstanceKlass::cast(klass)->initialize(CHECK);
1033 }
1034 
1035 
1036 // Creates the initial ThreadGroup
1037 static Handle create_initial_thread_group(TRAPS) {
1038   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1039   InstanceKlass* ik = InstanceKlass::cast(k);
1040 
1041   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
1042   {
1043     JavaValue result(T_VOID);
1044     JavaCalls::call_special(&result,
1045                             system_instance,
1046                             ik,
1047                             vmSymbols::object_initializer_name(),
1048                             vmSymbols::void_method_signature(),
1049                             CHECK_NH);
1050   }
1051   Universe::set_system_thread_group(system_instance());
1052 
1053   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
1054   {
1055     JavaValue result(T_VOID);
1056     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1057     JavaCalls::call_special(&result,
1058                             main_instance,
1059                             ik,
1060                             vmSymbols::object_initializer_name(),
1061                             vmSymbols::threadgroup_string_void_signature(),
1062                             system_instance,
1063                             string,
1064                             CHECK_NH);
1065   }
1066   return main_instance;
1067 }
1068 
1069 // Creates the initial Thread
1070 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1071                                  TRAPS) {
1072   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1073   InstanceKlass* ik = InstanceKlass::cast(k);
1074   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1075 
1076   java_lang_Thread::set_thread(thread_oop(), thread);
1077   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1078   thread->set_threadObj(thread_oop());
1079 
1080   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1081 
1082   JavaValue result(T_VOID);
1083   JavaCalls::call_special(&result, thread_oop,
1084                           ik,
1085                           vmSymbols::object_initializer_name(),
1086                           vmSymbols::threadgroup_string_void_signature(),
1087                           thread_group,
1088                           string,
1089                           CHECK_NULL);
1090   return thread_oop();
1091 }
1092 
1093 char java_runtime_name[128] = "";
1094 char java_runtime_version[128] = "";
1095 
1096 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1097 static const char* get_java_runtime_name(TRAPS) {
1098   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1099                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1100   fieldDescriptor fd;
1101   bool found = k != NULL &&
1102                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1103                                                         vmSymbols::string_signature(), &fd);
1104   if (found) {
1105     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1106     if (name_oop == NULL) {
1107       return NULL;
1108     }
1109     const char* name = java_lang_String::as_utf8_string(name_oop,
1110                                                         java_runtime_name,
1111                                                         sizeof(java_runtime_name));
1112     return name;
1113   } else {
1114     return NULL;
1115   }
1116 }
1117 
1118 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1119 static const char* get_java_runtime_version(TRAPS) {
1120   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1121                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1122   fieldDescriptor fd;
1123   bool found = k != NULL &&
1124                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1125                                                         vmSymbols::string_signature(), &fd);
1126   if (found) {
1127     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1128     if (name_oop == NULL) {
1129       return NULL;
1130     }
1131     const char* name = java_lang_String::as_utf8_string(name_oop,
1132                                                         java_runtime_version,
1133                                                         sizeof(java_runtime_version));
1134     return name;
1135   } else {
1136     return NULL;
1137   }
1138 }
1139 
1140 // General purpose hook into Java code, run once when the VM is initialized.
1141 // The Java library method itself may be changed independently from the VM.
1142 static void call_postVMInitHook(TRAPS) {
1143   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1144   if (klass != NULL) {
1145     JavaValue result(T_VOID);
1146     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1147                            vmSymbols::void_method_signature(),
1148                            CHECK);
1149   }
1150 }
1151 
1152 static void reset_vm_info_property(TRAPS) {
1153   // the vm info string
1154   ResourceMark rm(THREAD);
1155   const char *vm_info = VM_Version::vm_info_string();
1156 
1157   // java.lang.System class
1158   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1159 
1160   // setProperty arguments
1161   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1162   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1163 
1164   // return value
1165   JavaValue r(T_OBJECT);
1166 
1167   // public static String setProperty(String key, String value);
1168   JavaCalls::call_static(&r,
1169                          klass,
1170                          vmSymbols::setProperty_name(),
1171                          vmSymbols::string_string_string_signature(),
1172                          key_str,
1173                          value_str,
1174                          CHECK);
1175 }
1176 
1177 
1178 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1179                                     bool daemon, TRAPS) {
1180   assert(thread_group.not_null(), "thread group should be specified");
1181   assert(threadObj() == NULL, "should only create Java thread object once");
1182 
1183   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1184   InstanceKlass* ik = InstanceKlass::cast(k);
1185   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1186 
1187   java_lang_Thread::set_thread(thread_oop(), this);
1188   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1189   set_threadObj(thread_oop());
1190 
1191   JavaValue result(T_VOID);
1192   if (thread_name != NULL) {
1193     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1194     // Thread gets assigned specified name and null target
1195     JavaCalls::call_special(&result,
1196                             thread_oop,
1197                             ik,
1198                             vmSymbols::object_initializer_name(),
1199                             vmSymbols::threadgroup_string_void_signature(),
1200                             thread_group, // Argument 1
1201                             name,         // Argument 2
1202                             THREAD);
1203   } else {
1204     // Thread gets assigned name "Thread-nnn" and null target
1205     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1206     JavaCalls::call_special(&result,
1207                             thread_oop,
1208                             ik,
1209                             vmSymbols::object_initializer_name(),
1210                             vmSymbols::threadgroup_runnable_void_signature(),
1211                             thread_group, // Argument 1
1212                             Handle(),     // Argument 2
1213                             THREAD);
1214   }
1215 
1216 
1217   if (daemon) {
1218     java_lang_Thread::set_daemon(thread_oop());
1219   }
1220 
1221   if (HAS_PENDING_EXCEPTION) {
1222     return;
1223   }
1224 
1225   Klass* group =  SystemDictionary::ThreadGroup_klass();
1226   Handle threadObj(THREAD, this->threadObj());
1227 
1228   JavaCalls::call_special(&result,
1229                           thread_group,
1230                           group,
1231                           vmSymbols::add_method_name(),
1232                           vmSymbols::thread_void_signature(),
1233                           threadObj,          // Arg 1
1234                           THREAD);
1235 }
1236 
1237 // NamedThread --  non-JavaThread subclasses with multiple
1238 // uniquely named instances should derive from this.
1239 NamedThread::NamedThread() : Thread() {
1240   _name = NULL;
1241   _processed_thread = NULL;
1242   _gc_id = GCId::undefined();
1243 }
1244 
1245 NamedThread::~NamedThread() {
1246   if (_name != NULL) {
1247     FREE_C_HEAP_ARRAY(char, _name);
1248     _name = NULL;
1249   }
1250 }
1251 
1252 void NamedThread::set_name(const char* format, ...) {
1253   guarantee(_name == NULL, "Only get to set name once.");
1254   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1255   guarantee(_name != NULL, "alloc failure");
1256   va_list ap;
1257   va_start(ap, format);
1258   jio_vsnprintf(_name, max_name_len, format, ap);
1259   va_end(ap);
1260 }
1261 
1262 void NamedThread::initialize_named_thread() {
1263   set_native_thread_name(name());
1264 }
1265 
1266 void NamedThread::print_on(outputStream* st) const {
1267   st->print("\"%s\" ", name());
1268   Thread::print_on(st);
1269   st->cr();
1270 }
1271 
1272 
1273 // ======= WatcherThread ========
1274 
1275 // The watcher thread exists to simulate timer interrupts.  It should
1276 // be replaced by an abstraction over whatever native support for
1277 // timer interrupts exists on the platform.
1278 
1279 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1280 bool WatcherThread::_startable = false;
1281 volatile bool  WatcherThread::_should_terminate = false;
1282 
1283 WatcherThread::WatcherThread() : Thread() {
1284   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1285   if (os::create_thread(this, os::watcher_thread)) {
1286     _watcher_thread = this;
1287 
1288     // Set the watcher thread to the highest OS priority which should not be
1289     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1290     // is created. The only normal thread using this priority is the reference
1291     // handler thread, which runs for very short intervals only.
1292     // If the VMThread's priority is not lower than the WatcherThread profiling
1293     // will be inaccurate.
1294     os::set_priority(this, MaxPriority);
1295     if (!DisableStartThread) {
1296       os::start_thread(this);
1297     }
1298   }
1299 }
1300 
1301 int WatcherThread::sleep() const {
1302   // The WatcherThread does not participate in the safepoint protocol
1303   // for the PeriodicTask_lock because it is not a JavaThread.
1304   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1305 
1306   if (_should_terminate) {
1307     // check for termination before we do any housekeeping or wait
1308     return 0;  // we did not sleep.
1309   }
1310 
1311   // remaining will be zero if there are no tasks,
1312   // causing the WatcherThread to sleep until a task is
1313   // enrolled
1314   int remaining = PeriodicTask::time_to_wait();
1315   int time_slept = 0;
1316 
1317   // we expect this to timeout - we only ever get unparked when
1318   // we should terminate or when a new task has been enrolled
1319   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1320 
1321   jlong time_before_loop = os::javaTimeNanos();
1322 
1323   while (true) {
1324     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1325                                             remaining);
1326     jlong now = os::javaTimeNanos();
1327 
1328     if (remaining == 0) {
1329       // if we didn't have any tasks we could have waited for a long time
1330       // consider the time_slept zero and reset time_before_loop
1331       time_slept = 0;
1332       time_before_loop = now;
1333     } else {
1334       // need to recalculate since we might have new tasks in _tasks
1335       time_slept = (int) ((now - time_before_loop) / 1000000);
1336     }
1337 
1338     // Change to task list or spurious wakeup of some kind
1339     if (timedout || _should_terminate) {
1340       break;
1341     }
1342 
1343     remaining = PeriodicTask::time_to_wait();
1344     if (remaining == 0) {
1345       // Last task was just disenrolled so loop around and wait until
1346       // another task gets enrolled
1347       continue;
1348     }
1349 
1350     remaining -= time_slept;
1351     if (remaining <= 0) {
1352       break;
1353     }
1354   }
1355 
1356   return time_slept;
1357 }
1358 
1359 void WatcherThread::run() {
1360   assert(this == watcher_thread(), "just checking");
1361 
1362   this->record_stack_base_and_size();
1363   this->set_native_thread_name(this->name());
1364   this->set_active_handles(JNIHandleBlock::allocate_block());
1365   while (true) {
1366     assert(watcher_thread() == Thread::current(), "thread consistency check");
1367     assert(watcher_thread() == this, "thread consistency check");
1368 
1369     // Calculate how long it'll be until the next PeriodicTask work
1370     // should be done, and sleep that amount of time.
1371     int time_waited = sleep();
1372 
1373     if (VMError::is_error_reported()) {
1374       // A fatal error has happened, the error handler(VMError::report_and_die)
1375       // should abort JVM after creating an error log file. However in some
1376       // rare cases, the error handler itself might deadlock. Here periodically
1377       // check for error reporting timeouts, and if it happens, just proceed to
1378       // abort the VM.
1379 
1380       // This code is in WatcherThread because WatcherThread wakes up
1381       // periodically so the fatal error handler doesn't need to do anything;
1382       // also because the WatcherThread is less likely to crash than other
1383       // threads.
1384 
1385       for (;;) {
1386         // Note: we use naked sleep in this loop because we want to avoid using
1387         // any kind of VM infrastructure which may be broken at this point.
1388         if (VMError::check_timeout()) {
1389           // We hit error reporting timeout. Error reporting was interrupted and
1390           // will be wrapping things up now (closing files etc). Give it some more
1391           // time, then quit the VM.
1392           os::naked_short_sleep(200);
1393           // Print a message to stderr.
1394           fdStream err(defaultStream::output_fd());
1395           err.print_raw_cr("# [ timer expired, abort... ]");
1396           // skip atexit/vm_exit/vm_abort hooks
1397           os::die();
1398         }
1399 
1400         // Wait a second, then recheck for timeout.
1401         os::naked_short_sleep(999);
1402       }
1403     }
1404 
1405     if (_should_terminate) {
1406       // check for termination before posting the next tick
1407       break;
1408     }
1409 
1410     PeriodicTask::real_time_tick(time_waited);
1411   }
1412 
1413   // Signal that it is terminated
1414   {
1415     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1416     _watcher_thread = NULL;
1417     Terminator_lock->notify();
1418   }
1419 }
1420 
1421 void WatcherThread::start() {
1422   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1423 
1424   if (watcher_thread() == NULL && _startable) {
1425     _should_terminate = false;
1426     // Create the single instance of WatcherThread
1427     new WatcherThread();
1428   }
1429 }
1430 
1431 void WatcherThread::make_startable() {
1432   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1433   _startable = true;
1434 }
1435 
1436 void WatcherThread::stop() {
1437   {
1438     // Follow normal safepoint aware lock enter protocol since the
1439     // WatcherThread is stopped by another JavaThread.
1440     MutexLocker ml(PeriodicTask_lock);
1441     _should_terminate = true;
1442 
1443     WatcherThread* watcher = watcher_thread();
1444     if (watcher != NULL) {
1445       // unpark the WatcherThread so it can see that it should terminate
1446       watcher->unpark();
1447     }
1448   }
1449 
1450   MutexLocker mu(Terminator_lock);
1451 
1452   while (watcher_thread() != NULL) {
1453     // This wait should make safepoint checks, wait without a timeout,
1454     // and wait as a suspend-equivalent condition.
1455     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1456                           Mutex::_as_suspend_equivalent_flag);
1457   }
1458 }
1459 
1460 void WatcherThread::unpark() {
1461   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1462   PeriodicTask_lock->notify();
1463 }
1464 
1465 void WatcherThread::print_on(outputStream* st) const {
1466   st->print("\"%s\" ", name());
1467   Thread::print_on(st);
1468   st->cr();
1469 }
1470 
1471 // ======= JavaThread ========
1472 
1473 #if INCLUDE_JVMCI
1474 
1475 jlong* JavaThread::_jvmci_old_thread_counters;
1476 
1477 bool jvmci_counters_include(JavaThread* thread) {
1478   oop threadObj = thread->threadObj();
1479   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1480 }
1481 
1482 void JavaThread::collect_counters(typeArrayOop array) {
1483   if (JVMCICounterSize > 0) {
1484     MutexLocker tl(Threads_lock);
1485     JavaThreadIteratorWithHandle jtiwh;
1486     for (int i = 0; i < array->length(); i++) {
1487       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1488     }
1489     for (; JavaThread *tp = jtiwh.next(); ) {
1490       if (jvmci_counters_include(tp)) {
1491         for (int i = 0; i < array->length(); i++) {
1492           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1493         }
1494       }
1495     }
1496   }
1497 }
1498 
1499 #endif // INCLUDE_JVMCI
1500 
1501 // A JavaThread is a normal Java thread
1502 
1503 void JavaThread::initialize() {
1504   // Initialize fields
1505 
1506   set_saved_exception_pc(NULL);
1507   set_threadObj(NULL);
1508   _anchor.clear();
1509   set_entry_point(NULL);
1510   set_jni_functions(jni_functions());
1511   set_callee_target(NULL);
1512   set_vm_result(NULL);
1513   set_vm_result_2(NULL);
1514   set_vframe_array_head(NULL);
1515   set_vframe_array_last(NULL);
1516   set_deferred_locals(NULL);
1517   set_deopt_mark(NULL);
1518   set_deopt_compiled_method(NULL);
1519   clear_must_deopt_id();
1520   set_monitor_chunks(NULL);
1521   set_next(NULL);
1522   _on_thread_list = false;
1523   set_thread_state(_thread_new);
1524   _terminated = _not_terminated;
1525   _privileged_stack_top = NULL;
1526   _array_for_gc = NULL;
1527   _suspend_equivalent = false;
1528   _in_deopt_handler = 0;
1529   _doing_unsafe_access = false;
1530   _stack_guard_state = stack_guard_unused;
1531 #if INCLUDE_JVMCI
1532   _pending_monitorenter = false;
1533   _pending_deoptimization = -1;
1534   _pending_failed_speculation = NULL;
1535   _pending_transfer_to_interpreter = false;
1536   _adjusting_comp_level = false;
1537   _jvmci._alternate_call_target = NULL;
1538   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1539   if (JVMCICounterSize > 0) {
1540     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1541     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1542   } else {
1543     _jvmci_counters = NULL;
1544   }
1545 #endif // INCLUDE_JVMCI
1546   _reserved_stack_activation = NULL;  // stack base not known yet
1547   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1548   _exception_pc  = 0;
1549   _exception_handler_pc = 0;
1550   _is_method_handle_return = 0;
1551   _jvmti_thread_state= NULL;
1552   _should_post_on_exceptions_flag = JNI_FALSE;
1553   _jvmti_get_loaded_classes_closure = NULL;
1554   _interp_only_mode    = 0;
1555   _special_runtime_exit_condition = _no_async_condition;
1556   _pending_async_exception = NULL;
1557   _thread_stat = NULL;
1558   _thread_stat = new ThreadStatistics();
1559   _blocked_on_compilation = false;
1560   _jni_active_critical = 0;
1561   _pending_jni_exception_check_fn = NULL;
1562   _do_not_unlock_if_synchronized = false;
1563   _cached_monitor_info = NULL;
1564   _parker = Parker::Allocate(this);
1565 
1566 #ifndef PRODUCT
1567   _jmp_ring_index = 0;
1568   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1569     record_jump(NULL, NULL, NULL, 0);
1570   }
1571 #endif // PRODUCT
1572 
1573   // Setup safepoint state info for this thread
1574   ThreadSafepointState::create(this);
1575 
1576   debug_only(_java_call_counter = 0);
1577 
1578   // JVMTI PopFrame support
1579   _popframe_condition = popframe_inactive;
1580   _popframe_preserved_args = NULL;
1581   _popframe_preserved_args_size = 0;
1582   _frames_to_pop_failed_realloc = 0;
1583 
1584   if (SafepointMechanism::uses_thread_local_poll()) {
1585     SafepointMechanism::initialize_header(this);
1586   }
1587 
1588   pd_initialize();
1589 }
1590 
1591 #if INCLUDE_ALL_GCS
1592 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1593 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1594 #endif // INCLUDE_ALL_GCS
1595 
1596 JavaThread::JavaThread(bool is_attaching_via_jni) :
1597                        Thread()
1598 #if INCLUDE_ALL_GCS
1599                        , _satb_mark_queue(&_satb_mark_queue_set),
1600                        _dirty_card_queue(&_dirty_card_queue_set)
1601 #endif // INCLUDE_ALL_GCS
1602 {
1603   initialize();
1604   if (is_attaching_via_jni) {
1605     _jni_attach_state = _attaching_via_jni;
1606   } else {
1607     _jni_attach_state = _not_attaching_via_jni;
1608   }
1609   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1610 }
1611 
1612 bool JavaThread::reguard_stack(address cur_sp) {
1613   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1614       && _stack_guard_state != stack_guard_reserved_disabled) {
1615     return true; // Stack already guarded or guard pages not needed.
1616   }
1617 
1618   if (register_stack_overflow()) {
1619     // For those architectures which have separate register and
1620     // memory stacks, we must check the register stack to see if
1621     // it has overflowed.
1622     return false;
1623   }
1624 
1625   // Java code never executes within the yellow zone: the latter is only
1626   // there to provoke an exception during stack banging.  If java code
1627   // is executing there, either StackShadowPages should be larger, or
1628   // some exception code in c1, c2 or the interpreter isn't unwinding
1629   // when it should.
1630   guarantee(cur_sp > stack_reserved_zone_base(),
1631             "not enough space to reguard - increase StackShadowPages");
1632   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1633     enable_stack_yellow_reserved_zone();
1634     if (reserved_stack_activation() != stack_base()) {
1635       set_reserved_stack_activation(stack_base());
1636     }
1637   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1638     set_reserved_stack_activation(stack_base());
1639     enable_stack_reserved_zone();
1640   }
1641   return true;
1642 }
1643 
1644 bool JavaThread::reguard_stack(void) {
1645   return reguard_stack(os::current_stack_pointer());
1646 }
1647 
1648 
1649 void JavaThread::block_if_vm_exited() {
1650   if (_terminated == _vm_exited) {
1651     // _vm_exited is set at safepoint, and Threads_lock is never released
1652     // we will block here forever
1653     Threads_lock->lock_without_safepoint_check();
1654     ShouldNotReachHere();
1655   }
1656 }
1657 
1658 
1659 // Remove this ifdef when C1 is ported to the compiler interface.
1660 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1661 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1662 
1663 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1664                        Thread()
1665 #if INCLUDE_ALL_GCS
1666                        , _satb_mark_queue(&_satb_mark_queue_set),
1667                        _dirty_card_queue(&_dirty_card_queue_set)
1668 #endif // INCLUDE_ALL_GCS
1669 {
1670   initialize();
1671   _jni_attach_state = _not_attaching_via_jni;
1672   set_entry_point(entry_point);
1673   // Create the native thread itself.
1674   // %note runtime_23
1675   os::ThreadType thr_type = os::java_thread;
1676   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1677                                                      os::java_thread;
1678   os::create_thread(this, thr_type, stack_sz);
1679   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1680   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1681   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1682   // the exception consists of creating the exception object & initializing it, initialization
1683   // will leave the VM via a JavaCall and then all locks must be unlocked).
1684   //
1685   // The thread is still suspended when we reach here. Thread must be explicit started
1686   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1687   // by calling Threads:add. The reason why this is not done here, is because the thread
1688   // object must be fully initialized (take a look at JVM_Start)
1689 }
1690 
1691 JavaThread::~JavaThread() {
1692 
1693   // JSR166 -- return the parker to the free list
1694   Parker::Release(_parker);
1695   _parker = NULL;
1696 
1697   // Free any remaining  previous UnrollBlock
1698   vframeArray* old_array = vframe_array_last();
1699 
1700   if (old_array != NULL) {
1701     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1702     old_array->set_unroll_block(NULL);
1703     delete old_info;
1704     delete old_array;
1705   }
1706 
1707   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1708   if (deferred != NULL) {
1709     // This can only happen if thread is destroyed before deoptimization occurs.
1710     assert(deferred->length() != 0, "empty array!");
1711     do {
1712       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1713       deferred->remove_at(0);
1714       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1715       delete dlv;
1716     } while (deferred->length() != 0);
1717     delete deferred;
1718   }
1719 
1720   // All Java related clean up happens in exit
1721   ThreadSafepointState::destroy(this);
1722   if (_thread_stat != NULL) delete _thread_stat;
1723 
1724 #if INCLUDE_JVMCI
1725   if (JVMCICounterSize > 0) {
1726     if (jvmci_counters_include(this)) {
1727       for (int i = 0; i < JVMCICounterSize; i++) {
1728         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1729       }
1730     }
1731     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1732   }
1733 #endif // INCLUDE_JVMCI
1734 }
1735 
1736 
1737 // The first routine called by a new Java thread
1738 void JavaThread::run() {
1739   // initialize thread-local alloc buffer related fields
1740   this->initialize_tlab();
1741 
1742   // used to test validity of stack trace backs
1743   this->record_base_of_stack_pointer();
1744 
1745   // Record real stack base and size.
1746   this->record_stack_base_and_size();
1747 
1748   this->create_stack_guard_pages();
1749 
1750   this->cache_global_variables();
1751 
1752   // Thread is now sufficient initialized to be handled by the safepoint code as being
1753   // in the VM. Change thread state from _thread_new to _thread_in_vm
1754   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1755 
1756   assert(JavaThread::current() == this, "sanity check");
1757   assert(!Thread::current()->owns_locks(), "sanity check");
1758 
1759   DTRACE_THREAD_PROBE(start, this);
1760 
1761   // This operation might block. We call that after all safepoint checks for a new thread has
1762   // been completed.
1763   this->set_active_handles(JNIHandleBlock::allocate_block());
1764 
1765   if (JvmtiExport::should_post_thread_life()) {
1766     JvmtiExport::post_thread_start(this);
1767   }
1768 
1769   EventThreadStart event;
1770   if (event.should_commit()) {
1771     event.set_thread(THREAD_TRACE_ID(this));
1772     event.commit();
1773   }
1774 
1775   // We call another function to do the rest so we are sure that the stack addresses used
1776   // from there will be lower than the stack base just computed
1777   thread_main_inner();
1778 
1779   // Note, thread is no longer valid at this point!
1780 }
1781 
1782 
1783 void JavaThread::thread_main_inner() {
1784   assert(JavaThread::current() == this, "sanity check");
1785   assert(this->threadObj() != NULL, "just checking");
1786 
1787   // Execute thread entry point unless this thread has a pending exception
1788   // or has been stopped before starting.
1789   // Note: Due to JVM_StopThread we can have pending exceptions already!
1790   if (!this->has_pending_exception() &&
1791       !java_lang_Thread::is_stillborn(this->threadObj())) {
1792     {
1793       ResourceMark rm(this);
1794       this->set_native_thread_name(this->get_thread_name());
1795     }
1796     HandleMark hm(this);
1797     this->entry_point()(this, this);
1798   }
1799 
1800   DTRACE_THREAD_PROBE(stop, this);
1801 
1802   this->exit(false);
1803   this->smr_delete();
1804 }
1805 
1806 
1807 static void ensure_join(JavaThread* thread) {
1808   // We do not need to grab the Threads_lock, since we are operating on ourself.
1809   Handle threadObj(thread, thread->threadObj());
1810   assert(threadObj.not_null(), "java thread object must exist");
1811   ObjectLocker lock(threadObj, thread);
1812   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1813   thread->clear_pending_exception();
1814   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1815   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1816   // Clear the native thread instance - this makes isAlive return false and allows the join()
1817   // to complete once we've done the notify_all below
1818   java_lang_Thread::set_thread(threadObj(), NULL);
1819   lock.notify_all(thread);
1820   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1821   thread->clear_pending_exception();
1822 }
1823 
1824 
1825 // For any new cleanup additions, please check to see if they need to be applied to
1826 // cleanup_failed_attach_current_thread as well.
1827 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1828   assert(this == JavaThread::current(), "thread consistency check");
1829 
1830   elapsedTimer _timer_exit_phase1;
1831   elapsedTimer _timer_exit_phase2;
1832   elapsedTimer _timer_exit_phase3;
1833   elapsedTimer _timer_exit_phase4;
1834 
1835   if (log_is_enabled(Debug, os, thread, timer)) {
1836     _timer_exit_phase1.start();
1837   }
1838 
1839   HandleMark hm(this);
1840   Handle uncaught_exception(this, this->pending_exception());
1841   this->clear_pending_exception();
1842   Handle threadObj(this, this->threadObj());
1843   assert(threadObj.not_null(), "Java thread object should be created");
1844 
1845   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1846   {
1847     EXCEPTION_MARK;
1848 
1849     CLEAR_PENDING_EXCEPTION;
1850   }
1851   if (!destroy_vm) {
1852     if (uncaught_exception.not_null()) {
1853       EXCEPTION_MARK;
1854       // Call method Thread.dispatchUncaughtException().
1855       Klass* thread_klass = SystemDictionary::Thread_klass();
1856       JavaValue result(T_VOID);
1857       JavaCalls::call_virtual(&result,
1858                               threadObj, thread_klass,
1859                               vmSymbols::dispatchUncaughtException_name(),
1860                               vmSymbols::throwable_void_signature(),
1861                               uncaught_exception,
1862                               THREAD);
1863       if (HAS_PENDING_EXCEPTION) {
1864         ResourceMark rm(this);
1865         jio_fprintf(defaultStream::error_stream(),
1866                     "\nException: %s thrown from the UncaughtExceptionHandler"
1867                     " in thread \"%s\"\n",
1868                     pending_exception()->klass()->external_name(),
1869                     get_thread_name());
1870         CLEAR_PENDING_EXCEPTION;
1871       }
1872     }
1873 
1874     // Called before the java thread exit since we want to read info
1875     // from java_lang_Thread object
1876     EventThreadEnd event;
1877     if (event.should_commit()) {
1878       event.set_thread(THREAD_TRACE_ID(this));
1879       event.commit();
1880     }
1881 
1882     // Call after last event on thread
1883     EVENT_THREAD_EXIT(this);
1884 
1885     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1886     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1887     // is deprecated anyhow.
1888     if (!is_Compiler_thread()) {
1889       int count = 3;
1890       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1891         EXCEPTION_MARK;
1892         JavaValue result(T_VOID);
1893         Klass* thread_klass = SystemDictionary::Thread_klass();
1894         JavaCalls::call_virtual(&result,
1895                                 threadObj, thread_klass,
1896                                 vmSymbols::exit_method_name(),
1897                                 vmSymbols::void_method_signature(),
1898                                 THREAD);
1899         CLEAR_PENDING_EXCEPTION;
1900       }
1901     }
1902     // notify JVMTI
1903     if (JvmtiExport::should_post_thread_life()) {
1904       JvmtiExport::post_thread_end(this);
1905     }
1906 
1907     // We have notified the agents that we are exiting, before we go on,
1908     // we must check for a pending external suspend request and honor it
1909     // in order to not surprise the thread that made the suspend request.
1910     while (true) {
1911       {
1912         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1913         if (!is_external_suspend()) {
1914           set_terminated(_thread_exiting);
1915           ThreadService::current_thread_exiting(this);
1916           break;
1917         }
1918         // Implied else:
1919         // Things get a little tricky here. We have a pending external
1920         // suspend request, but we are holding the SR_lock so we
1921         // can't just self-suspend. So we temporarily drop the lock
1922         // and then self-suspend.
1923       }
1924 
1925       ThreadBlockInVM tbivm(this);
1926       java_suspend_self();
1927 
1928       // We're done with this suspend request, but we have to loop around
1929       // and check again. Eventually we will get SR_lock without a pending
1930       // external suspend request and will be able to mark ourselves as
1931       // exiting.
1932     }
1933     // no more external suspends are allowed at this point
1934   } else {
1935     // before_exit() has already posted JVMTI THREAD_END events
1936   }
1937 
1938   if (log_is_enabled(Debug, os, thread, timer)) {
1939     _timer_exit_phase1.stop();
1940     _timer_exit_phase2.start();
1941   }
1942   // Notify waiters on thread object. This has to be done after exit() is called
1943   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1944   // group should have the destroyed bit set before waiters are notified).
1945   ensure_join(this);
1946   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1947 
1948   if (log_is_enabled(Debug, os, thread, timer)) {
1949     _timer_exit_phase2.stop();
1950     _timer_exit_phase3.start();
1951   }
1952   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1953   // held by this thread must be released. The spec does not distinguish
1954   // between JNI-acquired and regular Java monitors. We can only see
1955   // regular Java monitors here if monitor enter-exit matching is broken.
1956   //
1957   // Optionally release any monitors for regular JavaThread exits. This
1958   // is provided as a work around for any bugs in monitor enter-exit
1959   // matching. This can be expensive so it is not enabled by default.
1960   //
1961   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1962   // ObjectSynchronizer::release_monitors_owned_by_thread().
1963   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1964     // Sanity check even though JNI DetachCurrentThread() would have
1965     // returned JNI_ERR if there was a Java frame. JavaThread exit
1966     // should be done executing Java code by the time we get here.
1967     assert(!this->has_last_Java_frame(),
1968            "should not have a Java frame when detaching or exiting");
1969     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1970     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1971   }
1972 
1973   // These things needs to be done while we are still a Java Thread. Make sure that thread
1974   // is in a consistent state, in case GC happens
1975   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1976 
1977   if (active_handles() != NULL) {
1978     JNIHandleBlock* block = active_handles();
1979     set_active_handles(NULL);
1980     JNIHandleBlock::release_block(block);
1981   }
1982 
1983   if (free_handle_block() != NULL) {
1984     JNIHandleBlock* block = free_handle_block();
1985     set_free_handle_block(NULL);
1986     JNIHandleBlock::release_block(block);
1987   }
1988 
1989   // These have to be removed while this is still a valid thread.
1990   remove_stack_guard_pages();
1991 
1992   if (UseTLAB) {
1993     tlab().make_parsable(true);  // retire TLAB
1994   }
1995 
1996   if (JvmtiEnv::environments_might_exist()) {
1997     JvmtiExport::cleanup_thread(this);
1998   }
1999 
2000   // We must flush any deferred card marks and other various GC barrier
2001   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2002   // before removing a thread from the list of active threads.
2003   BarrierSet::barrier_set()->on_thread_detach(this);
2004 
2005   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2006     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2007     os::current_thread_id());
2008 
2009   if (log_is_enabled(Debug, os, thread, timer)) {
2010     _timer_exit_phase3.stop();
2011     _timer_exit_phase4.start();
2012   }
2013   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2014   Threads::remove(this);
2015 
2016   if (log_is_enabled(Debug, os, thread, timer)) {
2017     _timer_exit_phase4.stop();
2018     ResourceMark rm(this);
2019     log_debug(os, thread, timer)("name='%s'"
2020                                  ", exit-phase1=" JLONG_FORMAT
2021                                  ", exit-phase2=" JLONG_FORMAT
2022                                  ", exit-phase3=" JLONG_FORMAT
2023                                  ", exit-phase4=" JLONG_FORMAT,
2024                                  get_thread_name(),
2025                                  _timer_exit_phase1.milliseconds(),
2026                                  _timer_exit_phase2.milliseconds(),
2027                                  _timer_exit_phase3.milliseconds(),
2028                                  _timer_exit_phase4.milliseconds());
2029   }
2030 }
2031 
2032 void JavaThread::cleanup_failed_attach_current_thread() {
2033   if (active_handles() != NULL) {
2034     JNIHandleBlock* block = active_handles();
2035     set_active_handles(NULL);
2036     JNIHandleBlock::release_block(block);
2037   }
2038 
2039   if (free_handle_block() != NULL) {
2040     JNIHandleBlock* block = free_handle_block();
2041     set_free_handle_block(NULL);
2042     JNIHandleBlock::release_block(block);
2043   }
2044 
2045   // These have to be removed while this is still a valid thread.
2046   remove_stack_guard_pages();
2047 
2048   if (UseTLAB) {
2049     tlab().make_parsable(true);  // retire TLAB, if any
2050   }
2051 
2052 
2053   BarrierSet::barrier_set()->on_thread_detach(this);
2054 
2055   Threads::remove(this);
2056   this->smr_delete();
2057 }
2058 
2059 JavaThread* JavaThread::active() {
2060   Thread* thread = Thread::current();
2061   if (thread->is_Java_thread()) {
2062     return (JavaThread*) thread;
2063   } else {
2064     assert(thread->is_VM_thread(), "this must be a vm thread");
2065     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2066     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2067     assert(ret->is_Java_thread(), "must be a Java thread");
2068     return ret;
2069   }
2070 }
2071 
2072 bool JavaThread::is_lock_owned(address adr) const {
2073   if (Thread::is_lock_owned(adr)) return true;
2074 
2075   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2076     if (chunk->contains(adr)) return true;
2077   }
2078 
2079   return false;
2080 }
2081 
2082 
2083 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2084   chunk->set_next(monitor_chunks());
2085   set_monitor_chunks(chunk);
2086 }
2087 
2088 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2089   guarantee(monitor_chunks() != NULL, "must be non empty");
2090   if (monitor_chunks() == chunk) {
2091     set_monitor_chunks(chunk->next());
2092   } else {
2093     MonitorChunk* prev = monitor_chunks();
2094     while (prev->next() != chunk) prev = prev->next();
2095     prev->set_next(chunk->next());
2096   }
2097 }
2098 
2099 // JVM support.
2100 
2101 // Note: this function shouldn't block if it's called in
2102 // _thread_in_native_trans state (such as from
2103 // check_special_condition_for_native_trans()).
2104 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2105 
2106   if (has_last_Java_frame() && has_async_condition()) {
2107     // If we are at a polling page safepoint (not a poll return)
2108     // then we must defer async exception because live registers
2109     // will be clobbered by the exception path. Poll return is
2110     // ok because the call we a returning from already collides
2111     // with exception handling registers and so there is no issue.
2112     // (The exception handling path kills call result registers but
2113     //  this is ok since the exception kills the result anyway).
2114 
2115     if (is_at_poll_safepoint()) {
2116       // if the code we are returning to has deoptimized we must defer
2117       // the exception otherwise live registers get clobbered on the
2118       // exception path before deoptimization is able to retrieve them.
2119       //
2120       RegisterMap map(this, false);
2121       frame caller_fr = last_frame().sender(&map);
2122       assert(caller_fr.is_compiled_frame(), "what?");
2123       if (caller_fr.is_deoptimized_frame()) {
2124         log_info(exceptions)("deferred async exception at compiled safepoint");
2125         return;
2126       }
2127     }
2128   }
2129 
2130   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2131   if (condition == _no_async_condition) {
2132     // Conditions have changed since has_special_runtime_exit_condition()
2133     // was called:
2134     // - if we were here only because of an external suspend request,
2135     //   then that was taken care of above (or cancelled) so we are done
2136     // - if we were here because of another async request, then it has
2137     //   been cleared between the has_special_runtime_exit_condition()
2138     //   and now so again we are done
2139     return;
2140   }
2141 
2142   // Check for pending async. exception
2143   if (_pending_async_exception != NULL) {
2144     // Only overwrite an already pending exception, if it is not a threadDeath.
2145     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2146 
2147       // We cannot call Exceptions::_throw(...) here because we cannot block
2148       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2149 
2150       LogTarget(Info, exceptions) lt;
2151       if (lt.is_enabled()) {
2152         ResourceMark rm;
2153         LogStream ls(lt);
2154         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2155           if (has_last_Java_frame()) {
2156             frame f = last_frame();
2157            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2158           }
2159         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2160       }
2161       _pending_async_exception = NULL;
2162       clear_has_async_exception();
2163     }
2164   }
2165 
2166   if (check_unsafe_error &&
2167       condition == _async_unsafe_access_error && !has_pending_exception()) {
2168     condition = _no_async_condition;  // done
2169     switch (thread_state()) {
2170     case _thread_in_vm: {
2171       JavaThread* THREAD = this;
2172       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2173     }
2174     case _thread_in_native: {
2175       ThreadInVMfromNative tiv(this);
2176       JavaThread* THREAD = this;
2177       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2178     }
2179     case _thread_in_Java: {
2180       ThreadInVMfromJava tiv(this);
2181       JavaThread* THREAD = this;
2182       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2183     }
2184     default:
2185       ShouldNotReachHere();
2186     }
2187   }
2188 
2189   assert(condition == _no_async_condition || has_pending_exception() ||
2190          (!check_unsafe_error && condition == _async_unsafe_access_error),
2191          "must have handled the async condition, if no exception");
2192 }
2193 
2194 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2195   //
2196   // Check for pending external suspend. Internal suspend requests do
2197   // not use handle_special_runtime_exit_condition().
2198   // If JNIEnv proxies are allowed, don't self-suspend if the target
2199   // thread is not the current thread. In older versions of jdbx, jdbx
2200   // threads could call into the VM with another thread's JNIEnv so we
2201   // can be here operating on behalf of a suspended thread (4432884).
2202   bool do_self_suspend = is_external_suspend_with_lock();
2203   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2204     //
2205     // Because thread is external suspended the safepoint code will count
2206     // thread as at a safepoint. This can be odd because we can be here
2207     // as _thread_in_Java which would normally transition to _thread_blocked
2208     // at a safepoint. We would like to mark the thread as _thread_blocked
2209     // before calling java_suspend_self like all other callers of it but
2210     // we must then observe proper safepoint protocol. (We can't leave
2211     // _thread_blocked with a safepoint in progress). However we can be
2212     // here as _thread_in_native_trans so we can't use a normal transition
2213     // constructor/destructor pair because they assert on that type of
2214     // transition. We could do something like:
2215     //
2216     // JavaThreadState state = thread_state();
2217     // set_thread_state(_thread_in_vm);
2218     // {
2219     //   ThreadBlockInVM tbivm(this);
2220     //   java_suspend_self()
2221     // }
2222     // set_thread_state(_thread_in_vm_trans);
2223     // if (safepoint) block;
2224     // set_thread_state(state);
2225     //
2226     // but that is pretty messy. Instead we just go with the way the
2227     // code has worked before and note that this is the only path to
2228     // java_suspend_self that doesn't put the thread in _thread_blocked
2229     // mode.
2230 
2231     frame_anchor()->make_walkable(this);
2232     java_suspend_self();
2233 
2234     // We might be here for reasons in addition to the self-suspend request
2235     // so check for other async requests.
2236   }
2237 
2238   if (check_asyncs) {
2239     check_and_handle_async_exceptions();
2240   }
2241 #if INCLUDE_TRACE
2242   if (is_trace_suspend()) {
2243     TRACE_SUSPEND_THREAD(this);
2244   }
2245 #endif
2246 }
2247 
2248 void JavaThread::send_thread_stop(oop java_throwable)  {
2249   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2250   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2251   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2252 
2253   // Do not throw asynchronous exceptions against the compiler thread
2254   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2255   if (!can_call_java()) return;
2256 
2257   {
2258     // Actually throw the Throwable against the target Thread - however
2259     // only if there is no thread death exception installed already.
2260     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2261       // If the topmost frame is a runtime stub, then we are calling into
2262       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2263       // must deoptimize the caller before continuing, as the compiled  exception handler table
2264       // may not be valid
2265       if (has_last_Java_frame()) {
2266         frame f = last_frame();
2267         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2268           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2269           RegisterMap reg_map(this, UseBiasedLocking);
2270           frame compiled_frame = f.sender(&reg_map);
2271           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2272             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2273           }
2274         }
2275       }
2276 
2277       // Set async. pending exception in thread.
2278       set_pending_async_exception(java_throwable);
2279 
2280       if (log_is_enabled(Info, exceptions)) {
2281          ResourceMark rm;
2282         log_info(exceptions)("Pending Async. exception installed of type: %s",
2283                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2284       }
2285       // for AbortVMOnException flag
2286       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2287     }
2288   }
2289 
2290 
2291   // Interrupt thread so it will wake up from a potential wait()
2292   Thread::interrupt(this);
2293 }
2294 
2295 // External suspension mechanism.
2296 //
2297 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2298 // to any VM_locks and it is at a transition
2299 // Self-suspension will happen on the transition out of the vm.
2300 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2301 //
2302 // Guarantees on return:
2303 //   + Target thread will not execute any new bytecode (that's why we need to
2304 //     force a safepoint)
2305 //   + Target thread will not enter any new monitors
2306 //
2307 void JavaThread::java_suspend() {
2308   ThreadsListHandle tlh;
2309   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2310     return;
2311   }
2312 
2313   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2314     if (!is_external_suspend()) {
2315       // a racing resume has cancelled us; bail out now
2316       return;
2317     }
2318 
2319     // suspend is done
2320     uint32_t debug_bits = 0;
2321     // Warning: is_ext_suspend_completed() may temporarily drop the
2322     // SR_lock to allow the thread to reach a stable thread state if
2323     // it is currently in a transient thread state.
2324     if (is_ext_suspend_completed(false /* !called_by_wait */,
2325                                  SuspendRetryDelay, &debug_bits)) {
2326       return;
2327     }
2328   }
2329 
2330   VM_ThreadSuspend vm_suspend;
2331   VMThread::execute(&vm_suspend);
2332 }
2333 
2334 // Part II of external suspension.
2335 // A JavaThread self suspends when it detects a pending external suspend
2336 // request. This is usually on transitions. It is also done in places
2337 // where continuing to the next transition would surprise the caller,
2338 // e.g., monitor entry.
2339 //
2340 // Returns the number of times that the thread self-suspended.
2341 //
2342 // Note: DO NOT call java_suspend_self() when you just want to block current
2343 //       thread. java_suspend_self() is the second stage of cooperative
2344 //       suspension for external suspend requests and should only be used
2345 //       to complete an external suspend request.
2346 //
2347 int JavaThread::java_suspend_self() {
2348   int ret = 0;
2349 
2350   // we are in the process of exiting so don't suspend
2351   if (is_exiting()) {
2352     clear_external_suspend();
2353     return ret;
2354   }
2355 
2356   assert(_anchor.walkable() ||
2357          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2358          "must have walkable stack");
2359 
2360   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2361 
2362   assert(!this->is_ext_suspended(),
2363          "a thread trying to self-suspend should not already be suspended");
2364 
2365   if (this->is_suspend_equivalent()) {
2366     // If we are self-suspending as a result of the lifting of a
2367     // suspend equivalent condition, then the suspend_equivalent
2368     // flag is not cleared until we set the ext_suspended flag so
2369     // that wait_for_ext_suspend_completion() returns consistent
2370     // results.
2371     this->clear_suspend_equivalent();
2372   }
2373 
2374   // A racing resume may have cancelled us before we grabbed SR_lock
2375   // above. Or another external suspend request could be waiting for us
2376   // by the time we return from SR_lock()->wait(). The thread
2377   // that requested the suspension may already be trying to walk our
2378   // stack and if we return now, we can change the stack out from under
2379   // it. This would be a "bad thing (TM)" and cause the stack walker
2380   // to crash. We stay self-suspended until there are no more pending
2381   // external suspend requests.
2382   while (is_external_suspend()) {
2383     ret++;
2384     this->set_ext_suspended();
2385 
2386     // _ext_suspended flag is cleared by java_resume()
2387     while (is_ext_suspended()) {
2388       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2389     }
2390   }
2391 
2392   return ret;
2393 }
2394 
2395 #ifdef ASSERT
2396 // verify the JavaThread has not yet been published in the Threads::list, and
2397 // hence doesn't need protection from concurrent access at this stage
2398 void JavaThread::verify_not_published() {
2399   ThreadsListHandle tlh;
2400   assert(!tlh.includes(this), "JavaThread shouldn't have been published yet!");
2401 }
2402 #endif
2403 
2404 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2405 // progress or when _suspend_flags is non-zero.
2406 // Current thread needs to self-suspend if there is a suspend request and/or
2407 // block if a safepoint is in progress.
2408 // Async exception ISN'T checked.
2409 // Note only the ThreadInVMfromNative transition can call this function
2410 // directly and when thread state is _thread_in_native_trans
2411 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2412   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2413 
2414   JavaThread *curJT = JavaThread::current();
2415   bool do_self_suspend = thread->is_external_suspend();
2416 
2417   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2418 
2419   // If JNIEnv proxies are allowed, don't self-suspend if the target
2420   // thread is not the current thread. In older versions of jdbx, jdbx
2421   // threads could call into the VM with another thread's JNIEnv so we
2422   // can be here operating on behalf of a suspended thread (4432884).
2423   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2424     JavaThreadState state = thread->thread_state();
2425 
2426     // We mark this thread_blocked state as a suspend-equivalent so
2427     // that a caller to is_ext_suspend_completed() won't be confused.
2428     // The suspend-equivalent state is cleared by java_suspend_self().
2429     thread->set_suspend_equivalent();
2430 
2431     // If the safepoint code sees the _thread_in_native_trans state, it will
2432     // wait until the thread changes to other thread state. There is no
2433     // guarantee on how soon we can obtain the SR_lock and complete the
2434     // self-suspend request. It would be a bad idea to let safepoint wait for
2435     // too long. Temporarily change the state to _thread_blocked to
2436     // let the VM thread know that this thread is ready for GC. The problem
2437     // of changing thread state is that safepoint could happen just after
2438     // java_suspend_self() returns after being resumed, and VM thread will
2439     // see the _thread_blocked state. We must check for safepoint
2440     // after restoring the state and make sure we won't leave while a safepoint
2441     // is in progress.
2442     thread->set_thread_state(_thread_blocked);
2443     thread->java_suspend_self();
2444     thread->set_thread_state(state);
2445 
2446     InterfaceSupport::serialize_thread_state_with_handler(thread);
2447   }
2448 
2449   SafepointMechanism::block_if_requested(curJT);
2450 
2451   if (thread->is_deopt_suspend()) {
2452     thread->clear_deopt_suspend();
2453     RegisterMap map(thread, false);
2454     frame f = thread->last_frame();
2455     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2456       f = f.sender(&map);
2457     }
2458     if (f.id() == thread->must_deopt_id()) {
2459       thread->clear_must_deopt_id();
2460       f.deoptimize(thread);
2461     } else {
2462       fatal("missed deoptimization!");
2463     }
2464   }
2465 #if INCLUDE_TRACE
2466   if (thread->is_trace_suspend()) {
2467     TRACE_SUSPEND_THREAD(thread);
2468   }
2469 #endif
2470 }
2471 
2472 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2473 // progress or when _suspend_flags is non-zero.
2474 // Current thread needs to self-suspend if there is a suspend request and/or
2475 // block if a safepoint is in progress.
2476 // Also check for pending async exception (not including unsafe access error).
2477 // Note only the native==>VM/Java barriers can call this function and when
2478 // thread state is _thread_in_native_trans.
2479 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2480   check_safepoint_and_suspend_for_native_trans(thread);
2481 
2482   if (thread->has_async_exception()) {
2483     // We are in _thread_in_native_trans state, don't handle unsafe
2484     // access error since that may block.
2485     thread->check_and_handle_async_exceptions(false);
2486   }
2487 }
2488 
2489 // This is a variant of the normal
2490 // check_special_condition_for_native_trans with slightly different
2491 // semantics for use by critical native wrappers.  It does all the
2492 // normal checks but also performs the transition back into
2493 // thread_in_Java state.  This is required so that critical natives
2494 // can potentially block and perform a GC if they are the last thread
2495 // exiting the GCLocker.
2496 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2497   check_special_condition_for_native_trans(thread);
2498 
2499   // Finish the transition
2500   thread->set_thread_state(_thread_in_Java);
2501 
2502   if (thread->do_critical_native_unlock()) {
2503     ThreadInVMfromJavaNoAsyncException tiv(thread);
2504     GCLocker::unlock_critical(thread);
2505     thread->clear_critical_native_unlock();
2506   }
2507 }
2508 
2509 // We need to guarantee the Threads_lock here, since resumes are not
2510 // allowed during safepoint synchronization
2511 // Can only resume from an external suspension
2512 void JavaThread::java_resume() {
2513   assert_locked_or_safepoint(Threads_lock);
2514 
2515   // Sanity check: thread is gone, has started exiting or the thread
2516   // was not externally suspended.
2517   ThreadsListHandle tlh;
2518   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2519     return;
2520   }
2521 
2522   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2523 
2524   clear_external_suspend();
2525 
2526   if (is_ext_suspended()) {
2527     clear_ext_suspended();
2528     SR_lock()->notify_all();
2529   }
2530 }
2531 
2532 size_t JavaThread::_stack_red_zone_size = 0;
2533 size_t JavaThread::_stack_yellow_zone_size = 0;
2534 size_t JavaThread::_stack_reserved_zone_size = 0;
2535 size_t JavaThread::_stack_shadow_zone_size = 0;
2536 
2537 void JavaThread::create_stack_guard_pages() {
2538   if (!os::uses_stack_guard_pages() ||
2539       _stack_guard_state != stack_guard_unused ||
2540       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2541       log_info(os, thread)("Stack guard page creation for thread "
2542                            UINTX_FORMAT " disabled", os::current_thread_id());
2543     return;
2544   }
2545   address low_addr = stack_end();
2546   size_t len = stack_guard_zone_size();
2547 
2548   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2549   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2550 
2551   int must_commit = os::must_commit_stack_guard_pages();
2552   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2553 
2554   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2555     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2556     return;
2557   }
2558 
2559   if (os::guard_memory((char *) low_addr, len)) {
2560     _stack_guard_state = stack_guard_enabled;
2561   } else {
2562     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2563       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2564     if (os::uncommit_memory((char *) low_addr, len)) {
2565       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2566     }
2567     return;
2568   }
2569 
2570   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2571     PTR_FORMAT "-" PTR_FORMAT ".",
2572     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2573 }
2574 
2575 void JavaThread::remove_stack_guard_pages() {
2576   assert(Thread::current() == this, "from different thread");
2577   if (_stack_guard_state == stack_guard_unused) return;
2578   address low_addr = stack_end();
2579   size_t len = stack_guard_zone_size();
2580 
2581   if (os::must_commit_stack_guard_pages()) {
2582     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2583       _stack_guard_state = stack_guard_unused;
2584     } else {
2585       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2586         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2587       return;
2588     }
2589   } else {
2590     if (_stack_guard_state == stack_guard_unused) return;
2591     if (os::unguard_memory((char *) low_addr, len)) {
2592       _stack_guard_state = stack_guard_unused;
2593     } else {
2594       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2595         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2596       return;
2597     }
2598   }
2599 
2600   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2601     PTR_FORMAT "-" PTR_FORMAT ".",
2602     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2603 }
2604 
2605 void JavaThread::enable_stack_reserved_zone() {
2606   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2607   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2608 
2609   // The base notation is from the stack's point of view, growing downward.
2610   // We need to adjust it to work correctly with guard_memory()
2611   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2612 
2613   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2614   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2615 
2616   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2617     _stack_guard_state = stack_guard_enabled;
2618   } else {
2619     warning("Attempt to guard stack reserved zone failed.");
2620   }
2621   enable_register_stack_guard();
2622 }
2623 
2624 void JavaThread::disable_stack_reserved_zone() {
2625   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2626   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2627 
2628   // Simply return if called for a thread that does not use guard pages.
2629   if (_stack_guard_state == stack_guard_unused) return;
2630 
2631   // The base notation is from the stack's point of view, growing downward.
2632   // We need to adjust it to work correctly with guard_memory()
2633   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2634 
2635   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2636     _stack_guard_state = stack_guard_reserved_disabled;
2637   } else {
2638     warning("Attempt to unguard stack reserved zone failed.");
2639   }
2640   disable_register_stack_guard();
2641 }
2642 
2643 void JavaThread::enable_stack_yellow_reserved_zone() {
2644   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2645   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2646 
2647   // The base notation is from the stacks point of view, growing downward.
2648   // We need to adjust it to work correctly with guard_memory()
2649   address base = stack_red_zone_base();
2650 
2651   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2652   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2653 
2654   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2655     _stack_guard_state = stack_guard_enabled;
2656   } else {
2657     warning("Attempt to guard stack yellow zone failed.");
2658   }
2659   enable_register_stack_guard();
2660 }
2661 
2662 void JavaThread::disable_stack_yellow_reserved_zone() {
2663   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2664   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2665 
2666   // Simply return if called for a thread that does not use guard pages.
2667   if (_stack_guard_state == stack_guard_unused) return;
2668 
2669   // The base notation is from the stacks point of view, growing downward.
2670   // We need to adjust it to work correctly with guard_memory()
2671   address base = stack_red_zone_base();
2672 
2673   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2674     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2675   } else {
2676     warning("Attempt to unguard stack yellow zone failed.");
2677   }
2678   disable_register_stack_guard();
2679 }
2680 
2681 void JavaThread::enable_stack_red_zone() {
2682   // The base notation is from the stacks point of view, growing downward.
2683   // We need to adjust it to work correctly with guard_memory()
2684   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2685   address base = stack_red_zone_base() - stack_red_zone_size();
2686 
2687   guarantee(base < stack_base(), "Error calculating stack red zone");
2688   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2689 
2690   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2691     warning("Attempt to guard stack red zone failed.");
2692   }
2693 }
2694 
2695 void JavaThread::disable_stack_red_zone() {
2696   // The base notation is from the stacks point of view, growing downward.
2697   // We need to adjust it to work correctly with guard_memory()
2698   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2699   address base = stack_red_zone_base() - stack_red_zone_size();
2700   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2701     warning("Attempt to unguard stack red zone failed.");
2702   }
2703 }
2704 
2705 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2706   // ignore is there is no stack
2707   if (!has_last_Java_frame()) return;
2708   // traverse the stack frames. Starts from top frame.
2709   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2710     frame* fr = fst.current();
2711     f(fr, fst.register_map());
2712   }
2713 }
2714 
2715 
2716 #ifndef PRODUCT
2717 // Deoptimization
2718 // Function for testing deoptimization
2719 void JavaThread::deoptimize() {
2720   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2721   StackFrameStream fst(this, UseBiasedLocking);
2722   bool deopt = false;           // Dump stack only if a deopt actually happens.
2723   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2724   // Iterate over all frames in the thread and deoptimize
2725   for (; !fst.is_done(); fst.next()) {
2726     if (fst.current()->can_be_deoptimized()) {
2727 
2728       if (only_at) {
2729         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2730         // consists of comma or carriage return separated numbers so
2731         // search for the current bci in that string.
2732         address pc = fst.current()->pc();
2733         nmethod* nm =  (nmethod*) fst.current()->cb();
2734         ScopeDesc* sd = nm->scope_desc_at(pc);
2735         char buffer[8];
2736         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2737         size_t len = strlen(buffer);
2738         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2739         while (found != NULL) {
2740           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2741               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2742             // Check that the bci found is bracketed by terminators.
2743             break;
2744           }
2745           found = strstr(found + 1, buffer);
2746         }
2747         if (!found) {
2748           continue;
2749         }
2750       }
2751 
2752       if (DebugDeoptimization && !deopt) {
2753         deopt = true; // One-time only print before deopt
2754         tty->print_cr("[BEFORE Deoptimization]");
2755         trace_frames();
2756         trace_stack();
2757       }
2758       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2759     }
2760   }
2761 
2762   if (DebugDeoptimization && deopt) {
2763     tty->print_cr("[AFTER Deoptimization]");
2764     trace_frames();
2765   }
2766 }
2767 
2768 
2769 // Make zombies
2770 void JavaThread::make_zombies() {
2771   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2772     if (fst.current()->can_be_deoptimized()) {
2773       // it is a Java nmethod
2774       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2775       nm->make_not_entrant();
2776     }
2777   }
2778 }
2779 #endif // PRODUCT
2780 
2781 
2782 void JavaThread::deoptimized_wrt_marked_nmethods() {
2783   if (!has_last_Java_frame()) return;
2784   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2785   StackFrameStream fst(this, UseBiasedLocking);
2786   for (; !fst.is_done(); fst.next()) {
2787     if (fst.current()->should_be_deoptimized()) {
2788       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2789     }
2790   }
2791 }
2792 
2793 
2794 // If the caller is a NamedThread, then remember, in the current scope,
2795 // the given JavaThread in its _processed_thread field.
2796 class RememberProcessedThread: public StackObj {
2797   NamedThread* _cur_thr;
2798  public:
2799   RememberProcessedThread(JavaThread* jthr) {
2800     Thread* thread = Thread::current();
2801     if (thread->is_Named_thread()) {
2802       _cur_thr = (NamedThread *)thread;
2803       _cur_thr->set_processed_thread(jthr);
2804     } else {
2805       _cur_thr = NULL;
2806     }
2807   }
2808 
2809   ~RememberProcessedThread() {
2810     if (_cur_thr) {
2811       _cur_thr->set_processed_thread(NULL);
2812     }
2813   }
2814 };
2815 
2816 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2817   // Verify that the deferred card marks have been flushed.
2818   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2819 
2820   // Traverse the GCHandles
2821   Thread::oops_do(f, cf);
2822 
2823   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2824 
2825   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2826          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2827 
2828   if (has_last_Java_frame()) {
2829     // Record JavaThread to GC thread
2830     RememberProcessedThread rpt(this);
2831 
2832     // Traverse the privileged stack
2833     if (_privileged_stack_top != NULL) {
2834       _privileged_stack_top->oops_do(f);
2835     }
2836 
2837     // traverse the registered growable array
2838     if (_array_for_gc != NULL) {
2839       for (int index = 0; index < _array_for_gc->length(); index++) {
2840         f->do_oop(_array_for_gc->adr_at(index));
2841       }
2842     }
2843 
2844     // Traverse the monitor chunks
2845     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2846       chunk->oops_do(f);
2847     }
2848 
2849     // Traverse the execution stack
2850     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2851       fst.current()->oops_do(f, cf, fst.register_map());
2852     }
2853   }
2854 
2855   // callee_target is never live across a gc point so NULL it here should
2856   // it still contain a methdOop.
2857 
2858   set_callee_target(NULL);
2859 
2860   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2861   // If we have deferred set_locals there might be oops waiting to be
2862   // written
2863   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2864   if (list != NULL) {
2865     for (int i = 0; i < list->length(); i++) {
2866       list->at(i)->oops_do(f);
2867     }
2868   }
2869 
2870   // Traverse instance variables at the end since the GC may be moving things
2871   // around using this function
2872   f->do_oop((oop*) &_threadObj);
2873   f->do_oop((oop*) &_vm_result);
2874   f->do_oop((oop*) &_exception_oop);
2875   f->do_oop((oop*) &_pending_async_exception);
2876 
2877   if (jvmti_thread_state() != NULL) {
2878     jvmti_thread_state()->oops_do(f);
2879   }
2880 }
2881 
2882 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2883   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2884          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2885 
2886   if (has_last_Java_frame()) {
2887     // Traverse the execution stack
2888     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2889       fst.current()->nmethods_do(cf);
2890     }
2891   }
2892 }
2893 
2894 void JavaThread::metadata_do(void f(Metadata*)) {
2895   if (has_last_Java_frame()) {
2896     // Traverse the execution stack to call f() on the methods in the stack
2897     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2898       fst.current()->metadata_do(f);
2899     }
2900   } else if (is_Compiler_thread()) {
2901     // need to walk ciMetadata in current compile tasks to keep alive.
2902     CompilerThread* ct = (CompilerThread*)this;
2903     if (ct->env() != NULL) {
2904       ct->env()->metadata_do(f);
2905     }
2906     CompileTask* task = ct->task();
2907     if (task != NULL) {
2908       task->metadata_do(f);
2909     }
2910   }
2911 }
2912 
2913 // Printing
2914 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2915   switch (_thread_state) {
2916   case _thread_uninitialized:     return "_thread_uninitialized";
2917   case _thread_new:               return "_thread_new";
2918   case _thread_new_trans:         return "_thread_new_trans";
2919   case _thread_in_native:         return "_thread_in_native";
2920   case _thread_in_native_trans:   return "_thread_in_native_trans";
2921   case _thread_in_vm:             return "_thread_in_vm";
2922   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2923   case _thread_in_Java:           return "_thread_in_Java";
2924   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2925   case _thread_blocked:           return "_thread_blocked";
2926   case _thread_blocked_trans:     return "_thread_blocked_trans";
2927   default:                        return "unknown thread state";
2928   }
2929 }
2930 
2931 #ifndef PRODUCT
2932 void JavaThread::print_thread_state_on(outputStream *st) const {
2933   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2934 };
2935 void JavaThread::print_thread_state() const {
2936   print_thread_state_on(tty);
2937 }
2938 #endif // PRODUCT
2939 
2940 // Called by Threads::print() for VM_PrintThreads operation
2941 void JavaThread::print_on(outputStream *st) const {
2942   st->print_raw("\"");
2943   st->print_raw(get_thread_name());
2944   st->print_raw("\" ");
2945   oop thread_oop = threadObj();
2946   if (thread_oop != NULL) {
2947     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2948     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2949     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2950   }
2951   Thread::print_on(st);
2952   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2953   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2954   if (thread_oop != NULL) {
2955     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2956   }
2957 #ifndef PRODUCT
2958   print_thread_state_on(st);
2959   _safepoint_state->print_on(st);
2960 #endif // PRODUCT
2961   if (is_Compiler_thread()) {
2962     CompileTask *task = ((CompilerThread*)this)->task();
2963     if (task != NULL) {
2964       st->print("   Compiling: ");
2965       task->print(st, NULL, true, false);
2966     } else {
2967       st->print("   No compile task");
2968     }
2969     st->cr();
2970   }
2971 }
2972 
2973 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2974   st->print("%s", get_thread_name_string(buf, buflen));
2975 }
2976 
2977 // Called by fatal error handler. The difference between this and
2978 // JavaThread::print() is that we can't grab lock or allocate memory.
2979 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2980   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2981   oop thread_obj = threadObj();
2982   if (thread_obj != NULL) {
2983     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2984   }
2985   st->print(" [");
2986   st->print("%s", _get_thread_state_name(_thread_state));
2987   if (osthread()) {
2988     st->print(", id=%d", osthread()->thread_id());
2989   }
2990   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2991             p2i(stack_end()), p2i(stack_base()));
2992   st->print("]");
2993 
2994   if (_threads_hazard_ptr != NULL) {
2995     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
2996   }
2997   if (_nested_threads_hazard_ptr != NULL) {
2998     print_nested_threads_hazard_ptrs_on(st);
2999   }
3000   return;
3001 }
3002 
3003 // Verification
3004 
3005 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3006 
3007 void JavaThread::verify() {
3008   // Verify oops in the thread.
3009   oops_do(&VerifyOopClosure::verify_oop, NULL);
3010 
3011   // Verify the stack frames.
3012   frames_do(frame_verify);
3013 }
3014 
3015 // CR 6300358 (sub-CR 2137150)
3016 // Most callers of this method assume that it can't return NULL but a
3017 // thread may not have a name whilst it is in the process of attaching to
3018 // the VM - see CR 6412693, and there are places where a JavaThread can be
3019 // seen prior to having it's threadObj set (eg JNI attaching threads and
3020 // if vm exit occurs during initialization). These cases can all be accounted
3021 // for such that this method never returns NULL.
3022 const char* JavaThread::get_thread_name() const {
3023 #ifdef ASSERT
3024   // early safepoints can hit while current thread does not yet have TLS
3025   if (!SafepointSynchronize::is_at_safepoint()) {
3026     Thread *cur = Thread::current();
3027     if (!(cur->is_Java_thread() && cur == this)) {
3028       // Current JavaThreads are allowed to get their own name without
3029       // the Threads_lock.
3030       assert_locked_or_safepoint(Threads_lock);
3031     }
3032   }
3033 #endif // ASSERT
3034   return get_thread_name_string();
3035 }
3036 
3037 // Returns a non-NULL representation of this thread's name, or a suitable
3038 // descriptive string if there is no set name
3039 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3040   const char* name_str;
3041   oop thread_obj = threadObj();
3042   if (thread_obj != NULL) {
3043     oop name = java_lang_Thread::name(thread_obj);
3044     if (name != NULL) {
3045       if (buf == NULL) {
3046         name_str = java_lang_String::as_utf8_string(name);
3047       } else {
3048         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3049       }
3050     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3051       name_str = "<no-name - thread is attaching>";
3052     } else {
3053       name_str = Thread::name();
3054     }
3055   } else {
3056     name_str = Thread::name();
3057   }
3058   assert(name_str != NULL, "unexpected NULL thread name");
3059   return name_str;
3060 }
3061 
3062 
3063 const char* JavaThread::get_threadgroup_name() const {
3064   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3065   oop thread_obj = threadObj();
3066   if (thread_obj != NULL) {
3067     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3068     if (thread_group != NULL) {
3069       // ThreadGroup.name can be null
3070       return java_lang_ThreadGroup::name(thread_group);
3071     }
3072   }
3073   return NULL;
3074 }
3075 
3076 const char* JavaThread::get_parent_name() const {
3077   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3078   oop thread_obj = threadObj();
3079   if (thread_obj != NULL) {
3080     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3081     if (thread_group != NULL) {
3082       oop parent = java_lang_ThreadGroup::parent(thread_group);
3083       if (parent != NULL) {
3084         // ThreadGroup.name can be null
3085         return java_lang_ThreadGroup::name(parent);
3086       }
3087     }
3088   }
3089   return NULL;
3090 }
3091 
3092 ThreadPriority JavaThread::java_priority() const {
3093   oop thr_oop = threadObj();
3094   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3095   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3096   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3097   return priority;
3098 }
3099 
3100 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3101 
3102   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3103   // Link Java Thread object <-> C++ Thread
3104 
3105   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3106   // and put it into a new Handle.  The Handle "thread_oop" can then
3107   // be used to pass the C++ thread object to other methods.
3108 
3109   // Set the Java level thread object (jthread) field of the
3110   // new thread (a JavaThread *) to C++ thread object using the
3111   // "thread_oop" handle.
3112 
3113   // Set the thread field (a JavaThread *) of the
3114   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3115 
3116   Handle thread_oop(Thread::current(),
3117                     JNIHandles::resolve_non_null(jni_thread));
3118   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3119          "must be initialized");
3120   set_threadObj(thread_oop());
3121   java_lang_Thread::set_thread(thread_oop(), this);
3122 
3123   if (prio == NoPriority) {
3124     prio = java_lang_Thread::priority(thread_oop());
3125     assert(prio != NoPriority, "A valid priority should be present");
3126   }
3127 
3128   // Push the Java priority down to the native thread; needs Threads_lock
3129   Thread::set_priority(this, prio);
3130 
3131   // Add the new thread to the Threads list and set it in motion.
3132   // We must have threads lock in order to call Threads::add.
3133   // It is crucial that we do not block before the thread is
3134   // added to the Threads list for if a GC happens, then the java_thread oop
3135   // will not be visited by GC.
3136   Threads::add(this);
3137 }
3138 
3139 oop JavaThread::current_park_blocker() {
3140   // Support for JSR-166 locks
3141   oop thread_oop = threadObj();
3142   if (thread_oop != NULL &&
3143       JDK_Version::current().supports_thread_park_blocker()) {
3144     return java_lang_Thread::park_blocker(thread_oop);
3145   }
3146   return NULL;
3147 }
3148 
3149 
3150 void JavaThread::print_stack_on(outputStream* st) {
3151   if (!has_last_Java_frame()) return;
3152   ResourceMark rm;
3153   HandleMark   hm;
3154 
3155   RegisterMap reg_map(this);
3156   vframe* start_vf = last_java_vframe(&reg_map);
3157   int count = 0;
3158   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3159     if (f->is_java_frame()) {
3160       javaVFrame* jvf = javaVFrame::cast(f);
3161       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3162 
3163       // Print out lock information
3164       if (JavaMonitorsInStackTrace) {
3165         jvf->print_lock_info_on(st, count);
3166       }
3167     } else {
3168       // Ignore non-Java frames
3169     }
3170 
3171     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3172     count++;
3173     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3174   }
3175 }
3176 
3177 
3178 // JVMTI PopFrame support
3179 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3180   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3181   if (in_bytes(size_in_bytes) != 0) {
3182     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3183     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3184     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3185   }
3186 }
3187 
3188 void* JavaThread::popframe_preserved_args() {
3189   return _popframe_preserved_args;
3190 }
3191 
3192 ByteSize JavaThread::popframe_preserved_args_size() {
3193   return in_ByteSize(_popframe_preserved_args_size);
3194 }
3195 
3196 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3197   int sz = in_bytes(popframe_preserved_args_size());
3198   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3199   return in_WordSize(sz / wordSize);
3200 }
3201 
3202 void JavaThread::popframe_free_preserved_args() {
3203   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3204   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3205   _popframe_preserved_args = NULL;
3206   _popframe_preserved_args_size = 0;
3207 }
3208 
3209 #ifndef PRODUCT
3210 
3211 void JavaThread::trace_frames() {
3212   tty->print_cr("[Describe stack]");
3213   int frame_no = 1;
3214   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3215     tty->print("  %d. ", frame_no++);
3216     fst.current()->print_value_on(tty, this);
3217     tty->cr();
3218   }
3219 }
3220 
3221 class PrintAndVerifyOopClosure: public OopClosure {
3222  protected:
3223   template <class T> inline void do_oop_work(T* p) {
3224     oop obj = oopDesc::load_decode_heap_oop(p);
3225     if (obj == NULL) return;
3226     tty->print(INTPTR_FORMAT ": ", p2i(p));
3227     if (oopDesc::is_oop_or_null(obj)) {
3228       if (obj->is_objArray()) {
3229         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3230       } else {
3231         obj->print();
3232       }
3233     } else {
3234       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3235     }
3236     tty->cr();
3237   }
3238  public:
3239   virtual void do_oop(oop* p) { do_oop_work(p); }
3240   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3241 };
3242 
3243 
3244 static void oops_print(frame* f, const RegisterMap *map) {
3245   PrintAndVerifyOopClosure print;
3246   f->print_value();
3247   f->oops_do(&print, NULL, (RegisterMap*)map);
3248 }
3249 
3250 // Print our all the locations that contain oops and whether they are
3251 // valid or not.  This useful when trying to find the oldest frame
3252 // where an oop has gone bad since the frame walk is from youngest to
3253 // oldest.
3254 void JavaThread::trace_oops() {
3255   tty->print_cr("[Trace oops]");
3256   frames_do(oops_print);
3257 }
3258 
3259 
3260 #ifdef ASSERT
3261 // Print or validate the layout of stack frames
3262 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3263   ResourceMark rm;
3264   PRESERVE_EXCEPTION_MARK;
3265   FrameValues values;
3266   int frame_no = 0;
3267   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3268     fst.current()->describe(values, ++frame_no);
3269     if (depth == frame_no) break;
3270   }
3271   if (validate_only) {
3272     values.validate();
3273   } else {
3274     tty->print_cr("[Describe stack layout]");
3275     values.print(this);
3276   }
3277 }
3278 #endif
3279 
3280 void JavaThread::trace_stack_from(vframe* start_vf) {
3281   ResourceMark rm;
3282   int vframe_no = 1;
3283   for (vframe* f = start_vf; f; f = f->sender()) {
3284     if (f->is_java_frame()) {
3285       javaVFrame::cast(f)->print_activation(vframe_no++);
3286     } else {
3287       f->print();
3288     }
3289     if (vframe_no > StackPrintLimit) {
3290       tty->print_cr("...<more frames>...");
3291       return;
3292     }
3293   }
3294 }
3295 
3296 
3297 void JavaThread::trace_stack() {
3298   if (!has_last_Java_frame()) return;
3299   ResourceMark rm;
3300   HandleMark   hm;
3301   RegisterMap reg_map(this);
3302   trace_stack_from(last_java_vframe(&reg_map));
3303 }
3304 
3305 
3306 #endif // PRODUCT
3307 
3308 
3309 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3310   assert(reg_map != NULL, "a map must be given");
3311   frame f = last_frame();
3312   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3313     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3314   }
3315   return NULL;
3316 }
3317 
3318 
3319 Klass* JavaThread::security_get_caller_class(int depth) {
3320   vframeStream vfst(this);
3321   vfst.security_get_caller_frame(depth);
3322   if (!vfst.at_end()) {
3323     return vfst.method()->method_holder();
3324   }
3325   return NULL;
3326 }
3327 
3328 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3329   assert(thread->is_Compiler_thread(), "must be compiler thread");
3330   CompileBroker::compiler_thread_loop();
3331 }
3332 
3333 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3334   NMethodSweeper::sweeper_loop();
3335 }
3336 
3337 // Create a CompilerThread
3338 CompilerThread::CompilerThread(CompileQueue* queue,
3339                                CompilerCounters* counters)
3340                                : JavaThread(&compiler_thread_entry) {
3341   _env   = NULL;
3342   _log   = NULL;
3343   _task  = NULL;
3344   _queue = queue;
3345   _counters = counters;
3346   _buffer_blob = NULL;
3347   _compiler = NULL;
3348 
3349   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3350   resource_area()->bias_to(mtCompiler);
3351 
3352 #ifndef PRODUCT
3353   _ideal_graph_printer = NULL;
3354 #endif
3355 }
3356 
3357 bool CompilerThread::can_call_java() const {
3358   return _compiler != NULL && _compiler->is_jvmci();
3359 }
3360 
3361 // Create sweeper thread
3362 CodeCacheSweeperThread::CodeCacheSweeperThread()
3363 : JavaThread(&sweeper_thread_entry) {
3364   _scanned_compiled_method = NULL;
3365 }
3366 
3367 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3368   JavaThread::oops_do(f, cf);
3369   if (_scanned_compiled_method != NULL && cf != NULL) {
3370     // Safepoints can occur when the sweeper is scanning an nmethod so
3371     // process it here to make sure it isn't unloaded in the middle of
3372     // a scan.
3373     cf->do_code_blob(_scanned_compiled_method);
3374   }
3375 }
3376 
3377 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3378   JavaThread::nmethods_do(cf);
3379   if (_scanned_compiled_method != NULL && cf != NULL) {
3380     // Safepoints can occur when the sweeper is scanning an nmethod so
3381     // process it here to make sure it isn't unloaded in the middle of
3382     // a scan.
3383     cf->do_code_blob(_scanned_compiled_method);
3384   }
3385 }
3386 
3387 
3388 // ======= Threads ========
3389 
3390 // The Threads class links together all active threads, and provides
3391 // operations over all threads. It is protected by the Threads_lock,
3392 // which is also used in other global contexts like safepointing.
3393 // ThreadsListHandles are used to safely perform operations on one
3394 // or more threads without the risk of the thread exiting during the
3395 // operation.
3396 //
3397 // Note: The Threads_lock is currently more widely used than we
3398 // would like. We are actively migrating Threads_lock uses to other
3399 // mechanisms in order to reduce Threads_lock contention.
3400 
3401 JavaThread* Threads::_thread_list = NULL;
3402 int         Threads::_number_of_threads = 0;
3403 int         Threads::_number_of_non_daemon_threads = 0;
3404 int         Threads::_return_code = 0;
3405 int         Threads::_thread_claim_parity = 0;
3406 size_t      JavaThread::_stack_size_at_create = 0;
3407 
3408 #ifdef ASSERT
3409 bool        Threads::_vm_complete = false;
3410 #endif
3411 
3412 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3413   Prefetch::read((void*)addr, prefetch_interval);
3414   return *addr;
3415 }
3416 
3417 // Possibly the ugliest for loop the world has seen. C++ does not allow
3418 // multiple types in the declaration section of the for loop. In this case
3419 // we are only dealing with pointers and hence can cast them. It looks ugly
3420 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3421 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3422     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3423              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3424              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3425              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3426              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3427          MACRO_current_p != MACRO_end;                                                                                    \
3428          MACRO_current_p++,                                                                                               \
3429              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3430 
3431 // All JavaThreads
3432 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3433 
3434 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3435 void Threads::threads_do(ThreadClosure* tc) {
3436   assert_locked_or_safepoint(Threads_lock);
3437   // ALL_JAVA_THREADS iterates through all JavaThreads
3438   ALL_JAVA_THREADS(p) {
3439     tc->do_thread(p);
3440   }
3441   // Someday we could have a table or list of all non-JavaThreads.
3442   // For now, just manually iterate through them.
3443   tc->do_thread(VMThread::vm_thread());
3444   Universe::heap()->gc_threads_do(tc);
3445   WatcherThread *wt = WatcherThread::watcher_thread();
3446   // Strictly speaking, the following NULL check isn't sufficient to make sure
3447   // the data for WatcherThread is still valid upon being examined. However,
3448   // considering that WatchThread terminates when the VM is on the way to
3449   // exit at safepoint, the chance of the above is extremely small. The right
3450   // way to prevent termination of WatcherThread would be to acquire
3451   // Terminator_lock, but we can't do that without violating the lock rank
3452   // checking in some cases.
3453   if (wt != NULL) {
3454     tc->do_thread(wt);
3455   }
3456 
3457   // If CompilerThreads ever become non-JavaThreads, add them here
3458 }
3459 
3460 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3461   int cp = Threads::thread_claim_parity();
3462   ALL_JAVA_THREADS(p) {
3463     if (p->claim_oops_do(is_par, cp)) {
3464       tc->do_thread(p);
3465     }
3466   }
3467   VMThread* vmt = VMThread::vm_thread();
3468   if (vmt->claim_oops_do(is_par, cp)) {
3469     tc->do_thread(vmt);
3470   }
3471 }
3472 
3473 // The system initialization in the library has three phases.
3474 //
3475 // Phase 1: java.lang.System class initialization
3476 //     java.lang.System is a primordial class loaded and initialized
3477 //     by the VM early during startup.  java.lang.System.<clinit>
3478 //     only does registerNatives and keeps the rest of the class
3479 //     initialization work later until thread initialization completes.
3480 //
3481 //     System.initPhase1 initializes the system properties, the static
3482 //     fields in, out, and err. Set up java signal handlers, OS-specific
3483 //     system settings, and thread group of the main thread.
3484 static void call_initPhase1(TRAPS) {
3485   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3486   JavaValue result(T_VOID);
3487   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3488                                          vmSymbols::void_method_signature(), CHECK);
3489 }
3490 
3491 // Phase 2. Module system initialization
3492 //     This will initialize the module system.  Only java.base classes
3493 //     can be loaded until phase 2 completes.
3494 //
3495 //     Call System.initPhase2 after the compiler initialization and jsr292
3496 //     classes get initialized because module initialization runs a lot of java
3497 //     code, that for performance reasons, should be compiled.  Also, this will
3498 //     enable the startup code to use lambda and other language features in this
3499 //     phase and onward.
3500 //
3501 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3502 static void call_initPhase2(TRAPS) {
3503   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3504 
3505   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3506 
3507   JavaValue result(T_INT);
3508   JavaCallArguments args;
3509   args.push_int(DisplayVMOutputToStderr);
3510   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3511   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3512                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3513   if (result.get_jint() != JNI_OK) {
3514     vm_exit_during_initialization(); // no message or exception
3515   }
3516 
3517   universe_post_module_init();
3518 }
3519 
3520 // Phase 3. final setup - set security manager, system class loader and TCCL
3521 //
3522 //     This will instantiate and set the security manager, set the system class
3523 //     loader as well as the thread context class loader.  The security manager
3524 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3525 //     other modules or the application's classpath.
3526 static void call_initPhase3(TRAPS) {
3527   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3528   JavaValue result(T_VOID);
3529   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3530                                          vmSymbols::void_method_signature(), CHECK);
3531 }
3532 
3533 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3534   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3535 
3536   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3537     create_vm_init_libraries();
3538   }
3539 
3540   initialize_class(vmSymbols::java_lang_String(), CHECK);
3541 
3542   // Inject CompactStrings value after the static initializers for String ran.
3543   java_lang_String::set_compact_strings(CompactStrings);
3544 
3545   // Initialize java_lang.System (needed before creating the thread)
3546   initialize_class(vmSymbols::java_lang_System(), CHECK);
3547   // The VM creates & returns objects of this class. Make sure it's initialized.
3548   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3549   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3550   Handle thread_group = create_initial_thread_group(CHECK);
3551   Universe::set_main_thread_group(thread_group());
3552   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3553   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3554   main_thread->set_threadObj(thread_object);
3555   // Set thread status to running since main thread has
3556   // been started and running.
3557   java_lang_Thread::set_thread_status(thread_object,
3558                                       java_lang_Thread::RUNNABLE);
3559 
3560   // The VM creates objects of this class.
3561   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3562 
3563   // The VM preresolves methods to these classes. Make sure that they get initialized
3564   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3565   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3566 
3567   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3568   call_initPhase1(CHECK);
3569 
3570   // get the Java runtime name after java.lang.System is initialized
3571   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3572   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3573 
3574   // an instance of OutOfMemory exception has been allocated earlier
3575   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3576   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3577   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3578   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3579   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3580   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3581   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3582   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3583 }
3584 
3585 void Threads::initialize_jsr292_core_classes(TRAPS) {
3586   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3587 
3588   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3589   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3590   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3591   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3592 }
3593 
3594 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3595   extern void JDK_Version_init();
3596 
3597   // Preinitialize version info.
3598   VM_Version::early_initialize();
3599 
3600   // Check version
3601   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3602 
3603   // Initialize library-based TLS
3604   ThreadLocalStorage::init();
3605 
3606   // Initialize the output stream module
3607   ostream_init();
3608 
3609   // Process java launcher properties.
3610   Arguments::process_sun_java_launcher_properties(args);
3611 
3612   // Initialize the os module
3613   os::init();
3614 
3615   // Record VM creation timing statistics
3616   TraceVmCreationTime create_vm_timer;
3617   create_vm_timer.start();
3618 
3619   // Initialize system properties.
3620   Arguments::init_system_properties();
3621 
3622   // So that JDK version can be used as a discriminator when parsing arguments
3623   JDK_Version_init();
3624 
3625   // Update/Initialize System properties after JDK version number is known
3626   Arguments::init_version_specific_system_properties();
3627 
3628   // Make sure to initialize log configuration *before* parsing arguments
3629   LogConfiguration::initialize(create_vm_timer.begin_time());
3630 
3631   // Parse arguments
3632   // Note: this internally calls os::init_container_support()
3633   jint parse_result = Arguments::parse(args);
3634   if (parse_result != JNI_OK) return parse_result;
3635 
3636   os::init_before_ergo();
3637 
3638   jint ergo_result = Arguments::apply_ergo();
3639   if (ergo_result != JNI_OK) return ergo_result;
3640 
3641   // Final check of all ranges after ergonomics which may change values.
3642   if (!CommandLineFlagRangeList::check_ranges()) {
3643     return JNI_EINVAL;
3644   }
3645 
3646   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3647   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3648   if (!constraint_result) {
3649     return JNI_EINVAL;
3650   }
3651 
3652   CommandLineFlagWriteableList::mark_startup();
3653 
3654   if (PauseAtStartup) {
3655     os::pause();
3656   }
3657 
3658   HOTSPOT_VM_INIT_BEGIN();
3659 
3660   // Timing (must come after argument parsing)
3661   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3662 
3663   // Initialize the os module after parsing the args
3664   jint os_init_2_result = os::init_2();
3665   if (os_init_2_result != JNI_OK) return os_init_2_result;
3666 
3667   SafepointMechanism::initialize();
3668 
3669   jint adjust_after_os_result = Arguments::adjust_after_os();
3670   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3671 
3672   // Initialize output stream logging
3673   ostream_init_log();
3674 
3675   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3676   // Must be before create_vm_init_agents()
3677   if (Arguments::init_libraries_at_startup()) {
3678     convert_vm_init_libraries_to_agents();
3679   }
3680 
3681   // Launch -agentlib/-agentpath and converted -Xrun agents
3682   if (Arguments::init_agents_at_startup()) {
3683     create_vm_init_agents();
3684   }
3685 
3686   // Initialize Threads state
3687   _thread_list = NULL;
3688   _number_of_threads = 0;
3689   _number_of_non_daemon_threads = 0;
3690 
3691   // Initialize global data structures and create system classes in heap
3692   vm_init_globals();
3693 
3694 #if INCLUDE_JVMCI
3695   if (JVMCICounterSize > 0) {
3696     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3697     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3698   } else {
3699     JavaThread::_jvmci_old_thread_counters = NULL;
3700   }
3701 #endif // INCLUDE_JVMCI
3702 
3703   // Attach the main thread to this os thread
3704   JavaThread* main_thread = new JavaThread();
3705   main_thread->set_thread_state(_thread_in_vm);
3706   main_thread->initialize_thread_current();
3707   // must do this before set_active_handles
3708   main_thread->record_stack_base_and_size();
3709   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3710 
3711   if (!main_thread->set_as_starting_thread()) {
3712     vm_shutdown_during_initialization(
3713                                       "Failed necessary internal allocation. Out of swap space");
3714     main_thread->smr_delete();
3715     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3716     return JNI_ENOMEM;
3717   }
3718 
3719   // Enable guard page *after* os::create_main_thread(), otherwise it would
3720   // crash Linux VM, see notes in os_linux.cpp.
3721   main_thread->create_stack_guard_pages();
3722 
3723   // Initialize Java-Level synchronization subsystem
3724   ObjectMonitor::Initialize();
3725 
3726   // Initialize global modules
3727   jint status = init_globals();
3728   if (status != JNI_OK) {
3729     main_thread->smr_delete();
3730     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3731     return status;
3732   }
3733 
3734   if (TRACE_INITIALIZE() != JNI_OK) {
3735     vm_exit_during_initialization("Failed to initialize tracing backend");
3736   }
3737 
3738   // Should be done after the heap is fully created
3739   main_thread->cache_global_variables();
3740 
3741   HandleMark hm;
3742 
3743   { MutexLocker mu(Threads_lock);
3744     Threads::add(main_thread);
3745   }
3746 
3747   // Any JVMTI raw monitors entered in onload will transition into
3748   // real raw monitor. VM is setup enough here for raw monitor enter.
3749   JvmtiExport::transition_pending_onload_raw_monitors();
3750 
3751   // Create the VMThread
3752   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3753 
3754   VMThread::create();
3755     Thread* vmthread = VMThread::vm_thread();
3756 
3757     if (!os::create_thread(vmthread, os::vm_thread)) {
3758       vm_exit_during_initialization("Cannot create VM thread. "
3759                                     "Out of system resources.");
3760     }
3761 
3762     // Wait for the VM thread to become ready, and VMThread::run to initialize
3763     // Monitors can have spurious returns, must always check another state flag
3764     {
3765       MutexLocker ml(Notify_lock);
3766       os::start_thread(vmthread);
3767       while (vmthread->active_handles() == NULL) {
3768         Notify_lock->wait();
3769       }
3770     }
3771   }
3772 
3773   assert(Universe::is_fully_initialized(), "not initialized");
3774   if (VerifyDuringStartup) {
3775     // Make sure we're starting with a clean slate.
3776     VM_Verify verify_op;
3777     VMThread::execute(&verify_op);
3778   }
3779 
3780   Thread* THREAD = Thread::current();
3781 
3782   // Always call even when there are not JVMTI environments yet, since environments
3783   // may be attached late and JVMTI must track phases of VM execution
3784   JvmtiExport::enter_early_start_phase();
3785 
3786   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3787   JvmtiExport::post_early_vm_start();
3788 
3789   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3790 
3791   // We need this for ClassDataSharing - the initial vm.info property is set
3792   // with the default value of CDS "sharing" which may be reset through
3793   // command line options.
3794   reset_vm_info_property(CHECK_JNI_ERR);
3795 
3796   quicken_jni_functions();
3797 
3798   // No more stub generation allowed after that point.
3799   StubCodeDesc::freeze();
3800 
3801   // Set flag that basic initialization has completed. Used by exceptions and various
3802   // debug stuff, that does not work until all basic classes have been initialized.
3803   set_init_completed();
3804 
3805   LogConfiguration::post_initialize();
3806   Metaspace::post_initialize();
3807 
3808   HOTSPOT_VM_INIT_END();
3809 
3810   // record VM initialization completion time
3811 #if INCLUDE_MANAGEMENT
3812   Management::record_vm_init_completed();
3813 #endif // INCLUDE_MANAGEMENT
3814 
3815   // Signal Dispatcher needs to be started before VMInit event is posted
3816   os::signal_init(CHECK_JNI_ERR);
3817 
3818   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3819   if (!DisableAttachMechanism) {
3820     AttachListener::vm_start();
3821     if (StartAttachListener || AttachListener::init_at_startup()) {
3822       AttachListener::init();
3823     }
3824   }
3825 
3826   // Launch -Xrun agents
3827   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3828   // back-end can launch with -Xdebug -Xrunjdwp.
3829   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3830     create_vm_init_libraries();
3831   }
3832 
3833   if (CleanChunkPoolAsync) {
3834     Chunk::start_chunk_pool_cleaner_task();
3835   }
3836 
3837   // initialize compiler(s)
3838 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3839   CompileBroker::compilation_init(CHECK_JNI_ERR);
3840 #endif
3841 
3842   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3843   // It is done after compilers are initialized, because otherwise compilations of
3844   // signature polymorphic MH intrinsics can be missed
3845   // (see SystemDictionary::find_method_handle_intrinsic).
3846   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3847 
3848   // This will initialize the module system.  Only java.base classes can be
3849   // loaded until phase 2 completes
3850   call_initPhase2(CHECK_JNI_ERR);
3851 
3852   // Always call even when there are not JVMTI environments yet, since environments
3853   // may be attached late and JVMTI must track phases of VM execution
3854   JvmtiExport::enter_start_phase();
3855 
3856   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3857   JvmtiExport::post_vm_start();
3858 
3859   // Final system initialization including security manager and system class loader
3860   call_initPhase3(CHECK_JNI_ERR);
3861 
3862   // cache the system and platform class loaders
3863   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3864 
3865 #if INCLUDE_JVMCI
3866   if (EnableJVMCI) {
3867     // Initialize JVMCI eagerly when it is explicitly requested.
3868     // Or when JVMCIPrintProperties is enabled.
3869     // The JVMCI Java initialization code will read this flag and
3870     // do the printing if it's set.
3871     bool init = EagerJVMCI || JVMCIPrintProperties;
3872 
3873     if (!init) {
3874       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3875       // compilations via JVMCI will not actually block until JVMCI is initialized.
3876       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3877     }
3878 
3879     if (init) {
3880       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3881     }
3882   }
3883 #endif
3884 
3885   // Always call even when there are not JVMTI environments yet, since environments
3886   // may be attached late and JVMTI must track phases of VM execution
3887   JvmtiExport::enter_live_phase();
3888 
3889   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3890   JvmtiExport::post_vm_initialized();
3891 
3892   if (TRACE_START() != JNI_OK) {
3893     vm_exit_during_initialization("Failed to start tracing backend.");
3894   }
3895 
3896 #if INCLUDE_MANAGEMENT
3897   Management::initialize(THREAD);
3898 
3899   if (HAS_PENDING_EXCEPTION) {
3900     // management agent fails to start possibly due to
3901     // configuration problem and is responsible for printing
3902     // stack trace if appropriate. Simply exit VM.
3903     vm_exit(1);
3904   }
3905 #endif // INCLUDE_MANAGEMENT
3906 
3907   if (MemProfiling)                   MemProfiler::engage();
3908   StatSampler::engage();
3909   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3910 
3911   BiasedLocking::init();
3912 
3913 #if INCLUDE_RTM_OPT
3914   RTMLockingCounters::init();
3915 #endif
3916 
3917   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3918     call_postVMInitHook(THREAD);
3919     // The Java side of PostVMInitHook.run must deal with all
3920     // exceptions and provide means of diagnosis.
3921     if (HAS_PENDING_EXCEPTION) {
3922       CLEAR_PENDING_EXCEPTION;
3923     }
3924   }
3925 
3926   {
3927     MutexLocker ml(PeriodicTask_lock);
3928     // Make sure the WatcherThread can be started by WatcherThread::start()
3929     // or by dynamic enrollment.
3930     WatcherThread::make_startable();
3931     // Start up the WatcherThread if there are any periodic tasks
3932     // NOTE:  All PeriodicTasks should be registered by now. If they
3933     //   aren't, late joiners might appear to start slowly (we might
3934     //   take a while to process their first tick).
3935     if (PeriodicTask::num_tasks() > 0) {
3936       WatcherThread::start();
3937     }
3938   }
3939 
3940   create_vm_timer.end();
3941 #ifdef ASSERT
3942   _vm_complete = true;
3943 #endif
3944 
3945   if (DumpSharedSpaces) {
3946     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3947     ShouldNotReachHere();
3948   }
3949 
3950   return JNI_OK;
3951 }
3952 
3953 // type for the Agent_OnLoad and JVM_OnLoad entry points
3954 extern "C" {
3955   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3956 }
3957 // Find a command line agent library and return its entry point for
3958 //         -agentlib:  -agentpath:   -Xrun
3959 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3960 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3961                                     const char *on_load_symbols[],
3962                                     size_t num_symbol_entries) {
3963   OnLoadEntry_t on_load_entry = NULL;
3964   void *library = NULL;
3965 
3966   if (!agent->valid()) {
3967     char buffer[JVM_MAXPATHLEN];
3968     char ebuf[1024] = "";
3969     const char *name = agent->name();
3970     const char *msg = "Could not find agent library ";
3971 
3972     // First check to see if agent is statically linked into executable
3973     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3974       library = agent->os_lib();
3975     } else if (agent->is_absolute_path()) {
3976       library = os::dll_load(name, ebuf, sizeof ebuf);
3977       if (library == NULL) {
3978         const char *sub_msg = " in absolute path, with error: ";
3979         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3980         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3981         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3982         // If we can't find the agent, exit.
3983         vm_exit_during_initialization(buf, NULL);
3984         FREE_C_HEAP_ARRAY(char, buf);
3985       }
3986     } else {
3987       // Try to load the agent from the standard dll directory
3988       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3989                              name)) {
3990         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3991       }
3992       if (library == NULL) { // Try the library path directory.
3993         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
3994           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3995         }
3996         if (library == NULL) {
3997           const char *sub_msg = " on the library path, with error: ";
3998           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
3999 
4000           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4001                        strlen(ebuf) + strlen(sub_msg2) + 1;
4002           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4003           if (!agent->is_instrument_lib()) {
4004             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4005           } else {
4006             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4007           }
4008           // If we can't find the agent, exit.
4009           vm_exit_during_initialization(buf, NULL);
4010           FREE_C_HEAP_ARRAY(char, buf);
4011         }
4012       }
4013     }
4014     agent->set_os_lib(library);
4015     agent->set_valid();
4016   }
4017 
4018   // Find the OnLoad function.
4019   on_load_entry =
4020     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4021                                                           false,
4022                                                           on_load_symbols,
4023                                                           num_symbol_entries));
4024   return on_load_entry;
4025 }
4026 
4027 // Find the JVM_OnLoad entry point
4028 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4029   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4030   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4031 }
4032 
4033 // Find the Agent_OnLoad entry point
4034 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4035   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4036   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4037 }
4038 
4039 // For backwards compatibility with -Xrun
4040 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4041 // treated like -agentpath:
4042 // Must be called before agent libraries are created
4043 void Threads::convert_vm_init_libraries_to_agents() {
4044   AgentLibrary* agent;
4045   AgentLibrary* next;
4046 
4047   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4048     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4049     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4050 
4051     // If there is an JVM_OnLoad function it will get called later,
4052     // otherwise see if there is an Agent_OnLoad
4053     if (on_load_entry == NULL) {
4054       on_load_entry = lookup_agent_on_load(agent);
4055       if (on_load_entry != NULL) {
4056         // switch it to the agent list -- so that Agent_OnLoad will be called,
4057         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4058         Arguments::convert_library_to_agent(agent);
4059       } else {
4060         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4061       }
4062     }
4063   }
4064 }
4065 
4066 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4067 // Invokes Agent_OnLoad
4068 // Called very early -- before JavaThreads exist
4069 void Threads::create_vm_init_agents() {
4070   extern struct JavaVM_ main_vm;
4071   AgentLibrary* agent;
4072 
4073   JvmtiExport::enter_onload_phase();
4074 
4075   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4076     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4077 
4078     if (on_load_entry != NULL) {
4079       // Invoke the Agent_OnLoad function
4080       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4081       if (err != JNI_OK) {
4082         vm_exit_during_initialization("agent library failed to init", agent->name());
4083       }
4084     } else {
4085       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4086     }
4087   }
4088   JvmtiExport::enter_primordial_phase();
4089 }
4090 
4091 extern "C" {
4092   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4093 }
4094 
4095 void Threads::shutdown_vm_agents() {
4096   // Send any Agent_OnUnload notifications
4097   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4098   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4099   extern struct JavaVM_ main_vm;
4100   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4101 
4102     // Find the Agent_OnUnload function.
4103     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4104                                                    os::find_agent_function(agent,
4105                                                    false,
4106                                                    on_unload_symbols,
4107                                                    num_symbol_entries));
4108 
4109     // Invoke the Agent_OnUnload function
4110     if (unload_entry != NULL) {
4111       JavaThread* thread = JavaThread::current();
4112       ThreadToNativeFromVM ttn(thread);
4113       HandleMark hm(thread);
4114       (*unload_entry)(&main_vm);
4115     }
4116   }
4117 }
4118 
4119 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4120 // Invokes JVM_OnLoad
4121 void Threads::create_vm_init_libraries() {
4122   extern struct JavaVM_ main_vm;
4123   AgentLibrary* agent;
4124 
4125   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4126     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4127 
4128     if (on_load_entry != NULL) {
4129       // Invoke the JVM_OnLoad function
4130       JavaThread* thread = JavaThread::current();
4131       ThreadToNativeFromVM ttn(thread);
4132       HandleMark hm(thread);
4133       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4134       if (err != JNI_OK) {
4135         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4136       }
4137     } else {
4138       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4139     }
4140   }
4141 }
4142 
4143 
4144 // Last thread running calls java.lang.Shutdown.shutdown()
4145 void JavaThread::invoke_shutdown_hooks() {
4146   HandleMark hm(this);
4147 
4148   // We could get here with a pending exception, if so clear it now.
4149   if (this->has_pending_exception()) {
4150     this->clear_pending_exception();
4151   }
4152 
4153   EXCEPTION_MARK;
4154   Klass* shutdown_klass =
4155     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4156                                       THREAD);
4157   if (shutdown_klass != NULL) {
4158     // SystemDictionary::resolve_or_null will return null if there was
4159     // an exception.  If we cannot load the Shutdown class, just don't
4160     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4161     // won't be run.  Note that if a shutdown hook was registered,
4162     // the Shutdown class would have already been loaded
4163     // (Runtime.addShutdownHook will load it).
4164     JavaValue result(T_VOID);
4165     JavaCalls::call_static(&result,
4166                            shutdown_klass,
4167                            vmSymbols::shutdown_method_name(),
4168                            vmSymbols::void_method_signature(),
4169                            THREAD);
4170   }
4171   CLEAR_PENDING_EXCEPTION;
4172 }
4173 
4174 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4175 // the program falls off the end of main(). Another VM exit path is through
4176 // vm_exit() when the program calls System.exit() to return a value or when
4177 // there is a serious error in VM. The two shutdown paths are not exactly
4178 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4179 // and VM_Exit op at VM level.
4180 //
4181 // Shutdown sequence:
4182 //   + Shutdown native memory tracking if it is on
4183 //   + Wait until we are the last non-daemon thread to execute
4184 //     <-- every thing is still working at this moment -->
4185 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4186 //        shutdown hooks
4187 //   + Call before_exit(), prepare for VM exit
4188 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4189 //        currently the only user of this mechanism is File.deleteOnExit())
4190 //      > stop StatSampler, watcher thread, CMS threads,
4191 //        post thread end and vm death events to JVMTI,
4192 //        stop signal thread
4193 //   + Call JavaThread::exit(), it will:
4194 //      > release JNI handle blocks, remove stack guard pages
4195 //      > remove this thread from Threads list
4196 //     <-- no more Java code from this thread after this point -->
4197 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4198 //     the compiler threads at safepoint
4199 //     <-- do not use anything that could get blocked by Safepoint -->
4200 //   + Disable tracing at JNI/JVM barriers
4201 //   + Set _vm_exited flag for threads that are still running native code
4202 //   + Delete this thread
4203 //   + Call exit_globals()
4204 //      > deletes tty
4205 //      > deletes PerfMemory resources
4206 //   + Return to caller
4207 
4208 bool Threads::destroy_vm() {
4209   JavaThread* thread = JavaThread::current();
4210 
4211 #ifdef ASSERT
4212   _vm_complete = false;
4213 #endif
4214   // Wait until we are the last non-daemon thread to execute
4215   { MutexLocker nu(Threads_lock);
4216     while (Threads::number_of_non_daemon_threads() > 1)
4217       // This wait should make safepoint checks, wait without a timeout,
4218       // and wait as a suspend-equivalent condition.
4219       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4220                          Mutex::_as_suspend_equivalent_flag);
4221   }
4222 
4223   EventShutdown e;
4224   if (e.should_commit()) {
4225     e.set_reason("No remaining non-daemon Java threads");
4226     e.commit();
4227   }
4228 
4229   // Hang forever on exit if we are reporting an error.
4230   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4231     os::infinite_sleep();
4232   }
4233   os::wait_for_keypress_at_exit();
4234 
4235   // run Java level shutdown hooks
4236   thread->invoke_shutdown_hooks();
4237 
4238   before_exit(thread);
4239 
4240   thread->exit(true);
4241 
4242   // Stop VM thread.
4243   {
4244     // 4945125 The vm thread comes to a safepoint during exit.
4245     // GC vm_operations can get caught at the safepoint, and the
4246     // heap is unparseable if they are caught. Grab the Heap_lock
4247     // to prevent this. The GC vm_operations will not be able to
4248     // queue until after the vm thread is dead. After this point,
4249     // we'll never emerge out of the safepoint before the VM exits.
4250 
4251     MutexLocker ml(Heap_lock);
4252 
4253     VMThread::wait_for_vm_thread_exit();
4254     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4255     VMThread::destroy();
4256   }
4257 
4258   // clean up ideal graph printers
4259 #if defined(COMPILER2) && !defined(PRODUCT)
4260   IdealGraphPrinter::clean_up();
4261 #endif
4262 
4263   // Now, all Java threads are gone except daemon threads. Daemon threads
4264   // running Java code or in VM are stopped by the Safepoint. However,
4265   // daemon threads executing native code are still running.  But they
4266   // will be stopped at native=>Java/VM barriers. Note that we can't
4267   // simply kill or suspend them, as it is inherently deadlock-prone.
4268 
4269   VM_Exit::set_vm_exited();
4270 
4271   notify_vm_shutdown();
4272 
4273   // We are after VM_Exit::set_vm_exited() so we can't call
4274   // thread->smr_delete() or we will block on the Threads_lock.
4275   // Deleting the shutdown thread here is safe because another
4276   // JavaThread cannot have an active ThreadsListHandle for
4277   // this JavaThread.
4278   delete thread;
4279 
4280 #if INCLUDE_JVMCI
4281   if (JVMCICounterSize > 0) {
4282     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4283   }
4284 #endif
4285 
4286   // exit_globals() will delete tty
4287   exit_globals();
4288 
4289   LogConfiguration::finalize();
4290 
4291   return true;
4292 }
4293 
4294 
4295 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4296   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4297   return is_supported_jni_version(version);
4298 }
4299 
4300 
4301 jboolean Threads::is_supported_jni_version(jint version) {
4302   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4303   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4304   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4305   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4306   if (version == JNI_VERSION_9) return JNI_TRUE;
4307   if (version == JNI_VERSION_10) return JNI_TRUE;
4308   return JNI_FALSE;
4309 }
4310 
4311 
4312 void Threads::add(JavaThread* p, bool force_daemon) {
4313   // The threads lock must be owned at this point
4314   assert_locked_or_safepoint(Threads_lock);
4315 
4316   BarrierSet::barrier_set()->on_thread_attach(p);
4317   p->set_next(_thread_list);
4318   _thread_list = p;
4319 
4320   // Once a JavaThread is added to the Threads list, smr_delete() has
4321   // to be used to delete it. Otherwise we can just delete it directly.
4322   p->set_on_thread_list();
4323 
4324   _number_of_threads++;
4325   oop threadObj = p->threadObj();
4326   bool daemon = true;
4327   // Bootstrapping problem: threadObj can be null for initial
4328   // JavaThread (or for threads attached via JNI)
4329   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4330     _number_of_non_daemon_threads++;
4331     daemon = false;
4332   }
4333 
4334   ThreadService::add_thread(p, daemon);
4335 
4336   // Maintain fast thread list
4337   ThreadsSMRSupport::add_thread(p);
4338 
4339   // Possible GC point.
4340   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4341 }
4342 
4343 void Threads::remove(JavaThread* p) {
4344 
4345   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4346   ObjectSynchronizer::omFlush(p);
4347 
4348   // Extra scope needed for Thread_lock, so we can check
4349   // that we do not remove thread without safepoint code notice
4350   { MutexLocker ml(Threads_lock);
4351 
4352     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4353 
4354     // Maintain fast thread list
4355     ThreadsSMRSupport::remove_thread(p);
4356 
4357     JavaThread* current = _thread_list;
4358     JavaThread* prev    = NULL;
4359 
4360     while (current != p) {
4361       prev    = current;
4362       current = current->next();
4363     }
4364 
4365     if (prev) {
4366       prev->set_next(current->next());
4367     } else {
4368       _thread_list = p->next();
4369     }
4370 
4371     _number_of_threads--;
4372     oop threadObj = p->threadObj();
4373     bool daemon = true;
4374     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4375       _number_of_non_daemon_threads--;
4376       daemon = false;
4377 
4378       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4379       // on destroy_vm will wake up.
4380       if (number_of_non_daemon_threads() == 1) {
4381         Threads_lock->notify_all();
4382       }
4383     }
4384     ThreadService::remove_thread(p, daemon);
4385 
4386     // Make sure that safepoint code disregard this thread. This is needed since
4387     // the thread might mess around with locks after this point. This can cause it
4388     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4389     // of this thread since it is removed from the queue.
4390     p->set_terminated_value();
4391   } // unlock Threads_lock
4392 
4393   // Since Events::log uses a lock, we grab it outside the Threads_lock
4394   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4395 }
4396 
4397 // Operations on the Threads list for GC.  These are not explicitly locked,
4398 // but the garbage collector must provide a safe context for them to run.
4399 // In particular, these things should never be called when the Threads_lock
4400 // is held by some other thread. (Note: the Safepoint abstraction also
4401 // uses the Threads_lock to guarantee this property. It also makes sure that
4402 // all threads gets blocked when exiting or starting).
4403 
4404 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4405   ALL_JAVA_THREADS(p) {
4406     p->oops_do(f, cf);
4407   }
4408   VMThread::vm_thread()->oops_do(f, cf);
4409 }
4410 
4411 void Threads::change_thread_claim_parity() {
4412   // Set the new claim parity.
4413   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4414          "Not in range.");
4415   _thread_claim_parity++;
4416   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4417   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4418          "Not in range.");
4419 }
4420 
4421 #ifdef ASSERT
4422 void Threads::assert_all_threads_claimed() {
4423   ALL_JAVA_THREADS(p) {
4424     const int thread_parity = p->oops_do_parity();
4425     assert((thread_parity == _thread_claim_parity),
4426            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4427   }
4428   VMThread* vmt = VMThread::vm_thread();
4429   const int thread_parity = vmt->oops_do_parity();
4430   assert((thread_parity == _thread_claim_parity),
4431          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4432 }
4433 #endif // ASSERT
4434 
4435 class ParallelOopsDoThreadClosure : public ThreadClosure {
4436 private:
4437   OopClosure* _f;
4438   CodeBlobClosure* _cf;
4439 public:
4440   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4441   void do_thread(Thread* t) {
4442     t->oops_do(_f, _cf);
4443   }
4444 };
4445 
4446 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4447   ParallelOopsDoThreadClosure tc(f, cf);
4448   possibly_parallel_threads_do(is_par, &tc);
4449 }
4450 
4451 #if INCLUDE_ALL_GCS
4452 // Used by ParallelScavenge
4453 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4454   ALL_JAVA_THREADS(p) {
4455     q->enqueue(new ThreadRootsTask(p));
4456   }
4457   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4458 }
4459 
4460 // Used by Parallel Old
4461 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4462   ALL_JAVA_THREADS(p) {
4463     q->enqueue(new ThreadRootsMarkingTask(p));
4464   }
4465   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4466 }
4467 #endif // INCLUDE_ALL_GCS
4468 
4469 void Threads::nmethods_do(CodeBlobClosure* cf) {
4470   ALL_JAVA_THREADS(p) {
4471     // This is used by the code cache sweeper to mark nmethods that are active
4472     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4473     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4474     if(!p->is_Code_cache_sweeper_thread()) {
4475       p->nmethods_do(cf);
4476     }
4477   }
4478 }
4479 
4480 void Threads::metadata_do(void f(Metadata*)) {
4481   ALL_JAVA_THREADS(p) {
4482     p->metadata_do(f);
4483   }
4484 }
4485 
4486 class ThreadHandlesClosure : public ThreadClosure {
4487   void (*_f)(Metadata*);
4488  public:
4489   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4490   virtual void do_thread(Thread* thread) {
4491     thread->metadata_handles_do(_f);
4492   }
4493 };
4494 
4495 void Threads::metadata_handles_do(void f(Metadata*)) {
4496   // Only walk the Handles in Thread.
4497   ThreadHandlesClosure handles_closure(f);
4498   threads_do(&handles_closure);
4499 }
4500 
4501 void Threads::deoptimized_wrt_marked_nmethods() {
4502   ALL_JAVA_THREADS(p) {
4503     p->deoptimized_wrt_marked_nmethods();
4504   }
4505 }
4506 
4507 
4508 // Get count Java threads that are waiting to enter the specified monitor.
4509 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4510                                                          int count,
4511                                                          address monitor) {
4512   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4513 
4514   int i = 0;
4515   DO_JAVA_THREADS(t_list, p) {
4516     if (!p->can_call_java()) continue;
4517 
4518     address pending = (address)p->current_pending_monitor();
4519     if (pending == monitor) {             // found a match
4520       if (i < count) result->append(p);   // save the first count matches
4521       i++;
4522     }
4523   }
4524 
4525   return result;
4526 }
4527 
4528 
4529 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4530                                                       address owner) {
4531   // NULL owner means not locked so we can skip the search
4532   if (owner == NULL) return NULL;
4533 
4534   DO_JAVA_THREADS(t_list, p) {
4535     // first, see if owner is the address of a Java thread
4536     if (owner == (address)p) return p;
4537   }
4538 
4539   // Cannot assert on lack of success here since this function may be
4540   // used by code that is trying to report useful problem information
4541   // like deadlock detection.
4542   if (UseHeavyMonitors) return NULL;
4543 
4544   // If we didn't find a matching Java thread and we didn't force use of
4545   // heavyweight monitors, then the owner is the stack address of the
4546   // Lock Word in the owning Java thread's stack.
4547   //
4548   JavaThread* the_owner = NULL;
4549   DO_JAVA_THREADS(t_list, q) {
4550     if (q->is_lock_owned(owner)) {
4551       the_owner = q;
4552       break;
4553     }
4554   }
4555 
4556   // cannot assert on lack of success here; see above comment
4557   return the_owner;
4558 }
4559 
4560 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4561 void Threads::print_on(outputStream* st, bool print_stacks,
4562                        bool internal_format, bool print_concurrent_locks) {
4563   char buf[32];
4564   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4565 
4566   st->print_cr("Full thread dump %s (%s %s):",
4567                Abstract_VM_Version::vm_name(),
4568                Abstract_VM_Version::vm_release(),
4569                Abstract_VM_Version::vm_info_string());
4570   st->cr();
4571 
4572 #if INCLUDE_SERVICES
4573   // Dump concurrent locks
4574   ConcurrentLocksDump concurrent_locks;
4575   if (print_concurrent_locks) {
4576     concurrent_locks.dump_at_safepoint();
4577   }
4578 #endif // INCLUDE_SERVICES
4579 
4580   ThreadsSMRSupport::print_info_on(st);
4581   st->cr();
4582 
4583   ALL_JAVA_THREADS(p) {
4584     ResourceMark rm;
4585     p->print_on(st);
4586     if (print_stacks) {
4587       if (internal_format) {
4588         p->trace_stack();
4589       } else {
4590         p->print_stack_on(st);
4591       }
4592     }
4593     st->cr();
4594 #if INCLUDE_SERVICES
4595     if (print_concurrent_locks) {
4596       concurrent_locks.print_locks_on(p, st);
4597     }
4598 #endif // INCLUDE_SERVICES
4599   }
4600 
4601   VMThread::vm_thread()->print_on(st);
4602   st->cr();
4603   Universe::heap()->print_gc_threads_on(st);
4604   WatcherThread* wt = WatcherThread::watcher_thread();
4605   if (wt != NULL) {
4606     wt->print_on(st);
4607     st->cr();
4608   }
4609 
4610   st->flush();
4611 }
4612 
4613 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4614                              int buflen, bool* found_current) {
4615   if (this_thread != NULL) {
4616     bool is_current = (current == this_thread);
4617     *found_current = *found_current || is_current;
4618     st->print("%s", is_current ? "=>" : "  ");
4619 
4620     st->print(PTR_FORMAT, p2i(this_thread));
4621     st->print(" ");
4622     this_thread->print_on_error(st, buf, buflen);
4623     st->cr();
4624   }
4625 }
4626 
4627 class PrintOnErrorClosure : public ThreadClosure {
4628   outputStream* _st;
4629   Thread* _current;
4630   char* _buf;
4631   int _buflen;
4632   bool* _found_current;
4633  public:
4634   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4635                       int buflen, bool* found_current) :
4636    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4637 
4638   virtual void do_thread(Thread* thread) {
4639     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4640   }
4641 };
4642 
4643 // Threads::print_on_error() is called by fatal error handler. It's possible
4644 // that VM is not at safepoint and/or current thread is inside signal handler.
4645 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4646 // memory (even in resource area), it might deadlock the error handler.
4647 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4648                              int buflen) {
4649   ThreadsSMRSupport::print_info_on(st);
4650   st->cr();
4651 
4652   bool found_current = false;
4653   st->print_cr("Java Threads: ( => current thread )");
4654   ALL_JAVA_THREADS(thread) {
4655     print_on_error(thread, st, current, buf, buflen, &found_current);
4656   }
4657   st->cr();
4658 
4659   st->print_cr("Other Threads:");
4660   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4661   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4662 
4663   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4664   Universe::heap()->gc_threads_do(&print_closure);
4665 
4666   if (!found_current) {
4667     st->cr();
4668     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4669     current->print_on_error(st, buf, buflen);
4670     st->cr();
4671   }
4672   st->cr();
4673 
4674   st->print_cr("Threads with active compile tasks:");
4675   print_threads_compiling(st, buf, buflen);
4676 }
4677 
4678 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4679   ALL_JAVA_THREADS(thread) {
4680     if (thread->is_Compiler_thread()) {
4681       CompilerThread* ct = (CompilerThread*) thread;
4682 
4683       // Keep task in local variable for NULL check.
4684       // ct->_task might be set to NULL by concurring compiler thread
4685       // because it completed the compilation. The task is never freed,
4686       // though, just returned to a free list.
4687       CompileTask* task = ct->task();
4688       if (task != NULL) {
4689         thread->print_name_on_error(st, buf, buflen);
4690         task->print(st, NULL, true, true);
4691       }
4692     }
4693   }
4694 }
4695 
4696 
4697 // Internal SpinLock and Mutex
4698 // Based on ParkEvent
4699 
4700 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4701 //
4702 // We employ SpinLocks _only for low-contention, fixed-length
4703 // short-duration critical sections where we're concerned
4704 // about native mutex_t or HotSpot Mutex:: latency.
4705 // The mux construct provides a spin-then-block mutual exclusion
4706 // mechanism.
4707 //
4708 // Testing has shown that contention on the ListLock guarding gFreeList
4709 // is common.  If we implement ListLock as a simple SpinLock it's common
4710 // for the JVM to devolve to yielding with little progress.  This is true
4711 // despite the fact that the critical sections protected by ListLock are
4712 // extremely short.
4713 //
4714 // TODO-FIXME: ListLock should be of type SpinLock.
4715 // We should make this a 1st-class type, integrated into the lock
4716 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4717 // should have sufficient padding to avoid false-sharing and excessive
4718 // cache-coherency traffic.
4719 
4720 
4721 typedef volatile int SpinLockT;
4722 
4723 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4724   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4725     return;   // normal fast-path return
4726   }
4727 
4728   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4729   TEVENT(SpinAcquire - ctx);
4730   int ctr = 0;
4731   int Yields = 0;
4732   for (;;) {
4733     while (*adr != 0) {
4734       ++ctr;
4735       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4736         if (Yields > 5) {
4737           os::naked_short_sleep(1);
4738         } else {
4739           os::naked_yield();
4740           ++Yields;
4741         }
4742       } else {
4743         SpinPause();
4744       }
4745     }
4746     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4747   }
4748 }
4749 
4750 void Thread::SpinRelease(volatile int * adr) {
4751   assert(*adr != 0, "invariant");
4752   OrderAccess::fence();      // guarantee at least release consistency.
4753   // Roach-motel semantics.
4754   // It's safe if subsequent LDs and STs float "up" into the critical section,
4755   // but prior LDs and STs within the critical section can't be allowed
4756   // to reorder or float past the ST that releases the lock.
4757   // Loads and stores in the critical section - which appear in program
4758   // order before the store that releases the lock - must also appear
4759   // before the store that releases the lock in memory visibility order.
4760   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4761   // the ST of 0 into the lock-word which releases the lock, so fence
4762   // more than covers this on all platforms.
4763   *adr = 0;
4764 }
4765 
4766 // muxAcquire and muxRelease:
4767 //
4768 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4769 //    The LSB of the word is set IFF the lock is held.
4770 //    The remainder of the word points to the head of a singly-linked list
4771 //    of threads blocked on the lock.
4772 //
4773 // *  The current implementation of muxAcquire-muxRelease uses its own
4774 //    dedicated Thread._MuxEvent instance.  If we're interested in
4775 //    minimizing the peak number of extant ParkEvent instances then
4776 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4777 //    as certain invariants were satisfied.  Specifically, care would need
4778 //    to be taken with regards to consuming unpark() "permits".
4779 //    A safe rule of thumb is that a thread would never call muxAcquire()
4780 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4781 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4782 //    consume an unpark() permit intended for monitorenter, for instance.
4783 //    One way around this would be to widen the restricted-range semaphore
4784 //    implemented in park().  Another alternative would be to provide
4785 //    multiple instances of the PlatformEvent() for each thread.  One
4786 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4787 //
4788 // *  Usage:
4789 //    -- Only as leaf locks
4790 //    -- for short-term locking only as muxAcquire does not perform
4791 //       thread state transitions.
4792 //
4793 // Alternatives:
4794 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4795 //    but with parking or spin-then-park instead of pure spinning.
4796 // *  Use Taura-Oyama-Yonenzawa locks.
4797 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4798 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4799 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4800 //    acquiring threads use timers (ParkTimed) to detect and recover from
4801 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4802 //    boundaries by using placement-new.
4803 // *  Augment MCS with advisory back-link fields maintained with CAS().
4804 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4805 //    The validity of the backlinks must be ratified before we trust the value.
4806 //    If the backlinks are invalid the exiting thread must back-track through the
4807 //    the forward links, which are always trustworthy.
4808 // *  Add a successor indication.  The LockWord is currently encoded as
4809 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4810 //    to provide the usual futile-wakeup optimization.
4811 //    See RTStt for details.
4812 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4813 //
4814 
4815 
4816 const intptr_t LOCKBIT = 1;
4817 
4818 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4819   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4820   if (w == 0) return;
4821   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4822     return;
4823   }
4824 
4825   TEVENT(muxAcquire - Contention);
4826   ParkEvent * const Self = Thread::current()->_MuxEvent;
4827   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4828   for (;;) {
4829     int its = (os::is_MP() ? 100 : 0) + 1;
4830 
4831     // Optional spin phase: spin-then-park strategy
4832     while (--its >= 0) {
4833       w = *Lock;
4834       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4835         return;
4836       }
4837     }
4838 
4839     Self->reset();
4840     Self->OnList = intptr_t(Lock);
4841     // The following fence() isn't _strictly necessary as the subsequent
4842     // CAS() both serializes execution and ratifies the fetched *Lock value.
4843     OrderAccess::fence();
4844     for (;;) {
4845       w = *Lock;
4846       if ((w & LOCKBIT) == 0) {
4847         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4848           Self->OnList = 0;   // hygiene - allows stronger asserts
4849           return;
4850         }
4851         continue;      // Interference -- *Lock changed -- Just retry
4852       }
4853       assert(w & LOCKBIT, "invariant");
4854       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4855       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4856     }
4857 
4858     while (Self->OnList != 0) {
4859       Self->park();
4860     }
4861   }
4862 }
4863 
4864 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4865   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4866   if (w == 0) return;
4867   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4868     return;
4869   }
4870 
4871   TEVENT(muxAcquire - Contention);
4872   ParkEvent * ReleaseAfter = NULL;
4873   if (ev == NULL) {
4874     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4875   }
4876   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4877   for (;;) {
4878     guarantee(ev->OnList == 0, "invariant");
4879     int its = (os::is_MP() ? 100 : 0) + 1;
4880 
4881     // Optional spin phase: spin-then-park strategy
4882     while (--its >= 0) {
4883       w = *Lock;
4884       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4885         if (ReleaseAfter != NULL) {
4886           ParkEvent::Release(ReleaseAfter);
4887         }
4888         return;
4889       }
4890     }
4891 
4892     ev->reset();
4893     ev->OnList = intptr_t(Lock);
4894     // The following fence() isn't _strictly necessary as the subsequent
4895     // CAS() both serializes execution and ratifies the fetched *Lock value.
4896     OrderAccess::fence();
4897     for (;;) {
4898       w = *Lock;
4899       if ((w & LOCKBIT) == 0) {
4900         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4901           ev->OnList = 0;
4902           // We call ::Release while holding the outer lock, thus
4903           // artificially lengthening the critical section.
4904           // Consider deferring the ::Release() until the subsequent unlock(),
4905           // after we've dropped the outer lock.
4906           if (ReleaseAfter != NULL) {
4907             ParkEvent::Release(ReleaseAfter);
4908           }
4909           return;
4910         }
4911         continue;      // Interference -- *Lock changed -- Just retry
4912       }
4913       assert(w & LOCKBIT, "invariant");
4914       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4915       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4916     }
4917 
4918     while (ev->OnList != 0) {
4919       ev->park();
4920     }
4921   }
4922 }
4923 
4924 // Release() must extract a successor from the list and then wake that thread.
4925 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4926 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4927 // Release() would :
4928 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4929 // (B) Extract a successor from the private list "in-hand"
4930 // (C) attempt to CAS() the residual back into *Lock over null.
4931 //     If there were any newly arrived threads and the CAS() would fail.
4932 //     In that case Release() would detach the RATs, re-merge the list in-hand
4933 //     with the RATs and repeat as needed.  Alternately, Release() might
4934 //     detach and extract a successor, but then pass the residual list to the wakee.
4935 //     The wakee would be responsible for reattaching and remerging before it
4936 //     competed for the lock.
4937 //
4938 // Both "pop" and DMR are immune from ABA corruption -- there can be
4939 // multiple concurrent pushers, but only one popper or detacher.
4940 // This implementation pops from the head of the list.  This is unfair,
4941 // but tends to provide excellent throughput as hot threads remain hot.
4942 // (We wake recently run threads first).
4943 //
4944 // All paths through muxRelease() will execute a CAS.
4945 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4946 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4947 // executed within the critical section are complete and globally visible before the
4948 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4949 void Thread::muxRelease(volatile intptr_t * Lock)  {
4950   for (;;) {
4951     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4952     assert(w & LOCKBIT, "invariant");
4953     if (w == LOCKBIT) return;
4954     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4955     assert(List != NULL, "invariant");
4956     assert(List->OnList == intptr_t(Lock), "invariant");
4957     ParkEvent * const nxt = List->ListNext;
4958     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4959 
4960     // The following CAS() releases the lock and pops the head element.
4961     // The CAS() also ratifies the previously fetched lock-word value.
4962     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
4963       continue;
4964     }
4965     List->OnList = 0;
4966     OrderAccess::fence();
4967     List->unpark();
4968     return;
4969   }
4970 }
4971 
4972 
4973 void Threads::verify() {
4974   ALL_JAVA_THREADS(p) {
4975     p->verify();
4976   }
4977   VMThread* thread = VMThread::vm_thread();
4978   if (thread != NULL) thread->verify();
4979 }