1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/disassembler.hpp"
  32 #include "gc/shared/collectedHeap.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "interpreter/linkResolver.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.hpp"
  41 #include "oops/constantPool.hpp"
  42 #include "oops/cpCache.inline.hpp"
  43 #include "oops/instanceKlass.hpp"
  44 #include "oops/methodData.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/objArrayOop.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/atomic.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/deoptimization.hpp"
  55 #include "runtime/fieldDescriptor.hpp"
  56 #include "runtime/frame.inline.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/icache.hpp"
  59 #include "runtime/interfaceSupport.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/jfieldIDWorkaround.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/stubRoutines.hpp"
  65 #include "runtime/synchronizer.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "utilities/align.hpp"
  68 #include "utilities/copy.hpp"
  69 #include "utilities/events.hpp"
  70 #ifdef COMPILER2
  71 #include "opto/runtime.hpp"
  72 #endif
  73 
  74 class UnlockFlagSaver {
  75   private:
  76     JavaThread* _thread;
  77     bool _do_not_unlock;
  78   public:
  79     UnlockFlagSaver(JavaThread* t) {
  80       _thread = t;
  81       _do_not_unlock = t->do_not_unlock_if_synchronized();
  82       t->set_do_not_unlock_if_synchronized(false);
  83     }
  84     ~UnlockFlagSaver() {
  85       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  86     }
  87 };
  88 
  89 // Helper class to access current interpreter state
  90 class LastFrameAccessor : public StackObj {
  91   frame _last_frame;
  92 public:
  93   LastFrameAccessor(JavaThread* thread) {
  94     assert(thread == Thread::current(), "sanity");
  95     _last_frame = thread->last_frame();
  96   }
  97   bool is_interpreted_frame() const              { return _last_frame.is_interpreted_frame(); }
  98   Method*   method() const                       { return _last_frame.interpreter_frame_method(); }
  99   address   bcp() const                          { return _last_frame.interpreter_frame_bcp(); }
 100   int       bci() const                          { return _last_frame.interpreter_frame_bci(); }
 101   address   mdp() const                          { return _last_frame.interpreter_frame_mdp(); }
 102 
 103   void      set_bcp(address bcp)                 { _last_frame.interpreter_frame_set_bcp(bcp); }
 104   void      set_mdp(address dp)                  { _last_frame.interpreter_frame_set_mdp(dp); }
 105 
 106   // pass method to avoid calling unsafe bcp_to_method (partial fix 4926272)
 107   Bytecodes::Code code() const                   { return Bytecodes::code_at(method(), bcp()); }
 108 
 109   Bytecode  bytecode() const                     { return Bytecode(method(), bcp()); }
 110   int get_index_u1(Bytecodes::Code bc) const     { return bytecode().get_index_u1(bc); }
 111   int get_index_u2(Bytecodes::Code bc) const     { return bytecode().get_index_u2(bc); }
 112   int get_index_u2_cpcache(Bytecodes::Code bc) const
 113                                                  { return bytecode().get_index_u2_cpcache(bc); }
 114   int get_index_u4(Bytecodes::Code bc) const     { return bytecode().get_index_u4(bc); }
 115   int number_of_dimensions() const               { return bcp()[3]; }
 116   ConstantPoolCacheEntry* cache_entry_at(int i) const
 117                                                  { return method()->constants()->cache()->entry_at(i); }
 118   ConstantPoolCacheEntry* cache_entry() const    { return cache_entry_at(Bytes::get_native_u2(bcp() + 1)); }
 119 
 120   oop callee_receiver(Symbol* signature) {
 121     return _last_frame.interpreter_callee_receiver(signature);
 122   }
 123   BasicObjectLock* monitor_begin() const {
 124     return _last_frame.interpreter_frame_monitor_begin();
 125   }
 126   BasicObjectLock* monitor_end() const {
 127     return _last_frame.interpreter_frame_monitor_end();
 128   }
 129   BasicObjectLock* next_monitor(BasicObjectLock* current) const {
 130     return _last_frame.next_monitor_in_interpreter_frame(current);
 131   }
 132 
 133   frame& get_frame()                             { return _last_frame; }
 134 };
 135 
 136 
 137 bool InterpreterRuntime::is_breakpoint(JavaThread *thread) {
 138   return Bytecodes::code_or_bp_at(LastFrameAccessor(thread).bcp()) == Bytecodes::_breakpoint;
 139 }
 140 
 141 //------------------------------------------------------------------------------------------------------------------------
 142 // State accessors
 143 
 144 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
 145   LastFrameAccessor last_frame(thread);
 146   last_frame.set_bcp(bcp);
 147   if (ProfileInterpreter) {
 148     // ProfileTraps uses MDOs independently of ProfileInterpreter.
 149     // That is why we must check both ProfileInterpreter and mdo != NULL.
 150     MethodData* mdo = last_frame.method()->method_data();
 151     if (mdo != NULL) {
 152       NEEDS_CLEANUP;
 153       last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci()));
 154     }
 155   }
 156 }
 157 
 158 //------------------------------------------------------------------------------------------------------------------------
 159 // Constants
 160 
 161 
 162 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 163   // access constant pool
 164   LastFrameAccessor last_frame(thread);
 165   ConstantPool* pool = last_frame.method()->constants();
 166   int index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc);
 167   constantTag tag = pool->tag_at(index);
 168 
 169   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 170   Klass* klass = pool->klass_at(index, CHECK);
 171     oop java_class = klass->java_mirror();
 172     thread->set_vm_result(java_class);
 173 IRT_END
 174 
 175 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 176   assert(bytecode == Bytecodes::_ldc ||
 177          bytecode == Bytecodes::_ldc_w ||
 178          bytecode == Bytecodes::_ldc2_w ||
 179          bytecode == Bytecodes::_fast_aldc ||
 180          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 181   ResourceMark rm(thread);
 182   const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc ||
 183                              bytecode == Bytecodes::_fast_aldc_w);
 184   LastFrameAccessor last_frame(thread);
 185   methodHandle m (thread, last_frame.method());
 186   Bytecode_loadconstant ldc(m, last_frame.bci());
 187 
 188   // Double-check the size.  (Condy can have any type.)
 189   BasicType type = ldc.result_type();
 190   switch (type2size[type]) {
 191   case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break;
 192   case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break;
 193   default: ShouldNotReachHere();
 194   }
 195 
 196   // Resolve the constant.  This does not do unboxing.
 197   // But it does replace Universe::the_null_sentinel by null.
 198   oop result = ldc.resolve_constant(CHECK);
 199   assert(result != NULL || is_fast_aldc, "null result only valid for fast_aldc");
 200 
 201 #ifdef ASSERT
 202   {
 203     // The bytecode wrappers aren't GC-safe so construct a new one
 204     Bytecode_loadconstant ldc2(m, last_frame.bci());
 205     int rindex = ldc2.cache_index();
 206     if (rindex < 0)
 207       rindex = m->constants()->cp_to_object_index(ldc2.pool_index());
 208     if (rindex >= 0) {
 209       oop coop = m->constants()->resolved_references()->obj_at(rindex);
 210       oop roop = (result == NULL ? Universe::the_null_sentinel() : result);
 211       assert(roop == coop, "expected result for assembly code");
 212     }
 213   }
 214 #endif
 215   thread->set_vm_result(result);
 216   if (!is_fast_aldc) {
 217     // Tell the interpreter how to unbox the primitive.
 218     guarantee(java_lang_boxing_object::is_instance(result, type), "");
 219     int offset = java_lang_boxing_object::value_offset_in_bytes(type);
 220     intptr_t flags = ((as_TosState(type) << ConstantPoolCacheEntry::tos_state_shift)
 221                       | (offset & ConstantPoolCacheEntry::field_index_mask));
 222     thread->set_vm_result_2((Metadata*)flags);
 223   }
 224 }
 225 IRT_END
 226 
 227 
 228 //------------------------------------------------------------------------------------------------------------------------
 229 // Allocation
 230 
 231 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 232   JvmtiSampledObjectAllocEventCollector collector;
 233   Klass* k = pool->klass_at(index, CHECK);
 234   InstanceKlass* klass = InstanceKlass::cast(k);
 235 
 236   // Make sure we are not instantiating an abstract klass
 237   klass->check_valid_for_instantiation(true, CHECK);
 238 
 239   // Make sure klass is initialized
 240   klass->initialize(CHECK);
 241 
 242   // At this point the class may not be fully initialized
 243   // because of recursive initialization. If it is fully
 244   // initialized & has_finalized is not set, we rewrite
 245   // it into its fast version (Note: no locking is needed
 246   // here since this is an atomic byte write and can be
 247   // done more than once).
 248   //
 249   // Note: In case of classes with has_finalized we don't
 250   //       rewrite since that saves us an extra check in
 251   //       the fast version which then would call the
 252   //       slow version anyway (and do a call back into
 253   //       Java).
 254   //       If we have a breakpoint, then we don't rewrite
 255   //       because the _breakpoint bytecode would be lost.
 256   oop obj = klass->allocate_instance(CHECK);
 257   thread->set_vm_result(obj);
 258 IRT_END
 259 
 260 
 261 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 262   JvmtiSampledObjectAllocEventCollector collector;
 263   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 264   thread->set_vm_result(obj);
 265 IRT_END
 266 
 267 
 268 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 269   JvmtiSampledObjectAllocEventCollector collector;
 270   Klass*    klass = pool->klass_at(index, CHECK);
 271   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 272   thread->set_vm_result(obj);
 273 IRT_END
 274 
 275 
 276 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 277   JvmtiSampledObjectAllocEventCollector collector;
 278   // We may want to pass in more arguments - could make this slightly faster
 279   LastFrameAccessor last_frame(thread);
 280   ConstantPool* constants = last_frame.method()->constants();
 281   int          i = last_frame.get_index_u2(Bytecodes::_multianewarray);
 282   Klass* klass   = constants->klass_at(i, CHECK);
 283   int   nof_dims = last_frame.number_of_dimensions();
 284   assert(klass->is_klass(), "not a class");
 285   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 286 
 287   // We must create an array of jints to pass to multi_allocate.
 288   ResourceMark rm(thread);
 289   const int small_dims = 10;
 290   jint dim_array[small_dims];
 291   jint *dims = &dim_array[0];
 292   if (nof_dims > small_dims) {
 293     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 294   }
 295   for (int index = 0; index < nof_dims; index++) {
 296     // offset from first_size_address is addressed as local[index]
 297     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 298     dims[index] = first_size_address[n];
 299   }
 300   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 301   thread->set_vm_result(obj);
 302 IRT_END
 303 
 304 
 305 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 306   assert(oopDesc::is_oop(obj), "must be a valid oop");
 307   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 308   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 309 IRT_END
 310 
 311 
 312 // Quicken instance-of and check-cast bytecodes
 313 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 314   // Force resolving; quicken the bytecode
 315   LastFrameAccessor last_frame(thread);
 316   int which = last_frame.get_index_u2(Bytecodes::_checkcast);
 317   ConstantPool* cpool = last_frame.method()->constants();
 318   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 319   // program we might have seen an unquick'd bytecode in the interpreter but have another
 320   // thread quicken the bytecode before we get here.
 321   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 322   Klass* klass = cpool->klass_at(which, CHECK);
 323   thread->set_vm_result_2(klass);
 324 IRT_END
 325 
 326 
 327 //------------------------------------------------------------------------------------------------------------------------
 328 // Exceptions
 329 
 330 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 331                                          const methodHandle& trap_method, int trap_bci, TRAPS) {
 332   if (trap_method.not_null()) {
 333     MethodData* trap_mdo = trap_method->method_data();
 334     if (trap_mdo == NULL) {
 335       Method::build_interpreter_method_data(trap_method, THREAD);
 336       if (HAS_PENDING_EXCEPTION) {
 337         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 338                "we expect only an OOM error here");
 339         CLEAR_PENDING_EXCEPTION;
 340       }
 341       trap_mdo = trap_method->method_data();
 342       // and fall through...
 343     }
 344     if (trap_mdo != NULL) {
 345       // Update per-method count of trap events.  The interpreter
 346       // is updating the MDO to simulate the effect of compiler traps.
 347       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 348     }
 349   }
 350 }
 351 
 352 // Assume the compiler is (or will be) interested in this event.
 353 // If necessary, create an MDO to hold the information, and record it.
 354 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 355   assert(ProfileTraps, "call me only if profiling");
 356   LastFrameAccessor last_frame(thread);
 357   methodHandle trap_method(thread, last_frame.method());
 358   int trap_bci = trap_method->bci_from(last_frame.bcp());
 359   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 360 }
 361 
 362 #ifdef CC_INTERP
 363 // As legacy note_trap, but we have more arguments.
 364 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 365   methodHandle trap_method(method);
 366   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 367 IRT_END
 368 
 369 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 370 // for each exception.
 371 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 372   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 373 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 374   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 375 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 376   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 377 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 378   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 379 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 380   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 381 #endif // CC_INTERP
 382 
 383 
 384 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 385   // get klass
 386   InstanceKlass* klass = InstanceKlass::cast(k);
 387   assert(klass->is_initialized(),
 388          "this klass should have been initialized during VM initialization");
 389   // create instance - do not call constructor since we may have no
 390   // (java) stack space left (should assert constructor is empty)
 391   Handle exception;
 392   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 393   exception = Handle(THREAD, exception_oop);
 394   if (StackTraceInThrowable) {
 395     java_lang_Throwable::fill_in_stack_trace(exception);
 396   }
 397   return exception;
 398 }
 399 
 400 // Special handling for stack overflow: since we don't have any (java) stack
 401 // space left we use the pre-allocated & pre-initialized StackOverflowError
 402 // klass to create an stack overflow error instance.  We do not call its
 403 // constructor for the same reason (it is empty, anyway).
 404 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 405   Handle exception = get_preinitialized_exception(
 406                                  SystemDictionary::StackOverflowError_klass(),
 407                                  CHECK);
 408   // Increment counter for hs_err file reporting
 409   Atomic::inc(&Exceptions::_stack_overflow_errors);
 410   THROW_HANDLE(exception);
 411 IRT_END
 412 
 413 IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 414   Handle exception = get_preinitialized_exception(
 415                                  SystemDictionary::StackOverflowError_klass(),
 416                                  CHECK);
 417   java_lang_Throwable::set_message(exception(),
 418           Universe::delayed_stack_overflow_error_message());
 419   // Increment counter for hs_err file reporting
 420   Atomic::inc(&Exceptions::_stack_overflow_errors);
 421   THROW_HANDLE(exception);
 422 IRT_END
 423 
 424 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 425   // lookup exception klass
 426   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 427   if (ProfileTraps) {
 428     if (s == vmSymbols::java_lang_ArithmeticException()) {
 429       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 430     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 431       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 432     }
 433   }
 434   // create exception
 435   Handle exception = Exceptions::new_exception(thread, s, message);
 436   thread->set_vm_result(exception());
 437 IRT_END
 438 
 439 
 440 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 441   ResourceMark rm(thread);
 442   const char* klass_name = obj->klass()->external_name();
 443   // lookup exception klass
 444   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 445   if (ProfileTraps) {
 446     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 447   }
 448   // create exception, with klass name as detail message
 449   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 450   thread->set_vm_result(exception());
 451 IRT_END
 452 
 453 
 454 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 455   char message[jintAsStringSize];
 456   // lookup exception klass
 457   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 458   if (ProfileTraps) {
 459     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 460   }
 461   // create exception
 462   sprintf(message, "%d", index);
 463   THROW_MSG(s, message);
 464 IRT_END
 465 
 466 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 467   JavaThread* thread, oopDesc* obj))
 468 
 469   ResourceMark rm(thread);
 470   char* message = SharedRuntime::generate_class_cast_message(
 471     thread, obj->klass());
 472 
 473   if (ProfileTraps) {
 474     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 475   }
 476 
 477   // create exception
 478   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 479 IRT_END
 480 
 481 // exception_handler_for_exception(...) returns the continuation address,
 482 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 483 // The exception oop is returned to make sure it is preserved over GC (it
 484 // is only on the stack if the exception was thrown explicitly via athrow).
 485 // During this operation, the expression stack contains the values for the
 486 // bci where the exception happened. If the exception was propagated back
 487 // from a call, the expression stack contains the values for the bci at the
 488 // invoke w/o arguments (i.e., as if one were inside the call).
 489 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 490 
 491   LastFrameAccessor last_frame(thread);
 492   Handle             h_exception(thread, exception);
 493   methodHandle       h_method   (thread, last_frame.method());
 494   constantPoolHandle h_constants(thread, h_method->constants());
 495   bool               should_repeat;
 496   int                handler_bci;
 497   int                current_bci = last_frame.bci();
 498 
 499   if (thread->frames_to_pop_failed_realloc() > 0) {
 500     // Allocation of scalar replaced object used in this frame
 501     // failed. Unconditionally pop the frame.
 502     thread->dec_frames_to_pop_failed_realloc();
 503     thread->set_vm_result(h_exception());
 504     // If the method is synchronized we already unlocked the monitor
 505     // during deoptimization so the interpreter needs to skip it when
 506     // the frame is popped.
 507     thread->set_do_not_unlock_if_synchronized(true);
 508 #ifdef CC_INTERP
 509     return (address) -1;
 510 #else
 511     return Interpreter::remove_activation_entry();
 512 #endif
 513   }
 514 
 515   // Need to do this check first since when _do_not_unlock_if_synchronized
 516   // is set, we don't want to trigger any classloading which may make calls
 517   // into java, or surprisingly find a matching exception handler for bci 0
 518   // since at this moment the method hasn't been "officially" entered yet.
 519   if (thread->do_not_unlock_if_synchronized()) {
 520     ResourceMark rm;
 521     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 522     thread->set_vm_result(exception);
 523 #ifdef CC_INTERP
 524     return (address) -1;
 525 #else
 526     return Interpreter::remove_activation_entry();
 527 #endif
 528   }
 529 
 530   do {
 531     should_repeat = false;
 532 
 533     // assertions
 534 #ifdef ASSERT
 535     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 536     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 537     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 538       if (ExitVMOnVerifyError) vm_exit(-1);
 539       ShouldNotReachHere();
 540     }
 541 #endif
 542 
 543     // tracing
 544     if (log_is_enabled(Info, exceptions)) {
 545       ResourceMark rm(thread);
 546       stringStream tempst;
 547       tempst.print("interpreter method <%s>\n"
 548                    " at bci %d for thread " INTPTR_FORMAT " (%s)",
 549                    h_method->print_value_string(), current_bci, p2i(thread), thread->name());
 550       Exceptions::log_exception(h_exception, tempst);
 551     }
 552 // Don't go paging in something which won't be used.
 553 //     else if (extable->length() == 0) {
 554 //       // disabled for now - interpreter is not using shortcut yet
 555 //       // (shortcut is not to call runtime if we have no exception handlers)
 556 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 557 //     }
 558     // for AbortVMOnException flag
 559     Exceptions::debug_check_abort(h_exception);
 560 
 561     // exception handler lookup
 562     Klass* klass = h_exception->klass();
 563     handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
 564     if (HAS_PENDING_EXCEPTION) {
 565       // We threw an exception while trying to find the exception handler.
 566       // Transfer the new exception to the exception handle which will
 567       // be set into thread local storage, and do another lookup for an
 568       // exception handler for this exception, this time starting at the
 569       // BCI of the exception handler which caused the exception to be
 570       // thrown (bug 4307310).
 571       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 572       CLEAR_PENDING_EXCEPTION;
 573       if (handler_bci >= 0) {
 574         current_bci = handler_bci;
 575         should_repeat = true;
 576       }
 577     }
 578   } while (should_repeat == true);
 579 
 580 #if INCLUDE_JVMCI
 581   if (EnableJVMCI && h_method->method_data() != NULL) {
 582     ResourceMark rm(thread);
 583     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 584     if (pdata != NULL && pdata->is_BitData()) {
 585       BitData* bit_data = (BitData*) pdata;
 586       bit_data->set_exception_seen();
 587     }
 588   }
 589 #endif
 590 
 591   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 592   // time throw or a stack unwinding throw and accordingly notify the debugger
 593   if (JvmtiExport::can_post_on_exceptions()) {
 594     JvmtiExport::post_exception_throw(thread, h_method(), last_frame.bcp(), h_exception());
 595   }
 596 
 597 #ifdef CC_INTERP
 598   address continuation = (address)(intptr_t) handler_bci;
 599 #else
 600   address continuation = NULL;
 601 #endif
 602   address handler_pc = NULL;
 603   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 604     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 605     // handler in this method, or (b) after a stack overflow there is not yet
 606     // enough stack space available to reprotect the stack.
 607 #ifndef CC_INTERP
 608     continuation = Interpreter::remove_activation_entry();
 609 #endif
 610 #if COMPILER2_OR_JVMCI
 611     // Count this for compilation purposes
 612     h_method->interpreter_throwout_increment(THREAD);
 613 #endif
 614   } else {
 615     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 616     handler_pc = h_method->code_base() + handler_bci;
 617 #ifndef CC_INTERP
 618     set_bcp_and_mdp(handler_pc, thread);
 619     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 620 #endif
 621   }
 622   // notify debugger of an exception catch
 623   // (this is good for exceptions caught in native methods as well)
 624   if (JvmtiExport::can_post_on_exceptions()) {
 625     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 626   }
 627 
 628   thread->set_vm_result(h_exception());
 629   return continuation;
 630 IRT_END
 631 
 632 
 633 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 634   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 635   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 636 IRT_END
 637 
 638 
 639 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 640   THROW(vmSymbols::java_lang_AbstractMethodError());
 641 IRT_END
 642 
 643 // This method is called from the "abstract_entry" of the interpreter.
 644 // At that point, the arguments have already been removed from the stack
 645 // and therefore we don't have the receiver object at our fingertips. (Though,
 646 // on some platforms the receiver still resides in a register...). Thus,
 647 // we have no choice but print an error message not containing the receiver
 648 // type.
 649 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* thread,
 650                                                                         Method* missingMethod))
 651   ResourceMark rm(thread);
 652   assert(missingMethod != NULL, "sanity");
 653   methodHandle m(thread, missingMethod);
 654   LinkResolver::throw_abstract_method_error(m, THREAD);
 655 IRT_END
 656 
 657 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* thread,
 658                                                                      Klass* recvKlass,
 659                                                                      Method* missingMethod))
 660   ResourceMark rm(thread);
 661   methodHandle mh = methodHandle(thread, missingMethod);
 662   LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD);
 663 IRT_END
 664 
 665 
 666 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 667   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 668 IRT_END
 669 
 670 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* thread,
 671                                                                               Klass* recvKlass,
 672                                                                               Klass* interfaceKlass))
 673   ResourceMark rm(thread);
 674   char buf[1000];
 675   buf[0] = '\0';
 676   jio_snprintf(buf, sizeof(buf),
 677                "Class %s does not implement the requested interface %s",
 678                recvKlass ? recvKlass->external_name() : "NULL",
 679                interfaceKlass ? interfaceKlass->external_name() : "NULL");
 680   THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
 681 IRT_END
 682 
 683 //------------------------------------------------------------------------------------------------------------------------
 684 // Fields
 685 //
 686 
 687 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 688   Thread* THREAD = thread;
 689   // resolve field
 690   fieldDescriptor info;
 691   LastFrameAccessor last_frame(thread);
 692   constantPoolHandle pool(thread, last_frame.method()->constants());
 693   methodHandle m(thread, last_frame.method());
 694   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 695                     bytecode == Bytecodes::_putstatic);
 696   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 697 
 698   {
 699     JvmtiHideSingleStepping jhss(thread);
 700     LinkResolver::resolve_field_access(info, pool, last_frame.get_index_u2_cpcache(bytecode),
 701                                        m, bytecode, CHECK);
 702   } // end JvmtiHideSingleStepping
 703 
 704   // check if link resolution caused cpCache to be updated
 705   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 706   if (cp_cache_entry->is_resolved(bytecode)) return;
 707 
 708   // compute auxiliary field attributes
 709   TosState state  = as_TosState(info.field_type());
 710 
 711   // Resolution of put instructions on final fields is delayed. That is required so that
 712   // exceptions are thrown at the correct place (when the instruction is actually invoked).
 713   // If we do not resolve an instruction in the current pass, leaving the put_code
 714   // set to zero will cause the next put instruction to the same field to reresolve.
 715 
 716   // Resolution of put instructions to final instance fields with invalid updates (i.e.,
 717   // to final instance fields with updates originating from a method different than <init>)
 718   // is inhibited. A putfield instruction targeting an instance final field must throw
 719   // an IllegalAccessError if the instruction is not in an instance
 720   // initializer method <init>. If resolution were not inhibited, a putfield
 721   // in an initializer method could be resolved in the initializer. Subsequent
 722   // putfield instructions to the same field would then use cached information.
 723   // As a result, those instructions would not pass through the VM. That is,
 724   // checks in resolve_field_access() would not be executed for those instructions
 725   // and the required IllegalAccessError would not be thrown.
 726   //
 727   // Also, we need to delay resolving getstatic and putstatic instructions until the
 728   // class is initialized.  This is required so that access to the static
 729   // field will call the initialization function every time until the class
 730   // is completely initialized ala. in 2.17.5 in JVM Specification.
 731   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 732   bool uninitialized_static = is_static && !klass->is_initialized();
 733   bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
 734                                       info.has_initialized_final_update();
 735   assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
 736 
 737   Bytecodes::Code get_code = (Bytecodes::Code)0;
 738   Bytecodes::Code put_code = (Bytecodes::Code)0;
 739   if (!uninitialized_static) {
 740     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 741     if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
 742       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 743     }
 744   }
 745 
 746   cp_cache_entry->set_field(
 747     get_code,
 748     put_code,
 749     info.field_holder(),
 750     info.index(),
 751     info.offset(),
 752     state,
 753     info.access_flags().is_final(),
 754     info.access_flags().is_volatile(),
 755     pool->pool_holder()
 756   );
 757 }
 758 
 759 
 760 //------------------------------------------------------------------------------------------------------------------------
 761 // Synchronization
 762 //
 763 // The interpreter's synchronization code is factored out so that it can
 764 // be shared by method invocation and synchronized blocks.
 765 //%note synchronization_3
 766 
 767 //%note monitor_1
 768 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 769 #ifdef ASSERT
 770   thread->last_frame().interpreter_frame_verify_monitor(elem);
 771 #endif
 772   if (PrintBiasedLockingStatistics) {
 773     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 774   }
 775   Handle h_obj(thread, elem->obj());
 776   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 777          "must be NULL or an object");
 778   if (UseBiasedLocking) {
 779     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 780     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 781   } else {
 782     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 783   }
 784   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 785          "must be NULL or an object");
 786 #ifdef ASSERT
 787   thread->last_frame().interpreter_frame_verify_monitor(elem);
 788 #endif
 789 IRT_END
 790 
 791 
 792 //%note monitor_1
 793 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 794 #ifdef ASSERT
 795   thread->last_frame().interpreter_frame_verify_monitor(elem);
 796 #endif
 797   Handle h_obj(thread, elem->obj());
 798   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 799          "must be NULL or an object");
 800   if (elem == NULL || h_obj()->is_unlocked()) {
 801     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 802   }
 803   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 804   // Free entry. This must be done here, since a pending exception might be installed on
 805   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 806   elem->set_obj(NULL);
 807 #ifdef ASSERT
 808   thread->last_frame().interpreter_frame_verify_monitor(elem);
 809 #endif
 810 IRT_END
 811 
 812 
 813 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 814   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 815 IRT_END
 816 
 817 
 818 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 819   // Returns an illegal exception to install into the current thread. The
 820   // pending_exception flag is cleared so normal exception handling does not
 821   // trigger. Any current installed exception will be overwritten. This
 822   // method will be called during an exception unwind.
 823 
 824   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 825   Handle exception(thread, thread->vm_result());
 826   assert(exception() != NULL, "vm result should be set");
 827   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 828   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 829     exception = get_preinitialized_exception(
 830                        SystemDictionary::IllegalMonitorStateException_klass(),
 831                        CATCH);
 832   }
 833   thread->set_vm_result(exception());
 834 IRT_END
 835 
 836 
 837 //------------------------------------------------------------------------------------------------------------------------
 838 // Invokes
 839 
 840 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 841   return method->orig_bytecode_at(method->bci_from(bcp));
 842 IRT_END
 843 
 844 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 845   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 846 IRT_END
 847 
 848 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 849   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 850 IRT_END
 851 
 852 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
 853   Thread* THREAD = thread;
 854   LastFrameAccessor last_frame(thread);
 855   // extract receiver from the outgoing argument list if necessary
 856   Handle receiver(thread, NULL);
 857   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
 858       bytecode == Bytecodes::_invokespecial) {
 859     ResourceMark rm(thread);
 860     methodHandle m (thread, last_frame.method());
 861     Bytecode_invoke call(m, last_frame.bci());
 862     Symbol* signature = call.signature();
 863     receiver = Handle(thread, last_frame.callee_receiver(signature));
 864 
 865     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 866            "sanity check");
 867     assert(receiver.is_null() ||
 868            !Universe::heap()->is_in_reserved(receiver->klass()),
 869            "sanity check");
 870   }
 871 
 872   // resolve method
 873   CallInfo info;
 874   constantPoolHandle pool(thread, last_frame.method()->constants());
 875 
 876   {
 877     JvmtiHideSingleStepping jhss(thread);
 878     LinkResolver::resolve_invoke(info, receiver, pool,
 879                                  last_frame.get_index_u2_cpcache(bytecode), bytecode,
 880                                  CHECK);
 881     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 882       int retry_count = 0;
 883       while (info.resolved_method()->is_old()) {
 884         // It is very unlikely that method is redefined more than 100 times
 885         // in the middle of resolve. If it is looping here more than 100 times
 886         // means then there could be a bug here.
 887         guarantee((retry_count++ < 100),
 888                   "Could not resolve to latest version of redefined method");
 889         // method is redefined in the middle of resolve so re-try.
 890         LinkResolver::resolve_invoke(info, receiver, pool,
 891                                      last_frame.get_index_u2_cpcache(bytecode), bytecode,
 892                                      CHECK);
 893       }
 894     }
 895   } // end JvmtiHideSingleStepping
 896 
 897   // check if link resolution caused cpCache to be updated
 898   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 899   if (cp_cache_entry->is_resolved(bytecode)) return;
 900 
 901 #ifdef ASSERT
 902   if (bytecode == Bytecodes::_invokeinterface) {
 903     if (info.resolved_method()->method_holder() ==
 904                                             SystemDictionary::Object_klass()) {
 905       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 906       // (see also CallInfo::set_interface for details)
 907       assert(info.call_kind() == CallInfo::vtable_call ||
 908              info.call_kind() == CallInfo::direct_call, "");
 909       methodHandle rm = info.resolved_method();
 910       assert(rm->is_final() || info.has_vtable_index(),
 911              "should have been set already");
 912     } else if (!info.resolved_method()->has_itable_index()) {
 913       // Resolved something like CharSequence.toString.  Use vtable not itable.
 914       assert(info.call_kind() != CallInfo::itable_call, "");
 915     } else {
 916       // Setup itable entry
 917       assert(info.call_kind() == CallInfo::itable_call, "");
 918       int index = info.resolved_method()->itable_index();
 919       assert(info.itable_index() == index, "");
 920     }
 921   } else if (bytecode == Bytecodes::_invokespecial) {
 922     assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
 923   } else {
 924     assert(info.call_kind() == CallInfo::direct_call ||
 925            info.call_kind() == CallInfo::vtable_call, "");
 926   }
 927 #endif
 928   // Get sender or sender's host_klass, and only set cpCache entry to resolved if
 929   // it is not an interface.  The receiver for invokespecial calls within interface
 930   // methods must be checked for every call.
 931   InstanceKlass* sender = pool->pool_holder();
 932   sender = sender->has_host_klass() ? sender->host_klass() : sender;
 933 
 934   switch (info.call_kind()) {
 935   case CallInfo::direct_call:
 936     cp_cache_entry->set_direct_call(
 937       bytecode,
 938       info.resolved_method(),
 939       sender->is_interface());
 940     break;
 941   case CallInfo::vtable_call:
 942     cp_cache_entry->set_vtable_call(
 943       bytecode,
 944       info.resolved_method(),
 945       info.vtable_index());
 946     break;
 947   case CallInfo::itable_call:
 948     cp_cache_entry->set_itable_call(
 949       bytecode,
 950       info.resolved_klass(),
 951       info.resolved_method(),
 952       info.itable_index());
 953     break;
 954   default:  ShouldNotReachHere();
 955   }
 956 }
 957 
 958 
 959 // First time execution:  Resolve symbols, create a permanent MethodType object.
 960 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
 961   Thread* THREAD = thread;
 962   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 963   LastFrameAccessor last_frame(thread);
 964 
 965   // resolve method
 966   CallInfo info;
 967   constantPoolHandle pool(thread, last_frame.method()->constants());
 968   {
 969     JvmtiHideSingleStepping jhss(thread);
 970     LinkResolver::resolve_invoke(info, Handle(), pool,
 971                                  last_frame.get_index_u2_cpcache(bytecode), bytecode,
 972                                  CHECK);
 973   } // end JvmtiHideSingleStepping
 974 
 975   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 976   cp_cache_entry->set_method_handle(pool, info);
 977 }
 978 
 979 // First time execution:  Resolve symbols, create a permanent CallSite object.
 980 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
 981   Thread* THREAD = thread;
 982   LastFrameAccessor last_frame(thread);
 983   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 984 
 985   //TO DO: consider passing BCI to Java.
 986   //  int caller_bci = last_frame.method()->bci_from(last_frame.bcp());
 987 
 988   // resolve method
 989   CallInfo info;
 990   constantPoolHandle pool(thread, last_frame.method()->constants());
 991   int index = last_frame.get_index_u4(bytecode);
 992   {
 993     JvmtiHideSingleStepping jhss(thread);
 994     LinkResolver::resolve_invoke(info, Handle(), pool,
 995                                  index, bytecode, CHECK);
 996   } // end JvmtiHideSingleStepping
 997 
 998   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 999   cp_cache_entry->set_dynamic_call(pool, info);
1000 }
1001 
1002 // This function is the interface to the assembly code. It returns the resolved
1003 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
1004 // This function will check for redefinition!
1005 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
1006   switch (bytecode) {
1007   case Bytecodes::_getstatic:
1008   case Bytecodes::_putstatic:
1009   case Bytecodes::_getfield:
1010   case Bytecodes::_putfield:
1011     resolve_get_put(thread, bytecode);
1012     break;
1013   case Bytecodes::_invokevirtual:
1014   case Bytecodes::_invokespecial:
1015   case Bytecodes::_invokestatic:
1016   case Bytecodes::_invokeinterface:
1017     resolve_invoke(thread, bytecode);
1018     break;
1019   case Bytecodes::_invokehandle:
1020     resolve_invokehandle(thread);
1021     break;
1022   case Bytecodes::_invokedynamic:
1023     resolve_invokedynamic(thread);
1024     break;
1025   default:
1026     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
1027     break;
1028   }
1029 }
1030 IRT_END
1031 
1032 //------------------------------------------------------------------------------------------------------------------------
1033 // Miscellaneous
1034 
1035 
1036 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
1037   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
1038   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
1039   if (branch_bcp != NULL && nm != NULL) {
1040     // This was a successful request for an OSR nmethod.  Because
1041     // frequency_counter_overflow_inner ends with a safepoint check,
1042     // nm could have been unloaded so look it up again.  It's unsafe
1043     // to examine nm directly since it might have been freed and used
1044     // for something else.
1045     LastFrameAccessor last_frame(thread);
1046     Method* method =  last_frame.method();
1047     int bci = method->bci_from(last_frame.bcp());
1048     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
1049   }
1050   if (nm != NULL && thread->is_interp_only_mode()) {
1051     // Normally we never get an nm if is_interp_only_mode() is true, because
1052     // policy()->event has a check for this and won't compile the method when
1053     // true. However, it's possible for is_interp_only_mode() to become true
1054     // during the compilation. We don't want to return the nm in that case
1055     // because we want to continue to execute interpreted.
1056     nm = NULL;
1057   }
1058 #ifndef PRODUCT
1059   if (TraceOnStackReplacement) {
1060     if (nm != NULL) {
1061       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
1062       nm->print();
1063     }
1064   }
1065 #endif
1066   return nm;
1067 }
1068 
1069 IRT_ENTRY(nmethod*,
1070           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
1071   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1072   // flag, in case this method triggers classloading which will call into Java.
1073   UnlockFlagSaver fs(thread);
1074 
1075   LastFrameAccessor last_frame(thread);
1076   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1077   methodHandle method(thread, last_frame.method());
1078   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
1079   const int bci = branch_bcp != NULL ? method->bci_from(last_frame.bcp()) : InvocationEntryBci;
1080 
1081   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
1082   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
1083   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
1084 
1085   if (osr_nm != NULL) {
1086     // We may need to do on-stack replacement which requires that no
1087     // monitors in the activation are biased because their
1088     // BasicObjectLocks will need to migrate during OSR. Force
1089     // unbiasing of all monitors in the activation now (even though
1090     // the OSR nmethod might be invalidated) because we don't have a
1091     // safepoint opportunity later once the migration begins.
1092     if (UseBiasedLocking) {
1093       ResourceMark rm;
1094       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1095       for( BasicObjectLock *kptr = last_frame.monitor_end();
1096            kptr < last_frame.monitor_begin();
1097            kptr = last_frame.next_monitor(kptr) ) {
1098         if( kptr->obj() != NULL ) {
1099           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
1100         }
1101       }
1102       BiasedLocking::revoke(objects_to_revoke);
1103     }
1104   }
1105   return osr_nm;
1106 IRT_END
1107 
1108 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
1109   assert(ProfileInterpreter, "must be profiling interpreter");
1110   int bci = method->bci_from(cur_bcp);
1111   MethodData* mdo = method->method_data();
1112   if (mdo == NULL)  return 0;
1113   return mdo->bci_to_di(bci);
1114 IRT_END
1115 
1116 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
1117   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1118   // flag, in case this method triggers classloading which will call into Java.
1119   UnlockFlagSaver fs(thread);
1120 
1121   assert(ProfileInterpreter, "must be profiling interpreter");
1122   LastFrameAccessor last_frame(thread);
1123   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1124   methodHandle method(thread, last_frame.method());
1125   Method::build_interpreter_method_data(method, THREAD);
1126   if (HAS_PENDING_EXCEPTION) {
1127     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1128     CLEAR_PENDING_EXCEPTION;
1129     // and fall through...
1130   }
1131 IRT_END
1132 
1133 
1134 #ifdef ASSERT
1135 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
1136   assert(ProfileInterpreter, "must be profiling interpreter");
1137 
1138   MethodData* mdo = method->method_data();
1139   assert(mdo != NULL, "must not be null");
1140 
1141   int bci = method->bci_from(bcp);
1142 
1143   address mdp2 = mdo->bci_to_dp(bci);
1144   if (mdp != mdp2) {
1145     ResourceMark rm;
1146     ResetNoHandleMark rnm; // In a LEAF entry.
1147     HandleMark hm;
1148     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
1149     int current_di = mdo->dp_to_di(mdp);
1150     int expected_di  = mdo->dp_to_di(mdp2);
1151     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
1152     int expected_approx_bci = mdo->data_at(expected_di)->bci();
1153     int approx_bci = -1;
1154     if (current_di >= 0) {
1155       approx_bci = mdo->data_at(current_di)->bci();
1156     }
1157     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1158     mdo->print_on(tty);
1159     method->print_codes();
1160   }
1161   assert(mdp == mdp2, "wrong mdp");
1162 IRT_END
1163 #endif // ASSERT
1164 
1165 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1166   assert(ProfileInterpreter, "must be profiling interpreter");
1167   ResourceMark rm(thread);
1168   HandleMark hm(thread);
1169   LastFrameAccessor last_frame(thread);
1170   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1171   MethodData* h_mdo = last_frame.method()->method_data();
1172 
1173   // Grab a lock to ensure atomic access to setting the return bci and
1174   // the displacement.  This can block and GC, invalidating all naked oops.
1175   MutexLocker ml(RetData_lock);
1176 
1177   // ProfileData is essentially a wrapper around a derived oop, so we
1178   // need to take the lock before making any ProfileData structures.
1179   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp()));
1180   guarantee(data != NULL, "profile data must be valid");
1181   RetData* rdata = data->as_RetData();
1182   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1183   last_frame.set_mdp(new_mdp);
1184 IRT_END
1185 
1186 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1187   MethodCounters* mcs = Method::build_method_counters(m, thread);
1188   if (HAS_PENDING_EXCEPTION) {
1189     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1190     CLEAR_PENDING_EXCEPTION;
1191   }
1192   return mcs;
1193 IRT_END
1194 
1195 
1196 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1197   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1198   // stack traversal automatically takes care of preserving arguments for invoke, so
1199   // this is no longer needed.
1200 
1201   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1202   // if this is called during a safepoint
1203 
1204   if (JvmtiExport::should_post_single_step()) {
1205     // We are called during regular safepoints and when the VM is
1206     // single stepping. If any thread is marked for single stepping,
1207     // then we may have JVMTI work to do.
1208     LastFrameAccessor last_frame(thread);
1209     JvmtiExport::at_single_stepping_point(thread, last_frame.method(), last_frame.bcp());
1210   }
1211 IRT_END
1212 
1213 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1214 ConstantPoolCacheEntry *cp_entry))
1215 
1216   // check the access_flags for the field in the klass
1217 
1218   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1219   int index = cp_entry->field_index();
1220   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1221 
1222   bool is_static = (obj == NULL);
1223   HandleMark hm(thread);
1224 
1225   Handle h_obj;
1226   if (!is_static) {
1227     // non-static field accessors have an object, but we need a handle
1228     h_obj = Handle(thread, obj);
1229   }
1230   InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
1231   jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
1232   LastFrameAccessor last_frame(thread);
1233   JvmtiExport::post_field_access(thread, last_frame.method(), last_frame.bcp(), cp_entry_f1, h_obj, fid);
1234 IRT_END
1235 
1236 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1237   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1238 
1239   Klass* k = cp_entry->f1_as_klass();
1240 
1241   // check the access_flags for the field in the klass
1242   InstanceKlass* ik = InstanceKlass::cast(k);
1243   int index = cp_entry->field_index();
1244   // bail out if field modifications are not watched
1245   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1246 
1247   char sig_type = '\0';
1248 
1249   switch(cp_entry->flag_state()) {
1250     case btos: sig_type = 'B'; break;
1251     case ztos: sig_type = 'Z'; break;
1252     case ctos: sig_type = 'C'; break;
1253     case stos: sig_type = 'S'; break;
1254     case itos: sig_type = 'I'; break;
1255     case ftos: sig_type = 'F'; break;
1256     case atos: sig_type = 'L'; break;
1257     case ltos: sig_type = 'J'; break;
1258     case dtos: sig_type = 'D'; break;
1259     default:  ShouldNotReachHere(); return;
1260   }
1261   bool is_static = (obj == NULL);
1262 
1263   HandleMark hm(thread);
1264   jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
1265   jvalue fvalue;
1266 #ifdef _LP64
1267   fvalue = *value;
1268 #else
1269   // Long/double values are stored unaligned and also noncontiguously with
1270   // tagged stacks.  We can't just do a simple assignment even in the non-
1271   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1272   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1273   // We assume that the two halves of longs/doubles are stored in interpreter
1274   // stack slots in platform-endian order.
1275   jlong_accessor u;
1276   jint* newval = (jint*)value;
1277   u.words[0] = newval[0];
1278   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1279   fvalue.j = u.long_value;
1280 #endif // _LP64
1281 
1282   Handle h_obj;
1283   if (!is_static) {
1284     // non-static field accessors have an object, but we need a handle
1285     h_obj = Handle(thread, obj);
1286   }
1287 
1288   LastFrameAccessor last_frame(thread);
1289   JvmtiExport::post_raw_field_modification(thread, last_frame.method(), last_frame.bcp(), ik, h_obj,
1290                                            fid, sig_type, &fvalue);
1291 IRT_END
1292 
1293 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1294   LastFrameAccessor last_frame(thread);
1295   JvmtiExport::post_method_entry(thread, last_frame.method(), last_frame.get_frame());
1296 IRT_END
1297 
1298 
1299 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1300   LastFrameAccessor last_frame(thread);
1301   JvmtiExport::post_method_exit(thread, last_frame.method(), last_frame.get_frame());
1302 IRT_END
1303 
1304 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1305 {
1306   return (Interpreter::contains(pc) ? 1 : 0);
1307 }
1308 IRT_END
1309 
1310 
1311 // Implementation of SignatureHandlerLibrary
1312 
1313 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1314 // Dummy definition (else normalization method is defined in CPU
1315 // dependant code)
1316 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1317   return fingerprint;
1318 }
1319 #endif
1320 
1321 address SignatureHandlerLibrary::set_handler_blob() {
1322   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1323   if (handler_blob == NULL) {
1324     return NULL;
1325   }
1326   address handler = handler_blob->code_begin();
1327   _handler_blob = handler_blob;
1328   _handler = handler;
1329   return handler;
1330 }
1331 
1332 void SignatureHandlerLibrary::initialize() {
1333   if (_fingerprints != NULL) {
1334     return;
1335   }
1336   if (set_handler_blob() == NULL) {
1337     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1338   }
1339 
1340   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1341                                       SignatureHandlerLibrary::buffer_size);
1342   _buffer = bb->code_begin();
1343 
1344   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1345   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1346 }
1347 
1348 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1349   address handler   = _handler;
1350   int     insts_size = buffer->pure_insts_size();
1351   if (handler + insts_size > _handler_blob->code_end()) {
1352     // get a new handler blob
1353     handler = set_handler_blob();
1354   }
1355   if (handler != NULL) {
1356     memcpy(handler, buffer->insts_begin(), insts_size);
1357     pd_set_handler(handler);
1358     ICache::invalidate_range(handler, insts_size);
1359     _handler = handler + insts_size;
1360   }
1361   return handler;
1362 }
1363 
1364 void SignatureHandlerLibrary::add(const methodHandle& method) {
1365   if (method->signature_handler() == NULL) {
1366     // use slow signature handler if we can't do better
1367     int handler_index = -1;
1368     // check if we can use customized (fast) signature handler
1369     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1370       // use customized signature handler
1371       MutexLocker mu(SignatureHandlerLibrary_lock);
1372       // make sure data structure is initialized
1373       initialize();
1374       // lookup method signature's fingerprint
1375       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1376       // allow CPU dependant code to optimize the fingerprints for the fast handler
1377       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1378       handler_index = _fingerprints->find(fingerprint);
1379       // create handler if necessary
1380       if (handler_index < 0) {
1381         ResourceMark rm;
1382         ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
1383         CodeBuffer buffer((address)(_buffer + align_offset),
1384                           SignatureHandlerLibrary::buffer_size - align_offset);
1385         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1386         // copy into code heap
1387         address handler = set_handler(&buffer);
1388         if (handler == NULL) {
1389           // use slow signature handler (without memorizing it in the fingerprints)
1390         } else {
1391           // debugging suppport
1392           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1393             ttyLocker ttyl;
1394             tty->cr();
1395             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1396                           _handlers->length(),
1397                           (method->is_static() ? "static" : "receiver"),
1398                           method->name_and_sig_as_C_string(),
1399                           fingerprint,
1400                           buffer.insts_size());
1401             if (buffer.insts_size() > 0) {
1402               Disassembler::decode(handler, handler + buffer.insts_size());
1403             }
1404 #ifndef PRODUCT
1405             address rh_begin = Interpreter::result_handler(method()->result_type());
1406             if (CodeCache::contains(rh_begin)) {
1407               // else it might be special platform dependent values
1408               tty->print_cr(" --- associated result handler ---");
1409               address rh_end = rh_begin;
1410               while (*(int*)rh_end != 0) {
1411                 rh_end += sizeof(int);
1412               }
1413               Disassembler::decode(rh_begin, rh_end);
1414             } else {
1415               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1416             }
1417 #endif
1418           }
1419           // add handler to library
1420           _fingerprints->append(fingerprint);
1421           _handlers->append(handler);
1422           // set handler index
1423           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1424           handler_index = _fingerprints->length() - 1;
1425         }
1426       }
1427       // Set handler under SignatureHandlerLibrary_lock
1428       if (handler_index < 0) {
1429         // use generic signature handler
1430         method->set_signature_handler(Interpreter::slow_signature_handler());
1431       } else {
1432         // set handler
1433         method->set_signature_handler(_handlers->at(handler_index));
1434       }
1435     } else {
1436       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1437       // use generic signature handler
1438       method->set_signature_handler(Interpreter::slow_signature_handler());
1439     }
1440   }
1441 #ifdef ASSERT
1442   int handler_index = -1;
1443   int fingerprint_index = -2;
1444   {
1445     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1446     // in any way if accessed from multiple threads. To avoid races with another
1447     // thread which may change the arrays in the above, mutex protected block, we
1448     // have to protect this read access here with the same mutex as well!
1449     MutexLocker mu(SignatureHandlerLibrary_lock);
1450     if (_handlers != NULL) {
1451       handler_index = _handlers->find(method->signature_handler());
1452       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1453       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1454       fingerprint_index = _fingerprints->find(fingerprint);
1455     }
1456   }
1457   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1458          handler_index == fingerprint_index, "sanity check");
1459 #endif // ASSERT
1460 }
1461 
1462 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1463   int handler_index = -1;
1464   // use customized signature handler
1465   MutexLocker mu(SignatureHandlerLibrary_lock);
1466   // make sure data structure is initialized
1467   initialize();
1468   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1469   handler_index = _fingerprints->find(fingerprint);
1470   // create handler if necessary
1471   if (handler_index < 0) {
1472     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1473       tty->cr();
1474       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1475                     _handlers->length(),
1476                     p2i(handler),
1477                     fingerprint);
1478     }
1479     _fingerprints->append(fingerprint);
1480     _handlers->append(handler);
1481   } else {
1482     if (PrintSignatureHandlers) {
1483       tty->cr();
1484       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1485                     _handlers->length(),
1486                     fingerprint,
1487                     p2i(_handlers->at(handler_index)),
1488                     p2i(handler));
1489     }
1490   }
1491 }
1492 
1493 
1494 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1495 address                  SignatureHandlerLibrary::_handler      = NULL;
1496 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1497 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1498 address                  SignatureHandlerLibrary::_buffer       = NULL;
1499 
1500 
1501 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1502   methodHandle m(thread, method);
1503   assert(m->is_native(), "sanity check");
1504   // lookup native function entry point if it doesn't exist
1505   bool in_base_library;
1506   if (!m->has_native_function()) {
1507     NativeLookup::lookup(m, in_base_library, CHECK);
1508   }
1509   // make sure signature handler is installed
1510   SignatureHandlerLibrary::add(m);
1511   // The interpreter entry point checks the signature handler first,
1512   // before trying to fetch the native entry point and klass mirror.
1513   // We must set the signature handler last, so that multiple processors
1514   // preparing the same method will be sure to see non-null entry & mirror.
1515 IRT_END
1516 
1517 #if defined(IA32) || defined(AMD64) || defined(ARM)
1518 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1519   if (src_address == dest_address) {
1520     return;
1521   }
1522   ResetNoHandleMark rnm; // In a LEAF entry.
1523   HandleMark hm;
1524   ResourceMark rm;
1525   LastFrameAccessor last_frame(thread);
1526   assert(last_frame.is_interpreted_frame(), "");
1527   jint bci = last_frame.bci();
1528   methodHandle mh(thread, last_frame.method());
1529   Bytecode_invoke invoke(mh, bci);
1530   ArgumentSizeComputer asc(invoke.signature());
1531   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1532   Copy::conjoint_jbytes(src_address, dest_address,
1533                        size_of_arguments * Interpreter::stackElementSize);
1534 IRT_END
1535 #endif
1536 
1537 #if INCLUDE_JVMTI
1538 // This is a support of the JVMTI PopFrame interface.
1539 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1540 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1541 // The member_name argument is a saved reference (in local#0) to the member_name.
1542 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1543 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1544 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1545                                                             Method* method, address bcp))
1546   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1547   if (code != Bytecodes::_invokestatic) {
1548     return;
1549   }
1550   ConstantPool* cpool = method->constants();
1551   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1552   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1553   Symbol* mname = cpool->name_ref_at(cp_index);
1554 
1555   if (MethodHandles::has_member_arg(cname, mname)) {
1556     oop member_name_oop = (oop) member_name;
1557     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1558       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1559       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1560     }
1561     thread->set_vm_result(member_name_oop);
1562   } else {
1563     thread->set_vm_result(NULL);
1564   }
1565 IRT_END
1566 #endif // INCLUDE_JVMTI
1567 
1568 #ifndef PRODUCT
1569 // This must be a IRT_LEAF function because the interpreter must save registers on x86 to
1570 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1571 // The generated code still uses call_VM because that will set up the frame pointer for
1572 // bcp and method.
1573 IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1574   LastFrameAccessor last_frame(thread);
1575   assert(last_frame.is_interpreted_frame(), "must be an interpreted frame");
1576   methodHandle mh(thread, last_frame.method());
1577   BytecodeTracer::trace(mh, last_frame.bcp(), tos, tos2);
1578   return preserve_this_value;
1579 IRT_END
1580 #endif // !PRODUCT