1 /*
   2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreter.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/objArrayKlass.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/methodHandles.hpp"
  37 #include "runtime/frame.inline.hpp"
  38 #include "runtime/safepointMechanism.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "runtime/synchronizer.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 #undef __
  45 #define __ _masm->
  46 
  47 // ============================================================================
  48 // Misc helpers
  49 
  50 // Do an oop store like *(base + index) = val OR *(base + offset) = val
  51 // (only one of both variants is possible at the same time).
  52 // Index can be noreg.
  53 // Kills:
  54 //   Rbase, Rtmp
  55 static void do_oop_store(InterpreterMacroAssembler* _masm,
  56                          Register           Rbase,
  57                          RegisterOrConstant offset,
  58                          Register           Rval,         // Noreg means always null.
  59                          Register           Rtmp1,
  60                          Register           Rtmp2,
  61                          Register           Rtmp3,
  62                          BarrierSet::Name   barrier,
  63                          bool               precise,
  64                          bool               check_null) {
  65   assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
  66 
  67   switch (barrier) {
  68 #if INCLUDE_ALL_GCS
  69     case BarrierSet::G1BarrierSet:
  70       {
  71         // Load and record the previous value.
  72         __ g1_write_barrier_pre(Rbase, offset,
  73                                 Rtmp3, /* holder of pre_val ? */
  74                                 Rtmp1, Rtmp2, false /* frame */);
  75 
  76         Label Lnull, Ldone;
  77         if (Rval != noreg) {
  78           if (check_null) {
  79             __ cmpdi(CCR0, Rval, 0);
  80             __ beq(CCR0, Lnull);
  81           }
  82           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
  83           // Mark the card.
  84           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
  85             __ add(Rbase, offset, Rbase);
  86           }
  87           __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
  88           if (check_null) { __ b(Ldone); }
  89         }
  90 
  91         if (Rval == noreg || check_null) { // Store null oop.
  92           Register Rnull = Rval;
  93           __ bind(Lnull);
  94           if (Rval == noreg) {
  95             Rnull = Rtmp1;
  96             __ li(Rnull, 0);
  97           }
  98           if (UseCompressedOops) {
  99             __ stw(Rnull, offset, Rbase);
 100           } else {
 101             __ std(Rnull, offset, Rbase);
 102           }
 103         }
 104         __ bind(Ldone);
 105       }
 106       break;
 107 #endif // INCLUDE_ALL_GCS
 108     case BarrierSet::CardTableBarrierSet:
 109       {
 110         Label Lnull, Ldone;
 111         if (Rval != noreg) {
 112           if (check_null) {
 113             __ cmpdi(CCR0, Rval, 0);
 114             __ beq(CCR0, Lnull);
 115           }
 116           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
 117           // Mark the card.
 118           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
 119             __ add(Rbase, offset, Rbase);
 120           }
 121           __ card_write_barrier_post(Rbase, Rval, Rtmp1);
 122           if (check_null) {
 123             __ b(Ldone);
 124           }
 125         }
 126 
 127         if (Rval == noreg || check_null) { // Store null oop.
 128           Register Rnull = Rval;
 129           __ bind(Lnull);
 130           if (Rval == noreg) {
 131             Rnull = Rtmp1;
 132             __ li(Rnull, 0);
 133           }
 134           if (UseCompressedOops) {
 135             __ stw(Rnull, offset, Rbase);
 136           } else {
 137             __ std(Rnull, offset, Rbase);
 138           }
 139         }
 140         __ bind(Ldone);
 141       }
 142       break;
 143     case BarrierSet::ModRef:
 144       ShouldNotReachHere();
 145       break;
 146     default:
 147       ShouldNotReachHere();
 148   }
 149 }
 150 
 151 // ============================================================================
 152 // Platform-dependent initialization
 153 
 154 void TemplateTable::pd_initialize() {
 155   // No ppc64 specific initialization.
 156 }
 157 
 158 Address TemplateTable::at_bcp(int offset) {
 159   // Not used on ppc.
 160   ShouldNotReachHere();
 161   return Address();
 162 }
 163 
 164 // Patches the current bytecode (ptr to it located in bcp)
 165 // in the bytecode stream with a new one.
 166 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
 167   // With sharing on, may need to test method flag.
 168   if (!RewriteBytecodes) return;
 169   Label L_patch_done;
 170 
 171   switch (new_bc) {
 172     case Bytecodes::_fast_aputfield:
 173     case Bytecodes::_fast_bputfield:
 174     case Bytecodes::_fast_zputfield:
 175     case Bytecodes::_fast_cputfield:
 176     case Bytecodes::_fast_dputfield:
 177     case Bytecodes::_fast_fputfield:
 178     case Bytecodes::_fast_iputfield:
 179     case Bytecodes::_fast_lputfield:
 180     case Bytecodes::_fast_sputfield:
 181     {
 182       // We skip bytecode quickening for putfield instructions when
 183       // the put_code written to the constant pool cache is zero.
 184       // This is required so that every execution of this instruction
 185       // calls out to InterpreterRuntime::resolve_get_put to do
 186       // additional, required work.
 187       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 188       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 189       __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
 190       // ((*(cache+indices))>>((1+byte_no)*8))&0xFF:
 191 #if defined(VM_LITTLE_ENDIAN)
 192       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp);
 193 #else
 194       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
 195 #endif
 196       __ cmpwi(CCR0, Rnew_bc, 0);
 197       __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 198       __ beq(CCR0, L_patch_done);
 199       // __ isync(); // acquire not needed
 200       break;
 201     }
 202 
 203     default:
 204       assert(byte_no == -1, "sanity");
 205       if (load_bc_into_bc_reg) {
 206         __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 207       }
 208   }
 209 
 210   if (JvmtiExport::can_post_breakpoint()) {
 211     Label L_fast_patch;
 212     __ lbz(Rtemp, 0, R14_bcp);
 213     __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
 214     __ bne(CCR0, L_fast_patch);
 215     // Perform the quickening, slowly, in the bowels of the breakpoint table.
 216     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
 217     __ b(L_patch_done);
 218     __ bind(L_fast_patch);
 219   }
 220 
 221   // Patch bytecode.
 222   __ stb(Rnew_bc, 0, R14_bcp);
 223 
 224   __ bind(L_patch_done);
 225 }
 226 
 227 // ============================================================================
 228 // Individual instructions
 229 
 230 void TemplateTable::nop() {
 231   transition(vtos, vtos);
 232   // Nothing to do.
 233 }
 234 
 235 void TemplateTable::shouldnotreachhere() {
 236   transition(vtos, vtos);
 237   __ stop("shouldnotreachhere bytecode");
 238 }
 239 
 240 void TemplateTable::aconst_null() {
 241   transition(vtos, atos);
 242   __ li(R17_tos, 0);
 243 }
 244 
 245 void TemplateTable::iconst(int value) {
 246   transition(vtos, itos);
 247   assert(value >= -1 && value <= 5, "");
 248   __ li(R17_tos, value);
 249 }
 250 
 251 void TemplateTable::lconst(int value) {
 252   transition(vtos, ltos);
 253   assert(value >= -1 && value <= 5, "");
 254   __ li(R17_tos, value);
 255 }
 256 
 257 void TemplateTable::fconst(int value) {
 258   transition(vtos, ftos);
 259   static float zero = 0.0;
 260   static float one  = 1.0;
 261   static float two  = 2.0;
 262   switch (value) {
 263     default: ShouldNotReachHere();
 264     case 0: {
 265       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 266       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 267       break;
 268     }
 269     case 1: {
 270       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 271       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 272       break;
 273     }
 274     case 2: {
 275       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
 276       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 277       break;
 278     }
 279   }
 280 }
 281 
 282 void TemplateTable::dconst(int value) {
 283   transition(vtos, dtos);
 284   static double zero = 0.0;
 285   static double one  = 1.0;
 286   switch (value) {
 287     case 0: {
 288       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 289       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 290       break;
 291     }
 292     case 1: {
 293       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 294       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 295       break;
 296     }
 297     default: ShouldNotReachHere();
 298   }
 299 }
 300 
 301 void TemplateTable::bipush() {
 302   transition(vtos, itos);
 303   __ lbz(R17_tos, 1, R14_bcp);
 304   __ extsb(R17_tos, R17_tos);
 305 }
 306 
 307 void TemplateTable::sipush() {
 308   transition(vtos, itos);
 309   __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
 310 }
 311 
 312 void TemplateTable::ldc(bool wide) {
 313   Register Rscratch1 = R11_scratch1,
 314            Rscratch2 = R12_scratch2,
 315            Rcpool    = R3_ARG1;
 316 
 317   transition(vtos, vtos);
 318   Label notInt, notFloat, notClass, exit;
 319 
 320   __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
 321   if (wide) { // Read index.
 322     __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
 323   } else {
 324     __ lbz(Rscratch1, 1, R14_bcp);
 325   }
 326 
 327   const int base_offset = ConstantPool::header_size() * wordSize;
 328   const int tags_offset = Array<u1>::base_offset_in_bytes();
 329 
 330   // Get type from tags.
 331   __ addi(Rscratch2, Rscratch2, tags_offset);
 332   __ lbzx(Rscratch2, Rscratch2, Rscratch1);
 333 
 334   __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
 335   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
 336   __ cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
 337 
 338   // Resolved class - need to call vm to get java mirror of the class.
 339   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
 340   __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal); // Neither resolved class nor unresolved case from above?
 341   __ beq(CCR0, notClass);
 342 
 343   __ li(R4, wide ? 1 : 0);
 344   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
 345   __ push(atos);
 346   __ b(exit);
 347 
 348   __ align(32, 12);
 349   __ bind(notClass);
 350   __ addi(Rcpool, Rcpool, base_offset);
 351   __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
 352   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
 353   __ bne(CCR0, notInt);
 354   __ lwax(R17_tos, Rcpool, Rscratch1);
 355   __ push(itos);
 356   __ b(exit);
 357 
 358   __ align(32, 12);
 359   __ bind(notInt);
 360   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
 361   __ bne(CCR0, notFloat);
 362   __ lfsx(F15_ftos, Rcpool, Rscratch1);
 363   __ push(ftos);
 364   __ b(exit);
 365 
 366   __ align(32, 12);
 367   // assume the tag is for condy; if not, the VM runtime will tell us
 368   __ bind(notFloat);
 369   condy_helper(exit);
 370 
 371   __ align(32, 12);
 372   __ bind(exit);
 373 }
 374 
 375 // Fast path for caching oop constants.
 376 void TemplateTable::fast_aldc(bool wide) {
 377   transition(vtos, atos);
 378 
 379   int index_size = wide ? sizeof(u2) : sizeof(u1);
 380   const Register Rscratch = R11_scratch1;
 381   Label is_null;
 382 
 383   // We are resolved if the resolved reference cache entry contains a
 384   // non-null object (CallSite, etc.)
 385   __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
 386   __ load_resolved_reference_at_index(R17_tos, Rscratch, &is_null);
 387 
 388   // Convert null sentinel to NULL.
 389   int simm16_rest = __ load_const_optimized(Rscratch, Universe::the_null_sentinel_addr(), R0, true);
 390   __ ld(Rscratch, simm16_rest, Rscratch);
 391   __ cmpld(CCR0, R17_tos, Rscratch);
 392   if (VM_Version::has_isel()) {
 393     __ isel_0(R17_tos, CCR0, Assembler::equal);
 394   } else {
 395     Label not_sentinel;
 396     __ bne(CCR0, not_sentinel);
 397     __ li(R17_tos, 0);
 398     __ bind(not_sentinel);
 399   }
 400   __ verify_oop(R17_tos);
 401   __ dispatch_epilog(atos, Bytecodes::length_for(bytecode()));
 402 
 403   __ bind(is_null);
 404   __ load_const_optimized(R3_ARG1, (int)bytecode());
 405 
 406   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 407 
 408   // First time invocation - must resolve first.
 409   __ call_VM(R17_tos, entry, R3_ARG1);
 410   __ verify_oop(R17_tos);
 411 }
 412 
 413 void TemplateTable::ldc2_w() {
 414   transition(vtos, vtos);
 415   Label not_double, not_long, exit;
 416 
 417   Register Rindex = R11_scratch1,
 418            Rcpool = R12_scratch2,
 419            Rtag   = R3_ARG1;
 420   __ get_cpool_and_tags(Rcpool, Rtag);
 421   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
 422 
 423   const int base_offset = ConstantPool::header_size() * wordSize;
 424   const int tags_offset = Array<u1>::base_offset_in_bytes();
 425   // Get type from tags.
 426   __ addi(Rcpool, Rcpool, base_offset);
 427   __ addi(Rtag, Rtag, tags_offset);
 428 
 429   __ lbzx(Rtag, Rtag, Rindex);
 430   __ sldi(Rindex, Rindex, LogBytesPerWord);
 431 
 432   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
 433   __ bne(CCR0, not_double);
 434   __ lfdx(F15_ftos, Rcpool, Rindex);
 435   __ push(dtos);
 436   __ b(exit);
 437 
 438   __ bind(not_double);
 439   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Long);
 440   __ bne(CCR0, not_long);
 441   __ ldx(R17_tos, Rcpool, Rindex);
 442   __ push(ltos);
 443   __ b(exit);
 444 
 445   __ bind(not_long);
 446   condy_helper(exit);
 447 
 448   __ align(32, 12);
 449   __ bind(exit);
 450 }
 451 
 452 void TemplateTable::condy_helper(Label& Done) {
 453   const Register obj   = R31;
 454   const Register off   = R11_scratch1;
 455   const Register flags = R12_scratch2;
 456   const Register rarg  = R4_ARG2;
 457   __ li(rarg, (int)bytecode());
 458   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
 459   __ get_vm_result_2(flags);
 460 
 461   // VMr = obj = base address to find primitive value to push
 462   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 463   __ andi(off, flags, ConstantPoolCacheEntry::field_index_mask);
 464 
 465   // What sort of thing are we loading?
 466   __ rldicl(flags, flags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
 467 
 468   switch (bytecode()) {
 469   case Bytecodes::_ldc:
 470   case Bytecodes::_ldc_w:
 471     {
 472       // tos in (itos, ftos, stos, btos, ctos, ztos)
 473       Label notInt, notFloat, notShort, notByte, notChar, notBool;
 474       __ cmplwi(CCR0, flags, itos);
 475       __ bne(CCR0, notInt);
 476       // itos
 477       __ lwax(R17_tos, obj, off);
 478       __ push(itos);
 479       __ b(Done);
 480 
 481       __ bind(notInt);
 482       __ cmplwi(CCR0, flags, ftos);
 483       __ bne(CCR0, notFloat);
 484       // ftos
 485       __ lfsx(F15_ftos, obj, off);
 486       __ push(ftos);
 487       __ b(Done);
 488 
 489       __ bind(notFloat);
 490       __ cmplwi(CCR0, flags, stos);
 491       __ bne(CCR0, notShort);
 492       // stos
 493       __ lhax(R17_tos, obj, off);
 494       __ push(stos);
 495       __ b(Done);
 496 
 497       __ bind(notShort);
 498       __ cmplwi(CCR0, flags, btos);
 499       __ bne(CCR0, notByte);
 500       // btos
 501       __ lbzx(R17_tos, obj, off);
 502       __ extsb(R17_tos, R17_tos);
 503       __ push(btos);
 504       __ b(Done);
 505 
 506       __ bind(notByte);
 507       __ cmplwi(CCR0, flags, ctos);
 508       __ bne(CCR0, notChar);
 509       // ctos
 510       __ lhzx(R17_tos, obj, off);
 511       __ push(ctos);
 512       __ b(Done);
 513 
 514       __ bind(notChar);
 515       __ cmplwi(CCR0, flags, ztos);
 516       __ bne(CCR0, notBool);
 517       // ztos
 518       __ lbzx(R17_tos, obj, off);
 519       __ push(ztos);
 520       __ b(Done);
 521 
 522       __ bind(notBool);
 523       break;
 524     }
 525 
 526   case Bytecodes::_ldc2_w:
 527     {
 528       Label notLong, notDouble;
 529       __ cmplwi(CCR0, flags, ltos);
 530       __ bne(CCR0, notLong);
 531       // ltos
 532       __ ldx(R17_tos, obj, off);
 533       __ push(ltos);
 534       __ b(Done);
 535 
 536       __ bind(notLong);
 537       __ cmplwi(CCR0, flags, dtos);
 538       __ bne(CCR0, notDouble);
 539       // dtos
 540       __ lfdx(F15_ftos, obj, off);
 541       __ push(dtos);
 542       __ b(Done);
 543 
 544       __ bind(notDouble);
 545       break;
 546     }
 547 
 548   default:
 549     ShouldNotReachHere();
 550   }
 551 
 552   __ stop("bad ldc/condy");
 553 }
 554 
 555 // Get the locals index located in the bytecode stream at bcp + offset.
 556 void TemplateTable::locals_index(Register Rdst, int offset) {
 557   __ lbz(Rdst, offset, R14_bcp);
 558 }
 559 
 560 void TemplateTable::iload() {
 561   iload_internal();
 562 }
 563 
 564 void TemplateTable::nofast_iload() {
 565   iload_internal(may_not_rewrite);
 566 }
 567 
 568 void TemplateTable::iload_internal(RewriteControl rc) {
 569   transition(vtos, itos);
 570 
 571   // Get the local value into tos
 572   const Register Rindex = R22_tmp2;
 573   locals_index(Rindex);
 574 
 575   // Rewrite iload,iload  pair into fast_iload2
 576   //         iload,caload pair into fast_icaload
 577   if (RewriteFrequentPairs && rc == may_rewrite) {
 578     Label Lrewrite, Ldone;
 579     Register Rnext_byte  = R3_ARG1,
 580              Rrewrite_to = R6_ARG4,
 581              Rscratch    = R11_scratch1;
 582 
 583     // get next byte
 584     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
 585 
 586     // if _iload, wait to rewrite to iload2. We only want to rewrite the
 587     // last two iloads in a pair. Comparing against fast_iload means that
 588     // the next bytecode is neither an iload or a caload, and therefore
 589     // an iload pair.
 590     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
 591     __ beq(CCR0, Ldone);
 592 
 593     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 594     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
 595     __ beq(CCR1, Lrewrite);
 596 
 597     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
 598     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
 599     __ beq(CCR0, Lrewrite);
 600 
 601     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 602 
 603     __ bind(Lrewrite);
 604     patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
 605     __ bind(Ldone);
 606   }
 607 
 608   __ load_local_int(R17_tos, Rindex, Rindex);
 609 }
 610 
 611 // Load 2 integers in a row without dispatching
 612 void TemplateTable::fast_iload2() {
 613   transition(vtos, itos);
 614 
 615   __ lbz(R3_ARG1, 1, R14_bcp);
 616   __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
 617 
 618   __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
 619   __ load_local_int(R17_tos, R12_scratch2, R17_tos);
 620   __ push_i(R3_ARG1);
 621 }
 622 
 623 void TemplateTable::fast_iload() {
 624   transition(vtos, itos);
 625   // Get the local value into tos
 626 
 627   const Register Rindex = R11_scratch1;
 628   locals_index(Rindex);
 629   __ load_local_int(R17_tos, Rindex, Rindex);
 630 }
 631 
 632 // Load a local variable type long from locals area to TOS cache register.
 633 // Local index resides in bytecodestream.
 634 void TemplateTable::lload() {
 635   transition(vtos, ltos);
 636 
 637   const Register Rindex = R11_scratch1;
 638   locals_index(Rindex);
 639   __ load_local_long(R17_tos, Rindex, Rindex);
 640 }
 641 
 642 void TemplateTable::fload() {
 643   transition(vtos, ftos);
 644 
 645   const Register Rindex = R11_scratch1;
 646   locals_index(Rindex);
 647   __ load_local_float(F15_ftos, Rindex, Rindex);
 648 }
 649 
 650 void TemplateTable::dload() {
 651   transition(vtos, dtos);
 652 
 653   const Register Rindex = R11_scratch1;
 654   locals_index(Rindex);
 655   __ load_local_double(F15_ftos, Rindex, Rindex);
 656 }
 657 
 658 void TemplateTable::aload() {
 659   transition(vtos, atos);
 660 
 661   const Register Rindex = R11_scratch1;
 662   locals_index(Rindex);
 663   __ load_local_ptr(R17_tos, Rindex, Rindex);
 664 }
 665 
 666 void TemplateTable::locals_index_wide(Register Rdst) {
 667   // Offset is 2, not 1, because Lbcp points to wide prefix code.
 668   __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
 669 }
 670 
 671 void TemplateTable::wide_iload() {
 672   // Get the local value into tos.
 673 
 674   const Register Rindex = R11_scratch1;
 675   locals_index_wide(Rindex);
 676   __ load_local_int(R17_tos, Rindex, Rindex);
 677 }
 678 
 679 void TemplateTable::wide_lload() {
 680   transition(vtos, ltos);
 681 
 682   const Register Rindex = R11_scratch1;
 683   locals_index_wide(Rindex);
 684   __ load_local_long(R17_tos, Rindex, Rindex);
 685 }
 686 
 687 void TemplateTable::wide_fload() {
 688   transition(vtos, ftos);
 689 
 690   const Register Rindex = R11_scratch1;
 691   locals_index_wide(Rindex);
 692   __ load_local_float(F15_ftos, Rindex, Rindex);
 693 }
 694 
 695 void TemplateTable::wide_dload() {
 696   transition(vtos, dtos);
 697 
 698   const Register Rindex = R11_scratch1;
 699   locals_index_wide(Rindex);
 700   __ load_local_double(F15_ftos, Rindex, Rindex);
 701 }
 702 
 703 void TemplateTable::wide_aload() {
 704   transition(vtos, atos);
 705 
 706   const Register Rindex = R11_scratch1;
 707   locals_index_wide(Rindex);
 708   __ load_local_ptr(R17_tos, Rindex, Rindex);
 709 }
 710 
 711 void TemplateTable::iaload() {
 712   transition(itos, itos);
 713 
 714   const Register Rload_addr = R3_ARG1,
 715                  Rarray     = R4_ARG2,
 716                  Rtemp      = R5_ARG3;
 717   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 718   __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
 719 }
 720 
 721 void TemplateTable::laload() {
 722   transition(itos, ltos);
 723 
 724   const Register Rload_addr = R3_ARG1,
 725                  Rarray     = R4_ARG2,
 726                  Rtemp      = R5_ARG3;
 727   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 728   __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
 729 }
 730 
 731 void TemplateTable::faload() {
 732   transition(itos, ftos);
 733 
 734   const Register Rload_addr = R3_ARG1,
 735                  Rarray     = R4_ARG2,
 736                  Rtemp      = R5_ARG3;
 737   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 738   __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
 739 }
 740 
 741 void TemplateTable::daload() {
 742   transition(itos, dtos);
 743 
 744   const Register Rload_addr = R3_ARG1,
 745                  Rarray     = R4_ARG2,
 746                  Rtemp      = R5_ARG3;
 747   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 748   __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
 749 }
 750 
 751 void TemplateTable::aaload() {
 752   transition(itos, atos);
 753 
 754   // tos: index
 755   // result tos: array
 756   const Register Rload_addr = R3_ARG1,
 757                  Rarray     = R4_ARG2,
 758                  Rtemp      = R5_ARG3;
 759   __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
 760   __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
 761   __ verify_oop(R17_tos);
 762   //__ dcbt(R17_tos); // prefetch
 763 }
 764 
 765 void TemplateTable::baload() {
 766   transition(itos, itos);
 767 
 768   const Register Rload_addr = R3_ARG1,
 769                  Rarray     = R4_ARG2,
 770                  Rtemp      = R5_ARG3;
 771   __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
 772   __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
 773   __ extsb(R17_tos, R17_tos);
 774 }
 775 
 776 void TemplateTable::caload() {
 777   transition(itos, itos);
 778 
 779   const Register Rload_addr = R3_ARG1,
 780                  Rarray     = R4_ARG2,
 781                  Rtemp      = R5_ARG3;
 782   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 783   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 784 }
 785 
 786 // Iload followed by caload frequent pair.
 787 void TemplateTable::fast_icaload() {
 788   transition(vtos, itos);
 789 
 790   const Register Rload_addr = R3_ARG1,
 791                  Rarray     = R4_ARG2,
 792                  Rtemp      = R11_scratch1;
 793 
 794   locals_index(R17_tos);
 795   __ load_local_int(R17_tos, Rtemp, R17_tos);
 796   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 797   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 798 }
 799 
 800 void TemplateTable::saload() {
 801   transition(itos, itos);
 802 
 803   const Register Rload_addr = R11_scratch1,
 804                  Rarray     = R12_scratch2,
 805                  Rtemp      = R3_ARG1;
 806   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 807   __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
 808 }
 809 
 810 void TemplateTable::iload(int n) {
 811   transition(vtos, itos);
 812 
 813   __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 814 }
 815 
 816 void TemplateTable::lload(int n) {
 817   transition(vtos, ltos);
 818 
 819   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 820 }
 821 
 822 void TemplateTable::fload(int n) {
 823   transition(vtos, ftos);
 824 
 825   __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
 826 }
 827 
 828 void TemplateTable::dload(int n) {
 829   transition(vtos, dtos);
 830 
 831   __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 832 }
 833 
 834 void TemplateTable::aload(int n) {
 835   transition(vtos, atos);
 836 
 837   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 838 }
 839 
 840 void TemplateTable::aload_0() {
 841   aload_0_internal();
 842 }
 843 
 844 void TemplateTable::nofast_aload_0() {
 845   aload_0_internal(may_not_rewrite);
 846 }
 847 
 848 void TemplateTable::aload_0_internal(RewriteControl rc) {
 849   transition(vtos, atos);
 850   // According to bytecode histograms, the pairs:
 851   //
 852   // _aload_0, _fast_igetfield
 853   // _aload_0, _fast_agetfield
 854   // _aload_0, _fast_fgetfield
 855   //
 856   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 857   // _aload_0 bytecode checks if the next bytecode is either
 858   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 859   // rewrites the current bytecode into a pair bytecode; otherwise it
 860   // rewrites the current bytecode into _0 that doesn't do
 861   // the pair check anymore.
 862   //
 863   // Note: If the next bytecode is _getfield, the rewrite must be
 864   //       delayed, otherwise we may miss an opportunity for a pair.
 865   //
 866   // Also rewrite frequent pairs
 867   //   aload_0, aload_1
 868   //   aload_0, iload_1
 869   // These bytecodes with a small amount of code are most profitable
 870   // to rewrite.
 871 
 872   if (RewriteFrequentPairs && rc == may_rewrite) {
 873 
 874     Label Lrewrite, Ldont_rewrite;
 875     Register Rnext_byte  = R3_ARG1,
 876              Rrewrite_to = R6_ARG4,
 877              Rscratch    = R11_scratch1;
 878 
 879     // Get next byte.
 880     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
 881 
 882     // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
 883     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
 884     __ beq(CCR0, Ldont_rewrite);
 885 
 886     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
 887     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
 888     __ beq(CCR1, Lrewrite);
 889 
 890     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
 891     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
 892     __ beq(CCR0, Lrewrite);
 893 
 894     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
 895     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
 896     __ beq(CCR1, Lrewrite);
 897 
 898     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
 899 
 900     __ bind(Lrewrite);
 901     patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
 902     __ bind(Ldont_rewrite);
 903   }
 904 
 905   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 906   aload(0);
 907 }
 908 
 909 void TemplateTable::istore() {
 910   transition(itos, vtos);
 911 
 912   const Register Rindex = R11_scratch1;
 913   locals_index(Rindex);
 914   __ store_local_int(R17_tos, Rindex);
 915 }
 916 
 917 void TemplateTable::lstore() {
 918   transition(ltos, vtos);
 919   const Register Rindex = R11_scratch1;
 920   locals_index(Rindex);
 921   __ store_local_long(R17_tos, Rindex);
 922 }
 923 
 924 void TemplateTable::fstore() {
 925   transition(ftos, vtos);
 926 
 927   const Register Rindex = R11_scratch1;
 928   locals_index(Rindex);
 929   __ store_local_float(F15_ftos, Rindex);
 930 }
 931 
 932 void TemplateTable::dstore() {
 933   transition(dtos, vtos);
 934 
 935   const Register Rindex = R11_scratch1;
 936   locals_index(Rindex);
 937   __ store_local_double(F15_ftos, Rindex);
 938 }
 939 
 940 void TemplateTable::astore() {
 941   transition(vtos, vtos);
 942 
 943   const Register Rindex = R11_scratch1;
 944   __ pop_ptr();
 945   __ verify_oop_or_return_address(R17_tos, Rindex);
 946   locals_index(Rindex);
 947   __ store_local_ptr(R17_tos, Rindex);
 948 }
 949 
 950 void TemplateTable::wide_istore() {
 951   transition(vtos, vtos);
 952 
 953   const Register Rindex = R11_scratch1;
 954   __ pop_i();
 955   locals_index_wide(Rindex);
 956   __ store_local_int(R17_tos, Rindex);
 957 }
 958 
 959 void TemplateTable::wide_lstore() {
 960   transition(vtos, vtos);
 961 
 962   const Register Rindex = R11_scratch1;
 963   __ pop_l();
 964   locals_index_wide(Rindex);
 965   __ store_local_long(R17_tos, Rindex);
 966 }
 967 
 968 void TemplateTable::wide_fstore() {
 969   transition(vtos, vtos);
 970 
 971   const Register Rindex = R11_scratch1;
 972   __ pop_f();
 973   locals_index_wide(Rindex);
 974   __ store_local_float(F15_ftos, Rindex);
 975 }
 976 
 977 void TemplateTable::wide_dstore() {
 978   transition(vtos, vtos);
 979 
 980   const Register Rindex = R11_scratch1;
 981   __ pop_d();
 982   locals_index_wide(Rindex);
 983   __ store_local_double(F15_ftos, Rindex);
 984 }
 985 
 986 void TemplateTable::wide_astore() {
 987   transition(vtos, vtos);
 988 
 989   const Register Rindex = R11_scratch1;
 990   __ pop_ptr();
 991   __ verify_oop_or_return_address(R17_tos, Rindex);
 992   locals_index_wide(Rindex);
 993   __ store_local_ptr(R17_tos, Rindex);
 994 }
 995 
 996 void TemplateTable::iastore() {
 997   transition(itos, vtos);
 998 
 999   const Register Rindex      = R3_ARG1,
1000                  Rstore_addr = R4_ARG2,
1001                  Rarray      = R5_ARG3,
1002                  Rtemp       = R6_ARG4;
1003   __ pop_i(Rindex);
1004   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
1005   __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
1006   }
1007 
1008 void TemplateTable::lastore() {
1009   transition(ltos, vtos);
1010 
1011   const Register Rindex      = R3_ARG1,
1012                  Rstore_addr = R4_ARG2,
1013                  Rarray      = R5_ARG3,
1014                  Rtemp       = R6_ARG4;
1015   __ pop_i(Rindex);
1016   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
1017   __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
1018   }
1019 
1020 void TemplateTable::fastore() {
1021   transition(ftos, vtos);
1022 
1023   const Register Rindex      = R3_ARG1,
1024                  Rstore_addr = R4_ARG2,
1025                  Rarray      = R5_ARG3,
1026                  Rtemp       = R6_ARG4;
1027   __ pop_i(Rindex);
1028   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
1029   __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
1030   }
1031 
1032 void TemplateTable::dastore() {
1033   transition(dtos, vtos);
1034 
1035   const Register Rindex      = R3_ARG1,
1036                  Rstore_addr = R4_ARG2,
1037                  Rarray      = R5_ARG3,
1038                  Rtemp       = R6_ARG4;
1039   __ pop_i(Rindex);
1040   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
1041   __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
1042   }
1043 
1044 // Pop 3 values from the stack and...
1045 void TemplateTable::aastore() {
1046   transition(vtos, vtos);
1047 
1048   Label Lstore_ok, Lis_null, Ldone;
1049   const Register Rindex    = R3_ARG1,
1050                  Rarray    = R4_ARG2,
1051                  Rscratch  = R11_scratch1,
1052                  Rscratch2 = R12_scratch2,
1053                  Rarray_klass = R5_ARG3,
1054                  Rarray_element_klass = Rarray_klass,
1055                  Rvalue_klass = R6_ARG4,
1056                  Rstore_addr = R31;    // Use register which survives VM call.
1057 
1058   __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
1059   __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
1060   __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.
1061 
1062   __ verify_oop(R17_tos);
1063   __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
1064   // Rindex is dead!
1065   Register Rscratch3 = Rindex;
1066 
1067   // Do array store check - check for NULL value first.
1068   __ cmpdi(CCR0, R17_tos, 0);
1069   __ beq(CCR0, Lis_null);
1070 
1071   __ load_klass(Rarray_klass, Rarray);
1072   __ load_klass(Rvalue_klass, R17_tos);
1073 
1074   // Do fast instanceof cache test.
1075   __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
1076 
1077   // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
1078   __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
1079 
1080   // Fell through: subtype check failed => throw an exception.
1081   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
1082   __ mtctr(R11_scratch1);
1083   __ bctr();
1084 
1085   __ bind(Lis_null);
1086   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
1087                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
1088   __ profile_null_seen(Rscratch, Rscratch2);
1089   __ b(Ldone);
1090 
1091   // Store is OK.
1092   __ bind(Lstore_ok);
1093   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
1094                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
1095 
1096   __ bind(Ldone);
1097   // Adjust sp (pops array, index and value).
1098   __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
1099 }
1100 
1101 void TemplateTable::bastore() {
1102   transition(itos, vtos);
1103 
1104   const Register Rindex   = R11_scratch1,
1105                  Rarray   = R12_scratch2,
1106                  Rscratch = R3_ARG1;
1107   __ pop_i(Rindex);
1108   __ pop_ptr(Rarray);
1109   // tos: val
1110 
1111   // Need to check whether array is boolean or byte
1112   // since both types share the bastore bytecode.
1113   __ load_klass(Rscratch, Rarray);
1114   __ lwz(Rscratch, in_bytes(Klass::layout_helper_offset()), Rscratch);
1115   int diffbit = exact_log2(Klass::layout_helper_boolean_diffbit());
1116   __ testbitdi(CCR0, R0, Rscratch, diffbit);
1117   Label L_skip;
1118   __ bfalse(CCR0, L_skip);
1119   __ andi(R17_tos, R17_tos, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1120   __ bind(L_skip);
1121 
1122   __ index_check_without_pop(Rarray, Rindex, 0, Rscratch, Rarray);
1123   __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
1124 }
1125 
1126 void TemplateTable::castore() {
1127   transition(itos, vtos);
1128 
1129   const Register Rindex   = R11_scratch1,
1130                  Rarray   = R12_scratch2,
1131                  Rscratch = R3_ARG1;
1132   __ pop_i(Rindex);
1133   // tos: val
1134   // Rarray: array ptr (popped by index_check)
1135   __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
1136   __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
1137 }
1138 
1139 void TemplateTable::sastore() {
1140   castore();
1141 }
1142 
1143 void TemplateTable::istore(int n) {
1144   transition(itos, vtos);
1145   __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1146 }
1147 
1148 void TemplateTable::lstore(int n) {
1149   transition(ltos, vtos);
1150   __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1151 }
1152 
1153 void TemplateTable::fstore(int n) {
1154   transition(ftos, vtos);
1155   __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
1156 }
1157 
1158 void TemplateTable::dstore(int n) {
1159   transition(dtos, vtos);
1160   __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1161 }
1162 
1163 void TemplateTable::astore(int n) {
1164   transition(vtos, vtos);
1165 
1166   __ pop_ptr();
1167   __ verify_oop_or_return_address(R17_tos, R11_scratch1);
1168   __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1169 }
1170 
1171 void TemplateTable::pop() {
1172   transition(vtos, vtos);
1173 
1174   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
1175 }
1176 
1177 void TemplateTable::pop2() {
1178   transition(vtos, vtos);
1179 
1180   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
1181 }
1182 
1183 void TemplateTable::dup() {
1184   transition(vtos, vtos);
1185 
1186   __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
1187   __ push_ptr(R11_scratch1);
1188 }
1189 
1190 void TemplateTable::dup_x1() {
1191   transition(vtos, vtos);
1192 
1193   Register Ra = R11_scratch1,
1194            Rb = R12_scratch2;
1195   // stack: ..., a, b
1196   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1197   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1198   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1199   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1200   __ push_ptr(Rb);
1201   // stack: ..., b, a, b
1202 }
1203 
1204 void TemplateTable::dup_x2() {
1205   transition(vtos, vtos);
1206 
1207   Register Ra = R11_scratch1,
1208            Rb = R12_scratch2,
1209            Rc = R3_ARG1;
1210 
1211   // stack: ..., a, b, c
1212   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
1213   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
1214   __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
1215   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
1216   // stack: ..., c, b, c
1217   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
1218   // stack: ..., c, a, c
1219   __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
1220   __ push_ptr(Rc);                                        // push c
1221   // stack: ..., c, a, b, c
1222 }
1223 
1224 void TemplateTable::dup2() {
1225   transition(vtos, vtos);
1226 
1227   Register Ra = R11_scratch1,
1228            Rb = R12_scratch2;
1229   // stack: ..., a, b
1230   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1231   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1232   __ push_2ptrs(Ra, Rb);
1233   // stack: ..., a, b, a, b
1234 }
1235 
1236 void TemplateTable::dup2_x1() {
1237   transition(vtos, vtos);
1238 
1239   Register Ra = R11_scratch1,
1240            Rb = R12_scratch2,
1241            Rc = R3_ARG1;
1242   // stack: ..., a, b, c
1243   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
1244   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
1245   __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
1246   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
1247   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1248   __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
1249   // stack: ..., b, c, a
1250   __ push_2ptrs(Rb, Rc);
1251   // stack: ..., b, c, a, b, c
1252 }
1253 
1254 void TemplateTable::dup2_x2() {
1255   transition(vtos, vtos);
1256 
1257   Register Ra = R11_scratch1,
1258            Rb = R12_scratch2,
1259            Rc = R3_ARG1,
1260            Rd = R4_ARG2;
1261   // stack: ..., a, b, c, d
1262   __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
1263   __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
1264   __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
1265   __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
1266   __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
1267   __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
1268   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
1269   __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
1270   // stack: ..., c, d, a, b
1271   __ push_2ptrs(Rc, Rd);
1272   // stack: ..., c, d, a, b, c, d
1273 }
1274 
1275 void TemplateTable::swap() {
1276   transition(vtos, vtos);
1277   // stack: ..., a, b
1278 
1279   Register Ra = R11_scratch1,
1280            Rb = R12_scratch2;
1281   // stack: ..., a, b
1282   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1283   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1284   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1285   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1286   // stack: ..., b, a
1287 }
1288 
1289 void TemplateTable::iop2(Operation op) {
1290   transition(itos, itos);
1291 
1292   Register Rscratch = R11_scratch1;
1293 
1294   __ pop_i(Rscratch);
1295   // tos  = number of bits to shift
1296   // Rscratch = value to shift
1297   switch (op) {
1298     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1299     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1300     case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
1301     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1302     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1303     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1304     case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
1305     case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
1306     case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
1307     default:     ShouldNotReachHere();
1308   }
1309 }
1310 
1311 void TemplateTable::lop2(Operation op) {
1312   transition(ltos, ltos);
1313 
1314   Register Rscratch = R11_scratch1;
1315   __ pop_l(Rscratch);
1316   switch (op) {
1317     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1318     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1319     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1320     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1321     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1322     default:     ShouldNotReachHere();
1323   }
1324 }
1325 
1326 void TemplateTable::idiv() {
1327   transition(itos, itos);
1328 
1329   Label Lnormal, Lexception, Ldone;
1330   Register Rdividend = R11_scratch1; // Used by irem.
1331 
1332   __ addi(R0, R17_tos, 1);
1333   __ cmplwi(CCR0, R0, 2);
1334   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1335 
1336   __ cmpwi(CCR1, R17_tos, 0);
1337   __ beq(CCR1, Lexception); // divisor == 0
1338 
1339   __ pop_i(Rdividend);
1340   __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
1341   __ b(Ldone);
1342 
1343   __ bind(Lexception);
1344   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1345   __ mtctr(R11_scratch1);
1346   __ bctr();
1347 
1348   __ align(32, 12);
1349   __ bind(Lnormal);
1350   __ pop_i(Rdividend);
1351   __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1352   __ bind(Ldone);
1353 }
1354 
1355 void TemplateTable::irem() {
1356   transition(itos, itos);
1357 
1358   __ mr(R12_scratch2, R17_tos);
1359   idiv();
1360   __ mullw(R17_tos, R17_tos, R12_scratch2);
1361   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
1362 }
1363 
1364 void TemplateTable::lmul() {
1365   transition(ltos, ltos);
1366 
1367   __ pop_l(R11_scratch1);
1368   __ mulld(R17_tos, R11_scratch1, R17_tos);
1369 }
1370 
1371 void TemplateTable::ldiv() {
1372   transition(ltos, ltos);
1373 
1374   Label Lnormal, Lexception, Ldone;
1375   Register Rdividend = R11_scratch1; // Used by lrem.
1376 
1377   __ addi(R0, R17_tos, 1);
1378   __ cmpldi(CCR0, R0, 2);
1379   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1380 
1381   __ cmpdi(CCR1, R17_tos, 0);
1382   __ beq(CCR1, Lexception); // divisor == 0
1383 
1384   __ pop_l(Rdividend);
1385   __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
1386   __ b(Ldone);
1387 
1388   __ bind(Lexception);
1389   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1390   __ mtctr(R11_scratch1);
1391   __ bctr();
1392 
1393   __ align(32, 12);
1394   __ bind(Lnormal);
1395   __ pop_l(Rdividend);
1396   __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1397   __ bind(Ldone);
1398 }
1399 
1400 void TemplateTable::lrem() {
1401   transition(ltos, ltos);
1402 
1403   __ mr(R12_scratch2, R17_tos);
1404   ldiv();
1405   __ mulld(R17_tos, R17_tos, R12_scratch2);
1406   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
1407 }
1408 
1409 void TemplateTable::lshl() {
1410   transition(itos, ltos);
1411 
1412   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1413   __ pop_l(R11_scratch1);
1414   __ sld(R17_tos, R11_scratch1, R17_tos);
1415 }
1416 
1417 void TemplateTable::lshr() {
1418   transition(itos, ltos);
1419 
1420   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1421   __ pop_l(R11_scratch1);
1422   __ srad(R17_tos, R11_scratch1, R17_tos);
1423 }
1424 
1425 void TemplateTable::lushr() {
1426   transition(itos, ltos);
1427 
1428   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1429   __ pop_l(R11_scratch1);
1430   __ srd(R17_tos, R11_scratch1, R17_tos);
1431 }
1432 
1433 void TemplateTable::fop2(Operation op) {
1434   transition(ftos, ftos);
1435 
1436   switch (op) {
1437     case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
1438     case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1439     case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
1440     case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1441     case rem:
1442       __ pop_f(F1_ARG1);
1443       __ fmr(F2_ARG2, F15_ftos);
1444       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1445       __ fmr(F15_ftos, F1_RET);
1446       break;
1447 
1448     default: ShouldNotReachHere();
1449   }
1450 }
1451 
1452 void TemplateTable::dop2(Operation op) {
1453   transition(dtos, dtos);
1454 
1455   switch (op) {
1456     case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
1457     case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
1458     case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
1459     case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
1460     case rem:
1461       __ pop_d(F1_ARG1);
1462       __ fmr(F2_ARG2, F15_ftos);
1463       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1464       __ fmr(F15_ftos, F1_RET);
1465       break;
1466 
1467     default: ShouldNotReachHere();
1468   }
1469 }
1470 
1471 // Negate the value in the TOS cache.
1472 void TemplateTable::ineg() {
1473   transition(itos, itos);
1474 
1475   __ neg(R17_tos, R17_tos);
1476 }
1477 
1478 // Negate the value in the TOS cache.
1479 void TemplateTable::lneg() {
1480   transition(ltos, ltos);
1481 
1482   __ neg(R17_tos, R17_tos);
1483 }
1484 
1485 void TemplateTable::fneg() {
1486   transition(ftos, ftos);
1487 
1488   __ fneg(F15_ftos, F15_ftos);
1489 }
1490 
1491 void TemplateTable::dneg() {
1492   transition(dtos, dtos);
1493 
1494   __ fneg(F15_ftos, F15_ftos);
1495 }
1496 
1497 // Increments a local variable in place.
1498 void TemplateTable::iinc() {
1499   transition(vtos, vtos);
1500 
1501   const Register Rindex     = R11_scratch1,
1502                  Rincrement = R0,
1503                  Rvalue     = R12_scratch2;
1504 
1505   locals_index(Rindex);              // Load locals index from bytecode stream.
1506   __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
1507   __ extsb(Rincrement, Rincrement);
1508 
1509   __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
1510 
1511   __ add(Rvalue, Rincrement, Rvalue);
1512   __ stw(Rvalue, 0, Rindex);
1513 }
1514 
1515 void TemplateTable::wide_iinc() {
1516   transition(vtos, vtos);
1517 
1518   Register Rindex       = R11_scratch1,
1519            Rlocals_addr = Rindex,
1520            Rincr        = R12_scratch2;
1521   locals_index_wide(Rindex);
1522   __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
1523   __ load_local_int(R17_tos, Rlocals_addr, Rindex);
1524   __ add(R17_tos, Rincr, R17_tos);
1525   __ stw(R17_tos, 0, Rlocals_addr);
1526 }
1527 
1528 void TemplateTable::convert() {
1529   // %%%%% Factor this first part accross platforms
1530 #ifdef ASSERT
1531   TosState tos_in  = ilgl;
1532   TosState tos_out = ilgl;
1533   switch (bytecode()) {
1534     case Bytecodes::_i2l: // fall through
1535     case Bytecodes::_i2f: // fall through
1536     case Bytecodes::_i2d: // fall through
1537     case Bytecodes::_i2b: // fall through
1538     case Bytecodes::_i2c: // fall through
1539     case Bytecodes::_i2s: tos_in = itos; break;
1540     case Bytecodes::_l2i: // fall through
1541     case Bytecodes::_l2f: // fall through
1542     case Bytecodes::_l2d: tos_in = ltos; break;
1543     case Bytecodes::_f2i: // fall through
1544     case Bytecodes::_f2l: // fall through
1545     case Bytecodes::_f2d: tos_in = ftos; break;
1546     case Bytecodes::_d2i: // fall through
1547     case Bytecodes::_d2l: // fall through
1548     case Bytecodes::_d2f: tos_in = dtos; break;
1549     default             : ShouldNotReachHere();
1550   }
1551   switch (bytecode()) {
1552     case Bytecodes::_l2i: // fall through
1553     case Bytecodes::_f2i: // fall through
1554     case Bytecodes::_d2i: // fall through
1555     case Bytecodes::_i2b: // fall through
1556     case Bytecodes::_i2c: // fall through
1557     case Bytecodes::_i2s: tos_out = itos; break;
1558     case Bytecodes::_i2l: // fall through
1559     case Bytecodes::_f2l: // fall through
1560     case Bytecodes::_d2l: tos_out = ltos; break;
1561     case Bytecodes::_i2f: // fall through
1562     case Bytecodes::_l2f: // fall through
1563     case Bytecodes::_d2f: tos_out = ftos; break;
1564     case Bytecodes::_i2d: // fall through
1565     case Bytecodes::_l2d: // fall through
1566     case Bytecodes::_f2d: tos_out = dtos; break;
1567     default             : ShouldNotReachHere();
1568   }
1569   transition(tos_in, tos_out);
1570 #endif
1571 
1572   // Conversion
1573   Label done;
1574   switch (bytecode()) {
1575     case Bytecodes::_i2l:
1576       __ extsw(R17_tos, R17_tos);
1577       break;
1578 
1579     case Bytecodes::_l2i:
1580       // Nothing to do, we'll continue to work with the lower bits.
1581       break;
1582 
1583     case Bytecodes::_i2b:
1584       __ extsb(R17_tos, R17_tos);
1585       break;
1586 
1587     case Bytecodes::_i2c:
1588       __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
1589       break;
1590 
1591     case Bytecodes::_i2s:
1592       __ extsh(R17_tos, R17_tos);
1593       break;
1594 
1595     case Bytecodes::_i2d:
1596       __ extsw(R17_tos, R17_tos);
1597     case Bytecodes::_l2d:
1598       __ move_l_to_d();
1599       __ fcfid(F15_ftos, F15_ftos);
1600       break;
1601 
1602     case Bytecodes::_i2f:
1603       __ extsw(R17_tos, R17_tos);
1604       __ move_l_to_d();
1605       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1606         // Comment: alternatively, load with sign extend could be done by lfiwax.
1607         __ fcfids(F15_ftos, F15_ftos);
1608       } else {
1609         __ fcfid(F15_ftos, F15_ftos);
1610         __ frsp(F15_ftos, F15_ftos);
1611       }
1612       break;
1613 
1614     case Bytecodes::_l2f:
1615       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1616         __ move_l_to_d();
1617         __ fcfids(F15_ftos, F15_ftos);
1618       } else {
1619         // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
1620         __ mr(R3_ARG1, R17_tos);
1621         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
1622         __ fmr(F15_ftos, F1_RET);
1623       }
1624       break;
1625 
1626     case Bytecodes::_f2d:
1627       // empty
1628       break;
1629 
1630     case Bytecodes::_d2f:
1631       __ frsp(F15_ftos, F15_ftos);
1632       break;
1633 
1634     case Bytecodes::_d2i:
1635     case Bytecodes::_f2i:
1636       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1637       __ li(R17_tos, 0); // 0 in case of NAN
1638       __ bso(CCR0, done);
1639       __ fctiwz(F15_ftos, F15_ftos);
1640       __ move_d_to_l();
1641       break;
1642 
1643     case Bytecodes::_d2l:
1644     case Bytecodes::_f2l:
1645       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1646       __ li(R17_tos, 0); // 0 in case of NAN
1647       __ bso(CCR0, done);
1648       __ fctidz(F15_ftos, F15_ftos);
1649       __ move_d_to_l();
1650       break;
1651 
1652     default: ShouldNotReachHere();
1653   }
1654   __ bind(done);
1655 }
1656 
1657 // Long compare
1658 void TemplateTable::lcmp() {
1659   transition(ltos, itos);
1660 
1661   const Register Rscratch = R11_scratch1;
1662   __ pop_l(Rscratch); // first operand, deeper in stack
1663 
1664   __ cmpd(CCR0, Rscratch, R17_tos); // compare
1665   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1666   __ srwi(Rscratch, R17_tos, 30);
1667   __ srawi(R17_tos, R17_tos, 31);
1668   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1669 }
1670 
1671 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes
1672 // unordered_result == -1 => fcmpl or dcmpl
1673 // unordered_result ==  1 => fcmpg or dcmpg
1674 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1675   const FloatRegister Rfirst  = F0_SCRATCH,
1676                       Rsecond = F15_ftos;
1677   const Register Rscratch = R11_scratch1;
1678 
1679   if (is_float) {
1680     __ pop_f(Rfirst);
1681   } else {
1682     __ pop_d(Rfirst);
1683   }
1684 
1685   Label Lunordered, Ldone;
1686   __ fcmpu(CCR0, Rfirst, Rsecond); // compare
1687   if (unordered_result) {
1688     __ bso(CCR0, Lunordered);
1689   }
1690   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1691   __ srwi(Rscratch, R17_tos, 30);
1692   __ srawi(R17_tos, R17_tos, 31);
1693   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1694   if (unordered_result) {
1695     __ b(Ldone);
1696     __ bind(Lunordered);
1697     __ load_const_optimized(R17_tos, unordered_result);
1698   }
1699   __ bind(Ldone);
1700 }
1701 
1702 // Branch_conditional which takes TemplateTable::Condition.
1703 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
1704   bool positive = false;
1705   Assembler::Condition cond = Assembler::equal;
1706   switch (cc) {
1707     case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
1708     case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
1709     case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
1710     case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
1711     case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
1712     case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
1713     default: ShouldNotReachHere();
1714   }
1715   int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1716   int bi = Assembler::bi0(crx, cond);
1717   __ bc(bo, bi, L);
1718 }
1719 
1720 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1721 
1722   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1723   __ verify_thread();
1724 
1725   const Register Rscratch1    = R11_scratch1,
1726                  Rscratch2    = R12_scratch2,
1727                  Rscratch3    = R3_ARG1,
1728                  R4_counters  = R4_ARG2,
1729                  bumped_count = R31,
1730                  Rdisp        = R22_tmp2;
1731 
1732   __ profile_taken_branch(Rscratch1, bumped_count);
1733 
1734   // Get (wide) offset.
1735   if (is_wide) {
1736     __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1737   } else {
1738     __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1739   }
1740 
1741   // --------------------------------------------------------------------------
1742   // Handle all the JSR stuff here, then exit.
1743   // It's much shorter and cleaner than intermingling with the
1744   // non-JSR normal-branch stuff occurring below.
1745   if (is_jsr) {
1746     // Compute return address as bci in Otos_i.
1747     __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1748     __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
1749     __ subf(R17_tos, Rscratch1, Rscratch2);
1750 
1751     // Bump bcp to target of JSR.
1752     __ add(R14_bcp, Rdisp, R14_bcp);
1753     // Push returnAddress for "ret" on stack.
1754     __ push_ptr(R17_tos);
1755     // And away we go!
1756     __ dispatch_next(vtos, 0 ,true);
1757     return;
1758   }
1759 
1760   // --------------------------------------------------------------------------
1761   // Normal (non-jsr) branch handling
1762 
1763   // Bump bytecode pointer by displacement (take the branch).
1764   __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1765 
1766   const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1767   if (increment_invocation_counter_for_backward_branches) {
1768     Label Lforward;
1769 
1770     // Check branch direction.
1771     __ cmpdi(CCR0, Rdisp, 0);
1772     __ bgt(CCR0, Lforward);
1773 
1774     __ get_method_counters(R19_method, R4_counters, Lforward);
1775 
1776     if (TieredCompilation) {
1777       Label Lno_mdo, Loverflow;
1778       const int increment = InvocationCounter::count_increment;
1779       if (ProfileInterpreter) {
1780         Register Rmdo = Rscratch1;
1781 
1782         // If no method data exists, go to profile_continue.
1783         __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
1784         __ cmpdi(CCR0, Rmdo, 0);
1785         __ beq(CCR0, Lno_mdo);
1786 
1787         // Increment backedge counter in the MDO.
1788         const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1789         __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
1790         __ lwz(Rscratch3, in_bytes(MethodData::backedge_mask_offset()), Rmdo);
1791         __ addi(Rscratch2, Rscratch2, increment);
1792         __ stw(Rscratch2, mdo_bc_offs, Rmdo);
1793         if (UseOnStackReplacement) {
1794           __ and_(Rscratch3, Rscratch2, Rscratch3);
1795           __ bne(CCR0, Lforward);
1796           __ b(Loverflow);
1797         } else {
1798           __ b(Lforward);
1799         }
1800       }
1801 
1802       // If there's no MDO, increment counter in method.
1803       const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1804       __ bind(Lno_mdo);
1805       __ lwz(Rscratch2, mo_bc_offs, R4_counters);
1806       __ lwz(Rscratch3, in_bytes(MethodCounters::backedge_mask_offset()), R4_counters);
1807       __ addi(Rscratch2, Rscratch2, increment);
1808       __ stw(Rscratch2, mo_bc_offs, R4_counters);
1809       if (UseOnStackReplacement) {
1810         __ and_(Rscratch3, Rscratch2, Rscratch3);
1811         __ bne(CCR0, Lforward);
1812       } else {
1813         __ b(Lforward);
1814       }
1815       __ bind(Loverflow);
1816 
1817       // Notify point for loop, pass branch bytecode.
1818       __ subf(R4_ARG2, Rdisp, R14_bcp); // Compute branch bytecode (previous bcp).
1819       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
1820 
1821       // Was an OSR adapter generated?
1822       __ cmpdi(CCR0, R3_RET, 0);
1823       __ beq(CCR0, Lforward);
1824 
1825       // Has the nmethod been invalidated already?
1826       __ lbz(R0, nmethod::state_offset(), R3_RET);
1827       __ cmpwi(CCR0, R0, nmethod::in_use);
1828       __ bne(CCR0, Lforward);
1829 
1830       // Migrate the interpreter frame off of the stack.
1831       // We can use all registers because we will not return to interpreter from this point.
1832 
1833       // Save nmethod.
1834       const Register osr_nmethod = R31;
1835       __ mr(osr_nmethod, R3_RET);
1836       __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1837       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1838       __ reset_last_Java_frame();
1839       // OSR buffer is in ARG1.
1840 
1841       // Remove the interpreter frame.
1842       __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1843 
1844       // Jump to the osr code.
1845       __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1846       __ mtlr(R0);
1847       __ mtctr(R11_scratch1);
1848       __ bctr();
1849 
1850     } else {
1851 
1852       const Register invoke_ctr = Rscratch1;
1853       // Update Backedge branch separately from invocations.
1854       __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
1855 
1856       if (ProfileInterpreter) {
1857         __ test_invocation_counter_for_mdp(invoke_ctr, R4_counters, Rscratch2, Lforward);
1858         if (UseOnStackReplacement) {
1859           __ test_backedge_count_for_osr(bumped_count, R4_counters, R14_bcp, Rdisp, Rscratch2);
1860         }
1861       } else {
1862         if (UseOnStackReplacement) {
1863           __ test_backedge_count_for_osr(invoke_ctr, R4_counters, R14_bcp, Rdisp, Rscratch2);
1864         }
1865       }
1866     }
1867 
1868     __ bind(Lforward);
1869   }
1870   __ dispatch_next(vtos, 0, true);
1871 }
1872 
1873 // Helper function for if_cmp* methods below.
1874 // Factored out common compare and branch code.
1875 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
1876   Label Lnot_taken;
1877   // Note: The condition code we get is the condition under which we
1878   // *fall through*! So we have to inverse the CC here.
1879 
1880   if (is_jint) {
1881     if (cmp0) {
1882       __ cmpwi(CCR0, Rfirst, 0);
1883     } else {
1884       __ cmpw(CCR0, Rfirst, Rsecond);
1885     }
1886   } else {
1887     if (cmp0) {
1888       __ cmpdi(CCR0, Rfirst, 0);
1889     } else {
1890       __ cmpd(CCR0, Rfirst, Rsecond);
1891     }
1892   }
1893   branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
1894 
1895   // Conition is false => Jump!
1896   branch(false, false);
1897 
1898   // Condition is not true => Continue.
1899   __ align(32, 12);
1900   __ bind(Lnot_taken);
1901   __ profile_not_taken_branch(Rscratch1, Rscratch2);
1902 }
1903 
1904 // Compare integer values with zero and fall through if CC holds, branch away otherwise.
1905 void TemplateTable::if_0cmp(Condition cc) {
1906   transition(itos, vtos);
1907 
1908   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
1909 }
1910 
1911 // Compare integer values and fall through if CC holds, branch away otherwise.
1912 //
1913 // Interface:
1914 //  - Rfirst: First operand  (older stack value)
1915 //  - tos:    Second operand (younger stack value)
1916 void TemplateTable::if_icmp(Condition cc) {
1917   transition(itos, vtos);
1918 
1919   const Register Rfirst  = R0,
1920                  Rsecond = R17_tos;
1921 
1922   __ pop_i(Rfirst);
1923   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
1924 }
1925 
1926 void TemplateTable::if_nullcmp(Condition cc) {
1927   transition(atos, vtos);
1928 
1929   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
1930 }
1931 
1932 void TemplateTable::if_acmp(Condition cc) {
1933   transition(atos, vtos);
1934 
1935   const Register Rfirst  = R0,
1936                  Rsecond = R17_tos;
1937 
1938   __ pop_ptr(Rfirst);
1939   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
1940 }
1941 
1942 void TemplateTable::ret() {
1943   locals_index(R11_scratch1);
1944   __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
1945 
1946   __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
1947 
1948   __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
1949   __ add(R11_scratch1, R17_tos, R11_scratch1);
1950   __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1951   __ dispatch_next(vtos, 0, true);
1952 }
1953 
1954 void TemplateTable::wide_ret() {
1955   transition(vtos, vtos);
1956 
1957   const Register Rindex = R3_ARG1,
1958                  Rscratch1 = R11_scratch1,
1959                  Rscratch2 = R12_scratch2;
1960 
1961   locals_index_wide(Rindex);
1962   __ load_local_ptr(R17_tos, R17_tos, Rindex);
1963   __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
1964   // Tos now contains the bci, compute the bcp from that.
1965   __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1966   __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
1967   __ add(R14_bcp, Rscratch1, Rscratch2);
1968   __ dispatch_next(vtos, 0, true);
1969 }
1970 
1971 void TemplateTable::tableswitch() {
1972   transition(itos, vtos);
1973 
1974   Label Ldispatch, Ldefault_case;
1975   Register Rlow_byte         = R3_ARG1,
1976            Rindex            = Rlow_byte,
1977            Rhigh_byte        = R4_ARG2,
1978            Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
1979            Rscratch1         = R11_scratch1,
1980            Rscratch2         = R12_scratch2,
1981            Roffset           = R6_ARG4;
1982 
1983   // Align bcp.
1984   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1985   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1986 
1987   // Load lo & hi.
1988   __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1989   __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned);
1990 
1991   // Check for default case (=index outside [low,high]).
1992   __ cmpw(CCR0, R17_tos, Rlow_byte);
1993   __ cmpw(CCR1, R17_tos, Rhigh_byte);
1994   __ blt(CCR0, Ldefault_case);
1995   __ bgt(CCR1, Ldefault_case);
1996 
1997   // Lookup dispatch offset.
1998   __ sub(Rindex, R17_tos, Rlow_byte);
1999   __ extsw(Rindex, Rindex);
2000   __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
2001   __ sldi(Rindex, Rindex, LogBytesPerInt);
2002   __ addi(Rindex, Rindex, 3 * BytesPerInt);
2003 #if defined(VM_LITTLE_ENDIAN)
2004   __ lwbrx(Roffset, Rdef_offset_addr, Rindex);
2005   __ extsw(Roffset, Roffset);
2006 #else
2007   __ lwax(Roffset, Rdef_offset_addr, Rindex);
2008 #endif
2009   __ b(Ldispatch);
2010 
2011   __ bind(Ldefault_case);
2012   __ profile_switch_default(Rhigh_byte, Rscratch1);
2013   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
2014 
2015   __ bind(Ldispatch);
2016 
2017   __ add(R14_bcp, Roffset, R14_bcp);
2018   __ dispatch_next(vtos, 0, true);
2019 }
2020 
2021 void TemplateTable::lookupswitch() {
2022   transition(itos, itos);
2023   __ stop("lookupswitch bytecode should have been rewritten");
2024 }
2025 
2026 // Table switch using linear search through cases.
2027 // Bytecode stream format:
2028 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
2029 // Note: Everything is big-endian format here.
2030 void TemplateTable::fast_linearswitch() {
2031   transition(itos, vtos);
2032 
2033   Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case;
2034   Register Rcount           = R3_ARG1,
2035            Rcurrent_pair    = R4_ARG2,
2036            Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
2037            Roffset          = R31,     // Might need to survive C call.
2038            Rvalue           = R12_scratch2,
2039            Rscratch         = R11_scratch1,
2040            Rcmp_value       = R17_tos;
2041 
2042   // Align bcp.
2043   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
2044   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
2045 
2046   // Setup loop counter and limit.
2047   __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
2048   __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
2049 
2050   __ mtctr(Rcount);
2051   __ cmpwi(CCR0, Rcount, 0);
2052   __ bne(CCR0, Lloop_entry);
2053 
2054   // Default case
2055   __ bind(Ldefault_case);
2056   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
2057   if (ProfileInterpreter) {
2058     __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
2059   }
2060   __ b(Lcontinue_execution);
2061 
2062   // Next iteration
2063   __ bind(Lsearch_loop);
2064   __ bdz(Ldefault_case);
2065   __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
2066   __ bind(Lloop_entry);
2067   __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned);
2068   __ cmpw(CCR0, Rvalue, Rcmp_value);
2069   __ bne(CCR0, Lsearch_loop);
2070 
2071   // Found, load offset.
2072   __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed);
2073   // Calculate case index and profile
2074   __ mfctr(Rcurrent_pair);
2075   if (ProfileInterpreter) {
2076     __ sub(Rcurrent_pair, Rcount, Rcurrent_pair);
2077     __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
2078   }
2079 
2080   __ bind(Lcontinue_execution);
2081   __ add(R14_bcp, Roffset, R14_bcp);
2082   __ dispatch_next(vtos, 0, true);
2083 }
2084 
2085 // Table switch using binary search (value/offset pairs are ordered).
2086 // Bytecode stream format:
2087 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
2088 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
2089 void TemplateTable::fast_binaryswitch() {
2090 
2091   transition(itos, vtos);
2092   // Implementation using the following core algorithm: (copied from Intel)
2093   //
2094   // int binary_search(int key, LookupswitchPair* array, int n) {
2095   //   // Binary search according to "Methodik des Programmierens" by
2096   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2097   //   int i = 0;
2098   //   int j = n;
2099   //   while (i+1 < j) {
2100   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2101   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2102   //     // where a stands for the array and assuming that the (inexisting)
2103   //     // element a[n] is infinitely big.
2104   //     int h = (i + j) >> 1;
2105   //     // i < h < j
2106   //     if (key < array[h].fast_match()) {
2107   //       j = h;
2108   //     } else {
2109   //       i = h;
2110   //     }
2111   //   }
2112   //   // R: a[i] <= key < a[i+1] or Q
2113   //   // (i.e., if key is within array, i is the correct index)
2114   //   return i;
2115   // }
2116 
2117   // register allocation
2118   const Register Rkey     = R17_tos;          // already set (tosca)
2119   const Register Rarray   = R3_ARG1;
2120   const Register Ri       = R4_ARG2;
2121   const Register Rj       = R5_ARG3;
2122   const Register Rh       = R6_ARG4;
2123   const Register Rscratch = R11_scratch1;
2124 
2125   const int log_entry_size = 3;
2126   const int entry_size = 1 << log_entry_size;
2127 
2128   Label found;
2129 
2130   // Find Array start,
2131   __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
2132   __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
2133 
2134   // initialize i & j
2135   __ li(Ri,0);
2136   __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned);
2137 
2138   // and start.
2139   Label entry;
2140   __ b(entry);
2141 
2142   // binary search loop
2143   { Label loop;
2144     __ bind(loop);
2145     // int h = (i + j) >> 1;
2146     __ srdi(Rh, Rh, 1);
2147     // if (key < array[h].fast_match()) {
2148     //   j = h;
2149     // } else {
2150     //   i = h;
2151     // }
2152     __ sldi(Rscratch, Rh, log_entry_size);
2153 #if defined(VM_LITTLE_ENDIAN)
2154     __ lwbrx(Rscratch, Rscratch, Rarray);
2155 #else
2156     __ lwzx(Rscratch, Rscratch, Rarray);
2157 #endif
2158 
2159     // if (key < current value)
2160     //   Rh = Rj
2161     // else
2162     //   Rh = Ri
2163     Label Lgreater;
2164     __ cmpw(CCR0, Rkey, Rscratch);
2165     __ bge(CCR0, Lgreater);
2166     __ mr(Rj, Rh);
2167     __ b(entry);
2168     __ bind(Lgreater);
2169     __ mr(Ri, Rh);
2170 
2171     // while (i+1 < j)
2172     __ bind(entry);
2173     __ addi(Rscratch, Ri, 1);
2174     __ cmpw(CCR0, Rscratch, Rj);
2175     __ add(Rh, Ri, Rj); // start h = i + j >> 1;
2176 
2177     __ blt(CCR0, loop);
2178   }
2179 
2180   // End of binary search, result index is i (must check again!).
2181   Label default_case;
2182   Label continue_execution;
2183   if (ProfileInterpreter) {
2184     __ mr(Rh, Ri);              // Save index in i for profiling.
2185   }
2186   // Ri = value offset
2187   __ sldi(Ri, Ri, log_entry_size);
2188   __ add(Ri, Ri, Rarray);
2189   __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned);
2190 
2191   Label not_found;
2192   // Ri = offset offset
2193   __ cmpw(CCR0, Rkey, Rscratch);
2194   __ beq(CCR0, not_found);
2195   // entry not found -> j = default offset
2196   __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned);
2197   __ b(default_case);
2198 
2199   __ bind(not_found);
2200   // entry found -> j = offset
2201   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
2202   __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned);
2203 
2204   if (ProfileInterpreter) {
2205     __ b(continue_execution);
2206   }
2207 
2208   __ bind(default_case); // fall through (if not profiling)
2209   __ profile_switch_default(Ri, Rscratch);
2210 
2211   __ bind(continue_execution);
2212 
2213   __ extsw(Rj, Rj);
2214   __ add(R14_bcp, Rj, R14_bcp);
2215   __ dispatch_next(vtos, 0 , true);
2216 }
2217 
2218 void TemplateTable::_return(TosState state) {
2219   transition(state, state);
2220   assert(_desc->calls_vm(),
2221          "inconsistent calls_vm information"); // call in remove_activation
2222 
2223   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2224 
2225     Register Rscratch     = R11_scratch1,
2226              Rklass       = R12_scratch2,
2227              Rklass_flags = Rklass;
2228     Label Lskip_register_finalizer;
2229 
2230     // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
2231     assert(state == vtos, "only valid state");
2232     __ ld(R17_tos, 0, R18_locals);
2233 
2234     // Load klass of this obj.
2235     __ load_klass(Rklass, R17_tos);
2236     __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
2237     __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
2238     __ bfalse(CCR0, Lskip_register_finalizer);
2239 
2240     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
2241 
2242     __ align(32, 12);
2243     __ bind(Lskip_register_finalizer);
2244   }
2245 
2246   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
2247     Label no_safepoint;
2248     __ ld(R11_scratch1, in_bytes(Thread::polling_page_offset()), R16_thread);
2249     __ andi_(R11_scratch1, R11_scratch1, SafepointMechanism::poll_bit());
2250     __ beq(CCR0, no_safepoint);
2251     __ push(state);
2252     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint));
2253     __ pop(state);
2254     __ bind(no_safepoint);
2255   }
2256 
2257   // Move the result value into the correct register and remove memory stack frame.
2258   __ remove_activation(state, /* throw_monitor_exception */ true);
2259   // Restoration of lr done by remove_activation.
2260   switch (state) {
2261     // Narrow result if state is itos but result type is smaller.
2262     // Need to narrow in the return bytecode rather than in generate_return_entry
2263     // since compiled code callers expect the result to already be narrowed.
2264     case itos: __ narrow(R17_tos); /* fall through */
2265     case ltos:
2266     case atos: __ mr(R3_RET, R17_tos); break;
2267     case ftos:
2268     case dtos: __ fmr(F1_RET, F15_ftos); break;
2269     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2270                // to get visible before the reference to the object gets stored anywhere.
2271                __ membar(Assembler::StoreStore); break;
2272     default  : ShouldNotReachHere();
2273   }
2274   __ blr();
2275 }
2276 
2277 // ============================================================================
2278 // Constant pool cache access
2279 //
2280 // Memory ordering:
2281 //
2282 // Like done in C++ interpreter, we load the fields
2283 //   - _indices
2284 //   - _f12_oop
2285 // acquired, because these are asked if the cache is already resolved. We don't
2286 // want to float loads above this check.
2287 // See also comments in ConstantPoolCacheEntry::bytecode_1(),
2288 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
2289 
2290 // Call into the VM if call site is not yet resolved
2291 //
2292 // Input regs:
2293 //   - None, all passed regs are outputs.
2294 //
2295 // Returns:
2296 //   - Rcache:  The const pool cache entry that contains the resolved result.
2297 //   - Rresult: Either noreg or output for f1/f2.
2298 //
2299 // Kills:
2300 //   - Rscratch
2301 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
2302 
2303   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2304   Label Lresolved, Ldone;
2305 
2306   Bytecodes::Code code = bytecode();
2307   switch (code) {
2308   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2309   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2310   }
2311 
2312   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2313   // We are resolved if the indices offset contains the current bytecode.
2314 #if defined(VM_LITTLE_ENDIAN)
2315   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache);
2316 #else
2317   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
2318 #endif
2319   // Acquire by cmp-br-isync (see below).
2320   __ cmpdi(CCR0, Rscratch, (int)code);
2321   __ beq(CCR0, Lresolved);
2322 
2323   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2324   __ li(R4_ARG2, code);
2325   __ call_VM(noreg, entry, R4_ARG2, true);
2326 
2327   // Update registers with resolved info.
2328   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2329   __ b(Ldone);
2330 
2331   __ bind(Lresolved);
2332   __ isync(); // Order load wrt. succeeding loads.
2333   __ bind(Ldone);
2334 }
2335 
2336 // Load the constant pool cache entry at field accesses into registers.
2337 // The Rcache and Rindex registers must be set before call.
2338 // Input:
2339 //   - Rcache, Rindex
2340 // Output:
2341 //   - Robj, Roffset, Rflags
2342 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2343                                               Register Rcache,
2344                                               Register Rindex /* unused on PPC64 */,
2345                                               Register Roffset,
2346                                               Register Rflags,
2347                                               bool is_static = false) {
2348   assert_different_registers(Rcache, Rflags, Roffset);
2349   // assert(Rindex == noreg, "parameter not used on PPC64");
2350 
2351   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2352   __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
2353   __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
2354   if (is_static) {
2355     __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
2356     __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
2357     __ resolve_oop_handle(Robj);
2358     // Acquire not needed here. Following access has an address dependency on this value.
2359   }
2360 }
2361 
2362 // Load the constant pool cache entry at invokes into registers.
2363 // Resolve if necessary.
2364 
2365 // Input Registers:
2366 //   - None, bcp is used, though
2367 //
2368 // Return registers:
2369 //   - Rmethod       (f1 field or f2 if invokevirtual)
2370 //   - Ritable_index (f2 field)
2371 //   - Rflags        (flags field)
2372 //
2373 // Kills:
2374 //   - R21
2375 //
2376 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2377                                                Register Rmethod,
2378                                                Register Ritable_index,
2379                                                Register Rflags,
2380                                                bool is_invokevirtual,
2381                                                bool is_invokevfinal,
2382                                                bool is_invokedynamic) {
2383 
2384   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2385   // Determine constant pool cache field offsets.
2386   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2387   const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
2388   const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
2389   // Access constant pool cache fields.
2390   const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
2391 
2392   Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
2393 
2394   if (is_invokevfinal) {
2395     assert(Ritable_index == noreg, "register not used");
2396     // Already resolved.
2397     __ get_cache_and_index_at_bcp(Rcache, 1);
2398   } else {
2399     resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2400   }
2401 
2402   __ ld(Rmethod, method_offset, Rcache);
2403   __ ld(Rflags, flags_offset, Rcache);
2404 
2405   if (Ritable_index != noreg) {
2406     __ ld(Ritable_index, index_offset, Rcache);
2407   }
2408 }
2409 
2410 // ============================================================================
2411 // Field access
2412 
2413 // Volatile variables demand their effects be made known to all CPU's
2414 // in order. Store buffers on most chips allow reads & writes to
2415 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2416 // without some kind of memory barrier (i.e., it's not sufficient that
2417 // the interpreter does not reorder volatile references, the hardware
2418 // also must not reorder them).
2419 //
2420 // According to the new Java Memory Model (JMM):
2421 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2422 //     writes act as aquire & release, so:
2423 // (2) A read cannot let unrelated NON-volatile memory refs that
2424 //     happen after the read float up to before the read. It's OK for
2425 //     non-volatile memory refs that happen before the volatile read to
2426 //     float down below it.
2427 // (3) Similar a volatile write cannot let unrelated NON-volatile
2428 //     memory refs that happen BEFORE the write float down to after the
2429 //     write. It's OK for non-volatile memory refs that happen after the
2430 //     volatile write to float up before it.
2431 //
2432 // We only put in barriers around volatile refs (they are expensive),
2433 // not _between_ memory refs (that would require us to track the
2434 // flavor of the previous memory refs). Requirements (2) and (3)
2435 // require some barriers before volatile stores and after volatile
2436 // loads. These nearly cover requirement (1) but miss the
2437 // volatile-store-volatile-load case.  This final case is placed after
2438 // volatile-stores although it could just as well go before
2439 // volatile-loads.
2440 
2441 // The registers cache and index expected to be set before call.
2442 // Correct values of the cache and index registers are preserved.
2443 // Kills:
2444 //   Rcache (if has_tos)
2445 //   Rscratch
2446 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
2447 
2448   assert_different_registers(Rcache, Rscratch);
2449 
2450   if (JvmtiExport::can_post_field_access()) {
2451     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2452     Label Lno_field_access_post;
2453 
2454     // Check if post field access in enabled.
2455     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
2456     __ lwz(Rscratch, offs, Rscratch);
2457 
2458     __ cmpwi(CCR0, Rscratch, 0);
2459     __ beq(CCR0, Lno_field_access_post);
2460 
2461     // Post access enabled - do it!
2462     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2463     if (is_static) {
2464       __ li(R17_tos, 0);
2465     } else {
2466       if (has_tos) {
2467         // The fast bytecode versions have obj ptr in register.
2468         // Thus, save object pointer before call_VM() clobbers it
2469         // put object on tos where GC wants it.
2470         __ push_ptr(R17_tos);
2471       } else {
2472         // Load top of stack (do not pop the value off the stack).
2473         __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
2474       }
2475       __ verify_oop(R17_tos);
2476     }
2477     // tos:   object pointer or NULL if static
2478     // cache: cache entry pointer
2479     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
2480     if (!is_static && has_tos) {
2481       // Restore object pointer.
2482       __ pop_ptr(R17_tos);
2483       __ verify_oop(R17_tos);
2484     } else {
2485       // Cache is still needed to get class or obj.
2486       __ get_cache_and_index_at_bcp(Rcache, 1);
2487     }
2488 
2489     __ align(32, 12);
2490     __ bind(Lno_field_access_post);
2491   }
2492 }
2493 
2494 // kills R11_scratch1
2495 void TemplateTable::pop_and_check_object(Register Roop) {
2496   Register Rtmp = R11_scratch1;
2497 
2498   assert_different_registers(Rtmp, Roop);
2499   __ pop_ptr(Roop);
2500   // For field access must check obj.
2501   __ null_check_throw(Roop, -1, Rtmp);
2502   __ verify_oop(Roop);
2503 }
2504 
2505 // PPC64: implement volatile loads as fence-store-acquire.
2506 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2507   transition(vtos, vtos);
2508 
2509   Label Lacquire, Lisync;
2510 
2511   const Register Rcache        = R3_ARG1,
2512                  Rclass_or_obj = R22_tmp2,
2513                  Roffset       = R23_tmp3,
2514                  Rflags        = R31,
2515                  Rbtable       = R5_ARG3,
2516                  Rbc           = R6_ARG4,
2517                  Rscratch      = R12_scratch2;
2518 
2519   static address field_branch_table[number_of_states],
2520                  static_branch_table[number_of_states];
2521 
2522   address* branch_table = (is_static || rc == may_not_rewrite) ? static_branch_table : field_branch_table;
2523 
2524   // Get field offset.
2525   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2526 
2527   // JVMTI support
2528   jvmti_post_field_access(Rcache, Rscratch, is_static, false);
2529 
2530   // Load after possible GC.
2531   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2532 
2533   // Load pointer to branch table.
2534   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2535 
2536   // Get volatile flag.
2537   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2538   // Note: sync is needed before volatile load on PPC64.
2539 
2540   // Check field type.
2541   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2542 
2543 #ifdef ASSERT
2544   Label LFlagInvalid;
2545   __ cmpldi(CCR0, Rflags, number_of_states);
2546   __ bge(CCR0, LFlagInvalid);
2547 #endif
2548 
2549   // Load from branch table and dispatch (volatile case: one instruction ahead).
2550   __ sldi(Rflags, Rflags, LogBytesPerWord);
2551   __ cmpwi(CCR6, Rscratch, 1); // Volatile?
2552   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2553     __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
2554   }
2555   __ ldx(Rbtable, Rbtable, Rflags);
2556 
2557   // Get the obj from stack.
2558   if (!is_static) {
2559     pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2560   } else {
2561     __ verify_oop(Rclass_or_obj);
2562   }
2563 
2564   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2565     __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2566   }
2567   __ mtctr(Rbtable);
2568   __ bctr();
2569 
2570 #ifdef ASSERT
2571   __ bind(LFlagInvalid);
2572   __ stop("got invalid flag", 0x654);
2573 #endif
2574 
2575   if (!is_static && rc == may_not_rewrite) {
2576     // We reuse the code from is_static.  It's jumped to via the table above.
2577     return;
2578   }
2579 
2580 #ifdef ASSERT
2581   // __ bind(Lvtos);
2582   address pc_before_fence = __ pc();
2583   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2584   assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2585   assert(branch_table[vtos] == 0, "can't compute twice");
2586   branch_table[vtos] = __ pc(); // non-volatile_entry point
2587   __ stop("vtos unexpected", 0x655);
2588 #endif
2589 
2590   __ align(32, 28, 28); // Align load.
2591   // __ bind(Ldtos);
2592   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2593   assert(branch_table[dtos] == 0, "can't compute twice");
2594   branch_table[dtos] = __ pc(); // non-volatile_entry point
2595   __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
2596   __ push(dtos);
2597   if (!is_static && rc == may_rewrite) {
2598     patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
2599   }
2600   {
2601     Label acquire_double;
2602     __ beq(CCR6, acquire_double); // Volatile?
2603     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2604 
2605     __ bind(acquire_double);
2606     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2607     __ beq_predict_taken(CCR0, Lisync);
2608     __ b(Lisync); // In case of NAN.
2609   }
2610 
2611   __ align(32, 28, 28); // Align load.
2612   // __ bind(Lftos);
2613   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2614   assert(branch_table[ftos] == 0, "can't compute twice");
2615   branch_table[ftos] = __ pc(); // non-volatile_entry point
2616   __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
2617   __ push(ftos);
2618   if (!is_static && rc == may_rewrite) {
2619     patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch);
2620   }
2621   {
2622     Label acquire_float;
2623     __ beq(CCR6, acquire_float); // Volatile?
2624     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2625 
2626     __ bind(acquire_float);
2627     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2628     __ beq_predict_taken(CCR0, Lisync);
2629     __ b(Lisync); // In case of NAN.
2630   }
2631 
2632   __ align(32, 28, 28); // Align load.
2633   // __ bind(Litos);
2634   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2635   assert(branch_table[itos] == 0, "can't compute twice");
2636   branch_table[itos] = __ pc(); // non-volatile_entry point
2637   __ lwax(R17_tos, Rclass_or_obj, Roffset);
2638   __ push(itos);
2639   if (!is_static && rc == may_rewrite) {
2640     patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
2641   }
2642   __ beq(CCR6, Lacquire); // Volatile?
2643   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2644 
2645   __ align(32, 28, 28); // Align load.
2646   // __ bind(Lltos);
2647   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2648   assert(branch_table[ltos] == 0, "can't compute twice");
2649   branch_table[ltos] = __ pc(); // non-volatile_entry point
2650   __ ldx(R17_tos, Rclass_or_obj, Roffset);
2651   __ push(ltos);
2652   if (!is_static && rc == may_rewrite) {
2653     patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
2654   }
2655   __ beq(CCR6, Lacquire); // Volatile?
2656   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2657 
2658   __ align(32, 28, 28); // Align load.
2659   // __ bind(Lbtos);
2660   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2661   assert(branch_table[btos] == 0, "can't compute twice");
2662   branch_table[btos] = __ pc(); // non-volatile_entry point
2663   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2664   __ extsb(R17_tos, R17_tos);
2665   __ push(btos);
2666   if (!is_static && rc == may_rewrite) {
2667     patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2668   }
2669   __ beq(CCR6, Lacquire); // Volatile?
2670   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2671 
2672   __ align(32, 28, 28); // Align load.
2673   // __ bind(Lztos); (same code as btos)
2674   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2675   assert(branch_table[ztos] == 0, "can't compute twice");
2676   branch_table[ztos] = __ pc(); // non-volatile_entry point
2677   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2678   __ push(ztos);
2679   if (!is_static && rc == may_rewrite) {
2680     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2681     patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2682   }
2683   __ beq(CCR6, Lacquire); // Volatile?
2684   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2685 
2686   __ align(32, 28, 28); // Align load.
2687   // __ bind(Lctos);
2688   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2689   assert(branch_table[ctos] == 0, "can't compute twice");
2690   branch_table[ctos] = __ pc(); // non-volatile_entry point
2691   __ lhzx(R17_tos, Rclass_or_obj, Roffset);
2692   __ push(ctos);
2693   if (!is_static && rc == may_rewrite) {
2694     patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
2695   }
2696   __ beq(CCR6, Lacquire); // Volatile?
2697   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2698 
2699   __ align(32, 28, 28); // Align load.
2700   // __ bind(Lstos);
2701   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2702   assert(branch_table[stos] == 0, "can't compute twice");
2703   branch_table[stos] = __ pc(); // non-volatile_entry point
2704   __ lhax(R17_tos, Rclass_or_obj, Roffset);
2705   __ push(stos);
2706   if (!is_static && rc == may_rewrite) {
2707     patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
2708   }
2709   __ beq(CCR6, Lacquire); // Volatile?
2710   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2711 
2712   __ align(32, 28, 28); // Align load.
2713   // __ bind(Latos);
2714   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2715   assert(branch_table[atos] == 0, "can't compute twice");
2716   branch_table[atos] = __ pc(); // non-volatile_entry point
2717   __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2718   __ verify_oop(R17_tos);
2719   __ push(atos);
2720   //__ dcbt(R17_tos); // prefetch
2721   if (!is_static && rc == may_rewrite) {
2722     patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
2723   }
2724   __ beq(CCR6, Lacquire); // Volatile?
2725   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2726 
2727   __ align(32, 12);
2728   __ bind(Lacquire);
2729   __ twi_0(R17_tos);
2730   __ bind(Lisync);
2731   __ isync(); // acquire
2732 
2733 #ifdef ASSERT
2734   for (int i = 0; i<number_of_states; ++i) {
2735     assert(branch_table[i], "get initialization");
2736     //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2737     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2738   }
2739 #endif
2740 }
2741 
2742 void TemplateTable::getfield(int byte_no) {
2743   getfield_or_static(byte_no, false);
2744 }
2745 
2746 void TemplateTable::nofast_getfield(int byte_no) {
2747   getfield_or_static(byte_no, false, may_not_rewrite);
2748 }
2749 
2750 void TemplateTable::getstatic(int byte_no) {
2751   getfield_or_static(byte_no, true);
2752 }
2753 
2754 // The registers cache and index expected to be set before call.
2755 // The function may destroy various registers, just not the cache and index registers.
2756 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
2757 
2758   assert_different_registers(Rcache, Rscratch, R6_ARG4);
2759 
2760   if (JvmtiExport::can_post_field_modification()) {
2761     Label Lno_field_mod_post;
2762 
2763     // Check if post field access in enabled.
2764     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
2765     __ lwz(Rscratch, offs, Rscratch);
2766 
2767     __ cmpwi(CCR0, Rscratch, 0);
2768     __ beq(CCR0, Lno_field_mod_post);
2769 
2770     // Do the post
2771     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2772     const Register Robj = Rscratch;
2773 
2774     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2775     if (is_static) {
2776       // Life is simple. Null out the object pointer.
2777       __ li(Robj, 0);
2778     } else {
2779       // In case of the fast versions, value lives in registers => put it back on tos.
2780       int offs = Interpreter::expr_offset_in_bytes(0);
2781       Register base = R15_esp;
2782       switch(bytecode()) {
2783         case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
2784         case Bytecodes::_fast_iputfield: // Fall through
2785         case Bytecodes::_fast_bputfield: // Fall through
2786         case Bytecodes::_fast_zputfield: // Fall through
2787         case Bytecodes::_fast_cputfield: // Fall through
2788         case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
2789         case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
2790         case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
2791         case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
2792         default: {
2793           offs = 0;
2794           base = Robj;
2795           const Register Rflags = Robj;
2796           Label is_one_slot;
2797           // Life is harder. The stack holds the value on top, followed by the
2798           // object. We don't know the size of the value, though; it could be
2799           // one or two words depending on its type. As a result, we must find
2800           // the type to determine where the object is.
2801           __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
2802           __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2803 
2804           __ cmpwi(CCR0, Rflags, ltos);
2805           __ cmpwi(CCR1, Rflags, dtos);
2806           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
2807           __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal);
2808           __ beq(CCR0, is_one_slot);
2809           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
2810           __ bind(is_one_slot);
2811           break;
2812         }
2813       }
2814       __ ld(Robj, offs, base);
2815       __ verify_oop(Robj);
2816     }
2817 
2818     __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
2819     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
2820     __ get_cache_and_index_at_bcp(Rcache, 1);
2821 
2822     // In case of the fast versions, value lives in registers => put it back on tos.
2823     switch(bytecode()) {
2824       case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
2825       case Bytecodes::_fast_iputfield: // Fall through
2826       case Bytecodes::_fast_bputfield: // Fall through
2827       case Bytecodes::_fast_zputfield: // Fall through
2828       case Bytecodes::_fast_cputfield: // Fall through
2829       case Bytecodes::_fast_sputfield: __ pop_i(); break;
2830       case Bytecodes::_fast_lputfield: __ pop_l(); break;
2831       case Bytecodes::_fast_fputfield: __ pop_f(); break;
2832       case Bytecodes::_fast_dputfield: __ pop_d(); break;
2833       default: break; // Nothin' to do.
2834     }
2835 
2836     __ align(32, 12);
2837     __ bind(Lno_field_mod_post);
2838   }
2839 }
2840 
2841 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
2842 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2843   Label Lvolatile;
2844 
2845   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2846                  Rclass_or_obj = R31,      // Needs to survive C call.
2847                  Roffset       = R22_tmp2, // Needs to survive C call.
2848                  Rflags        = R3_ARG1,
2849                  Rbtable       = R4_ARG2,
2850                  Rscratch      = R11_scratch1,
2851                  Rscratch2     = R12_scratch2,
2852                  Rscratch3     = R6_ARG4,
2853                  Rbc           = Rscratch3;
2854   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2855 
2856   static address field_rw_branch_table[number_of_states],
2857                  field_norw_branch_table[number_of_states],
2858                  static_branch_table[number_of_states];
2859 
2860   address* branch_table = is_static ? static_branch_table :
2861     (rc == may_rewrite ? field_rw_branch_table : field_norw_branch_table);
2862 
2863   // Stack (grows up):
2864   //  value
2865   //  obj
2866 
2867   // Load the field offset.
2868   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2869   jvmti_post_field_mod(Rcache, Rscratch, is_static);
2870   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2871 
2872   // Load pointer to branch table.
2873   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2874 
2875   // Get volatile flag.
2876   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2877 
2878   // Check the field type.
2879   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2880 
2881 #ifdef ASSERT
2882   Label LFlagInvalid;
2883   __ cmpldi(CCR0, Rflags, number_of_states);
2884   __ bge(CCR0, LFlagInvalid);
2885 #endif
2886 
2887   // Load from branch table and dispatch (volatile case: one instruction ahead).
2888   __ sldi(Rflags, Rflags, LogBytesPerWord);
2889   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2890     __ cmpwi(CR_is_vol, Rscratch, 1);  // Volatile?
2891   }
2892   __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
2893   __ ldx(Rbtable, Rbtable, Rflags);
2894 
2895   __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2896   __ mtctr(Rbtable);
2897   __ bctr();
2898 
2899 #ifdef ASSERT
2900   __ bind(LFlagInvalid);
2901   __ stop("got invalid flag", 0x656);
2902 
2903   // __ bind(Lvtos);
2904   address pc_before_release = __ pc();
2905   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2906   assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2907   assert(branch_table[vtos] == 0, "can't compute twice");
2908   branch_table[vtos] = __ pc(); // non-volatile_entry point
2909   __ stop("vtos unexpected", 0x657);
2910 #endif
2911 
2912   __ align(32, 28, 28); // Align pop.
2913   // __ bind(Ldtos);
2914   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2915   assert(branch_table[dtos] == 0, "can't compute twice");
2916   branch_table[dtos] = __ pc(); // non-volatile_entry point
2917   __ pop(dtos);
2918   if (!is_static) {
2919     pop_and_check_object(Rclass_or_obj);  // Kills R11_scratch1.
2920   }
2921   __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2922   if (!is_static && rc == may_rewrite) {
2923     patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no);
2924   }
2925   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2926     __ beq(CR_is_vol, Lvolatile); // Volatile?
2927   }
2928   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2929 
2930   __ align(32, 28, 28); // Align pop.
2931   // __ bind(Lftos);
2932   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2933   assert(branch_table[ftos] == 0, "can't compute twice");
2934   branch_table[ftos] = __ pc(); // non-volatile_entry point
2935   __ pop(ftos);
2936   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2937   __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2938   if (!is_static && rc == may_rewrite) {
2939     patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no);
2940   }
2941   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2942     __ beq(CR_is_vol, Lvolatile); // Volatile?
2943   }
2944   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2945 
2946   __ align(32, 28, 28); // Align pop.
2947   // __ bind(Litos);
2948   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2949   assert(branch_table[itos] == 0, "can't compute twice");
2950   branch_table[itos] = __ pc(); // non-volatile_entry point
2951   __ pop(itos);
2952   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2953   __ stwx(R17_tos, Rclass_or_obj, Roffset);
2954   if (!is_static && rc == may_rewrite) {
2955     patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no);
2956   }
2957   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2958     __ beq(CR_is_vol, Lvolatile); // Volatile?
2959   }
2960   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2961 
2962   __ align(32, 28, 28); // Align pop.
2963   // __ bind(Lltos);
2964   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2965   assert(branch_table[ltos] == 0, "can't compute twice");
2966   branch_table[ltos] = __ pc(); // non-volatile_entry point
2967   __ pop(ltos);
2968   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2969   __ stdx(R17_tos, Rclass_or_obj, Roffset);
2970   if (!is_static && rc == may_rewrite) {
2971     patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no);
2972   }
2973   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2974     __ beq(CR_is_vol, Lvolatile); // Volatile?
2975   }
2976   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2977 
2978   __ align(32, 28, 28); // Align pop.
2979   // __ bind(Lbtos);
2980   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2981   assert(branch_table[btos] == 0, "can't compute twice");
2982   branch_table[btos] = __ pc(); // non-volatile_entry point
2983   __ pop(btos);
2984   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2985   __ stbx(R17_tos, Rclass_or_obj, Roffset);
2986   if (!is_static && rc == may_rewrite) {
2987     patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no);
2988   }
2989   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2990     __ beq(CR_is_vol, Lvolatile); // Volatile?
2991   }
2992   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2993 
2994   __ align(32, 28, 28); // Align pop.
2995   // __ bind(Lztos);
2996   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2997   assert(branch_table[ztos] == 0, "can't compute twice");
2998   branch_table[ztos] = __ pc(); // non-volatile_entry point
2999   __ pop(ztos);
3000   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
3001   __ andi(R17_tos, R17_tos, 0x1);
3002   __ stbx(R17_tos, Rclass_or_obj, Roffset);
3003   if (!is_static && rc == may_rewrite) {
3004     patch_bytecode(Bytecodes::_fast_zputfield, Rbc, Rscratch, true, byte_no);
3005   }
3006   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
3007     __ beq(CR_is_vol, Lvolatile); // Volatile?
3008   }
3009   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
3010 
3011   __ align(32, 28, 28); // Align pop.
3012   // __ bind(Lctos);
3013   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
3014   assert(branch_table[ctos] == 0, "can't compute twice");
3015   branch_table[ctos] = __ pc(); // non-volatile_entry point
3016   __ pop(ctos);
3017   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
3018   __ sthx(R17_tos, Rclass_or_obj, Roffset);
3019   if (!is_static && rc == may_rewrite) {
3020     patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no);
3021   }
3022   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
3023     __ beq(CR_is_vol, Lvolatile); // Volatile?
3024   }
3025   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
3026 
3027   __ align(32, 28, 28); // Align pop.
3028   // __ bind(Lstos);
3029   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
3030   assert(branch_table[stos] == 0, "can't compute twice");
3031   branch_table[stos] = __ pc(); // non-volatile_entry point
3032   __ pop(stos);
3033   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
3034   __ sthx(R17_tos, Rclass_or_obj, Roffset);
3035   if (!is_static && rc == may_rewrite) {
3036     patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no);
3037   }
3038   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
3039     __ beq(CR_is_vol, Lvolatile); // Volatile?
3040   }
3041   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
3042 
3043   __ align(32, 28, 28); // Align pop.
3044   // __ bind(Latos);
3045   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
3046   assert(branch_table[atos] == 0, "can't compute twice");
3047   branch_table[atos] = __ pc(); // non-volatile_entry point
3048   __ pop(atos);
3049   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
3050   do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
3051   if (!is_static && rc == may_rewrite) {
3052     patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no);
3053   }
3054   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
3055     __ beq(CR_is_vol, Lvolatile); // Volatile?
3056     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
3057 
3058     __ align(32, 12);
3059     __ bind(Lvolatile);
3060     __ fence();
3061   }
3062   // fallthru: __ b(Lexit);
3063 
3064 #ifdef ASSERT
3065   for (int i = 0; i<number_of_states; ++i) {
3066     assert(branch_table[i], "put initialization");
3067     //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
3068     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
3069   }
3070 #endif
3071 }
3072 
3073 void TemplateTable::putfield(int byte_no) {
3074   putfield_or_static(byte_no, false);
3075 }
3076 
3077 void TemplateTable::nofast_putfield(int byte_no) {
3078   putfield_or_static(byte_no, false, may_not_rewrite);
3079 }
3080 
3081 void TemplateTable::putstatic(int byte_no) {
3082   putfield_or_static(byte_no, true);
3083 }
3084 
3085 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
3086 void TemplateTable::jvmti_post_fast_field_mod() {
3087   __ should_not_reach_here();
3088 }
3089 
3090 void TemplateTable::fast_storefield(TosState state) {
3091   transition(state, vtos);
3092 
3093   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
3094                  Rclass_or_obj = R31,      // Needs to survive C call.
3095                  Roffset       = R22_tmp2, // Needs to survive C call.
3096                  Rflags        = R3_ARG1,
3097                  Rscratch      = R11_scratch1,
3098                  Rscratch2     = R12_scratch2,
3099                  Rscratch3     = R4_ARG2;
3100   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
3101 
3102   // Constant pool already resolved => Load flags and offset of field.
3103   __ get_cache_and_index_at_bcp(Rcache, 1);
3104   jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
3105   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3106 
3107   // Get the obj and the final store addr.
3108   pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
3109 
3110   // Get volatile flag.
3111   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3112   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
3113   {
3114     Label LnotVolatile;
3115     __ beq(CCR0, LnotVolatile);
3116     __ release();
3117     __ align(32, 12);
3118     __ bind(LnotVolatile);
3119   }
3120 
3121   // Do the store and fencing.
3122   switch(bytecode()) {
3123     case Bytecodes::_fast_aputfield:
3124       // Store into the field.
3125       do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
3126       break;
3127 
3128     case Bytecodes::_fast_iputfield:
3129       __ stwx(R17_tos, Rclass_or_obj, Roffset);
3130       break;
3131 
3132     case Bytecodes::_fast_lputfield:
3133       __ stdx(R17_tos, Rclass_or_obj, Roffset);
3134       break;
3135 
3136     case Bytecodes::_fast_zputfield:
3137       __ andi(R17_tos, R17_tos, 0x1);  // boolean is true if LSB is 1
3138       // fall through to bputfield
3139     case Bytecodes::_fast_bputfield:
3140       __ stbx(R17_tos, Rclass_or_obj, Roffset);
3141       break;
3142 
3143     case Bytecodes::_fast_cputfield:
3144     case Bytecodes::_fast_sputfield:
3145       __ sthx(R17_tos, Rclass_or_obj, Roffset);
3146       break;
3147 
3148     case Bytecodes::_fast_fputfield:
3149       __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
3150       break;
3151 
3152     case Bytecodes::_fast_dputfield:
3153       __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
3154       break;
3155 
3156     default: ShouldNotReachHere();
3157   }
3158 
3159   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
3160     Label LVolatile;
3161     __ beq(CR_is_vol, LVolatile);
3162     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
3163 
3164     __ align(32, 12);
3165     __ bind(LVolatile);
3166     __ fence();
3167   }
3168 }
3169 
3170 void TemplateTable::fast_accessfield(TosState state) {
3171   transition(atos, state);
3172 
3173   Label LisVolatile;
3174   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3175 
3176   const Register Rcache        = R3_ARG1,
3177                  Rclass_or_obj = R17_tos,
3178                  Roffset       = R22_tmp2,
3179                  Rflags        = R23_tmp3,
3180                  Rscratch      = R12_scratch2;
3181 
3182   // Constant pool already resolved. Get the field offset.
3183   __ get_cache_and_index_at_bcp(Rcache, 1);
3184   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3185 
3186   // JVMTI support
3187   jvmti_post_field_access(Rcache, Rscratch, false, true);
3188 
3189   // Get the load address.
3190   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3191 
3192   // Get volatile flag.
3193   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3194   __ bne(CCR0, LisVolatile);
3195 
3196   switch(bytecode()) {
3197     case Bytecodes::_fast_agetfield:
3198     {
3199       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3200       __ verify_oop(R17_tos);
3201       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3202 
3203       __ bind(LisVolatile);
3204       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3205       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3206       __ verify_oop(R17_tos);
3207       __ twi_0(R17_tos);
3208       __ isync();
3209       break;
3210     }
3211     case Bytecodes::_fast_igetfield:
3212     {
3213       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3214       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3215 
3216       __ bind(LisVolatile);
3217       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3218       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3219       __ twi_0(R17_tos);
3220       __ isync();
3221       break;
3222     }
3223     case Bytecodes::_fast_lgetfield:
3224     {
3225       __ ldx(R17_tos, Rclass_or_obj, Roffset);
3226       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3227 
3228       __ bind(LisVolatile);
3229       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3230       __ ldx(R17_tos, Rclass_or_obj, Roffset);
3231       __ twi_0(R17_tos);
3232       __ isync();
3233       break;
3234     }
3235     case Bytecodes::_fast_bgetfield:
3236     {
3237       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3238       __ extsb(R17_tos, R17_tos);
3239       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3240 
3241       __ bind(LisVolatile);
3242       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3243       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3244       __ twi_0(R17_tos);
3245       __ extsb(R17_tos, R17_tos);
3246       __ isync();
3247       break;
3248     }
3249     case Bytecodes::_fast_cgetfield:
3250     {
3251       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3252       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3253 
3254       __ bind(LisVolatile);
3255       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3256       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3257       __ twi_0(R17_tos);
3258       __ isync();
3259       break;
3260     }
3261     case Bytecodes::_fast_sgetfield:
3262     {
3263       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3264       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3265 
3266       __ bind(LisVolatile);
3267       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3268       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3269       __ twi_0(R17_tos);
3270       __ isync();
3271       break;
3272     }
3273     case Bytecodes::_fast_fgetfield:
3274     {
3275       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3276       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3277 
3278       __ bind(LisVolatile);
3279       Label Ldummy;
3280       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3281       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3282       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3283       __ bne_predict_not_taken(CCR0, Ldummy);
3284       __ bind(Ldummy);
3285       __ isync();
3286       break;
3287     }
3288     case Bytecodes::_fast_dgetfield:
3289     {
3290       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3291       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3292 
3293       __ bind(LisVolatile);
3294       Label Ldummy;
3295       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3296       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3297       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3298       __ bne_predict_not_taken(CCR0, Ldummy);
3299       __ bind(Ldummy);
3300       __ isync();
3301       break;
3302     }
3303     default: ShouldNotReachHere();
3304   }
3305 }
3306 
3307 void TemplateTable::fast_xaccess(TosState state) {
3308   transition(vtos, state);
3309 
3310   Label LisVolatile;
3311   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3312   const Register Rcache        = R3_ARG1,
3313                  Rclass_or_obj = R17_tos,
3314                  Roffset       = R22_tmp2,
3315                  Rflags        = R23_tmp3,
3316                  Rscratch      = R12_scratch2;
3317 
3318   __ ld(Rclass_or_obj, 0, R18_locals);
3319 
3320   // Constant pool already resolved. Get the field offset.
3321   __ get_cache_and_index_at_bcp(Rcache, 2);
3322   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3323 
3324   // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
3325 
3326   // Needed to report exception at the correct bcp.
3327   __ addi(R14_bcp, R14_bcp, 1);
3328 
3329   // Get the load address.
3330   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3331 
3332   // Get volatile flag.
3333   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3334   __ bne(CCR0, LisVolatile);
3335 
3336   switch(state) {
3337   case atos:
3338     {
3339       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3340       __ verify_oop(R17_tos);
3341       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3342 
3343       __ bind(LisVolatile);
3344       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3345       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3346       __ verify_oop(R17_tos);
3347       __ twi_0(R17_tos);
3348       __ isync();
3349       break;
3350     }
3351   case itos:
3352     {
3353       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3354       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3355 
3356       __ bind(LisVolatile);
3357       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3358       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3359       __ twi_0(R17_tos);
3360       __ isync();
3361       break;
3362     }
3363   case ftos:
3364     {
3365       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3366       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3367 
3368       __ bind(LisVolatile);
3369       Label Ldummy;
3370       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3371       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3372       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3373       __ bne_predict_not_taken(CCR0, Ldummy);
3374       __ bind(Ldummy);
3375       __ isync();
3376       break;
3377     }
3378   default: ShouldNotReachHere();
3379   }
3380   __ addi(R14_bcp, R14_bcp, -1);
3381 }
3382 
3383 // ============================================================================
3384 // Calls
3385 
3386 // Common code for invoke
3387 //
3388 // Input:
3389 //   - byte_no
3390 //
3391 // Output:
3392 //   - Rmethod:        The method to invoke next.
3393 //   - Rret_addr:      The return address to return to.
3394 //   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
3395 //   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
3396 //   - Rflags:         Method flags from const pool cache.
3397 //
3398 //  Kills:
3399 //   - Rscratch1
3400 //
3401 void TemplateTable::prepare_invoke(int byte_no,
3402                                    Register Rmethod,  // linked method (or i-klass)
3403                                    Register Rret_addr,// return address
3404                                    Register Rindex,   // itable index, MethodType, etc.
3405                                    Register Rrecv,    // If caller wants to see it.
3406                                    Register Rflags,   // If caller wants to test it.
3407                                    Register Rscratch
3408                                    ) {
3409   // Determine flags.
3410   const Bytecodes::Code code = bytecode();
3411   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3412   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3413   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3414   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3415   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3416   const bool load_receiver       = (Rrecv != noreg);
3417   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3418 
3419   assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
3420   assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
3421   assert_different_registers(Rret_addr, Rscratch);
3422 
3423   load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
3424 
3425   // Saving of SP done in call_from_interpreter.
3426 
3427   // Maybe push "appendix" to arguments.
3428   if (is_invokedynamic || is_invokehandle) {
3429     Label Ldone;
3430     __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
3431     __ beq(CCR0, Ldone);
3432     // Push "appendix" (MethodType, CallSite, etc.).
3433     // This must be done before we get the receiver,
3434     // since the parameter_size includes it.
3435     __ load_resolved_reference_at_index(Rscratch, Rindex);
3436     __ verify_oop(Rscratch);
3437     __ push_ptr(Rscratch);
3438     __ bind(Ldone);
3439   }
3440 
3441   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3442   if (load_receiver) {
3443     const Register Rparam_count = Rscratch;
3444     __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
3445     __ load_receiver(Rparam_count, Rrecv);
3446     __ verify_oop(Rrecv);
3447   }
3448 
3449   // Get return address.
3450   {
3451     Register Rtable_addr = Rscratch;
3452     Register Rret_type = Rret_addr;
3453     address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3454 
3455     // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3456     __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3457     __ load_dispatch_table(Rtable_addr, (address*)table_addr);
3458     __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3459     // Get return address.
3460     __ ldx(Rret_addr, Rtable_addr, Rret_type);
3461   }
3462 }
3463 
3464 // Helper for virtual calls. Load target out of vtable and jump off!
3465 // Kills all passed registers.
3466 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
3467 
3468   assert_different_registers(Rrecv_klass, Rtemp, Rret);
3469   const Register Rtarget_method = Rindex;
3470 
3471   // Get target method & entry point.
3472   const int base = in_bytes(Klass::vtable_start_offset());
3473   // Calc vtable addr scale the vtable index by 8.
3474   __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size_in_bytes()));
3475   // Load target.
3476   __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
3477   __ ldx(Rtarget_method, Rindex, Rrecv_klass);
3478   // Argument and return type profiling.
3479   __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true);
3480   __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
3481 }
3482 
3483 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
3484 void TemplateTable::invokevirtual(int byte_no) {
3485   transition(vtos, vtos);
3486 
3487   Register Rtable_addr = R11_scratch1,
3488            Rret_type = R12_scratch2,
3489            Rret_addr = R5_ARG3,
3490            Rflags = R22_tmp2, // Should survive C call.
3491            Rrecv = R3_ARG1,
3492            Rrecv_klass = Rrecv,
3493            Rvtableindex_or_method = R31, // Should survive C call.
3494            Rnum_params = R4_ARG2,
3495            Rnew_bc = R6_ARG4;
3496 
3497   Label LnotFinal;
3498 
3499   load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
3500 
3501   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3502   __ bfalse(CCR0, LnotFinal);
3503 
3504   if (RewriteBytecodes && !UseSharedSpaces && !DumpSharedSpaces) {
3505     patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
3506   }
3507   invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
3508 
3509   __ align(32, 12);
3510   __ bind(LnotFinal);
3511   // Load "this" pointer (receiver).
3512   __ rldicl(Rnum_params, Rflags, 64, 48);
3513   __ load_receiver(Rnum_params, Rrecv);
3514   __ verify_oop(Rrecv);
3515 
3516   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3517   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3518   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3519   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3520   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3521   __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
3522   __ load_klass(Rrecv_klass, Rrecv);
3523   __ verify_klass_ptr(Rrecv_klass);
3524   __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
3525 
3526   generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
3527 }
3528 
3529 void TemplateTable::fast_invokevfinal(int byte_no) {
3530   transition(vtos, vtos);
3531 
3532   assert(byte_no == f2_byte, "use this argument");
3533   Register Rflags  = R22_tmp2,
3534            Rmethod = R31;
3535   load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
3536   invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
3537 }
3538 
3539 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
3540 
3541   assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
3542 
3543   // Load receiver from stack slot.
3544   Register Rrecv = Rscratch2;
3545   Register Rnum_params = Rrecv;
3546 
3547   __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
3548   __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
3549 
3550   // Get return address.
3551   Register Rtable_addr = Rscratch1,
3552            Rret_addr   = Rflags,
3553            Rret_type   = Rret_addr;
3554   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3555   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3556   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3557   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3558   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3559 
3560   // Load receiver and receiver NULL check.
3561   __ load_receiver(Rnum_params, Rrecv);
3562   __ null_check_throw(Rrecv, -1, Rscratch1);
3563 
3564   __ profile_final_call(Rrecv, Rscratch1);
3565   // Argument and return type profiling.
3566   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3567 
3568   // Do the call.
3569   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
3570 }
3571 
3572 void TemplateTable::invokespecial(int byte_no) {
3573   assert(byte_no == f1_byte, "use this argument");
3574   transition(vtos, vtos);
3575 
3576   Register Rtable_addr = R3_ARG1,
3577            Rret_addr   = R4_ARG2,
3578            Rflags      = R5_ARG3,
3579            Rreceiver   = R6_ARG4,
3580            Rmethod     = R31;
3581 
3582   prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
3583 
3584   // Receiver NULL check.
3585   __ null_check_throw(Rreceiver, -1, R11_scratch1);
3586 
3587   __ profile_call(R11_scratch1, R12_scratch2);
3588   // Argument and return type profiling.
3589   __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false);
3590   __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
3591 }
3592 
3593 void TemplateTable::invokestatic(int byte_no) {
3594   assert(byte_no == f1_byte, "use this argument");
3595   transition(vtos, vtos);
3596 
3597   Register Rtable_addr = R3_ARG1,
3598            Rret_addr   = R4_ARG2,
3599            Rflags      = R5_ARG3;
3600 
3601   prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
3602 
3603   __ profile_call(R11_scratch1, R12_scratch2);
3604   // Argument and return type profiling.
3605   __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false);
3606   __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
3607 }
3608 
3609 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
3610                                                   Register Rret,
3611                                                   Register Rflags,
3612                                                   Register Rmethod,
3613                                                   Register Rtemp1,
3614                                                   Register Rtemp2) {
3615 
3616   assert_different_registers(Rmethod, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
3617   Label LnotFinal;
3618 
3619   // Check for vfinal.
3620   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3621   __ bfalse(CCR0, LnotFinal);
3622 
3623   Register Rscratch = Rflags; // Rflags is dead now.
3624 
3625   // Final call case.
3626   __ profile_final_call(Rtemp1, Rscratch);
3627   // Argument and return type profiling.
3628   __ profile_arguments_type(Rmethod, Rscratch, Rrecv_klass /* scratch */, true);
3629   // Do the final call - the index (f2) contains the method.
3630   __ call_from_interpreter(Rmethod, Rret, Rscratch, Rrecv_klass /* scratch */);
3631 
3632   // Non-final callc case.
3633   __ bind(LnotFinal);
3634   __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
3635   generate_vtable_call(Rrecv_klass, Rmethod, Rret, Rscratch);
3636 }
3637 
3638 void TemplateTable::invokeinterface(int byte_no) {
3639   assert(byte_no == f1_byte, "use this argument");
3640   transition(vtos, vtos);
3641 
3642   const Register Rscratch1        = R11_scratch1,
3643                  Rscratch2        = R12_scratch2,
3644                  Rmethod          = R6_ARG4,
3645                  Rmethod2         = R9_ARG7,
3646                  Rinterface_klass = R5_ARG3,
3647                  Rret_addr        = R8_ARG6,
3648                  Rindex           = R10_ARG8,
3649                  Rreceiver        = R3_ARG1,
3650                  Rrecv_klass      = R4_ARG2,
3651                  Rflags           = R7_ARG5;
3652 
3653   prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rmethod, Rreceiver, Rflags, Rscratch1);
3654 
3655   // Get receiver klass.
3656   __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch2);
3657   __ load_klass(Rrecv_klass, Rreceiver);
3658 
3659   // Check corner case object method.
3660   Label LobjectMethod, L_no_such_interface, Lthrow_ame;
3661   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3662   __ btrue(CCR0, LobjectMethod);
3663 
3664   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, noreg, noreg, Rscratch1, Rscratch2,
3665                              L_no_such_interface, /*return_method=*/false);
3666 
3667   __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
3668 
3669   // Find entry point to call.
3670 
3671   // Get declaring interface class from method
3672   __ ld(Rinterface_klass, in_bytes(Method::const_offset()), Rmethod);
3673   __ ld(Rinterface_klass, in_bytes(ConstMethod::constants_offset()), Rinterface_klass);
3674   __ ld(Rinterface_klass, ConstantPool::pool_holder_offset_in_bytes(), Rinterface_klass);
3675 
3676   // Get itable index from method
3677   __ lwa(Rindex, in_bytes(Method::itable_index_offset()), Rmethod);
3678   __ subfic(Rindex, Rindex, Method::itable_index_max);
3679 
3680   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rmethod2, Rscratch1, Rscratch2,
3681                              L_no_such_interface);
3682 
3683   __ cmpdi(CCR0, Rmethod2, 0);
3684   __ beq(CCR0, Lthrow_ame);
3685   // Found entry. Jump off!
3686   // Argument and return type profiling.
3687   __ profile_arguments_type(Rmethod2, Rscratch1, Rscratch2, true);
3688   //__ profile_called_method(Rindex, Rscratch1);
3689   __ call_from_interpreter(Rmethod2, Rret_addr, Rscratch1, Rscratch2);
3690 
3691   // Vtable entry was NULL => Throw abstract method error.
3692   __ bind(Lthrow_ame);
3693   // Pass arguments for generating a verbose error message.
3694   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3695           Rrecv_klass, Rmethod);
3696 
3697   // Interface was not found => Throw incompatible class change error.
3698   __ bind(L_no_such_interface);
3699   // Pass arguments for generating a verbose error message.
3700   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3701           Rrecv_klass, Rinterface_klass);
3702   DEBUG_ONLY( __ should_not_reach_here(); )
3703 
3704   // Special case of invokeinterface called for virtual method of
3705   // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
3706   // The invokeinterface was rewritten to a invokevirtual, hence we have
3707   // to handle this corner case. This code isn't produced by javac, but could
3708   // be produced by another compliant java compiler.
3709   __ bind(LobjectMethod);
3710   invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rmethod, Rscratch1, Rscratch2);
3711 }
3712 
3713 void TemplateTable::invokedynamic(int byte_no) {
3714   transition(vtos, vtos);
3715 
3716   const Register Rret_addr = R3_ARG1,
3717                  Rflags    = R4_ARG2,
3718                  Rmethod   = R22_tmp2,
3719                  Rscratch1 = R11_scratch1,
3720                  Rscratch2 = R12_scratch2;
3721 
3722   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
3723 
3724   // Profile this call.
3725   __ profile_call(Rscratch1, Rscratch2);
3726 
3727   // Off we go. With the new method handles, we don't jump to a method handle
3728   // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
3729   // to be the callsite object the bootstrap method returned. This is passed to a
3730   // "link" method which does the dispatch (Most likely just grabs the MH stored
3731   // inside the callsite and does an invokehandle).
3732   // Argument and return type profiling.
3733   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false);
3734   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3735 }
3736 
3737 void TemplateTable::invokehandle(int byte_no) {
3738   transition(vtos, vtos);
3739 
3740   const Register Rret_addr = R3_ARG1,
3741                  Rflags    = R4_ARG2,
3742                  Rrecv     = R5_ARG3,
3743                  Rmethod   = R22_tmp2,
3744                  Rscratch1 = R11_scratch1,
3745                  Rscratch2 = R12_scratch2;
3746 
3747   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
3748   __ verify_method_ptr(Rmethod);
3749   __ null_check_throw(Rrecv, -1, Rscratch2);
3750 
3751   __ profile_final_call(Rrecv, Rscratch1);
3752 
3753   // Still no call from handle => We call the method handle interpreter here.
3754   // Argument and return type profiling.
3755   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3756   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3757 }
3758 
3759 // =============================================================================
3760 // Allocation
3761 
3762 // Puts allocated obj ref onto the expression stack.
3763 void TemplateTable::_new() {
3764   transition(vtos, atos);
3765 
3766   Label Lslow_case,
3767         Ldone;
3768 
3769   const Register RallocatedObject = R17_tos,
3770                  RinstanceKlass   = R9_ARG7,
3771                  Rscratch         = R11_scratch1,
3772                  Roffset          = R8_ARG6,
3773                  Rinstance_size   = Roffset,
3774                  Rcpool           = R4_ARG2,
3775                  Rtags            = R3_ARG1,
3776                  Rindex           = R5_ARG3;
3777 
3778   // --------------------------------------------------------------------------
3779   // Check if fast case is possible.
3780 
3781   // Load pointers to const pool and const pool's tags array.
3782   __ get_cpool_and_tags(Rcpool, Rtags);
3783   // Load index of constant pool entry.
3784   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
3785 
3786   // Note: compared to other architectures, PPC's implementation always goes
3787   // to the slow path if TLAB is used and fails.
3788   if (UseTLAB) {
3789     // Make sure the class we're about to instantiate has been resolved
3790     // This is done before loading instanceKlass to be consistent with the order
3791     // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
3792     __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3793     __ lbzx(Rtags, Rindex, Rtags);
3794 
3795     __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3796     __ bne(CCR0, Lslow_case);
3797 
3798     // Get instanceKlass
3799     __ sldi(Roffset, Rindex, LogBytesPerWord);
3800     __ load_resolved_klass_at_offset(Rcpool, Roffset, RinstanceKlass);
3801 
3802     // Make sure klass is fully initialized and get instance_size.
3803     __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
3804     __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
3805 
3806     __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
3807     // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
3808     __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
3809 
3810     __ crnand(CCR0, Assembler::equal, CCR1, Assembler::equal); // slow path bit set or not fully initialized?
3811     __ beq(CCR0, Lslow_case);
3812 
3813     // --------------------------------------------------------------------------
3814     // Fast case:
3815     // Allocate the instance.
3816     // 1) Try to allocate in the TLAB.
3817     // 2) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
3818 
3819     Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
3820     Register RnewTopValue = R6_ARG4;
3821     Register RendValue    = R7_ARG5;
3822 
3823     // Check if we can allocate in the TLAB.
3824     __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3825     __ ld(RendValue,    in_bytes(JavaThread::tlab_current_end_offset()), R16_thread);
3826 
3827     __ add(RnewTopValue, Rinstance_size, RoldTopValue);
3828 
3829     // If there is enough space, we do not CAS and do not clear.
3830     __ cmpld(CCR0, RnewTopValue, RendValue);
3831     __ bgt(CCR0, Lslow_case);
3832 
3833     __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3834 
3835     if (!ZeroTLAB) {
3836       // --------------------------------------------------------------------------
3837       // Init1: Zero out newly allocated memory.
3838       // Initialize remaining object fields.
3839       Register Rbase = Rtags;
3840       __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
3841       __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
3842       __ srdi(Rinstance_size, Rinstance_size, 3);
3843 
3844       // Clear out object skipping header. Takes also care of the zero length case.
3845       __ clear_memory_doubleword(Rbase, Rinstance_size);
3846     }
3847 
3848     // --------------------------------------------------------------------------
3849     // Init2: Initialize the header: mark, klass
3850     // Init mark.
3851     if (UseBiasedLocking) {
3852       __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
3853     } else {
3854       __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
3855     }
3856     __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
3857 
3858     // Init klass.
3859     __ store_klass_gap(RallocatedObject);
3860     __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
3861 
3862     // Check and trigger dtrace event.
3863     SkipIfEqualZero::skip_to_label_if_equal_zero(_masm, Rscratch, &DTraceAllocProbes, Ldone);
3864     __ push(atos);
3865     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
3866     __ pop(atos);
3867 
3868     __ b(Ldone);
3869   }
3870 
3871   // --------------------------------------------------------------------------
3872   // slow case
3873   __ bind(Lslow_case);
3874   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
3875 
3876   // continue
3877   __ bind(Ldone);
3878 
3879   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3880   __ membar(Assembler::StoreStore);
3881 }
3882 
3883 void TemplateTable::newarray() {
3884   transition(itos, atos);
3885 
3886   __ lbz(R4, 1, R14_bcp);
3887   __ extsw(R5, R17_tos);
3888   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
3889 
3890   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3891   __ membar(Assembler::StoreStore);
3892 }
3893 
3894 void TemplateTable::anewarray() {
3895   transition(itos, atos);
3896 
3897   __ get_constant_pool(R4);
3898   __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
3899   __ extsw(R6, R17_tos); // size
3900   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
3901 
3902   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3903   __ membar(Assembler::StoreStore);
3904 }
3905 
3906 // Allocate a multi dimensional array
3907 void TemplateTable::multianewarray() {
3908   transition(vtos, atos);
3909 
3910   Register Rptr = R31; // Needs to survive C call.
3911 
3912   // Put ndims * wordSize into frame temp slot
3913   __ lbz(Rptr, 3, R14_bcp);
3914   __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
3915   // Esp points past last_dim, so set to R4 to first_dim address.
3916   __ add(R4, Rptr, R15_esp);
3917   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
3918   // Pop all dimensions off the stack.
3919   __ add(R15_esp, Rptr, R15_esp);
3920 
3921   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3922   __ membar(Assembler::StoreStore);
3923 }
3924 
3925 void TemplateTable::arraylength() {
3926   transition(atos, itos);
3927 
3928   Label LnoException;
3929   __ verify_oop(R17_tos);
3930   __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
3931   __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
3932 }
3933 
3934 // ============================================================================
3935 // Typechecks
3936 
3937 void TemplateTable::checkcast() {
3938   transition(atos, atos);
3939 
3940   Label Ldone, Lis_null, Lquicked, Lresolved;
3941   Register Roffset         = R6_ARG4,
3942            RobjKlass       = R4_ARG2,
3943            RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
3944            Rcpool          = R11_scratch1,
3945            Rtags           = R12_scratch2;
3946 
3947   // Null does not pass.
3948   __ cmpdi(CCR0, R17_tos, 0);
3949   __ beq(CCR0, Lis_null);
3950 
3951   // Get constant pool tag to find out if the bytecode has already been "quickened".
3952   __ get_cpool_and_tags(Rcpool, Rtags);
3953 
3954   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3955 
3956   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3957   __ lbzx(Rtags, Rtags, Roffset);
3958 
3959   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3960   __ beq(CCR0, Lquicked);
3961 
3962   // Call into the VM to "quicken" instanceof.
3963   __ push_ptr();  // for GC
3964   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3965   __ get_vm_result_2(RspecifiedKlass);
3966   __ pop_ptr();   // Restore receiver.
3967   __ b(Lresolved);
3968 
3969   // Extract target class from constant pool.
3970   __ bind(Lquicked);
3971   __ sldi(Roffset, Roffset, LogBytesPerWord);
3972   __ load_resolved_klass_at_offset(Rcpool, Roffset, RspecifiedKlass);
3973 
3974   // Do the checkcast.
3975   __ bind(Lresolved);
3976   // Get value klass in RobjKlass.
3977   __ load_klass(RobjKlass, R17_tos);
3978   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3979   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3980 
3981   // Not a subtype; so must throw exception
3982   // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
3983   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
3984   __ mtctr(R11_scratch1);
3985   __ bctr();
3986 
3987   // Profile the null case.
3988   __ align(32, 12);
3989   __ bind(Lis_null);
3990   __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
3991 
3992   __ align(32, 12);
3993   __ bind(Ldone);
3994 }
3995 
3996 // Output:
3997 //   - tos == 0: Obj was null or not an instance of class.
3998 //   - tos == 1: Obj was an instance of class.
3999 void TemplateTable::instanceof() {
4000   transition(atos, itos);
4001 
4002   Label Ldone, Lis_null, Lquicked, Lresolved;
4003   Register Roffset         = R6_ARG4,
4004            RobjKlass       = R4_ARG2,
4005            RspecifiedKlass = R5_ARG3,
4006            Rcpool          = R11_scratch1,
4007            Rtags           = R12_scratch2;
4008 
4009   // Null does not pass.
4010   __ cmpdi(CCR0, R17_tos, 0);
4011   __ beq(CCR0, Lis_null);
4012 
4013   // Get constant pool tag to find out if the bytecode has already been "quickened".
4014   __ get_cpool_and_tags(Rcpool, Rtags);
4015 
4016   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
4017 
4018   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
4019   __ lbzx(Rtags, Rtags, Roffset);
4020 
4021   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
4022   __ beq(CCR0, Lquicked);
4023 
4024   // Call into the VM to "quicken" instanceof.
4025   __ push_ptr();  // for GC
4026   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4027   __ get_vm_result_2(RspecifiedKlass);
4028   __ pop_ptr();   // Restore receiver.
4029   __ b(Lresolved);
4030 
4031   // Extract target class from constant pool.
4032   __ bind(Lquicked);
4033   __ sldi(Roffset, Roffset, LogBytesPerWord);
4034   __ load_resolved_klass_at_offset(Rcpool, Roffset, RspecifiedKlass);
4035 
4036   // Do the checkcast.
4037   __ bind(Lresolved);
4038   // Get value klass in RobjKlass.
4039   __ load_klass(RobjKlass, R17_tos);
4040   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
4041   __ li(R17_tos, 1);
4042   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
4043   __ li(R17_tos, 0);
4044 
4045   if (ProfileInterpreter) {
4046     __ b(Ldone);
4047   }
4048 
4049   // Profile the null case.
4050   __ align(32, 12);
4051   __ bind(Lis_null);
4052   __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
4053 
4054   __ align(32, 12);
4055   __ bind(Ldone);
4056 }
4057 
4058 // =============================================================================
4059 // Breakpoints
4060 
4061 void TemplateTable::_breakpoint() {
4062   transition(vtos, vtos);
4063 
4064   // Get the unpatched byte code.
4065   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
4066   __ mr(R31, R3_RET);
4067 
4068   // Post the breakpoint event.
4069   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
4070 
4071   // Complete the execution of original bytecode.
4072   __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
4073 }
4074 
4075 // =============================================================================
4076 // Exceptions
4077 
4078 void TemplateTable::athrow() {
4079   transition(atos, vtos);
4080 
4081   // Exception oop is in tos
4082   __ verify_oop(R17_tos);
4083 
4084   __ null_check_throw(R17_tos, -1, R11_scratch1);
4085 
4086   // Throw exception interpreter entry expects exception oop to be in R3.
4087   __ mr(R3_RET, R17_tos);
4088   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
4089   __ mtctr(R11_scratch1);
4090   __ bctr();
4091 }
4092 
4093 // =============================================================================
4094 // Synchronization
4095 // Searches the basic object lock list on the stack for a free slot
4096 // and uses it to lock the obect in tos.
4097 //
4098 // Recursive locking is enabled by exiting the search if the same
4099 // object is already found in the list. Thus, a new basic lock obj lock
4100 // is allocated "higher up" in the stack and thus is found first
4101 // at next monitor exit.
4102 void TemplateTable::monitorenter() {
4103   transition(atos, vtos);
4104 
4105   __ verify_oop(R17_tos);
4106 
4107   Register Rcurrent_monitor  = R11_scratch1,
4108            Rcurrent_obj      = R12_scratch2,
4109            Robj_to_lock      = R17_tos,
4110            Rscratch1         = R3_ARG1,
4111            Rscratch2         = R4_ARG2,
4112            Rscratch3         = R5_ARG3,
4113            Rcurrent_obj_addr = R6_ARG4;
4114 
4115   // ------------------------------------------------------------------------------
4116   // Null pointer exception.
4117   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4118 
4119   // Try to acquire a lock on the object.
4120   // Repeat until succeeded (i.e., until monitorenter returns true).
4121 
4122   // ------------------------------------------------------------------------------
4123   // Find a free slot in the monitor block.
4124   Label Lfound, Lexit, Lallocate_new;
4125   ConditionRegister found_free_slot = CCR0,
4126                     found_same_obj  = CCR1,
4127                     reached_limit   = CCR6;
4128   {
4129     Label Lloop, Lentry;
4130     Register Rlimit = Rcurrent_monitor;
4131 
4132     // Set up search loop - start with topmost monitor.
4133     __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
4134 
4135     __ ld(Rlimit, 0, R1_SP);
4136     __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
4137 
4138     // Check if any slot is present => short cut to allocation if not.
4139     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
4140     __ bgt(reached_limit, Lallocate_new);
4141 
4142     // Pre-load topmost slot.
4143     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4144     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4145     // The search loop.
4146     __ bind(Lloop);
4147     // Found free slot?
4148     __ cmpdi(found_free_slot, Rcurrent_obj, 0);
4149     // Is this entry for same obj? If so, stop the search and take the found
4150     // free slot or allocate a new one to enable recursive locking.
4151     __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
4152     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
4153     __ beq(found_free_slot, Lexit);
4154     __ beq(found_same_obj, Lallocate_new);
4155     __ bgt(reached_limit, Lallocate_new);
4156     // Check if last allocated BasicLockObj reached.
4157     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4158     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4159     // Next iteration if unchecked BasicObjectLocks exist on the stack.
4160     __ b(Lloop);
4161   }
4162 
4163   // ------------------------------------------------------------------------------
4164   // Check if we found a free slot.
4165   __ bind(Lexit);
4166 
4167   __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4168   __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
4169   __ b(Lfound);
4170 
4171   // We didn't find a free BasicObjLock => allocate one.
4172   __ align(32, 12);
4173   __ bind(Lallocate_new);
4174   __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
4175   __ mr(Rcurrent_monitor, R26_monitor);
4176   __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4177 
4178   // ------------------------------------------------------------------------------
4179   // We now have a slot to lock.
4180   __ bind(Lfound);
4181 
4182   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
4183   // The object has already been poped from the stack, so the expression stack looks correct.
4184   __ addi(R14_bcp, R14_bcp, 1);
4185 
4186   __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
4187   __ lock_object(Rcurrent_monitor, Robj_to_lock);
4188 
4189   // Check if there's enough space on the stack for the monitors after locking.
4190   // This emits a single store.
4191   __ generate_stack_overflow_check(0);
4192 
4193   // The bcp has already been incremented. Just need to dispatch to next instruction.
4194   __ dispatch_next(vtos);
4195 }
4196 
4197 void TemplateTable::monitorexit() {
4198   transition(atos, vtos);
4199   __ verify_oop(R17_tos);
4200 
4201   Register Rcurrent_monitor  = R11_scratch1,
4202            Rcurrent_obj      = R12_scratch2,
4203            Robj_to_lock      = R17_tos,
4204            Rcurrent_obj_addr = R3_ARG1,
4205            Rlimit            = R4_ARG2;
4206   Label Lfound, Lillegal_monitor_state;
4207 
4208   // Check corner case: unbalanced monitorEnter / Exit.
4209   __ ld(Rlimit, 0, R1_SP);
4210   __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
4211 
4212   // Null pointer check.
4213   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4214 
4215   __ cmpld(CCR0, R26_monitor, Rlimit);
4216   __ bgt(CCR0, Lillegal_monitor_state);
4217 
4218   // Find the corresponding slot in the monitors stack section.
4219   {
4220     Label Lloop;
4221 
4222     // Start with topmost monitor.
4223     __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4224     __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
4225     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4226     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4227 
4228     __ bind(Lloop);
4229     // Is this entry for same obj?
4230     __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
4231     __ beq(CCR0, Lfound);
4232 
4233     // Check if last allocated BasicLockObj reached.
4234 
4235     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4236     __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
4237     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4238 
4239     // Next iteration if unchecked BasicObjectLocks exist on the stack.
4240     __ ble(CCR0, Lloop);
4241   }
4242 
4243   // Fell through without finding the basic obj lock => throw up!
4244   __ bind(Lillegal_monitor_state);
4245   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
4246   __ should_not_reach_here();
4247 
4248   __ align(32, 12);
4249   __ bind(Lfound);
4250   __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
4251           -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4252   __ unlock_object(Rcurrent_monitor);
4253 }
4254 
4255 // ============================================================================
4256 // Wide bytecodes
4257 
4258 // Wide instructions. Simply redirects to the wide entry point for that instruction.
4259 void TemplateTable::wide() {
4260   transition(vtos, vtos);
4261 
4262   const Register Rtable = R11_scratch1,
4263                  Rindex = R12_scratch2,
4264                  Rtmp   = R0;
4265 
4266   __ lbz(Rindex, 1, R14_bcp);
4267 
4268   __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
4269 
4270   __ slwi(Rindex, Rindex, LogBytesPerWord);
4271   __ ldx(Rtmp, Rtable, Rindex);
4272   __ mtctr(Rtmp);
4273   __ bctr();
4274   // Note: the bcp increment step is part of the individual wide bytecode implementations.
4275 }