/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/interp_masm.hpp" #include "interpreter/templateTable.hpp" #include "memory/universe.hpp" #include "oops/methodData.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/frame.inline.hpp" #include "runtime/safepointMechanism.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "utilities/macros.hpp" #define __ _masm-> // Global Register Names static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); // Platform-dependent initialization void TemplateTable::pd_initialize() { // No x86 specific initialization } // Address Computation: local variables static inline Address iaddress(int n) { return Address(rlocals, Interpreter::local_offset_in_bytes(n)); } static inline Address laddress(int n) { return iaddress(n + 1); } #ifndef _LP64 static inline Address haddress(int n) { return iaddress(n + 0); } #endif static inline Address faddress(int n) { return iaddress(n); } static inline Address daddress(int n) { return laddress(n); } static inline Address aaddress(int n) { return iaddress(n); } static inline Address iaddress(Register r) { return Address(rlocals, r, Address::times_ptr); } static inline Address laddress(Register r) { return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); } #ifndef _LP64 static inline Address haddress(Register r) { return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); } #endif static inline Address faddress(Register r) { return iaddress(r); } static inline Address daddress(Register r) { return laddress(r); } static inline Address aaddress(Register r) { return iaddress(r); } // expression stack // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store // data beyond the rsp which is potentially unsafe in an MT environment; // an interrupt may overwrite that data.) static inline Address at_rsp () { return Address(rsp, 0); } // At top of Java expression stack which may be different than esp(). It // isn't for category 1 objects. static inline Address at_tos () { return Address(rsp, Interpreter::expr_offset_in_bytes(0)); } static inline Address at_tos_p1() { return Address(rsp, Interpreter::expr_offset_in_bytes(1)); } static inline Address at_tos_p2() { return Address(rsp, Interpreter::expr_offset_in_bytes(2)); } // Condition conversion static Assembler::Condition j_not(TemplateTable::Condition cc) { switch (cc) { case TemplateTable::equal : return Assembler::notEqual; case TemplateTable::not_equal : return Assembler::equal; case TemplateTable::less : return Assembler::greaterEqual; case TemplateTable::less_equal : return Assembler::greater; case TemplateTable::greater : return Assembler::lessEqual; case TemplateTable::greater_equal: return Assembler::less; } ShouldNotReachHere(); return Assembler::zero; } // Miscelaneous helper routines // Store an oop (or NULL) at the address described by obj. // If val == noreg this means store a NULL static void do_oop_store(InterpreterMacroAssembler* _masm, Address obj, Register val, BarrierSet::Name barrier, bool precise) { assert(val == noreg || val == rax, "parameter is just for looks"); switch (barrier) { #if INCLUDE_ALL_GCS case BarrierSet::G1BarrierSet: { // flatten object address if needed // We do it regardless of precise because we need the registers if (obj.index() == noreg && obj.disp() == 0) { if (obj.base() != rdx) { __ movptr(rdx, obj.base()); } } else { __ lea(rdx, obj); } Register rtmp = LP64_ONLY(r8) NOT_LP64(rsi); Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); NOT_LP64(__ get_thread(rcx)); NOT_LP64(__ save_bcp()); __ g1_write_barrier_pre(rdx /* obj */, rbx /* pre_val */, rthread /* thread */, rtmp /* tmp */, val != noreg /* tosca_live */, false /* expand_call */); if (val == noreg) { __ store_heap_oop_null(Address(rdx, 0)); } else { // G1 barrier needs uncompressed oop for region cross check. Register new_val = val; if (UseCompressedOops) { new_val = rbx; __ movptr(new_val, val); } __ store_heap_oop(Address(rdx, 0), val); __ g1_write_barrier_post(rdx /* store_adr */, new_val /* new_val */, rthread /* thread */, rtmp /* tmp */, rbx /* tmp2 */); } NOT_LP64( __ restore_bcp()); } break; #endif // INCLUDE_ALL_GCS case BarrierSet::CardTableBarrierSet: { if (val == noreg) { __ store_heap_oop_null(obj); } else { __ store_heap_oop(obj, val); // flatten object address if needed if (!precise || (obj.index() == noreg && obj.disp() == 0)) { __ store_check(obj.base()); } else { __ lea(rdx, obj); __ store_check(rdx); } } } break; case BarrierSet::ModRef: if (val == noreg) { __ store_heap_oop_null(obj); } else { __ store_heap_oop(obj, val); } break; default : ShouldNotReachHere(); } } Address TemplateTable::at_bcp(int offset) { assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); return Address(rbcp, offset); } void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, Register temp_reg, bool load_bc_into_bc_reg/*=true*/, int byte_no) { if (!RewriteBytecodes) return; Label L_patch_done; switch (bc) { case Bytecodes::_fast_aputfield: case Bytecodes::_fast_bputfield: case Bytecodes::_fast_zputfield: case Bytecodes::_fast_cputfield: case Bytecodes::_fast_dputfield: case Bytecodes::_fast_fputfield: case Bytecodes::_fast_iputfield: case Bytecodes::_fast_lputfield: case Bytecodes::_fast_sputfield: { // We skip bytecode quickening for putfield instructions when // the put_code written to the constant pool cache is zero. // This is required so that every execution of this instruction // calls out to InterpreterRuntime::resolve_get_put to do // additional, required work. assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); assert(load_bc_into_bc_reg, "we use bc_reg as temp"); __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); __ movl(bc_reg, bc); __ cmpl(temp_reg, (int) 0); __ jcc(Assembler::zero, L_patch_done); // don't patch } break; default: assert(byte_no == -1, "sanity"); // the pair bytecodes have already done the load. if (load_bc_into_bc_reg) { __ movl(bc_reg, bc); } } if (JvmtiExport::can_post_breakpoint()) { Label L_fast_patch; // if a breakpoint is present we can't rewrite the stream directly __ movzbl(temp_reg, at_bcp(0)); __ cmpl(temp_reg, Bytecodes::_breakpoint); __ jcc(Assembler::notEqual, L_fast_patch); __ get_method(temp_reg); // Let breakpoint table handling rewrite to quicker bytecode __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); #ifndef ASSERT __ jmpb(L_patch_done); #else __ jmp(L_patch_done); #endif __ bind(L_fast_patch); } #ifdef ASSERT Label L_okay; __ load_unsigned_byte(temp_reg, at_bcp(0)); __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); __ jcc(Assembler::equal, L_okay); __ cmpl(temp_reg, bc_reg); __ jcc(Assembler::equal, L_okay); __ stop("patching the wrong bytecode"); __ bind(L_okay); #endif // patch bytecode __ movb(at_bcp(0), bc_reg); __ bind(L_patch_done); } // Individual instructions void TemplateTable::nop() { transition(vtos, vtos); // nothing to do } void TemplateTable::shouldnotreachhere() { transition(vtos, vtos); __ stop("shouldnotreachhere bytecode"); } void TemplateTable::aconst_null() { transition(vtos, atos); __ xorl(rax, rax); } void TemplateTable::iconst(int value) { transition(vtos, itos); if (value == 0) { __ xorl(rax, rax); } else { __ movl(rax, value); } } void TemplateTable::lconst(int value) { transition(vtos, ltos); if (value == 0) { __ xorl(rax, rax); } else { __ movl(rax, value); } #ifndef _LP64 assert(value >= 0, "check this code"); __ xorptr(rdx, rdx); #endif } void TemplateTable::fconst(int value) { transition(vtos, ftos); if (UseSSE >= 1) { static float one = 1.0f, two = 2.0f; switch (value) { case 0: __ xorps(xmm0, xmm0); break; case 1: __ movflt(xmm0, ExternalAddress((address) &one)); break; case 2: __ movflt(xmm0, ExternalAddress((address) &two)); break; default: ShouldNotReachHere(); break; } } else { #ifdef _LP64 ShouldNotReachHere(); #else if (value == 0) { __ fldz(); } else if (value == 1) { __ fld1(); } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here } else { ShouldNotReachHere(); } #endif // _LP64 } } void TemplateTable::dconst(int value) { transition(vtos, dtos); if (UseSSE >= 2) { static double one = 1.0; switch (value) { case 0: __ xorpd(xmm0, xmm0); break; case 1: __ movdbl(xmm0, ExternalAddress((address) &one)); break; default: ShouldNotReachHere(); break; } } else { #ifdef _LP64 ShouldNotReachHere(); #else if (value == 0) { __ fldz(); } else if (value == 1) { __ fld1(); } else { ShouldNotReachHere(); } #endif } } void TemplateTable::bipush() { transition(vtos, itos); __ load_signed_byte(rax, at_bcp(1)); } void TemplateTable::sipush() { transition(vtos, itos); __ load_unsigned_short(rax, at_bcp(1)); __ bswapl(rax); __ sarl(rax, 16); } void TemplateTable::ldc(bool wide) { transition(vtos, vtos); Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); Label call_ldc, notFloat, notClass, notInt, Done; if (wide) { __ get_unsigned_2_byte_index_at_bcp(rbx, 1); } else { __ load_unsigned_byte(rbx, at_bcp(1)); } __ get_cpool_and_tags(rcx, rax); const int base_offset = ConstantPool::header_size() * wordSize; const int tags_offset = Array::base_offset_in_bytes(); // get type __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); // unresolved class - get the resolved class __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); __ jccb(Assembler::equal, call_ldc); // unresolved class in error state - call into runtime to throw the error // from the first resolution attempt __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); __ jccb(Assembler::equal, call_ldc); // resolved class - need to call vm to get java mirror of the class __ cmpl(rdx, JVM_CONSTANT_Class); __ jcc(Assembler::notEqual, notClass); __ bind(call_ldc); __ movl(rarg, wide); call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); __ push(atos); __ jmp(Done); __ bind(notClass); __ cmpl(rdx, JVM_CONSTANT_Float); __ jccb(Assembler::notEqual, notFloat); // ftos __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); __ push(ftos); __ jmp(Done); __ bind(notFloat); __ cmpl(rdx, JVM_CONSTANT_Integer); __ jccb(Assembler::notEqual, notInt); // itos __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); __ push(itos); __ jmp(Done); // assume the tag is for condy; if not, the VM runtime will tell us __ bind(notInt); condy_helper(Done); __ bind(Done); } // Fast path for caching oop constants. void TemplateTable::fast_aldc(bool wide) { transition(vtos, atos); Register result = rax; Register tmp = rdx; Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); int index_size = wide ? sizeof(u2) : sizeof(u1); Label resolved; // We are resolved if the resolved reference cache entry contains a // non-null object (String, MethodType, etc.) assert_different_registers(result, tmp); __ get_cache_index_at_bcp(tmp, 1, index_size); __ load_resolved_reference_at_index(result, tmp); __ testptr(result, result); __ jcc(Assembler::notZero, resolved); address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); // first time invocation - must resolve first __ movl(rarg, (int)bytecode()); __ call_VM(result, entry, rarg); __ bind(resolved); { // Check for the null sentinel. // If we just called the VM, that already did the mapping for us, // but it's harmless to retry. Label notNull; ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); __ movptr(tmp, null_sentinel); __ cmpptr(tmp, result); __ jccb(Assembler::notEqual, notNull); __ xorptr(result, result); // NULL object reference __ bind(notNull); } if (VerifyOops) { __ verify_oop(result); } } void TemplateTable::ldc2_w() { transition(vtos, vtos); Label notDouble, notLong, Done; __ get_unsigned_2_byte_index_at_bcp(rbx, 1); __ get_cpool_and_tags(rcx, rax); const int base_offset = ConstantPool::header_size() * wordSize; const int tags_offset = Array::base_offset_in_bytes(); // get type __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); __ cmpl(rdx, JVM_CONSTANT_Double); __ jccb(Assembler::notEqual, notDouble); // dtos __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); __ push(dtos); __ jmp(Done); __ bind(notDouble); __ cmpl(rdx, JVM_CONSTANT_Long); __ jccb(Assembler::notEqual, notLong); // ltos __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); __ push(ltos); __ jmp(Done); __ bind(notLong); condy_helper(Done); __ bind(Done); } void TemplateTable::condy_helper(Label& Done) { const Register obj = rax; const Register off = rbx; const Register flags = rcx; const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); __ movl(rarg, (int)bytecode()); call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); #ifndef _LP64 // borrow rdi from locals __ get_thread(rdi); __ get_vm_result_2(flags, rdi); __ restore_locals(); #else __ get_vm_result_2(flags, r15_thread); #endif // VMr = obj = base address to find primitive value to push // VMr2 = flags = (tos, off) using format of CPCE::_flags __ movl(off, flags); __ andl(off, ConstantPoolCacheEntry::field_index_mask); const Address field(obj, off, Address::times_1, 0*wordSize); // What sort of thing are we loading? __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); switch (bytecode()) { case Bytecodes::_ldc: case Bytecodes::_ldc_w: { // tos in (itos, ftos, stos, btos, ctos, ztos) Label notInt, notFloat, notShort, notByte, notChar, notBool; __ cmpl(flags, itos); __ jcc(Assembler::notEqual, notInt); // itos __ movl(rax, field); __ push(itos); __ jmp(Done); __ bind(notInt); __ cmpl(flags, ftos); __ jcc(Assembler::notEqual, notFloat); // ftos __ load_float(field); __ push(ftos); __ jmp(Done); __ bind(notFloat); __ cmpl(flags, stos); __ jcc(Assembler::notEqual, notShort); // stos __ load_signed_short(rax, field); __ push(stos); __ jmp(Done); __ bind(notShort); __ cmpl(flags, btos); __ jcc(Assembler::notEqual, notByte); // btos __ load_signed_byte(rax, field); __ push(btos); __ jmp(Done); __ bind(notByte); __ cmpl(flags, ctos); __ jcc(Assembler::notEqual, notChar); // ctos __ load_unsigned_short(rax, field); __ push(ctos); __ jmp(Done); __ bind(notChar); __ cmpl(flags, ztos); __ jcc(Assembler::notEqual, notBool); // ztos __ load_signed_byte(rax, field); __ push(ztos); __ jmp(Done); __ bind(notBool); break; } case Bytecodes::_ldc2_w: { Label notLong, notDouble; __ cmpl(flags, ltos); __ jcc(Assembler::notEqual, notLong); // ltos __ movptr(rax, field); NOT_LP64(__ movptr(rdx, field.plus_disp(4))); __ push(ltos); __ jmp(Done); __ bind(notLong); __ cmpl(flags, dtos); __ jcc(Assembler::notEqual, notDouble); // dtos __ load_double(field); __ push(dtos); __ jmp(Done); __ bind(notDouble); break; } default: ShouldNotReachHere(); } __ stop("bad ldc/condy"); } void TemplateTable::locals_index(Register reg, int offset) { __ load_unsigned_byte(reg, at_bcp(offset)); __ negptr(reg); } void TemplateTable::iload() { iload_internal(); } void TemplateTable::nofast_iload() { iload_internal(may_not_rewrite); } void TemplateTable::iload_internal(RewriteControl rc) { transition(vtos, itos); if (RewriteFrequentPairs && rc == may_rewrite) { Label rewrite, done; const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); LP64_ONLY(assert(rbx != bc, "register damaged")); // get next byte __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); // if _iload, wait to rewrite to iload2. We only want to rewrite the // last two iloads in a pair. Comparing against fast_iload means that // the next bytecode is neither an iload or a caload, and therefore // an iload pair. __ cmpl(rbx, Bytecodes::_iload); __ jcc(Assembler::equal, done); __ cmpl(rbx, Bytecodes::_fast_iload); __ movl(bc, Bytecodes::_fast_iload2); __ jccb(Assembler::equal, rewrite); // if _caload, rewrite to fast_icaload __ cmpl(rbx, Bytecodes::_caload); __ movl(bc, Bytecodes::_fast_icaload); __ jccb(Assembler::equal, rewrite); // rewrite so iload doesn't check again. __ movl(bc, Bytecodes::_fast_iload); // rewrite // bc: fast bytecode __ bind(rewrite); patch_bytecode(Bytecodes::_iload, bc, rbx, false); __ bind(done); } // Get the local value into tos locals_index(rbx); __ movl(rax, iaddress(rbx)); } void TemplateTable::fast_iload2() { transition(vtos, itos); locals_index(rbx); __ movl(rax, iaddress(rbx)); __ push(itos); locals_index(rbx, 3); __ movl(rax, iaddress(rbx)); } void TemplateTable::fast_iload() { transition(vtos, itos); locals_index(rbx); __ movl(rax, iaddress(rbx)); } void TemplateTable::lload() { transition(vtos, ltos); locals_index(rbx); __ movptr(rax, laddress(rbx)); NOT_LP64(__ movl(rdx, haddress(rbx))); } void TemplateTable::fload() { transition(vtos, ftos); locals_index(rbx); __ load_float(faddress(rbx)); } void TemplateTable::dload() { transition(vtos, dtos); locals_index(rbx); __ load_double(daddress(rbx)); } void TemplateTable::aload() { transition(vtos, atos); locals_index(rbx); __ movptr(rax, aaddress(rbx)); } void TemplateTable::locals_index_wide(Register reg) { __ load_unsigned_short(reg, at_bcp(2)); __ bswapl(reg); __ shrl(reg, 16); __ negptr(reg); } void TemplateTable::wide_iload() { transition(vtos, itos); locals_index_wide(rbx); __ movl(rax, iaddress(rbx)); } void TemplateTable::wide_lload() { transition(vtos, ltos); locals_index_wide(rbx); __ movptr(rax, laddress(rbx)); NOT_LP64(__ movl(rdx, haddress(rbx))); } void TemplateTable::wide_fload() { transition(vtos, ftos); locals_index_wide(rbx); __ load_float(faddress(rbx)); } void TemplateTable::wide_dload() { transition(vtos, dtos); locals_index_wide(rbx); __ load_double(daddress(rbx)); } void TemplateTable::wide_aload() { transition(vtos, atos); locals_index_wide(rbx); __ movptr(rax, aaddress(rbx)); } void TemplateTable::index_check(Register array, Register index) { // Pop ptr into array __ pop_ptr(array); index_check_without_pop(array, index); } void TemplateTable::index_check_without_pop(Register array, Register index) { // destroys rbx // check array __ null_check(array, arrayOopDesc::length_offset_in_bytes()); // sign extend index for use by indexed load __ movl2ptr(index, index); // check index __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); if (index != rbx) { // ??? convention: move aberrant index into rbx for exception message assert(rbx != array, "different registers"); __ movl(rbx, index); } __ jump_cc(Assembler::aboveEqual, ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); } void TemplateTable::iaload() { transition(itos, itos); // rax: index // rdx: array index_check(rdx, rax); // kills rbx __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT))); } void TemplateTable::laload() { transition(itos, ltos); // rax: index // rdx: array index_check(rdx, rax); // kills rbx NOT_LP64(__ mov(rbx, rax)); // rbx,: index __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize)); NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize))); } void TemplateTable::faload() { transition(itos, ftos); // rax: index // rdx: array index_check(rdx, rax); // kills rbx __ load_float(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); } void TemplateTable::daload() { transition(itos, dtos); // rax: index // rdx: array index_check(rdx, rax); // kills rbx __ load_double(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); } void TemplateTable::aaload() { transition(itos, atos); // rax: index // rdx: array index_check(rdx, rax); // kills rbx __ load_heap_oop(rax, Address(rdx, rax, UseCompressedOops ? Address::times_4 : Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); } void TemplateTable::baload() { transition(itos, itos); // rax: index // rdx: array index_check(rdx, rax); // kills rbx __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); } void TemplateTable::caload() { transition(itos, itos); // rax: index // rdx: array index_check(rdx, rax); // kills rbx __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); } // iload followed by caload frequent pair void TemplateTable::fast_icaload() { transition(vtos, itos); // load index out of locals locals_index(rbx); __ movl(rax, iaddress(rbx)); // rax: index // rdx: array index_check(rdx, rax); // kills rbx __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); } void TemplateTable::saload() { transition(itos, itos); // rax: index // rdx: array index_check(rdx, rax); // kills rbx __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT))); } void TemplateTable::iload(int n) { transition(vtos, itos); __ movl(rax, iaddress(n)); } void TemplateTable::lload(int n) { transition(vtos, ltos); __ movptr(rax, laddress(n)); NOT_LP64(__ movptr(rdx, haddress(n))); } void TemplateTable::fload(int n) { transition(vtos, ftos); __ load_float(faddress(n)); } void TemplateTable::dload(int n) { transition(vtos, dtos); __ load_double(daddress(n)); } void TemplateTable::aload(int n) { transition(vtos, atos); __ movptr(rax, aaddress(n)); } void TemplateTable::aload_0() { aload_0_internal(); } void TemplateTable::nofast_aload_0() { aload_0_internal(may_not_rewrite); } void TemplateTable::aload_0_internal(RewriteControl rc) { transition(vtos, atos); // According to bytecode histograms, the pairs: // // _aload_0, _fast_igetfield // _aload_0, _fast_agetfield // _aload_0, _fast_fgetfield // // occur frequently. If RewriteFrequentPairs is set, the (slow) // _aload_0 bytecode checks if the next bytecode is either // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then // rewrites the current bytecode into a pair bytecode; otherwise it // rewrites the current bytecode into _fast_aload_0 that doesn't do // the pair check anymore. // // Note: If the next bytecode is _getfield, the rewrite must be // delayed, otherwise we may miss an opportunity for a pair. // // Also rewrite frequent pairs // aload_0, aload_1 // aload_0, iload_1 // These bytecodes with a small amount of code are most profitable // to rewrite if (RewriteFrequentPairs && rc == may_rewrite) { Label rewrite, done; const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); LP64_ONLY(assert(rbx != bc, "register damaged")); // get next byte __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); // if _getfield then wait with rewrite __ cmpl(rbx, Bytecodes::_getfield); __ jcc(Assembler::equal, done); // if _igetfield then rewrite to _fast_iaccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); __ cmpl(rbx, Bytecodes::_fast_igetfield); __ movl(bc, Bytecodes::_fast_iaccess_0); __ jccb(Assembler::equal, rewrite); // if _agetfield then rewrite to _fast_aaccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); __ cmpl(rbx, Bytecodes::_fast_agetfield); __ movl(bc, Bytecodes::_fast_aaccess_0); __ jccb(Assembler::equal, rewrite); // if _fgetfield then rewrite to _fast_faccess_0 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); __ cmpl(rbx, Bytecodes::_fast_fgetfield); __ movl(bc, Bytecodes::_fast_faccess_0); __ jccb(Assembler::equal, rewrite); // else rewrite to _fast_aload0 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); __ movl(bc, Bytecodes::_fast_aload_0); // rewrite // bc: fast bytecode __ bind(rewrite); patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); __ bind(done); } // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). aload(0); } void TemplateTable::istore() { transition(itos, vtos); locals_index(rbx); __ movl(iaddress(rbx), rax); } void TemplateTable::lstore() { transition(ltos, vtos); locals_index(rbx); __ movptr(laddress(rbx), rax); NOT_LP64(__ movptr(haddress(rbx), rdx)); } void TemplateTable::fstore() { transition(ftos, vtos); locals_index(rbx); __ store_float(faddress(rbx)); } void TemplateTable::dstore() { transition(dtos, vtos); locals_index(rbx); __ store_double(daddress(rbx)); } void TemplateTable::astore() { transition(vtos, vtos); __ pop_ptr(rax); locals_index(rbx); __ movptr(aaddress(rbx), rax); } void TemplateTable::wide_istore() { transition(vtos, vtos); __ pop_i(); locals_index_wide(rbx); __ movl(iaddress(rbx), rax); } void TemplateTable::wide_lstore() { transition(vtos, vtos); NOT_LP64(__ pop_l(rax, rdx)); LP64_ONLY(__ pop_l()); locals_index_wide(rbx); __ movptr(laddress(rbx), rax); NOT_LP64(__ movl(haddress(rbx), rdx)); } void TemplateTable::wide_fstore() { #ifdef _LP64 transition(vtos, vtos); __ pop_f(xmm0); locals_index_wide(rbx); __ movflt(faddress(rbx), xmm0); #else wide_istore(); #endif } void TemplateTable::wide_dstore() { #ifdef _LP64 transition(vtos, vtos); __ pop_d(xmm0); locals_index_wide(rbx); __ movdbl(daddress(rbx), xmm0); #else wide_lstore(); #endif } void TemplateTable::wide_astore() { transition(vtos, vtos); __ pop_ptr(rax); locals_index_wide(rbx); __ movptr(aaddress(rbx), rax); } void TemplateTable::iastore() { transition(itos, vtos); __ pop_i(rbx); // rax: value // rbx: index // rdx: array index_check(rdx, rbx); // prefer index in rbx __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax); } void TemplateTable::lastore() { transition(ltos, vtos); __ pop_i(rbx); // rax,: low(value) // rcx: array // rdx: high(value) index_check(rcx, rbx); // prefer index in rbx, // rbx,: index __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax); NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx)); } void TemplateTable::fastore() { transition(ftos, vtos); __ pop_i(rbx); // value is in UseSSE >= 1 ? xmm0 : ST(0) // rbx: index // rdx: array index_check(rdx, rbx); // prefer index in rbx __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); } void TemplateTable::dastore() { transition(dtos, vtos); __ pop_i(rbx); // value is in UseSSE >= 2 ? xmm0 : ST(0) // rbx: index // rdx: array index_check(rdx, rbx); // prefer index in rbx __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); } void TemplateTable::aastore() { Label is_null, ok_is_subtype, done; transition(vtos, vtos); // stack: ..., array, index, value __ movptr(rax, at_tos()); // value __ movl(rcx, at_tos_p1()); // index __ movptr(rdx, at_tos_p2()); // array Address element_address(rdx, rcx, UseCompressedOops? Address::times_4 : Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); index_check_without_pop(rdx, rcx); // kills rbx __ testptr(rax, rax); __ jcc(Assembler::zero, is_null); // Move subklass into rbx __ load_klass(rbx, rax); // Move superklass into rax __ load_klass(rax, rdx); __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset())); // Compress array + index*oopSize + 12 into a single register. Frees rcx. __ lea(rdx, element_address); // Generate subtype check. Blows rcx, rdi // Superklass in rax. Subklass in rbx. __ gen_subtype_check(rbx, ok_is_subtype); // Come here on failure // object is at TOS __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); // Come here on success __ bind(ok_is_subtype); // Get the value we will store __ movptr(rax, at_tos()); // Now store using the appropriate barrier do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); __ jmp(done); // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] __ bind(is_null); __ profile_null_seen(rbx); // Store a NULL do_oop_store(_masm, element_address, noreg, _bs->kind(), true); // Pop stack arguments __ bind(done); __ addptr(rsp, 3 * Interpreter::stackElementSize); } void TemplateTable::bastore() { transition(itos, vtos); __ pop_i(rbx); // rax: value // rbx: index // rdx: array index_check(rdx, rbx); // prefer index in rbx // Need to check whether array is boolean or byte // since both types share the bastore bytecode. __ load_klass(rcx, rdx); __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); int diffbit = Klass::layout_helper_boolean_diffbit(); __ testl(rcx, diffbit); Label L_skip; __ jccb(Assembler::zero, L_skip); __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 __ bind(L_skip); __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax); } void TemplateTable::castore() { transition(itos, vtos); __ pop_i(rbx); // rax: value // rbx: index // rdx: array index_check(rdx, rbx); // prefer index in rbx __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax); } void TemplateTable::sastore() { castore(); } void TemplateTable::istore(int n) { transition(itos, vtos); __ movl(iaddress(n), rax); } void TemplateTable::lstore(int n) { transition(ltos, vtos); __ movptr(laddress(n), rax); NOT_LP64(__ movptr(haddress(n), rdx)); } void TemplateTable::fstore(int n) { transition(ftos, vtos); __ store_float(faddress(n)); } void TemplateTable::dstore(int n) { transition(dtos, vtos); __ store_double(daddress(n)); } void TemplateTable::astore(int n) { transition(vtos, vtos); __ pop_ptr(rax); __ movptr(aaddress(n), rax); } void TemplateTable::pop() { transition(vtos, vtos); __ addptr(rsp, Interpreter::stackElementSize); } void TemplateTable::pop2() { transition(vtos, vtos); __ addptr(rsp, 2 * Interpreter::stackElementSize); } void TemplateTable::dup() { transition(vtos, vtos); __ load_ptr(0, rax); __ push_ptr(rax); // stack: ..., a, a } void TemplateTable::dup_x1() { transition(vtos, vtos); // stack: ..., a, b __ load_ptr( 0, rax); // load b __ load_ptr( 1, rcx); // load a __ store_ptr(1, rax); // store b __ store_ptr(0, rcx); // store a __ push_ptr(rax); // push b // stack: ..., b, a, b } void TemplateTable::dup_x2() { transition(vtos, vtos); // stack: ..., a, b, c __ load_ptr( 0, rax); // load c __ load_ptr( 2, rcx); // load a __ store_ptr(2, rax); // store c in a __ push_ptr(rax); // push c // stack: ..., c, b, c, c __ load_ptr( 2, rax); // load b __ store_ptr(2, rcx); // store a in b // stack: ..., c, a, c, c __ store_ptr(1, rax); // store b in c // stack: ..., c, a, b, c } void TemplateTable::dup2() { transition(vtos, vtos); // stack: ..., a, b __ load_ptr(1, rax); // load a __ push_ptr(rax); // push a __ load_ptr(1, rax); // load b __ push_ptr(rax); // push b // stack: ..., a, b, a, b } void TemplateTable::dup2_x1() { transition(vtos, vtos); // stack: ..., a, b, c __ load_ptr( 0, rcx); // load c __ load_ptr( 1, rax); // load b __ push_ptr(rax); // push b __ push_ptr(rcx); // push c // stack: ..., a, b, c, b, c __ store_ptr(3, rcx); // store c in b // stack: ..., a, c, c, b, c __ load_ptr( 4, rcx); // load a __ store_ptr(2, rcx); // store a in 2nd c // stack: ..., a, c, a, b, c __ store_ptr(4, rax); // store b in a // stack: ..., b, c, a, b, c } void TemplateTable::dup2_x2() { transition(vtos, vtos); // stack: ..., a, b, c, d __ load_ptr( 0, rcx); // load d __ load_ptr( 1, rax); // load c __ push_ptr(rax); // push c __ push_ptr(rcx); // push d // stack: ..., a, b, c, d, c, d __ load_ptr( 4, rax); // load b __ store_ptr(2, rax); // store b in d __ store_ptr(4, rcx); // store d in b // stack: ..., a, d, c, b, c, d __ load_ptr( 5, rcx); // load a __ load_ptr( 3, rax); // load c __ store_ptr(3, rcx); // store a in c __ store_ptr(5, rax); // store c in a // stack: ..., c, d, a, b, c, d } void TemplateTable::swap() { transition(vtos, vtos); // stack: ..., a, b __ load_ptr( 1, rcx); // load a __ load_ptr( 0, rax); // load b __ store_ptr(0, rcx); // store a in b __ store_ptr(1, rax); // store b in a // stack: ..., b, a } void TemplateTable::iop2(Operation op) { transition(itos, itos); switch (op) { case add : __ pop_i(rdx); __ addl (rax, rdx); break; case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; case mul : __ pop_i(rdx); __ imull(rax, rdx); break; case _and : __ pop_i(rdx); __ andl (rax, rdx); break; case _or : __ pop_i(rdx); __ orl (rax, rdx); break; case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; default : ShouldNotReachHere(); } } void TemplateTable::lop2(Operation op) { transition(ltos, ltos); #ifdef _LP64 switch (op) { case add : __ pop_l(rdx); __ addptr(rax, rdx); break; case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; default : ShouldNotReachHere(); } #else __ pop_l(rbx, rcx); switch (op) { case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); __ mov (rax, rbx); __ mov (rdx, rcx); break; case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; default : ShouldNotReachHere(); } #endif } void TemplateTable::idiv() { transition(itos, itos); __ movl(rcx, rax); __ pop_i(rax); // Note: could xor rax and ecx and compare with (-1 ^ min_int). If // they are not equal, one could do a normal division (no correction // needed), which may speed up this implementation for the common case. // (see also JVM spec., p.243 & p.271) __ corrected_idivl(rcx); } void TemplateTable::irem() { transition(itos, itos); __ movl(rcx, rax); __ pop_i(rax); // Note: could xor rax and ecx and compare with (-1 ^ min_int). If // they are not equal, one could do a normal division (no correction // needed), which may speed up this implementation for the common case. // (see also JVM spec., p.243 & p.271) __ corrected_idivl(rcx); __ movl(rax, rdx); } void TemplateTable::lmul() { transition(ltos, ltos); #ifdef _LP64 __ pop_l(rdx); __ imulq(rax, rdx); #else __ pop_l(rbx, rcx); __ push(rcx); __ push(rbx); __ push(rdx); __ push(rax); __ lmul(2 * wordSize, 0); __ addptr(rsp, 4 * wordSize); // take off temporaries #endif } void TemplateTable::ldiv() { transition(ltos, ltos); #ifdef _LP64 __ mov(rcx, rax); __ pop_l(rax); // generate explicit div0 check __ testq(rcx, rcx); __ jump_cc(Assembler::zero, ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); // Note: could xor rax and rcx and compare with (-1 ^ min_int). If // they are not equal, one could do a normal division (no correction // needed), which may speed up this implementation for the common case. // (see also JVM spec., p.243 & p.271) __ corrected_idivq(rcx); // kills rbx #else __ pop_l(rbx, rcx); __ push(rcx); __ push(rbx); __ push(rdx); __ push(rax); // check if y = 0 __ orl(rax, rdx); __ jump_cc(Assembler::zero, ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); __ addptr(rsp, 4 * wordSize); // take off temporaries #endif } void TemplateTable::lrem() { transition(ltos, ltos); #ifdef _LP64 __ mov(rcx, rax); __ pop_l(rax); __ testq(rcx, rcx); __ jump_cc(Assembler::zero, ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); // Note: could xor rax and rcx and compare with (-1 ^ min_int). If // they are not equal, one could do a normal division (no correction // needed), which may speed up this implementation for the common case. // (see also JVM spec., p.243 & p.271) __ corrected_idivq(rcx); // kills rbx __ mov(rax, rdx); #else __ pop_l(rbx, rcx); __ push(rcx); __ push(rbx); __ push(rdx); __ push(rax); // check if y = 0 __ orl(rax, rdx); __ jump_cc(Assembler::zero, ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); __ addptr(rsp, 4 * wordSize); #endif } void TemplateTable::lshl() { transition(itos, ltos); __ movl(rcx, rax); // get shift count #ifdef _LP64 __ pop_l(rax); // get shift value __ shlq(rax); #else __ pop_l(rax, rdx); // get shift value __ lshl(rdx, rax); #endif } void TemplateTable::lshr() { #ifdef _LP64 transition(itos, ltos); __ movl(rcx, rax); // get shift count __ pop_l(rax); // get shift value __ sarq(rax); #else transition(itos, ltos); __ mov(rcx, rax); // get shift count __ pop_l(rax, rdx); // get shift value __ lshr(rdx, rax, true); #endif } void TemplateTable::lushr() { transition(itos, ltos); #ifdef _LP64 __ movl(rcx, rax); // get shift count __ pop_l(rax); // get shift value __ shrq(rax); #else __ mov(rcx, rax); // get shift count __ pop_l(rax, rdx); // get shift value __ lshr(rdx, rax); #endif } void TemplateTable::fop2(Operation op) { transition(ftos, ftos); if (UseSSE >= 1) { switch (op) { case add: __ addss(xmm0, at_rsp()); __ addptr(rsp, Interpreter::stackElementSize); break; case sub: __ movflt(xmm1, xmm0); __ pop_f(xmm0); __ subss(xmm0, xmm1); break; case mul: __ mulss(xmm0, at_rsp()); __ addptr(rsp, Interpreter::stackElementSize); break; case div: __ movflt(xmm1, xmm0); __ pop_f(xmm0); __ divss(xmm0, xmm1); break; case rem: // On x86_64 platforms the SharedRuntime::frem method is called to perform the // modulo operation. The frem method calls the function // double fmod(double x, double y) in math.h. The documentation of fmod states: // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN // (signalling or quiet) is returned. // // On x86_32 platforms the FPU is used to perform the modulo operation. The // reason is that on 32-bit Windows the sign of modulo operations diverges from // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). // The fprem instruction used on x86_32 is functionally equivalent to // SharedRuntime::frem in that it returns a NaN. #ifdef _LP64 __ movflt(xmm1, xmm0); __ pop_f(xmm0); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); #else __ push_f(xmm0); __ pop_f(); __ fld_s(at_rsp()); __ fremr(rax); __ f2ieee(); __ pop(rax); // pop second operand off the stack __ push_f(); __ pop_f(xmm0); #endif break; default: ShouldNotReachHere(); break; } } else { #ifdef _LP64 ShouldNotReachHere(); #else switch (op) { case add: __ fadd_s (at_rsp()); break; case sub: __ fsubr_s(at_rsp()); break; case mul: __ fmul_s (at_rsp()); break; case div: __ fdivr_s(at_rsp()); break; case rem: __ fld_s (at_rsp()); __ fremr(rax); break; default : ShouldNotReachHere(); } __ f2ieee(); __ pop(rax); // pop second operand off the stack #endif // _LP64 } } void TemplateTable::dop2(Operation op) { transition(dtos, dtos); if (UseSSE >= 2) { switch (op) { case add: __ addsd(xmm0, at_rsp()); __ addptr(rsp, 2 * Interpreter::stackElementSize); break; case sub: __ movdbl(xmm1, xmm0); __ pop_d(xmm0); __ subsd(xmm0, xmm1); break; case mul: __ mulsd(xmm0, at_rsp()); __ addptr(rsp, 2 * Interpreter::stackElementSize); break; case div: __ movdbl(xmm1, xmm0); __ pop_d(xmm0); __ divsd(xmm0, xmm1); break; case rem: // Similar to fop2(), the modulo operation is performed using the // SharedRuntime::drem method (on x86_64 platforms) or using the // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). #ifdef _LP64 __ movdbl(xmm1, xmm0); __ pop_d(xmm0); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); #else __ push_d(xmm0); __ pop_d(); __ fld_d(at_rsp()); __ fremr(rax); __ d2ieee(); __ pop(rax); __ pop(rdx); __ push_d(); __ pop_d(xmm0); #endif break; default: ShouldNotReachHere(); break; } } else { #ifdef _LP64 ShouldNotReachHere(); #else switch (op) { case add: __ fadd_d (at_rsp()); break; case sub: __ fsubr_d(at_rsp()); break; case mul: { Label L_strict; Label L_join; const Address access_flags (rcx, Method::access_flags_offset()); __ get_method(rcx); __ movl(rcx, access_flags); __ testl(rcx, JVM_ACC_STRICT); __ jccb(Assembler::notZero, L_strict); __ fmul_d (at_rsp()); __ jmpb(L_join); __ bind(L_strict); __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); __ fmulp(); __ fmul_d (at_rsp()); __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); __ fmulp(); __ bind(L_join); break; } case div: { Label L_strict; Label L_join; const Address access_flags (rcx, Method::access_flags_offset()); __ get_method(rcx); __ movl(rcx, access_flags); __ testl(rcx, JVM_ACC_STRICT); __ jccb(Assembler::notZero, L_strict); __ fdivr_d(at_rsp()); __ jmp(L_join); __ bind(L_strict); __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); __ fmul_d (at_rsp()); __ fdivrp(); __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); __ fmulp(); __ bind(L_join); break; } case rem: __ fld_d (at_rsp()); __ fremr(rax); break; default : ShouldNotReachHere(); } __ d2ieee(); // Pop double precision number from rsp. __ pop(rax); __ pop(rdx); #endif } } void TemplateTable::ineg() { transition(itos, itos); __ negl(rax); } void TemplateTable::lneg() { transition(ltos, ltos); LP64_ONLY(__ negq(rax)); NOT_LP64(__ lneg(rdx, rax)); } // Note: 'double' and 'long long' have 32-bits alignment on x86. static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { // Use the expression (adr)&(~0xF) to provide 128-bits aligned address // of 128-bits operands for SSE instructions. jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); // Store the value to a 128-bits operand. operand[0] = lo; operand[1] = hi; return operand; } // Buffer for 128-bits masks used by SSE instructions. static jlong float_signflip_pool[2*2]; static jlong double_signflip_pool[2*2]; void TemplateTable::fneg() { transition(ftos, ftos); if (UseSSE >= 1) { static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); __ xorps(xmm0, ExternalAddress((address) float_signflip)); } else { LP64_ONLY(ShouldNotReachHere()); NOT_LP64(__ fchs()); } } void TemplateTable::dneg() { transition(dtos, dtos); if (UseSSE >= 2) { static jlong *double_signflip = double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); __ xorpd(xmm0, ExternalAddress((address) double_signflip)); } else { #ifdef _LP64 ShouldNotReachHere(); #else __ fchs(); #endif } } void TemplateTable::iinc() { transition(vtos, vtos); __ load_signed_byte(rdx, at_bcp(2)); // get constant locals_index(rbx); __ addl(iaddress(rbx), rdx); } void TemplateTable::wide_iinc() { transition(vtos, vtos); __ movl(rdx, at_bcp(4)); // get constant locals_index_wide(rbx); __ bswapl(rdx); // swap bytes & sign-extend constant __ sarl(rdx, 16); __ addl(iaddress(rbx), rdx); // Note: should probably use only one movl to get both // the index and the constant -> fix this } void TemplateTable::convert() { #ifdef _LP64 // Checking #ifdef ASSERT { TosState tos_in = ilgl; TosState tos_out = ilgl; switch (bytecode()) { case Bytecodes::_i2l: // fall through case Bytecodes::_i2f: // fall through case Bytecodes::_i2d: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_in = itos; break; case Bytecodes::_l2i: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_l2d: tos_in = ltos; break; case Bytecodes::_f2i: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_f2d: tos_in = ftos; break; case Bytecodes::_d2i: // fall through case Bytecodes::_d2l: // fall through case Bytecodes::_d2f: tos_in = dtos; break; default : ShouldNotReachHere(); } switch (bytecode()) { case Bytecodes::_l2i: // fall through case Bytecodes::_f2i: // fall through case Bytecodes::_d2i: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_out = itos; break; case Bytecodes::_i2l: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_d2l: tos_out = ltos; break; case Bytecodes::_i2f: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_d2f: tos_out = ftos; break; case Bytecodes::_i2d: // fall through case Bytecodes::_l2d: // fall through case Bytecodes::_f2d: tos_out = dtos; break; default : ShouldNotReachHere(); } transition(tos_in, tos_out); } #endif // ASSERT static const int64_t is_nan = 0x8000000000000000L; // Conversion switch (bytecode()) { case Bytecodes::_i2l: __ movslq(rax, rax); break; case Bytecodes::_i2f: __ cvtsi2ssl(xmm0, rax); break; case Bytecodes::_i2d: __ cvtsi2sdl(xmm0, rax); break; case Bytecodes::_i2b: __ movsbl(rax, rax); break; case Bytecodes::_i2c: __ movzwl(rax, rax); break; case Bytecodes::_i2s: __ movswl(rax, rax); break; case Bytecodes::_l2i: __ movl(rax, rax); break; case Bytecodes::_l2f: __ cvtsi2ssq(xmm0, rax); break; case Bytecodes::_l2d: __ cvtsi2sdq(xmm0, rax); break; case Bytecodes::_f2i: { Label L; __ cvttss2sil(rax, xmm0); __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? __ jcc(Assembler::notEqual, L); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); __ bind(L); } break; case Bytecodes::_f2l: { Label L; __ cvttss2siq(rax, xmm0); // NaN or overflow/underflow? __ cmp64(rax, ExternalAddress((address) &is_nan)); __ jcc(Assembler::notEqual, L); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); __ bind(L); } break; case Bytecodes::_f2d: __ cvtss2sd(xmm0, xmm0); break; case Bytecodes::_d2i: { Label L; __ cvttsd2sil(rax, xmm0); __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? __ jcc(Assembler::notEqual, L); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); __ bind(L); } break; case Bytecodes::_d2l: { Label L; __ cvttsd2siq(rax, xmm0); // NaN or overflow/underflow? __ cmp64(rax, ExternalAddress((address) &is_nan)); __ jcc(Assembler::notEqual, L); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); __ bind(L); } break; case Bytecodes::_d2f: __ cvtsd2ss(xmm0, xmm0); break; default: ShouldNotReachHere(); } #else // Checking #ifdef ASSERT { TosState tos_in = ilgl; TosState tos_out = ilgl; switch (bytecode()) { case Bytecodes::_i2l: // fall through case Bytecodes::_i2f: // fall through case Bytecodes::_i2d: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_in = itos; break; case Bytecodes::_l2i: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_l2d: tos_in = ltos; break; case Bytecodes::_f2i: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_f2d: tos_in = ftos; break; case Bytecodes::_d2i: // fall through case Bytecodes::_d2l: // fall through case Bytecodes::_d2f: tos_in = dtos; break; default : ShouldNotReachHere(); } switch (bytecode()) { case Bytecodes::_l2i: // fall through case Bytecodes::_f2i: // fall through case Bytecodes::_d2i: // fall through case Bytecodes::_i2b: // fall through case Bytecodes::_i2c: // fall through case Bytecodes::_i2s: tos_out = itos; break; case Bytecodes::_i2l: // fall through case Bytecodes::_f2l: // fall through case Bytecodes::_d2l: tos_out = ltos; break; case Bytecodes::_i2f: // fall through case Bytecodes::_l2f: // fall through case Bytecodes::_d2f: tos_out = ftos; break; case Bytecodes::_i2d: // fall through case Bytecodes::_l2d: // fall through case Bytecodes::_f2d: tos_out = dtos; break; default : ShouldNotReachHere(); } transition(tos_in, tos_out); } #endif // ASSERT // Conversion // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) switch (bytecode()) { case Bytecodes::_i2l: __ extend_sign(rdx, rax); break; case Bytecodes::_i2f: if (UseSSE >= 1) { __ cvtsi2ssl(xmm0, rax); } else { __ push(rax); // store int on tos __ fild_s(at_rsp()); // load int to ST0 __ f2ieee(); // truncate to float size __ pop(rcx); // adjust rsp } break; case Bytecodes::_i2d: if (UseSSE >= 2) { __ cvtsi2sdl(xmm0, rax); } else { __ push(rax); // add one slot for d2ieee() __ push(rax); // store int on tos __ fild_s(at_rsp()); // load int to ST0 __ d2ieee(); // truncate to double size __ pop(rcx); // adjust rsp __ pop(rcx); } break; case Bytecodes::_i2b: __ shll(rax, 24); // truncate upper 24 bits __ sarl(rax, 24); // and sign-extend byte LP64_ONLY(__ movsbl(rax, rax)); break; case Bytecodes::_i2c: __ andl(rax, 0xFFFF); // truncate upper 16 bits LP64_ONLY(__ movzwl(rax, rax)); break; case Bytecodes::_i2s: __ shll(rax, 16); // truncate upper 16 bits __ sarl(rax, 16); // and sign-extend short LP64_ONLY(__ movswl(rax, rax)); break; case Bytecodes::_l2i: /* nothing to do */ break; case Bytecodes::_l2f: // On 64-bit platforms, the cvtsi2ssq instruction is used to convert // 64-bit long values to floats. On 32-bit platforms it is not possible // to use that instruction with 64-bit operands, therefore the FPU is // used to perform the conversion. __ push(rdx); // store long on tos __ push(rax); __ fild_d(at_rsp()); // load long to ST0 __ f2ieee(); // truncate to float size __ pop(rcx); // adjust rsp __ pop(rcx); if (UseSSE >= 1) { __ push_f(); __ pop_f(xmm0); } break; case Bytecodes::_l2d: // On 32-bit platforms the FPU is used for conversion because on // 32-bit platforms it is not not possible to use the cvtsi2sdq // instruction with 64-bit operands. __ push(rdx); // store long on tos __ push(rax); __ fild_d(at_rsp()); // load long to ST0 __ d2ieee(); // truncate to double size __ pop(rcx); // adjust rsp __ pop(rcx); if (UseSSE >= 2) { __ push_d(); __ pop_d(xmm0); } break; case Bytecodes::_f2i: // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs // as it returns 0 for any NaN. if (UseSSE >= 1) { __ push_f(xmm0); } else { __ push(rcx); // reserve space for argument __ fstp_s(at_rsp()); // pass float argument on stack } __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); break; case Bytecodes::_f2l: // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs // as it returns 0 for any NaN. if (UseSSE >= 1) { __ push_f(xmm0); } else { __ push(rcx); // reserve space for argument __ fstp_s(at_rsp()); // pass float argument on stack } __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); break; case Bytecodes::_f2d: if (UseSSE < 1) { /* nothing to do */ } else if (UseSSE == 1) { __ push_f(xmm0); __ pop_f(); } else { // UseSSE >= 2 __ cvtss2sd(xmm0, xmm0); } break; case Bytecodes::_d2i: if (UseSSE >= 2) { __ push_d(xmm0); } else { __ push(rcx); // reserve space for argument __ push(rcx); __ fstp_d(at_rsp()); // pass double argument on stack } __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); break; case Bytecodes::_d2l: if (UseSSE >= 2) { __ push_d(xmm0); } else { __ push(rcx); // reserve space for argument __ push(rcx); __ fstp_d(at_rsp()); // pass double argument on stack } __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); break; case Bytecodes::_d2f: if (UseSSE <= 1) { __ push(rcx); // reserve space for f2ieee() __ f2ieee(); // truncate to float size __ pop(rcx); // adjust rsp if (UseSSE == 1) { // The cvtsd2ss instruction is not available if UseSSE==1, therefore // the conversion is performed using the FPU in this case. __ push_f(); __ pop_f(xmm0); } } else { // UseSSE >= 2 __ cvtsd2ss(xmm0, xmm0); } break; default : ShouldNotReachHere(); } #endif } void TemplateTable::lcmp() { transition(ltos, itos); #ifdef _LP64 Label done; __ pop_l(rdx); __ cmpq(rdx, rax); __ movl(rax, -1); __ jccb(Assembler::less, done); __ setb(Assembler::notEqual, rax); __ movzbl(rax, rax); __ bind(done); #else // y = rdx:rax __ pop_l(rbx, rcx); // get x = rcx:rbx __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) __ mov(rax, rcx); #endif } void TemplateTable::float_cmp(bool is_float, int unordered_result) { if ((is_float && UseSSE >= 1) || (!is_float && UseSSE >= 2)) { Label done; if (is_float) { // XXX get rid of pop here, use ... reg, mem32 __ pop_f(xmm1); __ ucomiss(xmm1, xmm0); } else { // XXX get rid of pop here, use ... reg, mem64 __ pop_d(xmm1); __ ucomisd(xmm1, xmm0); } if (unordered_result < 0) { __ movl(rax, -1); __ jccb(Assembler::parity, done); __ jccb(Assembler::below, done); __ setb(Assembler::notEqual, rdx); __ movzbl(rax, rdx); } else { __ movl(rax, 1); __ jccb(Assembler::parity, done); __ jccb(Assembler::above, done); __ movl(rax, 0); __ jccb(Assembler::equal, done); __ decrementl(rax); } __ bind(done); } else { #ifdef _LP64 ShouldNotReachHere(); #else if (is_float) { __ fld_s(at_rsp()); } else { __ fld_d(at_rsp()); __ pop(rdx); } __ pop(rcx); __ fcmp2int(rax, unordered_result < 0); #endif // _LP64 } } void TemplateTable::branch(bool is_jsr, bool is_wide) { __ get_method(rcx); // rcx holds method __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx // holds bumped taken count const ByteSize be_offset = MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset(); const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset(); // Load up edx with the branch displacement if (is_wide) { __ movl(rdx, at_bcp(1)); } else { __ load_signed_short(rdx, at_bcp(1)); } __ bswapl(rdx); if (!is_wide) { __ sarl(rdx, 16); } LP64_ONLY(__ movl2ptr(rdx, rdx)); // Handle all the JSR stuff here, then exit. // It's much shorter and cleaner than intermingling with the non-JSR // normal-branch stuff occurring below. if (is_jsr) { // Pre-load the next target bytecode into rbx __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); // compute return address as bci in rax __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset()))); __ subptr(rax, Address(rcx, Method::const_offset())); // Adjust the bcp in r13 by the displacement in rdx __ addptr(rbcp, rdx); // jsr returns atos that is not an oop __ push_i(rax); __ dispatch_only(vtos, true); return; } // Normal (non-jsr) branch handling // Adjust the bcp in r13 by the displacement in rdx __ addptr(rbcp, rdx); assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters"); Label backedge_counter_overflow; Label profile_method; Label dispatch; if (UseLoopCounter) { // increment backedge counter for backward branches // rax: MDO // rbx: MDO bumped taken-count // rcx: method // rdx: target offset // r13: target bcp // r14: locals pointer __ testl(rdx, rdx); // check if forward or backward branch __ jcc(Assembler::positive, dispatch); // count only if backward branch // check if MethodCounters exists Label has_counters; __ movptr(rax, Address(rcx, Method::method_counters_offset())); __ testptr(rax, rax); __ jcc(Assembler::notZero, has_counters); __ push(rdx); __ push(rcx); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), rcx); __ pop(rcx); __ pop(rdx); __ movptr(rax, Address(rcx, Method::method_counters_offset())); __ testptr(rax, rax); __ jcc(Assembler::zero, dispatch); __ bind(has_counters); if (TieredCompilation) { Label no_mdo; int increment = InvocationCounter::count_increment; if (ProfileInterpreter) { // Are we profiling? __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); __ testptr(rbx, rbx); __ jccb(Assembler::zero, no_mdo); // Increment the MDO backedge counter const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset())); const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero, &backedge_counter_overflow); __ jmp(dispatch); } __ bind(no_mdo); // Increment backedge counter in MethodCounters* __ movptr(rcx, Address(rcx, Method::method_counters_offset())); const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, rax, false, Assembler::zero, &backedge_counter_overflow); } else { // not TieredCompilation // increment counter __ movptr(rcx, Address(rcx, Method::method_counters_offset())); __ movl(rax, Address(rcx, be_offset)); // load backedge counter __ incrementl(rax, InvocationCounter::count_increment); // increment counter __ movl(Address(rcx, be_offset), rax); // store counter __ movl(rax, Address(rcx, inv_offset)); // load invocation counter __ andl(rax, InvocationCounter::count_mask_value); // and the status bits __ addl(rax, Address(rcx, be_offset)); // add both counters if (ProfileInterpreter) { // Test to see if we should create a method data oop __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); __ jcc(Assembler::less, dispatch); // if no method data exists, go to profile method __ test_method_data_pointer(rax, profile_method); if (UseOnStackReplacement) { // check for overflow against rbx which is the MDO taken count __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); __ jcc(Assembler::below, dispatch); // When ProfileInterpreter is on, the backedge_count comes // from the MethodData*, which value does not get reset on // the call to frequency_counter_overflow(). To avoid // excessive calls to the overflow routine while the method is // being compiled, add a second test to make sure the overflow // function is called only once every overflow_frequency. const int overflow_frequency = 1024; __ andl(rbx, overflow_frequency - 1); __ jcc(Assembler::zero, backedge_counter_overflow); } } else { if (UseOnStackReplacement) { // check for overflow against rax, which is the sum of the // counters __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); __ jcc(Assembler::aboveEqual, backedge_counter_overflow); } } } __ bind(dispatch); } // Pre-load the next target bytecode into rbx __ load_unsigned_byte(rbx, Address(rbcp, 0)); // continue with the bytecode @ target // rax: return bci for jsr's, unused otherwise // rbx: target bytecode // r13: target bcp __ dispatch_only(vtos, true); if (UseLoopCounter) { if (ProfileInterpreter) { // Out-of-line code to allocate method data oop. __ bind(profile_method); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); __ set_method_data_pointer_for_bcp(); __ jmp(dispatch); } if (UseOnStackReplacement) { // invocation counter overflow __ bind(backedge_counter_overflow); __ negptr(rdx); __ addptr(rdx, rbcp); // branch bcp // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx); // rax: osr nmethod (osr ok) or NULL (osr not possible) // rdx: scratch // r14: locals pointer // r13: bcp __ testptr(rax, rax); // test result __ jcc(Assembler::zero, dispatch); // no osr if null // nmethod may have been invalidated (VM may block upon call_VM return) __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); __ jcc(Assembler::notEqual, dispatch); // We have the address of an on stack replacement routine in rax. // In preparation of invoking it, first we must migrate the locals // and monitors from off the interpreter frame on the stack. // Ensure to save the osr nmethod over the migration call, // it will be preserved in rbx. __ mov(rbx, rax); NOT_LP64(__ get_thread(rcx)); call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); // rax is OSR buffer, move it to expected parameter location LP64_ONLY(__ mov(j_rarg0, rax)); NOT_LP64(__ mov(rcx, rax)); // We use j_rarg definitions here so that registers don't conflict as parameter // registers change across platforms as we are in the midst of a calling // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); // pop the interpreter frame __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp __ leave(); // remove frame anchor __ pop(retaddr); // get return address __ mov(rsp, sender_sp); // set sp to sender sp // Ensure compiled code always sees stack at proper alignment __ andptr(rsp, -(StackAlignmentInBytes)); // unlike x86 we need no specialized return from compiled code // to the interpreter or the call stub. // push the return address __ push(retaddr); // and begin the OSR nmethod __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); } } } void TemplateTable::if_0cmp(Condition cc) { transition(itos, vtos); // assume branch is more often taken than not (loops use backward branches) Label not_taken; __ testl(rax, rax); __ jcc(j_not(cc), not_taken); branch(false, false); __ bind(not_taken); __ profile_not_taken_branch(rax); } void TemplateTable::if_icmp(Condition cc) { transition(itos, vtos); // assume branch is more often taken than not (loops use backward branches) Label not_taken; __ pop_i(rdx); __ cmpl(rdx, rax); __ jcc(j_not(cc), not_taken); branch(false, false); __ bind(not_taken); __ profile_not_taken_branch(rax); } void TemplateTable::if_nullcmp(Condition cc) { transition(atos, vtos); // assume branch is more often taken than not (loops use backward branches) Label not_taken; __ testptr(rax, rax); __ jcc(j_not(cc), not_taken); branch(false, false); __ bind(not_taken); __ profile_not_taken_branch(rax); } void TemplateTable::if_acmp(Condition cc) { transition(atos, vtos); // assume branch is more often taken than not (loops use backward branches) Label not_taken; __ pop_ptr(rdx); __ cmpoop(rdx, rax); __ jcc(j_not(cc), not_taken); branch(false, false); __ bind(not_taken); __ profile_not_taken_branch(rax); } void TemplateTable::ret() { transition(vtos, vtos); locals_index(rbx); LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp NOT_LP64(__ movptr(rbx, iaddress(rbx))); __ profile_ret(rbx, rcx); __ get_method(rax); __ movptr(rbcp, Address(rax, Method::const_offset())); __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); __ dispatch_next(vtos, 0, true); } void TemplateTable::wide_ret() { transition(vtos, vtos); locals_index_wide(rbx); __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp __ profile_ret(rbx, rcx); __ get_method(rax); __ movptr(rbcp, Address(rax, Method::const_offset())); __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); __ dispatch_next(vtos, 0, true); } void TemplateTable::tableswitch() { Label default_case, continue_execution; transition(itos, vtos); // align r13/rsi __ lea(rbx, at_bcp(BytesPerInt)); __ andptr(rbx, -BytesPerInt); // load lo & hi __ movl(rcx, Address(rbx, BytesPerInt)); __ movl(rdx, Address(rbx, 2 * BytesPerInt)); __ bswapl(rcx); __ bswapl(rdx); // check against lo & hi __ cmpl(rax, rcx); __ jcc(Assembler::less, default_case); __ cmpl(rax, rdx); __ jcc(Assembler::greater, default_case); // lookup dispatch offset __ subl(rax, rcx); __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); __ profile_switch_case(rax, rbx, rcx); // continue execution __ bind(continue_execution); __ bswapl(rdx); LP64_ONLY(__ movl2ptr(rdx, rdx)); __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); __ addptr(rbcp, rdx); __ dispatch_only(vtos, true); // handle default __ bind(default_case); __ profile_switch_default(rax); __ movl(rdx, Address(rbx, 0)); __ jmp(continue_execution); } void TemplateTable::lookupswitch() { transition(itos, itos); __ stop("lookupswitch bytecode should have been rewritten"); } void TemplateTable::fast_linearswitch() { transition(itos, vtos); Label loop_entry, loop, found, continue_execution; // bswap rax so we can avoid bswapping the table entries __ bswapl(rax); // align r13 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of // this instruction (change offsets // below) __ andptr(rbx, -BytesPerInt); // set counter __ movl(rcx, Address(rbx, BytesPerInt)); __ bswapl(rcx); __ jmpb(loop_entry); // table search __ bind(loop); __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); __ jcc(Assembler::equal, found); __ bind(loop_entry); __ decrementl(rcx); __ jcc(Assembler::greaterEqual, loop); // default case __ profile_switch_default(rax); __ movl(rdx, Address(rbx, 0)); __ jmp(continue_execution); // entry found -> get offset __ bind(found); __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); __ profile_switch_case(rcx, rax, rbx); // continue execution __ bind(continue_execution); __ bswapl(rdx); __ movl2ptr(rdx, rdx); __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); __ addptr(rbcp, rdx); __ dispatch_only(vtos, true); } void TemplateTable::fast_binaryswitch() { transition(itos, vtos); // Implementation using the following core algorithm: // // int binary_search(int key, LookupswitchPair* array, int n) { // // Binary search according to "Methodik des Programmierens" by // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. // int i = 0; // int j = n; // while (i+1 < j) { // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) // // with Q: for all i: 0 <= i < n: key < a[i] // // where a stands for the array and assuming that the (inexisting) // // element a[n] is infinitely big. // int h = (i + j) >> 1; // // i < h < j // if (key < array[h].fast_match()) { // j = h; // } else { // i = h; // } // } // // R: a[i] <= key < a[i+1] or Q // // (i.e., if key is within array, i is the correct index) // return i; // } // Register allocation const Register key = rax; // already set (tosca) const Register array = rbx; const Register i = rcx; const Register j = rdx; const Register h = rdi; const Register temp = rsi; // Find array start NOT_LP64(__ save_bcp()); __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to // get rid of this // instruction (change // offsets below) __ andptr(array, -BytesPerInt); // Initialize i & j __ xorl(i, i); // i = 0; __ movl(j, Address(array, -BytesPerInt)); // j = length(array); // Convert j into native byteordering __ bswapl(j); // And start Label entry; __ jmp(entry); // binary search loop { Label loop; __ bind(loop); // int h = (i + j) >> 1; __ leal(h, Address(i, j, Address::times_1)); // h = i + j; __ sarl(h, 1); // h = (i + j) >> 1; // if (key < array[h].fast_match()) { // j = h; // } else { // i = h; // } // Convert array[h].match to native byte-ordering before compare __ movl(temp, Address(array, h, Address::times_8)); __ bswapl(temp); __ cmpl(key, temp); // j = h if (key < array[h].fast_match()) __ cmov32(Assembler::less, j, h); // i = h if (key >= array[h].fast_match()) __ cmov32(Assembler::greaterEqual, i, h); // while (i+1 < j) __ bind(entry); __ leal(h, Address(i, 1)); // i+1 __ cmpl(h, j); // i+1 < j __ jcc(Assembler::less, loop); } // end of binary search, result index is i (must check again!) Label default_case; // Convert array[i].match to native byte-ordering before compare __ movl(temp, Address(array, i, Address::times_8)); __ bswapl(temp); __ cmpl(key, temp); __ jcc(Assembler::notEqual, default_case); // entry found -> j = offset __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); __ profile_switch_case(i, key, array); __ bswapl(j); LP64_ONLY(__ movslq(j, j)); NOT_LP64(__ restore_bcp()); NOT_LP64(__ restore_locals()); // restore rdi __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); __ addptr(rbcp, j); __ dispatch_only(vtos, true); // default case -> j = default offset __ bind(default_case); __ profile_switch_default(i); __ movl(j, Address(array, -2 * BytesPerInt)); __ bswapl(j); LP64_ONLY(__ movslq(j, j)); NOT_LP64(__ restore_bcp()); NOT_LP64(__ restore_locals()); __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); __ addptr(rbcp, j); __ dispatch_only(vtos, true); } void TemplateTable::_return(TosState state) { transition(state, state); assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { assert(state == vtos, "only valid state"); Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); __ movptr(robj, aaddress(0)); __ load_klass(rdi, robj); __ movl(rdi, Address(rdi, Klass::access_flags_offset())); __ testl(rdi, JVM_ACC_HAS_FINALIZER); Label skip_register_finalizer; __ jcc(Assembler::zero, skip_register_finalizer); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); __ bind(skip_register_finalizer); } if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) { Label no_safepoint; NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); #ifdef _LP64 __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); #else const Register thread = rdi; __ get_thread(thread); __ testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); #endif __ jcc(Assembler::zero, no_safepoint); __ push(state); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)); __ pop(state); __ bind(no_safepoint); } // Narrow result if state is itos but result type is smaller. // Need to narrow in the return bytecode rather than in generate_return_entry // since compiled code callers expect the result to already be narrowed. if (state == itos) { __ narrow(rax); } __ remove_activation(state, rbcp); __ jmp(rbcp); } // ---------------------------------------------------------------------------- // Volatile variables demand their effects be made known to all CPU's // in order. Store buffers on most chips allow reads & writes to // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode // without some kind of memory barrier (i.e., it's not sufficient that // the interpreter does not reorder volatile references, the hardware // also must not reorder them). // // According to the new Java Memory Model (JMM): // (1) All volatiles are serialized wrt to each other. ALSO reads & // writes act as aquire & release, so: // (2) A read cannot let unrelated NON-volatile memory refs that // happen after the read float up to before the read. It's OK for // non-volatile memory refs that happen before the volatile read to // float down below it. // (3) Similar a volatile write cannot let unrelated NON-volatile // memory refs that happen BEFORE the write float down to after the // write. It's OK for non-volatile memory refs that happen after the // volatile write to float up before it. // // We only put in barriers around volatile refs (they are expensive), // not _between_ memory refs (that would require us to track the // flavor of the previous memory refs). Requirements (2) and (3) // require some barriers before volatile stores and after volatile // loads. These nearly cover requirement (1) but miss the // volatile-store-volatile-load case. This final case is placed after // volatile-stores although it could just as well go before // volatile-loads. void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { // Helper function to insert a is-volatile test and memory barrier if(!os::is_MP()) return; // Not needed on single CPU __ membar(order_constraint); } void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index, size_t index_size) { const Register temp = rbx; assert_different_registers(Rcache, index, temp); Label resolved; Bytecodes::Code code = bytecode(); switch (code) { case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; default: break; } assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); __ cmpl(temp, code); // have we resolved this bytecode? __ jcc(Assembler::equal, resolved); // resolve first time through address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); __ movl(temp, code); __ call_VM(noreg, entry, temp); // Update registers with resolved info __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); __ bind(resolved); } // The cache and index registers must be set before call void TemplateTable::load_field_cp_cache_entry(Register obj, Register cache, Register index, Register off, Register flags, bool is_static = false) { assert_different_registers(cache, index, flags, off); ByteSize cp_base_offset = ConstantPoolCache::base_offset(); // Field offset __ movptr(off, Address(cache, index, Address::times_ptr, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()))); // Flags __ movl(flags, Address(cache, index, Address::times_ptr, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()))); // klass overwrite register if (is_static) { __ movptr(obj, Address(cache, index, Address::times_ptr, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset()))); const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ movptr(obj, Address(obj, mirror_offset)); __ resolve_oop_handle(obj); } } void TemplateTable::load_invoke_cp_cache_entry(int byte_no, Register method, Register itable_index, Register flags, bool is_invokevirtual, bool is_invokevfinal, /*unused*/ bool is_invokedynamic) { // setup registers const Register cache = rcx; const Register index = rdx; assert_different_registers(method, flags); assert_different_registers(method, cache, index); assert_different_registers(itable_index, flags); assert_different_registers(itable_index, cache, index); // determine constant pool cache field offsets assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); const int method_offset = in_bytes( ConstantPoolCache::base_offset() + ((byte_no == f2_byte) ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset())); const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()); // access constant pool cache fields const int index_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()); size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); resolve_cache_and_index(byte_no, cache, index, index_size); __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); if (itable_index != noreg) { // pick up itable or appendix index from f2 also: __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); } __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); } // The registers cache and index expected to be set before call. // Correct values of the cache and index registers are preserved. void TemplateTable::jvmti_post_field_access(Register cache, Register index, bool is_static, bool has_tos) { if (JvmtiExport::can_post_field_access()) { // Check to see if a field access watch has been set before we take // the time to call into the VM. Label L1; assert_different_registers(cache, index, rax); __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); __ testl(rax,rax); __ jcc(Assembler::zero, L1); // cache entry pointer __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); __ shll(index, LogBytesPerWord); __ addptr(cache, index); if (is_static) { __ xorptr(rax, rax); // NULL object reference } else { __ pop(atos); // Get the object __ verify_oop(rax); __ push(atos); // Restore stack state } // rax,: object pointer or NULL // cache: cache entry pointer __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, cache); __ get_cache_and_index_at_bcp(cache, index, 1); __ bind(L1); } } void TemplateTable::pop_and_check_object(Register r) { __ pop_ptr(r); __ null_check(r); // for field access must check obj. __ verify_oop(r); } void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { transition(vtos, vtos); const Register cache = rcx; const Register index = rdx; const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); const Register off = rbx; const Register flags = rax; const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); jvmti_post_field_access(cache, index, is_static, false); load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); if (!is_static) pop_and_check_object(obj); const Address field(obj, off, Address::times_1, 0*wordSize); NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize)); Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); // Make sure we don't need to mask edx after the above shift assert(btos == 0, "change code, btos != 0"); __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); __ jcc(Assembler::notZero, notByte); // btos __ load_signed_byte(rax, field); __ push(btos); // Rewrite bytecode to be faster if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); } __ jmp(Done); __ bind(notByte); __ cmpl(flags, ztos); __ jcc(Assembler::notEqual, notBool); // ztos (same code as btos) __ load_signed_byte(rax, field); __ push(ztos); // Rewrite bytecode to be faster if (!is_static && rc == may_rewrite) { // use btos rewriting, no truncating to t/f bit is needed for getfield. patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); } __ jmp(Done); __ bind(notBool); __ cmpl(flags, atos); __ jcc(Assembler::notEqual, notObj); // atos __ load_heap_oop(rax, field); __ push(atos); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); } __ jmp(Done); __ bind(notObj); __ cmpl(flags, itos); __ jcc(Assembler::notEqual, notInt); // itos __ movl(rax, field); __ push(itos); // Rewrite bytecode to be faster if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); } __ jmp(Done); __ bind(notInt); __ cmpl(flags, ctos); __ jcc(Assembler::notEqual, notChar); // ctos __ load_unsigned_short(rax, field); __ push(ctos); // Rewrite bytecode to be faster if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); } __ jmp(Done); __ bind(notChar); __ cmpl(flags, stos); __ jcc(Assembler::notEqual, notShort); // stos __ load_signed_short(rax, field); __ push(stos); // Rewrite bytecode to be faster if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); } __ jmp(Done); __ bind(notShort); __ cmpl(flags, ltos); __ jcc(Assembler::notEqual, notLong); // ltos #ifndef _LP64 // Generate code as if volatile. There just aren't enough registers to // save that information and this code is faster than the test. __ fild_d(field); // Must load atomically __ subptr(rsp,2*wordSize); // Make space for store __ fistp_d(Address(rsp,0)); __ pop(rax); __ pop(rdx); #else __ movq(rax, field); #endif __ push(ltos); // Rewrite bytecode to be faster LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); __ jmp(Done); __ bind(notLong); __ cmpl(flags, ftos); __ jcc(Assembler::notEqual, notFloat); // ftos __ load_float(field); __ push(ftos); // Rewrite bytecode to be faster if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); } __ jmp(Done); __ bind(notFloat); #ifdef ASSERT __ cmpl(flags, dtos); __ jcc(Assembler::notEqual, notDouble); #endif // dtos __ load_double(field); __ push(dtos); // Rewrite bytecode to be faster if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); } #ifdef ASSERT __ jmp(Done); __ bind(notDouble); __ stop("Bad state"); #endif __ bind(Done); // [jk] not needed currently // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | // Assembler::LoadStore)); } void TemplateTable::getfield(int byte_no) { getfield_or_static(byte_no, false); } void TemplateTable::nofast_getfield(int byte_no) { getfield_or_static(byte_no, false, may_not_rewrite); } void TemplateTable::getstatic(int byte_no) { getfield_or_static(byte_no, true); } // The registers cache and index expected to be set before call. // The function may destroy various registers, just not the cache and index registers. void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); ByteSize cp_base_offset = ConstantPoolCache::base_offset(); if (JvmtiExport::can_post_field_modification()) { // Check to see if a field modification watch has been set before // we take the time to call into the VM. Label L1; assert_different_registers(cache, index, rax); __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); __ testl(rax, rax); __ jcc(Assembler::zero, L1); __ get_cache_and_index_at_bcp(robj, RDX, 1); if (is_static) { // Life is simple. Null out the object pointer. __ xorl(RBX, RBX); } else { // Life is harder. The stack holds the value on top, followed by // the object. We don't know the size of the value, though; it // could be one or two words depending on its type. As a result, // we must find the type to determine where the object is. #ifndef _LP64 Label two_word, valsize_known; #endif __ movl(RCX, Address(robj, RDX, Address::times_ptr, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()))); NOT_LP64(__ mov(rbx, rsp)); __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); // Make sure we don't need to mask rcx after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); #ifdef _LP64 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue __ cmpl(c_rarg3, ltos); __ cmovptr(Assembler::equal, c_rarg1, at_tos_p2()); // ltos (two word jvalue) __ cmpl(c_rarg3, dtos); __ cmovptr(Assembler::equal, c_rarg1, at_tos_p2()); // dtos (two word jvalue) #else __ cmpl(rcx, ltos); __ jccb(Assembler::equal, two_word); __ cmpl(rcx, dtos); __ jccb(Assembler::equal, two_word); __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) __ jmpb(valsize_known); __ bind(two_word); __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue __ bind(valsize_known); // setup object pointer __ movptr(rbx, Address(rbx, 0)); #endif } // cache entry pointer __ addptr(robj, in_bytes(cp_base_offset)); __ shll(RDX, LogBytesPerWord); __ addptr(robj, RDX); // object (tos) __ mov(RCX, rsp); // c_rarg1: object pointer set up above (NULL if static) // c_rarg2: cache entry pointer // c_rarg3: jvalue object on the stack __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), RBX, robj, RCX); __ get_cache_and_index_at_bcp(cache, index, 1); __ bind(L1); } } void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { transition(vtos, vtos); const Register cache = rcx; const Register index = rdx; const Register obj = rcx; const Register off = rbx; const Register flags = rax; const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); jvmti_post_field_mod(cache, index, is_static); load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); // [jk] not needed currently // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | // Assembler::StoreStore)); Label notVolatile, Done; __ movl(rdx, flags); __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); __ andl(rdx, 0x1); // field addresses const Address field(obj, off, Address::times_1, 0*wordSize); NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); assert(btos == 0, "change code, btos != 0"); __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); __ jcc(Assembler::notZero, notByte); // btos { __ pop(btos); if (!is_static) pop_and_check_object(obj); __ movb(field, rax); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); } __ jmp(Done); } __ bind(notByte); __ cmpl(flags, ztos); __ jcc(Assembler::notEqual, notBool); // ztos { __ pop(ztos); if (!is_static) pop_and_check_object(obj); __ andl(rax, 0x1); __ movb(field, rax); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); } __ jmp(Done); } __ bind(notBool); __ cmpl(flags, atos); __ jcc(Assembler::notEqual, notObj); // atos { __ pop(atos); if (!is_static) pop_and_check_object(obj); // Store into the field do_oop_store(_masm, field, rax, _bs->kind(), false); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); } __ jmp(Done); } __ bind(notObj); __ cmpl(flags, itos); __ jcc(Assembler::notEqual, notInt); // itos { __ pop(itos); if (!is_static) pop_and_check_object(obj); __ movl(field, rax); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); } __ jmp(Done); } __ bind(notInt); __ cmpl(flags, ctos); __ jcc(Assembler::notEqual, notChar); // ctos { __ pop(ctos); if (!is_static) pop_and_check_object(obj); __ movw(field, rax); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); } __ jmp(Done); } __ bind(notChar); __ cmpl(flags, stos); __ jcc(Assembler::notEqual, notShort); // stos { __ pop(stos); if (!is_static) pop_and_check_object(obj); __ movw(field, rax); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); } __ jmp(Done); } __ bind(notShort); __ cmpl(flags, ltos); __ jcc(Assembler::notEqual, notLong); // ltos #ifdef _LP64 { __ pop(ltos); if (!is_static) pop_and_check_object(obj); __ movq(field, rax); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); } __ jmp(Done); } #else { Label notVolatileLong; __ testl(rdx, rdx); __ jcc(Assembler::zero, notVolatileLong); __ pop(ltos); // overwrites rdx, do this after testing volatile. if (!is_static) pop_and_check_object(obj); // Replace with real volatile test __ push(rdx); __ push(rax); // Must update atomically with FIST __ fild_d(Address(rsp,0)); // So load into FPU register __ fistp_d(field); // and put into memory atomically __ addptr(rsp, 2*wordSize); // volatile_barrier(); volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | Assembler::StoreStore)); // Don't rewrite volatile version __ jmp(notVolatile); __ bind(notVolatileLong); __ pop(ltos); // overwrites rdx if (!is_static) pop_and_check_object(obj); __ movptr(hi, rdx); __ movptr(field, rax); // Don't rewrite to _fast_lputfield for potential volatile case. __ jmp(notVolatile); } #endif // _LP64 __ bind(notLong); __ cmpl(flags, ftos); __ jcc(Assembler::notEqual, notFloat); // ftos { __ pop(ftos); if (!is_static) pop_and_check_object(obj); __ store_float(field); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); } __ jmp(Done); } __ bind(notFloat); #ifdef ASSERT __ cmpl(flags, dtos); __ jcc(Assembler::notEqual, notDouble); #endif // dtos { __ pop(dtos); if (!is_static) pop_and_check_object(obj); __ store_double(field); if (!is_static && rc == may_rewrite) { patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); } } #ifdef ASSERT __ jmp(Done); __ bind(notDouble); __ stop("Bad state"); #endif __ bind(Done); // Check for volatile store __ testl(rdx, rdx); __ jcc(Assembler::zero, notVolatile); volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | Assembler::StoreStore)); __ bind(notVolatile); } void TemplateTable::putfield(int byte_no) { putfield_or_static(byte_no, false); } void TemplateTable::nofast_putfield(int byte_no) { putfield_or_static(byte_no, false, may_not_rewrite); } void TemplateTable::putstatic(int byte_no) { putfield_or_static(byte_no, true); } void TemplateTable::jvmti_post_fast_field_mod() { const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); if (JvmtiExport::can_post_field_modification()) { // Check to see if a field modification watch has been set before // we take the time to call into the VM. Label L2; __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); __ testl(scratch, scratch); __ jcc(Assembler::zero, L2); __ pop_ptr(rbx); // copy the object pointer from tos __ verify_oop(rbx); __ push_ptr(rbx); // put the object pointer back on tos // Save tos values before call_VM() clobbers them. Since we have // to do it for every data type, we use the saved values as the // jvalue object. switch (bytecode()) { // load values into the jvalue object case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; case Bytecodes::_fast_bputfield: // fall through case Bytecodes::_fast_zputfield: // fall through case Bytecodes::_fast_sputfield: // fall through case Bytecodes::_fast_cputfield: // fall through case Bytecodes::_fast_iputfield: __ push_i(rax); break; case Bytecodes::_fast_dputfield: __ push(dtos); break; case Bytecodes::_fast_fputfield: __ push(ftos); break; case Bytecodes::_fast_lputfield: __ push_l(rax); break; default: ShouldNotReachHere(); } __ mov(scratch, rsp); // points to jvalue on the stack // access constant pool cache entry LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); __ verify_oop(rbx); // rbx: object pointer copied above // c_rarg2: cache entry pointer // c_rarg3: jvalue object on the stack LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); switch (bytecode()) { // restore tos values case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; case Bytecodes::_fast_bputfield: // fall through case Bytecodes::_fast_zputfield: // fall through case Bytecodes::_fast_sputfield: // fall through case Bytecodes::_fast_cputfield: // fall through case Bytecodes::_fast_iputfield: __ pop_i(rax); break; case Bytecodes::_fast_dputfield: __ pop(dtos); break; case Bytecodes::_fast_fputfield: __ pop(ftos); break; case Bytecodes::_fast_lputfield: __ pop_l(rax); break; default: break; } __ bind(L2); } } void TemplateTable::fast_storefield(TosState state) { transition(state, vtos); ByteSize base = ConstantPoolCache::base_offset(); jvmti_post_fast_field_mod(); // access constant pool cache __ get_cache_and_index_at_bcp(rcx, rbx, 1); // test for volatile with rdx but rdx is tos register for lputfield. __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::flags_offset()))); // replace index with field offset from cache entry __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); // [jk] not needed currently // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | // Assembler::StoreStore)); Label notVolatile; __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); __ andl(rdx, 0x1); // Get object from stack pop_and_check_object(rcx); // field address const Address field(rcx, rbx, Address::times_1); // access field switch (bytecode()) { case Bytecodes::_fast_aputfield: do_oop_store(_masm, field, rax, _bs->kind(), false); break; case Bytecodes::_fast_lputfield: #ifdef _LP64 __ movq(field, rax); #else __ stop("should not be rewritten"); #endif break; case Bytecodes::_fast_iputfield: __ movl(field, rax); break; case Bytecodes::_fast_zputfield: __ andl(rax, 0x1); // boolean is true if LSB is 1 // fall through to bputfield case Bytecodes::_fast_bputfield: __ movb(field, rax); break; case Bytecodes::_fast_sputfield: // fall through case Bytecodes::_fast_cputfield: __ movw(field, rax); break; case Bytecodes::_fast_fputfield: __ store_float(field); break; case Bytecodes::_fast_dputfield: __ store_double(field); break; default: ShouldNotReachHere(); } // Check for volatile store __ testl(rdx, rdx); __ jcc(Assembler::zero, notVolatile); volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | Assembler::StoreStore)); __ bind(notVolatile); } void TemplateTable::fast_accessfield(TosState state) { transition(atos, state); // Do the JVMTI work here to avoid disturbing the register state below if (JvmtiExport::can_post_field_access()) { // Check to see if a field access watch has been set before we // take the time to call into the VM. Label L1; __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); __ testl(rcx, rcx); __ jcc(Assembler::zero, L1); // access constant pool cache entry LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); __ verify_oop(rax); __ push_ptr(rax); // save object pointer before call_VM() clobbers it LP64_ONLY(__ mov(c_rarg1, rax)); // c_rarg1: object pointer copied above // c_rarg2: cache entry pointer LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); __ pop_ptr(rax); // restore object pointer __ bind(L1); } // access constant pool cache __ get_cache_and_index_at_bcp(rcx, rbx, 1); // replace index with field offset from cache entry // [jk] not needed currently // if (os::is_MP()) { // __ movl(rdx, Address(rcx, rbx, Address::times_8, // in_bytes(ConstantPoolCache::base_offset() + // ConstantPoolCacheEntry::flags_offset()))); // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); // __ andl(rdx, 0x1); // } __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()))); // rax: object __ verify_oop(rax); __ null_check(rax); Address field(rax, rbx, Address::times_1); // access field switch (bytecode()) { case Bytecodes::_fast_agetfield: __ load_heap_oop(rax, field); __ verify_oop(rax); break; case Bytecodes::_fast_lgetfield: #ifdef _LP64 __ movq(rax, field); #else __ stop("should not be rewritten"); #endif break; case Bytecodes::_fast_igetfield: __ movl(rax, field); break; case Bytecodes::_fast_bgetfield: __ movsbl(rax, field); break; case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, field); break; case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, field); break; case Bytecodes::_fast_fgetfield: __ load_float(field); break; case Bytecodes::_fast_dgetfield: __ load_double(field); break; default: ShouldNotReachHere(); } // [jk] not needed currently // if (os::is_MP()) { // Label notVolatile; // __ testl(rdx, rdx); // __ jcc(Assembler::zero, notVolatile); // __ membar(Assembler::LoadLoad); // __ bind(notVolatile); //}; } void TemplateTable::fast_xaccess(TosState state) { transition(vtos, state); // get receiver __ movptr(rax, aaddress(0)); // access constant pool cache __ get_cache_and_index_at_bcp(rcx, rdx, 2); __ movptr(rbx, Address(rcx, rdx, Address::times_ptr, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()))); // make sure exception is reported in correct bcp range (getfield is // next instruction) __ increment(rbcp); __ null_check(rax); const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); switch (state) { case itos: __ movl(rax, field); break; case atos: __ load_heap_oop(rax, field); __ verify_oop(rax); break; case ftos: __ load_float(field); break; default: ShouldNotReachHere(); } // [jk] not needed currently // if (os::is_MP()) { // Label notVolatile; // __ movl(rdx, Address(rcx, rdx, Address::times_8, // in_bytes(ConstantPoolCache::base_offset() + // ConstantPoolCacheEntry::flags_offset()))); // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); // __ testl(rdx, 0x1); // __ jcc(Assembler::zero, notVolatile); // __ membar(Assembler::LoadLoad); // __ bind(notVolatile); // } __ decrement(rbcp); } //----------------------------------------------------------------------------- // Calls void TemplateTable::count_calls(Register method, Register temp) { // implemented elsewhere ShouldNotReachHere(); } void TemplateTable::prepare_invoke(int byte_no, Register method, // linked method (or i-klass) Register index, // itable index, MethodType, etc. Register recv, // if caller wants to see it Register flags // if caller wants to test it ) { // determine flags const Bytecodes::Code code = bytecode(); const bool is_invokeinterface = code == Bytecodes::_invokeinterface; const bool is_invokedynamic = code == Bytecodes::_invokedynamic; const bool is_invokehandle = code == Bytecodes::_invokehandle; const bool is_invokevirtual = code == Bytecodes::_invokevirtual; const bool is_invokespecial = code == Bytecodes::_invokespecial; const bool load_receiver = (recv != noreg); const bool save_flags = (flags != noreg); assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); assert(flags == noreg || flags == rdx, ""); assert(recv == noreg || recv == rcx, ""); // setup registers & access constant pool cache if (recv == noreg) recv = rcx; if (flags == noreg) flags = rdx; assert_different_registers(method, index, recv, flags); // save 'interpreter return address' __ save_bcp(); load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); // maybe push appendix to arguments (just before return address) if (is_invokedynamic || is_invokehandle) { Label L_no_push; __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); __ jcc(Assembler::zero, L_no_push); // Push the appendix as a trailing parameter. // This must be done before we get the receiver, // since the parameter_size includes it. __ push(rbx); __ mov(rbx, index); assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); __ load_resolved_reference_at_index(index, rbx); __ pop(rbx); __ push(index); // push appendix (MethodType, CallSite, etc.) __ bind(L_no_push); } // load receiver if needed (after appendix is pushed so parameter size is correct) // Note: no return address pushed yet if (load_receiver) { __ movl(recv, flags); __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address const int receiver_is_at_end = -1; // back off one slot to get receiver Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); __ movptr(recv, recv_addr); __ verify_oop(recv); } if (save_flags) { __ movl(rbcp, flags); } // compute return type __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); // Make sure we don't need to mask flags after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); // load return address { const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); ExternalAddress table(table_addr); LP64_ONLY(__ lea(rscratch1, table)); LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr))); NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)))); } // push return address __ push(flags); // Restore flags value from the constant pool cache, and restore rsi // for later null checks. r13 is the bytecode pointer if (save_flags) { __ movl(flags, rbcp); __ restore_bcp(); } } void TemplateTable::invokevirtual_helper(Register index, Register recv, Register flags) { // Uses temporary registers rax, rdx assert_different_registers(index, recv, rax, rdx); assert(index == rbx, ""); assert(recv == rcx, ""); // Test for an invoke of a final method Label notFinal; __ movl(rax, flags); __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); __ jcc(Assembler::zero, notFinal); const Register method = index; // method must be rbx assert(method == rbx, "Method* must be rbx for interpreter calling convention"); // do the call - the index is actually the method to call // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* // It's final, need a null check here! __ null_check(recv); // profile this call __ profile_final_call(rax); __ profile_arguments_type(rax, method, rbcp, true); __ jump_from_interpreted(method, rax); __ bind(notFinal); // get receiver klass __ null_check(recv, oopDesc::klass_offset_in_bytes()); __ load_klass(rax, recv); // profile this call __ profile_virtual_call(rax, rlocals, rdx); // get target Method* & entry point __ lookup_virtual_method(rax, index, method); __ profile_called_method(method, rdx, rbcp); __ profile_arguments_type(rdx, method, rbcp, true); __ jump_from_interpreted(method, rdx); } void TemplateTable::invokevirtual(int byte_no) { transition(vtos, vtos); assert(byte_no == f2_byte, "use this argument"); prepare_invoke(byte_no, rbx, // method or vtable index noreg, // unused itable index rcx, rdx); // recv, flags // rbx: index // rcx: receiver // rdx: flags invokevirtual_helper(rbx, rcx, rdx); } void TemplateTable::invokespecial(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); prepare_invoke(byte_no, rbx, noreg, // get f1 Method* rcx); // get receiver also for null check __ verify_oop(rcx); __ null_check(rcx); // do the call __ profile_call(rax); __ profile_arguments_type(rax, rbx, rbcp, false); __ jump_from_interpreted(rbx, rax); } void TemplateTable::invokestatic(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); prepare_invoke(byte_no, rbx); // get f1 Method* // do the call __ profile_call(rax); __ profile_arguments_type(rax, rbx, rbcp, false); __ jump_from_interpreted(rbx, rax); } void TemplateTable::fast_invokevfinal(int byte_no) { transition(vtos, vtos); assert(byte_no == f2_byte, "use this argument"); __ stop("fast_invokevfinal not used on x86"); } void TemplateTable::invokeinterface(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* rcx, rdx); // recv, flags // rax: reference klass (from f1) // rbx: method (from f2) // rcx: receiver // rdx: flags // Special case of invokeinterface called for virtual method of // java.lang.Object. See cpCacheOop.cpp for details. // This code isn't produced by javac, but could be produced by // another compliant java compiler. Label notMethod; __ movl(rlocals, rdx); __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); __ jcc(Assembler::zero, notMethod); invokevirtual_helper(rbx, rcx, rdx); __ bind(notMethod); // Get receiver klass into rdx - also a null check __ restore_locals(); // restore r14 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); __ load_klass(rdx, rcx); Label no_such_interface, no_such_method; // Preserve method for throw_AbstractMethodErrorVerbose. __ mov(rcx, rbx); // Receiver subtype check against REFC. // Superklass in rax. Subklass in rdx. Blows rcx, rdi. __ lookup_interface_method(// inputs: rec. class, interface, itable index rdx, rax, noreg, // outputs: scan temp. reg, scan temp. reg rbcp, rlocals, no_such_interface, /*return_method=*/false); // profile this call __ restore_bcp(); // rbcp was destroyed by receiver type check __ profile_virtual_call(rdx, rbcp, rlocals); // Get declaring interface class from method, and itable index __ movptr(rax, Address(rbx, Method::const_offset())); __ movptr(rax, Address(rax, ConstMethod::constants_offset())); __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes())); __ movl(rbx, Address(rbx, Method::itable_index_offset())); __ subl(rbx, Method::itable_index_max); __ negl(rbx); // Preserve recvKlass for throw_AbstractMethodErrorVerbose. __ mov(rlocals, rdx); __ lookup_interface_method(// inputs: rec. class, interface, itable index rlocals, rax, rbx, // outputs: method, scan temp. reg rbx, rbcp, no_such_interface); // rbx: Method* to call // rcx: receiver // Check for abstract method error // Note: This should be done more efficiently via a throw_abstract_method_error // interpreter entry point and a conditional jump to it in case of a null // method. __ testptr(rbx, rbx); __ jcc(Assembler::zero, no_such_method); __ profile_called_method(rbx, rbcp, rdx); __ profile_arguments_type(rdx, rbx, rbcp, true); // do the call // rcx: receiver // rbx,: Method* __ jump_from_interpreted(rbx, rdx); __ should_not_reach_here(); // exception handling code follows... // note: must restore interpreter registers to canonical // state for exception handling to work correctly! __ bind(no_such_method); // throw exception __ pop(rbx); // pop return address (pushed by prepare_invoke) __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) // Pass arguments for generating a verbose error message. #ifdef _LP64 Register recvKlass = c_rarg1; Register method = c_rarg2; if (recvKlass != rdx) { __ movq(recvKlass, rdx); } if (method != rcx) { __ movq(method, rcx); } #else Register recvKlass = rdx; Register method = rcx; #endif __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), recvKlass, method); // The call_VM checks for exception, so we should never return here. __ should_not_reach_here(); __ bind(no_such_interface); // throw exception __ pop(rbx); // pop return address (pushed by prepare_invoke) __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) // Pass arguments for generating a verbose error message. LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), recvKlass, rax); // the call_VM checks for exception, so we should never return here. __ should_not_reach_here(); } void TemplateTable::invokehandle(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); const Register rbx_method = rbx; const Register rax_mtype = rax; const Register rcx_recv = rcx; const Register rdx_flags = rdx; prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); __ verify_method_ptr(rbx_method); __ verify_oop(rcx_recv); __ null_check(rcx_recv); // rax: MethodType object (from cpool->resolved_references[f1], if necessary) // rbx: MH.invokeExact_MT method (from f2) // Note: rax_mtype is already pushed (if necessary) by prepare_invoke // FIXME: profile the LambdaForm also __ profile_final_call(rax); __ profile_arguments_type(rdx, rbx_method, rbcp, true); __ jump_from_interpreted(rbx_method, rdx); } void TemplateTable::invokedynamic(int byte_no) { transition(vtos, vtos); assert(byte_no == f1_byte, "use this argument"); const Register rbx_method = rbx; const Register rax_callsite = rax; prepare_invoke(byte_no, rbx_method, rax_callsite); // rax: CallSite object (from cpool->resolved_references[f1]) // rbx: MH.linkToCallSite method (from f2) // Note: rax_callsite is already pushed by prepare_invoke // %%% should make a type profile for any invokedynamic that takes a ref argument // profile this call __ profile_call(rbcp); __ profile_arguments_type(rdx, rbx_method, rbcp, false); __ verify_oop(rax_callsite); __ jump_from_interpreted(rbx_method, rdx); } //----------------------------------------------------------------------------- // Allocation void TemplateTable::_new() { transition(vtos, atos); __ get_unsigned_2_byte_index_at_bcp(rdx, 1); Label slow_case; Label slow_case_no_pop; Label done; Label initialize_header; Label initialize_object; // including clearing the fields __ get_cpool_and_tags(rcx, rax); // Make sure the class we're about to instantiate has been resolved. // This is done before loading InstanceKlass to be consistent with the order // how Constant Pool is updated (see ConstantPool::klass_at_put) const int tags_offset = Array::base_offset_in_bytes(); __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); __ jcc(Assembler::notEqual, slow_case_no_pop); // get InstanceKlass __ load_resolved_klass_at_index(rcx, rdx, rcx); __ push(rcx); // save the contexts of klass for initializing the header // make sure klass is initialized & doesn't have finalizer // make sure klass is fully initialized __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); __ jcc(Assembler::notEqual, slow_case); // get instance_size in InstanceKlass (scaled to a count of bytes) __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); // test to see if it has a finalizer or is malformed in some way __ testl(rdx, Klass::_lh_instance_slow_path_bit); __ jcc(Assembler::notZero, slow_case); // Allocate the instance: // If TLAB is enabled: // Try to allocate in the TLAB. // If fails, go to the slow path. // Else If inline contiguous allocations are enabled: // Try to allocate in eden. // If fails due to heap end, go to slow path. // // If TLAB is enabled OR inline contiguous is enabled: // Initialize the allocation. // Exit. // // Go to slow path. const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc(); const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); #ifndef _LP64 if (UseTLAB || allow_shared_alloc) { __ get_thread(thread); } #endif // _LP64 if (UseTLAB) { __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset()))); __ lea(rbx, Address(rax, rdx, Address::times_1)); __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_fast_path_end_offset()))); __ jcc(Assembler::above, slow_case); __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx); if (ZeroTLAB) { // the fields have been already cleared __ jmp(initialize_header); } else { // initialize both the header and fields __ jmp(initialize_object); } } else { // Allocation in the shared Eden, if allowed. // // rdx: instance size in bytes if (allow_shared_alloc) { ExternalAddress heap_top((address)Universe::heap()->top_addr()); ExternalAddress heap_end((address)Universe::heap()->end_addr()); Label retry; __ bind(retry); __ movptr(rax, heap_top); __ lea(rbx, Address(rax, rdx, Address::times_1)); __ cmpptr(rbx, heap_end); __ jcc(Assembler::above, slow_case); // Compare rax, with the top addr, and if still equal, store the new // top addr in rbx, at the address of the top addr pointer. Sets ZF if was // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. // // rax,: object begin // rbx,: object end // rdx: instance size in bytes __ locked_cmpxchgptr(rbx, heap_top); // if someone beat us on the allocation, try again, otherwise continue __ jcc(Assembler::notEqual, retry); __ incr_allocated_bytes(thread, rdx, 0); } } // If UseTLAB or allow_shared_alloc are true, the object is created above and // there is an initialize need. Otherwise, skip and go to the slow path. if (UseTLAB || allow_shared_alloc) { // The object is initialized before the header. If the object size is // zero, go directly to the header initialization. __ bind(initialize_object); __ decrement(rdx, sizeof(oopDesc)); __ jcc(Assembler::zero, initialize_header); // Initialize topmost object field, divide rdx by 8, check if odd and // test if zero. __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd // rdx must have been multiple of 8 #ifdef ASSERT // make sure rdx was multiple of 8 Label L; // Ignore partial flag stall after shrl() since it is debug VM __ jccb(Assembler::carryClear, L); __ stop("object size is not multiple of 2 - adjust this code"); __ bind(L); // rdx must be > 0, no extra check needed here #endif // initialize remaining object fields: rdx was a multiple of 8 { Label loop; __ bind(loop); __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); __ decrement(rdx); __ jcc(Assembler::notZero, loop); } // initialize object header only. __ bind(initialize_header); if (UseBiasedLocking) { __ pop(rcx); // get saved klass back in the register. __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); } else { __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), (intptr_t)markOopDesc::prototype()); // header __ pop(rcx); // get saved klass back in the register. } #ifdef _LP64 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops #endif __ store_klass(rax, rcx); // klass { SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); // Trigger dtrace event for fastpath __ push(atos); __ call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); __ pop(atos); } __ jmp(done); } // slow case __ bind(slow_case); __ pop(rcx); // restore stack pointer to what it was when we came in. __ bind(slow_case_no_pop); Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); __ get_constant_pool(rarg1); __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); __ verify_oop(rax); // continue __ bind(done); } void TemplateTable::newarray() { transition(itos, atos); Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); __ load_unsigned_byte(rarg1, at_bcp(1)); call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rarg1, rax); } void TemplateTable::anewarray() { transition(itos, atos); Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); __ get_constant_pool(rarg1); call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rarg1, rarg2, rax); } void TemplateTable::arraylength() { transition(atos, itos); __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); } void TemplateTable::checkcast() { transition(atos, atos); Label done, is_null, ok_is_subtype, quicked, resolved; __ testptr(rax, rax); // object is in rax __ jcc(Assembler::zero, is_null); // Get cpool & tags index __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index // See if bytecode has already been quicked __ cmpb(Address(rdx, rbx, Address::times_1, Array::base_offset_in_bytes()), JVM_CONSTANT_Class); __ jcc(Assembler::equal, quicked); __ push(atos); // save receiver for result, and for GC call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); // vm_result_2 has metadata result #ifndef _LP64 // borrow rdi from locals __ get_thread(rdi); __ get_vm_result_2(rax, rdi); __ restore_locals(); #else __ get_vm_result_2(rax, r15_thread); #endif __ pop_ptr(rdx); // restore receiver __ jmpb(resolved); // Get superklass in rax and subklass in rbx __ bind(quicked); __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check __ load_resolved_klass_at_index(rcx, rbx, rax); __ bind(resolved); __ load_klass(rbx, rdx); // Generate subtype check. Blows rcx, rdi. Object in rdx. // Superklass in rax. Subklass in rbx. __ gen_subtype_check(rbx, ok_is_subtype); // Come here on failure __ push_ptr(rdx); // object is at TOS __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); // Come here on success __ bind(ok_is_subtype); __ mov(rax, rdx); // Restore object in rdx // Collect counts on whether this check-cast sees NULLs a lot or not. if (ProfileInterpreter) { __ jmp(done); __ bind(is_null); __ profile_null_seen(rcx); } else { __ bind(is_null); // same as 'done' } __ bind(done); } void TemplateTable::instanceof() { transition(atos, itos); Label done, is_null, ok_is_subtype, quicked, resolved; __ testptr(rax, rax); __ jcc(Assembler::zero, is_null); // Get cpool & tags index __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index // See if bytecode has already been quicked __ cmpb(Address(rdx, rbx, Address::times_1, Array::base_offset_in_bytes()), JVM_CONSTANT_Class); __ jcc(Assembler::equal, quicked); __ push(atos); // save receiver for result, and for GC call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); // vm_result_2 has metadata result #ifndef _LP64 // borrow rdi from locals __ get_thread(rdi); __ get_vm_result_2(rax, rdi); __ restore_locals(); #else __ get_vm_result_2(rax, r15_thread); #endif __ pop_ptr(rdx); // restore receiver __ verify_oop(rdx); __ load_klass(rdx, rdx); __ jmpb(resolved); // Get superklass in rax and subklass in rdx __ bind(quicked); __ load_klass(rdx, rax); __ load_resolved_klass_at_index(rcx, rbx, rax); __ bind(resolved); // Generate subtype check. Blows rcx, rdi // Superklass in rax. Subklass in rdx. __ gen_subtype_check(rdx, ok_is_subtype); // Come here on failure __ xorl(rax, rax); __ jmpb(done); // Come here on success __ bind(ok_is_subtype); __ movl(rax, 1); // Collect counts on whether this test sees NULLs a lot or not. if (ProfileInterpreter) { __ jmp(done); __ bind(is_null); __ profile_null_seen(rcx); } else { __ bind(is_null); // same as 'done' } __ bind(done); // rax = 0: obj == NULL or obj is not an instanceof the specified klass // rax = 1: obj != NULL and obj is an instanceof the specified klass } //---------------------------------------------------------------------------------------------------- // Breakpoints void TemplateTable::_breakpoint() { // Note: We get here even if we are single stepping.. // jbug insists on setting breakpoints at every bytecode // even if we are in single step mode. transition(vtos, vtos); Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); // get the unpatched byte code __ get_method(rarg); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rarg, rbcp); __ mov(rbx, rax); // why? // post the breakpoint event __ get_method(rarg); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rarg, rbcp); // complete the execution of original bytecode __ dispatch_only_normal(vtos); } //----------------------------------------------------------------------------- // Exceptions void TemplateTable::athrow() { transition(atos, vtos); __ null_check(rax); __ jump(ExternalAddress(Interpreter::throw_exception_entry())); } //----------------------------------------------------------------------------- // Synchronization // // Note: monitorenter & exit are symmetric routines; which is reflected // in the assembly code structure as well // // Stack layout: // // [expressions ] <--- rsp = expression stack top // .. // [expressions ] // [monitor entry] <--- monitor block top = expression stack bot // .. // [monitor entry] // [frame data ] <--- monitor block bot // ... // [saved rbp ] <--- rbp void TemplateTable::monitorenter() { transition(atos, vtos); // check for NULL object __ null_check(rax); const Address monitor_block_top( rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rbp, frame::interpreter_frame_initial_sp_offset * wordSize); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; Label allocated; Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); // initialize entry pointer __ xorl(rmon, rmon); // points to free slot or NULL // find a free slot in the monitor block (result in rmon) { Label entry, loop, exit; __ movptr(rtop, monitor_block_top); // points to current entry, // starting with top-most entry __ lea(rbot, monitor_block_bot); // points to word before bottom // of monitor block __ jmpb(entry); __ bind(loop); // check if current entry is used __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); // if not used then remember entry in rmon __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr // check if current entry is for same object __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); // if same object then stop searching __ jccb(Assembler::equal, exit); // otherwise advance to next entry __ addptr(rtop, entry_size); __ bind(entry); // check if bottom reached __ cmpptr(rtop, rbot); // if not at bottom then check this entry __ jcc(Assembler::notEqual, loop); __ bind(exit); } __ testptr(rmon, rmon); // check if a slot has been found __ jcc(Assembler::notZero, allocated); // if found, continue with that one // allocate one if there's no free slot { Label entry, loop; // 1. compute new pointers // rsp: old expression stack top __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom __ subptr(rsp, entry_size); // move expression stack top __ subptr(rmon, entry_size); // move expression stack bottom __ mov(rtop, rsp); // set start value for copy loop __ movptr(monitor_block_bot, rmon); // set new monitor block bottom __ jmp(entry); // 2. move expression stack contents __ bind(loop); __ movptr(rbot, Address(rtop, entry_size)); // load expression stack // word from old location __ movptr(Address(rtop, 0), rbot); // and store it at new location __ addptr(rtop, wordSize); // advance to next word __ bind(entry); __ cmpptr(rtop, rmon); // check if bottom reached __ jcc(Assembler::notEqual, loop); // if not at bottom then // copy next word } // call run-time routine // rmon: points to monitor entry __ bind(allocated); // Increment bcp to point to the next bytecode, so exception // handling for async. exceptions work correctly. // The object has already been poped from the stack, so the // expression stack looks correct. __ increment(rbcp); // store object __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); __ lock_object(rmon); // check to make sure this monitor doesn't cause stack overflow after locking __ save_bcp(); // in case of exception __ generate_stack_overflow_check(0); // The bcp has already been incremented. Just need to dispatch to // next instruction. __ dispatch_next(vtos); } void TemplateTable::monitorexit() { transition(atos, vtos); // check for NULL object __ null_check(rax); const Address monitor_block_top( rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rbp, frame::interpreter_frame_initial_sp_offset * wordSize); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); Label found; // find matching slot { Label entry, loop; __ movptr(rtop, monitor_block_top); // points to current entry, // starting with top-most entry __ lea(rbot, monitor_block_bot); // points to word before bottom // of monitor block __ jmpb(entry); __ bind(loop); // check if current entry is for same object __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); // if same object then stop searching __ jcc(Assembler::equal, found); // otherwise advance to next entry __ addptr(rtop, entry_size); __ bind(entry); // check if bottom reached __ cmpptr(rtop, rbot); // if not at bottom then check this entry __ jcc(Assembler::notEqual, loop); } // error handling. Unlocking was not block-structured __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); __ should_not_reach_here(); // call run-time routine __ bind(found); __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) __ unlock_object(rtop); __ pop_ptr(rax); // discard object } // Wide instructions void TemplateTable::wide() { transition(vtos, vtos); __ load_unsigned_byte(rbx, at_bcp(1)); ExternalAddress wtable((address)Interpreter::_wentry_point); __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); // Note: the rbcp increment step is part of the individual wide bytecode implementations } // Multi arrays void TemplateTable::multianewarray() { transition(vtos, atos); Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions // last dim is on top of stack; we want address of first one: // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize // the latter wordSize to point to the beginning of the array. __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); __ load_unsigned_byte(rbx, at_bcp(3)); __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts }