1 /*
   2  * Copyright (c) 2018, Google and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "runtime/handles.inline.hpp"
  26 #include "runtime/sharedRuntime.hpp"
  27 #include "runtime/threadHeapSampler.hpp"
  28 
  29 // Cheap random number generator
  30 uint64_t ThreadHeapSampler::_rnd;
  31 // Default is 512kb.
  32 int ThreadHeapSampler::_sampling_rate = 512 * 1024;
  33 int ThreadHeapSampler::_enabled;
  34 
  35 // Statics for the fast log
  36 static const int FastLogNumBits = 10;
  37 static const int FastLogMask = (1 << FastLogNumBits) - 1;
  38 static double log_table[1<<FastLogNumBits];  // Constant
  39 static bool log_table_initialized;
  40 
  41 // Returns the next prng value.
  42 // pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48
  43 // This is the lrand64 generator.
  44 static uint64_t next_random(uint64_t rnd) {
  45   const uint64_t PrngMult = 0x5DEECE66DLL;
  46   const uint64_t PrngAdd = 0xB;
  47   const uint64_t PrngModPower = 48;
  48   const uint64_t PrngModMask = right_n_bits(PrngModPower);
  49   //assert(IS_SAFE_SIZE_MUL(PrngMult, rnd), "Overflow on multiplication.");
  50   //assert(IS_SAFE_SIZE_ADD(PrngMult * rnd, PrngAdd), "Overflow on addition.");
  51   return (PrngMult * rnd + PrngAdd) & PrngModMask;
  52 }
  53 
  54 static double fast_log2(const double & d) {
  55   assert(d>0, "bad value passed to assert");
  56   uint64_t x = 0;
  57   assert(sizeof(d) == sizeof(x),
  58          "double and uint64_t do not have the same size");
  59   x = *reinterpret_cast<const uint64_t*>(&d);
  60   const uint32_t x_high = x >> 32;
  61   assert(FastLogNumBits <= 20, "FastLogNumBits should be less than 20.");
  62   const uint32_t y = x_high >> (20 - FastLogNumBits) & FastLogMask;
  63   const int32_t exponent = ((x_high >> 20) & 0x7FF) - 1023;
  64   return exponent + log_table[y];
  65 }
  66 
  67 // Generates a geometric variable with the specified mean (512K by default).
  68 // This is done by generating a random number between 0 and 1 and applying
  69 // the inverse cumulative distribution function for an exponential.
  70 // Specifically: Let m be the inverse of the sample rate, then
  71 // the probability distribution function is m*exp(-mx) so the CDF is
  72 // p = 1 - exp(-mx), so
  73 // q = 1 - p = exp(-mx)
  74 // log_e(q) = -mx
  75 // -log_e(q)/m = x
  76 // log_2(q) * (-log_e(2) * 1/m) = x
  77 // In the code, q is actually in the range 1 to 2**26, hence the -26 below
  78 void ThreadHeapSampler::pick_next_geometric_sample() {
  79   _rnd = next_random(_rnd);
  80   // Take the top 26 bits as the random number
  81   // (This plus a 1<<58 sampling bound gives a max possible step of
  82   // 5194297183973780480 bytes.  In this case,
  83   // for sample_parameter = 1<<19, max possible step is
  84   // 9448372 bytes (24 bits).
  85   const uint64_t PrngModPower = 48;  // Number of bits in prng
  86   // The uint32_t cast is to prevent a (hard-to-reproduce) NAN
  87   // under piii debug for some binaries.
  88   double q = static_cast<uint32_t>(_rnd >> (PrngModPower - 26)) + 1.0;
  89   // Put the computed p-value through the CDF of a geometric.
  90   // For faster performance (save ~1/20th exec time), replace
  91   // min(0.0, FastLog2(q) - 26)  by  (Fastlog2(q) - 26.000705)
  92   // The value 26.000705 is used rather than 26 to compensate
  93   // for inaccuracies in FastLog2 which otherwise result in a
  94   // negative answer.
  95   double log_val = (fast_log2(q) - 26);
  96   double result =
  97       (0.0 < log_val ? 0.0 : log_val) * (-log(2.0) * (get_sampling_rate())) + 1;
  98   assert(result > 0 && result < SIZE_MAX, "Result is not in an acceptable range.");
  99   size_t rate = static_cast<size_t>(result);
 100   _bytes_until_sample = rate;
 101 }
 102 
 103 void ThreadHeapSampler::pick_next_sample(size_t overflowed_bytes) {
 104   if (get_sampling_rate() == 1) {
 105     _bytes_until_sample = 1;
 106     return;
 107   }
 108 
 109   pick_next_geometric_sample();
 110 
 111   // Try to correct sample size by removing extra space from last allocation.
 112   if (overflowed_bytes > 0 && _bytes_until_sample > overflowed_bytes) {
 113     _bytes_until_sample -= overflowed_bytes;
 114   }
 115 }
 116 
 117 void ThreadHeapSampler::check_for_sampling(HeapWord* ptr, size_t allocation_size, size_t bytes_since_allocation) {
 118   oopDesc* oop = reinterpret_cast<oopDesc*>(ptr);
 119   size_t total_allocated_bytes = bytes_since_allocation + allocation_size;
 120 
 121   // If not yet time for a sample, skip it.
 122   if (total_allocated_bytes < _bytes_until_sample) {
 123     _bytes_until_sample -= total_allocated_bytes;
 124     return;
 125   }
 126 
 127   JvmtiExport::sampled_object_alloc_event_collector(oop);
 128 
 129   size_t overflow_bytes = total_allocated_bytes - _bytes_until_sample;
 130   pick_next_sample(overflow_bytes);
 131 }
 132 
 133 void ThreadHeapSampler::init_log_table() {
 134   MutexLockerEx mu(ThreadHeapSampler_lock, Mutex::_no_safepoint_check_flag);
 135 
 136   if (log_table_initialized) {
 137     return;
 138   }
 139 
 140   for (int i = 0; i < (1 << FastLogNumBits); i++) {
 141     log_table[i] = (log(1.0 + static_cast<double>(i+0.5) / (1 << FastLogNumBits))
 142                     / log(2.0));
 143   }
 144 
 145   log_table_initialized = true;
 146 }
 147 
 148 void ThreadHeapSampler::enable() {
 149   // Done here to be done when things have settled. This adds a mutex lock but
 150   // presumably, users won't be enabling and disabling all the time.
 151   init_log_table();
 152   OrderAccess::release_store(&_enabled, 1);
 153 }
 154 
 155 // Methods used in assertion mode to check if a collector is present or not at
 156 // the moment of TLAB sampling, ie a slow allocation path.
 157 bool ThreadHeapSampler::sampling_collector_present() const {
 158   return _collectors_present > 0;
 159 }
 160 
 161 bool ThreadHeapSampler::remove_sampling_collector() {
 162   assert(_collectors_present > 0, "Problem with collector counter.");
 163   _collectors_present--;
 164   return true;
 165 }
 166 
 167 bool ThreadHeapSampler::add_sampling_collector() {
 168   _collectors_present++;
 169   return true;
 170 }