1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/disassembler.hpp"
  32 #include "gc/shared/collectedHeap.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "interpreter/linkResolver.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.hpp"
  41 #include "oops/constantPool.hpp"
  42 #include "oops/cpCache.inline.hpp"
  43 #include "oops/instanceKlass.hpp"
  44 #include "oops/methodData.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/objArrayOop.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/atomic.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/deoptimization.hpp"
  55 #include "runtime/fieldDescriptor.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/icache.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/jfieldIDWorkaround.hpp"
  61 #include "runtime/osThread.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/stubRoutines.hpp"
  64 #include "runtime/synchronizer.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/events.hpp"
  68 #ifdef COMPILER2
  69 #include "opto/runtime.hpp"
  70 #endif
  71 
  72 class UnlockFlagSaver {
  73   private:
  74     JavaThread* _thread;
  75     bool _do_not_unlock;
  76   public:
  77     UnlockFlagSaver(JavaThread* t) {
  78       _thread = t;
  79       _do_not_unlock = t->do_not_unlock_if_synchronized();
  80       t->set_do_not_unlock_if_synchronized(false);
  81     }
  82     ~UnlockFlagSaver() {
  83       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  84     }
  85 };
  86 
  87 //------------------------------------------------------------------------------------------------------------------------
  88 // State accessors
  89 
  90 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  91   LastFrameAccessor last_frame(thread);
  92   last_frame.set_bcp(bcp);
  93   if (ProfileInterpreter) {
  94     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  95     // That is why we must check both ProfileInterpreter and mdo != NULL.
  96     MethodData* mdo = last_frame.method()->method_data();
  97     if (mdo != NULL) {
  98       NEEDS_CLEANUP;
  99       last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci()));
 100     }
 101   }
 102 }
 103 
 104 //------------------------------------------------------------------------------------------------------------------------
 105 // Constants
 106 
 107 
 108 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 109   // access constant pool
 110   LastFrameAccessor last_frame(thread);
 111   ConstantPool* pool = last_frame.method()->constants();
 112   int index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc);
 113   constantTag tag = pool->tag_at(index);
 114 
 115   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 116   Klass* klass = pool->klass_at(index, CHECK);
 117     oop java_class = klass->java_mirror();
 118     thread->set_vm_result(java_class);
 119 IRT_END
 120 
 121 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 122   assert(bytecode == Bytecodes::_ldc ||
 123          bytecode == Bytecodes::_ldc_w ||
 124          bytecode == Bytecodes::_ldc2_w ||
 125          bytecode == Bytecodes::_fast_aldc ||
 126          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 127   ResourceMark rm(thread);
 128   const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc ||
 129                              bytecode == Bytecodes::_fast_aldc_w);
 130   LastFrameAccessor last_frame(thread);
 131   methodHandle m (thread, last_frame.method());
 132   Bytecode_loadconstant ldc(m, last_frame.bci());
 133 
 134   // Double-check the size.  (Condy can have any type.)
 135   BasicType type = ldc.result_type();
 136   switch (type2size[type]) {
 137   case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break;
 138   case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break;
 139   default: ShouldNotReachHere();
 140   }
 141 
 142   // Resolve the constant.  This does not do unboxing.
 143   // But it does replace Universe::the_null_sentinel by null.
 144   oop result = ldc.resolve_constant(CHECK);
 145   assert(result != NULL || is_fast_aldc, "null result only valid for fast_aldc");
 146 
 147 #ifdef ASSERT
 148   {
 149     // The bytecode wrappers aren't GC-safe so construct a new one
 150     Bytecode_loadconstant ldc2(m, last_frame.bci());
 151     int rindex = ldc2.cache_index();
 152     if (rindex < 0)
 153       rindex = m->constants()->cp_to_object_index(ldc2.pool_index());
 154     if (rindex >= 0) {
 155       oop coop = m->constants()->resolved_references()->obj_at(rindex);
 156       oop roop = (result == NULL ? Universe::the_null_sentinel() : result);
 157       assert(roop == coop, "expected result for assembly code");
 158     }
 159   }
 160 #endif
 161   thread->set_vm_result(result);
 162   if (!is_fast_aldc) {
 163     // Tell the interpreter how to unbox the primitive.
 164     guarantee(java_lang_boxing_object::is_instance(result, type), "");
 165     int offset = java_lang_boxing_object::value_offset_in_bytes(type);
 166     intptr_t flags = ((as_TosState(type) << ConstantPoolCacheEntry::tos_state_shift)
 167                       | (offset & ConstantPoolCacheEntry::field_index_mask));
 168     thread->set_vm_result_2((Metadata*)flags);
 169   }
 170 }
 171 IRT_END
 172 
 173 
 174 //------------------------------------------------------------------------------------------------------------------------
 175 // Allocation
 176 
 177 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 178   JvmtiSampledObjectAllocEventCollector collector;
 179   Klass* k = pool->klass_at(index, CHECK);
 180   InstanceKlass* klass = InstanceKlass::cast(k);
 181 
 182   // Make sure we are not instantiating an abstract klass
 183   klass->check_valid_for_instantiation(true, CHECK);
 184 
 185   // Make sure klass is initialized
 186   klass->initialize(CHECK);
 187 
 188   // At this point the class may not be fully initialized
 189   // because of recursive initialization. If it is fully
 190   // initialized & has_finalized is not set, we rewrite
 191   // it into its fast version (Note: no locking is needed
 192   // here since this is an atomic byte write and can be
 193   // done more than once).
 194   //
 195   // Note: In case of classes with has_finalized we don't
 196   //       rewrite since that saves us an extra check in
 197   //       the fast version which then would call the
 198   //       slow version anyway (and do a call back into
 199   //       Java).
 200   //       If we have a breakpoint, then we don't rewrite
 201   //       because the _breakpoint bytecode would be lost.
 202   oop obj = klass->allocate_instance(CHECK);
 203   thread->set_vm_result(obj);
 204 IRT_END
 205 
 206 
 207 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 208   JvmtiSampledObjectAllocEventCollector collector;
 209   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 210   thread->set_vm_result(obj);
 211 IRT_END
 212 
 213 
 214 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 215   JvmtiSampledObjectAllocEventCollector collector;
 216   Klass*    klass = pool->klass_at(index, CHECK);
 217   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 218   thread->set_vm_result(obj);
 219 IRT_END
 220 
 221 
 222 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 223   JvmtiSampledObjectAllocEventCollector collector;
 224   // We may want to pass in more arguments - could make this slightly faster
 225   LastFrameAccessor last_frame(thread);
 226   ConstantPool* constants = last_frame.method()->constants();
 227   int          i = last_frame.get_index_u2(Bytecodes::_multianewarray);
 228   Klass* klass   = constants->klass_at(i, CHECK);
 229   int   nof_dims = last_frame.number_of_dimensions();
 230   assert(klass->is_klass(), "not a class");
 231   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 232 
 233   // We must create an array of jints to pass to multi_allocate.
 234   ResourceMark rm(thread);
 235   const int small_dims = 10;
 236   jint dim_array[small_dims];
 237   jint *dims = &dim_array[0];
 238   if (nof_dims > small_dims) {
 239     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 240   }
 241   for (int index = 0; index < nof_dims; index++) {
 242     // offset from first_size_address is addressed as local[index]
 243     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 244     dims[index] = first_size_address[n];
 245   }
 246   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 247   thread->set_vm_result(obj);
 248 IRT_END
 249 
 250 
 251 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 252   assert(oopDesc::is_oop(obj), "must be a valid oop");
 253   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 254   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 255 IRT_END
 256 
 257 
 258 // Quicken instance-of and check-cast bytecodes
 259 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 260   // Force resolving; quicken the bytecode
 261   LastFrameAccessor last_frame(thread);
 262   int which = last_frame.get_index_u2(Bytecodes::_checkcast);
 263   ConstantPool* cpool = last_frame.method()->constants();
 264   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 265   // program we might have seen an unquick'd bytecode in the interpreter but have another
 266   // thread quicken the bytecode before we get here.
 267   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 268   Klass* klass = cpool->klass_at(which, CHECK);
 269   thread->set_vm_result_2(klass);
 270 IRT_END
 271 
 272 
 273 //------------------------------------------------------------------------------------------------------------------------
 274 // Exceptions
 275 
 276 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 277                                          const methodHandle& trap_method, int trap_bci, TRAPS) {
 278   if (trap_method.not_null()) {
 279     MethodData* trap_mdo = trap_method->method_data();
 280     if (trap_mdo == NULL) {
 281       Method::build_interpreter_method_data(trap_method, THREAD);
 282       if (HAS_PENDING_EXCEPTION) {
 283         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 284                "we expect only an OOM error here");
 285         CLEAR_PENDING_EXCEPTION;
 286       }
 287       trap_mdo = trap_method->method_data();
 288       // and fall through...
 289     }
 290     if (trap_mdo != NULL) {
 291       // Update per-method count of trap events.  The interpreter
 292       // is updating the MDO to simulate the effect of compiler traps.
 293       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 294     }
 295   }
 296 }
 297 
 298 // Assume the compiler is (or will be) interested in this event.
 299 // If necessary, create an MDO to hold the information, and record it.
 300 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 301   assert(ProfileTraps, "call me only if profiling");
 302   LastFrameAccessor last_frame(thread);
 303   methodHandle trap_method(thread, last_frame.method());
 304   int trap_bci = trap_method->bci_from(last_frame.bcp());
 305   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 306 }
 307 
 308 #ifdef CC_INTERP
 309 // As legacy note_trap, but we have more arguments.
 310 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 311   methodHandle trap_method(method);
 312   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 313 IRT_END
 314 
 315 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 316 // for each exception.
 317 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 318   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 319 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 320   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 321 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 322   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 323 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 324   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 325 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 326   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 327 #endif // CC_INTERP
 328 
 329 
 330 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 331   // get klass
 332   InstanceKlass* klass = InstanceKlass::cast(k);
 333   assert(klass->is_initialized(),
 334          "this klass should have been initialized during VM initialization");
 335   // create instance - do not call constructor since we may have no
 336   // (java) stack space left (should assert constructor is empty)
 337   Handle exception;
 338   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 339   exception = Handle(THREAD, exception_oop);
 340   if (StackTraceInThrowable) {
 341     java_lang_Throwable::fill_in_stack_trace(exception);
 342   }
 343   return exception;
 344 }
 345 
 346 // Special handling for stack overflow: since we don't have any (java) stack
 347 // space left we use the pre-allocated & pre-initialized StackOverflowError
 348 // klass to create an stack overflow error instance.  We do not call its
 349 // constructor for the same reason (it is empty, anyway).
 350 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 351   Handle exception = get_preinitialized_exception(
 352                                  SystemDictionary::StackOverflowError_klass(),
 353                                  CHECK);
 354   // Increment counter for hs_err file reporting
 355   Atomic::inc(&Exceptions::_stack_overflow_errors);
 356   THROW_HANDLE(exception);
 357 IRT_END
 358 
 359 IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 360   Handle exception = get_preinitialized_exception(
 361                                  SystemDictionary::StackOverflowError_klass(),
 362                                  CHECK);
 363   java_lang_Throwable::set_message(exception(),
 364           Universe::delayed_stack_overflow_error_message());
 365   // Increment counter for hs_err file reporting
 366   Atomic::inc(&Exceptions::_stack_overflow_errors);
 367   THROW_HANDLE(exception);
 368 IRT_END
 369 
 370 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 371   // lookup exception klass
 372   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 373   if (ProfileTraps) {
 374     if (s == vmSymbols::java_lang_ArithmeticException()) {
 375       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 376     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 377       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 378     }
 379   }
 380   // create exception
 381   Handle exception = Exceptions::new_exception(thread, s, message);
 382   thread->set_vm_result(exception());
 383 IRT_END
 384 
 385 
 386 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 387   ResourceMark rm(thread);
 388   const char* klass_name = obj->klass()->external_name();
 389   // lookup exception klass
 390   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 391   if (ProfileTraps) {
 392     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 393   }
 394   // create exception, with klass name as detail message
 395   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 396   thread->set_vm_result(exception());
 397 IRT_END
 398 
 399 
 400 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 401   char message[jintAsStringSize];
 402   // lookup exception klass
 403   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 404   if (ProfileTraps) {
 405     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 406   }
 407   // create exception
 408   sprintf(message, "%d", index);
 409   THROW_MSG(s, message);
 410 IRT_END
 411 
 412 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 413   JavaThread* thread, oopDesc* obj))
 414 
 415   ResourceMark rm(thread);
 416   char* message = SharedRuntime::generate_class_cast_message(
 417     thread, obj->klass());
 418 
 419   if (ProfileTraps) {
 420     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 421   }
 422 
 423   // create exception
 424   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 425 IRT_END
 426 
 427 // exception_handler_for_exception(...) returns the continuation address,
 428 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 429 // The exception oop is returned to make sure it is preserved over GC (it
 430 // is only on the stack if the exception was thrown explicitly via athrow).
 431 // During this operation, the expression stack contains the values for the
 432 // bci where the exception happened. If the exception was propagated back
 433 // from a call, the expression stack contains the values for the bci at the
 434 // invoke w/o arguments (i.e., as if one were inside the call).
 435 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 436 
 437   LastFrameAccessor last_frame(thread);
 438   Handle             h_exception(thread, exception);
 439   methodHandle       h_method   (thread, last_frame.method());
 440   constantPoolHandle h_constants(thread, h_method->constants());
 441   bool               should_repeat;
 442   int                handler_bci;
 443   int                current_bci = last_frame.bci();
 444 
 445   if (thread->frames_to_pop_failed_realloc() > 0) {
 446     // Allocation of scalar replaced object used in this frame
 447     // failed. Unconditionally pop the frame.
 448     thread->dec_frames_to_pop_failed_realloc();
 449     thread->set_vm_result(h_exception());
 450     // If the method is synchronized we already unlocked the monitor
 451     // during deoptimization so the interpreter needs to skip it when
 452     // the frame is popped.
 453     thread->set_do_not_unlock_if_synchronized(true);
 454 #ifdef CC_INTERP
 455     return (address) -1;
 456 #else
 457     return Interpreter::remove_activation_entry();
 458 #endif
 459   }
 460 
 461   // Need to do this check first since when _do_not_unlock_if_synchronized
 462   // is set, we don't want to trigger any classloading which may make calls
 463   // into java, or surprisingly find a matching exception handler for bci 0
 464   // since at this moment the method hasn't been "officially" entered yet.
 465   if (thread->do_not_unlock_if_synchronized()) {
 466     ResourceMark rm;
 467     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 468     thread->set_vm_result(exception);
 469 #ifdef CC_INTERP
 470     return (address) -1;
 471 #else
 472     return Interpreter::remove_activation_entry();
 473 #endif
 474   }
 475 
 476   do {
 477     should_repeat = false;
 478 
 479     // assertions
 480 #ifdef ASSERT
 481     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 482     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 483     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 484       if (ExitVMOnVerifyError) vm_exit(-1);
 485       ShouldNotReachHere();
 486     }
 487 #endif
 488 
 489     // tracing
 490     if (log_is_enabled(Info, exceptions)) {
 491       ResourceMark rm(thread);
 492       stringStream tempst;
 493       tempst.print("interpreter method <%s>\n"
 494                    " at bci %d for thread " INTPTR_FORMAT " (%s)",
 495                    h_method->print_value_string(), current_bci, p2i(thread), thread->name());
 496       Exceptions::log_exception(h_exception, tempst);
 497     }
 498 // Don't go paging in something which won't be used.
 499 //     else if (extable->length() == 0) {
 500 //       // disabled for now - interpreter is not using shortcut yet
 501 //       // (shortcut is not to call runtime if we have no exception handlers)
 502 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 503 //     }
 504     // for AbortVMOnException flag
 505     Exceptions::debug_check_abort(h_exception);
 506 
 507     // exception handler lookup
 508     Klass* klass = h_exception->klass();
 509     handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
 510     if (HAS_PENDING_EXCEPTION) {
 511       // We threw an exception while trying to find the exception handler.
 512       // Transfer the new exception to the exception handle which will
 513       // be set into thread local storage, and do another lookup for an
 514       // exception handler for this exception, this time starting at the
 515       // BCI of the exception handler which caused the exception to be
 516       // thrown (bug 4307310).
 517       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 518       CLEAR_PENDING_EXCEPTION;
 519       if (handler_bci >= 0) {
 520         current_bci = handler_bci;
 521         should_repeat = true;
 522       }
 523     }
 524   } while (should_repeat == true);
 525 
 526 #if INCLUDE_JVMCI
 527   if (EnableJVMCI && h_method->method_data() != NULL) {
 528     ResourceMark rm(thread);
 529     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 530     if (pdata != NULL && pdata->is_BitData()) {
 531       BitData* bit_data = (BitData*) pdata;
 532       bit_data->set_exception_seen();
 533     }
 534   }
 535 #endif
 536 
 537   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 538   // time throw or a stack unwinding throw and accordingly notify the debugger
 539   if (JvmtiExport::can_post_on_exceptions()) {
 540     JvmtiExport::post_exception_throw(thread, h_method(), last_frame.bcp(), h_exception());
 541   }
 542 
 543 #ifdef CC_INTERP
 544   address continuation = (address)(intptr_t) handler_bci;
 545 #else
 546   address continuation = NULL;
 547 #endif
 548   address handler_pc = NULL;
 549   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 550     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 551     // handler in this method, or (b) after a stack overflow there is not yet
 552     // enough stack space available to reprotect the stack.
 553 #ifndef CC_INTERP
 554     continuation = Interpreter::remove_activation_entry();
 555 #endif
 556 #if COMPILER2_OR_JVMCI
 557     // Count this for compilation purposes
 558     h_method->interpreter_throwout_increment(THREAD);
 559 #endif
 560   } else {
 561     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 562     handler_pc = h_method->code_base() + handler_bci;
 563 #ifndef CC_INTERP
 564     set_bcp_and_mdp(handler_pc, thread);
 565     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 566 #endif
 567   }
 568   // notify debugger of an exception catch
 569   // (this is good for exceptions caught in native methods as well)
 570   if (JvmtiExport::can_post_on_exceptions()) {
 571     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 572   }
 573 
 574   thread->set_vm_result(h_exception());
 575   return continuation;
 576 IRT_END
 577 
 578 
 579 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 580   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 581   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 582 IRT_END
 583 
 584 
 585 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 586   THROW(vmSymbols::java_lang_AbstractMethodError());
 587 IRT_END
 588 
 589 // This method is called from the "abstract_entry" of the interpreter.
 590 // At that point, the arguments have already been removed from the stack
 591 // and therefore we don't have the receiver object at our fingertips. (Though,
 592 // on some platforms the receiver still resides in a register...). Thus,
 593 // we have no choice but print an error message not containing the receiver
 594 // type.
 595 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* thread,
 596                                                                         Method* missingMethod))
 597   ResourceMark rm(thread);
 598   assert(missingMethod != NULL, "sanity");
 599   methodHandle m(thread, missingMethod);
 600   LinkResolver::throw_abstract_method_error(m, THREAD);
 601 IRT_END
 602 
 603 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* thread,
 604                                                                      Klass* recvKlass,
 605                                                                      Method* missingMethod))
 606   ResourceMark rm(thread);
 607   methodHandle mh = methodHandle(thread, missingMethod);
 608   LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD);
 609 IRT_END
 610 
 611 
 612 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 613   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 614 IRT_END
 615 
 616 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* thread,
 617                                                                               Klass* recvKlass,
 618                                                                               Klass* interfaceKlass))
 619   ResourceMark rm(thread);
 620   char buf[1000];
 621   buf[0] = '\0';
 622   jio_snprintf(buf, sizeof(buf),
 623                "Class %s does not implement the requested interface %s",
 624                recvKlass ? recvKlass->external_name() : "NULL",
 625                interfaceKlass ? interfaceKlass->external_name() : "NULL");
 626   THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
 627 IRT_END
 628 
 629 //------------------------------------------------------------------------------------------------------------------------
 630 // Fields
 631 //
 632 
 633 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 634   Thread* THREAD = thread;
 635   // resolve field
 636   fieldDescriptor info;
 637   LastFrameAccessor last_frame(thread);
 638   constantPoolHandle pool(thread, last_frame.method()->constants());
 639   methodHandle m(thread, last_frame.method());
 640   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 641                     bytecode == Bytecodes::_putstatic);
 642   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 643 
 644   {
 645     JvmtiHideSingleStepping jhss(thread);
 646     LinkResolver::resolve_field_access(info, pool, last_frame.get_index_u2_cpcache(bytecode),
 647                                        m, bytecode, CHECK);
 648   } // end JvmtiHideSingleStepping
 649 
 650   // check if link resolution caused cpCache to be updated
 651   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 652   if (cp_cache_entry->is_resolved(bytecode)) return;
 653 
 654   // compute auxiliary field attributes
 655   TosState state  = as_TosState(info.field_type());
 656 
 657   // Resolution of put instructions on final fields is delayed. That is required so that
 658   // exceptions are thrown at the correct place (when the instruction is actually invoked).
 659   // If we do not resolve an instruction in the current pass, leaving the put_code
 660   // set to zero will cause the next put instruction to the same field to reresolve.
 661 
 662   // Resolution of put instructions to final instance fields with invalid updates (i.e.,
 663   // to final instance fields with updates originating from a method different than <init>)
 664   // is inhibited. A putfield instruction targeting an instance final field must throw
 665   // an IllegalAccessError if the instruction is not in an instance
 666   // initializer method <init>. If resolution were not inhibited, a putfield
 667   // in an initializer method could be resolved in the initializer. Subsequent
 668   // putfield instructions to the same field would then use cached information.
 669   // As a result, those instructions would not pass through the VM. That is,
 670   // checks in resolve_field_access() would not be executed for those instructions
 671   // and the required IllegalAccessError would not be thrown.
 672   //
 673   // Also, we need to delay resolving getstatic and putstatic instructions until the
 674   // class is initialized.  This is required so that access to the static
 675   // field will call the initialization function every time until the class
 676   // is completely initialized ala. in 2.17.5 in JVM Specification.
 677   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 678   bool uninitialized_static = is_static && !klass->is_initialized();
 679   bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
 680                                       info.has_initialized_final_update();
 681   assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
 682 
 683   Bytecodes::Code get_code = (Bytecodes::Code)0;
 684   Bytecodes::Code put_code = (Bytecodes::Code)0;
 685   if (!uninitialized_static) {
 686     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 687     if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
 688       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 689     }
 690   }
 691 
 692   cp_cache_entry->set_field(
 693     get_code,
 694     put_code,
 695     info.field_holder(),
 696     info.index(),
 697     info.offset(),
 698     state,
 699     info.access_flags().is_final(),
 700     info.access_flags().is_volatile(),
 701     pool->pool_holder()
 702   );
 703 }
 704 
 705 
 706 //------------------------------------------------------------------------------------------------------------------------
 707 // Synchronization
 708 //
 709 // The interpreter's synchronization code is factored out so that it can
 710 // be shared by method invocation and synchronized blocks.
 711 //%note synchronization_3
 712 
 713 //%note monitor_1
 714 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 715 #ifdef ASSERT
 716   thread->last_frame().interpreter_frame_verify_monitor(elem);
 717 #endif
 718   if (PrintBiasedLockingStatistics) {
 719     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 720   }
 721   Handle h_obj(thread, elem->obj());
 722   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 723          "must be NULL or an object");
 724   if (UseBiasedLocking) {
 725     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 726     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 727   } else {
 728     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 729   }
 730   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 731          "must be NULL or an object");
 732 #ifdef ASSERT
 733   thread->last_frame().interpreter_frame_verify_monitor(elem);
 734 #endif
 735 IRT_END
 736 
 737 
 738 //%note monitor_1
 739 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 740 #ifdef ASSERT
 741   thread->last_frame().interpreter_frame_verify_monitor(elem);
 742 #endif
 743   Handle h_obj(thread, elem->obj());
 744   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 745          "must be NULL or an object");
 746   if (elem == NULL || h_obj()->is_unlocked()) {
 747     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 748   }
 749   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 750   // Free entry. This must be done here, since a pending exception might be installed on
 751   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 752   elem->set_obj(NULL);
 753 #ifdef ASSERT
 754   thread->last_frame().interpreter_frame_verify_monitor(elem);
 755 #endif
 756 IRT_END
 757 
 758 
 759 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 760   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 761 IRT_END
 762 
 763 
 764 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 765   // Returns an illegal exception to install into the current thread. The
 766   // pending_exception flag is cleared so normal exception handling does not
 767   // trigger. Any current installed exception will be overwritten. This
 768   // method will be called during an exception unwind.
 769 
 770   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 771   Handle exception(thread, thread->vm_result());
 772   assert(exception() != NULL, "vm result should be set");
 773   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 774   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 775     exception = get_preinitialized_exception(
 776                        SystemDictionary::IllegalMonitorStateException_klass(),
 777                        CATCH);
 778   }
 779   thread->set_vm_result(exception());
 780 IRT_END
 781 
 782 
 783 //------------------------------------------------------------------------------------------------------------------------
 784 // Invokes
 785 
 786 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 787   return method->orig_bytecode_at(method->bci_from(bcp));
 788 IRT_END
 789 
 790 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 791   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 792 IRT_END
 793 
 794 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 795   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 796 IRT_END
 797 
 798 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
 799   Thread* THREAD = thread;
 800   LastFrameAccessor last_frame(thread);
 801   // extract receiver from the outgoing argument list if necessary
 802   Handle receiver(thread, NULL);
 803   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
 804       bytecode == Bytecodes::_invokespecial) {
 805     ResourceMark rm(thread);
 806     methodHandle m (thread, last_frame.method());
 807     Bytecode_invoke call(m, last_frame.bci());
 808     Symbol* signature = call.signature();
 809     receiver = Handle(thread, last_frame.callee_receiver(signature));
 810 
 811     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 812            "sanity check");
 813     assert(receiver.is_null() ||
 814            !Universe::heap()->is_in_reserved(receiver->klass()),
 815            "sanity check");
 816   }
 817 
 818   // resolve method
 819   CallInfo info;
 820   constantPoolHandle pool(thread, last_frame.method()->constants());
 821 
 822   {
 823     JvmtiHideSingleStepping jhss(thread);
 824     LinkResolver::resolve_invoke(info, receiver, pool,
 825                                  last_frame.get_index_u2_cpcache(bytecode), bytecode,
 826                                  CHECK);
 827     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 828       int retry_count = 0;
 829       while (info.resolved_method()->is_old()) {
 830         // It is very unlikely that method is redefined more than 100 times
 831         // in the middle of resolve. If it is looping here more than 100 times
 832         // means then there could be a bug here.
 833         guarantee((retry_count++ < 100),
 834                   "Could not resolve to latest version of redefined method");
 835         // method is redefined in the middle of resolve so re-try.
 836         LinkResolver::resolve_invoke(info, receiver, pool,
 837                                      last_frame.get_index_u2_cpcache(bytecode), bytecode,
 838                                      CHECK);
 839       }
 840     }
 841   } // end JvmtiHideSingleStepping
 842 
 843   // check if link resolution caused cpCache to be updated
 844   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 845   if (cp_cache_entry->is_resolved(bytecode)) return;
 846 
 847 #ifdef ASSERT
 848   if (bytecode == Bytecodes::_invokeinterface) {
 849     if (info.resolved_method()->method_holder() ==
 850                                             SystemDictionary::Object_klass()) {
 851       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 852       // (see also CallInfo::set_interface for details)
 853       assert(info.call_kind() == CallInfo::vtable_call ||
 854              info.call_kind() == CallInfo::direct_call, "");
 855       methodHandle rm = info.resolved_method();
 856       assert(rm->is_final() || info.has_vtable_index(),
 857              "should have been set already");
 858     } else if (!info.resolved_method()->has_itable_index()) {
 859       // Resolved something like CharSequence.toString.  Use vtable not itable.
 860       assert(info.call_kind() != CallInfo::itable_call, "");
 861     } else {
 862       // Setup itable entry
 863       assert(info.call_kind() == CallInfo::itable_call, "");
 864       int index = info.resolved_method()->itable_index();
 865       assert(info.itable_index() == index, "");
 866     }
 867   } else if (bytecode == Bytecodes::_invokespecial) {
 868     assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
 869   } else {
 870     assert(info.call_kind() == CallInfo::direct_call ||
 871            info.call_kind() == CallInfo::vtable_call, "");
 872   }
 873 #endif
 874   // Get sender or sender's host_klass, and only set cpCache entry to resolved if
 875   // it is not an interface.  The receiver for invokespecial calls within interface
 876   // methods must be checked for every call.
 877   InstanceKlass* sender = pool->pool_holder();
 878   sender = sender->has_host_klass() ? sender->host_klass() : sender;
 879 
 880   switch (info.call_kind()) {
 881   case CallInfo::direct_call:
 882     cp_cache_entry->set_direct_call(
 883       bytecode,
 884       info.resolved_method(),
 885       sender->is_interface());
 886     break;
 887   case CallInfo::vtable_call:
 888     cp_cache_entry->set_vtable_call(
 889       bytecode,
 890       info.resolved_method(),
 891       info.vtable_index());
 892     break;
 893   case CallInfo::itable_call:
 894     cp_cache_entry->set_itable_call(
 895       bytecode,
 896       info.resolved_klass(),
 897       info.resolved_method(),
 898       info.itable_index());
 899     break;
 900   default:  ShouldNotReachHere();
 901   }
 902 }
 903 
 904 
 905 // First time execution:  Resolve symbols, create a permanent MethodType object.
 906 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
 907   Thread* THREAD = thread;
 908   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 909   LastFrameAccessor last_frame(thread);
 910 
 911   // resolve method
 912   CallInfo info;
 913   constantPoolHandle pool(thread, last_frame.method()->constants());
 914   {
 915     JvmtiHideSingleStepping jhss(thread);
 916     LinkResolver::resolve_invoke(info, Handle(), pool,
 917                                  last_frame.get_index_u2_cpcache(bytecode), bytecode,
 918                                  CHECK);
 919   } // end JvmtiHideSingleStepping
 920 
 921   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 922   cp_cache_entry->set_method_handle(pool, info);
 923 }
 924 
 925 // First time execution:  Resolve symbols, create a permanent CallSite object.
 926 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
 927   Thread* THREAD = thread;
 928   LastFrameAccessor last_frame(thread);
 929   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 930 
 931   //TO DO: consider passing BCI to Java.
 932   //  int caller_bci = last_frame.method()->bci_from(last_frame.bcp());
 933 
 934   // resolve method
 935   CallInfo info;
 936   constantPoolHandle pool(thread, last_frame.method()->constants());
 937   int index = last_frame.get_index_u4(bytecode);
 938   {
 939     JvmtiHideSingleStepping jhss(thread);
 940     LinkResolver::resolve_invoke(info, Handle(), pool,
 941                                  index, bytecode, CHECK);
 942   } // end JvmtiHideSingleStepping
 943 
 944   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 945   cp_cache_entry->set_dynamic_call(pool, info);
 946 }
 947 
 948 // This function is the interface to the assembly code. It returns the resolved
 949 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
 950 // This function will check for redefinition!
 951 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
 952   switch (bytecode) {
 953   case Bytecodes::_getstatic:
 954   case Bytecodes::_putstatic:
 955   case Bytecodes::_getfield:
 956   case Bytecodes::_putfield:
 957     resolve_get_put(thread, bytecode);
 958     break;
 959   case Bytecodes::_invokevirtual:
 960   case Bytecodes::_invokespecial:
 961   case Bytecodes::_invokestatic:
 962   case Bytecodes::_invokeinterface:
 963     resolve_invoke(thread, bytecode);
 964     break;
 965   case Bytecodes::_invokehandle:
 966     resolve_invokehandle(thread);
 967     break;
 968   case Bytecodes::_invokedynamic:
 969     resolve_invokedynamic(thread);
 970     break;
 971   default:
 972     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
 973     break;
 974   }
 975 }
 976 IRT_END
 977 
 978 //------------------------------------------------------------------------------------------------------------------------
 979 // Miscellaneous
 980 
 981 
 982 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 983   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 984   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 985   if (branch_bcp != NULL && nm != NULL) {
 986     // This was a successful request for an OSR nmethod.  Because
 987     // frequency_counter_overflow_inner ends with a safepoint check,
 988     // nm could have been unloaded so look it up again.  It's unsafe
 989     // to examine nm directly since it might have been freed and used
 990     // for something else.
 991     LastFrameAccessor last_frame(thread);
 992     Method* method =  last_frame.method();
 993     int bci = method->bci_from(last_frame.bcp());
 994     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 995   }
 996   if (nm != NULL && thread->is_interp_only_mode()) {
 997     // Normally we never get an nm if is_interp_only_mode() is true, because
 998     // policy()->event has a check for this and won't compile the method when
 999     // true. However, it's possible for is_interp_only_mode() to become true
1000     // during the compilation. We don't want to return the nm in that case
1001     // because we want to continue to execute interpreted.
1002     nm = NULL;
1003   }
1004 #ifndef PRODUCT
1005   if (TraceOnStackReplacement) {
1006     if (nm != NULL) {
1007       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
1008       nm->print();
1009     }
1010   }
1011 #endif
1012   return nm;
1013 }
1014 
1015 IRT_ENTRY(nmethod*,
1016           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
1017   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1018   // flag, in case this method triggers classloading which will call into Java.
1019   UnlockFlagSaver fs(thread);
1020 
1021   LastFrameAccessor last_frame(thread);
1022   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1023   methodHandle method(thread, last_frame.method());
1024   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
1025   const int bci = branch_bcp != NULL ? method->bci_from(last_frame.bcp()) : InvocationEntryBci;
1026 
1027   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
1028   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
1029   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
1030 
1031   if (osr_nm != NULL) {
1032     // We may need to do on-stack replacement which requires that no
1033     // monitors in the activation are biased because their
1034     // BasicObjectLocks will need to migrate during OSR. Force
1035     // unbiasing of all monitors in the activation now (even though
1036     // the OSR nmethod might be invalidated) because we don't have a
1037     // safepoint opportunity later once the migration begins.
1038     if (UseBiasedLocking) {
1039       ResourceMark rm;
1040       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1041       for( BasicObjectLock *kptr = last_frame.monitor_end();
1042            kptr < last_frame.monitor_begin();
1043            kptr = last_frame.next_monitor(kptr) ) {
1044         if( kptr->obj() != NULL ) {
1045           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
1046         }
1047       }
1048       BiasedLocking::revoke(objects_to_revoke);
1049     }
1050   }
1051   return osr_nm;
1052 IRT_END
1053 
1054 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
1055   assert(ProfileInterpreter, "must be profiling interpreter");
1056   int bci = method->bci_from(cur_bcp);
1057   MethodData* mdo = method->method_data();
1058   if (mdo == NULL)  return 0;
1059   return mdo->bci_to_di(bci);
1060 IRT_END
1061 
1062 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
1063   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1064   // flag, in case this method triggers classloading which will call into Java.
1065   UnlockFlagSaver fs(thread);
1066 
1067   assert(ProfileInterpreter, "must be profiling interpreter");
1068   LastFrameAccessor last_frame(thread);
1069   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1070   methodHandle method(thread, last_frame.method());
1071   Method::build_interpreter_method_data(method, THREAD);
1072   if (HAS_PENDING_EXCEPTION) {
1073     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1074     CLEAR_PENDING_EXCEPTION;
1075     // and fall through...
1076   }
1077 IRT_END
1078 
1079 
1080 #ifdef ASSERT
1081 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
1082   assert(ProfileInterpreter, "must be profiling interpreter");
1083 
1084   MethodData* mdo = method->method_data();
1085   assert(mdo != NULL, "must not be null");
1086 
1087   int bci = method->bci_from(bcp);
1088 
1089   address mdp2 = mdo->bci_to_dp(bci);
1090   if (mdp != mdp2) {
1091     ResourceMark rm;
1092     ResetNoHandleMark rnm; // In a LEAF entry.
1093     HandleMark hm;
1094     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
1095     int current_di = mdo->dp_to_di(mdp);
1096     int expected_di  = mdo->dp_to_di(mdp2);
1097     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
1098     int expected_approx_bci = mdo->data_at(expected_di)->bci();
1099     int approx_bci = -1;
1100     if (current_di >= 0) {
1101       approx_bci = mdo->data_at(current_di)->bci();
1102     }
1103     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1104     mdo->print_on(tty);
1105     method->print_codes();
1106   }
1107   assert(mdp == mdp2, "wrong mdp");
1108 IRT_END
1109 #endif // ASSERT
1110 
1111 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1112   assert(ProfileInterpreter, "must be profiling interpreter");
1113   ResourceMark rm(thread);
1114   HandleMark hm(thread);
1115   LastFrameAccessor last_frame(thread);
1116   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1117   MethodData* h_mdo = last_frame.method()->method_data();
1118 
1119   // Grab a lock to ensure atomic access to setting the return bci and
1120   // the displacement.  This can block and GC, invalidating all naked oops.
1121   MutexLocker ml(RetData_lock);
1122 
1123   // ProfileData is essentially a wrapper around a derived oop, so we
1124   // need to take the lock before making any ProfileData structures.
1125   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp()));
1126   guarantee(data != NULL, "profile data must be valid");
1127   RetData* rdata = data->as_RetData();
1128   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1129   last_frame.set_mdp(new_mdp);
1130 IRT_END
1131 
1132 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1133   MethodCounters* mcs = Method::build_method_counters(m, thread);
1134   if (HAS_PENDING_EXCEPTION) {
1135     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1136     CLEAR_PENDING_EXCEPTION;
1137   }
1138   return mcs;
1139 IRT_END
1140 
1141 
1142 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1143   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1144   // stack traversal automatically takes care of preserving arguments for invoke, so
1145   // this is no longer needed.
1146 
1147   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1148   // if this is called during a safepoint
1149 
1150   if (JvmtiExport::should_post_single_step()) {
1151     // We are called during regular safepoints and when the VM is
1152     // single stepping. If any thread is marked for single stepping,
1153     // then we may have JVMTI work to do.
1154     LastFrameAccessor last_frame(thread);
1155     JvmtiExport::at_single_stepping_point(thread, last_frame.method(), last_frame.bcp());
1156   }
1157 IRT_END
1158 
1159 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1160 ConstantPoolCacheEntry *cp_entry))
1161 
1162   // check the access_flags for the field in the klass
1163 
1164   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1165   int index = cp_entry->field_index();
1166   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1167 
1168   bool is_static = (obj == NULL);
1169   HandleMark hm(thread);
1170 
1171   Handle h_obj;
1172   if (!is_static) {
1173     // non-static field accessors have an object, but we need a handle
1174     h_obj = Handle(thread, obj);
1175   }
1176   InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
1177   jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
1178   LastFrameAccessor last_frame(thread);
1179   JvmtiExport::post_field_access(thread, last_frame.method(), last_frame.bcp(), cp_entry_f1, h_obj, fid);
1180 IRT_END
1181 
1182 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1183   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1184 
1185   Klass* k = cp_entry->f1_as_klass();
1186 
1187   // check the access_flags for the field in the klass
1188   InstanceKlass* ik = InstanceKlass::cast(k);
1189   int index = cp_entry->field_index();
1190   // bail out if field modifications are not watched
1191   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1192 
1193   char sig_type = '\0';
1194 
1195   switch(cp_entry->flag_state()) {
1196     case btos: sig_type = 'B'; break;
1197     case ztos: sig_type = 'Z'; break;
1198     case ctos: sig_type = 'C'; break;
1199     case stos: sig_type = 'S'; break;
1200     case itos: sig_type = 'I'; break;
1201     case ftos: sig_type = 'F'; break;
1202     case atos: sig_type = 'L'; break;
1203     case ltos: sig_type = 'J'; break;
1204     case dtos: sig_type = 'D'; break;
1205     default:  ShouldNotReachHere(); return;
1206   }
1207   bool is_static = (obj == NULL);
1208 
1209   HandleMark hm(thread);
1210   jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
1211   jvalue fvalue;
1212 #ifdef _LP64
1213   fvalue = *value;
1214 #else
1215   // Long/double values are stored unaligned and also noncontiguously with
1216   // tagged stacks.  We can't just do a simple assignment even in the non-
1217   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1218   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1219   // We assume that the two halves of longs/doubles are stored in interpreter
1220   // stack slots in platform-endian order.
1221   jlong_accessor u;
1222   jint* newval = (jint*)value;
1223   u.words[0] = newval[0];
1224   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1225   fvalue.j = u.long_value;
1226 #endif // _LP64
1227 
1228   Handle h_obj;
1229   if (!is_static) {
1230     // non-static field accessors have an object, but we need a handle
1231     h_obj = Handle(thread, obj);
1232   }
1233 
1234   LastFrameAccessor last_frame(thread);
1235   JvmtiExport::post_raw_field_modification(thread, last_frame.method(), last_frame.bcp(), ik, h_obj,
1236                                            fid, sig_type, &fvalue);
1237 IRT_END
1238 
1239 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1240   LastFrameAccessor last_frame(thread);
1241   JvmtiExport::post_method_entry(thread, last_frame.method(), last_frame.get_frame());
1242 IRT_END
1243 
1244 
1245 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1246   LastFrameAccessor last_frame(thread);
1247   JvmtiExport::post_method_exit(thread, last_frame.method(), last_frame.get_frame());
1248 IRT_END
1249 
1250 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1251 {
1252   return (Interpreter::contains(pc) ? 1 : 0);
1253 }
1254 IRT_END
1255 
1256 
1257 // Implementation of SignatureHandlerLibrary
1258 
1259 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1260 // Dummy definition (else normalization method is defined in CPU
1261 // dependant code)
1262 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1263   return fingerprint;
1264 }
1265 #endif
1266 
1267 address SignatureHandlerLibrary::set_handler_blob() {
1268   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1269   if (handler_blob == NULL) {
1270     return NULL;
1271   }
1272   address handler = handler_blob->code_begin();
1273   _handler_blob = handler_blob;
1274   _handler = handler;
1275   return handler;
1276 }
1277 
1278 void SignatureHandlerLibrary::initialize() {
1279   if (_fingerprints != NULL) {
1280     return;
1281   }
1282   if (set_handler_blob() == NULL) {
1283     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1284   }
1285 
1286   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1287                                       SignatureHandlerLibrary::buffer_size);
1288   _buffer = bb->code_begin();
1289 
1290   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1291   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1292 }
1293 
1294 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1295   address handler   = _handler;
1296   int     insts_size = buffer->pure_insts_size();
1297   if (handler + insts_size > _handler_blob->code_end()) {
1298     // get a new handler blob
1299     handler = set_handler_blob();
1300   }
1301   if (handler != NULL) {
1302     memcpy(handler, buffer->insts_begin(), insts_size);
1303     pd_set_handler(handler);
1304     ICache::invalidate_range(handler, insts_size);
1305     _handler = handler + insts_size;
1306   }
1307   return handler;
1308 }
1309 
1310 void SignatureHandlerLibrary::add(const methodHandle& method) {
1311   if (method->signature_handler() == NULL) {
1312     // use slow signature handler if we can't do better
1313     int handler_index = -1;
1314     // check if we can use customized (fast) signature handler
1315     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1316       // use customized signature handler
1317       MutexLocker mu(SignatureHandlerLibrary_lock);
1318       // make sure data structure is initialized
1319       initialize();
1320       // lookup method signature's fingerprint
1321       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1322       // allow CPU dependant code to optimize the fingerprints for the fast handler
1323       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1324       handler_index = _fingerprints->find(fingerprint);
1325       // create handler if necessary
1326       if (handler_index < 0) {
1327         ResourceMark rm;
1328         ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
1329         CodeBuffer buffer((address)(_buffer + align_offset),
1330                           SignatureHandlerLibrary::buffer_size - align_offset);
1331         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1332         // copy into code heap
1333         address handler = set_handler(&buffer);
1334         if (handler == NULL) {
1335           // use slow signature handler (without memorizing it in the fingerprints)
1336         } else {
1337           // debugging suppport
1338           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1339             ttyLocker ttyl;
1340             tty->cr();
1341             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1342                           _handlers->length(),
1343                           (method->is_static() ? "static" : "receiver"),
1344                           method->name_and_sig_as_C_string(),
1345                           fingerprint,
1346                           buffer.insts_size());
1347             if (buffer.insts_size() > 0) {
1348               Disassembler::decode(handler, handler + buffer.insts_size());
1349             }
1350 #ifndef PRODUCT
1351             address rh_begin = Interpreter::result_handler(method()->result_type());
1352             if (CodeCache::contains(rh_begin)) {
1353               // else it might be special platform dependent values
1354               tty->print_cr(" --- associated result handler ---");
1355               address rh_end = rh_begin;
1356               while (*(int*)rh_end != 0) {
1357                 rh_end += sizeof(int);
1358               }
1359               Disassembler::decode(rh_begin, rh_end);
1360             } else {
1361               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1362             }
1363 #endif
1364           }
1365           // add handler to library
1366           _fingerprints->append(fingerprint);
1367           _handlers->append(handler);
1368           // set handler index
1369           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1370           handler_index = _fingerprints->length() - 1;
1371         }
1372       }
1373       // Set handler under SignatureHandlerLibrary_lock
1374       if (handler_index < 0) {
1375         // use generic signature handler
1376         method->set_signature_handler(Interpreter::slow_signature_handler());
1377       } else {
1378         // set handler
1379         method->set_signature_handler(_handlers->at(handler_index));
1380       }
1381     } else {
1382       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1383       // use generic signature handler
1384       method->set_signature_handler(Interpreter::slow_signature_handler());
1385     }
1386   }
1387 #ifdef ASSERT
1388   int handler_index = -1;
1389   int fingerprint_index = -2;
1390   {
1391     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1392     // in any way if accessed from multiple threads. To avoid races with another
1393     // thread which may change the arrays in the above, mutex protected block, we
1394     // have to protect this read access here with the same mutex as well!
1395     MutexLocker mu(SignatureHandlerLibrary_lock);
1396     if (_handlers != NULL) {
1397       handler_index = _handlers->find(method->signature_handler());
1398       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1399       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1400       fingerprint_index = _fingerprints->find(fingerprint);
1401     }
1402   }
1403   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1404          handler_index == fingerprint_index, "sanity check");
1405 #endif // ASSERT
1406 }
1407 
1408 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1409   int handler_index = -1;
1410   // use customized signature handler
1411   MutexLocker mu(SignatureHandlerLibrary_lock);
1412   // make sure data structure is initialized
1413   initialize();
1414   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1415   handler_index = _fingerprints->find(fingerprint);
1416   // create handler if necessary
1417   if (handler_index < 0) {
1418     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1419       tty->cr();
1420       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1421                     _handlers->length(),
1422                     p2i(handler),
1423                     fingerprint);
1424     }
1425     _fingerprints->append(fingerprint);
1426     _handlers->append(handler);
1427   } else {
1428     if (PrintSignatureHandlers) {
1429       tty->cr();
1430       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1431                     _handlers->length(),
1432                     fingerprint,
1433                     p2i(_handlers->at(handler_index)),
1434                     p2i(handler));
1435     }
1436   }
1437 }
1438 
1439 
1440 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1441 address                  SignatureHandlerLibrary::_handler      = NULL;
1442 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1443 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1444 address                  SignatureHandlerLibrary::_buffer       = NULL;
1445 
1446 
1447 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1448   methodHandle m(thread, method);
1449   assert(m->is_native(), "sanity check");
1450   // lookup native function entry point if it doesn't exist
1451   bool in_base_library;
1452   if (!m->has_native_function()) {
1453     NativeLookup::lookup(m, in_base_library, CHECK);
1454   }
1455   // make sure signature handler is installed
1456   SignatureHandlerLibrary::add(m);
1457   // The interpreter entry point checks the signature handler first,
1458   // before trying to fetch the native entry point and klass mirror.
1459   // We must set the signature handler last, so that multiple processors
1460   // preparing the same method will be sure to see non-null entry & mirror.
1461 IRT_END
1462 
1463 #if defined(IA32) || defined(AMD64) || defined(ARM)
1464 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1465   if (src_address == dest_address) {
1466     return;
1467   }
1468   ResetNoHandleMark rnm; // In a LEAF entry.
1469   HandleMark hm;
1470   ResourceMark rm;
1471   LastFrameAccessor last_frame(thread);
1472   assert(last_frame.is_interpreted_frame(), "");
1473   jint bci = last_frame.bci();
1474   methodHandle mh(thread, last_frame.method());
1475   Bytecode_invoke invoke(mh, bci);
1476   ArgumentSizeComputer asc(invoke.signature());
1477   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1478   Copy::conjoint_jbytes(src_address, dest_address,
1479                        size_of_arguments * Interpreter::stackElementSize);
1480 IRT_END
1481 #endif
1482 
1483 #if INCLUDE_JVMTI
1484 // This is a support of the JVMTI PopFrame interface.
1485 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1486 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1487 // The member_name argument is a saved reference (in local#0) to the member_name.
1488 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1489 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1490 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1491                                                             Method* method, address bcp))
1492   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1493   if (code != Bytecodes::_invokestatic) {
1494     return;
1495   }
1496   ConstantPool* cpool = method->constants();
1497   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1498   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1499   Symbol* mname = cpool->name_ref_at(cp_index);
1500 
1501   if (MethodHandles::has_member_arg(cname, mname)) {
1502     oop member_name_oop = (oop) member_name;
1503     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1504       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1505       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1506     }
1507     thread->set_vm_result(member_name_oop);
1508   } else {
1509     thread->set_vm_result(NULL);
1510   }
1511 IRT_END
1512 #endif // INCLUDE_JVMTI
1513 
1514 #ifndef PRODUCT
1515 // This must be a IRT_LEAF function because the interpreter must save registers on x86 to
1516 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1517 // The generated code still uses call_VM because that will set up the frame pointer for
1518 // bcp and method.
1519 IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1520   LastFrameAccessor last_frame(thread);
1521   assert(last_frame.is_interpreted_frame(), "must be an interpreted frame");
1522   methodHandle mh(thread, last_frame.method());
1523   BytecodeTracer::trace(mh, last_frame.bcp(), tos, tos2);
1524   return preserve_this_value;
1525 IRT_END
1526 #endif // !PRODUCT