1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 #include "utilities/growableArray.hpp"
  38 
  39 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  40 // is an abstract class: there may be many different kinds of heaps.  This
  41 // class defines the functions that a heap must implement, and contains
  42 // infrastructure common to all heaps.
  43 
  44 class AdaptiveSizePolicy;
  45 class BarrierSet;
  46 class CollectorPolicy;
  47 class GCHeapSummary;
  48 class GCTimer;
  49 class GCTracer;
  50 class GCMemoryManager;
  51 class MemoryPool;
  52 class MetaspaceSummary;
  53 class Thread;
  54 class ThreadClosure;
  55 class VirtualSpaceSummary;
  56 class WorkGang;
  57 class nmethod;
  58 
  59 class GCMessage : public FormatBuffer<1024> {
  60  public:
  61   bool is_before;
  62 
  63  public:
  64   GCMessage() {}
  65 };
  66 
  67 class CollectedHeap;
  68 
  69 class GCHeapLog : public EventLogBase<GCMessage> {
  70  private:
  71   void log_heap(CollectedHeap* heap, bool before);
  72 
  73  public:
  74   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  75 
  76   void log_heap_before(CollectedHeap* heap) {
  77     log_heap(heap, true);
  78   }
  79   void log_heap_after(CollectedHeap* heap) {
  80     log_heap(heap, false);
  81   }
  82 };
  83 
  84 //
  85 // CollectedHeap
  86 //   GenCollectedHeap
  87 //     SerialHeap
  88 //     CMSHeap
  89 //   G1CollectedHeap
  90 //   ParallelScavengeHeap
  91 //
  92 class CollectedHeap : public CHeapObj<mtInternal> {
  93   friend class VMStructs;
  94   friend class JVMCIVMStructs;
  95   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  96 
  97  private:
  98 #ifdef ASSERT
  99   static int       _fire_out_of_memory_count;
 100 #endif
 101 
 102   GCHeapLog* _gc_heap_log;
 103 
 104   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
 105   // or INCLUDE_JVMCI is being used
 106   bool _defer_initial_card_mark;
 107 
 108   MemRegion _reserved;
 109 
 110  protected:
 111   BarrierSet* _barrier_set;
 112   bool _is_gc_active;
 113 
 114   // Used for filler objects (static, but initialized in ctor).
 115   static size_t _filler_array_max_size;
 116 
 117   unsigned int _total_collections;          // ... started
 118   unsigned int _total_full_collections;     // ... started
 119   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 120   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 121 
 122   // Reason for current garbage collection.  Should be set to
 123   // a value reflecting no collection between collections.
 124   GCCause::Cause _gc_cause;
 125   GCCause::Cause _gc_lastcause;
 126   PerfStringVariable* _perf_gc_cause;
 127   PerfStringVariable* _perf_gc_lastcause;
 128 
 129   // Constructor
 130   CollectedHeap();
 131 
 132   // Do common initializations that must follow instance construction,
 133   // for example, those needing virtual calls.
 134   // This code could perhaps be moved into initialize() but would
 135   // be slightly more awkward because we want the latter to be a
 136   // pure virtual.
 137   void pre_initialize();
 138 
 139   // Create a new tlab. All TLAB allocations must go through this.
 140   virtual HeapWord* allocate_new_tlab(size_t size);
 141 
 142   // Accumulate statistics on all tlabs.
 143   virtual void accumulate_statistics_all_tlabs();
 144 
 145   // Reinitialize tlabs before resuming mutators.
 146   virtual void resize_all_tlabs();
 147 
 148   // Allocate from the current thread's TLAB, with broken-out slow path.
 149   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 150   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 151 
 152   // Sample the allocation via HeapMonitoring.
 153   // overflowed_words represents the number of HeapWords that went past the
 154   // sampling boundary. This is used to fix the next sampling rate.
 155   static void sample_allocation(Thread* thread, HeapWord* obj, size_t size,
 156                                 size_t overflowed_words = 0);
 157   // Try to allocate the object we want to sample in this tlab, returns NULL if
 158   // fails to allocate.
 159   static HeapWord* allocate_sampled_object(Thread* thread, size_t size);
 160 
 161   // Allocate an uninitialized block of the given size, or returns NULL if
 162   // this is impossible.
 163   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 164 
 165   // Like allocate_init, but the block returned by a successful allocation
 166   // is guaranteed initialized to zeros.
 167   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 168 
 169   // Helper functions for (VM) allocation.
 170   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 171   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 172                                                             HeapWord* objPtr);
 173 
 174   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 175 
 176   inline static void post_allocation_setup_array(Klass* klass,
 177                                                  HeapWord* obj, int length);
 178 
 179   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 180 
 181   // Clears an allocated object.
 182   inline static void init_obj(HeapWord* obj, size_t size);
 183 
 184   // Filler object utilities.
 185   static inline size_t filler_array_hdr_size();
 186   static inline size_t filler_array_min_size();
 187 
 188   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 189   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 190 
 191   // Fill with a single array; caller must ensure filler_array_min_size() <=
 192   // words <= filler_array_max_size().
 193   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 194 
 195   // Fill with a single object (either an int array or a java.lang.Object).
 196   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 197 
 198   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 199 
 200   // Verification functions
 201   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 202     PRODUCT_RETURN;
 203   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 204     PRODUCT_RETURN;
 205   debug_only(static void check_for_valid_allocation_state();)
 206 
 207  public:
 208   enum Name {
 209     SerialHeap,
 210     ParallelScavengeHeap,
 211     G1CollectedHeap,
 212     CMSHeap
 213   };
 214 
 215   static inline size_t filler_array_max_size() {
 216     return _filler_array_max_size;
 217   }
 218 
 219   virtual Name kind() const = 0;
 220 
 221   virtual const char* name() const = 0;
 222 
 223   /**
 224    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 225    * and JNI_OK on success.
 226    */
 227   virtual jint initialize() = 0;
 228 
 229   // In many heaps, there will be a need to perform some initialization activities
 230   // after the Universe is fully formed, but before general heap allocation is allowed.
 231   // This is the correct place to place such initialization methods.
 232   virtual void post_initialize();
 233 
 234   // Stop any onging concurrent work and prepare for exit.
 235   virtual void stop() {}
 236 
 237   // Stop and resume concurrent GC threads interfering with safepoint operations
 238   virtual void safepoint_synchronize_begin() {}
 239   virtual void safepoint_synchronize_end() {}
 240 
 241   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 242   MemRegion reserved_region() const { return _reserved; }
 243   address base() const { return (address)reserved_region().start(); }
 244 
 245   virtual size_t capacity() const = 0;
 246   virtual size_t used() const = 0;
 247 
 248   // Return "true" if the part of the heap that allocates Java
 249   // objects has reached the maximal committed limit that it can
 250   // reach, without a garbage collection.
 251   virtual bool is_maximal_no_gc() const = 0;
 252 
 253   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 254   // memory that the vm could make available for storing 'normal' java objects.
 255   // This is based on the reserved address space, but should not include space
 256   // that the vm uses internally for bookkeeping or temporary storage
 257   // (e.g., in the case of the young gen, one of the survivor
 258   // spaces).
 259   virtual size_t max_capacity() const = 0;
 260 
 261   // Returns "TRUE" if "p" points into the reserved area of the heap.
 262   bool is_in_reserved(const void* p) const {
 263     return _reserved.contains(p);
 264   }
 265 
 266   bool is_in_reserved_or_null(const void* p) const {
 267     return p == NULL || is_in_reserved(p);
 268   }
 269 
 270   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 271   // This method can be expensive so avoid using it in performance critical
 272   // code.
 273   virtual bool is_in(const void* p) const = 0;
 274 
 275   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 276 
 277   // Let's define some terms: a "closed" subset of a heap is one that
 278   //
 279   // 1) contains all currently-allocated objects, and
 280   //
 281   // 2) is closed under reference: no object in the closed subset
 282   //    references one outside the closed subset.
 283   //
 284   // Membership in a heap's closed subset is useful for assertions.
 285   // Clearly, the entire heap is a closed subset, so the default
 286   // implementation is to use "is_in_reserved".  But this may not be too
 287   // liberal to perform useful checking.  Also, the "is_in" predicate
 288   // defines a closed subset, but may be too expensive, since "is_in"
 289   // verifies that its argument points to an object head.  The
 290   // "closed_subset" method allows a heap to define an intermediate
 291   // predicate, allowing more precise checking than "is_in_reserved" at
 292   // lower cost than "is_in."
 293 
 294   // One important case is a heap composed of disjoint contiguous spaces,
 295   // such as the Garbage-First collector.  Such heaps have a convenient
 296   // closed subset consisting of the allocated portions of those
 297   // contiguous spaces.
 298 
 299   // Return "TRUE" iff the given pointer points into the heap's defined
 300   // closed subset (which defaults to the entire heap).
 301   virtual bool is_in_closed_subset(const void* p) const {
 302     return is_in_reserved(p);
 303   }
 304 
 305   bool is_in_closed_subset_or_null(const void* p) const {
 306     return p == NULL || is_in_closed_subset(p);
 307   }
 308 
 309   void set_gc_cause(GCCause::Cause v) {
 310      if (UsePerfData) {
 311        _gc_lastcause = _gc_cause;
 312        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 313        _perf_gc_cause->set_value(GCCause::to_string(v));
 314      }
 315     _gc_cause = v;
 316   }
 317   GCCause::Cause gc_cause() { return _gc_cause; }
 318 
 319   // General obj/array allocation facilities.
 320   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 321   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 322   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 323   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 324 
 325   // Raw memory allocation facilities
 326   // The obj and array allocate methods are covers for these methods.
 327   // mem_allocate() should never be
 328   // called to allocate TLABs, only individual objects.
 329   virtual HeapWord* mem_allocate(size_t size,
 330                                  bool* gc_overhead_limit_was_exceeded) = 0;
 331 
 332   // Utilities for turning raw memory into filler objects.
 333   //
 334   // min_fill_size() is the smallest region that can be filled.
 335   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 336   // multiple objects.  fill_with_object() is for regions known to be smaller
 337   // than the largest array of integers; it uses a single object to fill the
 338   // region and has slightly less overhead.
 339   static size_t min_fill_size() {
 340     return size_t(align_object_size(oopDesc::header_size()));
 341   }
 342 
 343   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 344 
 345   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 346   static void fill_with_object(MemRegion region, bool zap = true) {
 347     fill_with_object(region.start(), region.word_size(), zap);
 348   }
 349   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 350     fill_with_object(start, pointer_delta(end, start), zap);
 351   }
 352 
 353   // Return the address "addr" aligned by "alignment_in_bytes" if such
 354   // an address is below "end".  Return NULL otherwise.
 355   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 356                                                    HeapWord* end,
 357                                                    unsigned short alignment_in_bytes);
 358 
 359   // Some heaps may offer a contiguous region for shared non-blocking
 360   // allocation, via inlined code (by exporting the address of the top and
 361   // end fields defining the extent of the contiguous allocation region.)
 362 
 363   // This function returns "true" iff the heap supports this kind of
 364   // allocation.  (Default is "no".)
 365   virtual bool supports_inline_contig_alloc() const {
 366     return false;
 367   }
 368   // These functions return the addresses of the fields that define the
 369   // boundaries of the contiguous allocation area.  (These fields should be
 370   // physically near to one another.)
 371   virtual HeapWord* volatile* top_addr() const {
 372     guarantee(false, "inline contiguous allocation not supported");
 373     return NULL;
 374   }
 375   virtual HeapWord** end_addr() const {
 376     guarantee(false, "inline contiguous allocation not supported");
 377     return NULL;
 378   }
 379 
 380   // Some heaps may be in an unparseable state at certain times between
 381   // collections. This may be necessary for efficient implementation of
 382   // certain allocation-related activities. Calling this function before
 383   // attempting to parse a heap ensures that the heap is in a parsable
 384   // state (provided other concurrent activity does not introduce
 385   // unparsability). It is normally expected, therefore, that this
 386   // method is invoked with the world stopped.
 387   // NOTE: if you override this method, make sure you call
 388   // super::ensure_parsability so that the non-generational
 389   // part of the work gets done. See implementation of
 390   // CollectedHeap::ensure_parsability and, for instance,
 391   // that of GenCollectedHeap::ensure_parsability().
 392   // The argument "retire_tlabs" controls whether existing TLABs
 393   // are merely filled or also retired, thus preventing further
 394   // allocation from them and necessitating allocation of new TLABs.
 395   virtual void ensure_parsability(bool retire_tlabs);
 396 
 397   // Section on thread-local allocation buffers (TLABs)
 398   // If the heap supports thread-local allocation buffers, it should override
 399   // the following methods:
 400   // Returns "true" iff the heap supports thread-local allocation buffers.
 401   // The default is "no".
 402   virtual bool supports_tlab_allocation() const = 0;
 403 
 404   // The amount of space available for thread-local allocation buffers.
 405   virtual size_t tlab_capacity(Thread *thr) const = 0;
 406 
 407   // The amount of used space for thread-local allocation buffers for the given thread.
 408   virtual size_t tlab_used(Thread *thr) const = 0;
 409 
 410   virtual size_t max_tlab_size() const;
 411 
 412   // An estimate of the maximum allocation that could be performed
 413   // for thread-local allocation buffers without triggering any
 414   // collection or expansion activity.
 415   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 416     guarantee(false, "thread-local allocation buffers not supported");
 417     return 0;
 418   }
 419 
 420   // Can a compiler initialize a new object without store barriers?
 421   // This permission only extends from the creation of a new object
 422   // via a TLAB up to the first subsequent safepoint. If such permission
 423   // is granted for this heap type, the compiler promises to call
 424   // defer_store_barrier() below on any slow path allocation of
 425   // a new object for which such initializing store barriers will
 426   // have been elided.
 427   virtual bool can_elide_tlab_store_barriers() const = 0;
 428 
 429   // If a compiler is eliding store barriers for TLAB-allocated objects,
 430   // there is probably a corresponding slow path which can produce
 431   // an object allocated anywhere.  The compiler's runtime support
 432   // promises to call this function on such a slow-path-allocated
 433   // object before performing initializations that have elided
 434   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 435   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 436 
 437   // Answers whether an initializing store to a new object currently
 438   // allocated at the given address doesn't need a store
 439   // barrier. Returns "true" if it doesn't need an initializing
 440   // store barrier; answers "false" if it does.
 441   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 442 
 443   // If a compiler is eliding store barriers for TLAB-allocated objects,
 444   // we will be informed of a slow-path allocation by a call
 445   // to new_store_pre_barrier() above. Such a call precedes the
 446   // initialization of the object itself, and no post-store-barriers will
 447   // be issued. Some heap types require that the barrier strictly follows
 448   // the initializing stores. (This is currently implemented by deferring the
 449   // barrier until the next slow-path allocation or gc-related safepoint.)
 450   // This interface answers whether a particular heap type needs the card
 451   // mark to be thus strictly sequenced after the stores.
 452   virtual bool card_mark_must_follow_store() const = 0;
 453 
 454   // If the CollectedHeap was asked to defer a store barrier above,
 455   // this informs it to flush such a deferred store barrier to the
 456   // remembered set.
 457   virtual void flush_deferred_store_barrier(JavaThread* thread);
 458 
 459   // Perform a collection of the heap; intended for use in implementing
 460   // "System.gc".  This probably implies as full a collection as the
 461   // "CollectedHeap" supports.
 462   virtual void collect(GCCause::Cause cause) = 0;
 463 
 464   // Perform a full collection
 465   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 466 
 467   // This interface assumes that it's being called by the
 468   // vm thread. It collects the heap assuming that the
 469   // heap lock is already held and that we are executing in
 470   // the context of the vm thread.
 471   virtual void collect_as_vm_thread(GCCause::Cause cause);
 472 
 473   // Returns the barrier set for this heap
 474   BarrierSet* barrier_set() { return _barrier_set; }
 475   void set_barrier_set(BarrierSet* barrier_set);
 476 
 477   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 478   // that it should answer "false" for the concurrent part of a concurrent
 479   // collector -- dld).
 480   bool is_gc_active() const { return _is_gc_active; }
 481 
 482   // Total number of GC collections (started)
 483   unsigned int total_collections() const { return _total_collections; }
 484   unsigned int total_full_collections() const { return _total_full_collections;}
 485 
 486   // Increment total number of GC collections (started)
 487   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 488   void increment_total_collections(bool full = false) {
 489     _total_collections++;
 490     if (full) {
 491       increment_total_full_collections();
 492     }
 493   }
 494 
 495   void increment_total_full_collections() { _total_full_collections++; }
 496 
 497   // Return the CollectorPolicy for the heap
 498   virtual CollectorPolicy* collector_policy() const = 0;
 499 
 500   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
 501   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
 502 
 503   // Iterate over all objects, calling "cl.do_object" on each.
 504   virtual void object_iterate(ObjectClosure* cl) = 0;
 505 
 506   // Similar to object_iterate() except iterates only
 507   // over live objects.
 508   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 509 
 510   // NOTE! There is no requirement that a collector implement these
 511   // functions.
 512   //
 513   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 514   // each address in the (reserved) heap is a member of exactly
 515   // one block.  The defining characteristic of a block is that it is
 516   // possible to find its size, and thus to progress forward to the next
 517   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 518   // represent Java objects, or they might be free blocks in a
 519   // free-list-based heap (or subheap), as long as the two kinds are
 520   // distinguishable and the size of each is determinable.
 521 
 522   // Returns the address of the start of the "block" that contains the
 523   // address "addr".  We say "blocks" instead of "object" since some heaps
 524   // may not pack objects densely; a chunk may either be an object or a
 525   // non-object.
 526   virtual HeapWord* block_start(const void* addr) const = 0;
 527 
 528   // Requires "addr" to be the start of a chunk, and returns its size.
 529   // "addr + size" is required to be the start of a new chunk, or the end
 530   // of the active area of the heap.
 531   virtual size_t block_size(const HeapWord* addr) const = 0;
 532 
 533   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 534   // the block is an object.
 535   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 536 
 537   // Returns the longest time (in ms) that has elapsed since the last
 538   // time that any part of the heap was examined by a garbage collection.
 539   virtual jlong millis_since_last_gc() = 0;
 540 
 541   // Perform any cleanup actions necessary before allowing a verification.
 542   virtual void prepare_for_verify() = 0;
 543 
 544   // Generate any dumps preceding or following a full gc
 545  private:
 546   void full_gc_dump(GCTimer* timer, bool before);
 547 
 548   virtual void initialize_serviceability() = 0;
 549 
 550  public:
 551   void pre_full_gc_dump(GCTimer* timer);
 552   void post_full_gc_dump(GCTimer* timer);
 553 
 554   VirtualSpaceSummary create_heap_space_summary();
 555   GCHeapSummary create_heap_summary();
 556 
 557   MetaspaceSummary create_metaspace_summary();
 558 
 559   // Print heap information on the given outputStream.
 560   virtual void print_on(outputStream* st) const = 0;
 561   // The default behavior is to call print_on() on tty.
 562   virtual void print() const {
 563     print_on(tty);
 564   }
 565   // Print more detailed heap information on the given
 566   // outputStream. The default behavior is to call print_on(). It is
 567   // up to each subclass to override it and add any additional output
 568   // it needs.
 569   virtual void print_extended_on(outputStream* st) const {
 570     print_on(st);
 571   }
 572 
 573   virtual void print_on_error(outputStream* st) const;
 574 
 575   // Print all GC threads (other than the VM thread)
 576   // used by this heap.
 577   virtual void print_gc_threads_on(outputStream* st) const = 0;
 578   // The default behavior is to call print_gc_threads_on() on tty.
 579   void print_gc_threads() {
 580     print_gc_threads_on(tty);
 581   }
 582   // Iterator for all GC threads (other than VM thread)
 583   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 584 
 585   // Print any relevant tracing info that flags imply.
 586   // Default implementation does nothing.
 587   virtual void print_tracing_info() const = 0;
 588 
 589   void print_heap_before_gc();
 590   void print_heap_after_gc();
 591 
 592   // An object is scavengable if its location may move during a scavenge.
 593   // (A scavenge is a GC which is not a full GC.)
 594   virtual bool is_scavengable(oop obj) = 0;
 595   // Registering and unregistering an nmethod (compiled code) with the heap.
 596   // Override with specific mechanism for each specialized heap type.
 597   virtual void register_nmethod(nmethod* nm) {}
 598   virtual void unregister_nmethod(nmethod* nm) {}
 599   virtual void verify_nmethod(nmethod* nmethod) {}
 600 
 601   void trace_heap_before_gc(const GCTracer* gc_tracer);
 602   void trace_heap_after_gc(const GCTracer* gc_tracer);
 603 
 604   // Heap verification
 605   virtual void verify(VerifyOption option) = 0;
 606 
 607   // Return true if concurrent phase control (via
 608   // request_concurrent_phase_control) is supported by this collector.
 609   // The default implementation returns false.
 610   virtual bool supports_concurrent_phase_control() const;
 611 
 612   // Return a NULL terminated array of concurrent phase names provided
 613   // by this collector.  Supports Whitebox testing.  These are the
 614   // names recognized by request_concurrent_phase(). The default
 615   // implementation returns an array of one NULL element.
 616   virtual const char* const* concurrent_phases() const;
 617 
 618   // Request the collector enter the indicated concurrent phase, and
 619   // wait until it does so.  Supports WhiteBox testing.  Only one
 620   // request may be active at a time.  Phases are designated by name;
 621   // the set of names and their meaning is GC-specific.  Once the
 622   // requested phase has been reached, the collector will attempt to
 623   // avoid transitioning to a new phase until a new request is made.
 624   // [Note: A collector might not be able to remain in a given phase.
 625   // For example, a full collection might cancel an in-progress
 626   // concurrent collection.]
 627   //
 628   // Returns true when the phase is reached.  Returns false for an
 629   // unknown phase.  The default implementation returns false.
 630   virtual bool request_concurrent_phase(const char* phase);
 631 
 632   // Provides a thread pool to SafepointSynchronize to use
 633   // for parallel safepoint cleanup.
 634   // GCs that use a GC worker thread pool may want to share
 635   // it for use during safepoint cleanup. This is only possible
 636   // if the GC can pause and resume concurrent work (e.g. G1
 637   // concurrent marking) for an intermittent non-GC safepoint.
 638   // If this method returns NULL, SafepointSynchronize will
 639   // perform cleanup tasks serially in the VMThread.
 640   virtual WorkGang* get_safepoint_workers() { return NULL; }
 641 
 642   // Non product verification and debugging.
 643 #ifndef PRODUCT
 644   // Support for PromotionFailureALot.  Return true if it's time to cause a
 645   // promotion failure.  The no-argument version uses
 646   // this->_promotion_failure_alot_count as the counter.
 647   inline bool promotion_should_fail(volatile size_t* count);
 648   inline bool promotion_should_fail();
 649 
 650   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 651   // GC in which promotion failure occurred.
 652   inline void reset_promotion_should_fail(volatile size_t* count);
 653   inline void reset_promotion_should_fail();
 654 #endif  // #ifndef PRODUCT
 655 
 656 #ifdef ASSERT
 657   static int fired_fake_oom() {
 658     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 659   }
 660 #endif
 661 
 662  public:
 663   // Copy the current allocation context statistics for the specified contexts.
 664   // For each context in contexts, set the corresponding entries in the totals
 665   // and accuracy arrays to the current values held by the statistics.  Each
 666   // array should be of length len.
 667   // Returns true if there are more stats available.
 668   virtual bool copy_allocation_context_stats(const jint* contexts,
 669                                              jlong* totals,
 670                                              jbyte* accuracy,
 671                                              jint len) {
 672     return false;
 673   }
 674 
 675 };
 676 
 677 // Class to set and reset the GC cause for a CollectedHeap.
 678 
 679 class GCCauseSetter : StackObj {
 680   CollectedHeap* _heap;
 681   GCCause::Cause _previous_cause;
 682  public:
 683   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 684     assert(SafepointSynchronize::is_at_safepoint(),
 685            "This method manipulates heap state without locking");
 686     _heap = heap;
 687     _previous_cause = _heap->gc_cause();
 688     _heap->set_gc_cause(cause);
 689   }
 690 
 691   ~GCCauseSetter() {
 692     assert(SafepointSynchronize::is_at_safepoint(),
 693           "This method manipulates heap state without locking");
 694     _heap->set_gc_cause(_previous_cause);
 695   }
 696 };
 697 
 698 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP