1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.inline.hpp"
  50 #include "oops/instanceKlass.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/handshake.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/prefetch.inline.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/safepointMechanism.inline.hpp"
  82 #include "runtime/sharedRuntime.hpp"
  83 #include "runtime/statSampler.hpp"
  84 #include "runtime/stubRoutines.hpp"
  85 #include "runtime/sweeper.hpp"
  86 #include "runtime/task.hpp"
  87 #include "runtime/thread.inline.hpp"
  88 #include "runtime/threadCritical.hpp"
  89 #include "runtime/threadSMR.inline.hpp"
  90 #include "runtime/timer.hpp"
  91 #include "runtime/timerTrace.hpp"
  92 #include "runtime/vframe.hpp"
  93 #include "runtime/vframeArray.hpp"
  94 #include "runtime/vframe_hp.hpp"
  95 #include "runtime/vmThread.hpp"
  96 #include "runtime/vm_operations.hpp"
  97 #include "runtime/vm_version.hpp"
  98 #include "services/attachListener.hpp"
  99 #include "services/management.hpp"
 100 #include "services/memTracker.hpp"
 101 #include "services/threadService.hpp"
 102 #include "trace/traceMacros.hpp"
 103 #include "trace/tracing.hpp"
 104 #include "utilities/align.hpp"
 105 #include "utilities/defaultStream.hpp"
 106 #include "utilities/dtrace.hpp"
 107 #include "utilities/events.hpp"
 108 #include "utilities/macros.hpp"
 109 #include "utilities/preserveException.hpp"
 110 #include "utilities/vmError.hpp"
 111 #if INCLUDE_ALL_GCS
 112 #include "gc/cms/concurrentMarkSweepThread.hpp"
 113 #include "gc/g1/concurrentMarkThread.inline.hpp"
 114 #include "gc/parallel/pcTasks.hpp"
 115 #endif // INCLUDE_ALL_GCS
 116 #if INCLUDE_JVMCI
 117 #include "jvmci/jvmciCompiler.hpp"
 118 #include "jvmci/jvmciRuntime.hpp"
 119 #include "logging/logHandle.hpp"
 120 #endif
 121 #ifdef COMPILER1
 122 #include "c1/c1_Compiler.hpp"
 123 #endif
 124 #ifdef COMPILER2
 125 #include "opto/c2compiler.hpp"
 126 #include "opto/idealGraphPrinter.hpp"
 127 #endif
 128 #if INCLUDE_RTM_OPT
 129 #include "runtime/rtmLocking.hpp"
 130 #endif
 131 
 132 // Initialization after module runtime initialization
 133 void universe_post_module_init();  // must happen after call_initPhase2
 134 
 135 #ifdef DTRACE_ENABLED
 136 
 137 // Only bother with this argument setup if dtrace is available
 138 
 139   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 140   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 141 
 142   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 143     {                                                                      \
 144       ResourceMark rm(this);                                               \
 145       int len = 0;                                                         \
 146       const char* name = (javathread)->get_thread_name();                  \
 147       len = strlen(name);                                                  \
 148       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 149         (char *) name, len,                                                \
 150         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 151         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 152         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 153     }
 154 
 155 #else //  ndef DTRACE_ENABLED
 156 
 157   #define DTRACE_THREAD_PROBE(probe, javathread)
 158 
 159 #endif // ndef DTRACE_ENABLED
 160 
 161 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 162 // Current thread is maintained as a thread-local variable
 163 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 164 #endif
 165 // Class hierarchy
 166 // - Thread
 167 //   - VMThread
 168 //   - WatcherThread
 169 //   - ConcurrentMarkSweepThread
 170 //   - JavaThread
 171 //     - CompilerThread
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 
 219 Thread::Thread() {
 220   // stack and get_thread
 221   set_stack_base(NULL);
 222   set_stack_size(0);
 223   set_self_raw_id(0);
 224   set_lgrp_id(-1);
 225   DEBUG_ONLY(clear_suspendible_thread();)
 226 
 227   // allocated data structures
 228   set_osthread(NULL);
 229   set_resource_area(new (mtThread)ResourceArea());
 230   DEBUG_ONLY(_current_resource_mark = NULL;)
 231   set_handle_area(new (mtThread) HandleArea(NULL));
 232   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 233   set_active_handles(NULL);
 234   set_free_handle_block(NULL);
 235   set_last_handle_mark(NULL);
 236 
 237   // This initial value ==> never claimed.
 238   _oops_do_parity = 0;
 239   _threads_hazard_ptr = NULL;
 240   _nested_threads_hazard_ptr = NULL;
 241   _nested_threads_hazard_ptr_cnt = 0;
 242 
 243   // the handle mark links itself to last_handle_mark
 244   new HandleMark(this);
 245 
 246   // plain initialization
 247   debug_only(_owned_locks = NULL;)
 248   debug_only(_allow_allocation_count = 0;)
 249   NOT_PRODUCT(_allow_safepoint_count = 0;)
 250   NOT_PRODUCT(_skip_gcalot = false;)
 251   _jvmti_env_iteration_count = 0;
 252   set_allocated_bytes(0);
 253   _vm_operation_started_count = 0;
 254   _vm_operation_completed_count = 0;
 255   _current_pending_monitor = NULL;
 256   _current_pending_monitor_is_from_java = true;
 257   _current_waiting_monitor = NULL;
 258   _num_nested_signal = 0;
 259   omFreeList = NULL;
 260   omFreeCount = 0;
 261   omFreeProvision = 32;
 262   omInUseList = NULL;
 263   omInUseCount = 0;
 264   _bytes_until_sample = 0;
 265 
 266 #ifdef ASSERT
 267   _visited_for_critical_count = false;
 268 #endif
 269 
 270   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 271                          Monitor::_safepoint_check_sometimes);
 272   _suspend_flags = 0;
 273 
 274   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 275   _hashStateX = os::random();
 276   _hashStateY = 842502087;
 277   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 278   _hashStateW = 273326509;
 279 
 280   _OnTrap   = 0;
 281   _schedctl = NULL;
 282   _Stalled  = 0;
 283   _TypeTag  = 0x2BAD;
 284 
 285   // Many of the following fields are effectively final - immutable
 286   // Note that nascent threads can't use the Native Monitor-Mutex
 287   // construct until the _MutexEvent is initialized ...
 288   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 289   // we might instead use a stack of ParkEvents that we could provision on-demand.
 290   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 291   // and ::Release()
 292   _ParkEvent   = ParkEvent::Allocate(this);
 293   _SleepEvent  = ParkEvent::Allocate(this);
 294   _MutexEvent  = ParkEvent::Allocate(this);
 295   _MuxEvent    = ParkEvent::Allocate(this);
 296 
 297 #ifdef CHECK_UNHANDLED_OOPS
 298   if (CheckUnhandledOops) {
 299     _unhandled_oops = new UnhandledOops(this);
 300   }
 301 #endif // CHECK_UNHANDLED_OOPS
 302 #ifdef ASSERT
 303   if (UseBiasedLocking) {
 304     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 305     assert(this == _real_malloc_address ||
 306            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 307            "bug in forced alignment of thread objects");
 308   }
 309 #endif // ASSERT
 310 }
 311 
 312 void Thread::initialize_thread_current() {
 313 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 314   assert(_thr_current == NULL, "Thread::current already initialized");
 315   _thr_current = this;
 316 #endif
 317   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 318   ThreadLocalStorage::set_thread(this);
 319   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 320 }
 321 
 322 void Thread::clear_thread_current() {
 323   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 324 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 325   _thr_current = NULL;
 326 #endif
 327   ThreadLocalStorage::set_thread(NULL);
 328 }
 329 
 330 void Thread::record_stack_base_and_size() {
 331   set_stack_base(os::current_stack_base());
 332   set_stack_size(os::current_stack_size());
 333   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 334   // in initialize_thread(). Without the adjustment, stack size is
 335   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 336   // So far, only Solaris has real implementation of initialize_thread().
 337   //
 338   // set up any platform-specific state.
 339   os::initialize_thread(this);
 340 
 341   // Set stack limits after thread is initialized.
 342   if (is_Java_thread()) {
 343     ((JavaThread*) this)->set_stack_overflow_limit();
 344     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 345   }
 346 #if INCLUDE_NMT
 347   // record thread's native stack, stack grows downward
 348   MemTracker::record_thread_stack(stack_end(), stack_size());
 349 #endif // INCLUDE_NMT
 350   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 351     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 352     os::current_thread_id(), p2i(stack_base() - stack_size()),
 353     p2i(stack_base()), stack_size()/1024);
 354 }
 355 
 356 
 357 Thread::~Thread() {
 358   EVENT_THREAD_DESTRUCT(this);
 359 
 360   // stack_base can be NULL if the thread is never started or exited before
 361   // record_stack_base_and_size called. Although, we would like to ensure
 362   // that all started threads do call record_stack_base_and_size(), there is
 363   // not proper way to enforce that.
 364 #if INCLUDE_NMT
 365   if (_stack_base != NULL) {
 366     MemTracker::release_thread_stack(stack_end(), stack_size());
 367 #ifdef ASSERT
 368     set_stack_base(NULL);
 369 #endif
 370   }
 371 #endif // INCLUDE_NMT
 372 
 373   // deallocate data structures
 374   delete resource_area();
 375   // since the handle marks are using the handle area, we have to deallocated the root
 376   // handle mark before deallocating the thread's handle area,
 377   assert(last_handle_mark() != NULL, "check we have an element");
 378   delete last_handle_mark();
 379   assert(last_handle_mark() == NULL, "check we have reached the end");
 380 
 381   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 382   // We NULL out the fields for good hygiene.
 383   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 384   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 385   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 386   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 387 
 388   delete handle_area();
 389   delete metadata_handles();
 390 
 391   // SR_handler uses this as a termination indicator -
 392   // needs to happen before os::free_thread()
 393   delete _SR_lock;
 394   _SR_lock = NULL;
 395 
 396   // osthread() can be NULL, if creation of thread failed.
 397   if (osthread() != NULL) os::free_thread(osthread());
 398 
 399   // clear Thread::current if thread is deleting itself.
 400   // Needed to ensure JNI correctly detects non-attached threads.
 401   if (this == Thread::current()) {
 402     clear_thread_current();
 403   }
 404 
 405   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 406 }
 407 
 408 // NOTE: dummy function for assertion purpose.
 409 void Thread::run() {
 410   ShouldNotReachHere();
 411 }
 412 
 413 #ifdef ASSERT
 414 // A JavaThread is considered "dangling" if it is not the current
 415 // thread, has been added the Threads list, the system is not at a
 416 // safepoint and the Thread is not "protected".
 417 //
 418 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 419   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 420          !((JavaThread *) thread)->on_thread_list() ||
 421          SafepointSynchronize::is_at_safepoint() ||
 422          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 423          "possibility of dangling Thread pointer");
 424 }
 425 #endif
 426 
 427 ThreadPriority Thread::get_priority(const Thread* const thread) {
 428   ThreadPriority priority;
 429   // Can return an error!
 430   (void)os::get_priority(thread, priority);
 431   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 432   return priority;
 433 }
 434 
 435 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 436   debug_only(check_for_dangling_thread_pointer(thread);)
 437   // Can return an error!
 438   (void)os::set_priority(thread, priority);
 439 }
 440 
 441 
 442 void Thread::start(Thread* thread) {
 443   // Start is different from resume in that its safety is guaranteed by context or
 444   // being called from a Java method synchronized on the Thread object.
 445   if (!DisableStartThread) {
 446     if (thread->is_Java_thread()) {
 447       // Initialize the thread state to RUNNABLE before starting this thread.
 448       // Can not set it after the thread started because we do not know the
 449       // exact thread state at that time. It could be in MONITOR_WAIT or
 450       // in SLEEPING or some other state.
 451       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 452                                           java_lang_Thread::RUNNABLE);
 453     }
 454     os::start_thread(thread);
 455   }
 456 }
 457 
 458 // Enqueue a VM_Operation to do the job for us - sometime later
 459 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 460   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 461   VMThread::execute(vm_stop);
 462 }
 463 
 464 
 465 // Check if an external suspend request has completed (or has been
 466 // cancelled). Returns true if the thread is externally suspended and
 467 // false otherwise.
 468 //
 469 // The bits parameter returns information about the code path through
 470 // the routine. Useful for debugging:
 471 //
 472 // set in is_ext_suspend_completed():
 473 // 0x00000001 - routine was entered
 474 // 0x00000010 - routine return false at end
 475 // 0x00000100 - thread exited (return false)
 476 // 0x00000200 - suspend request cancelled (return false)
 477 // 0x00000400 - thread suspended (return true)
 478 // 0x00001000 - thread is in a suspend equivalent state (return true)
 479 // 0x00002000 - thread is native and walkable (return true)
 480 // 0x00004000 - thread is native_trans and walkable (needed retry)
 481 //
 482 // set in wait_for_ext_suspend_completion():
 483 // 0x00010000 - routine was entered
 484 // 0x00020000 - suspend request cancelled before loop (return false)
 485 // 0x00040000 - thread suspended before loop (return true)
 486 // 0x00080000 - suspend request cancelled in loop (return false)
 487 // 0x00100000 - thread suspended in loop (return true)
 488 // 0x00200000 - suspend not completed during retry loop (return false)
 489 
 490 // Helper class for tracing suspend wait debug bits.
 491 //
 492 // 0x00000100 indicates that the target thread exited before it could
 493 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 494 // 0x00080000 each indicate a cancelled suspend request so they don't
 495 // count as wait failures either.
 496 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 497 
 498 class TraceSuspendDebugBits : public StackObj {
 499  private:
 500   JavaThread * jt;
 501   bool         is_wait;
 502   bool         called_by_wait;  // meaningful when !is_wait
 503   uint32_t *   bits;
 504 
 505  public:
 506   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 507                         uint32_t *_bits) {
 508     jt             = _jt;
 509     is_wait        = _is_wait;
 510     called_by_wait = _called_by_wait;
 511     bits           = _bits;
 512   }
 513 
 514   ~TraceSuspendDebugBits() {
 515     if (!is_wait) {
 516 #if 1
 517       // By default, don't trace bits for is_ext_suspend_completed() calls.
 518       // That trace is very chatty.
 519       return;
 520 #else
 521       if (!called_by_wait) {
 522         // If tracing for is_ext_suspend_completed() is enabled, then only
 523         // trace calls to it from wait_for_ext_suspend_completion()
 524         return;
 525       }
 526 #endif
 527     }
 528 
 529     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 530       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 531         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 532         ResourceMark rm;
 533 
 534         tty->print_cr(
 535                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 536                       jt->get_thread_name(), *bits);
 537 
 538         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 539       }
 540     }
 541   }
 542 };
 543 #undef DEBUG_FALSE_BITS
 544 
 545 
 546 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 547                                           uint32_t *bits) {
 548   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 549 
 550   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 551   bool do_trans_retry;           // flag to force the retry
 552 
 553   *bits |= 0x00000001;
 554 
 555   do {
 556     do_trans_retry = false;
 557 
 558     if (is_exiting()) {
 559       // Thread is in the process of exiting. This is always checked
 560       // first to reduce the risk of dereferencing a freed JavaThread.
 561       *bits |= 0x00000100;
 562       return false;
 563     }
 564 
 565     if (!is_external_suspend()) {
 566       // Suspend request is cancelled. This is always checked before
 567       // is_ext_suspended() to reduce the risk of a rogue resume
 568       // confusing the thread that made the suspend request.
 569       *bits |= 0x00000200;
 570       return false;
 571     }
 572 
 573     if (is_ext_suspended()) {
 574       // thread is suspended
 575       *bits |= 0x00000400;
 576       return true;
 577     }
 578 
 579     // Now that we no longer do hard suspends of threads running
 580     // native code, the target thread can be changing thread state
 581     // while we are in this routine:
 582     //
 583     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 584     //
 585     // We save a copy of the thread state as observed at this moment
 586     // and make our decision about suspend completeness based on the
 587     // copy. This closes the race where the thread state is seen as
 588     // _thread_in_native_trans in the if-thread_blocked check, but is
 589     // seen as _thread_blocked in if-thread_in_native_trans check.
 590     JavaThreadState save_state = thread_state();
 591 
 592     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 593       // If the thread's state is _thread_blocked and this blocking
 594       // condition is known to be equivalent to a suspend, then we can
 595       // consider the thread to be externally suspended. This means that
 596       // the code that sets _thread_blocked has been modified to do
 597       // self-suspension if the blocking condition releases. We also
 598       // used to check for CONDVAR_WAIT here, but that is now covered by
 599       // the _thread_blocked with self-suspension check.
 600       //
 601       // Return true since we wouldn't be here unless there was still an
 602       // external suspend request.
 603       *bits |= 0x00001000;
 604       return true;
 605     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 606       // Threads running native code will self-suspend on native==>VM/Java
 607       // transitions. If its stack is walkable (should always be the case
 608       // unless this function is called before the actual java_suspend()
 609       // call), then the wait is done.
 610       *bits |= 0x00002000;
 611       return true;
 612     } else if (!called_by_wait && !did_trans_retry &&
 613                save_state == _thread_in_native_trans &&
 614                frame_anchor()->walkable()) {
 615       // The thread is transitioning from thread_in_native to another
 616       // thread state. check_safepoint_and_suspend_for_native_trans()
 617       // will force the thread to self-suspend. If it hasn't gotten
 618       // there yet we may have caught the thread in-between the native
 619       // code check above and the self-suspend. Lucky us. If we were
 620       // called by wait_for_ext_suspend_completion(), then it
 621       // will be doing the retries so we don't have to.
 622       //
 623       // Since we use the saved thread state in the if-statement above,
 624       // there is a chance that the thread has already transitioned to
 625       // _thread_blocked by the time we get here. In that case, we will
 626       // make a single unnecessary pass through the logic below. This
 627       // doesn't hurt anything since we still do the trans retry.
 628 
 629       *bits |= 0x00004000;
 630 
 631       // Once the thread leaves thread_in_native_trans for another
 632       // thread state, we break out of this retry loop. We shouldn't
 633       // need this flag to prevent us from getting back here, but
 634       // sometimes paranoia is good.
 635       did_trans_retry = true;
 636 
 637       // We wait for the thread to transition to a more usable state.
 638       for (int i = 1; i <= SuspendRetryCount; i++) {
 639         // We used to do an "os::yield_all(i)" call here with the intention
 640         // that yielding would increase on each retry. However, the parameter
 641         // is ignored on Linux which means the yield didn't scale up. Waiting
 642         // on the SR_lock below provides a much more predictable scale up for
 643         // the delay. It also provides a simple/direct point to check for any
 644         // safepoint requests from the VMThread
 645 
 646         // temporarily drops SR_lock while doing wait with safepoint check
 647         // (if we're a JavaThread - the WatcherThread can also call this)
 648         // and increase delay with each retry
 649         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 650 
 651         // check the actual thread state instead of what we saved above
 652         if (thread_state() != _thread_in_native_trans) {
 653           // the thread has transitioned to another thread state so
 654           // try all the checks (except this one) one more time.
 655           do_trans_retry = true;
 656           break;
 657         }
 658       } // end retry loop
 659 
 660 
 661     }
 662   } while (do_trans_retry);
 663 
 664   *bits |= 0x00000010;
 665   return false;
 666 }
 667 
 668 // Wait for an external suspend request to complete (or be cancelled).
 669 // Returns true if the thread is externally suspended and false otherwise.
 670 //
 671 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 672                                                  uint32_t *bits) {
 673   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 674                              false /* !called_by_wait */, bits);
 675 
 676   // local flag copies to minimize SR_lock hold time
 677   bool is_suspended;
 678   bool pending;
 679   uint32_t reset_bits;
 680 
 681   // set a marker so is_ext_suspend_completed() knows we are the caller
 682   *bits |= 0x00010000;
 683 
 684   // We use reset_bits to reinitialize the bits value at the top of
 685   // each retry loop. This allows the caller to make use of any
 686   // unused bits for their own marking purposes.
 687   reset_bits = *bits;
 688 
 689   {
 690     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 691     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 692                                             delay, bits);
 693     pending = is_external_suspend();
 694   }
 695   // must release SR_lock to allow suspension to complete
 696 
 697   if (!pending) {
 698     // A cancelled suspend request is the only false return from
 699     // is_ext_suspend_completed() that keeps us from entering the
 700     // retry loop.
 701     *bits |= 0x00020000;
 702     return false;
 703   }
 704 
 705   if (is_suspended) {
 706     *bits |= 0x00040000;
 707     return true;
 708   }
 709 
 710   for (int i = 1; i <= retries; i++) {
 711     *bits = reset_bits;  // reinit to only track last retry
 712 
 713     // We used to do an "os::yield_all(i)" call here with the intention
 714     // that yielding would increase on each retry. However, the parameter
 715     // is ignored on Linux which means the yield didn't scale up. Waiting
 716     // on the SR_lock below provides a much more predictable scale up for
 717     // the delay. It also provides a simple/direct point to check for any
 718     // safepoint requests from the VMThread
 719 
 720     {
 721       MutexLocker ml(SR_lock());
 722       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 723       // can also call this)  and increase delay with each retry
 724       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 725 
 726       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 727                                               delay, bits);
 728 
 729       // It is possible for the external suspend request to be cancelled
 730       // (by a resume) before the actual suspend operation is completed.
 731       // Refresh our local copy to see if we still need to wait.
 732       pending = is_external_suspend();
 733     }
 734 
 735     if (!pending) {
 736       // A cancelled suspend request is the only false return from
 737       // is_ext_suspend_completed() that keeps us from staying in the
 738       // retry loop.
 739       *bits |= 0x00080000;
 740       return false;
 741     }
 742 
 743     if (is_suspended) {
 744       *bits |= 0x00100000;
 745       return true;
 746     }
 747   } // end retry loop
 748 
 749   // thread did not suspend after all our retries
 750   *bits |= 0x00200000;
 751   return false;
 752 }
 753 
 754 // Called from API entry points which perform stack walking. If the
 755 // associated JavaThread is the current thread, then wait_for_suspend
 756 // is not used. Otherwise, it determines if we should wait for the
 757 // "other" thread to complete external suspension. (NOTE: in future
 758 // releases the suspension mechanism should be reimplemented so this
 759 // is not necessary.)
 760 //
 761 bool
 762 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 763   if (this != JavaThread::current()) {
 764     // "other" threads require special handling.
 765     if (wait_for_suspend) {
 766       // We are allowed to wait for the external suspend to complete
 767       // so give the other thread a chance to get suspended.
 768       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 769                                            SuspendRetryDelay, bits)) {
 770         // Didn't make it so let the caller know.
 771         return false;
 772       }
 773     }
 774     // We aren't allowed to wait for the external suspend to complete
 775     // so if the other thread isn't externally suspended we need to
 776     // let the caller know.
 777     else if (!is_ext_suspend_completed_with_lock(bits)) {
 778       return false;
 779     }
 780   }
 781 
 782   return true;
 783 }
 784 
 785 #ifndef PRODUCT
 786 void JavaThread::record_jump(address target, address instr, const char* file,
 787                              int line) {
 788 
 789   // This should not need to be atomic as the only way for simultaneous
 790   // updates is via interrupts. Even then this should be rare or non-existent
 791   // and we don't care that much anyway.
 792 
 793   int index = _jmp_ring_index;
 794   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 795   _jmp_ring[index]._target = (intptr_t) target;
 796   _jmp_ring[index]._instruction = (intptr_t) instr;
 797   _jmp_ring[index]._file = file;
 798   _jmp_ring[index]._line = line;
 799 }
 800 #endif // PRODUCT
 801 
 802 void Thread::interrupt(Thread* thread) {
 803   debug_only(check_for_dangling_thread_pointer(thread);)
 804   os::interrupt(thread);
 805 }
 806 
 807 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 808   debug_only(check_for_dangling_thread_pointer(thread);)
 809   // Note:  If clear_interrupted==false, this simply fetches and
 810   // returns the value of the field osthread()->interrupted().
 811   return os::is_interrupted(thread, clear_interrupted);
 812 }
 813 
 814 
 815 // GC Support
 816 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 817   int thread_parity = _oops_do_parity;
 818   if (thread_parity != strong_roots_parity) {
 819     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 820     if (res == thread_parity) {
 821       return true;
 822     } else {
 823       guarantee(res == strong_roots_parity, "Or else what?");
 824       return false;
 825     }
 826   }
 827   return false;
 828 }
 829 
 830 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 831   active_handles()->oops_do(f);
 832   // Do oop for ThreadShadow
 833   f->do_oop((oop*)&_pending_exception);
 834   handle_area()->oops_do(f);
 835 
 836   if (MonitorInUseLists) {
 837     // When using thread local monitor lists, we scan them here,
 838     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 839     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 840   }
 841 }
 842 
 843 void Thread::metadata_handles_do(void f(Metadata*)) {
 844   // Only walk the Handles in Thread.
 845   if (metadata_handles() != NULL) {
 846     for (int i = 0; i< metadata_handles()->length(); i++) {
 847       f(metadata_handles()->at(i));
 848     }
 849   }
 850 }
 851 
 852 void Thread::print_on(outputStream* st) const {
 853   // get_priority assumes osthread initialized
 854   if (osthread() != NULL) {
 855     int os_prio;
 856     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 857       st->print("os_prio=%d ", os_prio);
 858     }
 859     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 860     ext().print_on(st);
 861     osthread()->print_on(st);
 862   }
 863   if (_threads_hazard_ptr != NULL) {
 864     st->print("_threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 865   }
 866   if (_nested_threads_hazard_ptr != NULL) {
 867     print_nested_threads_hazard_ptrs_on(st);
 868   }
 869   st->print(" ");
 870   debug_only(if (WizardMode) print_owned_locks_on(st);)
 871 }
 872 
 873 void Thread::print_nested_threads_hazard_ptrs_on(outputStream* st) const {
 874   assert(_nested_threads_hazard_ptr != NULL, "must be set to print");
 875 
 876   if (EnableThreadSMRStatistics) {
 877     st->print(", _nested_threads_hazard_ptr_cnt=%u", _nested_threads_hazard_ptr_cnt);
 878   }
 879   st->print(", _nested_threads_hazard_ptrs=");
 880   for (NestedThreadsList* node = _nested_threads_hazard_ptr; node != NULL;
 881        node = node->next()) {
 882     if (node != _nested_threads_hazard_ptr) {
 883       // First node does not need a comma-space separator.
 884       st->print(", ");
 885     }
 886     st->print(INTPTR_FORMAT, p2i(node->t_list()));
 887   }
 888 }
 889 
 890 // Thread::print_on_error() is called by fatal error handler. Don't use
 891 // any lock or allocate memory.
 892 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 893   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 894 
 895   if (is_VM_thread())                 { st->print("VMThread"); }
 896   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 897   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 898   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 899   else                                { st->print("Thread"); }
 900 
 901   if (is_Named_thread()) {
 902     st->print(" \"%s\"", name());
 903   }
 904 
 905   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 906             p2i(stack_end()), p2i(stack_base()));
 907 
 908   if (osthread()) {
 909     st->print(" [id=%d]", osthread()->thread_id());
 910   }
 911 
 912   if (_threads_hazard_ptr != NULL) {
 913     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 914   }
 915   if (_nested_threads_hazard_ptr != NULL) {
 916     print_nested_threads_hazard_ptrs_on(st);
 917   }
 918 }
 919 
 920 void Thread::print_value_on(outputStream* st) const {
 921   if (is_Named_thread()) {
 922     st->print(" \"%s\" ", name());
 923   }
 924   st->print(INTPTR_FORMAT, p2i(this));   // print address
 925 }
 926 
 927 #ifdef ASSERT
 928 void Thread::print_owned_locks_on(outputStream* st) const {
 929   Monitor *cur = _owned_locks;
 930   if (cur == NULL) {
 931     st->print(" (no locks) ");
 932   } else {
 933     st->print_cr(" Locks owned:");
 934     while (cur) {
 935       cur->print_on(st);
 936       cur = cur->next();
 937     }
 938   }
 939 }
 940 
 941 static int ref_use_count  = 0;
 942 
 943 bool Thread::owns_locks_but_compiled_lock() const {
 944   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 945     if (cur != Compile_lock) return true;
 946   }
 947   return false;
 948 }
 949 
 950 
 951 #endif
 952 
 953 #ifndef PRODUCT
 954 
 955 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 956 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 957 // no threads which allow_vm_block's are held
 958 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 959   // Check if current thread is allowed to block at a safepoint
 960   if (!(_allow_safepoint_count == 0)) {
 961     fatal("Possible safepoint reached by thread that does not allow it");
 962   }
 963   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 964     fatal("LEAF method calling lock?");
 965   }
 966 
 967 #ifdef ASSERT
 968   if (potential_vm_operation && is_Java_thread()
 969       && !Universe::is_bootstrapping()) {
 970     // Make sure we do not hold any locks that the VM thread also uses.
 971     // This could potentially lead to deadlocks
 972     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 973       // Threads_lock is special, since the safepoint synchronization will not start before this is
 974       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 975       // since it is used to transfer control between JavaThreads and the VMThread
 976       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 977       if ((cur->allow_vm_block() &&
 978            cur != Threads_lock &&
 979            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 980            cur != VMOperationRequest_lock &&
 981            cur != VMOperationQueue_lock) ||
 982            cur->rank() == Mutex::special) {
 983         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 984       }
 985     }
 986   }
 987 
 988   if (GCALotAtAllSafepoints) {
 989     // We could enter a safepoint here and thus have a gc
 990     InterfaceSupport::check_gc_alot();
 991   }
 992 #endif
 993 }
 994 #endif
 995 
 996 bool Thread::is_in_stack(address adr) const {
 997   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 998   address end = os::current_stack_pointer();
 999   // Allow non Java threads to call this without stack_base
1000   if (_stack_base == NULL) return true;
1001   if (stack_base() >= adr && adr >= end) return true;
1002 
1003   return false;
1004 }
1005 
1006 bool Thread::is_in_usable_stack(address adr) const {
1007   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1008   size_t usable_stack_size = _stack_size - stack_guard_size;
1009 
1010   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1011 }
1012 
1013 
1014 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1015 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1016 // used for compilation in the future. If that change is made, the need for these methods
1017 // should be revisited, and they should be removed if possible.
1018 
1019 bool Thread::is_lock_owned(address adr) const {
1020   return on_local_stack(adr);
1021 }
1022 
1023 bool Thread::set_as_starting_thread() {
1024   // NOTE: this must be called inside the main thread.
1025   return os::create_main_thread((JavaThread*)this);
1026 }
1027 
1028 static void initialize_class(Symbol* class_name, TRAPS) {
1029   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1030   InstanceKlass::cast(klass)->initialize(CHECK);
1031 }
1032 
1033 
1034 // Creates the initial ThreadGroup
1035 static Handle create_initial_thread_group(TRAPS) {
1036   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1037   InstanceKlass* ik = InstanceKlass::cast(k);
1038 
1039   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
1040   {
1041     JavaValue result(T_VOID);
1042     JavaCalls::call_special(&result,
1043                             system_instance,
1044                             ik,
1045                             vmSymbols::object_initializer_name(),
1046                             vmSymbols::void_method_signature(),
1047                             CHECK_NH);
1048   }
1049   Universe::set_system_thread_group(system_instance());
1050 
1051   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
1052   {
1053     JavaValue result(T_VOID);
1054     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1055     JavaCalls::call_special(&result,
1056                             main_instance,
1057                             ik,
1058                             vmSymbols::object_initializer_name(),
1059                             vmSymbols::threadgroup_string_void_signature(),
1060                             system_instance,
1061                             string,
1062                             CHECK_NH);
1063   }
1064   return main_instance;
1065 }
1066 
1067 // Creates the initial Thread
1068 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1069                                  TRAPS) {
1070   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1071   InstanceKlass* ik = InstanceKlass::cast(k);
1072   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1073 
1074   java_lang_Thread::set_thread(thread_oop(), thread);
1075   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1076   thread->set_threadObj(thread_oop());
1077 
1078   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1079 
1080   JavaValue result(T_VOID);
1081   JavaCalls::call_special(&result, thread_oop,
1082                           ik,
1083                           vmSymbols::object_initializer_name(),
1084                           vmSymbols::threadgroup_string_void_signature(),
1085                           thread_group,
1086                           string,
1087                           CHECK_NULL);
1088   return thread_oop();
1089 }
1090 
1091 char java_runtime_name[128] = "";
1092 char java_runtime_version[128] = "";
1093 
1094 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1095 static const char* get_java_runtime_name(TRAPS) {
1096   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1097                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1098   fieldDescriptor fd;
1099   bool found = k != NULL &&
1100                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1101                                                         vmSymbols::string_signature(), &fd);
1102   if (found) {
1103     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1104     if (name_oop == NULL) {
1105       return NULL;
1106     }
1107     const char* name = java_lang_String::as_utf8_string(name_oop,
1108                                                         java_runtime_name,
1109                                                         sizeof(java_runtime_name));
1110     return name;
1111   } else {
1112     return NULL;
1113   }
1114 }
1115 
1116 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1117 static const char* get_java_runtime_version(TRAPS) {
1118   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1119                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1120   fieldDescriptor fd;
1121   bool found = k != NULL &&
1122                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1123                                                         vmSymbols::string_signature(), &fd);
1124   if (found) {
1125     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1126     if (name_oop == NULL) {
1127       return NULL;
1128     }
1129     const char* name = java_lang_String::as_utf8_string(name_oop,
1130                                                         java_runtime_version,
1131                                                         sizeof(java_runtime_version));
1132     return name;
1133   } else {
1134     return NULL;
1135   }
1136 }
1137 
1138 // General purpose hook into Java code, run once when the VM is initialized.
1139 // The Java library method itself may be changed independently from the VM.
1140 static void call_postVMInitHook(TRAPS) {
1141   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1142   if (klass != NULL) {
1143     JavaValue result(T_VOID);
1144     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1145                            vmSymbols::void_method_signature(),
1146                            CHECK);
1147   }
1148 }
1149 
1150 static void reset_vm_info_property(TRAPS) {
1151   // the vm info string
1152   ResourceMark rm(THREAD);
1153   const char *vm_info = VM_Version::vm_info_string();
1154 
1155   // java.lang.System class
1156   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1157 
1158   // setProperty arguments
1159   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1160   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1161 
1162   // return value
1163   JavaValue r(T_OBJECT);
1164 
1165   // public static String setProperty(String key, String value);
1166   JavaCalls::call_static(&r,
1167                          klass,
1168                          vmSymbols::setProperty_name(),
1169                          vmSymbols::string_string_string_signature(),
1170                          key_str,
1171                          value_str,
1172                          CHECK);
1173 }
1174 
1175 
1176 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1177                                     bool daemon, TRAPS) {
1178   assert(thread_group.not_null(), "thread group should be specified");
1179   assert(threadObj() == NULL, "should only create Java thread object once");
1180 
1181   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1182   InstanceKlass* ik = InstanceKlass::cast(k);
1183   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1184 
1185   java_lang_Thread::set_thread(thread_oop(), this);
1186   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1187   set_threadObj(thread_oop());
1188 
1189   JavaValue result(T_VOID);
1190   if (thread_name != NULL) {
1191     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1192     // Thread gets assigned specified name and null target
1193     JavaCalls::call_special(&result,
1194                             thread_oop,
1195                             ik,
1196                             vmSymbols::object_initializer_name(),
1197                             vmSymbols::threadgroup_string_void_signature(),
1198                             thread_group, // Argument 1
1199                             name,         // Argument 2
1200                             THREAD);
1201   } else {
1202     // Thread gets assigned name "Thread-nnn" and null target
1203     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1204     JavaCalls::call_special(&result,
1205                             thread_oop,
1206                             ik,
1207                             vmSymbols::object_initializer_name(),
1208                             vmSymbols::threadgroup_runnable_void_signature(),
1209                             thread_group, // Argument 1
1210                             Handle(),     // Argument 2
1211                             THREAD);
1212   }
1213 
1214 
1215   if (daemon) {
1216     java_lang_Thread::set_daemon(thread_oop());
1217   }
1218 
1219   if (HAS_PENDING_EXCEPTION) {
1220     return;
1221   }
1222 
1223   Klass* group =  SystemDictionary::ThreadGroup_klass();
1224   Handle threadObj(THREAD, this->threadObj());
1225 
1226   JavaCalls::call_special(&result,
1227                           thread_group,
1228                           group,
1229                           vmSymbols::add_method_name(),
1230                           vmSymbols::thread_void_signature(),
1231                           threadObj,          // Arg 1
1232                           THREAD);
1233 }
1234 
1235 // NamedThread --  non-JavaThread subclasses with multiple
1236 // uniquely named instances should derive from this.
1237 NamedThread::NamedThread() : Thread() {
1238   _name = NULL;
1239   _processed_thread = NULL;
1240   _gc_id = GCId::undefined();
1241 }
1242 
1243 NamedThread::~NamedThread() {
1244   if (_name != NULL) {
1245     FREE_C_HEAP_ARRAY(char, _name);
1246     _name = NULL;
1247   }
1248 }
1249 
1250 void NamedThread::set_name(const char* format, ...) {
1251   guarantee(_name == NULL, "Only get to set name once.");
1252   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1253   guarantee(_name != NULL, "alloc failure");
1254   va_list ap;
1255   va_start(ap, format);
1256   jio_vsnprintf(_name, max_name_len, format, ap);
1257   va_end(ap);
1258 }
1259 
1260 void NamedThread::initialize_named_thread() {
1261   set_native_thread_name(name());
1262 }
1263 
1264 void NamedThread::print_on(outputStream* st) const {
1265   st->print("\"%s\" ", name());
1266   Thread::print_on(st);
1267   st->cr();
1268 }
1269 
1270 
1271 // ======= WatcherThread ========
1272 
1273 // The watcher thread exists to simulate timer interrupts.  It should
1274 // be replaced by an abstraction over whatever native support for
1275 // timer interrupts exists on the platform.
1276 
1277 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1278 bool WatcherThread::_startable = false;
1279 volatile bool  WatcherThread::_should_terminate = false;
1280 
1281 WatcherThread::WatcherThread() : Thread() {
1282   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1283   if (os::create_thread(this, os::watcher_thread)) {
1284     _watcher_thread = this;
1285 
1286     // Set the watcher thread to the highest OS priority which should not be
1287     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1288     // is created. The only normal thread using this priority is the reference
1289     // handler thread, which runs for very short intervals only.
1290     // If the VMThread's priority is not lower than the WatcherThread profiling
1291     // will be inaccurate.
1292     os::set_priority(this, MaxPriority);
1293     if (!DisableStartThread) {
1294       os::start_thread(this);
1295     }
1296   }
1297 }
1298 
1299 int WatcherThread::sleep() const {
1300   // The WatcherThread does not participate in the safepoint protocol
1301   // for the PeriodicTask_lock because it is not a JavaThread.
1302   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1303 
1304   if (_should_terminate) {
1305     // check for termination before we do any housekeeping or wait
1306     return 0;  // we did not sleep.
1307   }
1308 
1309   // remaining will be zero if there are no tasks,
1310   // causing the WatcherThread to sleep until a task is
1311   // enrolled
1312   int remaining = PeriodicTask::time_to_wait();
1313   int time_slept = 0;
1314 
1315   // we expect this to timeout - we only ever get unparked when
1316   // we should terminate or when a new task has been enrolled
1317   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1318 
1319   jlong time_before_loop = os::javaTimeNanos();
1320 
1321   while (true) {
1322     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1323                                             remaining);
1324     jlong now = os::javaTimeNanos();
1325 
1326     if (remaining == 0) {
1327       // if we didn't have any tasks we could have waited for a long time
1328       // consider the time_slept zero and reset time_before_loop
1329       time_slept = 0;
1330       time_before_loop = now;
1331     } else {
1332       // need to recalculate since we might have new tasks in _tasks
1333       time_slept = (int) ((now - time_before_loop) / 1000000);
1334     }
1335 
1336     // Change to task list or spurious wakeup of some kind
1337     if (timedout || _should_terminate) {
1338       break;
1339     }
1340 
1341     remaining = PeriodicTask::time_to_wait();
1342     if (remaining == 0) {
1343       // Last task was just disenrolled so loop around and wait until
1344       // another task gets enrolled
1345       continue;
1346     }
1347 
1348     remaining -= time_slept;
1349     if (remaining <= 0) {
1350       break;
1351     }
1352   }
1353 
1354   return time_slept;
1355 }
1356 
1357 void WatcherThread::run() {
1358   assert(this == watcher_thread(), "just checking");
1359 
1360   this->record_stack_base_and_size();
1361   this->set_native_thread_name(this->name());
1362   this->set_active_handles(JNIHandleBlock::allocate_block());
1363   while (true) {
1364     assert(watcher_thread() == Thread::current(), "thread consistency check");
1365     assert(watcher_thread() == this, "thread consistency check");
1366 
1367     // Calculate how long it'll be until the next PeriodicTask work
1368     // should be done, and sleep that amount of time.
1369     int time_waited = sleep();
1370 
1371     if (VMError::is_error_reported()) {
1372       // A fatal error has happened, the error handler(VMError::report_and_die)
1373       // should abort JVM after creating an error log file. However in some
1374       // rare cases, the error handler itself might deadlock. Here periodically
1375       // check for error reporting timeouts, and if it happens, just proceed to
1376       // abort the VM.
1377 
1378       // This code is in WatcherThread because WatcherThread wakes up
1379       // periodically so the fatal error handler doesn't need to do anything;
1380       // also because the WatcherThread is less likely to crash than other
1381       // threads.
1382 
1383       for (;;) {
1384         // Note: we use naked sleep in this loop because we want to avoid using
1385         // any kind of VM infrastructure which may be broken at this point.
1386         if (VMError::check_timeout()) {
1387           // We hit error reporting timeout. Error reporting was interrupted and
1388           // will be wrapping things up now (closing files etc). Give it some more
1389           // time, then quit the VM.
1390           os::naked_short_sleep(200);
1391           // Print a message to stderr.
1392           fdStream err(defaultStream::output_fd());
1393           err.print_raw_cr("# [ timer expired, abort... ]");
1394           // skip atexit/vm_exit/vm_abort hooks
1395           os::die();
1396         }
1397 
1398         // Wait a second, then recheck for timeout.
1399         os::naked_short_sleep(999);
1400       }
1401     }
1402 
1403     if (_should_terminate) {
1404       // check for termination before posting the next tick
1405       break;
1406     }
1407 
1408     PeriodicTask::real_time_tick(time_waited);
1409   }
1410 
1411   // Signal that it is terminated
1412   {
1413     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1414     _watcher_thread = NULL;
1415     Terminator_lock->notify();
1416   }
1417 }
1418 
1419 void WatcherThread::start() {
1420   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1421 
1422   if (watcher_thread() == NULL && _startable) {
1423     _should_terminate = false;
1424     // Create the single instance of WatcherThread
1425     new WatcherThread();
1426   }
1427 }
1428 
1429 void WatcherThread::make_startable() {
1430   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1431   _startable = true;
1432 }
1433 
1434 void WatcherThread::stop() {
1435   {
1436     // Follow normal safepoint aware lock enter protocol since the
1437     // WatcherThread is stopped by another JavaThread.
1438     MutexLocker ml(PeriodicTask_lock);
1439     _should_terminate = true;
1440 
1441     WatcherThread* watcher = watcher_thread();
1442     if (watcher != NULL) {
1443       // unpark the WatcherThread so it can see that it should terminate
1444       watcher->unpark();
1445     }
1446   }
1447 
1448   MutexLocker mu(Terminator_lock);
1449 
1450   while (watcher_thread() != NULL) {
1451     // This wait should make safepoint checks, wait without a timeout,
1452     // and wait as a suspend-equivalent condition.
1453     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1454                           Mutex::_as_suspend_equivalent_flag);
1455   }
1456 }
1457 
1458 void WatcherThread::unpark() {
1459   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1460   PeriodicTask_lock->notify();
1461 }
1462 
1463 void WatcherThread::print_on(outputStream* st) const {
1464   st->print("\"%s\" ", name());
1465   Thread::print_on(st);
1466   st->cr();
1467 }
1468 
1469 // ======= JavaThread ========
1470 
1471 #if INCLUDE_JVMCI
1472 
1473 jlong* JavaThread::_jvmci_old_thread_counters;
1474 
1475 bool jvmci_counters_include(JavaThread* thread) {
1476   oop threadObj = thread->threadObj();
1477   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1478 }
1479 
1480 void JavaThread::collect_counters(typeArrayOop array) {
1481   if (JVMCICounterSize > 0) {
1482     MutexLocker tl(Threads_lock);
1483     JavaThreadIteratorWithHandle jtiwh;
1484     for (int i = 0; i < array->length(); i++) {
1485       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1486     }
1487     for (; JavaThread *tp = jtiwh.next(); ) {
1488       if (jvmci_counters_include(tp)) {
1489         for (int i = 0; i < array->length(); i++) {
1490           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1491         }
1492       }
1493     }
1494   }
1495 }
1496 
1497 #endif // INCLUDE_JVMCI
1498 
1499 // A JavaThread is a normal Java thread
1500 
1501 void JavaThread::initialize() {
1502   // Initialize fields
1503 
1504   set_saved_exception_pc(NULL);
1505   set_threadObj(NULL);
1506   _anchor.clear();
1507   set_entry_point(NULL);
1508   set_jni_functions(jni_functions());
1509   set_callee_target(NULL);
1510   set_vm_result(NULL);
1511   set_vm_result_2(NULL);
1512   set_vframe_array_head(NULL);
1513   set_vframe_array_last(NULL);
1514   set_deferred_locals(NULL);
1515   set_deopt_mark(NULL);
1516   set_deopt_compiled_method(NULL);
1517   clear_must_deopt_id();
1518   set_monitor_chunks(NULL);
1519   set_next(NULL);
1520   _on_thread_list = false;
1521   set_thread_state(_thread_new);
1522   _terminated = _not_terminated;
1523   _privileged_stack_top = NULL;
1524   _array_for_gc = NULL;
1525   _suspend_equivalent = false;
1526   _in_deopt_handler = 0;
1527   _doing_unsafe_access = false;
1528   _stack_guard_state = stack_guard_unused;
1529 #if INCLUDE_JVMCI
1530   _pending_monitorenter = false;
1531   _pending_deoptimization = -1;
1532   _pending_failed_speculation = NULL;
1533   _pending_transfer_to_interpreter = false;
1534   _adjusting_comp_level = false;
1535   _jvmci._alternate_call_target = NULL;
1536   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1537   if (JVMCICounterSize > 0) {
1538     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1539     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1540   } else {
1541     _jvmci_counters = NULL;
1542   }
1543 #endif // INCLUDE_JVMCI
1544   _reserved_stack_activation = NULL;  // stack base not known yet
1545   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1546   _exception_pc  = 0;
1547   _exception_handler_pc = 0;
1548   _is_method_handle_return = 0;
1549   _jvmti_thread_state= NULL;
1550   _should_post_on_exceptions_flag = JNI_FALSE;
1551   _jvmti_get_loaded_classes_closure = NULL;
1552   _interp_only_mode    = 0;
1553   _special_runtime_exit_condition = _no_async_condition;
1554   _pending_async_exception = NULL;
1555   _thread_stat = NULL;
1556   _thread_stat = new ThreadStatistics();
1557   _blocked_on_compilation = false;
1558   _jni_active_critical = 0;
1559   _pending_jni_exception_check_fn = NULL;
1560   _do_not_unlock_if_synchronized = false;
1561   _cached_monitor_info = NULL;
1562   _parker = Parker::Allocate(this);
1563 
1564 #ifndef PRODUCT
1565   _jmp_ring_index = 0;
1566   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1567     record_jump(NULL, NULL, NULL, 0);
1568   }
1569 #endif // PRODUCT
1570 
1571   // Setup safepoint state info for this thread
1572   ThreadSafepointState::create(this);
1573 
1574   debug_only(_java_call_counter = 0);
1575 
1576   // JVMTI PopFrame support
1577   _popframe_condition = popframe_inactive;
1578   _popframe_preserved_args = NULL;
1579   _popframe_preserved_args_size = 0;
1580   _frames_to_pop_failed_realloc = 0;
1581 
1582   if (SafepointMechanism::uses_thread_local_poll()) {
1583     SafepointMechanism::initialize_header(this);
1584   }
1585 
1586   pd_initialize();
1587 }
1588 
1589 #if INCLUDE_ALL_GCS
1590 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1591 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1592 #endif // INCLUDE_ALL_GCS
1593 
1594 JavaThread::JavaThread(bool is_attaching_via_jni) :
1595                        Thread()
1596 #if INCLUDE_ALL_GCS
1597                        , _satb_mark_queue(&_satb_mark_queue_set),
1598                        _dirty_card_queue(&_dirty_card_queue_set)
1599 #endif // INCLUDE_ALL_GCS
1600 {
1601   initialize();
1602   if (is_attaching_via_jni) {
1603     _jni_attach_state = _attaching_via_jni;
1604   } else {
1605     _jni_attach_state = _not_attaching_via_jni;
1606   }
1607   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1608 }
1609 
1610 bool JavaThread::reguard_stack(address cur_sp) {
1611   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1612       && _stack_guard_state != stack_guard_reserved_disabled) {
1613     return true; // Stack already guarded or guard pages not needed.
1614   }
1615 
1616   if (register_stack_overflow()) {
1617     // For those architectures which have separate register and
1618     // memory stacks, we must check the register stack to see if
1619     // it has overflowed.
1620     return false;
1621   }
1622 
1623   // Java code never executes within the yellow zone: the latter is only
1624   // there to provoke an exception during stack banging.  If java code
1625   // is executing there, either StackShadowPages should be larger, or
1626   // some exception code in c1, c2 or the interpreter isn't unwinding
1627   // when it should.
1628   guarantee(cur_sp > stack_reserved_zone_base(),
1629             "not enough space to reguard - increase StackShadowPages");
1630   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1631     enable_stack_yellow_reserved_zone();
1632     if (reserved_stack_activation() != stack_base()) {
1633       set_reserved_stack_activation(stack_base());
1634     }
1635   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1636     set_reserved_stack_activation(stack_base());
1637     enable_stack_reserved_zone();
1638   }
1639   return true;
1640 }
1641 
1642 bool JavaThread::reguard_stack(void) {
1643   return reguard_stack(os::current_stack_pointer());
1644 }
1645 
1646 
1647 void JavaThread::block_if_vm_exited() {
1648   if (_terminated == _vm_exited) {
1649     // _vm_exited is set at safepoint, and Threads_lock is never released
1650     // we will block here forever
1651     Threads_lock->lock_without_safepoint_check();
1652     ShouldNotReachHere();
1653   }
1654 }
1655 
1656 
1657 // Remove this ifdef when C1 is ported to the compiler interface.
1658 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1659 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1660 
1661 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1662                        Thread()
1663 #if INCLUDE_ALL_GCS
1664                        , _satb_mark_queue(&_satb_mark_queue_set),
1665                        _dirty_card_queue(&_dirty_card_queue_set)
1666 #endif // INCLUDE_ALL_GCS
1667 {
1668   initialize();
1669   _jni_attach_state = _not_attaching_via_jni;
1670   set_entry_point(entry_point);
1671   // Create the native thread itself.
1672   // %note runtime_23
1673   os::ThreadType thr_type = os::java_thread;
1674   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1675                                                      os::java_thread;
1676   os::create_thread(this, thr_type, stack_sz);
1677   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1678   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1679   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1680   // the exception consists of creating the exception object & initializing it, initialization
1681   // will leave the VM via a JavaCall and then all locks must be unlocked).
1682   //
1683   // The thread is still suspended when we reach here. Thread must be explicit started
1684   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1685   // by calling Threads:add. The reason why this is not done here, is because the thread
1686   // object must be fully initialized (take a look at JVM_Start)
1687 }
1688 
1689 JavaThread::~JavaThread() {
1690 
1691   // JSR166 -- return the parker to the free list
1692   Parker::Release(_parker);
1693   _parker = NULL;
1694 
1695   // Free any remaining  previous UnrollBlock
1696   vframeArray* old_array = vframe_array_last();
1697 
1698   if (old_array != NULL) {
1699     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1700     old_array->set_unroll_block(NULL);
1701     delete old_info;
1702     delete old_array;
1703   }
1704 
1705   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1706   if (deferred != NULL) {
1707     // This can only happen if thread is destroyed before deoptimization occurs.
1708     assert(deferred->length() != 0, "empty array!");
1709     do {
1710       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1711       deferred->remove_at(0);
1712       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1713       delete dlv;
1714     } while (deferred->length() != 0);
1715     delete deferred;
1716   }
1717 
1718   // All Java related clean up happens in exit
1719   ThreadSafepointState::destroy(this);
1720   if (_thread_stat != NULL) delete _thread_stat;
1721 
1722 #if INCLUDE_JVMCI
1723   if (JVMCICounterSize > 0) {
1724     if (jvmci_counters_include(this)) {
1725       for (int i = 0; i < JVMCICounterSize; i++) {
1726         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1727       }
1728     }
1729     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1730   }
1731 #endif // INCLUDE_JVMCI
1732 }
1733 
1734 
1735 // The first routine called by a new Java thread
1736 void JavaThread::run() {
1737   // initialize thread-local alloc buffer related fields
1738   this->initialize_tlab();
1739 
1740   // used to test validity of stack trace backs
1741   this->record_base_of_stack_pointer();
1742 
1743   // Record real stack base and size.
1744   this->record_stack_base_and_size();
1745 
1746   this->create_stack_guard_pages();
1747 
1748   this->cache_global_variables();
1749 
1750   // Thread is now sufficient initialized to be handled by the safepoint code as being
1751   // in the VM. Change thread state from _thread_new to _thread_in_vm
1752   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1753 
1754   assert(JavaThread::current() == this, "sanity check");
1755   assert(!Thread::current()->owns_locks(), "sanity check");
1756 
1757   DTRACE_THREAD_PROBE(start, this);
1758 
1759   // This operation might block. We call that after all safepoint checks for a new thread has
1760   // been completed.
1761   this->set_active_handles(JNIHandleBlock::allocate_block());
1762 
1763   if (JvmtiExport::should_post_thread_life()) {
1764     JvmtiExport::post_thread_start(this);
1765   }
1766 
1767   EventThreadStart event;
1768   if (event.should_commit()) {
1769     event.set_thread(THREAD_TRACE_ID(this));
1770     event.commit();
1771   }
1772 
1773   // We call another function to do the rest so we are sure that the stack addresses used
1774   // from there will be lower than the stack base just computed
1775   thread_main_inner();
1776 
1777   // Note, thread is no longer valid at this point!
1778 }
1779 
1780 
1781 void JavaThread::thread_main_inner() {
1782   assert(JavaThread::current() == this, "sanity check");
1783   assert(this->threadObj() != NULL, "just checking");
1784 
1785   // Execute thread entry point unless this thread has a pending exception
1786   // or has been stopped before starting.
1787   // Note: Due to JVM_StopThread we can have pending exceptions already!
1788   if (!this->has_pending_exception() &&
1789       !java_lang_Thread::is_stillborn(this->threadObj())) {
1790     {
1791       ResourceMark rm(this);
1792       this->set_native_thread_name(this->get_thread_name());
1793     }
1794     HandleMark hm(this);
1795     this->entry_point()(this, this);
1796   }
1797 
1798   DTRACE_THREAD_PROBE(stop, this);
1799 
1800   this->exit(false);
1801   this->smr_delete();
1802 }
1803 
1804 
1805 static void ensure_join(JavaThread* thread) {
1806   // We do not need to grab the Threads_lock, since we are operating on ourself.
1807   Handle threadObj(thread, thread->threadObj());
1808   assert(threadObj.not_null(), "java thread object must exist");
1809   ObjectLocker lock(threadObj, thread);
1810   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1811   thread->clear_pending_exception();
1812   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1813   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1814   // Clear the native thread instance - this makes isAlive return false and allows the join()
1815   // to complete once we've done the notify_all below
1816   java_lang_Thread::set_thread(threadObj(), NULL);
1817   lock.notify_all(thread);
1818   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1819   thread->clear_pending_exception();
1820 }
1821 
1822 
1823 // For any new cleanup additions, please check to see if they need to be applied to
1824 // cleanup_failed_attach_current_thread as well.
1825 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1826   assert(this == JavaThread::current(), "thread consistency check");
1827 
1828   elapsedTimer _timer_exit_phase1;
1829   elapsedTimer _timer_exit_phase2;
1830   elapsedTimer _timer_exit_phase3;
1831   elapsedTimer _timer_exit_phase4;
1832 
1833   if (log_is_enabled(Debug, os, thread, timer)) {
1834     _timer_exit_phase1.start();
1835   }
1836 
1837   HandleMark hm(this);
1838   Handle uncaught_exception(this, this->pending_exception());
1839   this->clear_pending_exception();
1840   Handle threadObj(this, this->threadObj());
1841   assert(threadObj.not_null(), "Java thread object should be created");
1842 
1843   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1844   {
1845     EXCEPTION_MARK;
1846 
1847     CLEAR_PENDING_EXCEPTION;
1848   }
1849   if (!destroy_vm) {
1850     if (uncaught_exception.not_null()) {
1851       EXCEPTION_MARK;
1852       // Call method Thread.dispatchUncaughtException().
1853       Klass* thread_klass = SystemDictionary::Thread_klass();
1854       JavaValue result(T_VOID);
1855       JavaCalls::call_virtual(&result,
1856                               threadObj, thread_klass,
1857                               vmSymbols::dispatchUncaughtException_name(),
1858                               vmSymbols::throwable_void_signature(),
1859                               uncaught_exception,
1860                               THREAD);
1861       if (HAS_PENDING_EXCEPTION) {
1862         ResourceMark rm(this);
1863         jio_fprintf(defaultStream::error_stream(),
1864                     "\nException: %s thrown from the UncaughtExceptionHandler"
1865                     " in thread \"%s\"\n",
1866                     pending_exception()->klass()->external_name(),
1867                     get_thread_name());
1868         CLEAR_PENDING_EXCEPTION;
1869       }
1870     }
1871 
1872     // Called before the java thread exit since we want to read info
1873     // from java_lang_Thread object
1874     EventThreadEnd event;
1875     if (event.should_commit()) {
1876       event.set_thread(THREAD_TRACE_ID(this));
1877       event.commit();
1878     }
1879 
1880     // Call after last event on thread
1881     EVENT_THREAD_EXIT(this);
1882 
1883     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1884     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1885     // is deprecated anyhow.
1886     if (!is_Compiler_thread()) {
1887       int count = 3;
1888       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1889         EXCEPTION_MARK;
1890         JavaValue result(T_VOID);
1891         Klass* thread_klass = SystemDictionary::Thread_klass();
1892         JavaCalls::call_virtual(&result,
1893                                 threadObj, thread_klass,
1894                                 vmSymbols::exit_method_name(),
1895                                 vmSymbols::void_method_signature(),
1896                                 THREAD);
1897         CLEAR_PENDING_EXCEPTION;
1898       }
1899     }
1900     // notify JVMTI
1901     if (JvmtiExport::should_post_thread_life()) {
1902       JvmtiExport::post_thread_end(this);
1903     }
1904 
1905     // We have notified the agents that we are exiting, before we go on,
1906     // we must check for a pending external suspend request and honor it
1907     // in order to not surprise the thread that made the suspend request.
1908     while (true) {
1909       {
1910         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1911         if (!is_external_suspend()) {
1912           set_terminated(_thread_exiting);
1913           ThreadService::current_thread_exiting(this);
1914           break;
1915         }
1916         // Implied else:
1917         // Things get a little tricky here. We have a pending external
1918         // suspend request, but we are holding the SR_lock so we
1919         // can't just self-suspend. So we temporarily drop the lock
1920         // and then self-suspend.
1921       }
1922 
1923       ThreadBlockInVM tbivm(this);
1924       java_suspend_self();
1925 
1926       // We're done with this suspend request, but we have to loop around
1927       // and check again. Eventually we will get SR_lock without a pending
1928       // external suspend request and will be able to mark ourselves as
1929       // exiting.
1930     }
1931     // no more external suspends are allowed at this point
1932   } else {
1933     // before_exit() has already posted JVMTI THREAD_END events
1934   }
1935 
1936   if (log_is_enabled(Debug, os, thread, timer)) {
1937     _timer_exit_phase1.stop();
1938     _timer_exit_phase2.start();
1939   }
1940   // Notify waiters on thread object. This has to be done after exit() is called
1941   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1942   // group should have the destroyed bit set before waiters are notified).
1943   ensure_join(this);
1944   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1945 
1946   if (log_is_enabled(Debug, os, thread, timer)) {
1947     _timer_exit_phase2.stop();
1948     _timer_exit_phase3.start();
1949   }
1950   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1951   // held by this thread must be released. The spec does not distinguish
1952   // between JNI-acquired and regular Java monitors. We can only see
1953   // regular Java monitors here if monitor enter-exit matching is broken.
1954   //
1955   // Optionally release any monitors for regular JavaThread exits. This
1956   // is provided as a work around for any bugs in monitor enter-exit
1957   // matching. This can be expensive so it is not enabled by default.
1958   //
1959   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1960   // ObjectSynchronizer::release_monitors_owned_by_thread().
1961   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1962     // Sanity check even though JNI DetachCurrentThread() would have
1963     // returned JNI_ERR if there was a Java frame. JavaThread exit
1964     // should be done executing Java code by the time we get here.
1965     assert(!this->has_last_Java_frame(),
1966            "should not have a Java frame when detaching or exiting");
1967     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1968     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1969   }
1970 
1971   // These things needs to be done while we are still a Java Thread. Make sure that thread
1972   // is in a consistent state, in case GC happens
1973   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1974 
1975   if (active_handles() != NULL) {
1976     JNIHandleBlock* block = active_handles();
1977     set_active_handles(NULL);
1978     JNIHandleBlock::release_block(block);
1979   }
1980 
1981   if (free_handle_block() != NULL) {
1982     JNIHandleBlock* block = free_handle_block();
1983     set_free_handle_block(NULL);
1984     JNIHandleBlock::release_block(block);
1985   }
1986 
1987   // These have to be removed while this is still a valid thread.
1988   remove_stack_guard_pages();
1989 
1990   if (UseTLAB) {
1991     tlab().make_parsable(true);  // retire TLAB
1992   }
1993 
1994   if (JvmtiEnv::environments_might_exist()) {
1995     JvmtiExport::cleanup_thread(this);
1996   }
1997 
1998   // We must flush any deferred card marks before removing a thread from
1999   // the list of active threads.
2000   Universe::heap()->flush_deferred_store_barrier(this);
2001   assert(deferred_card_mark().is_empty(), "Should have been flushed");
2002 
2003 #if INCLUDE_ALL_GCS
2004   // We must flush the G1-related buffers before removing a thread
2005   // from the list of active threads. We must do this after any deferred
2006   // card marks have been flushed (above) so that any entries that are
2007   // added to the thread's dirty card queue as a result are not lost.
2008   if (UseG1GC) {
2009     flush_barrier_queues();
2010   }
2011 #endif // INCLUDE_ALL_GCS
2012 
2013   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2014     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2015     os::current_thread_id());
2016 
2017   if (log_is_enabled(Debug, os, thread, timer)) {
2018     _timer_exit_phase3.stop();
2019     _timer_exit_phase4.start();
2020   }
2021   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2022   Threads::remove(this);
2023 
2024   if (log_is_enabled(Debug, os, thread, timer)) {
2025     _timer_exit_phase4.stop();
2026     ResourceMark rm(this);
2027     log_debug(os, thread, timer)("name='%s'"
2028                                  ", exit-phase1=" JLONG_FORMAT
2029                                  ", exit-phase2=" JLONG_FORMAT
2030                                  ", exit-phase3=" JLONG_FORMAT
2031                                  ", exit-phase4=" JLONG_FORMAT,
2032                                  get_thread_name(),
2033                                  _timer_exit_phase1.milliseconds(),
2034                                  _timer_exit_phase2.milliseconds(),
2035                                  _timer_exit_phase3.milliseconds(),
2036                                  _timer_exit_phase4.milliseconds());
2037   }
2038 }
2039 
2040 #if INCLUDE_ALL_GCS
2041 // Flush G1-related queues.
2042 void JavaThread::flush_barrier_queues() {
2043   satb_mark_queue().flush();
2044   dirty_card_queue().flush();
2045 }
2046 
2047 void JavaThread::initialize_queues() {
2048   assert(!SafepointSynchronize::is_at_safepoint(),
2049          "we should not be at a safepoint");
2050 
2051   SATBMarkQueue& satb_queue = satb_mark_queue();
2052   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
2053   // The SATB queue should have been constructed with its active
2054   // field set to false.
2055   assert(!satb_queue.is_active(), "SATB queue should not be active");
2056   assert(satb_queue.is_empty(), "SATB queue should be empty");
2057   // If we are creating the thread during a marking cycle, we should
2058   // set the active field of the SATB queue to true.
2059   if (satb_queue_set.is_active()) {
2060     satb_queue.set_active(true);
2061   }
2062 
2063   DirtyCardQueue& dirty_queue = dirty_card_queue();
2064   // The dirty card queue should have been constructed with its
2065   // active field set to true.
2066   assert(dirty_queue.is_active(), "dirty card queue should be active");
2067 }
2068 #endif // INCLUDE_ALL_GCS
2069 
2070 void JavaThread::cleanup_failed_attach_current_thread() {
2071   if (active_handles() != NULL) {
2072     JNIHandleBlock* block = active_handles();
2073     set_active_handles(NULL);
2074     JNIHandleBlock::release_block(block);
2075   }
2076 
2077   if (free_handle_block() != NULL) {
2078     JNIHandleBlock* block = free_handle_block();
2079     set_free_handle_block(NULL);
2080     JNIHandleBlock::release_block(block);
2081   }
2082 
2083   // These have to be removed while this is still a valid thread.
2084   remove_stack_guard_pages();
2085 
2086   if (UseTLAB) {
2087     tlab().make_parsable(true);  // retire TLAB, if any
2088   }
2089 
2090 #if INCLUDE_ALL_GCS
2091   if (UseG1GC) {
2092     flush_barrier_queues();
2093   }
2094 #endif // INCLUDE_ALL_GCS
2095 
2096   Threads::remove(this);
2097   this->smr_delete();
2098 }
2099 
2100 
2101 
2102 
2103 JavaThread* JavaThread::active() {
2104   Thread* thread = Thread::current();
2105   if (thread->is_Java_thread()) {
2106     return (JavaThread*) thread;
2107   } else {
2108     assert(thread->is_VM_thread(), "this must be a vm thread");
2109     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2110     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2111     assert(ret->is_Java_thread(), "must be a Java thread");
2112     return ret;
2113   }
2114 }
2115 
2116 bool JavaThread::is_lock_owned(address adr) const {
2117   if (Thread::is_lock_owned(adr)) return true;
2118 
2119   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2120     if (chunk->contains(adr)) return true;
2121   }
2122 
2123   return false;
2124 }
2125 
2126 
2127 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2128   chunk->set_next(monitor_chunks());
2129   set_monitor_chunks(chunk);
2130 }
2131 
2132 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2133   guarantee(monitor_chunks() != NULL, "must be non empty");
2134   if (monitor_chunks() == chunk) {
2135     set_monitor_chunks(chunk->next());
2136   } else {
2137     MonitorChunk* prev = monitor_chunks();
2138     while (prev->next() != chunk) prev = prev->next();
2139     prev->set_next(chunk->next());
2140   }
2141 }
2142 
2143 // JVM support.
2144 
2145 // Note: this function shouldn't block if it's called in
2146 // _thread_in_native_trans state (such as from
2147 // check_special_condition_for_native_trans()).
2148 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2149 
2150   if (has_last_Java_frame() && has_async_condition()) {
2151     // If we are at a polling page safepoint (not a poll return)
2152     // then we must defer async exception because live registers
2153     // will be clobbered by the exception path. Poll return is
2154     // ok because the call we a returning from already collides
2155     // with exception handling registers and so there is no issue.
2156     // (The exception handling path kills call result registers but
2157     //  this is ok since the exception kills the result anyway).
2158 
2159     if (is_at_poll_safepoint()) {
2160       // if the code we are returning to has deoptimized we must defer
2161       // the exception otherwise live registers get clobbered on the
2162       // exception path before deoptimization is able to retrieve them.
2163       //
2164       RegisterMap map(this, false);
2165       frame caller_fr = last_frame().sender(&map);
2166       assert(caller_fr.is_compiled_frame(), "what?");
2167       if (caller_fr.is_deoptimized_frame()) {
2168         log_info(exceptions)("deferred async exception at compiled safepoint");
2169         return;
2170       }
2171     }
2172   }
2173 
2174   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2175   if (condition == _no_async_condition) {
2176     // Conditions have changed since has_special_runtime_exit_condition()
2177     // was called:
2178     // - if we were here only because of an external suspend request,
2179     //   then that was taken care of above (or cancelled) so we are done
2180     // - if we were here because of another async request, then it has
2181     //   been cleared between the has_special_runtime_exit_condition()
2182     //   and now so again we are done
2183     return;
2184   }
2185 
2186   // Check for pending async. exception
2187   if (_pending_async_exception != NULL) {
2188     // Only overwrite an already pending exception, if it is not a threadDeath.
2189     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2190 
2191       // We cannot call Exceptions::_throw(...) here because we cannot block
2192       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2193 
2194       LogTarget(Info, exceptions) lt;
2195       if (lt.is_enabled()) {
2196         ResourceMark rm;
2197         LogStream ls(lt);
2198         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2199           if (has_last_Java_frame()) {
2200             frame f = last_frame();
2201            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2202           }
2203         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2204       }
2205       _pending_async_exception = NULL;
2206       clear_has_async_exception();
2207     }
2208   }
2209 
2210   if (check_unsafe_error &&
2211       condition == _async_unsafe_access_error && !has_pending_exception()) {
2212     condition = _no_async_condition;  // done
2213     switch (thread_state()) {
2214     case _thread_in_vm: {
2215       JavaThread* THREAD = this;
2216       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2217     }
2218     case _thread_in_native: {
2219       ThreadInVMfromNative tiv(this);
2220       JavaThread* THREAD = this;
2221       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2222     }
2223     case _thread_in_Java: {
2224       ThreadInVMfromJava tiv(this);
2225       JavaThread* THREAD = this;
2226       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2227     }
2228     default:
2229       ShouldNotReachHere();
2230     }
2231   }
2232 
2233   assert(condition == _no_async_condition || has_pending_exception() ||
2234          (!check_unsafe_error && condition == _async_unsafe_access_error),
2235          "must have handled the async condition, if no exception");
2236 }
2237 
2238 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2239   //
2240   // Check for pending external suspend. Internal suspend requests do
2241   // not use handle_special_runtime_exit_condition().
2242   // If JNIEnv proxies are allowed, don't self-suspend if the target
2243   // thread is not the current thread. In older versions of jdbx, jdbx
2244   // threads could call into the VM with another thread's JNIEnv so we
2245   // can be here operating on behalf of a suspended thread (4432884).
2246   bool do_self_suspend = is_external_suspend_with_lock();
2247   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2248     //
2249     // Because thread is external suspended the safepoint code will count
2250     // thread as at a safepoint. This can be odd because we can be here
2251     // as _thread_in_Java which would normally transition to _thread_blocked
2252     // at a safepoint. We would like to mark the thread as _thread_blocked
2253     // before calling java_suspend_self like all other callers of it but
2254     // we must then observe proper safepoint protocol. (We can't leave
2255     // _thread_blocked with a safepoint in progress). However we can be
2256     // here as _thread_in_native_trans so we can't use a normal transition
2257     // constructor/destructor pair because they assert on that type of
2258     // transition. We could do something like:
2259     //
2260     // JavaThreadState state = thread_state();
2261     // set_thread_state(_thread_in_vm);
2262     // {
2263     //   ThreadBlockInVM tbivm(this);
2264     //   java_suspend_self()
2265     // }
2266     // set_thread_state(_thread_in_vm_trans);
2267     // if (safepoint) block;
2268     // set_thread_state(state);
2269     //
2270     // but that is pretty messy. Instead we just go with the way the
2271     // code has worked before and note that this is the only path to
2272     // java_suspend_self that doesn't put the thread in _thread_blocked
2273     // mode.
2274 
2275     frame_anchor()->make_walkable(this);
2276     java_suspend_self();
2277 
2278     // We might be here for reasons in addition to the self-suspend request
2279     // so check for other async requests.
2280   }
2281 
2282   if (check_asyncs) {
2283     check_and_handle_async_exceptions();
2284   }
2285 #if INCLUDE_TRACE
2286   if (is_trace_suspend()) {
2287     TRACE_SUSPEND_THREAD(this);
2288   }
2289 #endif
2290 }
2291 
2292 void JavaThread::send_thread_stop(oop java_throwable)  {
2293   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2294   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2295   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2296 
2297   // Do not throw asynchronous exceptions against the compiler thread
2298   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2299   if (!can_call_java()) return;
2300 
2301   {
2302     // Actually throw the Throwable against the target Thread - however
2303     // only if there is no thread death exception installed already.
2304     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2305       // If the topmost frame is a runtime stub, then we are calling into
2306       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2307       // must deoptimize the caller before continuing, as the compiled  exception handler table
2308       // may not be valid
2309       if (has_last_Java_frame()) {
2310         frame f = last_frame();
2311         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2312           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2313           RegisterMap reg_map(this, UseBiasedLocking);
2314           frame compiled_frame = f.sender(&reg_map);
2315           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2316             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2317           }
2318         }
2319       }
2320 
2321       // Set async. pending exception in thread.
2322       set_pending_async_exception(java_throwable);
2323 
2324       if (log_is_enabled(Info, exceptions)) {
2325          ResourceMark rm;
2326         log_info(exceptions)("Pending Async. exception installed of type: %s",
2327                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2328       }
2329       // for AbortVMOnException flag
2330       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2331     }
2332   }
2333 
2334 
2335   // Interrupt thread so it will wake up from a potential wait()
2336   Thread::interrupt(this);
2337 }
2338 
2339 // External suspension mechanism.
2340 //
2341 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2342 // to any VM_locks and it is at a transition
2343 // Self-suspension will happen on the transition out of the vm.
2344 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2345 //
2346 // Guarantees on return:
2347 //   + Target thread will not execute any new bytecode (that's why we need to
2348 //     force a safepoint)
2349 //   + Target thread will not enter any new monitors
2350 //
2351 void JavaThread::java_suspend() {
2352   ThreadsListHandle tlh;
2353   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2354     return;
2355   }
2356 
2357   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2358     if (!is_external_suspend()) {
2359       // a racing resume has cancelled us; bail out now
2360       return;
2361     }
2362 
2363     // suspend is done
2364     uint32_t debug_bits = 0;
2365     // Warning: is_ext_suspend_completed() may temporarily drop the
2366     // SR_lock to allow the thread to reach a stable thread state if
2367     // it is currently in a transient thread state.
2368     if (is_ext_suspend_completed(false /* !called_by_wait */,
2369                                  SuspendRetryDelay, &debug_bits)) {
2370       return;
2371     }
2372   }
2373 
2374   VM_ThreadSuspend vm_suspend;
2375   VMThread::execute(&vm_suspend);
2376 }
2377 
2378 // Part II of external suspension.
2379 // A JavaThread self suspends when it detects a pending external suspend
2380 // request. This is usually on transitions. It is also done in places
2381 // where continuing to the next transition would surprise the caller,
2382 // e.g., monitor entry.
2383 //
2384 // Returns the number of times that the thread self-suspended.
2385 //
2386 // Note: DO NOT call java_suspend_self() when you just want to block current
2387 //       thread. java_suspend_self() is the second stage of cooperative
2388 //       suspension for external suspend requests and should only be used
2389 //       to complete an external suspend request.
2390 //
2391 int JavaThread::java_suspend_self() {
2392   int ret = 0;
2393 
2394   // we are in the process of exiting so don't suspend
2395   if (is_exiting()) {
2396     clear_external_suspend();
2397     return ret;
2398   }
2399 
2400   assert(_anchor.walkable() ||
2401          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2402          "must have walkable stack");
2403 
2404   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2405 
2406   assert(!this->is_ext_suspended(),
2407          "a thread trying to self-suspend should not already be suspended");
2408 
2409   if (this->is_suspend_equivalent()) {
2410     // If we are self-suspending as a result of the lifting of a
2411     // suspend equivalent condition, then the suspend_equivalent
2412     // flag is not cleared until we set the ext_suspended flag so
2413     // that wait_for_ext_suspend_completion() returns consistent
2414     // results.
2415     this->clear_suspend_equivalent();
2416   }
2417 
2418   // A racing resume may have cancelled us before we grabbed SR_lock
2419   // above. Or another external suspend request could be waiting for us
2420   // by the time we return from SR_lock()->wait(). The thread
2421   // that requested the suspension may already be trying to walk our
2422   // stack and if we return now, we can change the stack out from under
2423   // it. This would be a "bad thing (TM)" and cause the stack walker
2424   // to crash. We stay self-suspended until there are no more pending
2425   // external suspend requests.
2426   while (is_external_suspend()) {
2427     ret++;
2428     this->set_ext_suspended();
2429 
2430     // _ext_suspended flag is cleared by java_resume()
2431     while (is_ext_suspended()) {
2432       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2433     }
2434   }
2435 
2436   return ret;
2437 }
2438 
2439 #ifdef ASSERT
2440 // verify the JavaThread has not yet been published in the Threads::list, and
2441 // hence doesn't need protection from concurrent access at this stage
2442 void JavaThread::verify_not_published() {
2443   ThreadsListHandle tlh;
2444   assert(!tlh.includes(this), "JavaThread shouldn't have been published yet!");
2445 }
2446 #endif
2447 
2448 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2449 // progress or when _suspend_flags is non-zero.
2450 // Current thread needs to self-suspend if there is a suspend request and/or
2451 // block if a safepoint is in progress.
2452 // Async exception ISN'T checked.
2453 // Note only the ThreadInVMfromNative transition can call this function
2454 // directly and when thread state is _thread_in_native_trans
2455 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2456   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2457 
2458   JavaThread *curJT = JavaThread::current();
2459   bool do_self_suspend = thread->is_external_suspend();
2460 
2461   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2462 
2463   // If JNIEnv proxies are allowed, don't self-suspend if the target
2464   // thread is not the current thread. In older versions of jdbx, jdbx
2465   // threads could call into the VM with another thread's JNIEnv so we
2466   // can be here operating on behalf of a suspended thread (4432884).
2467   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2468     JavaThreadState state = thread->thread_state();
2469 
2470     // We mark this thread_blocked state as a suspend-equivalent so
2471     // that a caller to is_ext_suspend_completed() won't be confused.
2472     // The suspend-equivalent state is cleared by java_suspend_self().
2473     thread->set_suspend_equivalent();
2474 
2475     // If the safepoint code sees the _thread_in_native_trans state, it will
2476     // wait until the thread changes to other thread state. There is no
2477     // guarantee on how soon we can obtain the SR_lock and complete the
2478     // self-suspend request. It would be a bad idea to let safepoint wait for
2479     // too long. Temporarily change the state to _thread_blocked to
2480     // let the VM thread know that this thread is ready for GC. The problem
2481     // of changing thread state is that safepoint could happen just after
2482     // java_suspend_self() returns after being resumed, and VM thread will
2483     // see the _thread_blocked state. We must check for safepoint
2484     // after restoring the state and make sure we won't leave while a safepoint
2485     // is in progress.
2486     thread->set_thread_state(_thread_blocked);
2487     thread->java_suspend_self();
2488     thread->set_thread_state(state);
2489 
2490     InterfaceSupport::serialize_thread_state_with_handler(thread);
2491   }
2492 
2493   SafepointMechanism::block_if_requested(curJT);
2494 
2495   if (thread->is_deopt_suspend()) {
2496     thread->clear_deopt_suspend();
2497     RegisterMap map(thread, false);
2498     frame f = thread->last_frame();
2499     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2500       f = f.sender(&map);
2501     }
2502     if (f.id() == thread->must_deopt_id()) {
2503       thread->clear_must_deopt_id();
2504       f.deoptimize(thread);
2505     } else {
2506       fatal("missed deoptimization!");
2507     }
2508   }
2509 #if INCLUDE_TRACE
2510   if (thread->is_trace_suspend()) {
2511     TRACE_SUSPEND_THREAD(thread);
2512   }
2513 #endif
2514 }
2515 
2516 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2517 // progress or when _suspend_flags is non-zero.
2518 // Current thread needs to self-suspend if there is a suspend request and/or
2519 // block if a safepoint is in progress.
2520 // Also check for pending async exception (not including unsafe access error).
2521 // Note only the native==>VM/Java barriers can call this function and when
2522 // thread state is _thread_in_native_trans.
2523 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2524   check_safepoint_and_suspend_for_native_trans(thread);
2525 
2526   if (thread->has_async_exception()) {
2527     // We are in _thread_in_native_trans state, don't handle unsafe
2528     // access error since that may block.
2529     thread->check_and_handle_async_exceptions(false);
2530   }
2531 }
2532 
2533 // This is a variant of the normal
2534 // check_special_condition_for_native_trans with slightly different
2535 // semantics for use by critical native wrappers.  It does all the
2536 // normal checks but also performs the transition back into
2537 // thread_in_Java state.  This is required so that critical natives
2538 // can potentially block and perform a GC if they are the last thread
2539 // exiting the GCLocker.
2540 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2541   check_special_condition_for_native_trans(thread);
2542 
2543   // Finish the transition
2544   thread->set_thread_state(_thread_in_Java);
2545 
2546   if (thread->do_critical_native_unlock()) {
2547     ThreadInVMfromJavaNoAsyncException tiv(thread);
2548     GCLocker::unlock_critical(thread);
2549     thread->clear_critical_native_unlock();
2550   }
2551 }
2552 
2553 // We need to guarantee the Threads_lock here, since resumes are not
2554 // allowed during safepoint synchronization
2555 // Can only resume from an external suspension
2556 void JavaThread::java_resume() {
2557   assert_locked_or_safepoint(Threads_lock);
2558 
2559   // Sanity check: thread is gone, has started exiting or the thread
2560   // was not externally suspended.
2561   ThreadsListHandle tlh;
2562   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2563     return;
2564   }
2565 
2566   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2567 
2568   clear_external_suspend();
2569 
2570   if (is_ext_suspended()) {
2571     clear_ext_suspended();
2572     SR_lock()->notify_all();
2573   }
2574 }
2575 
2576 size_t JavaThread::_stack_red_zone_size = 0;
2577 size_t JavaThread::_stack_yellow_zone_size = 0;
2578 size_t JavaThread::_stack_reserved_zone_size = 0;
2579 size_t JavaThread::_stack_shadow_zone_size = 0;
2580 
2581 void JavaThread::create_stack_guard_pages() {
2582   if (!os::uses_stack_guard_pages() ||
2583       _stack_guard_state != stack_guard_unused ||
2584       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2585       log_info(os, thread)("Stack guard page creation for thread "
2586                            UINTX_FORMAT " disabled", os::current_thread_id());
2587     return;
2588   }
2589   address low_addr = stack_end();
2590   size_t len = stack_guard_zone_size();
2591 
2592   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2593   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2594 
2595   int must_commit = os::must_commit_stack_guard_pages();
2596   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2597 
2598   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2599     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2600     return;
2601   }
2602 
2603   if (os::guard_memory((char *) low_addr, len)) {
2604     _stack_guard_state = stack_guard_enabled;
2605   } else {
2606     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2607       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2608     if (os::uncommit_memory((char *) low_addr, len)) {
2609       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2610     }
2611     return;
2612   }
2613 
2614   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2615     PTR_FORMAT "-" PTR_FORMAT ".",
2616     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2617 }
2618 
2619 void JavaThread::remove_stack_guard_pages() {
2620   assert(Thread::current() == this, "from different thread");
2621   if (_stack_guard_state == stack_guard_unused) return;
2622   address low_addr = stack_end();
2623   size_t len = stack_guard_zone_size();
2624 
2625   if (os::must_commit_stack_guard_pages()) {
2626     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2627       _stack_guard_state = stack_guard_unused;
2628     } else {
2629       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2630         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2631       return;
2632     }
2633   } else {
2634     if (_stack_guard_state == stack_guard_unused) return;
2635     if (os::unguard_memory((char *) low_addr, len)) {
2636       _stack_guard_state = stack_guard_unused;
2637     } else {
2638       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2639         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2640       return;
2641     }
2642   }
2643 
2644   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2645     PTR_FORMAT "-" PTR_FORMAT ".",
2646     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2647 }
2648 
2649 void JavaThread::enable_stack_reserved_zone() {
2650   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2651   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2652 
2653   // The base notation is from the stack's point of view, growing downward.
2654   // We need to adjust it to work correctly with guard_memory()
2655   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2656 
2657   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2658   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2659 
2660   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2661     _stack_guard_state = stack_guard_enabled;
2662   } else {
2663     warning("Attempt to guard stack reserved zone failed.");
2664   }
2665   enable_register_stack_guard();
2666 }
2667 
2668 void JavaThread::disable_stack_reserved_zone() {
2669   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2670   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2671 
2672   // Simply return if called for a thread that does not use guard pages.
2673   if (_stack_guard_state == stack_guard_unused) return;
2674 
2675   // The base notation is from the stack's point of view, growing downward.
2676   // We need to adjust it to work correctly with guard_memory()
2677   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2678 
2679   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2680     _stack_guard_state = stack_guard_reserved_disabled;
2681   } else {
2682     warning("Attempt to unguard stack reserved zone failed.");
2683   }
2684   disable_register_stack_guard();
2685 }
2686 
2687 void JavaThread::enable_stack_yellow_reserved_zone() {
2688   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2689   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2690 
2691   // The base notation is from the stacks point of view, growing downward.
2692   // We need to adjust it to work correctly with guard_memory()
2693   address base = stack_red_zone_base();
2694 
2695   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2696   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2697 
2698   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2699     _stack_guard_state = stack_guard_enabled;
2700   } else {
2701     warning("Attempt to guard stack yellow zone failed.");
2702   }
2703   enable_register_stack_guard();
2704 }
2705 
2706 void JavaThread::disable_stack_yellow_reserved_zone() {
2707   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2708   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2709 
2710   // Simply return if called for a thread that does not use guard pages.
2711   if (_stack_guard_state == stack_guard_unused) return;
2712 
2713   // The base notation is from the stacks point of view, growing downward.
2714   // We need to adjust it to work correctly with guard_memory()
2715   address base = stack_red_zone_base();
2716 
2717   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2718     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2719   } else {
2720     warning("Attempt to unguard stack yellow zone failed.");
2721   }
2722   disable_register_stack_guard();
2723 }
2724 
2725 void JavaThread::enable_stack_red_zone() {
2726   // The base notation is from the stacks point of view, growing downward.
2727   // We need to adjust it to work correctly with guard_memory()
2728   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2729   address base = stack_red_zone_base() - stack_red_zone_size();
2730 
2731   guarantee(base < stack_base(), "Error calculating stack red zone");
2732   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2733 
2734   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2735     warning("Attempt to guard stack red zone failed.");
2736   }
2737 }
2738 
2739 void JavaThread::disable_stack_red_zone() {
2740   // The base notation is from the stacks point of view, growing downward.
2741   // We need to adjust it to work correctly with guard_memory()
2742   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2743   address base = stack_red_zone_base() - stack_red_zone_size();
2744   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2745     warning("Attempt to unguard stack red zone failed.");
2746   }
2747 }
2748 
2749 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2750   // ignore is there is no stack
2751   if (!has_last_Java_frame()) return;
2752   // traverse the stack frames. Starts from top frame.
2753   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2754     frame* fr = fst.current();
2755     f(fr, fst.register_map());
2756   }
2757 }
2758 
2759 
2760 #ifndef PRODUCT
2761 // Deoptimization
2762 // Function for testing deoptimization
2763 void JavaThread::deoptimize() {
2764   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2765   StackFrameStream fst(this, UseBiasedLocking);
2766   bool deopt = false;           // Dump stack only if a deopt actually happens.
2767   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2768   // Iterate over all frames in the thread and deoptimize
2769   for (; !fst.is_done(); fst.next()) {
2770     if (fst.current()->can_be_deoptimized()) {
2771 
2772       if (only_at) {
2773         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2774         // consists of comma or carriage return separated numbers so
2775         // search for the current bci in that string.
2776         address pc = fst.current()->pc();
2777         nmethod* nm =  (nmethod*) fst.current()->cb();
2778         ScopeDesc* sd = nm->scope_desc_at(pc);
2779         char buffer[8];
2780         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2781         size_t len = strlen(buffer);
2782         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2783         while (found != NULL) {
2784           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2785               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2786             // Check that the bci found is bracketed by terminators.
2787             break;
2788           }
2789           found = strstr(found + 1, buffer);
2790         }
2791         if (!found) {
2792           continue;
2793         }
2794       }
2795 
2796       if (DebugDeoptimization && !deopt) {
2797         deopt = true; // One-time only print before deopt
2798         tty->print_cr("[BEFORE Deoptimization]");
2799         trace_frames();
2800         trace_stack();
2801       }
2802       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2803     }
2804   }
2805 
2806   if (DebugDeoptimization && deopt) {
2807     tty->print_cr("[AFTER Deoptimization]");
2808     trace_frames();
2809   }
2810 }
2811 
2812 
2813 // Make zombies
2814 void JavaThread::make_zombies() {
2815   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2816     if (fst.current()->can_be_deoptimized()) {
2817       // it is a Java nmethod
2818       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2819       nm->make_not_entrant();
2820     }
2821   }
2822 }
2823 #endif // PRODUCT
2824 
2825 
2826 void JavaThread::deoptimized_wrt_marked_nmethods() {
2827   if (!has_last_Java_frame()) return;
2828   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2829   StackFrameStream fst(this, UseBiasedLocking);
2830   for (; !fst.is_done(); fst.next()) {
2831     if (fst.current()->should_be_deoptimized()) {
2832       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2833     }
2834   }
2835 }
2836 
2837 
2838 // If the caller is a NamedThread, then remember, in the current scope,
2839 // the given JavaThread in its _processed_thread field.
2840 class RememberProcessedThread: public StackObj {
2841   NamedThread* _cur_thr;
2842  public:
2843   RememberProcessedThread(JavaThread* jthr) {
2844     Thread* thread = Thread::current();
2845     if (thread->is_Named_thread()) {
2846       _cur_thr = (NamedThread *)thread;
2847       _cur_thr->set_processed_thread(jthr);
2848     } else {
2849       _cur_thr = NULL;
2850     }
2851   }
2852 
2853   ~RememberProcessedThread() {
2854     if (_cur_thr) {
2855       _cur_thr->set_processed_thread(NULL);
2856     }
2857   }
2858 };
2859 
2860 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2861   // Verify that the deferred card marks have been flushed.
2862   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2863 
2864   // Traverse the GCHandles
2865   Thread::oops_do(f, cf);
2866 
2867   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2868 
2869   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2870          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2871 
2872   if (has_last_Java_frame()) {
2873     // Record JavaThread to GC thread
2874     RememberProcessedThread rpt(this);
2875 
2876     // Traverse the privileged stack
2877     if (_privileged_stack_top != NULL) {
2878       _privileged_stack_top->oops_do(f);
2879     }
2880 
2881     // traverse the registered growable array
2882     if (_array_for_gc != NULL) {
2883       for (int index = 0; index < _array_for_gc->length(); index++) {
2884         f->do_oop(_array_for_gc->adr_at(index));
2885       }
2886     }
2887 
2888     // Traverse the monitor chunks
2889     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2890       chunk->oops_do(f);
2891     }
2892 
2893     // Traverse the execution stack
2894     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2895       fst.current()->oops_do(f, cf, fst.register_map());
2896     }
2897   }
2898 
2899   // callee_target is never live across a gc point so NULL it here should
2900   // it still contain a methdOop.
2901 
2902   set_callee_target(NULL);
2903 
2904   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2905   // If we have deferred set_locals there might be oops waiting to be
2906   // written
2907   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2908   if (list != NULL) {
2909     for (int i = 0; i < list->length(); i++) {
2910       list->at(i)->oops_do(f);
2911     }
2912   }
2913 
2914   // Traverse instance variables at the end since the GC may be moving things
2915   // around using this function
2916   f->do_oop((oop*) &_threadObj);
2917   f->do_oop((oop*) &_vm_result);
2918   f->do_oop((oop*) &_exception_oop);
2919   f->do_oop((oop*) &_pending_async_exception);
2920 
2921   if (jvmti_thread_state() != NULL) {
2922     jvmti_thread_state()->oops_do(f);
2923   }
2924 }
2925 
2926 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2927   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2928          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2929 
2930   if (has_last_Java_frame()) {
2931     // Traverse the execution stack
2932     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2933       fst.current()->nmethods_do(cf);
2934     }
2935   }
2936 }
2937 
2938 void JavaThread::metadata_do(void f(Metadata*)) {
2939   if (has_last_Java_frame()) {
2940     // Traverse the execution stack to call f() on the methods in the stack
2941     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2942       fst.current()->metadata_do(f);
2943     }
2944   } else if (is_Compiler_thread()) {
2945     // need to walk ciMetadata in current compile tasks to keep alive.
2946     CompilerThread* ct = (CompilerThread*)this;
2947     if (ct->env() != NULL) {
2948       ct->env()->metadata_do(f);
2949     }
2950     CompileTask* task = ct->task();
2951     if (task != NULL) {
2952       task->metadata_do(f);
2953     }
2954   }
2955 }
2956 
2957 // Printing
2958 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2959   switch (_thread_state) {
2960   case _thread_uninitialized:     return "_thread_uninitialized";
2961   case _thread_new:               return "_thread_new";
2962   case _thread_new_trans:         return "_thread_new_trans";
2963   case _thread_in_native:         return "_thread_in_native";
2964   case _thread_in_native_trans:   return "_thread_in_native_trans";
2965   case _thread_in_vm:             return "_thread_in_vm";
2966   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2967   case _thread_in_Java:           return "_thread_in_Java";
2968   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2969   case _thread_blocked:           return "_thread_blocked";
2970   case _thread_blocked_trans:     return "_thread_blocked_trans";
2971   default:                        return "unknown thread state";
2972   }
2973 }
2974 
2975 #ifndef PRODUCT
2976 void JavaThread::print_thread_state_on(outputStream *st) const {
2977   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2978 };
2979 void JavaThread::print_thread_state() const {
2980   print_thread_state_on(tty);
2981 }
2982 #endif // PRODUCT
2983 
2984 // Called by Threads::print() for VM_PrintThreads operation
2985 void JavaThread::print_on(outputStream *st) const {
2986   st->print_raw("\"");
2987   st->print_raw(get_thread_name());
2988   st->print_raw("\" ");
2989   oop thread_oop = threadObj();
2990   if (thread_oop != NULL) {
2991     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2992     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2993     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2994   }
2995   Thread::print_on(st);
2996   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2997   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2998   if (thread_oop != NULL) {
2999     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3000   }
3001 #ifndef PRODUCT
3002   print_thread_state_on(st);
3003   _safepoint_state->print_on(st);
3004 #endif // PRODUCT
3005   if (is_Compiler_thread()) {
3006     CompileTask *task = ((CompilerThread*)this)->task();
3007     if (task != NULL) {
3008       st->print("   Compiling: ");
3009       task->print(st, NULL, true, false);
3010     } else {
3011       st->print("   No compile task");
3012     }
3013     st->cr();
3014   }
3015 }
3016 
3017 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3018   st->print("%s", get_thread_name_string(buf, buflen));
3019 }
3020 
3021 // Called by fatal error handler. The difference between this and
3022 // JavaThread::print() is that we can't grab lock or allocate memory.
3023 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3024   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3025   oop thread_obj = threadObj();
3026   if (thread_obj != NULL) {
3027     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3028   }
3029   st->print(" [");
3030   st->print("%s", _get_thread_state_name(_thread_state));
3031   if (osthread()) {
3032     st->print(", id=%d", osthread()->thread_id());
3033   }
3034   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3035             p2i(stack_end()), p2i(stack_base()));
3036   st->print("]");
3037 
3038   if (_threads_hazard_ptr != NULL) {
3039     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
3040   }
3041   if (_nested_threads_hazard_ptr != NULL) {
3042     print_nested_threads_hazard_ptrs_on(st);
3043   }
3044   return;
3045 }
3046 
3047 // Verification
3048 
3049 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3050 
3051 void JavaThread::verify() {
3052   // Verify oops in the thread.
3053   oops_do(&VerifyOopClosure::verify_oop, NULL);
3054 
3055   // Verify the stack frames.
3056   frames_do(frame_verify);
3057 }
3058 
3059 // CR 6300358 (sub-CR 2137150)
3060 // Most callers of this method assume that it can't return NULL but a
3061 // thread may not have a name whilst it is in the process of attaching to
3062 // the VM - see CR 6412693, and there are places where a JavaThread can be
3063 // seen prior to having it's threadObj set (eg JNI attaching threads and
3064 // if vm exit occurs during initialization). These cases can all be accounted
3065 // for such that this method never returns NULL.
3066 const char* JavaThread::get_thread_name() const {
3067 #ifdef ASSERT
3068   // early safepoints can hit while current thread does not yet have TLS
3069   if (!SafepointSynchronize::is_at_safepoint()) {
3070     Thread *cur = Thread::current();
3071     if (!(cur->is_Java_thread() && cur == this)) {
3072       // Current JavaThreads are allowed to get their own name without
3073       // the Threads_lock.
3074       assert_locked_or_safepoint(Threads_lock);
3075     }
3076   }
3077 #endif // ASSERT
3078   return get_thread_name_string();
3079 }
3080 
3081 // Returns a non-NULL representation of this thread's name, or a suitable
3082 // descriptive string if there is no set name
3083 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3084   const char* name_str;
3085   oop thread_obj = threadObj();
3086   if (thread_obj != NULL) {
3087     oop name = java_lang_Thread::name(thread_obj);
3088     if (name != NULL) {
3089       if (buf == NULL) {
3090         name_str = java_lang_String::as_utf8_string(name);
3091       } else {
3092         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3093       }
3094     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3095       name_str = "<no-name - thread is attaching>";
3096     } else {
3097       name_str = Thread::name();
3098     }
3099   } else {
3100     name_str = Thread::name();
3101   }
3102   assert(name_str != NULL, "unexpected NULL thread name");
3103   return name_str;
3104 }
3105 
3106 
3107 const char* JavaThread::get_threadgroup_name() const {
3108   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3109   oop thread_obj = threadObj();
3110   if (thread_obj != NULL) {
3111     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3112     if (thread_group != NULL) {
3113       // ThreadGroup.name can be null
3114       return java_lang_ThreadGroup::name(thread_group);
3115     }
3116   }
3117   return NULL;
3118 }
3119 
3120 const char* JavaThread::get_parent_name() const {
3121   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3122   oop thread_obj = threadObj();
3123   if (thread_obj != NULL) {
3124     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3125     if (thread_group != NULL) {
3126       oop parent = java_lang_ThreadGroup::parent(thread_group);
3127       if (parent != NULL) {
3128         // ThreadGroup.name can be null
3129         return java_lang_ThreadGroup::name(parent);
3130       }
3131     }
3132   }
3133   return NULL;
3134 }
3135 
3136 ThreadPriority JavaThread::java_priority() const {
3137   oop thr_oop = threadObj();
3138   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3139   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3140   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3141   return priority;
3142 }
3143 
3144 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3145 
3146   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3147   // Link Java Thread object <-> C++ Thread
3148 
3149   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3150   // and put it into a new Handle.  The Handle "thread_oop" can then
3151   // be used to pass the C++ thread object to other methods.
3152 
3153   // Set the Java level thread object (jthread) field of the
3154   // new thread (a JavaThread *) to C++ thread object using the
3155   // "thread_oop" handle.
3156 
3157   // Set the thread field (a JavaThread *) of the
3158   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3159 
3160   Handle thread_oop(Thread::current(),
3161                     JNIHandles::resolve_non_null(jni_thread));
3162   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3163          "must be initialized");
3164   set_threadObj(thread_oop());
3165   java_lang_Thread::set_thread(thread_oop(), this);
3166 
3167   if (prio == NoPriority) {
3168     prio = java_lang_Thread::priority(thread_oop());
3169     assert(prio != NoPriority, "A valid priority should be present");
3170   }
3171 
3172   // Push the Java priority down to the native thread; needs Threads_lock
3173   Thread::set_priority(this, prio);
3174 
3175   prepare_ext();
3176 
3177   // Add the new thread to the Threads list and set it in motion.
3178   // We must have threads lock in order to call Threads::add.
3179   // It is crucial that we do not block before the thread is
3180   // added to the Threads list for if a GC happens, then the java_thread oop
3181   // will not be visited by GC.
3182   Threads::add(this);
3183 }
3184 
3185 oop JavaThread::current_park_blocker() {
3186   // Support for JSR-166 locks
3187   oop thread_oop = threadObj();
3188   if (thread_oop != NULL &&
3189       JDK_Version::current().supports_thread_park_blocker()) {
3190     return java_lang_Thread::park_blocker(thread_oop);
3191   }
3192   return NULL;
3193 }
3194 
3195 
3196 void JavaThread::print_stack_on(outputStream* st) {
3197   if (!has_last_Java_frame()) return;
3198   ResourceMark rm;
3199   HandleMark   hm;
3200 
3201   RegisterMap reg_map(this);
3202   vframe* start_vf = last_java_vframe(&reg_map);
3203   int count = 0;
3204   for (vframe* f = start_vf; f; f = f->sender()) {
3205     if (f->is_java_frame()) {
3206       javaVFrame* jvf = javaVFrame::cast(f);
3207       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3208 
3209       // Print out lock information
3210       if (JavaMonitorsInStackTrace) {
3211         jvf->print_lock_info_on(st, count);
3212       }
3213     } else {
3214       // Ignore non-Java frames
3215     }
3216 
3217     // Bail-out case for too deep stacks
3218     count++;
3219     if (MaxJavaStackTraceDepth == count) return;
3220   }
3221 }
3222 
3223 
3224 // JVMTI PopFrame support
3225 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3226   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3227   if (in_bytes(size_in_bytes) != 0) {
3228     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3229     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3230     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3231   }
3232 }
3233 
3234 void* JavaThread::popframe_preserved_args() {
3235   return _popframe_preserved_args;
3236 }
3237 
3238 ByteSize JavaThread::popframe_preserved_args_size() {
3239   return in_ByteSize(_popframe_preserved_args_size);
3240 }
3241 
3242 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3243   int sz = in_bytes(popframe_preserved_args_size());
3244   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3245   return in_WordSize(sz / wordSize);
3246 }
3247 
3248 void JavaThread::popframe_free_preserved_args() {
3249   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3250   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3251   _popframe_preserved_args = NULL;
3252   _popframe_preserved_args_size = 0;
3253 }
3254 
3255 #ifndef PRODUCT
3256 
3257 void JavaThread::trace_frames() {
3258   tty->print_cr("[Describe stack]");
3259   int frame_no = 1;
3260   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3261     tty->print("  %d. ", frame_no++);
3262     fst.current()->print_value_on(tty, this);
3263     tty->cr();
3264   }
3265 }
3266 
3267 class PrintAndVerifyOopClosure: public OopClosure {
3268  protected:
3269   template <class T> inline void do_oop_work(T* p) {
3270     oop obj = oopDesc::load_decode_heap_oop(p);
3271     if (obj == NULL) return;
3272     tty->print(INTPTR_FORMAT ": ", p2i(p));
3273     if (oopDesc::is_oop_or_null(obj)) {
3274       if (obj->is_objArray()) {
3275         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3276       } else {
3277         obj->print();
3278       }
3279     } else {
3280       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3281     }
3282     tty->cr();
3283   }
3284  public:
3285   virtual void do_oop(oop* p) { do_oop_work(p); }
3286   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3287 };
3288 
3289 
3290 static void oops_print(frame* f, const RegisterMap *map) {
3291   PrintAndVerifyOopClosure print;
3292   f->print_value();
3293   f->oops_do(&print, NULL, (RegisterMap*)map);
3294 }
3295 
3296 // Print our all the locations that contain oops and whether they are
3297 // valid or not.  This useful when trying to find the oldest frame
3298 // where an oop has gone bad since the frame walk is from youngest to
3299 // oldest.
3300 void JavaThread::trace_oops() {
3301   tty->print_cr("[Trace oops]");
3302   frames_do(oops_print);
3303 }
3304 
3305 
3306 #ifdef ASSERT
3307 // Print or validate the layout of stack frames
3308 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3309   ResourceMark rm;
3310   PRESERVE_EXCEPTION_MARK;
3311   FrameValues values;
3312   int frame_no = 0;
3313   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3314     fst.current()->describe(values, ++frame_no);
3315     if (depth == frame_no) break;
3316   }
3317   if (validate_only) {
3318     values.validate();
3319   } else {
3320     tty->print_cr("[Describe stack layout]");
3321     values.print(this);
3322   }
3323 }
3324 #endif
3325 
3326 void JavaThread::trace_stack_from(vframe* start_vf) {
3327   ResourceMark rm;
3328   int vframe_no = 1;
3329   for (vframe* f = start_vf; f; f = f->sender()) {
3330     if (f->is_java_frame()) {
3331       javaVFrame::cast(f)->print_activation(vframe_no++);
3332     } else {
3333       f->print();
3334     }
3335     if (vframe_no > StackPrintLimit) {
3336       tty->print_cr("...<more frames>...");
3337       return;
3338     }
3339   }
3340 }
3341 
3342 
3343 void JavaThread::trace_stack() {
3344   if (!has_last_Java_frame()) return;
3345   ResourceMark rm;
3346   HandleMark   hm;
3347   RegisterMap reg_map(this);
3348   trace_stack_from(last_java_vframe(&reg_map));
3349 }
3350 
3351 
3352 #endif // PRODUCT
3353 
3354 
3355 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3356   assert(reg_map != NULL, "a map must be given");
3357   frame f = last_frame();
3358   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3359     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3360   }
3361   return NULL;
3362 }
3363 
3364 
3365 Klass* JavaThread::security_get_caller_class(int depth) {
3366   vframeStream vfst(this);
3367   vfst.security_get_caller_frame(depth);
3368   if (!vfst.at_end()) {
3369     return vfst.method()->method_holder();
3370   }
3371   return NULL;
3372 }
3373 
3374 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3375   assert(thread->is_Compiler_thread(), "must be compiler thread");
3376   CompileBroker::compiler_thread_loop();
3377 }
3378 
3379 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3380   NMethodSweeper::sweeper_loop();
3381 }
3382 
3383 // Create a CompilerThread
3384 CompilerThread::CompilerThread(CompileQueue* queue,
3385                                CompilerCounters* counters)
3386                                : JavaThread(&compiler_thread_entry) {
3387   _env   = NULL;
3388   _log   = NULL;
3389   _task  = NULL;
3390   _queue = queue;
3391   _counters = counters;
3392   _buffer_blob = NULL;
3393   _compiler = NULL;
3394 
3395   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3396   resource_area()->bias_to(mtCompiler);
3397 
3398 #ifndef PRODUCT
3399   _ideal_graph_printer = NULL;
3400 #endif
3401 }
3402 
3403 bool CompilerThread::can_call_java() const {
3404   return _compiler != NULL && _compiler->is_jvmci();
3405 }
3406 
3407 // Create sweeper thread
3408 CodeCacheSweeperThread::CodeCacheSweeperThread()
3409 : JavaThread(&sweeper_thread_entry) {
3410   _scanned_compiled_method = NULL;
3411 }
3412 
3413 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3414   JavaThread::oops_do(f, cf);
3415   if (_scanned_compiled_method != NULL && cf != NULL) {
3416     // Safepoints can occur when the sweeper is scanning an nmethod so
3417     // process it here to make sure it isn't unloaded in the middle of
3418     // a scan.
3419     cf->do_code_blob(_scanned_compiled_method);
3420   }
3421 }
3422 
3423 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3424   JavaThread::nmethods_do(cf);
3425   if (_scanned_compiled_method != NULL && cf != NULL) {
3426     // Safepoints can occur when the sweeper is scanning an nmethod so
3427     // process it here to make sure it isn't unloaded in the middle of
3428     // a scan.
3429     cf->do_code_blob(_scanned_compiled_method);
3430   }
3431 }
3432 
3433 
3434 // ======= Threads ========
3435 
3436 // The Threads class links together all active threads, and provides
3437 // operations over all threads. It is protected by the Threads_lock,
3438 // which is also used in other global contexts like safepointing.
3439 // ThreadsListHandles are used to safely perform operations on one
3440 // or more threads without the risk of the thread exiting during the
3441 // operation.
3442 //
3443 // Note: The Threads_lock is currently more widely used than we
3444 // would like. We are actively migrating Threads_lock uses to other
3445 // mechanisms in order to reduce Threads_lock contention.
3446 
3447 JavaThread* Threads::_thread_list = NULL;
3448 int         Threads::_number_of_threads = 0;
3449 int         Threads::_number_of_non_daemon_threads = 0;
3450 int         Threads::_return_code = 0;
3451 int         Threads::_thread_claim_parity = 0;
3452 size_t      JavaThread::_stack_size_at_create = 0;
3453 
3454 #ifdef ASSERT
3455 bool        Threads::_vm_complete = false;
3456 #endif
3457 
3458 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3459   Prefetch::read((void*)addr, prefetch_interval);
3460   return *addr;
3461 }
3462 
3463 // Possibly the ugliest for loop the world has seen. C++ does not allow
3464 // multiple types in the declaration section of the for loop. In this case
3465 // we are only dealing with pointers and hence can cast them. It looks ugly
3466 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3467 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3468     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3469              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3470              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3471              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3472              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3473          MACRO_current_p != MACRO_end;                                                                                    \
3474          MACRO_current_p++,                                                                                               \
3475              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3476 
3477 // All JavaThreads
3478 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3479 
3480 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3481 void Threads::threads_do(ThreadClosure* tc) {
3482   assert_locked_or_safepoint(Threads_lock);
3483   // ALL_JAVA_THREADS iterates through all JavaThreads
3484   ALL_JAVA_THREADS(p) {
3485     tc->do_thread(p);
3486   }
3487   // Someday we could have a table or list of all non-JavaThreads.
3488   // For now, just manually iterate through them.
3489   tc->do_thread(VMThread::vm_thread());
3490   Universe::heap()->gc_threads_do(tc);
3491   WatcherThread *wt = WatcherThread::watcher_thread();
3492   // Strictly speaking, the following NULL check isn't sufficient to make sure
3493   // the data for WatcherThread is still valid upon being examined. However,
3494   // considering that WatchThread terminates when the VM is on the way to
3495   // exit at safepoint, the chance of the above is extremely small. The right
3496   // way to prevent termination of WatcherThread would be to acquire
3497   // Terminator_lock, but we can't do that without violating the lock rank
3498   // checking in some cases.
3499   if (wt != NULL) {
3500     tc->do_thread(wt);
3501   }
3502 
3503   // If CompilerThreads ever become non-JavaThreads, add them here
3504 }
3505 
3506 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3507   int cp = Threads::thread_claim_parity();
3508   ALL_JAVA_THREADS(p) {
3509     if (p->claim_oops_do(is_par, cp)) {
3510       tc->do_thread(p);
3511     }
3512   }
3513   VMThread* vmt = VMThread::vm_thread();
3514   if (vmt->claim_oops_do(is_par, cp)) {
3515     tc->do_thread(vmt);
3516   }
3517 }
3518 
3519 // The system initialization in the library has three phases.
3520 //
3521 // Phase 1: java.lang.System class initialization
3522 //     java.lang.System is a primordial class loaded and initialized
3523 //     by the VM early during startup.  java.lang.System.<clinit>
3524 //     only does registerNatives and keeps the rest of the class
3525 //     initialization work later until thread initialization completes.
3526 //
3527 //     System.initPhase1 initializes the system properties, the static
3528 //     fields in, out, and err. Set up java signal handlers, OS-specific
3529 //     system settings, and thread group of the main thread.
3530 static void call_initPhase1(TRAPS) {
3531   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3532   JavaValue result(T_VOID);
3533   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3534                                          vmSymbols::void_method_signature(), CHECK);
3535 }
3536 
3537 // Phase 2. Module system initialization
3538 //     This will initialize the module system.  Only java.base classes
3539 //     can be loaded until phase 2 completes.
3540 //
3541 //     Call System.initPhase2 after the compiler initialization and jsr292
3542 //     classes get initialized because module initialization runs a lot of java
3543 //     code, that for performance reasons, should be compiled.  Also, this will
3544 //     enable the startup code to use lambda and other language features in this
3545 //     phase and onward.
3546 //
3547 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3548 static void call_initPhase2(TRAPS) {
3549   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3550 
3551   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3552 
3553   JavaValue result(T_INT);
3554   JavaCallArguments args;
3555   args.push_int(DisplayVMOutputToStderr);
3556   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3557   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3558                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3559   if (result.get_jint() != JNI_OK) {
3560     vm_exit_during_initialization(); // no message or exception
3561   }
3562 
3563   universe_post_module_init();
3564 }
3565 
3566 // Phase 3. final setup - set security manager, system class loader and TCCL
3567 //
3568 //     This will instantiate and set the security manager, set the system class
3569 //     loader as well as the thread context class loader.  The security manager
3570 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3571 //     other modules or the application's classpath.
3572 static void call_initPhase3(TRAPS) {
3573   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3574   JavaValue result(T_VOID);
3575   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3576                                          vmSymbols::void_method_signature(), CHECK);
3577 }
3578 
3579 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3580   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3581 
3582   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3583     create_vm_init_libraries();
3584   }
3585 
3586   initialize_class(vmSymbols::java_lang_String(), CHECK);
3587 
3588   // Inject CompactStrings value after the static initializers for String ran.
3589   java_lang_String::set_compact_strings(CompactStrings);
3590 
3591   // Initialize java_lang.System (needed before creating the thread)
3592   initialize_class(vmSymbols::java_lang_System(), CHECK);
3593   // The VM creates & returns objects of this class. Make sure it's initialized.
3594   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3595   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3596   Handle thread_group = create_initial_thread_group(CHECK);
3597   Universe::set_main_thread_group(thread_group());
3598   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3599   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3600   main_thread->set_threadObj(thread_object);
3601   // Set thread status to running since main thread has
3602   // been started and running.
3603   java_lang_Thread::set_thread_status(thread_object,
3604                                       java_lang_Thread::RUNNABLE);
3605 
3606   // The VM creates objects of this class.
3607   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3608 
3609   // The VM preresolves methods to these classes. Make sure that they get initialized
3610   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3611   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3612 
3613   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3614   call_initPhase1(CHECK);
3615 
3616   // get the Java runtime name after java.lang.System is initialized
3617   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3618   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3619 
3620   // an instance of OutOfMemory exception has been allocated earlier
3621   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3622   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3623   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3624   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3625   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3626   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3627   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3628   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3629 }
3630 
3631 void Threads::initialize_jsr292_core_classes(TRAPS) {
3632   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3633 
3634   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3635   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3636   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3637   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3638 }
3639 
3640 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3641   extern void JDK_Version_init();
3642 
3643   // Preinitialize version info.
3644   VM_Version::early_initialize();
3645 
3646   // Check version
3647   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3648 
3649   // Initialize library-based TLS
3650   ThreadLocalStorage::init();
3651 
3652   // Initialize the output stream module
3653   ostream_init();
3654 
3655   // Process java launcher properties.
3656   Arguments::process_sun_java_launcher_properties(args);
3657 
3658   // Initialize the os module
3659   os::init();
3660 
3661   // Record VM creation timing statistics
3662   TraceVmCreationTime create_vm_timer;
3663   create_vm_timer.start();
3664 
3665   // Initialize system properties.
3666   Arguments::init_system_properties();
3667 
3668   // So that JDK version can be used as a discriminator when parsing arguments
3669   JDK_Version_init();
3670 
3671   // Update/Initialize System properties after JDK version number is known
3672   Arguments::init_version_specific_system_properties();
3673 
3674   // Make sure to initialize log configuration *before* parsing arguments
3675   LogConfiguration::initialize(create_vm_timer.begin_time());
3676 
3677   // Parse arguments
3678   // Note: this internally calls os::init_container_support()
3679   jint parse_result = Arguments::parse(args);
3680   if (parse_result != JNI_OK) return parse_result;
3681 
3682   os::init_before_ergo();
3683 
3684   jint ergo_result = Arguments::apply_ergo();
3685   if (ergo_result != JNI_OK) return ergo_result;
3686 
3687   // Final check of all ranges after ergonomics which may change values.
3688   if (!CommandLineFlagRangeList::check_ranges()) {
3689     return JNI_EINVAL;
3690   }
3691 
3692   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3693   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3694   if (!constraint_result) {
3695     return JNI_EINVAL;
3696   }
3697 
3698   CommandLineFlagWriteableList::mark_startup();
3699 
3700   if (PauseAtStartup) {
3701     os::pause();
3702   }
3703 
3704   HOTSPOT_VM_INIT_BEGIN();
3705 
3706   // Timing (must come after argument parsing)
3707   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3708 
3709   // Initialize the os module after parsing the args
3710   jint os_init_2_result = os::init_2();
3711   if (os_init_2_result != JNI_OK) return os_init_2_result;
3712 
3713   SafepointMechanism::initialize();
3714 
3715   jint adjust_after_os_result = Arguments::adjust_after_os();
3716   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3717 
3718   // Initialize output stream logging
3719   ostream_init_log();
3720 
3721   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3722   // Must be before create_vm_init_agents()
3723   if (Arguments::init_libraries_at_startup()) {
3724     convert_vm_init_libraries_to_agents();
3725   }
3726 
3727   // Launch -agentlib/-agentpath and converted -Xrun agents
3728   if (Arguments::init_agents_at_startup()) {
3729     create_vm_init_agents();
3730   }
3731 
3732   // Initialize Threads state
3733   _thread_list = NULL;
3734   _number_of_threads = 0;
3735   _number_of_non_daemon_threads = 0;
3736 
3737   // Initialize global data structures and create system classes in heap
3738   vm_init_globals();
3739 
3740 #if INCLUDE_JVMCI
3741   if (JVMCICounterSize > 0) {
3742     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3743     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3744   } else {
3745     JavaThread::_jvmci_old_thread_counters = NULL;
3746   }
3747 #endif // INCLUDE_JVMCI
3748 
3749   // Attach the main thread to this os thread
3750   JavaThread* main_thread = new JavaThread();
3751   main_thread->set_thread_state(_thread_in_vm);
3752   main_thread->initialize_thread_current();
3753   // must do this before set_active_handles
3754   main_thread->record_stack_base_and_size();
3755   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3756 
3757   if (!main_thread->set_as_starting_thread()) {
3758     vm_shutdown_during_initialization(
3759                                       "Failed necessary internal allocation. Out of swap space");
3760     main_thread->smr_delete();
3761     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3762     return JNI_ENOMEM;
3763   }
3764 
3765   // Enable guard page *after* os::create_main_thread(), otherwise it would
3766   // crash Linux VM, see notes in os_linux.cpp.
3767   main_thread->create_stack_guard_pages();
3768 
3769   // Initialize Java-Level synchronization subsystem
3770   ObjectMonitor::Initialize();
3771 
3772   // Initialize global modules
3773   jint status = init_globals();
3774   if (status != JNI_OK) {
3775     main_thread->smr_delete();
3776     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3777     return status;
3778   }
3779 
3780   if (TRACE_INITIALIZE() != JNI_OK) {
3781     vm_exit_during_initialization("Failed to initialize tracing backend");
3782   }
3783 
3784   // Should be done after the heap is fully created
3785   main_thread->cache_global_variables();
3786 
3787   HandleMark hm;
3788 
3789   { MutexLocker mu(Threads_lock);
3790     Threads::add(main_thread);
3791   }
3792 
3793   // Any JVMTI raw monitors entered in onload will transition into
3794   // real raw monitor. VM is setup enough here for raw monitor enter.
3795   JvmtiExport::transition_pending_onload_raw_monitors();
3796 
3797   // Create the VMThread
3798   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3799 
3800   VMThread::create();
3801     Thread* vmthread = VMThread::vm_thread();
3802 
3803     if (!os::create_thread(vmthread, os::vm_thread)) {
3804       vm_exit_during_initialization("Cannot create VM thread. "
3805                                     "Out of system resources.");
3806     }
3807 
3808     // Wait for the VM thread to become ready, and VMThread::run to initialize
3809     // Monitors can have spurious returns, must always check another state flag
3810     {
3811       MutexLocker ml(Notify_lock);
3812       os::start_thread(vmthread);
3813       while (vmthread->active_handles() == NULL) {
3814         Notify_lock->wait();
3815       }
3816     }
3817   }
3818 
3819   assert(Universe::is_fully_initialized(), "not initialized");
3820   if (VerifyDuringStartup) {
3821     // Make sure we're starting with a clean slate.
3822     VM_Verify verify_op;
3823     VMThread::execute(&verify_op);
3824   }
3825 
3826   Thread* THREAD = Thread::current();
3827 
3828   // Always call even when there are not JVMTI environments yet, since environments
3829   // may be attached late and JVMTI must track phases of VM execution
3830   JvmtiExport::enter_early_start_phase();
3831 
3832   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3833   JvmtiExport::post_early_vm_start();
3834 
3835   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3836 
3837   // We need this for ClassDataSharing - the initial vm.info property is set
3838   // with the default value of CDS "sharing" which may be reset through
3839   // command line options.
3840   reset_vm_info_property(CHECK_JNI_ERR);
3841 
3842   quicken_jni_functions();
3843 
3844   // No more stub generation allowed after that point.
3845   StubCodeDesc::freeze();
3846 
3847   // Set flag that basic initialization has completed. Used by exceptions and various
3848   // debug stuff, that does not work until all basic classes have been initialized.
3849   set_init_completed();
3850 
3851   LogConfiguration::post_initialize();
3852   Metaspace::post_initialize();
3853 
3854   HOTSPOT_VM_INIT_END();
3855 
3856   // record VM initialization completion time
3857 #if INCLUDE_MANAGEMENT
3858   Management::record_vm_init_completed();
3859 #endif // INCLUDE_MANAGEMENT
3860 
3861   // Signal Dispatcher needs to be started before VMInit event is posted
3862   os::signal_init(CHECK_JNI_ERR);
3863 
3864   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3865   if (!DisableAttachMechanism) {
3866     AttachListener::vm_start();
3867     if (StartAttachListener || AttachListener::init_at_startup()) {
3868       AttachListener::init();
3869     }
3870   }
3871 
3872   // Launch -Xrun agents
3873   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3874   // back-end can launch with -Xdebug -Xrunjdwp.
3875   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3876     create_vm_init_libraries();
3877   }
3878 
3879   if (CleanChunkPoolAsync) {
3880     Chunk::start_chunk_pool_cleaner_task();
3881   }
3882 
3883   // initialize compiler(s)
3884 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3885   CompileBroker::compilation_init(CHECK_JNI_ERR);
3886 #endif
3887 
3888   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3889   // It is done after compilers are initialized, because otherwise compilations of
3890   // signature polymorphic MH intrinsics can be missed
3891   // (see SystemDictionary::find_method_handle_intrinsic).
3892   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3893 
3894   // This will initialize the module system.  Only java.base classes can be
3895   // loaded until phase 2 completes
3896   call_initPhase2(CHECK_JNI_ERR);
3897 
3898   // Always call even when there are not JVMTI environments yet, since environments
3899   // may be attached late and JVMTI must track phases of VM execution
3900   JvmtiExport::enter_start_phase();
3901 
3902   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3903   JvmtiExport::post_vm_start();
3904 
3905   // Final system initialization including security manager and system class loader
3906   call_initPhase3(CHECK_JNI_ERR);
3907 
3908   // cache the system and platform class loaders
3909   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3910 
3911 #if INCLUDE_JVMCI
3912   if (EnableJVMCI) {
3913     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3914     // The JVMCI Java initialization code will read this flag and
3915     // do the printing if it's set.
3916     bool init = JVMCIPrintProperties;
3917 
3918     if (!init) {
3919       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3920       // compilations via JVMCI will not actually block until JVMCI is initialized.
3921       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3922     }
3923 
3924     if (init) {
3925       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3926     }
3927   }
3928 #endif
3929 
3930   // Always call even when there are not JVMTI environments yet, since environments
3931   // may be attached late and JVMTI must track phases of VM execution
3932   JvmtiExport::enter_live_phase();
3933 
3934   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3935   JvmtiExport::post_vm_initialized();
3936 
3937   if (TRACE_START() != JNI_OK) {
3938     vm_exit_during_initialization("Failed to start tracing backend.");
3939   }
3940 
3941 #if INCLUDE_MANAGEMENT
3942   Management::initialize(THREAD);
3943 
3944   if (HAS_PENDING_EXCEPTION) {
3945     // management agent fails to start possibly due to
3946     // configuration problem and is responsible for printing
3947     // stack trace if appropriate. Simply exit VM.
3948     vm_exit(1);
3949   }
3950 #endif // INCLUDE_MANAGEMENT
3951 
3952   if (MemProfiling)                   MemProfiler::engage();
3953   StatSampler::engage();
3954   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3955 
3956   BiasedLocking::init();
3957 
3958 #if INCLUDE_RTM_OPT
3959   RTMLockingCounters::init();
3960 #endif
3961 
3962   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3963     call_postVMInitHook(THREAD);
3964     // The Java side of PostVMInitHook.run must deal with all
3965     // exceptions and provide means of diagnosis.
3966     if (HAS_PENDING_EXCEPTION) {
3967       CLEAR_PENDING_EXCEPTION;
3968     }
3969   }
3970 
3971   {
3972     MutexLocker ml(PeriodicTask_lock);
3973     // Make sure the WatcherThread can be started by WatcherThread::start()
3974     // or by dynamic enrollment.
3975     WatcherThread::make_startable();
3976     // Start up the WatcherThread if there are any periodic tasks
3977     // NOTE:  All PeriodicTasks should be registered by now. If they
3978     //   aren't, late joiners might appear to start slowly (we might
3979     //   take a while to process their first tick).
3980     if (PeriodicTask::num_tasks() > 0) {
3981       WatcherThread::start();
3982     }
3983   }
3984 
3985   create_vm_timer.end();
3986 #ifdef ASSERT
3987   _vm_complete = true;
3988 #endif
3989 
3990   if (DumpSharedSpaces) {
3991     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3992     ShouldNotReachHere();
3993   }
3994 
3995   return JNI_OK;
3996 }
3997 
3998 // type for the Agent_OnLoad and JVM_OnLoad entry points
3999 extern "C" {
4000   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4001 }
4002 // Find a command line agent library and return its entry point for
4003 //         -agentlib:  -agentpath:   -Xrun
4004 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4005 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4006                                     const char *on_load_symbols[],
4007                                     size_t num_symbol_entries) {
4008   OnLoadEntry_t on_load_entry = NULL;
4009   void *library = NULL;
4010 
4011   if (!agent->valid()) {
4012     char buffer[JVM_MAXPATHLEN];
4013     char ebuf[1024] = "";
4014     const char *name = agent->name();
4015     const char *msg = "Could not find agent library ";
4016 
4017     // First check to see if agent is statically linked into executable
4018     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4019       library = agent->os_lib();
4020     } else if (agent->is_absolute_path()) {
4021       library = os::dll_load(name, ebuf, sizeof ebuf);
4022       if (library == NULL) {
4023         const char *sub_msg = " in absolute path, with error: ";
4024         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4025         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4026         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4027         // If we can't find the agent, exit.
4028         vm_exit_during_initialization(buf, NULL);
4029         FREE_C_HEAP_ARRAY(char, buf);
4030       }
4031     } else {
4032       // Try to load the agent from the standard dll directory
4033       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4034                              name)) {
4035         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4036       }
4037       if (library == NULL) { // Try the library path directory.
4038         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4039           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4040         }
4041         if (library == NULL) {
4042           const char *sub_msg = " on the library path, with error: ";
4043           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4044 
4045           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4046                        strlen(ebuf) + strlen(sub_msg2) + 1;
4047           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4048           if (!agent->is_instrument_lib()) {
4049             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4050           } else {
4051             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4052           }
4053           // If we can't find the agent, exit.
4054           vm_exit_during_initialization(buf, NULL);
4055           FREE_C_HEAP_ARRAY(char, buf);
4056         }
4057       }
4058     }
4059     agent->set_os_lib(library);
4060     agent->set_valid();
4061   }
4062 
4063   // Find the OnLoad function.
4064   on_load_entry =
4065     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4066                                                           false,
4067                                                           on_load_symbols,
4068                                                           num_symbol_entries));
4069   return on_load_entry;
4070 }
4071 
4072 // Find the JVM_OnLoad entry point
4073 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4074   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4075   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4076 }
4077 
4078 // Find the Agent_OnLoad entry point
4079 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4080   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4081   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4082 }
4083 
4084 // For backwards compatibility with -Xrun
4085 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4086 // treated like -agentpath:
4087 // Must be called before agent libraries are created
4088 void Threads::convert_vm_init_libraries_to_agents() {
4089   AgentLibrary* agent;
4090   AgentLibrary* next;
4091 
4092   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4093     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4094     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4095 
4096     // If there is an JVM_OnLoad function it will get called later,
4097     // otherwise see if there is an Agent_OnLoad
4098     if (on_load_entry == NULL) {
4099       on_load_entry = lookup_agent_on_load(agent);
4100       if (on_load_entry != NULL) {
4101         // switch it to the agent list -- so that Agent_OnLoad will be called,
4102         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4103         Arguments::convert_library_to_agent(agent);
4104       } else {
4105         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4106       }
4107     }
4108   }
4109 }
4110 
4111 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4112 // Invokes Agent_OnLoad
4113 // Called very early -- before JavaThreads exist
4114 void Threads::create_vm_init_agents() {
4115   extern struct JavaVM_ main_vm;
4116   AgentLibrary* agent;
4117 
4118   JvmtiExport::enter_onload_phase();
4119 
4120   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4121     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4122 
4123     if (on_load_entry != NULL) {
4124       // Invoke the Agent_OnLoad function
4125       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4126       if (err != JNI_OK) {
4127         vm_exit_during_initialization("agent library failed to init", agent->name());
4128       }
4129     } else {
4130       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4131     }
4132   }
4133   JvmtiExport::enter_primordial_phase();
4134 }
4135 
4136 extern "C" {
4137   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4138 }
4139 
4140 void Threads::shutdown_vm_agents() {
4141   // Send any Agent_OnUnload notifications
4142   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4143   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4144   extern struct JavaVM_ main_vm;
4145   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4146 
4147     // Find the Agent_OnUnload function.
4148     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4149                                                    os::find_agent_function(agent,
4150                                                    false,
4151                                                    on_unload_symbols,
4152                                                    num_symbol_entries));
4153 
4154     // Invoke the Agent_OnUnload function
4155     if (unload_entry != NULL) {
4156       JavaThread* thread = JavaThread::current();
4157       ThreadToNativeFromVM ttn(thread);
4158       HandleMark hm(thread);
4159       (*unload_entry)(&main_vm);
4160     }
4161   }
4162 }
4163 
4164 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4165 // Invokes JVM_OnLoad
4166 void Threads::create_vm_init_libraries() {
4167   extern struct JavaVM_ main_vm;
4168   AgentLibrary* agent;
4169 
4170   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4171     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4172 
4173     if (on_load_entry != NULL) {
4174       // Invoke the JVM_OnLoad function
4175       JavaThread* thread = JavaThread::current();
4176       ThreadToNativeFromVM ttn(thread);
4177       HandleMark hm(thread);
4178       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4179       if (err != JNI_OK) {
4180         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4181       }
4182     } else {
4183       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4184     }
4185   }
4186 }
4187 
4188 
4189 // Last thread running calls java.lang.Shutdown.shutdown()
4190 void JavaThread::invoke_shutdown_hooks() {
4191   HandleMark hm(this);
4192 
4193   // We could get here with a pending exception, if so clear it now.
4194   if (this->has_pending_exception()) {
4195     this->clear_pending_exception();
4196   }
4197 
4198   EXCEPTION_MARK;
4199   Klass* shutdown_klass =
4200     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4201                                       THREAD);
4202   if (shutdown_klass != NULL) {
4203     // SystemDictionary::resolve_or_null will return null if there was
4204     // an exception.  If we cannot load the Shutdown class, just don't
4205     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4206     // and finalizers (if runFinalizersOnExit is set) won't be run.
4207     // Note that if a shutdown hook was registered or runFinalizersOnExit
4208     // was called, the Shutdown class would have already been loaded
4209     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4210     JavaValue result(T_VOID);
4211     JavaCalls::call_static(&result,
4212                            shutdown_klass,
4213                            vmSymbols::shutdown_method_name(),
4214                            vmSymbols::void_method_signature(),
4215                            THREAD);
4216   }
4217   CLEAR_PENDING_EXCEPTION;
4218 }
4219 
4220 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4221 // the program falls off the end of main(). Another VM exit path is through
4222 // vm_exit() when the program calls System.exit() to return a value or when
4223 // there is a serious error in VM. The two shutdown paths are not exactly
4224 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4225 // and VM_Exit op at VM level.
4226 //
4227 // Shutdown sequence:
4228 //   + Shutdown native memory tracking if it is on
4229 //   + Wait until we are the last non-daemon thread to execute
4230 //     <-- every thing is still working at this moment -->
4231 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4232 //        shutdown hooks, run finalizers if finalization-on-exit
4233 //   + Call before_exit(), prepare for VM exit
4234 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4235 //        currently the only user of this mechanism is File.deleteOnExit())
4236 //      > stop StatSampler, watcher thread, CMS threads,
4237 //        post thread end and vm death events to JVMTI,
4238 //        stop signal thread
4239 //   + Call JavaThread::exit(), it will:
4240 //      > release JNI handle blocks, remove stack guard pages
4241 //      > remove this thread from Threads list
4242 //     <-- no more Java code from this thread after this point -->
4243 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4244 //     the compiler threads at safepoint
4245 //     <-- do not use anything that could get blocked by Safepoint -->
4246 //   + Disable tracing at JNI/JVM barriers
4247 //   + Set _vm_exited flag for threads that are still running native code
4248 //   + Delete this thread
4249 //   + Call exit_globals()
4250 //      > deletes tty
4251 //      > deletes PerfMemory resources
4252 //   + Return to caller
4253 
4254 bool Threads::destroy_vm() {
4255   JavaThread* thread = JavaThread::current();
4256 
4257 #ifdef ASSERT
4258   _vm_complete = false;
4259 #endif
4260   // Wait until we are the last non-daemon thread to execute
4261   { MutexLocker nu(Threads_lock);
4262     while (Threads::number_of_non_daemon_threads() > 1)
4263       // This wait should make safepoint checks, wait without a timeout,
4264       // and wait as a suspend-equivalent condition.
4265       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4266                          Mutex::_as_suspend_equivalent_flag);
4267   }
4268 
4269   // Hang forever on exit if we are reporting an error.
4270   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4271     os::infinite_sleep();
4272   }
4273   os::wait_for_keypress_at_exit();
4274 
4275   // run Java level shutdown hooks
4276   thread->invoke_shutdown_hooks();
4277 
4278   before_exit(thread);
4279 
4280   thread->exit(true);
4281 
4282   // Stop VM thread.
4283   {
4284     // 4945125 The vm thread comes to a safepoint during exit.
4285     // GC vm_operations can get caught at the safepoint, and the
4286     // heap is unparseable if they are caught. Grab the Heap_lock
4287     // to prevent this. The GC vm_operations will not be able to
4288     // queue until after the vm thread is dead. After this point,
4289     // we'll never emerge out of the safepoint before the VM exits.
4290 
4291     MutexLocker ml(Heap_lock);
4292 
4293     VMThread::wait_for_vm_thread_exit();
4294     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4295     VMThread::destroy();
4296   }
4297 
4298   // clean up ideal graph printers
4299 #if defined(COMPILER2) && !defined(PRODUCT)
4300   IdealGraphPrinter::clean_up();
4301 #endif
4302 
4303   // Now, all Java threads are gone except daemon threads. Daemon threads
4304   // running Java code or in VM are stopped by the Safepoint. However,
4305   // daemon threads executing native code are still running.  But they
4306   // will be stopped at native=>Java/VM barriers. Note that we can't
4307   // simply kill or suspend them, as it is inherently deadlock-prone.
4308 
4309   VM_Exit::set_vm_exited();
4310 
4311   notify_vm_shutdown();
4312 
4313   // We are after VM_Exit::set_vm_exited() so we can't call
4314   // thread->smr_delete() or we will block on the Threads_lock.
4315   // Deleting the shutdown thread here is safe because another
4316   // JavaThread cannot have an active ThreadsListHandle for
4317   // this JavaThread.
4318   delete thread;
4319 
4320 #if INCLUDE_JVMCI
4321   if (JVMCICounterSize > 0) {
4322     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4323   }
4324 #endif
4325 
4326   // exit_globals() will delete tty
4327   exit_globals();
4328 
4329   LogConfiguration::finalize();
4330 
4331   return true;
4332 }
4333 
4334 
4335 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4336   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4337   return is_supported_jni_version(version);
4338 }
4339 
4340 
4341 jboolean Threads::is_supported_jni_version(jint version) {
4342   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4343   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4344   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4345   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4346   if (version == JNI_VERSION_9) return JNI_TRUE;
4347   if (version == JNI_VERSION_10) return JNI_TRUE;
4348   return JNI_FALSE;
4349 }
4350 
4351 
4352 void Threads::add(JavaThread* p, bool force_daemon) {
4353   // The threads lock must be owned at this point
4354   assert_locked_or_safepoint(Threads_lock);
4355 
4356   // See the comment for this method in thread.hpp for its purpose and
4357   // why it is called here.
4358   p->initialize_queues();
4359   p->set_next(_thread_list);
4360   _thread_list = p;
4361 
4362   // Once a JavaThread is added to the Threads list, smr_delete() has
4363   // to be used to delete it. Otherwise we can just delete it directly.
4364   p->set_on_thread_list();
4365 
4366   _number_of_threads++;
4367   oop threadObj = p->threadObj();
4368   bool daemon = true;
4369   // Bootstrapping problem: threadObj can be null for initial
4370   // JavaThread (or for threads attached via JNI)
4371   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4372     _number_of_non_daemon_threads++;
4373     daemon = false;
4374   }
4375 
4376   ThreadService::add_thread(p, daemon);
4377 
4378   // Maintain fast thread list
4379   ThreadsSMRSupport::add_thread(p);
4380 
4381   // Possible GC point.
4382   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4383 }
4384 
4385 void Threads::remove(JavaThread* p) {
4386 
4387   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4388   ObjectSynchronizer::omFlush(p);
4389 
4390   // Extra scope needed for Thread_lock, so we can check
4391   // that we do not remove thread without safepoint code notice
4392   { MutexLocker ml(Threads_lock);
4393 
4394     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4395 
4396     // Maintain fast thread list
4397     ThreadsSMRSupport::remove_thread(p);
4398 
4399     JavaThread* current = _thread_list;
4400     JavaThread* prev    = NULL;
4401 
4402     while (current != p) {
4403       prev    = current;
4404       current = current->next();
4405     }
4406 
4407     if (prev) {
4408       prev->set_next(current->next());
4409     } else {
4410       _thread_list = p->next();
4411     }
4412 
4413     _number_of_threads--;
4414     oop threadObj = p->threadObj();
4415     bool daemon = true;
4416     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4417       _number_of_non_daemon_threads--;
4418       daemon = false;
4419 
4420       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4421       // on destroy_vm will wake up.
4422       if (number_of_non_daemon_threads() == 1) {
4423         Threads_lock->notify_all();
4424       }
4425     }
4426     ThreadService::remove_thread(p, daemon);
4427 
4428     // Make sure that safepoint code disregard this thread. This is needed since
4429     // the thread might mess around with locks after this point. This can cause it
4430     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4431     // of this thread since it is removed from the queue.
4432     p->set_terminated_value();
4433   } // unlock Threads_lock
4434 
4435   // Since Events::log uses a lock, we grab it outside the Threads_lock
4436   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4437 }
4438 
4439 // Operations on the Threads list for GC.  These are not explicitly locked,
4440 // but the garbage collector must provide a safe context for them to run.
4441 // In particular, these things should never be called when the Threads_lock
4442 // is held by some other thread. (Note: the Safepoint abstraction also
4443 // uses the Threads_lock to guarantee this property. It also makes sure that
4444 // all threads gets blocked when exiting or starting).
4445 
4446 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4447   ALL_JAVA_THREADS(p) {
4448     p->oops_do(f, cf);
4449   }
4450   VMThread::vm_thread()->oops_do(f, cf);
4451 }
4452 
4453 void Threads::change_thread_claim_parity() {
4454   // Set the new claim parity.
4455   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4456          "Not in range.");
4457   _thread_claim_parity++;
4458   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4459   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4460          "Not in range.");
4461 }
4462 
4463 #ifdef ASSERT
4464 void Threads::assert_all_threads_claimed() {
4465   ALL_JAVA_THREADS(p) {
4466     const int thread_parity = p->oops_do_parity();
4467     assert((thread_parity == _thread_claim_parity),
4468            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4469   }
4470   VMThread* vmt = VMThread::vm_thread();
4471   const int thread_parity = vmt->oops_do_parity();
4472   assert((thread_parity == _thread_claim_parity),
4473          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4474 }
4475 #endif // ASSERT
4476 
4477 class ParallelOopsDoThreadClosure : public ThreadClosure {
4478 private:
4479   OopClosure* _f;
4480   CodeBlobClosure* _cf;
4481 public:
4482   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4483   void do_thread(Thread* t) {
4484     t->oops_do(_f, _cf);
4485   }
4486 };
4487 
4488 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4489   ParallelOopsDoThreadClosure tc(f, cf);
4490   possibly_parallel_threads_do(is_par, &tc);
4491 }
4492 
4493 #if INCLUDE_ALL_GCS
4494 // Used by ParallelScavenge
4495 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4496   ALL_JAVA_THREADS(p) {
4497     q->enqueue(new ThreadRootsTask(p));
4498   }
4499   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4500 }
4501 
4502 // Used by Parallel Old
4503 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4504   ALL_JAVA_THREADS(p) {
4505     q->enqueue(new ThreadRootsMarkingTask(p));
4506   }
4507   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4508 }
4509 #endif // INCLUDE_ALL_GCS
4510 
4511 void Threads::nmethods_do(CodeBlobClosure* cf) {
4512   ALL_JAVA_THREADS(p) {
4513     // This is used by the code cache sweeper to mark nmethods that are active
4514     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4515     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4516     if(!p->is_Code_cache_sweeper_thread()) {
4517       p->nmethods_do(cf);
4518     }
4519   }
4520 }
4521 
4522 void Threads::metadata_do(void f(Metadata*)) {
4523   ALL_JAVA_THREADS(p) {
4524     p->metadata_do(f);
4525   }
4526 }
4527 
4528 class ThreadHandlesClosure : public ThreadClosure {
4529   void (*_f)(Metadata*);
4530  public:
4531   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4532   virtual void do_thread(Thread* thread) {
4533     thread->metadata_handles_do(_f);
4534   }
4535 };
4536 
4537 void Threads::metadata_handles_do(void f(Metadata*)) {
4538   // Only walk the Handles in Thread.
4539   ThreadHandlesClosure handles_closure(f);
4540   threads_do(&handles_closure);
4541 }
4542 
4543 void Threads::deoptimized_wrt_marked_nmethods() {
4544   ALL_JAVA_THREADS(p) {
4545     p->deoptimized_wrt_marked_nmethods();
4546   }
4547 }
4548 
4549 
4550 // Get count Java threads that are waiting to enter the specified monitor.
4551 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4552                                                          int count,
4553                                                          address monitor) {
4554   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4555 
4556   int i = 0;
4557   DO_JAVA_THREADS(t_list, p) {
4558     if (!p->can_call_java()) continue;
4559 
4560     address pending = (address)p->current_pending_monitor();
4561     if (pending == monitor) {             // found a match
4562       if (i < count) result->append(p);   // save the first count matches
4563       i++;
4564     }
4565   }
4566 
4567   return result;
4568 }
4569 
4570 
4571 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4572                                                       address owner) {
4573   // NULL owner means not locked so we can skip the search
4574   if (owner == NULL) return NULL;
4575 
4576   DO_JAVA_THREADS(t_list, p) {
4577     // first, see if owner is the address of a Java thread
4578     if (owner == (address)p) return p;
4579   }
4580 
4581   // Cannot assert on lack of success here since this function may be
4582   // used by code that is trying to report useful problem information
4583   // like deadlock detection.
4584   if (UseHeavyMonitors) return NULL;
4585 
4586   // If we didn't find a matching Java thread and we didn't force use of
4587   // heavyweight monitors, then the owner is the stack address of the
4588   // Lock Word in the owning Java thread's stack.
4589   //
4590   JavaThread* the_owner = NULL;
4591   DO_JAVA_THREADS(t_list, q) {
4592     if (q->is_lock_owned(owner)) {
4593       the_owner = q;
4594       break;
4595     }
4596   }
4597 
4598   // cannot assert on lack of success here; see above comment
4599   return the_owner;
4600 }
4601 
4602 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4603 void Threads::print_on(outputStream* st, bool print_stacks,
4604                        bool internal_format, bool print_concurrent_locks) {
4605   char buf[32];
4606   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4607 
4608   st->print_cr("Full thread dump %s (%s %s):",
4609                Abstract_VM_Version::vm_name(),
4610                Abstract_VM_Version::vm_release(),
4611                Abstract_VM_Version::vm_info_string());
4612   st->cr();
4613 
4614 #if INCLUDE_SERVICES
4615   // Dump concurrent locks
4616   ConcurrentLocksDump concurrent_locks;
4617   if (print_concurrent_locks) {
4618     concurrent_locks.dump_at_safepoint();
4619   }
4620 #endif // INCLUDE_SERVICES
4621 
4622   ThreadsSMRSupport::print_info_on(st);
4623   st->cr();
4624 
4625   ALL_JAVA_THREADS(p) {
4626     ResourceMark rm;
4627     p->print_on(st);
4628     if (print_stacks) {
4629       if (internal_format) {
4630         p->trace_stack();
4631       } else {
4632         p->print_stack_on(st);
4633       }
4634     }
4635     st->cr();
4636 #if INCLUDE_SERVICES
4637     if (print_concurrent_locks) {
4638       concurrent_locks.print_locks_on(p, st);
4639     }
4640 #endif // INCLUDE_SERVICES
4641   }
4642 
4643   VMThread::vm_thread()->print_on(st);
4644   st->cr();
4645   Universe::heap()->print_gc_threads_on(st);
4646   WatcherThread* wt = WatcherThread::watcher_thread();
4647   if (wt != NULL) {
4648     wt->print_on(st);
4649     st->cr();
4650   }
4651 
4652   st->flush();
4653 }
4654 
4655 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4656                              int buflen, bool* found_current) {
4657   if (this_thread != NULL) {
4658     bool is_current = (current == this_thread);
4659     *found_current = *found_current || is_current;
4660     st->print("%s", is_current ? "=>" : "  ");
4661 
4662     st->print(PTR_FORMAT, p2i(this_thread));
4663     st->print(" ");
4664     this_thread->print_on_error(st, buf, buflen);
4665     st->cr();
4666   }
4667 }
4668 
4669 class PrintOnErrorClosure : public ThreadClosure {
4670   outputStream* _st;
4671   Thread* _current;
4672   char* _buf;
4673   int _buflen;
4674   bool* _found_current;
4675  public:
4676   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4677                       int buflen, bool* found_current) :
4678    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4679 
4680   virtual void do_thread(Thread* thread) {
4681     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4682   }
4683 };
4684 
4685 // Threads::print_on_error() is called by fatal error handler. It's possible
4686 // that VM is not at safepoint and/or current thread is inside signal handler.
4687 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4688 // memory (even in resource area), it might deadlock the error handler.
4689 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4690                              int buflen) {
4691   ThreadsSMRSupport::print_info_on(st);
4692   st->cr();
4693 
4694   bool found_current = false;
4695   st->print_cr("Java Threads: ( => current thread )");
4696   ALL_JAVA_THREADS(thread) {
4697     print_on_error(thread, st, current, buf, buflen, &found_current);
4698   }
4699   st->cr();
4700 
4701   st->print_cr("Other Threads:");
4702   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4703   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4704 
4705   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4706   Universe::heap()->gc_threads_do(&print_closure);
4707 
4708   if (!found_current) {
4709     st->cr();
4710     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4711     current->print_on_error(st, buf, buflen);
4712     st->cr();
4713   }
4714   st->cr();
4715 
4716   st->print_cr("Threads with active compile tasks:");
4717   print_threads_compiling(st, buf, buflen);
4718 }
4719 
4720 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4721   ALL_JAVA_THREADS(thread) {
4722     if (thread->is_Compiler_thread()) {
4723       CompilerThread* ct = (CompilerThread*) thread;
4724 
4725       // Keep task in local variable for NULL check.
4726       // ct->_task might be set to NULL by concurring compiler thread
4727       // because it completed the compilation. The task is never freed,
4728       // though, just returned to a free list.
4729       CompileTask* task = ct->task();
4730       if (task != NULL) {
4731         thread->print_name_on_error(st, buf, buflen);
4732         task->print(st, NULL, true, true);
4733       }
4734     }
4735   }
4736 }
4737 
4738 
4739 // Internal SpinLock and Mutex
4740 // Based on ParkEvent
4741 
4742 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4743 //
4744 // We employ SpinLocks _only for low-contention, fixed-length
4745 // short-duration critical sections where we're concerned
4746 // about native mutex_t or HotSpot Mutex:: latency.
4747 // The mux construct provides a spin-then-block mutual exclusion
4748 // mechanism.
4749 //
4750 // Testing has shown that contention on the ListLock guarding gFreeList
4751 // is common.  If we implement ListLock as a simple SpinLock it's common
4752 // for the JVM to devolve to yielding with little progress.  This is true
4753 // despite the fact that the critical sections protected by ListLock are
4754 // extremely short.
4755 //
4756 // TODO-FIXME: ListLock should be of type SpinLock.
4757 // We should make this a 1st-class type, integrated into the lock
4758 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4759 // should have sufficient padding to avoid false-sharing and excessive
4760 // cache-coherency traffic.
4761 
4762 
4763 typedef volatile int SpinLockT;
4764 
4765 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4766   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4767     return;   // normal fast-path return
4768   }
4769 
4770   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4771   TEVENT(SpinAcquire - ctx);
4772   int ctr = 0;
4773   int Yields = 0;
4774   for (;;) {
4775     while (*adr != 0) {
4776       ++ctr;
4777       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4778         if (Yields > 5) {
4779           os::naked_short_sleep(1);
4780         } else {
4781           os::naked_yield();
4782           ++Yields;
4783         }
4784       } else {
4785         SpinPause();
4786       }
4787     }
4788     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4789   }
4790 }
4791 
4792 void Thread::SpinRelease(volatile int * adr) {
4793   assert(*adr != 0, "invariant");
4794   OrderAccess::fence();      // guarantee at least release consistency.
4795   // Roach-motel semantics.
4796   // It's safe if subsequent LDs and STs float "up" into the critical section,
4797   // but prior LDs and STs within the critical section can't be allowed
4798   // to reorder or float past the ST that releases the lock.
4799   // Loads and stores in the critical section - which appear in program
4800   // order before the store that releases the lock - must also appear
4801   // before the store that releases the lock in memory visibility order.
4802   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4803   // the ST of 0 into the lock-word which releases the lock, so fence
4804   // more than covers this on all platforms.
4805   *adr = 0;
4806 }
4807 
4808 // muxAcquire and muxRelease:
4809 //
4810 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4811 //    The LSB of the word is set IFF the lock is held.
4812 //    The remainder of the word points to the head of a singly-linked list
4813 //    of threads blocked on the lock.
4814 //
4815 // *  The current implementation of muxAcquire-muxRelease uses its own
4816 //    dedicated Thread._MuxEvent instance.  If we're interested in
4817 //    minimizing the peak number of extant ParkEvent instances then
4818 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4819 //    as certain invariants were satisfied.  Specifically, care would need
4820 //    to be taken with regards to consuming unpark() "permits".
4821 //    A safe rule of thumb is that a thread would never call muxAcquire()
4822 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4823 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4824 //    consume an unpark() permit intended for monitorenter, for instance.
4825 //    One way around this would be to widen the restricted-range semaphore
4826 //    implemented in park().  Another alternative would be to provide
4827 //    multiple instances of the PlatformEvent() for each thread.  One
4828 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4829 //
4830 // *  Usage:
4831 //    -- Only as leaf locks
4832 //    -- for short-term locking only as muxAcquire does not perform
4833 //       thread state transitions.
4834 //
4835 // Alternatives:
4836 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4837 //    but with parking or spin-then-park instead of pure spinning.
4838 // *  Use Taura-Oyama-Yonenzawa locks.
4839 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4840 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4841 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4842 //    acquiring threads use timers (ParkTimed) to detect and recover from
4843 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4844 //    boundaries by using placement-new.
4845 // *  Augment MCS with advisory back-link fields maintained with CAS().
4846 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4847 //    The validity of the backlinks must be ratified before we trust the value.
4848 //    If the backlinks are invalid the exiting thread must back-track through the
4849 //    the forward links, which are always trustworthy.
4850 // *  Add a successor indication.  The LockWord is currently encoded as
4851 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4852 //    to provide the usual futile-wakeup optimization.
4853 //    See RTStt for details.
4854 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4855 //
4856 
4857 
4858 const intptr_t LOCKBIT = 1;
4859 
4860 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4861   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4862   if (w == 0) return;
4863   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4864     return;
4865   }
4866 
4867   TEVENT(muxAcquire - Contention);
4868   ParkEvent * const Self = Thread::current()->_MuxEvent;
4869   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4870   for (;;) {
4871     int its = (os::is_MP() ? 100 : 0) + 1;
4872 
4873     // Optional spin phase: spin-then-park strategy
4874     while (--its >= 0) {
4875       w = *Lock;
4876       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4877         return;
4878       }
4879     }
4880 
4881     Self->reset();
4882     Self->OnList = intptr_t(Lock);
4883     // The following fence() isn't _strictly necessary as the subsequent
4884     // CAS() both serializes execution and ratifies the fetched *Lock value.
4885     OrderAccess::fence();
4886     for (;;) {
4887       w = *Lock;
4888       if ((w & LOCKBIT) == 0) {
4889         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4890           Self->OnList = 0;   // hygiene - allows stronger asserts
4891           return;
4892         }
4893         continue;      // Interference -- *Lock changed -- Just retry
4894       }
4895       assert(w & LOCKBIT, "invariant");
4896       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4897       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4898     }
4899 
4900     while (Self->OnList != 0) {
4901       Self->park();
4902     }
4903   }
4904 }
4905 
4906 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4907   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4908   if (w == 0) return;
4909   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4910     return;
4911   }
4912 
4913   TEVENT(muxAcquire - Contention);
4914   ParkEvent * ReleaseAfter = NULL;
4915   if (ev == NULL) {
4916     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4917   }
4918   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4919   for (;;) {
4920     guarantee(ev->OnList == 0, "invariant");
4921     int its = (os::is_MP() ? 100 : 0) + 1;
4922 
4923     // Optional spin phase: spin-then-park strategy
4924     while (--its >= 0) {
4925       w = *Lock;
4926       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4927         if (ReleaseAfter != NULL) {
4928           ParkEvent::Release(ReleaseAfter);
4929         }
4930         return;
4931       }
4932     }
4933 
4934     ev->reset();
4935     ev->OnList = intptr_t(Lock);
4936     // The following fence() isn't _strictly necessary as the subsequent
4937     // CAS() both serializes execution and ratifies the fetched *Lock value.
4938     OrderAccess::fence();
4939     for (;;) {
4940       w = *Lock;
4941       if ((w & LOCKBIT) == 0) {
4942         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4943           ev->OnList = 0;
4944           // We call ::Release while holding the outer lock, thus
4945           // artificially lengthening the critical section.
4946           // Consider deferring the ::Release() until the subsequent unlock(),
4947           // after we've dropped the outer lock.
4948           if (ReleaseAfter != NULL) {
4949             ParkEvent::Release(ReleaseAfter);
4950           }
4951           return;
4952         }
4953         continue;      // Interference -- *Lock changed -- Just retry
4954       }
4955       assert(w & LOCKBIT, "invariant");
4956       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4957       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4958     }
4959 
4960     while (ev->OnList != 0) {
4961       ev->park();
4962     }
4963   }
4964 }
4965 
4966 // Release() must extract a successor from the list and then wake that thread.
4967 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4968 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4969 // Release() would :
4970 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4971 // (B) Extract a successor from the private list "in-hand"
4972 // (C) attempt to CAS() the residual back into *Lock over null.
4973 //     If there were any newly arrived threads and the CAS() would fail.
4974 //     In that case Release() would detach the RATs, re-merge the list in-hand
4975 //     with the RATs and repeat as needed.  Alternately, Release() might
4976 //     detach and extract a successor, but then pass the residual list to the wakee.
4977 //     The wakee would be responsible for reattaching and remerging before it
4978 //     competed for the lock.
4979 //
4980 // Both "pop" and DMR are immune from ABA corruption -- there can be
4981 // multiple concurrent pushers, but only one popper or detacher.
4982 // This implementation pops from the head of the list.  This is unfair,
4983 // but tends to provide excellent throughput as hot threads remain hot.
4984 // (We wake recently run threads first).
4985 //
4986 // All paths through muxRelease() will execute a CAS.
4987 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4988 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4989 // executed within the critical section are complete and globally visible before the
4990 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4991 void Thread::muxRelease(volatile intptr_t * Lock)  {
4992   for (;;) {
4993     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4994     assert(w & LOCKBIT, "invariant");
4995     if (w == LOCKBIT) return;
4996     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4997     assert(List != NULL, "invariant");
4998     assert(List->OnList == intptr_t(Lock), "invariant");
4999     ParkEvent * const nxt = List->ListNext;
5000     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5001 
5002     // The following CAS() releases the lock and pops the head element.
5003     // The CAS() also ratifies the previously fetched lock-word value.
5004     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5005       continue;
5006     }
5007     List->OnList = 0;
5008     OrderAccess::fence();
5009     List->unpark();
5010     return;
5011   }
5012 }
5013 
5014 void Thread::pick_next_sample(size_t overflowed_bytes) {
5015   HeapMonitoring::pick_next_sample(&_bytes_until_sample);
5016 
5017   // Try to correct sample size by removing extra space from last allocation.
5018   if (overflowed_bytes > 0 && _bytes_until_sample > overflowed_bytes) {
5019     _bytes_until_sample -= overflowed_bytes;
5020   }
5021 }
5022 
5023 void Thread::check_for_sampling(HeapWord* ptr, size_t allocation_size, size_t bytes_since_allocation) {
5024   oopDesc* oop = reinterpret_cast<oopDesc*>(ptr);
5025   size_t total_allocated_bytes = bytes_since_allocation + allocation_size;
5026 
5027   // If not yet time for a sample, skip it.
5028   if (total_allocated_bytes < _bytes_until_sample) {
5029     _bytes_until_sample -= total_allocated_bytes;
5030     return;
5031   }
5032 
5033   HeapMonitoring::object_alloc_do_sample(this, oop, allocation_size);
5034 
5035   size_t overflow_bytes = total_allocated_bytes - _bytes_until_sample;
5036   pick_next_sample(overflow_bytes);
5037 }
5038 
5039 size_t Thread::bytes_until_sample() {
5040  if (!_bytes_until_sample) {
5041    pick_next_sample();
5042  }
5043 
5044  assert(_bytes_until_sample != 0, "Sampling size should never be 0");
5045  return _bytes_until_sample;
5046 }
5047 
5048 void Threads::verify() {
5049   ALL_JAVA_THREADS(p) {
5050     p->verify();
5051   }
5052   VMThread* thread = VMThread::vm_thread();
5053   if (thread != NULL) thread->verify();
5054 }
5055