1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "jvm.h"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.inline.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "runtime/vm_version.hpp"
  65 #include "semaphore_windows.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 #include "symbolengine.hpp"
  77 #include "windbghelp.hpp"
  78 
  79 
  80 #ifdef _DEBUG
  81 #include <crtdbg.h>
  82 #endif
  83 
  84 
  85 #include <windows.h>
  86 #include <sys/types.h>
  87 #include <sys/stat.h>
  88 #include <sys/timeb.h>
  89 #include <objidl.h>
  90 #include <shlobj.h>
  91 
  92 #include <malloc.h>
  93 #include <signal.h>
  94 #include <direct.h>
  95 #include <errno.h>
  96 #include <fcntl.h>
  97 #include <io.h>
  98 #include <process.h>              // For _beginthreadex(), _endthreadex()
  99 #include <imagehlp.h>             // For os::dll_address_to_function_name
 100 // for enumerating dll libraries
 101 #include <vdmdbg.h>
 102 #include <psapi.h>
 103 
 104 // for timer info max values which include all bits
 105 #define ALL_64_BITS CONST64(-1)
 106 
 107 // For DLL loading/load error detection
 108 // Values of PE COFF
 109 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 110 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 111 
 112 static HANDLE main_process;
 113 static HANDLE main_thread;
 114 static int    main_thread_id;
 115 
 116 static FILETIME process_creation_time;
 117 static FILETIME process_exit_time;
 118 static FILETIME process_user_time;
 119 static FILETIME process_kernel_time;
 120 
 121 #ifdef _M_AMD64
 122   #define __CPU__ amd64
 123 #else
 124   #define __CPU__ i486
 125 #endif
 126 
 127 // save DLL module handle, used by GetModuleFileName
 128 
 129 HINSTANCE vm_lib_handle;
 130 
 131 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 132   switch (reason) {
 133   case DLL_PROCESS_ATTACH:
 134     vm_lib_handle = hinst;
 135     if (ForceTimeHighResolution) {
 136       timeBeginPeriod(1L);
 137     }
 138     WindowsDbgHelp::pre_initialize();
 139     SymbolEngine::pre_initialize();
 140     break;
 141   case DLL_PROCESS_DETACH:
 142     if (ForceTimeHighResolution) {
 143       timeEndPeriod(1L);
 144     }
 145     break;
 146   default:
 147     break;
 148   }
 149   return true;
 150 }
 151 
 152 static inline double fileTimeAsDouble(FILETIME* time) {
 153   const double high  = (double) ((unsigned int) ~0);
 154   const double split = 10000000.0;
 155   double result = (time->dwLowDateTime / split) +
 156                    time->dwHighDateTime * (high/split);
 157   return result;
 158 }
 159 
 160 // Implementation of os
 161 
 162 bool os::unsetenv(const char* name) {
 163   assert(name != NULL, "Null pointer");
 164   return (SetEnvironmentVariable(name, NULL) == TRUE);
 165 }
 166 
 167 // No setuid programs under Windows.
 168 bool os::have_special_privileges() {
 169   return false;
 170 }
 171 
 172 
 173 // This method is  a periodic task to check for misbehaving JNI applications
 174 // under CheckJNI, we can add any periodic checks here.
 175 // For Windows at the moment does nothing
 176 void os::run_periodic_checks() {
 177   return;
 178 }
 179 
 180 // previous UnhandledExceptionFilter, if there is one
 181 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 182 
 183 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 184 
 185 void os::init_system_properties_values() {
 186   // sysclasspath, java_home, dll_dir
 187   {
 188     char *home_path;
 189     char *dll_path;
 190     char *pslash;
 191     char *bin = "\\bin";
 192     char home_dir[MAX_PATH + 1];
 193     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 194 
 195     if (alt_home_dir != NULL)  {
 196       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 197       home_dir[MAX_PATH] = '\0';
 198     } else {
 199       os::jvm_path(home_dir, sizeof(home_dir));
 200       // Found the full path to jvm.dll.
 201       // Now cut the path to <java_home>/jre if we can.
 202       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 203       pslash = strrchr(home_dir, '\\');
 204       if (pslash != NULL) {
 205         *pslash = '\0';                   // get rid of \{client|server}
 206         pslash = strrchr(home_dir, '\\');
 207         if (pslash != NULL) {
 208           *pslash = '\0';                 // get rid of \bin
 209         }
 210       }
 211     }
 212 
 213     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 214     if (home_path == NULL) {
 215       return;
 216     }
 217     strcpy(home_path, home_dir);
 218     Arguments::set_java_home(home_path);
 219     FREE_C_HEAP_ARRAY(char, home_path);
 220 
 221     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 222                                 mtInternal);
 223     if (dll_path == NULL) {
 224       return;
 225     }
 226     strcpy(dll_path, home_dir);
 227     strcat(dll_path, bin);
 228     Arguments::set_dll_dir(dll_path);
 229     FREE_C_HEAP_ARRAY(char, dll_path);
 230 
 231     if (!set_boot_path('\\', ';')) {
 232       return;
 233     }
 234   }
 235 
 236 // library_path
 237 #define EXT_DIR "\\lib\\ext"
 238 #define BIN_DIR "\\bin"
 239 #define PACKAGE_DIR "\\Sun\\Java"
 240   {
 241     // Win32 library search order (See the documentation for LoadLibrary):
 242     //
 243     // 1. The directory from which application is loaded.
 244     // 2. The system wide Java Extensions directory (Java only)
 245     // 3. System directory (GetSystemDirectory)
 246     // 4. Windows directory (GetWindowsDirectory)
 247     // 5. The PATH environment variable
 248     // 6. The current directory
 249 
 250     char *library_path;
 251     char tmp[MAX_PATH];
 252     char *path_str = ::getenv("PATH");
 253 
 254     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 255                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 256 
 257     library_path[0] = '\0';
 258 
 259     GetModuleFileName(NULL, tmp, sizeof(tmp));
 260     *(strrchr(tmp, '\\')) = '\0';
 261     strcat(library_path, tmp);
 262 
 263     GetWindowsDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266     strcat(library_path, PACKAGE_DIR BIN_DIR);
 267 
 268     GetSystemDirectory(tmp, sizeof(tmp));
 269     strcat(library_path, ";");
 270     strcat(library_path, tmp);
 271 
 272     GetWindowsDirectory(tmp, sizeof(tmp));
 273     strcat(library_path, ";");
 274     strcat(library_path, tmp);
 275 
 276     if (path_str) {
 277       strcat(library_path, ";");
 278       strcat(library_path, path_str);
 279     }
 280 
 281     strcat(library_path, ";.");
 282 
 283     Arguments::set_library_path(library_path);
 284     FREE_C_HEAP_ARRAY(char, library_path);
 285   }
 286 
 287   // Default extensions directory
 288   {
 289     char path[MAX_PATH];
 290     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 291     GetWindowsDirectory(path, MAX_PATH);
 292     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 293             path, PACKAGE_DIR, EXT_DIR);
 294     Arguments::set_ext_dirs(buf);
 295   }
 296   #undef EXT_DIR
 297   #undef BIN_DIR
 298   #undef PACKAGE_DIR
 299 
 300 #ifndef _WIN64
 301   // set our UnhandledExceptionFilter and save any previous one
 302   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 303 #endif
 304 
 305   // Done
 306   return;
 307 }
 308 
 309 void os::breakpoint() {
 310   DebugBreak();
 311 }
 312 
 313 // Invoked from the BREAKPOINT Macro
 314 extern "C" void breakpoint() {
 315   os::breakpoint();
 316 }
 317 
 318 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 319 // So far, this method is only used by Native Memory Tracking, which is
 320 // only supported on Windows XP or later.
 321 //
 322 int os::get_native_stack(address* stack, int frames, int toSkip) {
 323   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 324   for (int index = captured; index < frames; index ++) {
 325     stack[index] = NULL;
 326   }
 327   return captured;
 328 }
 329 
 330 
 331 // os::current_stack_base()
 332 //
 333 //   Returns the base of the stack, which is the stack's
 334 //   starting address.  This function must be called
 335 //   while running on the stack of the thread being queried.
 336 
 337 address os::current_stack_base() {
 338   MEMORY_BASIC_INFORMATION minfo;
 339   address stack_bottom;
 340   size_t stack_size;
 341 
 342   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 343   stack_bottom =  (address)minfo.AllocationBase;
 344   stack_size = minfo.RegionSize;
 345 
 346   // Add up the sizes of all the regions with the same
 347   // AllocationBase.
 348   while (1) {
 349     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 350     if (stack_bottom == (address)minfo.AllocationBase) {
 351       stack_size += minfo.RegionSize;
 352     } else {
 353       break;
 354     }
 355   }
 356   return stack_bottom + stack_size;
 357 }
 358 
 359 size_t os::current_stack_size() {
 360   size_t sz;
 361   MEMORY_BASIC_INFORMATION minfo;
 362   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 363   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 364   return sz;
 365 }
 366 
 367 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 368   const struct tm* time_struct_ptr = localtime(clock);
 369   if (time_struct_ptr != NULL) {
 370     *res = *time_struct_ptr;
 371     return res;
 372   }
 373   return NULL;
 374 }
 375 
 376 struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
 377   const struct tm* time_struct_ptr = gmtime(clock);
 378   if (time_struct_ptr != NULL) {
 379     *res = *time_struct_ptr;
 380     return res;
 381   }
 382   return NULL;
 383 }
 384 
 385 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 386 
 387 // Thread start routine for all newly created threads
 388 static unsigned __stdcall thread_native_entry(Thread* thread) {
 389   // Try to randomize the cache line index of hot stack frames.
 390   // This helps when threads of the same stack traces evict each other's
 391   // cache lines. The threads can be either from the same JVM instance, or
 392   // from different JVM instances. The benefit is especially true for
 393   // processors with hyperthreading technology.
 394   static int counter = 0;
 395   int pid = os::current_process_id();
 396   _alloca(((pid ^ counter++) & 7) * 128);
 397 
 398   thread->initialize_thread_current();
 399 
 400   OSThread* osthr = thread->osthread();
 401   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 402 
 403   if (UseNUMA) {
 404     int lgrp_id = os::numa_get_group_id();
 405     if (lgrp_id != -1) {
 406       thread->set_lgrp_id(lgrp_id);
 407     }
 408   }
 409 
 410   // Diagnostic code to investigate JDK-6573254
 411   int res = 30115;  // non-java thread
 412   if (thread->is_Java_thread()) {
 413     res = 20115;    // java thread
 414   }
 415 
 416   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 417 
 418   // Install a win32 structured exception handler around every thread created
 419   // by VM, so VM can generate error dump when an exception occurred in non-
 420   // Java thread (e.g. VM thread).
 421   __try {
 422     thread->run();
 423   } __except(topLevelExceptionFilter(
 424                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 425     // Nothing to do.
 426   }
 427 
 428   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 429 
 430   // One less thread is executing
 431   // When the VMThread gets here, the main thread may have already exited
 432   // which frees the CodeHeap containing the Atomic::add code
 433   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 434     Atomic::dec(&os::win32::_os_thread_count);
 435   }
 436 
 437   // If a thread has not deleted itself ("delete this") as part of its
 438   // termination sequence, we have to ensure thread-local-storage is
 439   // cleared before we actually terminate. No threads should ever be
 440   // deleted asynchronously with respect to their termination.
 441   if (Thread::current_or_null_safe() != NULL) {
 442     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 443     thread->clear_thread_current();
 444   }
 445 
 446   // Thread must not return from exit_process_or_thread(), but if it does,
 447   // let it proceed to exit normally
 448   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 449 }
 450 
 451 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 452                                   int thread_id) {
 453   // Allocate the OSThread object
 454   OSThread* osthread = new OSThread(NULL, NULL);
 455   if (osthread == NULL) return NULL;
 456 
 457   // Initialize support for Java interrupts
 458   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 459   if (interrupt_event == NULL) {
 460     delete osthread;
 461     return NULL;
 462   }
 463   osthread->set_interrupt_event(interrupt_event);
 464 
 465   // Store info on the Win32 thread into the OSThread
 466   osthread->set_thread_handle(thread_handle);
 467   osthread->set_thread_id(thread_id);
 468 
 469   if (UseNUMA) {
 470     int lgrp_id = os::numa_get_group_id();
 471     if (lgrp_id != -1) {
 472       thread->set_lgrp_id(lgrp_id);
 473     }
 474   }
 475 
 476   // Initial thread state is INITIALIZED, not SUSPENDED
 477   osthread->set_state(INITIALIZED);
 478 
 479   return osthread;
 480 }
 481 
 482 
 483 bool os::create_attached_thread(JavaThread* thread) {
 484 #ifdef ASSERT
 485   thread->verify_not_published();
 486 #endif
 487   HANDLE thread_h;
 488   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 489                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 490     fatal("DuplicateHandle failed\n");
 491   }
 492   OSThread* osthread = create_os_thread(thread, thread_h,
 493                                         (int)current_thread_id());
 494   if (osthread == NULL) {
 495     return false;
 496   }
 497 
 498   // Initial thread state is RUNNABLE
 499   osthread->set_state(RUNNABLE);
 500 
 501   thread->set_osthread(osthread);
 502 
 503   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 504     os::current_thread_id());
 505 
 506   return true;
 507 }
 508 
 509 bool os::create_main_thread(JavaThread* thread) {
 510 #ifdef ASSERT
 511   thread->verify_not_published();
 512 #endif
 513   if (_starting_thread == NULL) {
 514     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 515     if (_starting_thread == NULL) {
 516       return false;
 517     }
 518   }
 519 
 520   // The primordial thread is runnable from the start)
 521   _starting_thread->set_state(RUNNABLE);
 522 
 523   thread->set_osthread(_starting_thread);
 524   return true;
 525 }
 526 
 527 // Helper function to trace _beginthreadex attributes,
 528 //  similar to os::Posix::describe_pthread_attr()
 529 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 530                                                size_t stacksize, unsigned initflag) {
 531   stringStream ss(buf, buflen);
 532   if (stacksize == 0) {
 533     ss.print("stacksize: default, ");
 534   } else {
 535     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 536   }
 537   ss.print("flags: ");
 538   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 539   #define ALL(X) \
 540     X(CREATE_SUSPENDED) \
 541     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 542   ALL(PRINT_FLAG)
 543   #undef ALL
 544   #undef PRINT_FLAG
 545   return buf;
 546 }
 547 
 548 // Allocate and initialize a new OSThread
 549 bool os::create_thread(Thread* thread, ThreadType thr_type,
 550                        size_t stack_size) {
 551   unsigned thread_id;
 552 
 553   // Allocate the OSThread object
 554   OSThread* osthread = new OSThread(NULL, NULL);
 555   if (osthread == NULL) {
 556     return false;
 557   }
 558 
 559   // Initialize support for Java interrupts
 560   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 561   if (interrupt_event == NULL) {
 562     delete osthread;
 563     return NULL;
 564   }
 565   osthread->set_interrupt_event(interrupt_event);
 566   osthread->set_interrupted(false);
 567 
 568   thread->set_osthread(osthread);
 569 
 570   if (stack_size == 0) {
 571     switch (thr_type) {
 572     case os::java_thread:
 573       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 574       if (JavaThread::stack_size_at_create() > 0) {
 575         stack_size = JavaThread::stack_size_at_create();
 576       }
 577       break;
 578     case os::compiler_thread:
 579       if (CompilerThreadStackSize > 0) {
 580         stack_size = (size_t)(CompilerThreadStackSize * K);
 581         break;
 582       } // else fall through:
 583         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 584     case os::vm_thread:
 585     case os::pgc_thread:
 586     case os::cgc_thread:
 587     case os::watcher_thread:
 588       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 589       break;
 590     }
 591   }
 592 
 593   // Create the Win32 thread
 594   //
 595   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 596   // does not specify stack size. Instead, it specifies the size of
 597   // initially committed space. The stack size is determined by
 598   // PE header in the executable. If the committed "stack_size" is larger
 599   // than default value in the PE header, the stack is rounded up to the
 600   // nearest multiple of 1MB. For example if the launcher has default
 601   // stack size of 320k, specifying any size less than 320k does not
 602   // affect the actual stack size at all, it only affects the initial
 603   // commitment. On the other hand, specifying 'stack_size' larger than
 604   // default value may cause significant increase in memory usage, because
 605   // not only the stack space will be rounded up to MB, but also the
 606   // entire space is committed upfront.
 607   //
 608   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 609   // for CreateThread() that can treat 'stack_size' as stack size. However we
 610   // are not supposed to call CreateThread() directly according to MSDN
 611   // document because JVM uses C runtime library. The good news is that the
 612   // flag appears to work with _beginthredex() as well.
 613 
 614   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 615   HANDLE thread_handle =
 616     (HANDLE)_beginthreadex(NULL,
 617                            (unsigned)stack_size,
 618                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 619                            thread,
 620                            initflag,
 621                            &thread_id);
 622 
 623   char buf[64];
 624   if (thread_handle != NULL) {
 625     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 626       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 627   } else {
 628     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 629       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 630   }
 631 
 632   if (thread_handle == NULL) {
 633     // Need to clean up stuff we've allocated so far
 634     CloseHandle(osthread->interrupt_event());
 635     thread->set_osthread(NULL);
 636     delete osthread;
 637     return NULL;
 638   }
 639 
 640   Atomic::inc(&os::win32::_os_thread_count);
 641 
 642   // Store info on the Win32 thread into the OSThread
 643   osthread->set_thread_handle(thread_handle);
 644   osthread->set_thread_id(thread_id);
 645 
 646   // Initial thread state is INITIALIZED, not SUSPENDED
 647   osthread->set_state(INITIALIZED);
 648 
 649   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 650   return true;
 651 }
 652 
 653 
 654 // Free Win32 resources related to the OSThread
 655 void os::free_thread(OSThread* osthread) {
 656   assert(osthread != NULL, "osthread not set");
 657 
 658   // We are told to free resources of the argument thread,
 659   // but we can only really operate on the current thread.
 660   assert(Thread::current()->osthread() == osthread,
 661          "os::free_thread but not current thread");
 662 
 663   CloseHandle(osthread->thread_handle());
 664   CloseHandle(osthread->interrupt_event());
 665   delete osthread;
 666 }
 667 
 668 static jlong first_filetime;
 669 static jlong initial_performance_count;
 670 static jlong performance_frequency;
 671 
 672 
 673 jlong as_long(LARGE_INTEGER x) {
 674   jlong result = 0; // initialization to avoid warning
 675   set_high(&result, x.HighPart);
 676   set_low(&result, x.LowPart);
 677   return result;
 678 }
 679 
 680 
 681 jlong os::elapsed_counter() {
 682   LARGE_INTEGER count;
 683   QueryPerformanceCounter(&count);
 684   return as_long(count) - initial_performance_count;
 685 }
 686 
 687 
 688 jlong os::elapsed_frequency() {
 689   return performance_frequency;
 690 }
 691 
 692 
 693 julong os::available_memory() {
 694   return win32::available_memory();
 695 }
 696 
 697 julong os::win32::available_memory() {
 698   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 699   // value if total memory is larger than 4GB
 700   MEMORYSTATUSEX ms;
 701   ms.dwLength = sizeof(ms);
 702   GlobalMemoryStatusEx(&ms);
 703 
 704   return (julong)ms.ullAvailPhys;
 705 }
 706 
 707 julong os::physical_memory() {
 708   return win32::physical_memory();
 709 }
 710 
 711 bool os::has_allocatable_memory_limit(julong* limit) {
 712   MEMORYSTATUSEX ms;
 713   ms.dwLength = sizeof(ms);
 714   GlobalMemoryStatusEx(&ms);
 715 #ifdef _LP64
 716   *limit = (julong)ms.ullAvailVirtual;
 717   return true;
 718 #else
 719   // Limit to 1400m because of the 2gb address space wall
 720   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 721   return true;
 722 #endif
 723 }
 724 
 725 int os::active_processor_count() {
 726   DWORD_PTR lpProcessAffinityMask = 0;
 727   DWORD_PTR lpSystemAffinityMask = 0;
 728   int proc_count = processor_count();
 729   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 730       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 731     // Nof active processors is number of bits in process affinity mask
 732     int bitcount = 0;
 733     while (lpProcessAffinityMask != 0) {
 734       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 735       bitcount++;
 736     }
 737     return bitcount;
 738   } else {
 739     return proc_count;
 740   }
 741 }
 742 
 743 void os::set_native_thread_name(const char *name) {
 744 
 745   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 746   //
 747   // Note that unfortunately this only works if the process
 748   // is already attached to a debugger; debugger must observe
 749   // the exception below to show the correct name.
 750 
 751   // If there is no debugger attached skip raising the exception
 752   if (!IsDebuggerPresent()) {
 753     return;
 754   }
 755 
 756   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 757   struct {
 758     DWORD dwType;     // must be 0x1000
 759     LPCSTR szName;    // pointer to name (in user addr space)
 760     DWORD dwThreadID; // thread ID (-1=caller thread)
 761     DWORD dwFlags;    // reserved for future use, must be zero
 762   } info;
 763 
 764   info.dwType = 0x1000;
 765   info.szName = name;
 766   info.dwThreadID = -1;
 767   info.dwFlags = 0;
 768 
 769   __try {
 770     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 771   } __except(EXCEPTION_EXECUTE_HANDLER) {}
 772 }
 773 
 774 bool os::distribute_processes(uint length, uint* distribution) {
 775   // Not yet implemented.
 776   return false;
 777 }
 778 
 779 bool os::bind_to_processor(uint processor_id) {
 780   // Not yet implemented.
 781   return false;
 782 }
 783 
 784 void os::win32::initialize_performance_counter() {
 785   LARGE_INTEGER count;
 786   QueryPerformanceFrequency(&count);
 787   performance_frequency = as_long(count);
 788   QueryPerformanceCounter(&count);
 789   initial_performance_count = as_long(count);
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal("Error = %d\nWindows error", GetLastError());
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895     LARGE_INTEGER current_count;
 896     QueryPerformanceCounter(&current_count);
 897     double current = as_long(current_count);
 898     double freq = performance_frequency;
 899     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 900     return time;
 901 }
 902 
 903 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 904   jlong freq = performance_frequency;
 905   if (freq < NANOSECS_PER_SEC) {
 906     // the performance counter is 64 bits and we will
 907     // be multiplying it -- so no wrap in 64 bits
 908     info_ptr->max_value = ALL_64_BITS;
 909   } else if (freq > NANOSECS_PER_SEC) {
 910     // use the max value the counter can reach to
 911     // determine the max value which could be returned
 912     julong max_counter = (julong)ALL_64_BITS;
 913     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 914   } else {
 915     // the performance counter is 64 bits and we will
 916     // be using it directly -- so no wrap in 64 bits
 917     info_ptr->max_value = ALL_64_BITS;
 918   }
 919 
 920   // using a counter, so no skipping
 921   info_ptr->may_skip_backward = false;
 922   info_ptr->may_skip_forward = false;
 923 
 924   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 925 }
 926 
 927 char* os::local_time_string(char *buf, size_t buflen) {
 928   SYSTEMTIME st;
 929   GetLocalTime(&st);
 930   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 931                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 932   return buf;
 933 }
 934 
 935 bool os::getTimesSecs(double* process_real_time,
 936                       double* process_user_time,
 937                       double* process_system_time) {
 938   HANDLE h_process = GetCurrentProcess();
 939   FILETIME create_time, exit_time, kernel_time, user_time;
 940   BOOL result = GetProcessTimes(h_process,
 941                                 &create_time,
 942                                 &exit_time,
 943                                 &kernel_time,
 944                                 &user_time);
 945   if (result != 0) {
 946     FILETIME wt;
 947     GetSystemTimeAsFileTime(&wt);
 948     jlong rtc_millis = windows_to_java_time(wt);
 949     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 950     *process_user_time =
 951       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 952     *process_system_time =
 953       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 954     return true;
 955   } else {
 956     return false;
 957   }
 958 }
 959 
 960 void os::shutdown() {
 961   // allow PerfMemory to attempt cleanup of any persistent resources
 962   perfMemory_exit();
 963 
 964   // flush buffered output, finish log files
 965   ostream_abort();
 966 
 967   // Check for abort hook
 968   abort_hook_t abort_hook = Arguments::abort_hook();
 969   if (abort_hook != NULL) {
 970     abort_hook();
 971   }
 972 }
 973 
 974 
 975 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 976                                          PMINIDUMP_EXCEPTION_INFORMATION,
 977                                          PMINIDUMP_USER_STREAM_INFORMATION,
 978                                          PMINIDUMP_CALLBACK_INFORMATION);
 979 
 980 static HANDLE dumpFile = NULL;
 981 
 982 // Check if dump file can be created.
 983 void os::check_dump_limit(char* buffer, size_t buffsz) {
 984   bool status = true;
 985   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 986     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
 987     status = false;
 988   }
 989 
 990 #ifndef ASSERT
 991   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
 992     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
 993     status = false;
 994   }
 995 #endif
 996 
 997   if (status) {
 998     const char* cwd = get_current_directory(NULL, 0);
 999     int pid = current_process_id();
1000     if (cwd != NULL) {
1001       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1002     } else {
1003       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1004     }
1005 
1006     if (dumpFile == NULL &&
1007        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1008                  == INVALID_HANDLE_VALUE) {
1009       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1010       status = false;
1011     }
1012   }
1013   VMError::record_coredump_status(buffer, status);
1014 }
1015 
1016 void os::abort(bool dump_core, void* siginfo, const void* context) {
1017   EXCEPTION_POINTERS ep;
1018   MINIDUMP_EXCEPTION_INFORMATION mei;
1019   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1020 
1021   HANDLE hProcess = GetCurrentProcess();
1022   DWORD processId = GetCurrentProcessId();
1023   MINIDUMP_TYPE dumpType;
1024 
1025   shutdown();
1026   if (!dump_core || dumpFile == NULL) {
1027     if (dumpFile != NULL) {
1028       CloseHandle(dumpFile);
1029     }
1030     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1031   }
1032 
1033   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1034     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1035 
1036   if (siginfo != NULL && context != NULL) {
1037     ep.ContextRecord = (PCONTEXT) context;
1038     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1039 
1040     mei.ThreadId = GetCurrentThreadId();
1041     mei.ExceptionPointers = &ep;
1042     pmei = &mei;
1043   } else {
1044     pmei = NULL;
1045   }
1046 
1047   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1048   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1049   if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
1050       !WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
1051     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1052   }
1053   CloseHandle(dumpFile);
1054   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1055 }
1056 
1057 // Die immediately, no exit hook, no abort hook, no cleanup.
1058 void os::die() {
1059   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1060 }
1061 
1062 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1063 //  * dirent_md.c       1.15 00/02/02
1064 //
1065 // The declarations for DIR and struct dirent are in jvm_win32.h.
1066 
1067 // Caller must have already run dirname through JVM_NativePath, which removes
1068 // duplicate slashes and converts all instances of '/' into '\\'.
1069 
1070 DIR * os::opendir(const char *dirname) {
1071   assert(dirname != NULL, "just checking");   // hotspot change
1072   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1073   DWORD fattr;                                // hotspot change
1074   char alt_dirname[4] = { 0, 0, 0, 0 };
1075 
1076   if (dirp == 0) {
1077     errno = ENOMEM;
1078     return 0;
1079   }
1080 
1081   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1082   // as a directory in FindFirstFile().  We detect this case here and
1083   // prepend the current drive name.
1084   //
1085   if (dirname[1] == '\0' && dirname[0] == '\\') {
1086     alt_dirname[0] = _getdrive() + 'A' - 1;
1087     alt_dirname[1] = ':';
1088     alt_dirname[2] = '\\';
1089     alt_dirname[3] = '\0';
1090     dirname = alt_dirname;
1091   }
1092 
1093   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1094   if (dirp->path == 0) {
1095     free(dirp);
1096     errno = ENOMEM;
1097     return 0;
1098   }
1099   strcpy(dirp->path, dirname);
1100 
1101   fattr = GetFileAttributes(dirp->path);
1102   if (fattr == 0xffffffff) {
1103     free(dirp->path);
1104     free(dirp);
1105     errno = ENOENT;
1106     return 0;
1107   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1108     free(dirp->path);
1109     free(dirp);
1110     errno = ENOTDIR;
1111     return 0;
1112   }
1113 
1114   // Append "*.*", or possibly "\\*.*", to path
1115   if (dirp->path[1] == ':' &&
1116       (dirp->path[2] == '\0' ||
1117       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1118     // No '\\' needed for cases like "Z:" or "Z:\"
1119     strcat(dirp->path, "*.*");
1120   } else {
1121     strcat(dirp->path, "\\*.*");
1122   }
1123 
1124   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1125   if (dirp->handle == INVALID_HANDLE_VALUE) {
1126     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1127       free(dirp->path);
1128       free(dirp);
1129       errno = EACCES;
1130       return 0;
1131     }
1132   }
1133   return dirp;
1134 }
1135 
1136 // parameter dbuf unused on Windows
1137 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1138   assert(dirp != NULL, "just checking");      // hotspot change
1139   if (dirp->handle == INVALID_HANDLE_VALUE) {
1140     return 0;
1141   }
1142 
1143   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1144 
1145   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1146     if (GetLastError() == ERROR_INVALID_HANDLE) {
1147       errno = EBADF;
1148       return 0;
1149     }
1150     FindClose(dirp->handle);
1151     dirp->handle = INVALID_HANDLE_VALUE;
1152   }
1153 
1154   return &dirp->dirent;
1155 }
1156 
1157 int os::closedir(DIR *dirp) {
1158   assert(dirp != NULL, "just checking");      // hotspot change
1159   if (dirp->handle != INVALID_HANDLE_VALUE) {
1160     if (!FindClose(dirp->handle)) {
1161       errno = EBADF;
1162       return -1;
1163     }
1164     dirp->handle = INVALID_HANDLE_VALUE;
1165   }
1166   free(dirp->path);
1167   free(dirp);
1168   return 0;
1169 }
1170 
1171 // This must be hard coded because it's the system's temporary
1172 // directory not the java application's temp directory, ala java.io.tmpdir.
1173 const char* os::get_temp_directory() {
1174   static char path_buf[MAX_PATH];
1175   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1176     return path_buf;
1177   } else {
1178     path_buf[0] = '\0';
1179     return path_buf;
1180   }
1181 }
1182 
1183 // Needs to be in os specific directory because windows requires another
1184 // header file <direct.h>
1185 const char* os::get_current_directory(char *buf, size_t buflen) {
1186   int n = static_cast<int>(buflen);
1187   if (buflen > INT_MAX)  n = INT_MAX;
1188   return _getcwd(buf, n);
1189 }
1190 
1191 //-----------------------------------------------------------
1192 // Helper functions for fatal error handler
1193 #ifdef _WIN64
1194 // Helper routine which returns true if address in
1195 // within the NTDLL address space.
1196 //
1197 static bool _addr_in_ntdll(address addr) {
1198   HMODULE hmod;
1199   MODULEINFO minfo;
1200 
1201   hmod = GetModuleHandle("NTDLL.DLL");
1202   if (hmod == NULL) return false;
1203   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1204                                           &minfo, sizeof(MODULEINFO))) {
1205     return false;
1206   }
1207 
1208   if ((addr >= minfo.lpBaseOfDll) &&
1209       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1210     return true;
1211   } else {
1212     return false;
1213   }
1214 }
1215 #endif
1216 
1217 struct _modinfo {
1218   address addr;
1219   char*   full_path;   // point to a char buffer
1220   int     buflen;      // size of the buffer
1221   address base_addr;
1222 };
1223 
1224 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1225                                   address top_address, void * param) {
1226   struct _modinfo *pmod = (struct _modinfo *)param;
1227   if (!pmod) return -1;
1228 
1229   if (base_addr   <= pmod->addr &&
1230       top_address > pmod->addr) {
1231     // if a buffer is provided, copy path name to the buffer
1232     if (pmod->full_path) {
1233       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1234     }
1235     pmod->base_addr = base_addr;
1236     return 1;
1237   }
1238   return 0;
1239 }
1240 
1241 bool os::dll_address_to_library_name(address addr, char* buf,
1242                                      int buflen, int* offset) {
1243   // buf is not optional, but offset is optional
1244   assert(buf != NULL, "sanity check");
1245 
1246 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1247 //       return the full path to the DLL file, sometimes it returns path
1248 //       to the corresponding PDB file (debug info); sometimes it only
1249 //       returns partial path, which makes life painful.
1250 
1251   struct _modinfo mi;
1252   mi.addr      = addr;
1253   mi.full_path = buf;
1254   mi.buflen    = buflen;
1255   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1256     // buf already contains path name
1257     if (offset) *offset = addr - mi.base_addr;
1258     return true;
1259   }
1260 
1261   buf[0] = '\0';
1262   if (offset) *offset = -1;
1263   return false;
1264 }
1265 
1266 bool os::dll_address_to_function_name(address addr, char *buf,
1267                                       int buflen, int *offset,
1268                                       bool demangle) {
1269   // buf is not optional, but offset is optional
1270   assert(buf != NULL, "sanity check");
1271 
1272   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1273     return true;
1274   }
1275   if (offset != NULL)  *offset  = -1;
1276   buf[0] = '\0';
1277   return false;
1278 }
1279 
1280 // save the start and end address of jvm.dll into param[0] and param[1]
1281 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1282                            address top_address, void * param) {
1283   if (!param) return -1;
1284 
1285   if (base_addr   <= (address)_locate_jvm_dll &&
1286       top_address > (address)_locate_jvm_dll) {
1287     ((address*)param)[0] = base_addr;
1288     ((address*)param)[1] = top_address;
1289     return 1;
1290   }
1291   return 0;
1292 }
1293 
1294 address vm_lib_location[2];    // start and end address of jvm.dll
1295 
1296 // check if addr is inside jvm.dll
1297 bool os::address_is_in_vm(address addr) {
1298   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1299     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1300       assert(false, "Can't find jvm module.");
1301       return false;
1302     }
1303   }
1304 
1305   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1306 }
1307 
1308 // print module info; param is outputStream*
1309 static int _print_module(const char* fname, address base_address,
1310                          address top_address, void* param) {
1311   if (!param) return -1;
1312 
1313   outputStream* st = (outputStream*)param;
1314 
1315   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1316   return 0;
1317 }
1318 
1319 // Loads .dll/.so and
1320 // in case of error it checks if .dll/.so was built for the
1321 // same architecture as Hotspot is running on
1322 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1323   void * result = LoadLibrary(name);
1324   if (result != NULL) {
1325     // Recalculate pdb search path if a DLL was loaded successfully.
1326     SymbolEngine::recalc_search_path();
1327     return result;
1328   }
1329 
1330   DWORD errcode = GetLastError();
1331   if (errcode == ERROR_MOD_NOT_FOUND) {
1332     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1333     ebuf[ebuflen - 1] = '\0';
1334     return NULL;
1335   }
1336 
1337   // Parsing dll below
1338   // If we can read dll-info and find that dll was built
1339   // for an architecture other than Hotspot is running in
1340   // - then print to buffer "DLL was built for a different architecture"
1341   // else call os::lasterror to obtain system error message
1342 
1343   // Read system error message into ebuf
1344   // It may or may not be overwritten below (in the for loop and just above)
1345   lasterror(ebuf, (size_t) ebuflen);
1346   ebuf[ebuflen - 1] = '\0';
1347   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1348   if (fd < 0) {
1349     return NULL;
1350   }
1351 
1352   uint32_t signature_offset;
1353   uint16_t lib_arch = 0;
1354   bool failed_to_get_lib_arch =
1355     ( // Go to position 3c in the dll
1356      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1357      ||
1358      // Read location of signature
1359      (sizeof(signature_offset) !=
1360      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1361      ||
1362      // Go to COFF File Header in dll
1363      // that is located after "signature" (4 bytes long)
1364      (os::seek_to_file_offset(fd,
1365      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1366      ||
1367      // Read field that contains code of architecture
1368      // that dll was built for
1369      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1370     );
1371 
1372   ::close(fd);
1373   if (failed_to_get_lib_arch) {
1374     // file i/o error - report os::lasterror(...) msg
1375     return NULL;
1376   }
1377 
1378   typedef struct {
1379     uint16_t arch_code;
1380     char* arch_name;
1381   } arch_t;
1382 
1383   static const arch_t arch_array[] = {
1384     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1385     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"}
1386   };
1387 #if (defined _M_AMD64)
1388   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1389 #elif (defined _M_IX86)
1390   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1391 #else
1392   #error Method os::dll_load requires that one of following \
1393          is defined :_M_AMD64 or _M_IX86
1394 #endif
1395 
1396 
1397   // Obtain a string for printf operation
1398   // lib_arch_str shall contain string what platform this .dll was built for
1399   // running_arch_str shall string contain what platform Hotspot was built for
1400   char *running_arch_str = NULL, *lib_arch_str = NULL;
1401   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1402     if (lib_arch == arch_array[i].arch_code) {
1403       lib_arch_str = arch_array[i].arch_name;
1404     }
1405     if (running_arch == arch_array[i].arch_code) {
1406       running_arch_str = arch_array[i].arch_name;
1407     }
1408   }
1409 
1410   assert(running_arch_str,
1411          "Didn't find running architecture code in arch_array");
1412 
1413   // If the architecture is right
1414   // but some other error took place - report os::lasterror(...) msg
1415   if (lib_arch == running_arch) {
1416     return NULL;
1417   }
1418 
1419   if (lib_arch_str != NULL) {
1420     ::_snprintf(ebuf, ebuflen - 1,
1421                 "Can't load %s-bit .dll on a %s-bit platform",
1422                 lib_arch_str, running_arch_str);
1423   } else {
1424     // don't know what architecture this dll was build for
1425     ::_snprintf(ebuf, ebuflen - 1,
1426                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1427                 lib_arch, running_arch_str);
1428   }
1429 
1430   return NULL;
1431 }
1432 
1433 void os::print_dll_info(outputStream *st) {
1434   st->print_cr("Dynamic libraries:");
1435   get_loaded_modules_info(_print_module, (void *)st);
1436 }
1437 
1438 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1439   HANDLE   hProcess;
1440 
1441 # define MAX_NUM_MODULES 128
1442   HMODULE     modules[MAX_NUM_MODULES];
1443   static char filename[MAX_PATH];
1444   int         result = 0;
1445 
1446   int pid = os::current_process_id();
1447   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1448                          FALSE, pid);
1449   if (hProcess == NULL) return 0;
1450 
1451   DWORD size_needed;
1452   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1453     CloseHandle(hProcess);
1454     return 0;
1455   }
1456 
1457   // number of modules that are currently loaded
1458   int num_modules = size_needed / sizeof(HMODULE);
1459 
1460   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1461     // Get Full pathname:
1462     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1463       filename[0] = '\0';
1464     }
1465 
1466     MODULEINFO modinfo;
1467     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1468       modinfo.lpBaseOfDll = NULL;
1469       modinfo.SizeOfImage = 0;
1470     }
1471 
1472     // Invoke callback function
1473     result = callback(filename, (address)modinfo.lpBaseOfDll,
1474                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1475     if (result) break;
1476   }
1477 
1478   CloseHandle(hProcess);
1479   return result;
1480 }
1481 
1482 bool os::get_host_name(char* buf, size_t buflen) {
1483   DWORD size = (DWORD)buflen;
1484   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1485 }
1486 
1487 void os::get_summary_os_info(char* buf, size_t buflen) {
1488   stringStream sst(buf, buflen);
1489   os::win32::print_windows_version(&sst);
1490   // chop off newline character
1491   char* nl = strchr(buf, '\n');
1492   if (nl != NULL) *nl = '\0';
1493 }
1494 
1495 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1496   int ret = vsnprintf(buf, len, fmt, args);
1497   // Get the correct buffer size if buf is too small
1498   if (ret < 0) {
1499     return _vscprintf(fmt, args);
1500   }
1501   return ret;
1502 }
1503 
1504 static inline time_t get_mtime(const char* filename) {
1505   struct stat st;
1506   int ret = os::stat(filename, &st);
1507   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1508   return st.st_mtime;
1509 }
1510 
1511 int os::compare_file_modified_times(const char* file1, const char* file2) {
1512   time_t t1 = get_mtime(file1);
1513   time_t t2 = get_mtime(file2);
1514   return t1 - t2;
1515 }
1516 
1517 void os::print_os_info_brief(outputStream* st) {
1518   os::print_os_info(st);
1519 }
1520 
1521 void os::print_os_info(outputStream* st) {
1522 #ifdef ASSERT
1523   char buffer[1024];
1524   st->print("HostName: ");
1525   if (get_host_name(buffer, sizeof(buffer))) {
1526     st->print("%s ", buffer);
1527   } else {
1528     st->print("N/A ");
1529   }
1530 #endif
1531   st->print("OS:");
1532   os::win32::print_windows_version(st);
1533 }
1534 
1535 void os::win32::print_windows_version(outputStream* st) {
1536   OSVERSIONINFOEX osvi;
1537   VS_FIXEDFILEINFO *file_info;
1538   TCHAR kernel32_path[MAX_PATH];
1539   UINT len, ret;
1540 
1541   // Use the GetVersionEx information to see if we're on a server or
1542   // workstation edition of Windows. Starting with Windows 8.1 we can't
1543   // trust the OS version information returned by this API.
1544   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1545   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1546   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1547     st->print_cr("Call to GetVersionEx failed");
1548     return;
1549   }
1550   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1551 
1552   // Get the full path to \Windows\System32\kernel32.dll and use that for
1553   // determining what version of Windows we're running on.
1554   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1555   ret = GetSystemDirectory(kernel32_path, len);
1556   if (ret == 0 || ret > len) {
1557     st->print_cr("Call to GetSystemDirectory failed");
1558     return;
1559   }
1560   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1561 
1562   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1563   if (version_size == 0) {
1564     st->print_cr("Call to GetFileVersionInfoSize failed");
1565     return;
1566   }
1567 
1568   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1569   if (version_info == NULL) {
1570     st->print_cr("Failed to allocate version_info");
1571     return;
1572   }
1573 
1574   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1575     os::free(version_info);
1576     st->print_cr("Call to GetFileVersionInfo failed");
1577     return;
1578   }
1579 
1580   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1581     os::free(version_info);
1582     st->print_cr("Call to VerQueryValue failed");
1583     return;
1584   }
1585 
1586   int major_version = HIWORD(file_info->dwProductVersionMS);
1587   int minor_version = LOWORD(file_info->dwProductVersionMS);
1588   int build_number = HIWORD(file_info->dwProductVersionLS);
1589   int build_minor = LOWORD(file_info->dwProductVersionLS);
1590   int os_vers = major_version * 1000 + minor_version;
1591   os::free(version_info);
1592 
1593   st->print(" Windows ");
1594   switch (os_vers) {
1595 
1596   case 6000:
1597     if (is_workstation) {
1598       st->print("Vista");
1599     } else {
1600       st->print("Server 2008");
1601     }
1602     break;
1603 
1604   case 6001:
1605     if (is_workstation) {
1606       st->print("7");
1607     } else {
1608       st->print("Server 2008 R2");
1609     }
1610     break;
1611 
1612   case 6002:
1613     if (is_workstation) {
1614       st->print("8");
1615     } else {
1616       st->print("Server 2012");
1617     }
1618     break;
1619 
1620   case 6003:
1621     if (is_workstation) {
1622       st->print("8.1");
1623     } else {
1624       st->print("Server 2012 R2");
1625     }
1626     break;
1627 
1628   case 10000:
1629     if (is_workstation) {
1630       st->print("10");
1631     } else {
1632       st->print("Server 2016");
1633     }
1634     break;
1635 
1636   default:
1637     // Unrecognized windows, print out its major and minor versions
1638     st->print("%d.%d", major_version, minor_version);
1639     break;
1640   }
1641 
1642   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1643   // find out whether we are running on 64 bit processor or not
1644   SYSTEM_INFO si;
1645   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1646   GetNativeSystemInfo(&si);
1647   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1648     st->print(" , 64 bit");
1649   }
1650 
1651   st->print(" Build %d", build_number);
1652   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1653   st->cr();
1654 }
1655 
1656 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1657   // Nothing to do for now.
1658 }
1659 
1660 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1661   HKEY key;
1662   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1663                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1664   if (status == ERROR_SUCCESS) {
1665     DWORD size = (DWORD)buflen;
1666     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1667     if (status != ERROR_SUCCESS) {
1668         strncpy(buf, "## __CPU__", buflen);
1669     }
1670     RegCloseKey(key);
1671   } else {
1672     // Put generic cpu info to return
1673     strncpy(buf, "## __CPU__", buflen);
1674   }
1675 }
1676 
1677 void os::print_memory_info(outputStream* st) {
1678   st->print("Memory:");
1679   st->print(" %dk page", os::vm_page_size()>>10);
1680 
1681   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1682   // value if total memory is larger than 4GB
1683   MEMORYSTATUSEX ms;
1684   ms.dwLength = sizeof(ms);
1685   GlobalMemoryStatusEx(&ms);
1686 
1687   st->print(", physical %uk", os::physical_memory() >> 10);
1688   st->print("(%uk free)", os::available_memory() >> 10);
1689 
1690   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1691   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1692   st->cr();
1693 }
1694 
1695 void os::print_siginfo(outputStream *st, const void* siginfo) {
1696   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1697   st->print("siginfo:");
1698 
1699   char tmp[64];
1700   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1701     strcpy(tmp, "EXCEPTION_??");
1702   }
1703   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1704 
1705   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1706        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1707        er->NumberParameters >= 2) {
1708     switch (er->ExceptionInformation[0]) {
1709     case 0: st->print(", reading address"); break;
1710     case 1: st->print(", writing address"); break;
1711     case 8: st->print(", data execution prevention violation at address"); break;
1712     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1713                        er->ExceptionInformation[0]);
1714     }
1715     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1716   } else {
1717     int num = er->NumberParameters;
1718     if (num > 0) {
1719       st->print(", ExceptionInformation=");
1720       for (int i = 0; i < num; i++) {
1721         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1722       }
1723     }
1724   }
1725   st->cr();
1726 }
1727 
1728 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1729   // do nothing
1730 }
1731 
1732 static char saved_jvm_path[MAX_PATH] = {0};
1733 
1734 // Find the full path to the current module, jvm.dll
1735 void os::jvm_path(char *buf, jint buflen) {
1736   // Error checking.
1737   if (buflen < MAX_PATH) {
1738     assert(false, "must use a large-enough buffer");
1739     buf[0] = '\0';
1740     return;
1741   }
1742   // Lazy resolve the path to current module.
1743   if (saved_jvm_path[0] != 0) {
1744     strcpy(buf, saved_jvm_path);
1745     return;
1746   }
1747 
1748   buf[0] = '\0';
1749   if (Arguments::sun_java_launcher_is_altjvm()) {
1750     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1751     // for a JAVA_HOME environment variable and fix up the path so it
1752     // looks like jvm.dll is installed there (append a fake suffix
1753     // hotspot/jvm.dll).
1754     char* java_home_var = ::getenv("JAVA_HOME");
1755     if (java_home_var != NULL && java_home_var[0] != 0 &&
1756         strlen(java_home_var) < (size_t)buflen) {
1757       strncpy(buf, java_home_var, buflen);
1758 
1759       // determine if this is a legacy image or modules image
1760       // modules image doesn't have "jre" subdirectory
1761       size_t len = strlen(buf);
1762       char* jrebin_p = buf + len;
1763       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1764       if (0 != _access(buf, 0)) {
1765         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1766       }
1767       len = strlen(buf);
1768       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1769     }
1770   }
1771 
1772   if (buf[0] == '\0') {
1773     GetModuleFileName(vm_lib_handle, buf, buflen);
1774   }
1775   strncpy(saved_jvm_path, buf, MAX_PATH);
1776   saved_jvm_path[MAX_PATH - 1] = '\0';
1777 }
1778 
1779 
1780 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1781 #ifndef _WIN64
1782   st->print("_");
1783 #endif
1784 }
1785 
1786 
1787 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1788 #ifndef _WIN64
1789   st->print("@%d", args_size  * sizeof(int));
1790 #endif
1791 }
1792 
1793 // This method is a copy of JDK's sysGetLastErrorString
1794 // from src/windows/hpi/src/system_md.c
1795 
1796 size_t os::lasterror(char* buf, size_t len) {
1797   DWORD errval;
1798 
1799   if ((errval = GetLastError()) != 0) {
1800     // DOS error
1801     size_t n = (size_t)FormatMessage(
1802                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1803                                      NULL,
1804                                      errval,
1805                                      0,
1806                                      buf,
1807                                      (DWORD)len,
1808                                      NULL);
1809     if (n > 3) {
1810       // Drop final '.', CR, LF
1811       if (buf[n - 1] == '\n') n--;
1812       if (buf[n - 1] == '\r') n--;
1813       if (buf[n - 1] == '.') n--;
1814       buf[n] = '\0';
1815     }
1816     return n;
1817   }
1818 
1819   if (errno != 0) {
1820     // C runtime error that has no corresponding DOS error code
1821     const char* s = os::strerror(errno);
1822     size_t n = strlen(s);
1823     if (n >= len) n = len - 1;
1824     strncpy(buf, s, n);
1825     buf[n] = '\0';
1826     return n;
1827   }
1828 
1829   return 0;
1830 }
1831 
1832 int os::get_last_error() {
1833   DWORD error = GetLastError();
1834   if (error == 0) {
1835     error = errno;
1836   }
1837   return (int)error;
1838 }
1839 
1840 WindowsSemaphore::WindowsSemaphore(uint value) {
1841   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1842 
1843   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1844 }
1845 
1846 WindowsSemaphore::~WindowsSemaphore() {
1847   ::CloseHandle(_semaphore);
1848 }
1849 
1850 void WindowsSemaphore::signal(uint count) {
1851   if (count > 0) {
1852     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1853 
1854     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1855   }
1856 }
1857 
1858 void WindowsSemaphore::wait() {
1859   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1860   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1861   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1862 }
1863 
1864 bool WindowsSemaphore::trywait() {
1865   DWORD ret = ::WaitForSingleObject(_semaphore, 0);
1866   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1867   return ret == WAIT_OBJECT_0;
1868 }
1869 
1870 // sun.misc.Signal
1871 // NOTE that this is a workaround for an apparent kernel bug where if
1872 // a signal handler for SIGBREAK is installed then that signal handler
1873 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1874 // See bug 4416763.
1875 static void (*sigbreakHandler)(int) = NULL;
1876 
1877 static void UserHandler(int sig, void *siginfo, void *context) {
1878   os::signal_notify(sig);
1879   // We need to reinstate the signal handler each time...
1880   os::signal(sig, (void*)UserHandler);
1881 }
1882 
1883 void* os::user_handler() {
1884   return (void*) UserHandler;
1885 }
1886 
1887 void* os::signal(int signal_number, void* handler) {
1888   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1889     void (*oldHandler)(int) = sigbreakHandler;
1890     sigbreakHandler = (void (*)(int)) handler;
1891     return (void*) oldHandler;
1892   } else {
1893     return (void*)::signal(signal_number, (void (*)(int))handler);
1894   }
1895 }
1896 
1897 void os::signal_raise(int signal_number) {
1898   raise(signal_number);
1899 }
1900 
1901 // The Win32 C runtime library maps all console control events other than ^C
1902 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1903 // logoff, and shutdown events.  We therefore install our own console handler
1904 // that raises SIGTERM for the latter cases.
1905 //
1906 static BOOL WINAPI consoleHandler(DWORD event) {
1907   switch (event) {
1908   case CTRL_C_EVENT:
1909     if (VMError::is_error_reported()) {
1910       // Ctrl-C is pressed during error reporting, likely because the error
1911       // handler fails to abort. Let VM die immediately.
1912       os::die();
1913     }
1914 
1915     os::signal_raise(SIGINT);
1916     return TRUE;
1917     break;
1918   case CTRL_BREAK_EVENT:
1919     if (sigbreakHandler != NULL) {
1920       (*sigbreakHandler)(SIGBREAK);
1921     }
1922     return TRUE;
1923     break;
1924   case CTRL_LOGOFF_EVENT: {
1925     // Don't terminate JVM if it is running in a non-interactive session,
1926     // such as a service process.
1927     USEROBJECTFLAGS flags;
1928     HANDLE handle = GetProcessWindowStation();
1929     if (handle != NULL &&
1930         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1931         sizeof(USEROBJECTFLAGS), NULL)) {
1932       // If it is a non-interactive session, let next handler to deal
1933       // with it.
1934       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1935         return FALSE;
1936       }
1937     }
1938   }
1939   case CTRL_CLOSE_EVENT:
1940   case CTRL_SHUTDOWN_EVENT:
1941     os::signal_raise(SIGTERM);
1942     return TRUE;
1943     break;
1944   default:
1945     break;
1946   }
1947   return FALSE;
1948 }
1949 
1950 // The following code is moved from os.cpp for making this
1951 // code platform specific, which it is by its very nature.
1952 
1953 // Return maximum OS signal used + 1 for internal use only
1954 // Used as exit signal for signal_thread
1955 int os::sigexitnum_pd() {
1956   return NSIG;
1957 }
1958 
1959 // a counter for each possible signal value, including signal_thread exit signal
1960 static volatile jint pending_signals[NSIG+1] = { 0 };
1961 static HANDLE sig_sem = NULL;
1962 
1963 void os::signal_init_pd() {
1964   // Initialize signal structures
1965   memset((void*)pending_signals, 0, sizeof(pending_signals));
1966 
1967   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1968 
1969   // Programs embedding the VM do not want it to attempt to receive
1970   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1971   // shutdown hooks mechanism introduced in 1.3.  For example, when
1972   // the VM is run as part of a Windows NT service (i.e., a servlet
1973   // engine in a web server), the correct behavior is for any console
1974   // control handler to return FALSE, not TRUE, because the OS's
1975   // "final" handler for such events allows the process to continue if
1976   // it is a service (while terminating it if it is not a service).
1977   // To make this behavior uniform and the mechanism simpler, we
1978   // completely disable the VM's usage of these console events if -Xrs
1979   // (=ReduceSignalUsage) is specified.  This means, for example, that
1980   // the CTRL-BREAK thread dump mechanism is also disabled in this
1981   // case.  See bugs 4323062, 4345157, and related bugs.
1982 
1983   if (!ReduceSignalUsage) {
1984     // Add a CTRL-C handler
1985     SetConsoleCtrlHandler(consoleHandler, TRUE);
1986   }
1987 }
1988 
1989 void os::signal_notify(int signal_number) {
1990   BOOL ret;
1991   if (sig_sem != NULL) {
1992     Atomic::inc(&pending_signals[signal_number]);
1993     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1994     assert(ret != 0, "ReleaseSemaphore() failed");
1995   }
1996 }
1997 
1998 static int check_pending_signals(bool wait_for_signal) {
1999   DWORD ret;
2000   while (true) {
2001     for (int i = 0; i < NSIG + 1; i++) {
2002       jint n = pending_signals[i];
2003       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2004         return i;
2005       }
2006     }
2007     if (!wait_for_signal) {
2008       return -1;
2009     }
2010 
2011     JavaThread *thread = JavaThread::current();
2012 
2013     ThreadBlockInVM tbivm(thread);
2014 
2015     bool threadIsSuspended;
2016     do {
2017       thread->set_suspend_equivalent();
2018       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2019       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2020       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2021 
2022       // were we externally suspended while we were waiting?
2023       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2024       if (threadIsSuspended) {
2025         // The semaphore has been incremented, but while we were waiting
2026         // another thread suspended us. We don't want to continue running
2027         // while suspended because that would surprise the thread that
2028         // suspended us.
2029         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2030         assert(ret != 0, "ReleaseSemaphore() failed");
2031 
2032         thread->java_suspend_self();
2033       }
2034     } while (threadIsSuspended);
2035   }
2036 }
2037 
2038 int os::signal_lookup() {
2039   return check_pending_signals(false);
2040 }
2041 
2042 int os::signal_wait() {
2043   return check_pending_signals(true);
2044 }
2045 
2046 // Implicit OS exception handling
2047 
2048 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2049                       address handler) {
2050   JavaThread* thread = (JavaThread*) Thread::current_or_null();
2051   // Save pc in thread
2052 #ifdef _M_AMD64
2053   // Do not blow up if no thread info available.
2054   if (thread) {
2055     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2056   }
2057   // Set pc to handler
2058   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2059 #else
2060   // Do not blow up if no thread info available.
2061   if (thread) {
2062     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2063   }
2064   // Set pc to handler
2065   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2066 #endif
2067 
2068   // Continue the execution
2069   return EXCEPTION_CONTINUE_EXECUTION;
2070 }
2071 
2072 
2073 // Used for PostMortemDump
2074 extern "C" void safepoints();
2075 extern "C" void find(int x);
2076 extern "C" void events();
2077 
2078 // According to Windows API documentation, an illegal instruction sequence should generate
2079 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2080 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2081 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2082 
2083 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2084 
2085 // From "Execution Protection in the Windows Operating System" draft 0.35
2086 // Once a system header becomes available, the "real" define should be
2087 // included or copied here.
2088 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2089 
2090 // Windows Vista/2008 heap corruption check
2091 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2092 
2093 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2094 // C++ compiler contain this error code. Because this is a compiler-generated
2095 // error, the code is not listed in the Win32 API header files.
2096 // The code is actually a cryptic mnemonic device, with the initial "E"
2097 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2098 // ASCII values of "msc".
2099 
2100 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2101 
2102 #define def_excpt(val) { #val, (val) }
2103 
2104 static const struct { char* name; uint number; } exceptlabels[] = {
2105     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2106     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2107     def_excpt(EXCEPTION_BREAKPOINT),
2108     def_excpt(EXCEPTION_SINGLE_STEP),
2109     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2110     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2111     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2112     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2113     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2114     def_excpt(EXCEPTION_FLT_OVERFLOW),
2115     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2116     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2117     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2118     def_excpt(EXCEPTION_INT_OVERFLOW),
2119     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2120     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2121     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2122     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2123     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2124     def_excpt(EXCEPTION_STACK_OVERFLOW),
2125     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2126     def_excpt(EXCEPTION_GUARD_PAGE),
2127     def_excpt(EXCEPTION_INVALID_HANDLE),
2128     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2129     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2130 };
2131 
2132 #undef def_excpt
2133 
2134 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2135   uint code = static_cast<uint>(exception_code);
2136   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2137     if (exceptlabels[i].number == code) {
2138       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2139       return buf;
2140     }
2141   }
2142 
2143   return NULL;
2144 }
2145 
2146 //-----------------------------------------------------------------------------
2147 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2148   // handle exception caused by idiv; should only happen for -MinInt/-1
2149   // (division by zero is handled explicitly)
2150 #ifdef  _M_AMD64
2151   PCONTEXT ctx = exceptionInfo->ContextRecord;
2152   address pc = (address)ctx->Rip;
2153   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2154   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2155   if (pc[0] == 0xF7) {
2156     // set correct result values and continue after idiv instruction
2157     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2158   } else {
2159     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2160   }
2161   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2162   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2163   // idiv opcode (0xF7).
2164   ctx->Rdx = (DWORD)0;             // remainder
2165   // Continue the execution
2166 #else
2167   PCONTEXT ctx = exceptionInfo->ContextRecord;
2168   address pc = (address)ctx->Eip;
2169   assert(pc[0] == 0xF7, "not an idiv opcode");
2170   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2171   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2172   // set correct result values and continue after idiv instruction
2173   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2174   ctx->Eax = (DWORD)min_jint;      // result
2175   ctx->Edx = (DWORD)0;             // remainder
2176   // Continue the execution
2177 #endif
2178   return EXCEPTION_CONTINUE_EXECUTION;
2179 }
2180 
2181 //-----------------------------------------------------------------------------
2182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2183   PCONTEXT ctx = exceptionInfo->ContextRecord;
2184 #ifndef  _WIN64
2185   // handle exception caused by native method modifying control word
2186   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2187 
2188   switch (exception_code) {
2189   case EXCEPTION_FLT_DENORMAL_OPERAND:
2190   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2191   case EXCEPTION_FLT_INEXACT_RESULT:
2192   case EXCEPTION_FLT_INVALID_OPERATION:
2193   case EXCEPTION_FLT_OVERFLOW:
2194   case EXCEPTION_FLT_STACK_CHECK:
2195   case EXCEPTION_FLT_UNDERFLOW:
2196     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2197     if (fp_control_word != ctx->FloatSave.ControlWord) {
2198       // Restore FPCW and mask out FLT exceptions
2199       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2200       // Mask out pending FLT exceptions
2201       ctx->FloatSave.StatusWord &=  0xffffff00;
2202       return EXCEPTION_CONTINUE_EXECUTION;
2203     }
2204   }
2205 
2206   if (prev_uef_handler != NULL) {
2207     // We didn't handle this exception so pass it to the previous
2208     // UnhandledExceptionFilter.
2209     return (prev_uef_handler)(exceptionInfo);
2210   }
2211 #else // !_WIN64
2212   // On Windows, the mxcsr control bits are non-volatile across calls
2213   // See also CR 6192333
2214   //
2215   jint MxCsr = INITIAL_MXCSR;
2216   // we can't use StubRoutines::addr_mxcsr_std()
2217   // because in Win64 mxcsr is not saved there
2218   if (MxCsr != ctx->MxCsr) {
2219     ctx->MxCsr = MxCsr;
2220     return EXCEPTION_CONTINUE_EXECUTION;
2221   }
2222 #endif // !_WIN64
2223 
2224   return EXCEPTION_CONTINUE_SEARCH;
2225 }
2226 
2227 static inline void report_error(Thread* t, DWORD exception_code,
2228                                 address addr, void* siginfo, void* context) {
2229   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2230 
2231   // If UseOsErrorReporting, this will return here and save the error file
2232   // somewhere where we can find it in the minidump.
2233 }
2234 
2235 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2236         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2237   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2238   address addr = (address) exceptionRecord->ExceptionInformation[1];
2239   if (Interpreter::contains(pc)) {
2240     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2241     if (!fr->is_first_java_frame()) {
2242       // get_frame_at_stack_banging_point() is only called when we
2243       // have well defined stacks so java_sender() calls do not need
2244       // to assert safe_for_sender() first.
2245       *fr = fr->java_sender();
2246     }
2247   } else {
2248     // more complex code with compiled code
2249     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2250     CodeBlob* cb = CodeCache::find_blob(pc);
2251     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2252       // Not sure where the pc points to, fallback to default
2253       // stack overflow handling
2254       return false;
2255     } else {
2256       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2257       // in compiled code, the stack banging is performed just after the return pc
2258       // has been pushed on the stack
2259       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2260       if (!fr->is_java_frame()) {
2261         // See java_sender() comment above.
2262         *fr = fr->java_sender();
2263       }
2264     }
2265   }
2266   assert(fr->is_java_frame(), "Safety check");
2267   return true;
2268 }
2269 
2270 //-----------------------------------------------------------------------------
2271 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2272   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2273   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2274 #ifdef _M_AMD64
2275   address pc = (address) exceptionInfo->ContextRecord->Rip;
2276 #else
2277   address pc = (address) exceptionInfo->ContextRecord->Eip;
2278 #endif
2279   Thread* t = Thread::current_or_null_safe();
2280 
2281   // Handle SafeFetch32 and SafeFetchN exceptions.
2282   if (StubRoutines::is_safefetch_fault(pc)) {
2283     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2284   }
2285 
2286 #ifndef _WIN64
2287   // Execution protection violation - win32 running on AMD64 only
2288   // Handled first to avoid misdiagnosis as a "normal" access violation;
2289   // This is safe to do because we have a new/unique ExceptionInformation
2290   // code for this condition.
2291   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2292     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2293     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2294     address addr = (address) exceptionRecord->ExceptionInformation[1];
2295 
2296     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2297       int page_size = os::vm_page_size();
2298 
2299       // Make sure the pc and the faulting address are sane.
2300       //
2301       // If an instruction spans a page boundary, and the page containing
2302       // the beginning of the instruction is executable but the following
2303       // page is not, the pc and the faulting address might be slightly
2304       // different - we still want to unguard the 2nd page in this case.
2305       //
2306       // 15 bytes seems to be a (very) safe value for max instruction size.
2307       bool pc_is_near_addr =
2308         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2309       bool instr_spans_page_boundary =
2310         (align_down((intptr_t) pc ^ (intptr_t) addr,
2311                          (intptr_t) page_size) > 0);
2312 
2313       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2314         static volatile address last_addr =
2315           (address) os::non_memory_address_word();
2316 
2317         // In conservative mode, don't unguard unless the address is in the VM
2318         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2319             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2320 
2321           // Set memory to RWX and retry
2322           address page_start = align_down(addr, page_size);
2323           bool res = os::protect_memory((char*) page_start, page_size,
2324                                         os::MEM_PROT_RWX);
2325 
2326           log_debug(os)("Execution protection violation "
2327                         "at " INTPTR_FORMAT
2328                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2329                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2330 
2331           // Set last_addr so if we fault again at the same address, we don't
2332           // end up in an endless loop.
2333           //
2334           // There are two potential complications here.  Two threads trapping
2335           // at the same address at the same time could cause one of the
2336           // threads to think it already unguarded, and abort the VM.  Likely
2337           // very rare.
2338           //
2339           // The other race involves two threads alternately trapping at
2340           // different addresses and failing to unguard the page, resulting in
2341           // an endless loop.  This condition is probably even more unlikely
2342           // than the first.
2343           //
2344           // Although both cases could be avoided by using locks or thread
2345           // local last_addr, these solutions are unnecessary complication:
2346           // this handler is a best-effort safety net, not a complete solution.
2347           // It is disabled by default and should only be used as a workaround
2348           // in case we missed any no-execute-unsafe VM code.
2349 
2350           last_addr = addr;
2351 
2352           return EXCEPTION_CONTINUE_EXECUTION;
2353         }
2354       }
2355 
2356       // Last unguard failed or not unguarding
2357       tty->print_raw_cr("Execution protection violation");
2358       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2359                    exceptionInfo->ContextRecord);
2360       return EXCEPTION_CONTINUE_SEARCH;
2361     }
2362   }
2363 #endif // _WIN64
2364 
2365   // Check to see if we caught the safepoint code in the
2366   // process of write protecting the memory serialization page.
2367   // It write enables the page immediately after protecting it
2368   // so just return.
2369   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2370     if (t != NULL && t->is_Java_thread()) {
2371       JavaThread* thread = (JavaThread*) t;
2372       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2373       address addr = (address) exceptionRecord->ExceptionInformation[1];
2374       if (os::is_memory_serialize_page(thread, addr)) {
2375         // Block current thread until the memory serialize page permission restored.
2376         os::block_on_serialize_page_trap();
2377         return EXCEPTION_CONTINUE_EXECUTION;
2378       }
2379     }
2380   }
2381 
2382   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2383       VM_Version::is_cpuinfo_segv_addr(pc)) {
2384     // Verify that OS save/restore AVX registers.
2385     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2386   }
2387 
2388   if (t != NULL && t->is_Java_thread()) {
2389     JavaThread* thread = (JavaThread*) t;
2390     bool in_java = thread->thread_state() == _thread_in_Java;
2391 
2392     // Handle potential stack overflows up front.
2393     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2394       if (thread->stack_guards_enabled()) {
2395         if (in_java) {
2396           frame fr;
2397           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2398           address addr = (address) exceptionRecord->ExceptionInformation[1];
2399           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2400             assert(fr.is_java_frame(), "Must be a Java frame");
2401             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2402           }
2403         }
2404         // Yellow zone violation.  The o/s has unprotected the first yellow
2405         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2406         // update the enabled status, even if the zone contains only one page.
2407         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2408         thread->disable_stack_yellow_reserved_zone();
2409         // If not in java code, return and hope for the best.
2410         return in_java
2411             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2412             :  EXCEPTION_CONTINUE_EXECUTION;
2413       } else {
2414         // Fatal red zone violation.
2415         thread->disable_stack_red_zone();
2416         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2417         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2418                       exceptionInfo->ContextRecord);
2419         return EXCEPTION_CONTINUE_SEARCH;
2420       }
2421     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2422       // Either stack overflow or null pointer exception.
2423       if (in_java) {
2424         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2425         address addr = (address) exceptionRecord->ExceptionInformation[1];
2426         address stack_end = thread->stack_end();
2427         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2428           // Stack overflow.
2429           assert(!os::uses_stack_guard_pages(),
2430                  "should be caught by red zone code above.");
2431           return Handle_Exception(exceptionInfo,
2432                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2433         }
2434         // Check for safepoint polling and implicit null
2435         // We only expect null pointers in the stubs (vtable)
2436         // the rest are checked explicitly now.
2437         CodeBlob* cb = CodeCache::find_blob(pc);
2438         if (cb != NULL) {
2439           if (os::is_poll_address(addr)) {
2440             address stub = SharedRuntime::get_poll_stub(pc);
2441             return Handle_Exception(exceptionInfo, stub);
2442           }
2443         }
2444         {
2445 #ifdef _WIN64
2446           // If it's a legal stack address map the entire region in
2447           //
2448           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2449           address addr = (address) exceptionRecord->ExceptionInformation[1];
2450           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2451             addr = (address)((uintptr_t)addr &
2452                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2453             os::commit_memory((char *)addr, thread->stack_base() - addr,
2454                               !ExecMem);
2455             return EXCEPTION_CONTINUE_EXECUTION;
2456           } else
2457 #endif
2458           {
2459             // Null pointer exception.
2460             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2461               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2462               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2463             }
2464             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2465                          exceptionInfo->ContextRecord);
2466             return EXCEPTION_CONTINUE_SEARCH;
2467           }
2468         }
2469       }
2470 
2471 #ifdef _WIN64
2472       // Special care for fast JNI field accessors.
2473       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2474       // in and the heap gets shrunk before the field access.
2475       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2476         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2477         if (addr != (address)-1) {
2478           return Handle_Exception(exceptionInfo, addr);
2479         }
2480       }
2481 #endif
2482 
2483       // Stack overflow or null pointer exception in native code.
2484       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2485                    exceptionInfo->ContextRecord);
2486       return EXCEPTION_CONTINUE_SEARCH;
2487     } // /EXCEPTION_ACCESS_VIOLATION
2488     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2489 
2490     if (exception_code == EXCEPTION_IN_PAGE_ERROR) {
2491       CodeBlob* cb;
2492       CompiledMethod* nm;
2493       JavaThread* thread = (JavaThread*)t;
2494       if (in_java) {
2495         cb = CodeCache::find_blob_unsafe(pc);
2496         nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
2497       }
2498       if (thread->doing_unsafe_access() || (nm != NULL && nm->has_unsafe_access())) {
2499         return Handle_Exception(exceptionInfo, SharedRuntime::handle_unsafe_access(thread, (address)Assembler::locate_next_instruction(pc)));
2500       }
2501     }
2502 
2503     if (in_java) {
2504       switch (exception_code) {
2505       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2506         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2507 
2508       case EXCEPTION_INT_OVERFLOW:
2509         return Handle_IDiv_Exception(exceptionInfo);
2510 
2511       } // switch
2512     }
2513     if (((thread->thread_state() == _thread_in_Java) ||
2514          (thread->thread_state() == _thread_in_native)) &&
2515          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2516       LONG result=Handle_FLT_Exception(exceptionInfo);
2517       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2518     }
2519   }
2520 
2521   if (exception_code != EXCEPTION_BREAKPOINT) {
2522     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2523                  exceptionInfo->ContextRecord);
2524   }
2525   return EXCEPTION_CONTINUE_SEARCH;
2526 }
2527 
2528 #ifndef _WIN64
2529 // Special care for fast JNI accessors.
2530 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2531 // the heap gets shrunk before the field access.
2532 // Need to install our own structured exception handler since native code may
2533 // install its own.
2534 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2535   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2536   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2537     address pc = (address) exceptionInfo->ContextRecord->Eip;
2538     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2539     if (addr != (address)-1) {
2540       return Handle_Exception(exceptionInfo, addr);
2541     }
2542   }
2543   return EXCEPTION_CONTINUE_SEARCH;
2544 }
2545 
2546 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2547   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2548                                                      jobject obj,           \
2549                                                      jfieldID fieldID) {    \
2550     __try {                                                                 \
2551       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2552                                                                  obj,       \
2553                                                                  fieldID);  \
2554     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2555                                               _exception_info())) {         \
2556     }                                                                       \
2557     return 0;                                                               \
2558   }
2559 
2560 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2561 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2562 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2563 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2564 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2565 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2566 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2567 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2568 
2569 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2570   switch (type) {
2571   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2572   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2573   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2574   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2575   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2576   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2577   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2578   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2579   default:        ShouldNotReachHere();
2580   }
2581   return (address)-1;
2582 }
2583 #endif
2584 
2585 // Virtual Memory
2586 
2587 int os::vm_page_size() { return os::win32::vm_page_size(); }
2588 int os::vm_allocation_granularity() {
2589   return os::win32::vm_allocation_granularity();
2590 }
2591 
2592 // Windows large page support is available on Windows 2003. In order to use
2593 // large page memory, the administrator must first assign additional privilege
2594 // to the user:
2595 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2596 //   + select Local Policies -> User Rights Assignment
2597 //   + double click "Lock pages in memory", add users and/or groups
2598 //   + reboot
2599 // Note the above steps are needed for administrator as well, as administrators
2600 // by default do not have the privilege to lock pages in memory.
2601 //
2602 // Note about Windows 2003: although the API supports committing large page
2603 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2604 // scenario, I found through experiment it only uses large page if the entire
2605 // memory region is reserved and committed in a single VirtualAlloc() call.
2606 // This makes Windows large page support more or less like Solaris ISM, in
2607 // that the entire heap must be committed upfront. This probably will change
2608 // in the future, if so the code below needs to be revisited.
2609 
2610 #ifndef MEM_LARGE_PAGES
2611   #define MEM_LARGE_PAGES 0x20000000
2612 #endif
2613 
2614 static HANDLE    _hProcess;
2615 static HANDLE    _hToken;
2616 
2617 // Container for NUMA node list info
2618 class NUMANodeListHolder {
2619  private:
2620   int *_numa_used_node_list;  // allocated below
2621   int _numa_used_node_count;
2622 
2623   void free_node_list() {
2624     if (_numa_used_node_list != NULL) {
2625       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2626     }
2627   }
2628 
2629  public:
2630   NUMANodeListHolder() {
2631     _numa_used_node_count = 0;
2632     _numa_used_node_list = NULL;
2633     // do rest of initialization in build routine (after function pointers are set up)
2634   }
2635 
2636   ~NUMANodeListHolder() {
2637     free_node_list();
2638   }
2639 
2640   bool build() {
2641     DWORD_PTR proc_aff_mask;
2642     DWORD_PTR sys_aff_mask;
2643     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2644     ULONG highest_node_number;
2645     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2646     free_node_list();
2647     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2648     for (unsigned int i = 0; i <= highest_node_number; i++) {
2649       ULONGLONG proc_mask_numa_node;
2650       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2651       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2652         _numa_used_node_list[_numa_used_node_count++] = i;
2653       }
2654     }
2655     return (_numa_used_node_count > 1);
2656   }
2657 
2658   int get_count() { return _numa_used_node_count; }
2659   int get_node_list_entry(int n) {
2660     // for indexes out of range, returns -1
2661     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2662   }
2663 
2664 } numa_node_list_holder;
2665 
2666 
2667 
2668 static size_t _large_page_size = 0;
2669 
2670 static bool request_lock_memory_privilege() {
2671   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2672                           os::current_process_id());
2673 
2674   LUID luid;
2675   if (_hProcess != NULL &&
2676       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2677       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2678 
2679     TOKEN_PRIVILEGES tp;
2680     tp.PrivilegeCount = 1;
2681     tp.Privileges[0].Luid = luid;
2682     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2683 
2684     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2685     // privilege. Check GetLastError() too. See MSDN document.
2686     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2687         (GetLastError() == ERROR_SUCCESS)) {
2688       return true;
2689     }
2690   }
2691 
2692   return false;
2693 }
2694 
2695 static void cleanup_after_large_page_init() {
2696   if (_hProcess) CloseHandle(_hProcess);
2697   _hProcess = NULL;
2698   if (_hToken) CloseHandle(_hToken);
2699   _hToken = NULL;
2700 }
2701 
2702 static bool numa_interleaving_init() {
2703   bool success = false;
2704   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2705 
2706   // print a warning if UseNUMAInterleaving flag is specified on command line
2707   bool warn_on_failure = use_numa_interleaving_specified;
2708 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2709 
2710   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2711   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2712   NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
2713 
2714   if (numa_node_list_holder.build()) {
2715     if (log_is_enabled(Debug, os, cpu)) {
2716       Log(os, cpu) log;
2717       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2718       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2719         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2720       }
2721     }
2722     success = true;
2723   } else {
2724     WARN("Process does not cover multiple NUMA nodes.");
2725   }
2726   if (!success) {
2727     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2728   }
2729   return success;
2730 #undef WARN
2731 }
2732 
2733 // this routine is used whenever we need to reserve a contiguous VA range
2734 // but we need to make separate VirtualAlloc calls for each piece of the range
2735 // Reasons for doing this:
2736 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2737 //  * UseNUMAInterleaving requires a separate node for each piece
2738 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2739                                          DWORD prot,
2740                                          bool should_inject_error = false) {
2741   char * p_buf;
2742   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2743   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2744   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2745 
2746   // first reserve enough address space in advance since we want to be
2747   // able to break a single contiguous virtual address range into multiple
2748   // large page commits but WS2003 does not allow reserving large page space
2749   // so we just use 4K pages for reserve, this gives us a legal contiguous
2750   // address space. then we will deallocate that reservation, and re alloc
2751   // using large pages
2752   const size_t size_of_reserve = bytes + chunk_size;
2753   if (bytes > size_of_reserve) {
2754     // Overflowed.
2755     return NULL;
2756   }
2757   p_buf = (char *) VirtualAlloc(addr,
2758                                 size_of_reserve,  // size of Reserve
2759                                 MEM_RESERVE,
2760                                 PAGE_READWRITE);
2761   // If reservation failed, return NULL
2762   if (p_buf == NULL) return NULL;
2763   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2764   os::release_memory(p_buf, bytes + chunk_size);
2765 
2766   // we still need to round up to a page boundary (in case we are using large pages)
2767   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2768   // instead we handle this in the bytes_to_rq computation below
2769   p_buf = align_up(p_buf, page_size);
2770 
2771   // now go through and allocate one chunk at a time until all bytes are
2772   // allocated
2773   size_t  bytes_remaining = bytes;
2774   // An overflow of align_up() would have been caught above
2775   // in the calculation of size_of_reserve.
2776   char * next_alloc_addr = p_buf;
2777   HANDLE hProc = GetCurrentProcess();
2778 
2779 #ifdef ASSERT
2780   // Variable for the failure injection
2781   int ran_num = os::random();
2782   size_t fail_after = ran_num % bytes;
2783 #endif
2784 
2785   int count=0;
2786   while (bytes_remaining) {
2787     // select bytes_to_rq to get to the next chunk_size boundary
2788 
2789     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2790     // Note allocate and commit
2791     char * p_new;
2792 
2793 #ifdef ASSERT
2794     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2795 #else
2796     const bool inject_error_now = false;
2797 #endif
2798 
2799     if (inject_error_now) {
2800       p_new = NULL;
2801     } else {
2802       if (!UseNUMAInterleaving) {
2803         p_new = (char *) VirtualAlloc(next_alloc_addr,
2804                                       bytes_to_rq,
2805                                       flags,
2806                                       prot);
2807       } else {
2808         // get the next node to use from the used_node_list
2809         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2810         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2811         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2812       }
2813     }
2814 
2815     if (p_new == NULL) {
2816       // Free any allocated pages
2817       if (next_alloc_addr > p_buf) {
2818         // Some memory was committed so release it.
2819         size_t bytes_to_release = bytes - bytes_remaining;
2820         // NMT has yet to record any individual blocks, so it
2821         // need to create a dummy 'reserve' record to match
2822         // the release.
2823         MemTracker::record_virtual_memory_reserve((address)p_buf,
2824                                                   bytes_to_release, CALLER_PC);
2825         os::release_memory(p_buf, bytes_to_release);
2826       }
2827 #ifdef ASSERT
2828       if (should_inject_error) {
2829         log_develop_debug(pagesize)("Reserving pages individually failed.");
2830       }
2831 #endif
2832       return NULL;
2833     }
2834 
2835     bytes_remaining -= bytes_to_rq;
2836     next_alloc_addr += bytes_to_rq;
2837     count++;
2838   }
2839   // Although the memory is allocated individually, it is returned as one.
2840   // NMT records it as one block.
2841   if ((flags & MEM_COMMIT) != 0) {
2842     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2843   } else {
2844     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2845   }
2846 
2847   // made it this far, success
2848   return p_buf;
2849 }
2850 
2851 
2852 
2853 void os::large_page_init() {
2854   if (!UseLargePages) return;
2855 
2856   // print a warning if any large page related flag is specified on command line
2857   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2858                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2859   bool success = false;
2860 
2861 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2862   if (request_lock_memory_privilege()) {
2863     size_t s = GetLargePageMinimum();
2864     if (s) {
2865 #if defined(IA32) || defined(AMD64)
2866       if (s > 4*M || LargePageSizeInBytes > 4*M) {
2867         WARN("JVM cannot use large pages bigger than 4mb.");
2868       } else {
2869 #endif
2870         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2871           _large_page_size = LargePageSizeInBytes;
2872         } else {
2873           _large_page_size = s;
2874         }
2875         success = true;
2876 #if defined(IA32) || defined(AMD64)
2877       }
2878 #endif
2879     } else {
2880       WARN("Large page is not supported by the processor.");
2881     }
2882   } else {
2883     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2884   }
2885 #undef WARN
2886 
2887   const size_t default_page_size = (size_t) vm_page_size();
2888   if (success && _large_page_size > default_page_size) {
2889     _page_sizes[0] = _large_page_size;
2890     _page_sizes[1] = default_page_size;
2891     _page_sizes[2] = 0;
2892   }
2893 
2894   cleanup_after_large_page_init();
2895   UseLargePages = success;
2896 }
2897 
2898 // On win32, one cannot release just a part of reserved memory, it's an
2899 // all or nothing deal.  When we split a reservation, we must break the
2900 // reservation into two reservations.
2901 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2902                                   bool realloc) {
2903   if (size > 0) {
2904     release_memory(base, size);
2905     if (realloc) {
2906       reserve_memory(split, base);
2907     }
2908     if (size != split) {
2909       reserve_memory(size - split, base + split);
2910     }
2911   }
2912 }
2913 
2914 // Multiple threads can race in this code but it's not possible to unmap small sections of
2915 // virtual space to get requested alignment, like posix-like os's.
2916 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
2917 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
2918   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
2919          "Alignment must be a multiple of allocation granularity (page size)");
2920   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
2921 
2922   size_t extra_size = size + alignment;
2923   assert(extra_size >= size, "overflow, size is too large to allow alignment");
2924 
2925   char* aligned_base = NULL;
2926 
2927   do {
2928     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
2929     if (extra_base == NULL) {
2930       return NULL;
2931     }
2932     // Do manual alignment
2933     aligned_base = align_up(extra_base, alignment);
2934 
2935     os::release_memory(extra_base, extra_size);
2936 
2937     aligned_base = os::reserve_memory(size, aligned_base);
2938 
2939   } while (aligned_base == NULL);
2940 
2941   return aligned_base;
2942 }
2943 
2944 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2945   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2946          "reserve alignment");
2947   assert(bytes % os::vm_page_size() == 0, "reserve page size");
2948   char* res;
2949   // note that if UseLargePages is on, all the areas that require interleaving
2950   // will go thru reserve_memory_special rather than thru here.
2951   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
2952   if (!use_individual) {
2953     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2954   } else {
2955     elapsedTimer reserveTimer;
2956     if (Verbose && PrintMiscellaneous) reserveTimer.start();
2957     // in numa interleaving, we have to allocate pages individually
2958     // (well really chunks of NUMAInterleaveGranularity size)
2959     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
2960     if (res == NULL) {
2961       warning("NUMA page allocation failed");
2962     }
2963     if (Verbose && PrintMiscellaneous) {
2964       reserveTimer.stop();
2965       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
2966                     reserveTimer.milliseconds(), reserveTimer.ticks());
2967     }
2968   }
2969   assert(res == NULL || addr == NULL || addr == res,
2970          "Unexpected address from reserve.");
2971 
2972   return res;
2973 }
2974 
2975 // Reserve memory at an arbitrary address, only if that area is
2976 // available (and not reserved for something else).
2977 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2978   // Windows os::reserve_memory() fails of the requested address range is
2979   // not avilable.
2980   return reserve_memory(bytes, requested_addr);
2981 }
2982 
2983 size_t os::large_page_size() {
2984   return _large_page_size;
2985 }
2986 
2987 bool os::can_commit_large_page_memory() {
2988   // Windows only uses large page memory when the entire region is reserved
2989   // and committed in a single VirtualAlloc() call. This may change in the
2990   // future, but with Windows 2003 it's not possible to commit on demand.
2991   return false;
2992 }
2993 
2994 bool os::can_execute_large_page_memory() {
2995   return true;
2996 }
2997 
2998 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
2999                                  bool exec) {
3000   assert(UseLargePages, "only for large pages");
3001 
3002   if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3003     return NULL; // Fallback to small pages.
3004   }
3005 
3006   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3007   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3008 
3009   // with large pages, there are two cases where we need to use Individual Allocation
3010   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3011   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3012   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3013     log_debug(pagesize)("Reserving large pages individually.");
3014 
3015     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3016     if (p_buf == NULL) {
3017       // give an appropriate warning message
3018       if (UseNUMAInterleaving) {
3019         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3020       }
3021       if (UseLargePagesIndividualAllocation) {
3022         warning("Individually allocated large pages failed, "
3023                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3024       }
3025       return NULL;
3026     }
3027 
3028     return p_buf;
3029 
3030   } else {
3031     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3032 
3033     // normal policy just allocate it all at once
3034     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3035     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3036     if (res != NULL) {
3037       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3038     }
3039 
3040     return res;
3041   }
3042 }
3043 
3044 bool os::release_memory_special(char* base, size_t bytes) {
3045   assert(base != NULL, "Sanity check");
3046   return release_memory(base, bytes);
3047 }
3048 
3049 void os::print_statistics() {
3050 }
3051 
3052 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3053   int err = os::get_last_error();
3054   char buf[256];
3055   size_t buf_len = os::lasterror(buf, sizeof(buf));
3056   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3057           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3058           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3059 }
3060 
3061 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3062   if (bytes == 0) {
3063     // Don't bother the OS with noops.
3064     return true;
3065   }
3066   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3067   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3068   // Don't attempt to print anything if the OS call fails. We're
3069   // probably low on resources, so the print itself may cause crashes.
3070 
3071   // unless we have NUMAInterleaving enabled, the range of a commit
3072   // is always within a reserve covered by a single VirtualAlloc
3073   // in that case we can just do a single commit for the requested size
3074   if (!UseNUMAInterleaving) {
3075     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3076       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3077       return false;
3078     }
3079     if (exec) {
3080       DWORD oldprot;
3081       // Windows doc says to use VirtualProtect to get execute permissions
3082       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3083         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3084         return false;
3085       }
3086     }
3087     return true;
3088   } else {
3089 
3090     // when NUMAInterleaving is enabled, the commit might cover a range that
3091     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3092     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3093     // returns represents the number of bytes that can be committed in one step.
3094     size_t bytes_remaining = bytes;
3095     char * next_alloc_addr = addr;
3096     while (bytes_remaining > 0) {
3097       MEMORY_BASIC_INFORMATION alloc_info;
3098       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3099       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3100       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3101                        PAGE_READWRITE) == NULL) {
3102         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3103                                             exec);)
3104         return false;
3105       }
3106       if (exec) {
3107         DWORD oldprot;
3108         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3109                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3110           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3111                                               exec);)
3112           return false;
3113         }
3114       }
3115       bytes_remaining -= bytes_to_rq;
3116       next_alloc_addr += bytes_to_rq;
3117     }
3118   }
3119   // if we made it this far, return true
3120   return true;
3121 }
3122 
3123 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3124                           bool exec) {
3125   // alignment_hint is ignored on this OS
3126   return pd_commit_memory(addr, size, exec);
3127 }
3128 
3129 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3130                                   const char* mesg) {
3131   assert(mesg != NULL, "mesg must be specified");
3132   if (!pd_commit_memory(addr, size, exec)) {
3133     warn_fail_commit_memory(addr, size, exec);
3134     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3135   }
3136 }
3137 
3138 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3139                                   size_t alignment_hint, bool exec,
3140                                   const char* mesg) {
3141   // alignment_hint is ignored on this OS
3142   pd_commit_memory_or_exit(addr, size, exec, mesg);
3143 }
3144 
3145 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3146   if (bytes == 0) {
3147     // Don't bother the OS with noops.
3148     return true;
3149   }
3150   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3151   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3152   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3153 }
3154 
3155 bool os::pd_release_memory(char* addr, size_t bytes) {
3156   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3157 }
3158 
3159 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3160   return os::commit_memory(addr, size, !ExecMem);
3161 }
3162 
3163 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3164   return os::uncommit_memory(addr, size);
3165 }
3166 
3167 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3168   uint count = 0;
3169   bool ret = false;
3170   size_t bytes_remaining = bytes;
3171   char * next_protect_addr = addr;
3172 
3173   // Use VirtualQuery() to get the chunk size.
3174   while (bytes_remaining) {
3175     MEMORY_BASIC_INFORMATION alloc_info;
3176     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3177       return false;
3178     }
3179 
3180     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3181     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3182     // but we don't distinguish here as both cases are protected by same API.
3183     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3184     warning("Failed protecting pages individually for chunk #%u", count);
3185     if (!ret) {
3186       return false;
3187     }
3188 
3189     bytes_remaining -= bytes_to_protect;
3190     next_protect_addr += bytes_to_protect;
3191     count++;
3192   }
3193   return ret;
3194 }
3195 
3196 // Set protections specified
3197 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3198                         bool is_committed) {
3199   unsigned int p = 0;
3200   switch (prot) {
3201   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3202   case MEM_PROT_READ: p = PAGE_READONLY; break;
3203   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3204   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3205   default:
3206     ShouldNotReachHere();
3207   }
3208 
3209   DWORD old_status;
3210 
3211   // Strange enough, but on Win32 one can change protection only for committed
3212   // memory, not a big deal anyway, as bytes less or equal than 64K
3213   if (!is_committed) {
3214     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3215                           "cannot commit protection page");
3216   }
3217   // One cannot use os::guard_memory() here, as on Win32 guard page
3218   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3219   //
3220   // Pages in the region become guard pages. Any attempt to access a guard page
3221   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3222   // the guard page status. Guard pages thus act as a one-time access alarm.
3223   bool ret;
3224   if (UseNUMAInterleaving) {
3225     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3226     // so we must protect the chunks individually.
3227     ret = protect_pages_individually(addr, bytes, p, &old_status);
3228   } else {
3229     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3230   }
3231 #ifdef ASSERT
3232   if (!ret) {
3233     int err = os::get_last_error();
3234     char buf[256];
3235     size_t buf_len = os::lasterror(buf, sizeof(buf));
3236     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3237           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3238           buf_len != 0 ? buf : "<no_error_string>", err);
3239   }
3240 #endif
3241   return ret;
3242 }
3243 
3244 bool os::guard_memory(char* addr, size_t bytes) {
3245   DWORD old_status;
3246   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3247 }
3248 
3249 bool os::unguard_memory(char* addr, size_t bytes) {
3250   DWORD old_status;
3251   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3252 }
3253 
3254 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3255 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3256 void os::numa_make_global(char *addr, size_t bytes)    { }
3257 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3258 bool os::numa_topology_changed()                       { return false; }
3259 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3260 int os::numa_get_group_id()                            { return 0; }
3261 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3262   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3263     // Provide an answer for UMA systems
3264     ids[0] = 0;
3265     return 1;
3266   } else {
3267     // check for size bigger than actual groups_num
3268     size = MIN2(size, numa_get_groups_num());
3269     for (int i = 0; i < (int)size; i++) {
3270       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3271     }
3272     return size;
3273   }
3274 }
3275 
3276 bool os::get_page_info(char *start, page_info* info) {
3277   return false;
3278 }
3279 
3280 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3281                      page_info* page_found) {
3282   return end;
3283 }
3284 
3285 char* os::non_memory_address_word() {
3286   // Must never look like an address returned by reserve_memory,
3287   // even in its subfields (as defined by the CPU immediate fields,
3288   // if the CPU splits constants across multiple instructions).
3289   return (char*)-1;
3290 }
3291 
3292 #define MAX_ERROR_COUNT 100
3293 #define SYS_THREAD_ERROR 0xffffffffUL
3294 
3295 void os::pd_start_thread(Thread* thread) {
3296   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3297   // Returns previous suspend state:
3298   // 0:  Thread was not suspended
3299   // 1:  Thread is running now
3300   // >1: Thread is still suspended.
3301   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3302 }
3303 
3304 class HighResolutionInterval : public CHeapObj<mtThread> {
3305   // The default timer resolution seems to be 10 milliseconds.
3306   // (Where is this written down?)
3307   // If someone wants to sleep for only a fraction of the default,
3308   // then we set the timer resolution down to 1 millisecond for
3309   // the duration of their interval.
3310   // We carefully set the resolution back, since otherwise we
3311   // seem to incur an overhead (3%?) that we don't need.
3312   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3313   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3314   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3315   // timeBeginPeriod() if the relative error exceeded some threshold.
3316   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3317   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3318   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3319   // resolution timers running.
3320  private:
3321   jlong resolution;
3322  public:
3323   HighResolutionInterval(jlong ms) {
3324     resolution = ms % 10L;
3325     if (resolution != 0) {
3326       MMRESULT result = timeBeginPeriod(1L);
3327     }
3328   }
3329   ~HighResolutionInterval() {
3330     if (resolution != 0) {
3331       MMRESULT result = timeEndPeriod(1L);
3332     }
3333     resolution = 0L;
3334   }
3335 };
3336 
3337 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3338   jlong limit = (jlong) MAXDWORD;
3339 
3340   while (ms > limit) {
3341     int res;
3342     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3343       return res;
3344     }
3345     ms -= limit;
3346   }
3347 
3348   assert(thread == Thread::current(), "thread consistency check");
3349   OSThread* osthread = thread->osthread();
3350   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3351   int result;
3352   if (interruptable) {
3353     assert(thread->is_Java_thread(), "must be java thread");
3354     JavaThread *jt = (JavaThread *) thread;
3355     ThreadBlockInVM tbivm(jt);
3356 
3357     jt->set_suspend_equivalent();
3358     // cleared by handle_special_suspend_equivalent_condition() or
3359     // java_suspend_self() via check_and_wait_while_suspended()
3360 
3361     HANDLE events[1];
3362     events[0] = osthread->interrupt_event();
3363     HighResolutionInterval *phri=NULL;
3364     if (!ForceTimeHighResolution) {
3365       phri = new HighResolutionInterval(ms);
3366     }
3367     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3368       result = OS_TIMEOUT;
3369     } else {
3370       ResetEvent(osthread->interrupt_event());
3371       osthread->set_interrupted(false);
3372       result = OS_INTRPT;
3373     }
3374     delete phri; //if it is NULL, harmless
3375 
3376     // were we externally suspended while we were waiting?
3377     jt->check_and_wait_while_suspended();
3378   } else {
3379     assert(!thread->is_Java_thread(), "must not be java thread");
3380     Sleep((long) ms);
3381     result = OS_TIMEOUT;
3382   }
3383   return result;
3384 }
3385 
3386 // Short sleep, direct OS call.
3387 //
3388 // ms = 0, means allow others (if any) to run.
3389 //
3390 void os::naked_short_sleep(jlong ms) {
3391   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3392   Sleep(ms);
3393 }
3394 
3395 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3396 void os::infinite_sleep() {
3397   while (true) {    // sleep forever ...
3398     Sleep(100000);  // ... 100 seconds at a time
3399   }
3400 }
3401 
3402 typedef BOOL (WINAPI * STTSignature)(void);
3403 
3404 void os::naked_yield() {
3405   // Consider passing back the return value from SwitchToThread().
3406   SwitchToThread();
3407 }
3408 
3409 // Win32 only gives you access to seven real priorities at a time,
3410 // so we compress Java's ten down to seven.  It would be better
3411 // if we dynamically adjusted relative priorities.
3412 
3413 int os::java_to_os_priority[CriticalPriority + 1] = {
3414   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3415   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3416   THREAD_PRIORITY_LOWEST,                       // 2
3417   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3418   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3419   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3420   THREAD_PRIORITY_NORMAL,                       // 6
3421   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3422   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3423   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3424   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3425   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3426 };
3427 
3428 int prio_policy1[CriticalPriority + 1] = {
3429   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3430   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3431   THREAD_PRIORITY_LOWEST,                       // 2
3432   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3433   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3434   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3435   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3436   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3437   THREAD_PRIORITY_HIGHEST,                      // 8
3438   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3439   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3440   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3441 };
3442 
3443 static int prio_init() {
3444   // If ThreadPriorityPolicy is 1, switch tables
3445   if (ThreadPriorityPolicy == 1) {
3446     int i;
3447     for (i = 0; i < CriticalPriority + 1; i++) {
3448       os::java_to_os_priority[i] = prio_policy1[i];
3449     }
3450   }
3451   if (UseCriticalJavaThreadPriority) {
3452     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3453   }
3454   return 0;
3455 }
3456 
3457 OSReturn os::set_native_priority(Thread* thread, int priority) {
3458   if (!UseThreadPriorities) return OS_OK;
3459   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3460   return ret ? OS_OK : OS_ERR;
3461 }
3462 
3463 OSReturn os::get_native_priority(const Thread* const thread,
3464                                  int* priority_ptr) {
3465   if (!UseThreadPriorities) {
3466     *priority_ptr = java_to_os_priority[NormPriority];
3467     return OS_OK;
3468   }
3469   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3470   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3471     assert(false, "GetThreadPriority failed");
3472     return OS_ERR;
3473   }
3474   *priority_ptr = os_prio;
3475   return OS_OK;
3476 }
3477 
3478 
3479 // Hint to the underlying OS that a task switch would not be good.
3480 // Void return because it's a hint and can fail.
3481 void os::hint_no_preempt() {}
3482 
3483 void os::interrupt(Thread* thread) {
3484   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3485          Threads_lock->owned_by_self(),
3486          "possibility of dangling Thread pointer");
3487 
3488   OSThread* osthread = thread->osthread();
3489   osthread->set_interrupted(true);
3490   // More than one thread can get here with the same value of osthread,
3491   // resulting in multiple notifications.  We do, however, want the store
3492   // to interrupted() to be visible to other threads before we post
3493   // the interrupt event.
3494   OrderAccess::release();
3495   SetEvent(osthread->interrupt_event());
3496   // For JSR166:  unpark after setting status
3497   if (thread->is_Java_thread()) {
3498     ((JavaThread*)thread)->parker()->unpark();
3499   }
3500 
3501   ParkEvent * ev = thread->_ParkEvent;
3502   if (ev != NULL) ev->unpark();
3503 }
3504 
3505 
3506 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3507   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3508          "possibility of dangling Thread pointer");
3509 
3510   OSThread* osthread = thread->osthread();
3511   // There is no synchronization between the setting of the interrupt
3512   // and it being cleared here. It is critical - see 6535709 - that
3513   // we only clear the interrupt state, and reset the interrupt event,
3514   // if we are going to report that we were indeed interrupted - else
3515   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3516   // depending on the timing. By checking thread interrupt event to see
3517   // if the thread gets real interrupt thus prevent spurious wakeup.
3518   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3519   if (interrupted && clear_interrupted) {
3520     osthread->set_interrupted(false);
3521     ResetEvent(osthread->interrupt_event());
3522   } // Otherwise leave the interrupted state alone
3523 
3524   return interrupted;
3525 }
3526 
3527 // GetCurrentThreadId() returns DWORD
3528 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3529 
3530 static int _initial_pid = 0;
3531 
3532 int os::current_process_id() {
3533   return (_initial_pid ? _initial_pid : _getpid());
3534 }
3535 
3536 int    os::win32::_vm_page_size              = 0;
3537 int    os::win32::_vm_allocation_granularity = 0;
3538 int    os::win32::_processor_type            = 0;
3539 // Processor level is not available on non-NT systems, use vm_version instead
3540 int    os::win32::_processor_level           = 0;
3541 julong os::win32::_physical_memory           = 0;
3542 size_t os::win32::_default_stack_size        = 0;
3543 
3544 intx          os::win32::_os_thread_limit    = 0;
3545 volatile intx os::win32::_os_thread_count    = 0;
3546 
3547 bool   os::win32::_is_windows_server         = false;
3548 
3549 // 6573254
3550 // Currently, the bug is observed across all the supported Windows releases,
3551 // including the latest one (as of this writing - Windows Server 2012 R2)
3552 bool   os::win32::_has_exit_bug              = true;
3553 
3554 void os::win32::initialize_system_info() {
3555   SYSTEM_INFO si;
3556   GetSystemInfo(&si);
3557   _vm_page_size    = si.dwPageSize;
3558   _vm_allocation_granularity = si.dwAllocationGranularity;
3559   _processor_type  = si.dwProcessorType;
3560   _processor_level = si.wProcessorLevel;
3561   set_processor_count(si.dwNumberOfProcessors);
3562 
3563   MEMORYSTATUSEX ms;
3564   ms.dwLength = sizeof(ms);
3565 
3566   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3567   // dwMemoryLoad (% of memory in use)
3568   GlobalMemoryStatusEx(&ms);
3569   _physical_memory = ms.ullTotalPhys;
3570 
3571   if (FLAG_IS_DEFAULT(MaxRAM)) {
3572     // Adjust MaxRAM according to the maximum virtual address space available.
3573     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3574   }
3575 
3576   OSVERSIONINFOEX oi;
3577   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3578   GetVersionEx((OSVERSIONINFO*)&oi);
3579   switch (oi.dwPlatformId) {
3580   case VER_PLATFORM_WIN32_NT:
3581     {
3582       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3583       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3584           oi.wProductType == VER_NT_SERVER) {
3585         _is_windows_server = true;
3586       }
3587     }
3588     break;
3589   default: fatal("Unknown platform");
3590   }
3591 
3592   _default_stack_size = os::current_stack_size();
3593   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3594   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3595          "stack size not a multiple of page size");
3596 
3597   initialize_performance_counter();
3598 }
3599 
3600 
3601 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3602                                       int ebuflen) {
3603   char path[MAX_PATH];
3604   DWORD size;
3605   DWORD pathLen = (DWORD)sizeof(path);
3606   HINSTANCE result = NULL;
3607 
3608   // only allow library name without path component
3609   assert(strchr(name, '\\') == NULL, "path not allowed");
3610   assert(strchr(name, ':') == NULL, "path not allowed");
3611   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3612     jio_snprintf(ebuf, ebuflen,
3613                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3614     return NULL;
3615   }
3616 
3617   // search system directory
3618   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3619     if (size >= pathLen) {
3620       return NULL; // truncated
3621     }
3622     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3623       return NULL; // truncated
3624     }
3625     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3626       return result;
3627     }
3628   }
3629 
3630   // try Windows directory
3631   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3632     if (size >= pathLen) {
3633       return NULL; // truncated
3634     }
3635     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3636       return NULL; // truncated
3637     }
3638     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3639       return result;
3640     }
3641   }
3642 
3643   jio_snprintf(ebuf, ebuflen,
3644                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3645   return NULL;
3646 }
3647 
3648 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3649 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3650 
3651 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3652   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3653   return TRUE;
3654 }
3655 
3656 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3657   // Basic approach:
3658   //  - Each exiting thread registers its intent to exit and then does so.
3659   //  - A thread trying to terminate the process must wait for all
3660   //    threads currently exiting to complete their exit.
3661 
3662   if (os::win32::has_exit_bug()) {
3663     // The array holds handles of the threads that have started exiting by calling
3664     // _endthreadex().
3665     // Should be large enough to avoid blocking the exiting thread due to lack of
3666     // a free slot.
3667     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3668     static int handle_count = 0;
3669 
3670     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3671     static CRITICAL_SECTION crit_sect;
3672     static volatile DWORD process_exiting = 0;
3673     int i, j;
3674     DWORD res;
3675     HANDLE hproc, hthr;
3676 
3677     // We only attempt to register threads until a process exiting
3678     // thread manages to set the process_exiting flag. Any threads
3679     // that come through here after the process_exiting flag is set
3680     // are unregistered and will be caught in the SuspendThread()
3681     // infinite loop below.
3682     bool registered = false;
3683 
3684     // The first thread that reached this point, initializes the critical section.
3685     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3686       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3687     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3688       if (what != EPT_THREAD) {
3689         // Atomically set process_exiting before the critical section
3690         // to increase the visibility between racing threads.
3691         Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
3692       }
3693       EnterCriticalSection(&crit_sect);
3694 
3695       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3696         // Remove from the array those handles of the threads that have completed exiting.
3697         for (i = 0, j = 0; i < handle_count; ++i) {
3698           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3699           if (res == WAIT_TIMEOUT) {
3700             handles[j++] = handles[i];
3701           } else {
3702             if (res == WAIT_FAILED) {
3703               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3704                       GetLastError(), __FILE__, __LINE__);
3705             }
3706             // Don't keep the handle, if we failed waiting for it.
3707             CloseHandle(handles[i]);
3708           }
3709         }
3710 
3711         // If there's no free slot in the array of the kept handles, we'll have to
3712         // wait until at least one thread completes exiting.
3713         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3714           // Raise the priority of the oldest exiting thread to increase its chances
3715           // to complete sooner.
3716           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3717           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3718           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3719             i = (res - WAIT_OBJECT_0);
3720             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3721             for (; i < handle_count; ++i) {
3722               handles[i] = handles[i + 1];
3723             }
3724           } else {
3725             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3726                     (res == WAIT_FAILED ? "failed" : "timed out"),
3727                     GetLastError(), __FILE__, __LINE__);
3728             // Don't keep handles, if we failed waiting for them.
3729             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3730               CloseHandle(handles[i]);
3731             }
3732             handle_count = 0;
3733           }
3734         }
3735 
3736         // Store a duplicate of the current thread handle in the array of handles.
3737         hproc = GetCurrentProcess();
3738         hthr = GetCurrentThread();
3739         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3740                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3741           warning("DuplicateHandle failed (%u) in %s: %d\n",
3742                   GetLastError(), __FILE__, __LINE__);
3743 
3744           // We can't register this thread (no more handles) so this thread
3745           // may be racing with a thread that is calling exit(). If the thread
3746           // that is calling exit() has managed to set the process_exiting
3747           // flag, then this thread will be caught in the SuspendThread()
3748           // infinite loop below which closes that race. A small timing
3749           // window remains before the process_exiting flag is set, but it
3750           // is only exposed when we are out of handles.
3751         } else {
3752           ++handle_count;
3753           registered = true;
3754 
3755           // The current exiting thread has stored its handle in the array, and now
3756           // should leave the critical section before calling _endthreadex().
3757         }
3758 
3759       } else if (what != EPT_THREAD && handle_count > 0) {
3760         jlong start_time, finish_time, timeout_left;
3761         // Before ending the process, make sure all the threads that had called
3762         // _endthreadex() completed.
3763 
3764         // Set the priority level of the current thread to the same value as
3765         // the priority level of exiting threads.
3766         // This is to ensure it will be given a fair chance to execute if
3767         // the timeout expires.
3768         hthr = GetCurrentThread();
3769         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3770         start_time = os::javaTimeNanos();
3771         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3772         for (i = 0; ; ) {
3773           int portion_count = handle_count - i;
3774           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3775             portion_count = MAXIMUM_WAIT_OBJECTS;
3776           }
3777           for (j = 0; j < portion_count; ++j) {
3778             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3779           }
3780           timeout_left = (finish_time - start_time) / 1000000L;
3781           if (timeout_left < 0) {
3782             timeout_left = 0;
3783           }
3784           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3785           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3786             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3787                     (res == WAIT_FAILED ? "failed" : "timed out"),
3788                     GetLastError(), __FILE__, __LINE__);
3789             // Reset portion_count so we close the remaining
3790             // handles due to this error.
3791             portion_count = handle_count - i;
3792           }
3793           for (j = 0; j < portion_count; ++j) {
3794             CloseHandle(handles[i + j]);
3795           }
3796           if ((i += portion_count) >= handle_count) {
3797             break;
3798           }
3799           start_time = os::javaTimeNanos();
3800         }
3801         handle_count = 0;
3802       }
3803 
3804       LeaveCriticalSection(&crit_sect);
3805     }
3806 
3807     if (!registered &&
3808         OrderAccess::load_acquire(&process_exiting) != 0 &&
3809         process_exiting != GetCurrentThreadId()) {
3810       // Some other thread is about to call exit(), so we don't let
3811       // the current unregistered thread proceed to exit() or _endthreadex()
3812       while (true) {
3813         SuspendThread(GetCurrentThread());
3814         // Avoid busy-wait loop, if SuspendThread() failed.
3815         Sleep(EXIT_TIMEOUT);
3816       }
3817     }
3818   }
3819 
3820   // We are here if either
3821   // - there's no 'race at exit' bug on this OS release;
3822   // - initialization of the critical section failed (unlikely);
3823   // - the current thread has registered itself and left the critical section;
3824   // - the process-exiting thread has raised the flag and left the critical section.
3825   if (what == EPT_THREAD) {
3826     _endthreadex((unsigned)exit_code);
3827   } else if (what == EPT_PROCESS) {
3828     ::exit(exit_code);
3829   } else {
3830     _exit(exit_code);
3831   }
3832 
3833   // Should not reach here
3834   return exit_code;
3835 }
3836 
3837 #undef EXIT_TIMEOUT
3838 
3839 void os::win32::setmode_streams() {
3840   _setmode(_fileno(stdin), _O_BINARY);
3841   _setmode(_fileno(stdout), _O_BINARY);
3842   _setmode(_fileno(stderr), _O_BINARY);
3843 }
3844 
3845 
3846 bool os::is_debugger_attached() {
3847   return IsDebuggerPresent() ? true : false;
3848 }
3849 
3850 
3851 void os::wait_for_keypress_at_exit(void) {
3852   if (PauseAtExit) {
3853     fprintf(stderr, "Press any key to continue...\n");
3854     fgetc(stdin);
3855   }
3856 }
3857 
3858 
3859 bool os::message_box(const char* title, const char* message) {
3860   int result = MessageBox(NULL, message, title,
3861                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3862   return result == IDYES;
3863 }
3864 
3865 #ifndef PRODUCT
3866 #ifndef _WIN64
3867 // Helpers to check whether NX protection is enabled
3868 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3869   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3870       pex->ExceptionRecord->NumberParameters > 0 &&
3871       pex->ExceptionRecord->ExceptionInformation[0] ==
3872       EXCEPTION_INFO_EXEC_VIOLATION) {
3873     return EXCEPTION_EXECUTE_HANDLER;
3874   }
3875   return EXCEPTION_CONTINUE_SEARCH;
3876 }
3877 
3878 void nx_check_protection() {
3879   // If NX is enabled we'll get an exception calling into code on the stack
3880   char code[] = { (char)0xC3 }; // ret
3881   void *code_ptr = (void *)code;
3882   __try {
3883     __asm call code_ptr
3884   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3885     tty->print_raw_cr("NX protection detected.");
3886   }
3887 }
3888 #endif // _WIN64
3889 #endif // PRODUCT
3890 
3891 // This is called _before_ the global arguments have been parsed
3892 void os::init(void) {
3893   _initial_pid = _getpid();
3894 
3895   init_random(1234567);
3896 
3897   win32::initialize_system_info();
3898   win32::setmode_streams();
3899   init_page_sizes((size_t) win32::vm_page_size());
3900 
3901   // This may be overridden later when argument processing is done.
3902   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
3903 
3904   // Initialize main_process and main_thread
3905   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3906   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3907                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3908     fatal("DuplicateHandle failed\n");
3909   }
3910   main_thread_id = (int) GetCurrentThreadId();
3911 
3912   // initialize fast thread access - only used for 32-bit
3913   win32::initialize_thread_ptr_offset();
3914 }
3915 
3916 // To install functions for atexit processing
3917 extern "C" {
3918   static void perfMemory_exit_helper() {
3919     perfMemory_exit();
3920   }
3921 }
3922 
3923 static jint initSock();
3924 
3925 // this is called _after_ the global arguments have been parsed
3926 jint os::init_2(void) {
3927   // Setup Windows Exceptions
3928 
3929   // for debugging float code generation bugs
3930   if (ForceFloatExceptions) {
3931 #ifndef  _WIN64
3932     static long fp_control_word = 0;
3933     __asm { fstcw fp_control_word }
3934     // see Intel PPro Manual, Vol. 2, p 7-16
3935     const long precision = 0x20;
3936     const long underflow = 0x10;
3937     const long overflow  = 0x08;
3938     const long zero_div  = 0x04;
3939     const long denorm    = 0x02;
3940     const long invalid   = 0x01;
3941     fp_control_word |= invalid;
3942     __asm { fldcw fp_control_word }
3943 #endif
3944   }
3945 
3946   // If stack_commit_size is 0, windows will reserve the default size,
3947   // but only commit a small portion of it.
3948   size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
3949   size_t default_reserve_size = os::win32::default_stack_size();
3950   size_t actual_reserve_size = stack_commit_size;
3951   if (stack_commit_size < default_reserve_size) {
3952     // If stack_commit_size == 0, we want this too
3953     actual_reserve_size = default_reserve_size;
3954   }
3955 
3956   // Check minimum allowable stack size for thread creation and to initialize
3957   // the java system classes, including StackOverflowError - depends on page
3958   // size.  Add two 4K pages for compiler2 recursion in main thread.
3959   // Add in 4*BytesPerWord 4K pages to account for VM stack during
3960   // class initialization depending on 32 or 64 bit VM.
3961   size_t min_stack_allowed =
3962             (size_t)(JavaThread::stack_guard_zone_size() +
3963                      JavaThread::stack_shadow_zone_size() +
3964                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
3965 
3966   min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
3967 
3968   if (actual_reserve_size < min_stack_allowed) {
3969     tty->print_cr("\nThe Java thread stack size specified is too small. "
3970                   "Specify at least %dk",
3971                   min_stack_allowed / K);
3972     return JNI_ERR;
3973   }
3974 
3975   JavaThread::set_stack_size_at_create(stack_commit_size);
3976 
3977   // Calculate theoretical max. size of Threads to guard gainst artifical
3978   // out-of-memory situations, where all available address-space has been
3979   // reserved by thread stacks.
3980   assert(actual_reserve_size != 0, "Must have a stack");
3981 
3982   // Calculate the thread limit when we should start doing Virtual Memory
3983   // banging. Currently when the threads will have used all but 200Mb of space.
3984   //
3985   // TODO: consider performing a similar calculation for commit size instead
3986   // as reserve size, since on a 64-bit platform we'll run into that more
3987   // often than running out of virtual memory space.  We can use the
3988   // lower value of the two calculations as the os_thread_limit.
3989   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3990   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3991 
3992   // at exit methods are called in the reverse order of their registration.
3993   // there is no limit to the number of functions registered. atexit does
3994   // not set errno.
3995 
3996   if (PerfAllowAtExitRegistration) {
3997     // only register atexit functions if PerfAllowAtExitRegistration is set.
3998     // atexit functions can be delayed until process exit time, which
3999     // can be problematic for embedded VM situations. Embedded VMs should
4000     // call DestroyJavaVM() to assure that VM resources are released.
4001 
4002     // note: perfMemory_exit_helper atexit function may be removed in
4003     // the future if the appropriate cleanup code can be added to the
4004     // VM_Exit VMOperation's doit method.
4005     if (atexit(perfMemory_exit_helper) != 0) {
4006       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4007     }
4008   }
4009 
4010 #ifndef _WIN64
4011   // Print something if NX is enabled (win32 on AMD64)
4012   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4013 #endif
4014 
4015   // initialize thread priority policy
4016   prio_init();
4017 
4018   if (UseNUMA && !ForceNUMA) {
4019     UseNUMA = false; // We don't fully support this yet
4020   }
4021 
4022   if (UseNUMAInterleaving) {
4023     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4024     bool success = numa_interleaving_init();
4025     if (!success) UseNUMAInterleaving = false;
4026   }
4027 
4028   if (initSock() != JNI_OK) {
4029     return JNI_ERR;
4030   }
4031 
4032   SymbolEngine::recalc_search_path();
4033 
4034   return JNI_OK;
4035 }
4036 
4037 // Mark the polling page as unreadable
4038 void os::make_polling_page_unreadable(void) {
4039   DWORD old_status;
4040   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4041                       PAGE_NOACCESS, &old_status)) {
4042     fatal("Could not disable polling page");
4043   }
4044 }
4045 
4046 // Mark the polling page as readable
4047 void os::make_polling_page_readable(void) {
4048   DWORD old_status;
4049   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4050                       PAGE_READONLY, &old_status)) {
4051     fatal("Could not enable polling page");
4052   }
4053 }
4054 
4055 
4056 int os::stat(const char *path, struct stat *sbuf) {
4057   char pathbuf[MAX_PATH];
4058   if (strlen(path) > MAX_PATH - 1) {
4059     errno = ENAMETOOLONG;
4060     return -1;
4061   }
4062   os::native_path(strcpy(pathbuf, path));
4063   int ret = ::stat(pathbuf, sbuf);
4064   if (sbuf != NULL && UseUTCFileTimestamp) {
4065     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4066     // the system timezone and so can return different values for the
4067     // same file if/when daylight savings time changes.  This adjustment
4068     // makes sure the same timestamp is returned regardless of the TZ.
4069     //
4070     // See:
4071     // http://msdn.microsoft.com/library/
4072     //   default.asp?url=/library/en-us/sysinfo/base/
4073     //   time_zone_information_str.asp
4074     // and
4075     // http://msdn.microsoft.com/library/default.asp?url=
4076     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4077     //
4078     // NOTE: there is a insidious bug here:  If the timezone is changed
4079     // after the call to stat() but before 'GetTimeZoneInformation()', then
4080     // the adjustment we do here will be wrong and we'll return the wrong
4081     // value (which will likely end up creating an invalid class data
4082     // archive).  Absent a better API for this, or some time zone locking
4083     // mechanism, we'll have to live with this risk.
4084     TIME_ZONE_INFORMATION tz;
4085     DWORD tzid = GetTimeZoneInformation(&tz);
4086     int daylightBias =
4087       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4088     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4089   }
4090   return ret;
4091 }
4092 
4093 
4094 #define FT2INT64(ft) \
4095   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4096 
4097 
4098 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4099 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4100 // of a thread.
4101 //
4102 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4103 // the fast estimate available on the platform.
4104 
4105 // current_thread_cpu_time() is not optimized for Windows yet
4106 jlong os::current_thread_cpu_time() {
4107   // return user + sys since the cost is the same
4108   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4109 }
4110 
4111 jlong os::thread_cpu_time(Thread* thread) {
4112   // consistent with what current_thread_cpu_time() returns.
4113   return os::thread_cpu_time(thread, true /* user+sys */);
4114 }
4115 
4116 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4117   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4118 }
4119 
4120 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4121   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4122   // If this function changes, os::is_thread_cpu_time_supported() should too
4123   FILETIME CreationTime;
4124   FILETIME ExitTime;
4125   FILETIME KernelTime;
4126   FILETIME UserTime;
4127 
4128   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4129                       &ExitTime, &KernelTime, &UserTime) == 0) {
4130     return -1;
4131   } else if (user_sys_cpu_time) {
4132     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4133   } else {
4134     return FT2INT64(UserTime) * 100;
4135   }
4136 }
4137 
4138 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4139   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4140   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4141   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4142   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4143 }
4144 
4145 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4146   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4147   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4148   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4149   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4150 }
4151 
4152 bool os::is_thread_cpu_time_supported() {
4153   // see os::thread_cpu_time
4154   FILETIME CreationTime;
4155   FILETIME ExitTime;
4156   FILETIME KernelTime;
4157   FILETIME UserTime;
4158 
4159   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4160                       &KernelTime, &UserTime) == 0) {
4161     return false;
4162   } else {
4163     return true;
4164   }
4165 }
4166 
4167 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4168 // It does have primitives (PDH API) to get CPU usage and run queue length.
4169 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4170 // If we wanted to implement loadavg on Windows, we have a few options:
4171 //
4172 // a) Query CPU usage and run queue length and "fake" an answer by
4173 //    returning the CPU usage if it's under 100%, and the run queue
4174 //    length otherwise.  It turns out that querying is pretty slow
4175 //    on Windows, on the order of 200 microseconds on a fast machine.
4176 //    Note that on the Windows the CPU usage value is the % usage
4177 //    since the last time the API was called (and the first call
4178 //    returns 100%), so we'd have to deal with that as well.
4179 //
4180 // b) Sample the "fake" answer using a sampling thread and store
4181 //    the answer in a global variable.  The call to loadavg would
4182 //    just return the value of the global, avoiding the slow query.
4183 //
4184 // c) Sample a better answer using exponential decay to smooth the
4185 //    value.  This is basically the algorithm used by UNIX kernels.
4186 //
4187 // Note that sampling thread starvation could affect both (b) and (c).
4188 int os::loadavg(double loadavg[], int nelem) {
4189   return -1;
4190 }
4191 
4192 
4193 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4194 bool os::dont_yield() {
4195   return DontYieldALot;
4196 }
4197 
4198 // This method is a slightly reworked copy of JDK's sysOpen
4199 // from src/windows/hpi/src/sys_api_md.c
4200 
4201 int os::open(const char *path, int oflag, int mode) {
4202   char pathbuf[MAX_PATH];
4203 
4204   if (strlen(path) > MAX_PATH - 1) {
4205     errno = ENAMETOOLONG;
4206     return -1;
4207   }
4208   os::native_path(strcpy(pathbuf, path));
4209   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4210 }
4211 
4212 FILE* os::open(int fd, const char* mode) {
4213   return ::_fdopen(fd, mode);
4214 }
4215 
4216 // Is a (classpath) directory empty?
4217 bool os::dir_is_empty(const char* path) {
4218   WIN32_FIND_DATA fd;
4219   HANDLE f = FindFirstFile(path, &fd);
4220   if (f == INVALID_HANDLE_VALUE) {
4221     return true;
4222   }
4223   FindClose(f);
4224   return false;
4225 }
4226 
4227 // create binary file, rewriting existing file if required
4228 int os::create_binary_file(const char* path, bool rewrite_existing) {
4229   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4230   if (!rewrite_existing) {
4231     oflags |= _O_EXCL;
4232   }
4233   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4234 }
4235 
4236 // return current position of file pointer
4237 jlong os::current_file_offset(int fd) {
4238   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4239 }
4240 
4241 // move file pointer to the specified offset
4242 jlong os::seek_to_file_offset(int fd, jlong offset) {
4243   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4244 }
4245 
4246 
4247 jlong os::lseek(int fd, jlong offset, int whence) {
4248   return (jlong) ::_lseeki64(fd, offset, whence);
4249 }
4250 
4251 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4252   OVERLAPPED ov;
4253   DWORD nread;
4254   BOOL result;
4255 
4256   ZeroMemory(&ov, sizeof(ov));
4257   ov.Offset = (DWORD)offset;
4258   ov.OffsetHigh = (DWORD)(offset >> 32);
4259 
4260   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4261 
4262   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4263 
4264   return result ? nread : 0;
4265 }
4266 
4267 
4268 // This method is a slightly reworked copy of JDK's sysNativePath
4269 // from src/windows/hpi/src/path_md.c
4270 
4271 // Convert a pathname to native format.  On win32, this involves forcing all
4272 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4273 // sometimes rejects '/') and removing redundant separators.  The input path is
4274 // assumed to have been converted into the character encoding used by the local
4275 // system.  Because this might be a double-byte encoding, care is taken to
4276 // treat double-byte lead characters correctly.
4277 //
4278 // This procedure modifies the given path in place, as the result is never
4279 // longer than the original.  There is no error return; this operation always
4280 // succeeds.
4281 char * os::native_path(char *path) {
4282   char *src = path, *dst = path, *end = path;
4283   char *colon = NULL;  // If a drive specifier is found, this will
4284                        // point to the colon following the drive letter
4285 
4286   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4287   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4288           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4289 
4290   // Check for leading separators
4291 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4292   while (isfilesep(*src)) {
4293     src++;
4294   }
4295 
4296   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4297     // Remove leading separators if followed by drive specifier.  This
4298     // hack is necessary to support file URLs containing drive
4299     // specifiers (e.g., "file://c:/path").  As a side effect,
4300     // "/c:/path" can be used as an alternative to "c:/path".
4301     *dst++ = *src++;
4302     colon = dst;
4303     *dst++ = ':';
4304     src++;
4305   } else {
4306     src = path;
4307     if (isfilesep(src[0]) && isfilesep(src[1])) {
4308       // UNC pathname: Retain first separator; leave src pointed at
4309       // second separator so that further separators will be collapsed
4310       // into the second separator.  The result will be a pathname
4311       // beginning with "\\\\" followed (most likely) by a host name.
4312       src = dst = path + 1;
4313       path[0] = '\\';     // Force first separator to '\\'
4314     }
4315   }
4316 
4317   end = dst;
4318 
4319   // Remove redundant separators from remainder of path, forcing all
4320   // separators to be '\\' rather than '/'. Also, single byte space
4321   // characters are removed from the end of the path because those
4322   // are not legal ending characters on this operating system.
4323   //
4324   while (*src != '\0') {
4325     if (isfilesep(*src)) {
4326       *dst++ = '\\'; src++;
4327       while (isfilesep(*src)) src++;
4328       if (*src == '\0') {
4329         // Check for trailing separator
4330         end = dst;
4331         if (colon == dst - 2) break;  // "z:\\"
4332         if (dst == path + 1) break;   // "\\"
4333         if (dst == path + 2 && isfilesep(path[0])) {
4334           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4335           // beginning of a UNC pathname.  Even though it is not, by
4336           // itself, a valid UNC pathname, we leave it as is in order
4337           // to be consistent with the path canonicalizer as well
4338           // as the win32 APIs, which treat this case as an invalid
4339           // UNC pathname rather than as an alias for the root
4340           // directory of the current drive.
4341           break;
4342         }
4343         end = --dst;  // Path does not denote a root directory, so
4344                       // remove trailing separator
4345         break;
4346       }
4347       end = dst;
4348     } else {
4349       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4350         *dst++ = *src++;
4351         if (*src) *dst++ = *src++;
4352         end = dst;
4353       } else {  // Copy a single-byte character
4354         char c = *src++;
4355         *dst++ = c;
4356         // Space is not a legal ending character
4357         if (c != ' ') end = dst;
4358       }
4359     }
4360   }
4361 
4362   *end = '\0';
4363 
4364   // For "z:", add "." to work around a bug in the C runtime library
4365   if (colon == dst - 1) {
4366     path[2] = '.';
4367     path[3] = '\0';
4368   }
4369 
4370   return path;
4371 }
4372 
4373 // This code is a copy of JDK's sysSetLength
4374 // from src/windows/hpi/src/sys_api_md.c
4375 
4376 int os::ftruncate(int fd, jlong length) {
4377   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4378   long high = (long)(length >> 32);
4379   DWORD ret;
4380 
4381   if (h == (HANDLE)(-1)) {
4382     return -1;
4383   }
4384 
4385   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4386   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4387     return -1;
4388   }
4389 
4390   if (::SetEndOfFile(h) == FALSE) {
4391     return -1;
4392   }
4393 
4394   return 0;
4395 }
4396 
4397 int os::get_fileno(FILE* fp) {
4398   return _fileno(fp);
4399 }
4400 
4401 // This code is a copy of JDK's sysSync
4402 // from src/windows/hpi/src/sys_api_md.c
4403 // except for the legacy workaround for a bug in Win 98
4404 
4405 int os::fsync(int fd) {
4406   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4407 
4408   if ((!::FlushFileBuffers(handle)) &&
4409       (GetLastError() != ERROR_ACCESS_DENIED)) {
4410     // from winerror.h
4411     return -1;
4412   }
4413   return 0;
4414 }
4415 
4416 static int nonSeekAvailable(int, long *);
4417 static int stdinAvailable(int, long *);
4418 
4419 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4420 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4421 
4422 // This code is a copy of JDK's sysAvailable
4423 // from src/windows/hpi/src/sys_api_md.c
4424 
4425 int os::available(int fd, jlong *bytes) {
4426   jlong cur, end;
4427   struct _stati64 stbuf64;
4428 
4429   if (::_fstati64(fd, &stbuf64) >= 0) {
4430     int mode = stbuf64.st_mode;
4431     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4432       int ret;
4433       long lpbytes;
4434       if (fd == 0) {
4435         ret = stdinAvailable(fd, &lpbytes);
4436       } else {
4437         ret = nonSeekAvailable(fd, &lpbytes);
4438       }
4439       (*bytes) = (jlong)(lpbytes);
4440       return ret;
4441     }
4442     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4443       return FALSE;
4444     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4445       return FALSE;
4446     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4447       return FALSE;
4448     }
4449     *bytes = end - cur;
4450     return TRUE;
4451   } else {
4452     return FALSE;
4453   }
4454 }
4455 
4456 void os::flockfile(FILE* fp) {
4457   _lock_file(fp);
4458 }
4459 
4460 void os::funlockfile(FILE* fp) {
4461   _unlock_file(fp);
4462 }
4463 
4464 // This code is a copy of JDK's nonSeekAvailable
4465 // from src/windows/hpi/src/sys_api_md.c
4466 
4467 static int nonSeekAvailable(int fd, long *pbytes) {
4468   // This is used for available on non-seekable devices
4469   // (like both named and anonymous pipes, such as pipes
4470   //  connected to an exec'd process).
4471   // Standard Input is a special case.
4472   HANDLE han;
4473 
4474   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4475     return FALSE;
4476   }
4477 
4478   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4479     // PeekNamedPipe fails when at EOF.  In that case we
4480     // simply make *pbytes = 0 which is consistent with the
4481     // behavior we get on Solaris when an fd is at EOF.
4482     // The only alternative is to raise an Exception,
4483     // which isn't really warranted.
4484     //
4485     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4486       return FALSE;
4487     }
4488     *pbytes = 0;
4489   }
4490   return TRUE;
4491 }
4492 
4493 #define MAX_INPUT_EVENTS 2000
4494 
4495 // This code is a copy of JDK's stdinAvailable
4496 // from src/windows/hpi/src/sys_api_md.c
4497 
4498 static int stdinAvailable(int fd, long *pbytes) {
4499   HANDLE han;
4500   DWORD numEventsRead = 0;  // Number of events read from buffer
4501   DWORD numEvents = 0;      // Number of events in buffer
4502   DWORD i = 0;              // Loop index
4503   DWORD curLength = 0;      // Position marker
4504   DWORD actualLength = 0;   // Number of bytes readable
4505   BOOL error = FALSE;       // Error holder
4506   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4507 
4508   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4509     return FALSE;
4510   }
4511 
4512   // Construct an array of input records in the console buffer
4513   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4514   if (error == 0) {
4515     return nonSeekAvailable(fd, pbytes);
4516   }
4517 
4518   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4519   if (numEvents > MAX_INPUT_EVENTS) {
4520     numEvents = MAX_INPUT_EVENTS;
4521   }
4522 
4523   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4524   if (lpBuffer == NULL) {
4525     return FALSE;
4526   }
4527 
4528   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4529   if (error == 0) {
4530     os::free(lpBuffer);
4531     return FALSE;
4532   }
4533 
4534   // Examine input records for the number of bytes available
4535   for (i=0; i<numEvents; i++) {
4536     if (lpBuffer[i].EventType == KEY_EVENT) {
4537 
4538       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4539                                       &(lpBuffer[i].Event);
4540       if (keyRecord->bKeyDown == TRUE) {
4541         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4542         curLength++;
4543         if (*keyPressed == '\r') {
4544           actualLength = curLength;
4545         }
4546       }
4547     }
4548   }
4549 
4550   if (lpBuffer != NULL) {
4551     os::free(lpBuffer);
4552   }
4553 
4554   *pbytes = (long) actualLength;
4555   return TRUE;
4556 }
4557 
4558 // Map a block of memory.
4559 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4560                         char *addr, size_t bytes, bool read_only,
4561                         bool allow_exec) {
4562   HANDLE hFile;
4563   char* base;
4564 
4565   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4566                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4567   if (hFile == NULL) {
4568     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4569     return NULL;
4570   }
4571 
4572   if (allow_exec) {
4573     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4574     // unless it comes from a PE image (which the shared archive is not.)
4575     // Even VirtualProtect refuses to give execute access to mapped memory
4576     // that was not previously executable.
4577     //
4578     // Instead, stick the executable region in anonymous memory.  Yuck.
4579     // Penalty is that ~4 pages will not be shareable - in the future
4580     // we might consider DLLizing the shared archive with a proper PE
4581     // header so that mapping executable + sharing is possible.
4582 
4583     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4584                                 PAGE_READWRITE);
4585     if (base == NULL) {
4586       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4587       CloseHandle(hFile);
4588       return NULL;
4589     }
4590 
4591     DWORD bytes_read;
4592     OVERLAPPED overlapped;
4593     overlapped.Offset = (DWORD)file_offset;
4594     overlapped.OffsetHigh = 0;
4595     overlapped.hEvent = NULL;
4596     // ReadFile guarantees that if the return value is true, the requested
4597     // number of bytes were read before returning.
4598     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4599     if (!res) {
4600       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4601       release_memory(base, bytes);
4602       CloseHandle(hFile);
4603       return NULL;
4604     }
4605   } else {
4606     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4607                                     NULL /* file_name */);
4608     if (hMap == NULL) {
4609       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4610       CloseHandle(hFile);
4611       return NULL;
4612     }
4613 
4614     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4615     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4616                                   (DWORD)bytes, addr);
4617     if (base == NULL) {
4618       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4619       CloseHandle(hMap);
4620       CloseHandle(hFile);
4621       return NULL;
4622     }
4623 
4624     if (CloseHandle(hMap) == 0) {
4625       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4626       CloseHandle(hFile);
4627       return base;
4628     }
4629   }
4630 
4631   if (allow_exec) {
4632     DWORD old_protect;
4633     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4634     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4635 
4636     if (!res) {
4637       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4638       // Don't consider this a hard error, on IA32 even if the
4639       // VirtualProtect fails, we should still be able to execute
4640       CloseHandle(hFile);
4641       return base;
4642     }
4643   }
4644 
4645   if (CloseHandle(hFile) == 0) {
4646     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4647     return base;
4648   }
4649 
4650   return base;
4651 }
4652 
4653 
4654 // Remap a block of memory.
4655 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4656                           char *addr, size_t bytes, bool read_only,
4657                           bool allow_exec) {
4658   // This OS does not allow existing memory maps to be remapped so we
4659   // have to unmap the memory before we remap it.
4660   if (!os::unmap_memory(addr, bytes)) {
4661     return NULL;
4662   }
4663 
4664   // There is a very small theoretical window between the unmap_memory()
4665   // call above and the map_memory() call below where a thread in native
4666   // code may be able to access an address that is no longer mapped.
4667 
4668   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4669                         read_only, allow_exec);
4670 }
4671 
4672 
4673 // Unmap a block of memory.
4674 // Returns true=success, otherwise false.
4675 
4676 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4677   MEMORY_BASIC_INFORMATION mem_info;
4678   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4679     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4680     return false;
4681   }
4682 
4683   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4684   // Instead, executable region was allocated using VirtualAlloc(). See
4685   // pd_map_memory() above.
4686   //
4687   // The following flags should match the 'exec_access' flages used for
4688   // VirtualProtect() in pd_map_memory().
4689   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4690       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4691     return pd_release_memory(addr, bytes);
4692   }
4693 
4694   BOOL result = UnmapViewOfFile(addr);
4695   if (result == 0) {
4696     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4697     return false;
4698   }
4699   return true;
4700 }
4701 
4702 void os::pause() {
4703   char filename[MAX_PATH];
4704   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4705     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4706   } else {
4707     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4708   }
4709 
4710   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4711   if (fd != -1) {
4712     struct stat buf;
4713     ::close(fd);
4714     while (::stat(filename, &buf) == 0) {
4715       Sleep(100);
4716     }
4717   } else {
4718     jio_fprintf(stderr,
4719                 "Could not open pause file '%s', continuing immediately.\n", filename);
4720   }
4721 }
4722 
4723 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
4724 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
4725 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
4726 
4727 os::ThreadCrashProtection::ThreadCrashProtection() {
4728 }
4729 
4730 // See the caveats for this class in os_windows.hpp
4731 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4732 // into this method and returns false. If no OS EXCEPTION was raised, returns
4733 // true.
4734 // The callback is supposed to provide the method that should be protected.
4735 //
4736 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4737 
4738   Thread::muxAcquire(&_crash_mux, "CrashProtection");
4739 
4740   _protected_thread = Thread::current_or_null();
4741   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
4742 
4743   bool success = true;
4744   __try {
4745     _crash_protection = this;
4746     cb.call();
4747   } __except(EXCEPTION_EXECUTE_HANDLER) {
4748     // only for protection, nothing to do
4749     success = false;
4750   }
4751   _crash_protection = NULL;
4752   _protected_thread = NULL;
4753   Thread::muxRelease(&_crash_mux);
4754   return success;
4755 }
4756 
4757 // An Event wraps a win32 "CreateEvent" kernel handle.
4758 //
4759 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4760 //
4761 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4762 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4763 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4764 //     In addition, an unpark() operation might fetch the handle field, but the
4765 //     event could recycle between the fetch and the SetEvent() operation.
4766 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4767 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4768 //     on an stale but recycled handle would be harmless, but in practice this might
4769 //     confuse other non-Sun code, so it's not a viable approach.
4770 //
4771 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4772 //     with the Event.  The event handle is never closed.  This could be construed
4773 //     as handle leakage, but only up to the maximum # of threads that have been extant
4774 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4775 //     permit a process to have hundreds of thousands of open handles.
4776 //
4777 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4778 //     and release unused handles.
4779 //
4780 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4781 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4782 //
4783 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4784 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4785 //
4786 // We use (2).
4787 //
4788 // TODO-FIXME:
4789 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4790 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4791 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4792 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4793 //     into a single win32 CreateEvent() handle.
4794 //
4795 // Assumption:
4796 //    Only one parker can exist on an event, which is why we allocate
4797 //    them per-thread. Multiple unparkers can coexist.
4798 //
4799 // _Event transitions in park()
4800 //   -1 => -1 : illegal
4801 //    1 =>  0 : pass - return immediately
4802 //    0 => -1 : block; then set _Event to 0 before returning
4803 //
4804 // _Event transitions in unpark()
4805 //    0 => 1 : just return
4806 //    1 => 1 : just return
4807 //   -1 => either 0 or 1; must signal target thread
4808 //         That is, we can safely transition _Event from -1 to either
4809 //         0 or 1.
4810 //
4811 // _Event serves as a restricted-range semaphore.
4812 //   -1 : thread is blocked, i.e. there is a waiter
4813 //    0 : neutral: thread is running or ready,
4814 //        could have been signaled after a wait started
4815 //    1 : signaled - thread is running or ready
4816 //
4817 // Another possible encoding of _Event would be with
4818 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4819 //
4820 
4821 int os::PlatformEvent::park(jlong Millis) {
4822   // Transitions for _Event:
4823   //   -1 => -1 : illegal
4824   //    1 =>  0 : pass - return immediately
4825   //    0 => -1 : block; then set _Event to 0 before returning
4826 
4827   guarantee(_ParkHandle != NULL , "Invariant");
4828   guarantee(Millis > 0          , "Invariant");
4829 
4830   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4831   // the initial park() operation.
4832   // Consider: use atomic decrement instead of CAS-loop
4833 
4834   int v;
4835   for (;;) {
4836     v = _Event;
4837     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4838   }
4839   guarantee((v == 0) || (v == 1), "invariant");
4840   if (v != 0) return OS_OK;
4841 
4842   // Do this the hard way by blocking ...
4843   // TODO: consider a brief spin here, gated on the success of recent
4844   // spin attempts by this thread.
4845   //
4846   // We decompose long timeouts into series of shorter timed waits.
4847   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4848   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4849   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4850   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4851   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4852   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4853   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4854   // for the already waited time.  This policy does not admit any new outcomes.
4855   // In the future, however, we might want to track the accumulated wait time and
4856   // adjust Millis accordingly if we encounter a spurious wakeup.
4857 
4858   const int MAXTIMEOUT = 0x10000000;
4859   DWORD rv = WAIT_TIMEOUT;
4860   while (_Event < 0 && Millis > 0) {
4861     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4862     if (Millis > MAXTIMEOUT) {
4863       prd = MAXTIMEOUT;
4864     }
4865     rv = ::WaitForSingleObject(_ParkHandle, prd);
4866     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
4867     if (rv == WAIT_TIMEOUT) {
4868       Millis -= prd;
4869     }
4870   }
4871   v = _Event;
4872   _Event = 0;
4873   // see comment at end of os::PlatformEvent::park() below:
4874   OrderAccess::fence();
4875   // If we encounter a nearly simultanous timeout expiry and unpark()
4876   // we return OS_OK indicating we awoke via unpark().
4877   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4878   return (v >= 0) ? OS_OK : OS_TIMEOUT;
4879 }
4880 
4881 void os::PlatformEvent::park() {
4882   // Transitions for _Event:
4883   //   -1 => -1 : illegal
4884   //    1 =>  0 : pass - return immediately
4885   //    0 => -1 : block; then set _Event to 0 before returning
4886 
4887   guarantee(_ParkHandle != NULL, "Invariant");
4888   // Invariant: Only the thread associated with the Event/PlatformEvent
4889   // may call park().
4890   // Consider: use atomic decrement instead of CAS-loop
4891   int v;
4892   for (;;) {
4893     v = _Event;
4894     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4895   }
4896   guarantee((v == 0) || (v == 1), "invariant");
4897   if (v != 0) return;
4898 
4899   // Do this the hard way by blocking ...
4900   // TODO: consider a brief spin here, gated on the success of recent
4901   // spin attempts by this thread.
4902   while (_Event < 0) {
4903     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
4904     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
4905   }
4906 
4907   // Usually we'll find _Event == 0 at this point, but as
4908   // an optional optimization we clear it, just in case can
4909   // multiple unpark() operations drove _Event up to 1.
4910   _Event = 0;
4911   OrderAccess::fence();
4912   guarantee(_Event >= 0, "invariant");
4913 }
4914 
4915 void os::PlatformEvent::unpark() {
4916   guarantee(_ParkHandle != NULL, "Invariant");
4917 
4918   // Transitions for _Event:
4919   //    0 => 1 : just return
4920   //    1 => 1 : just return
4921   //   -1 => either 0 or 1; must signal target thread
4922   //         That is, we can safely transition _Event from -1 to either
4923   //         0 or 1.
4924   // See also: "Semaphores in Plan 9" by Mullender & Cox
4925   //
4926   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4927   // that it will take two back-to-back park() calls for the owning
4928   // thread to block. This has the benefit of forcing a spurious return
4929   // from the first park() call after an unpark() call which will help
4930   // shake out uses of park() and unpark() without condition variables.
4931 
4932   if (Atomic::xchg(1, &_Event) >= 0) return;
4933 
4934   ::SetEvent(_ParkHandle);
4935 }
4936 
4937 
4938 // JSR166
4939 // -------------------------------------------------------
4940 
4941 // The Windows implementation of Park is very straightforward: Basic
4942 // operations on Win32 Events turn out to have the right semantics to
4943 // use them directly. We opportunistically resuse the event inherited
4944 // from Monitor.
4945 
4946 void Parker::park(bool isAbsolute, jlong time) {
4947   guarantee(_ParkEvent != NULL, "invariant");
4948   // First, demultiplex/decode time arguments
4949   if (time < 0) { // don't wait
4950     return;
4951   } else if (time == 0 && !isAbsolute) {
4952     time = INFINITE;
4953   } else if (isAbsolute) {
4954     time -= os::javaTimeMillis(); // convert to relative time
4955     if (time <= 0) {  // already elapsed
4956       return;
4957     }
4958   } else { // relative
4959     time /= 1000000;  // Must coarsen from nanos to millis
4960     if (time == 0) {  // Wait for the minimal time unit if zero
4961       time = 1;
4962     }
4963   }
4964 
4965   JavaThread* thread = JavaThread::current();
4966 
4967   // Don't wait if interrupted or already triggered
4968   if (Thread::is_interrupted(thread, false) ||
4969       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4970     ResetEvent(_ParkEvent);
4971     return;
4972   } else {
4973     ThreadBlockInVM tbivm(thread);
4974     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4975     thread->set_suspend_equivalent();
4976 
4977     WaitForSingleObject(_ParkEvent, time);
4978     ResetEvent(_ParkEvent);
4979 
4980     // If externally suspended while waiting, re-suspend
4981     if (thread->handle_special_suspend_equivalent_condition()) {
4982       thread->java_suspend_self();
4983     }
4984   }
4985 }
4986 
4987 void Parker::unpark() {
4988   guarantee(_ParkEvent != NULL, "invariant");
4989   SetEvent(_ParkEvent);
4990 }
4991 
4992 // Run the specified command in a separate process. Return its exit value,
4993 // or -1 on failure (e.g. can't create a new process).
4994 int os::fork_and_exec(char* cmd) {
4995   STARTUPINFO si;
4996   PROCESS_INFORMATION pi;
4997   DWORD exit_code;
4998 
4999   char * cmd_string;
5000   char * cmd_prefix = "cmd /C ";
5001   size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
5002   cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
5003   if (cmd_string == NULL) {
5004     return -1;
5005   }
5006   cmd_string[0] = '\0';
5007   strcat(cmd_string, cmd_prefix);
5008   strcat(cmd_string, cmd);
5009 
5010   // now replace all '\n' with '&'
5011   char * substring = cmd_string;
5012   while ((substring = strchr(substring, '\n')) != NULL) {
5013     substring[0] = '&';
5014     substring++;
5015   }
5016   memset(&si, 0, sizeof(si));
5017   si.cb = sizeof(si);
5018   memset(&pi, 0, sizeof(pi));
5019   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5020                             cmd_string,    // command line
5021                             NULL,   // process security attribute
5022                             NULL,   // thread security attribute
5023                             TRUE,   // inherits system handles
5024                             0,      // no creation flags
5025                             NULL,   // use parent's environment block
5026                             NULL,   // use parent's starting directory
5027                             &si,    // (in) startup information
5028                             &pi);   // (out) process information
5029 
5030   if (rslt) {
5031     // Wait until child process exits.
5032     WaitForSingleObject(pi.hProcess, INFINITE);
5033 
5034     GetExitCodeProcess(pi.hProcess, &exit_code);
5035 
5036     // Close process and thread handles.
5037     CloseHandle(pi.hProcess);
5038     CloseHandle(pi.hThread);
5039   } else {
5040     exit_code = -1;
5041   }
5042 
5043   FREE_C_HEAP_ARRAY(char, cmd_string);
5044   return (int)exit_code;
5045 }
5046 
5047 bool os::find(address addr, outputStream* st) {
5048   int offset = -1;
5049   bool result = false;
5050   char buf[256];
5051   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5052     st->print(PTR_FORMAT " ", addr);
5053     if (strlen(buf) < sizeof(buf) - 1) {
5054       char* p = strrchr(buf, '\\');
5055       if (p) {
5056         st->print("%s", p + 1);
5057       } else {
5058         st->print("%s", buf);
5059       }
5060     } else {
5061         // The library name is probably truncated. Let's omit the library name.
5062         // See also JDK-8147512.
5063     }
5064     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5065       st->print("::%s + 0x%x", buf, offset);
5066     }
5067     st->cr();
5068     result = true;
5069   }
5070   return result;
5071 }
5072 
5073 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5074   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5075 
5076   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5077     JavaThread* thread = JavaThread::current();
5078     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5079     address addr = (address) exceptionRecord->ExceptionInformation[1];
5080 
5081     if (os::is_memory_serialize_page(thread, addr)) {
5082       return EXCEPTION_CONTINUE_EXECUTION;
5083     }
5084   }
5085 
5086   return EXCEPTION_CONTINUE_SEARCH;
5087 }
5088 
5089 // We don't build a headless jre for Windows
5090 bool os::is_headless_jre() { return false; }
5091 
5092 static jint initSock() {
5093   WSADATA wsadata;
5094 
5095   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5096     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5097                 ::GetLastError());
5098     return JNI_ERR;
5099   }
5100   return JNI_OK;
5101 }
5102 
5103 struct hostent* os::get_host_by_name(char* name) {
5104   return (struct hostent*)gethostbyname(name);
5105 }
5106 
5107 int os::socket_close(int fd) {
5108   return ::closesocket(fd);
5109 }
5110 
5111 int os::socket(int domain, int type, int protocol) {
5112   return ::socket(domain, type, protocol);
5113 }
5114 
5115 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5116   return ::connect(fd, him, len);
5117 }
5118 
5119 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5120   return ::recv(fd, buf, (int)nBytes, flags);
5121 }
5122 
5123 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5124   return ::send(fd, buf, (int)nBytes, flags);
5125 }
5126 
5127 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5128   return ::send(fd, buf, (int)nBytes, flags);
5129 }
5130 
5131 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5132 #if defined(IA32)
5133   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5134 #elif defined (AMD64)
5135   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5136 #endif
5137 
5138 // returns true if thread could be suspended,
5139 // false otherwise
5140 static bool do_suspend(HANDLE* h) {
5141   if (h != NULL) {
5142     if (SuspendThread(*h) != ~0) {
5143       return true;
5144     }
5145   }
5146   return false;
5147 }
5148 
5149 // resume the thread
5150 // calling resume on an active thread is a no-op
5151 static void do_resume(HANDLE* h) {
5152   if (h != NULL) {
5153     ResumeThread(*h);
5154   }
5155 }
5156 
5157 // retrieve a suspend/resume context capable handle
5158 // from the tid. Caller validates handle return value.
5159 void get_thread_handle_for_extended_context(HANDLE* h,
5160                                             OSThread::thread_id_t tid) {
5161   if (h != NULL) {
5162     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5163   }
5164 }
5165 
5166 // Thread sampling implementation
5167 //
5168 void os::SuspendedThreadTask::internal_do_task() {
5169   CONTEXT    ctxt;
5170   HANDLE     h = NULL;
5171 
5172   // get context capable handle for thread
5173   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5174 
5175   // sanity
5176   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5177     return;
5178   }
5179 
5180   // suspend the thread
5181   if (do_suspend(&h)) {
5182     ctxt.ContextFlags = sampling_context_flags;
5183     // get thread context
5184     GetThreadContext(h, &ctxt);
5185     SuspendedThreadTaskContext context(_thread, &ctxt);
5186     // pass context to Thread Sampling impl
5187     do_task(context);
5188     // resume thread
5189     do_resume(&h);
5190   }
5191 
5192   // close handle
5193   CloseHandle(h);
5194 }
5195 
5196 bool os::start_debugging(char *buf, int buflen) {
5197   int len = (int)strlen(buf);
5198   char *p = &buf[len];
5199 
5200   jio_snprintf(p, buflen-len,
5201              "\n\n"
5202              "Do you want to debug the problem?\n\n"
5203              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5204              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5205              "Otherwise, select 'No' to abort...",
5206              os::current_process_id(), os::current_thread_id());
5207 
5208   bool yes = os::message_box("Unexpected Error", buf);
5209 
5210   if (yes) {
5211     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5212     // exception. If VM is running inside a debugger, the debugger will
5213     // catch the exception. Otherwise, the breakpoint exception will reach
5214     // the default windows exception handler, which can spawn a debugger and
5215     // automatically attach to the dying VM.
5216     os::breakpoint();
5217     yes = false;
5218   }
5219   return yes;
5220 }
5221 
5222 void* os::get_default_process_handle() {
5223   return (void*)GetModuleHandle(NULL);
5224 }
5225 
5226 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5227 // which is used to find statically linked in agents.
5228 // Additionally for windows, takes into account __stdcall names.
5229 // Parameters:
5230 //            sym_name: Symbol in library we are looking for
5231 //            lib_name: Name of library to look in, NULL for shared libs.
5232 //            is_absolute_path == true if lib_name is absolute path to agent
5233 //                                     such as "C:/a/b/L.dll"
5234 //            == false if only the base name of the library is passed in
5235 //               such as "L"
5236 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5237                                     bool is_absolute_path) {
5238   char *agent_entry_name;
5239   size_t len;
5240   size_t name_len;
5241   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5242   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5243   const char *start;
5244 
5245   if (lib_name != NULL) {
5246     len = name_len = strlen(lib_name);
5247     if (is_absolute_path) {
5248       // Need to strip path, prefix and suffix
5249       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5250         lib_name = ++start;
5251       } else {
5252         // Need to check for drive prefix
5253         if ((start = strchr(lib_name, ':')) != NULL) {
5254           lib_name = ++start;
5255         }
5256       }
5257       if (len <= (prefix_len + suffix_len)) {
5258         return NULL;
5259       }
5260       lib_name += prefix_len;
5261       name_len = strlen(lib_name) - suffix_len;
5262     }
5263   }
5264   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5265   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5266   if (agent_entry_name == NULL) {
5267     return NULL;
5268   }
5269   if (lib_name != NULL) {
5270     const char *p = strrchr(sym_name, '@');
5271     if (p != NULL && p != sym_name) {
5272       // sym_name == _Agent_OnLoad@XX
5273       strncpy(agent_entry_name, sym_name, (p - sym_name));
5274       agent_entry_name[(p-sym_name)] = '\0';
5275       // agent_entry_name == _Agent_OnLoad
5276       strcat(agent_entry_name, "_");
5277       strncat(agent_entry_name, lib_name, name_len);
5278       strcat(agent_entry_name, p);
5279       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5280     } else {
5281       strcpy(agent_entry_name, sym_name);
5282       strcat(agent_entry_name, "_");
5283       strncat(agent_entry_name, lib_name, name_len);
5284     }
5285   } else {
5286     strcpy(agent_entry_name, sym_name);
5287   }
5288   return agent_entry_name;
5289 }
5290 
5291 #ifndef PRODUCT
5292 
5293 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5294 // contiguous memory block at a particular address.
5295 // The test first tries to find a good approximate address to allocate at by using the same
5296 // method to allocate some memory at any address. The test then tries to allocate memory in
5297 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5298 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5299 // the previously allocated memory is available for allocation. The only actual failure
5300 // that is reported is when the test tries to allocate at a particular location but gets a
5301 // different valid one. A NULL return value at this point is not considered an error but may
5302 // be legitimate.
5303 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5304 void TestReserveMemorySpecial_test() {
5305   if (!UseLargePages) {
5306     if (VerboseInternalVMTests) {
5307       tty->print("Skipping test because large pages are disabled");
5308     }
5309     return;
5310   }
5311   // save current value of globals
5312   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5313   bool old_use_numa_interleaving = UseNUMAInterleaving;
5314 
5315   // set globals to make sure we hit the correct code path
5316   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5317 
5318   // do an allocation at an address selected by the OS to get a good one.
5319   const size_t large_allocation_size = os::large_page_size() * 4;
5320   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5321   if (result == NULL) {
5322     if (VerboseInternalVMTests) {
5323       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5324                           large_allocation_size);
5325     }
5326   } else {
5327     os::release_memory_special(result, large_allocation_size);
5328 
5329     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5330     // we managed to get it once.
5331     const size_t expected_allocation_size = os::large_page_size();
5332     char* expected_location = result + os::large_page_size();
5333     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5334     if (actual_location == NULL) {
5335       if (VerboseInternalVMTests) {
5336         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5337                             expected_location, large_allocation_size);
5338       }
5339     } else {
5340       // release memory
5341       os::release_memory_special(actual_location, expected_allocation_size);
5342       // only now check, after releasing any memory to avoid any leaks.
5343       assert(actual_location == expected_location,
5344              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5345              expected_location, expected_allocation_size, actual_location);
5346     }
5347   }
5348 
5349   // restore globals
5350   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5351   UseNUMAInterleaving = old_use_numa_interleaving;
5352 }
5353 #endif // PRODUCT
5354 
5355 /*
5356   All the defined signal names for Windows.
5357 
5358   NOTE that not all of these names are accepted by FindSignal!
5359 
5360   For various reasons some of these may be rejected at runtime.
5361 
5362   Here are the names currently accepted by a user of sun.misc.Signal with
5363   1.4.1 (ignoring potential interaction with use of chaining, etc):
5364 
5365      (LIST TBD)
5366 
5367 */
5368 int os::get_signal_number(const char* name) {
5369   static const struct {
5370     char* name;
5371     int   number;
5372   } siglabels [] =
5373     // derived from version 6.0 VC98/include/signal.h
5374   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5375   "FPE",        SIGFPE,         // floating point exception
5376   "SEGV",       SIGSEGV,        // segment violation
5377   "INT",        SIGINT,         // interrupt
5378   "TERM",       SIGTERM,        // software term signal from kill
5379   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5380   "ILL",        SIGILL};        // illegal instruction
5381   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5382     if (strcmp(name, siglabels[i].name) == 0) {
5383       return siglabels[i].number;
5384     }
5385   }
5386   return -1;
5387 }
5388 
5389 // Fast current thread access
5390 
5391 int os::win32::_thread_ptr_offset = 0;
5392 
5393 static void call_wrapper_dummy() {}
5394 
5395 // We need to call the os_exception_wrapper once so that it sets
5396 // up the offset from FS of the thread pointer.
5397 void os::win32::initialize_thread_ptr_offset() {
5398   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5399                            NULL, NULL, NULL, NULL);
5400 }