1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/collectedHeap.inline.hpp"
  34 #include "gc/shared/collectorCounters.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/gcTrace.hpp"
  38 #include "gc/shared/gcTraceTime.inline.hpp"
  39 #include "gc/shared/genCollectedHeap.hpp"
  40 #include "gc/shared/genOopClosures.inline.hpp"
  41 #include "gc/shared/generationSpec.hpp"
  42 #include "gc/shared/space.hpp"
  43 #include "gc/shared/strongRootsScope.hpp"
  44 #include "gc/shared/vmGCOperations.hpp"
  45 #include "gc/shared/weakProcessor.hpp"
  46 #include "gc/shared/workgroup.hpp"
  47 #include "memory/filemap.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/handles.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "services/management.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "utilities/debug.hpp"
  58 #include "utilities/formatBuffer.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/stack.inline.hpp"
  61 #include "utilities/vmError.hpp"
  62 
  63 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  64   CollectedHeap(),
  65   _rem_set(NULL),
  66   _gen_policy(policy),
  67   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  68   _full_collections_completed(0)
  69 {
  70   assert(policy != NULL, "Sanity check");
  71 }
  72 
  73 jint GenCollectedHeap::initialize() {
  74   CollectedHeap::pre_initialize();
  75 
  76   // While there are no constraints in the GC code that HeapWordSize
  77   // be any particular value, there are multiple other areas in the
  78   // system which believe this to be true (e.g. oop->object_size in some
  79   // cases incorrectly returns the size in wordSize units rather than
  80   // HeapWordSize).
  81   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  82 
  83   // Allocate space for the heap.
  84 
  85   char* heap_address;
  86   ReservedSpace heap_rs;
  87 
  88   size_t heap_alignment = collector_policy()->heap_alignment();
  89 
  90   heap_address = allocate(heap_alignment, &heap_rs);
  91 
  92   if (!heap_rs.is_reserved()) {
  93     vm_shutdown_during_initialization(
  94       "Could not reserve enough space for object heap");
  95     return JNI_ENOMEM;
  96   }
  97 
  98   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  99 
 100   _rem_set = collector_policy()->create_rem_set(reserved_region());
 101   set_barrier_set(rem_set()->bs());
 102 
 103   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 104   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 105   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 106 
 107   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 108   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 109   clear_incremental_collection_failed();
 110 
 111   return JNI_OK;
 112 }
 113 
 114 char* GenCollectedHeap::allocate(size_t alignment,
 115                                  ReservedSpace* heap_rs){
 116   // Now figure out the total size.
 117   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 118   assert(alignment % pageSize == 0, "Must be");
 119 
 120   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 121   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 122 
 123   // Check for overflow.
 124   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 125   if (total_reserved < young_spec->max_size()) {
 126     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 127                                   "the maximum representable size");
 128   }
 129   assert(total_reserved % alignment == 0,
 130          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 131          SIZE_FORMAT, total_reserved, alignment);
 132 
 133   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 134 
 135   os::trace_page_sizes("Heap",
 136                        collector_policy()->min_heap_byte_size(),
 137                        total_reserved,
 138                        alignment,
 139                        heap_rs->base(),
 140                        heap_rs->size());
 141 
 142   return heap_rs->base();
 143 }
 144 
 145 void GenCollectedHeap::post_initialize() {
 146   ref_processing_init();
 147   check_gen_kinds();
 148   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 149 
 150   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 151                                       _old_gen->capacity(),
 152                                       def_new_gen->from()->capacity());
 153   _gen_policy->initialize_gc_policy_counters();
 154 }
 155 
 156 void GenCollectedHeap::check_gen_kinds() {
 157   assert(young_gen()->kind() == Generation::DefNew,
 158          "Wrong youngest generation type");
 159   assert(old_gen()->kind() == Generation::MarkSweepCompact,
 160          "Wrong generation kind");
 161 }
 162 
 163 void GenCollectedHeap::ref_processing_init() {
 164   _young_gen->ref_processor_init();
 165   _old_gen->ref_processor_init();
 166 }
 167 
 168 size_t GenCollectedHeap::capacity() const {
 169   return _young_gen->capacity() + _old_gen->capacity();
 170 }
 171 
 172 size_t GenCollectedHeap::used() const {
 173   return _young_gen->used() + _old_gen->used();
 174 }
 175 
 176 void GenCollectedHeap::save_used_regions() {
 177   _old_gen->save_used_region();
 178   _young_gen->save_used_region();
 179 }
 180 
 181 size_t GenCollectedHeap::max_capacity() const {
 182   return _young_gen->max_capacity() + _old_gen->max_capacity();
 183 }
 184 
 185 // Update the _full_collections_completed counter
 186 // at the end of a stop-world full GC.
 187 unsigned int GenCollectedHeap::update_full_collections_completed() {
 188   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 189   assert(_full_collections_completed <= _total_full_collections,
 190          "Can't complete more collections than were started");
 191   _full_collections_completed = _total_full_collections;
 192   ml.notify_all();
 193   return _full_collections_completed;
 194 }
 195 
 196 // Update the _full_collections_completed counter, as appropriate,
 197 // at the end of a concurrent GC cycle. Note the conditional update
 198 // below to allow this method to be called by a concurrent collector
 199 // without synchronizing in any manner with the VM thread (which
 200 // may already have initiated a STW full collection "concurrently").
 201 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 202   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 203   assert((_full_collections_completed <= _total_full_collections) &&
 204          (count <= _total_full_collections),
 205          "Can't complete more collections than were started");
 206   if (count > _full_collections_completed) {
 207     _full_collections_completed = count;
 208     ml.notify_all();
 209   }
 210   return _full_collections_completed;
 211 }
 212 
 213 
 214 #ifndef PRODUCT
 215 // Override of memory state checking method in CollectedHeap:
 216 // Some collectors (CMS for example) can't have badHeapWordVal written
 217 // in the first two words of an object. (For instance , in the case of
 218 // CMS these words hold state used to synchronize between certain
 219 // (concurrent) GC steps and direct allocating mutators.)
 220 // The skip_header_HeapWords() method below, allows us to skip
 221 // over the requisite number of HeapWord's. Note that (for
 222 // generational collectors) this means that those many words are
 223 // skipped in each object, irrespective of the generation in which
 224 // that object lives. The resultant loss of precision seems to be
 225 // harmless and the pain of avoiding that imprecision appears somewhat
 226 // higher than we are prepared to pay for such rudimentary debugging
 227 // support.
 228 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 229                                                          size_t size) {
 230   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 231     // We are asked to check a size in HeapWords,
 232     // but the memory is mangled in juint words.
 233     juint* start = (juint*) (addr + skip_header_HeapWords());
 234     juint* end   = (juint*) (addr + size);
 235     for (juint* slot = start; slot < end; slot += 1) {
 236       assert(*slot == badHeapWordVal,
 237              "Found non badHeapWordValue in pre-allocation check");
 238     }
 239   }
 240 }
 241 #endif
 242 
 243 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 244                                                bool is_tlab,
 245                                                bool first_only) {
 246   HeapWord* res = NULL;
 247 
 248   if (_young_gen->should_allocate(size, is_tlab)) {
 249     res = _young_gen->allocate(size, is_tlab);
 250     if (res != NULL || first_only) {
 251       return res;
 252     }
 253   }
 254 
 255   if (_old_gen->should_allocate(size, is_tlab)) {
 256     res = _old_gen->allocate(size, is_tlab);
 257   }
 258 
 259   return res;
 260 }
 261 
 262 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 263                                          bool* gc_overhead_limit_was_exceeded) {
 264   return gen_policy()->mem_allocate_work(size,
 265                                          false /* is_tlab */,
 266                                          gc_overhead_limit_was_exceeded);
 267 }
 268 
 269 bool GenCollectedHeap::must_clear_all_soft_refs() {
 270   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 271          _gc_cause == GCCause::_wb_full_gc;
 272 }
 273 
 274 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 275                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 276                                           bool restore_marks_for_biased_locking) {
 277   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 278   GCTraceTime(Trace, gc, phases) t1(title);
 279   TraceCollectorStats tcs(gen->counters());
 280   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 281 
 282   gen->stat_record()->invocations++;
 283   gen->stat_record()->accumulated_time.start();
 284 
 285   // Must be done anew before each collection because
 286   // a previous collection will do mangling and will
 287   // change top of some spaces.
 288   record_gen_tops_before_GC();
 289 
 290   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 291 
 292   if (run_verification && VerifyBeforeGC) {
 293     HandleMark hm;  // Discard invalid handles created during verification
 294     Universe::verify("Before GC");
 295   }
 296   COMPILER2_PRESENT(DerivedPointerTable::clear());
 297 
 298   if (restore_marks_for_biased_locking) {
 299     // We perform this mark word preservation work lazily
 300     // because it's only at this point that we know whether we
 301     // absolutely have to do it; we want to avoid doing it for
 302     // scavenge-only collections where it's unnecessary
 303     BiasedLocking::preserve_marks();
 304   }
 305 
 306   // Do collection work
 307   {
 308     // Note on ref discovery: For what appear to be historical reasons,
 309     // GCH enables and disabled (by enqueing) refs discovery.
 310     // In the future this should be moved into the generation's
 311     // collect method so that ref discovery and enqueueing concerns
 312     // are local to a generation. The collect method could return
 313     // an appropriate indication in the case that notification on
 314     // the ref lock was needed. This will make the treatment of
 315     // weak refs more uniform (and indeed remove such concerns
 316     // from GCH). XXX
 317 
 318     HandleMark hm;  // Discard invalid handles created during gc
 319     save_marks();   // save marks for all gens
 320     // We want to discover references, but not process them yet.
 321     // This mode is disabled in process_discovered_references if the
 322     // generation does some collection work, or in
 323     // enqueue_discovered_references if the generation returns
 324     // without doing any work.
 325     ReferenceProcessor* rp = gen->ref_processor();
 326     // If the discovery of ("weak") refs in this generation is
 327     // atomic wrt other collectors in this configuration, we
 328     // are guaranteed to have empty discovered ref lists.
 329     if (rp->discovery_is_atomic()) {
 330       rp->enable_discovery();
 331       rp->setup_policy(clear_soft_refs);
 332     } else {
 333       // collect() below will enable discovery as appropriate
 334     }
 335     gen->collect(full, clear_soft_refs, size, is_tlab);
 336     if (!rp->enqueuing_is_done()) {
 337       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 338       rp->enqueue_discovered_references(NULL, &pt);
 339       pt.print_enqueue_phase();
 340     } else {
 341       rp->set_enqueuing_is_done(false);
 342     }
 343     rp->verify_no_references_recorded();
 344   }
 345 
 346   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 347 
 348   gen->stat_record()->accumulated_time.stop();
 349 
 350   update_gc_stats(gen, full);
 351 
 352   if (run_verification && VerifyAfterGC) {
 353     HandleMark hm;  // Discard invalid handles created during verification
 354     Universe::verify("After GC");
 355   }
 356 }
 357 
 358 void GenCollectedHeap::do_collection(bool           full,
 359                                      bool           clear_all_soft_refs,
 360                                      size_t         size,
 361                                      bool           is_tlab,
 362                                      GenerationType max_generation) {
 363   ResourceMark rm;
 364   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 365 
 366   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 367   assert(my_thread->is_VM_thread() ||
 368          my_thread->is_ConcurrentGC_thread(),
 369          "incorrect thread type capability");
 370   assert(Heap_lock->is_locked(),
 371          "the requesting thread should have the Heap_lock");
 372   guarantee(!is_gc_active(), "collection is not reentrant");
 373 
 374   if (GCLocker::check_active_before_gc()) {
 375     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 376   }
 377 
 378   GCIdMarkAndRestore gc_id_mark;
 379 
 380   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 381                           collector_policy()->should_clear_all_soft_refs();
 382 
 383   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 384 
 385   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 386 
 387   print_heap_before_gc();
 388 
 389   {
 390     FlagSetting fl(_is_gc_active, true);
 391 
 392     bool complete = full && (max_generation == OldGen);
 393     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 394     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 395 
 396     FormatBuffer<> gc_string("%s", "Pause ");
 397     if (do_young_collection) {
 398       gc_string.append("Young");
 399     } else {
 400       gc_string.append("Full");
 401     }
 402 
 403     GCTraceCPUTime tcpu;
 404     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 405 
 406     gc_prologue(complete);
 407     increment_total_collections(complete);
 408 
 409     size_t young_prev_used = _young_gen->used();
 410     size_t old_prev_used = _old_gen->used();
 411 
 412     bool run_verification = total_collections() >= VerifyGCStartAt;
 413 
 414     bool prepared_for_verification = false;
 415     bool collected_old = false;
 416 
 417     if (do_young_collection) {
 418       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 419         prepare_for_verify();
 420         prepared_for_verification = true;
 421       }
 422 
 423       collect_generation(_young_gen,
 424                          full,
 425                          size,
 426                          is_tlab,
 427                          run_verification && VerifyGCLevel <= 0,
 428                          do_clear_all_soft_refs,
 429                          false);
 430 
 431       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 432           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 433         // Allocation request was met by young GC.
 434         size = 0;
 435       }
 436     }
 437 
 438     bool must_restore_marks_for_biased_locking = false;
 439 
 440     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 441       if (!complete) {
 442         // The full_collections increment was missed above.
 443         increment_total_full_collections();
 444       }
 445 
 446       if (!prepared_for_verification && run_verification &&
 447           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 448         prepare_for_verify();
 449       }
 450 
 451       if (do_young_collection) {
 452         // We did a young GC. Need a new GC id for the old GC.
 453         GCIdMarkAndRestore gc_id_mark;
 454         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 455         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 456       } else {
 457         // No young GC done. Use the same GC id as was set up earlier in this method.
 458         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 459       }
 460 
 461       must_restore_marks_for_biased_locking = true;
 462       collected_old = true;
 463     }
 464 
 465     // Update "complete" boolean wrt what actually transpired --
 466     // for instance, a promotion failure could have led to
 467     // a whole heap collection.
 468     complete = complete || collected_old;
 469 
 470     print_heap_change(young_prev_used, old_prev_used);
 471     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 472 
 473     // Adjust generation sizes.
 474     if (collected_old) {
 475       _old_gen->compute_new_size();
 476     }
 477     _young_gen->compute_new_size();
 478 
 479     if (complete) {
 480       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 481       ClassLoaderDataGraph::purge();
 482       MetaspaceAux::verify_metrics();
 483       // Resize the metaspace capacity after full collections
 484       MetaspaceGC::compute_new_size();
 485       update_full_collections_completed();
 486     }
 487 
 488     // Track memory usage and detect low memory after GC finishes
 489     MemoryService::track_memory_usage();
 490 
 491     gc_epilogue(complete);
 492 
 493     if (must_restore_marks_for_biased_locking) {
 494       BiasedLocking::restore_marks();
 495     }
 496   }
 497 
 498   print_heap_after_gc();
 499 
 500 #ifdef TRACESPINNING
 501   ParallelTaskTerminator::print_termination_counts();
 502 #endif
 503 }
 504 
 505 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 506   CodeCache::register_scavenge_root_nmethod(nm);
 507 }
 508 
 509 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 510   CodeCache::verify_scavenge_root_nmethod(nm);
 511 }
 512 
 513 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 514   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 515 }
 516 
 517 #ifdef ASSERT
 518 class AssertNonScavengableClosure: public OopClosure {
 519 public:
 520   virtual void do_oop(oop* p) {
 521     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 522       "Referent should not be scavengable.");  }
 523   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 524 };
 525 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 526 #endif
 527 
 528 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 529                                      ScanningOption so,
 530                                      OopClosure* strong_roots,
 531                                      OopClosure* weak_roots,
 532                                      CLDClosure* strong_cld_closure,
 533                                      CLDClosure* weak_cld_closure,
 534                                      CodeBlobToOopClosure* code_roots) {
 535   // General roots.
 536   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 537   assert(code_roots != NULL, "code root closure should always be set");
 538   // _n_termination for _process_strong_tasks should be set up stream
 539   // in a method not running in a GC worker.  Otherwise the GC worker
 540   // could be trying to change the termination condition while the task
 541   // is executing in another GC worker.
 542 
 543   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 544     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 545   }
 546 
 547   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 548   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 549 
 550   bool is_par = scope->n_threads() > 1;
 551   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 552 
 553   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 554     Universe::oops_do(strong_roots);
 555   }
 556   // Global (strong) JNI handles
 557   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 558     JNIHandles::oops_do(strong_roots);
 559   }
 560 
 561   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 562     ObjectSynchronizer::oops_do(strong_roots);
 563   }
 564   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 565     Management::oops_do(strong_roots);
 566   }
 567   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 568     JvmtiExport::oops_do(strong_roots);
 569   }
 570   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 571     AOTLoader::oops_do(strong_roots);
 572   }
 573 
 574   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 575     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 576   }
 577 
 578   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 579     if (so & SO_ScavengeCodeCache) {
 580       assert(code_roots != NULL, "must supply closure for code cache");
 581 
 582       // We only visit parts of the CodeCache when scavenging.
 583       CodeCache::scavenge_root_nmethods_do(code_roots);
 584     }
 585     if (so & SO_AllCodeCache) {
 586       assert(code_roots != NULL, "must supply closure for code cache");
 587 
 588       // CMSCollector uses this to do intermediate-strength collections.
 589       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 590       CodeCache::blobs_do(code_roots);
 591     }
 592     // Verify that the code cache contents are not subject to
 593     // movement by a scavenging collection.
 594     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 595     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 596   }
 597 }
 598 
 599 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 600                                                   OopClosure* root_closure) {
 601   assert(root_closure != NULL, "Must be set");
 602   // All threads execute the following. A specific chunk of buckets
 603   // from the StringTable are the individual tasks.
 604   if (scope->n_threads() > 1) {
 605     StringTable::possibly_parallel_oops_do(root_closure);
 606   } else {
 607     StringTable::oops_do(root_closure);
 608   }
 609 }
 610 
 611 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 612                                            OopsInGenClosure* root_closure,
 613                                            OopsInGenClosure* old_gen_closure,
 614                                            CLDClosure* cld_closure) {
 615   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 616 
 617   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 618                 cld_closure, cld_closure, &mark_code_closure);
 619   process_string_table_roots(scope, root_closure);
 620 
 621   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 622     root_closure->reset_generation();
 623   }
 624 
 625   // When collection is parallel, all threads get to cooperate to do
 626   // old generation scanning.
 627   old_gen_closure->set_generation(_old_gen);
 628   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 629   old_gen_closure->reset_generation();
 630 
 631   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 632 }
 633 
 634 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 635                                           bool is_adjust_phase,
 636                                           ScanningOption so,
 637                                           bool only_strong_roots,
 638                                           OopsInGenClosure* root_closure,
 639                                           CLDClosure* cld_closure) {
 640   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 641   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 642   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 643 
 644   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 645   if (is_adjust_phase) {
 646     // We never treat the string table as roots during marking
 647     // for the full gc, so we only need to process it during
 648     // the adjust phase.
 649     process_string_table_roots(scope, root_closure);
 650   }
 651 
 652   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 653 }
 654 
 655 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 656   WeakProcessor::oops_do(root_closure);
 657   _young_gen->ref_processor()->weak_oops_do(root_closure);
 658   _old_gen->ref_processor()->weak_oops_do(root_closure);
 659 }
 660 
 661 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 662 void GenCollectedHeap::                                                 \
 663 oop_since_save_marks_iterate(GenerationType gen,                        \
 664                              OopClosureType* cur,                       \
 665                              OopClosureType* older) {                   \
 666   if (gen == YoungGen) {                              \
 667     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 668     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 669   } else {                                                              \
 670     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 671   }                                                                     \
 672 }
 673 
 674 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 675 
 676 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 677 
 678 bool GenCollectedHeap::no_allocs_since_save_marks() {
 679   return _young_gen->no_allocs_since_save_marks() &&
 680          _old_gen->no_allocs_since_save_marks();
 681 }
 682 
 683 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 684   return _young_gen->supports_inline_contig_alloc();
 685 }
 686 
 687 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 688   return _young_gen->top_addr();
 689 }
 690 
 691 HeapWord** GenCollectedHeap::end_addr() const {
 692   return _young_gen->end_addr();
 693 }
 694 
 695 // public collection interfaces
 696 
 697 void GenCollectedHeap::collect(GCCause::Cause cause) {
 698   if (cause == GCCause::_wb_young_gc) {
 699     // Young collection for the WhiteBox API.
 700     collect(cause, YoungGen);
 701   } else {
 702 #ifdef ASSERT
 703   if (cause == GCCause::_scavenge_alot) {
 704     // Young collection only.
 705     collect(cause, YoungGen);
 706   } else {
 707     // Stop-the-world full collection.
 708     collect(cause, OldGen);
 709   }
 710 #else
 711     // Stop-the-world full collection.
 712     collect(cause, OldGen);
 713 #endif
 714   }
 715 }
 716 
 717 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 718   // The caller doesn't have the Heap_lock
 719   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 720   MutexLocker ml(Heap_lock);
 721   collect_locked(cause, max_generation);
 722 }
 723 
 724 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 725   // The caller has the Heap_lock
 726   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 727   collect_locked(cause, OldGen);
 728 }
 729 
 730 // this is the private collection interface
 731 // The Heap_lock is expected to be held on entry.
 732 
 733 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 734   // Read the GC count while holding the Heap_lock
 735   unsigned int gc_count_before      = total_collections();
 736   unsigned int full_gc_count_before = total_full_collections();
 737   {
 738     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 739     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 740                          cause, max_generation);
 741     VMThread::execute(&op);
 742   }
 743 }
 744 
 745 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 746    do_full_collection(clear_all_soft_refs, OldGen);
 747 }
 748 
 749 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 750                                           GenerationType last_generation) {
 751   GenerationType local_last_generation;
 752   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 753       gc_cause() == GCCause::_gc_locker) {
 754     local_last_generation = YoungGen;
 755   } else {
 756     local_last_generation = last_generation;
 757   }
 758 
 759   do_collection(true,                   // full
 760                 clear_all_soft_refs,    // clear_all_soft_refs
 761                 0,                      // size
 762                 false,                  // is_tlab
 763                 local_last_generation); // last_generation
 764   // Hack XXX FIX ME !!!
 765   // A scavenge may not have been attempted, or may have
 766   // been attempted and failed, because the old gen was too full
 767   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 768       incremental_collection_will_fail(false /* don't consult_young */)) {
 769     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 770     // This time allow the old gen to be collected as well
 771     do_collection(true,                // full
 772                   clear_all_soft_refs, // clear_all_soft_refs
 773                   0,                   // size
 774                   false,               // is_tlab
 775                   OldGen);             // last_generation
 776   }
 777 }
 778 
 779 bool GenCollectedHeap::is_in_young(oop p) {
 780   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 781   assert(result == _young_gen->is_in_reserved(p),
 782          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 783   return result;
 784 }
 785 
 786 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 787 bool GenCollectedHeap::is_in(const void* p) const {
 788   return _young_gen->is_in(p) || _old_gen->is_in(p);
 789 }
 790 
 791 #ifdef ASSERT
 792 // Don't implement this by using is_in_young().  This method is used
 793 // in some cases to check that is_in_young() is correct.
 794 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 795   assert(is_in_reserved(p) || p == NULL,
 796     "Does not work if address is non-null and outside of the heap");
 797   return p < _young_gen->reserved().end() && p != NULL;
 798 }
 799 #endif
 800 
 801 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 802   NoHeaderExtendedOopClosure no_header_cl(cl);
 803   oop_iterate(&no_header_cl);
 804 }
 805 
 806 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 807   _young_gen->oop_iterate(cl);
 808   _old_gen->oop_iterate(cl);
 809 }
 810 
 811 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 812   _young_gen->object_iterate(cl);
 813   _old_gen->object_iterate(cl);
 814 }
 815 
 816 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 817   _young_gen->safe_object_iterate(cl);
 818   _old_gen->safe_object_iterate(cl);
 819 }
 820 
 821 Space* GenCollectedHeap::space_containing(const void* addr) const {
 822   Space* res = _young_gen->space_containing(addr);
 823   if (res != NULL) {
 824     return res;
 825   }
 826   res = _old_gen->space_containing(addr);
 827   assert(res != NULL, "Could not find containing space");
 828   return res;
 829 }
 830 
 831 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 832   assert(is_in_reserved(addr), "block_start of address outside of heap");
 833   if (_young_gen->is_in_reserved(addr)) {
 834     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 835     return _young_gen->block_start(addr);
 836   }
 837 
 838   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 839   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 840   return _old_gen->block_start(addr);
 841 }
 842 
 843 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 844   assert(is_in_reserved(addr), "block_size of address outside of heap");
 845   if (_young_gen->is_in_reserved(addr)) {
 846     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 847     return _young_gen->block_size(addr);
 848   }
 849 
 850   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 851   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 852   return _old_gen->block_size(addr);
 853 }
 854 
 855 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 856   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 857   assert(block_start(addr) == addr, "addr must be a block start");
 858   if (_young_gen->is_in_reserved(addr)) {
 859     return _young_gen->block_is_obj(addr);
 860   }
 861 
 862   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 863   return _old_gen->block_is_obj(addr);
 864 }
 865 
 866 bool GenCollectedHeap::supports_tlab_allocation() const {
 867   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 868   return _young_gen->supports_tlab_allocation();
 869 }
 870 
 871 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 872   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 873   if (_young_gen->supports_tlab_allocation()) {
 874     return _young_gen->tlab_capacity();
 875   }
 876   return 0;
 877 }
 878 
 879 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 880   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 881   if (_young_gen->supports_tlab_allocation()) {
 882     return _young_gen->tlab_used();
 883   }
 884   return 0;
 885 }
 886 
 887 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 888   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 889   if (_young_gen->supports_tlab_allocation()) {
 890     return _young_gen->unsafe_max_tlab_alloc();
 891   }
 892   return 0;
 893 }
 894 
 895 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 896   bool gc_overhead_limit_was_exceeded;
 897   return gen_policy()->mem_allocate_work(size /* size */,
 898                                          true /* is_tlab */,
 899                                          &gc_overhead_limit_was_exceeded);
 900 }
 901 
 902 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 903 // from the list headed by "*prev_ptr".
 904 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 905   bool first = true;
 906   size_t min_size = 0;   // "first" makes this conceptually infinite.
 907   ScratchBlock **smallest_ptr, *smallest;
 908   ScratchBlock  *cur = *prev_ptr;
 909   while (cur) {
 910     assert(*prev_ptr == cur, "just checking");
 911     if (first || cur->num_words < min_size) {
 912       smallest_ptr = prev_ptr;
 913       smallest     = cur;
 914       min_size     = smallest->num_words;
 915       first        = false;
 916     }
 917     prev_ptr = &cur->next;
 918     cur     =  cur->next;
 919   }
 920   smallest      = *smallest_ptr;
 921   *smallest_ptr = smallest->next;
 922   return smallest;
 923 }
 924 
 925 // Sort the scratch block list headed by res into decreasing size order,
 926 // and set "res" to the result.
 927 static void sort_scratch_list(ScratchBlock*& list) {
 928   ScratchBlock* sorted = NULL;
 929   ScratchBlock* unsorted = list;
 930   while (unsorted) {
 931     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 932     smallest->next  = sorted;
 933     sorted          = smallest;
 934   }
 935   list = sorted;
 936 }
 937 
 938 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 939                                                size_t max_alloc_words) {
 940   ScratchBlock* res = NULL;
 941   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 942   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 943   sort_scratch_list(res);
 944   return res;
 945 }
 946 
 947 void GenCollectedHeap::release_scratch() {
 948   _young_gen->reset_scratch();
 949   _old_gen->reset_scratch();
 950 }
 951 
 952 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 953   void do_generation(Generation* gen) {
 954     gen->prepare_for_verify();
 955   }
 956 };
 957 
 958 void GenCollectedHeap::prepare_for_verify() {
 959   ensure_parsability(false);        // no need to retire TLABs
 960   GenPrepareForVerifyClosure blk;
 961   generation_iterate(&blk, false);
 962 }
 963 
 964 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 965                                           bool old_to_young) {
 966   if (old_to_young) {
 967     cl->do_generation(_old_gen);
 968     cl->do_generation(_young_gen);
 969   } else {
 970     cl->do_generation(_young_gen);
 971     cl->do_generation(_old_gen);
 972   }
 973 }
 974 
 975 bool GenCollectedHeap::is_maximal_no_gc() const {
 976   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
 977 }
 978 
 979 void GenCollectedHeap::save_marks() {
 980   _young_gen->save_marks();
 981   _old_gen->save_marks();
 982 }
 983 
 984 GenCollectedHeap* GenCollectedHeap::heap() {
 985   CollectedHeap* heap = Universe::heap();
 986   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
 987   assert(heap->kind() == CollectedHeap::GenCollectedHeap ||
 988          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
 989   return (GenCollectedHeap*) heap;
 990 }
 991 
 992 void GenCollectedHeap::prepare_for_compaction() {
 993   // Start by compacting into same gen.
 994   CompactPoint cp(_old_gen);
 995   _old_gen->prepare_for_compaction(&cp);
 996   _young_gen->prepare_for_compaction(&cp);
 997 }
 998 
 999 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1000   log_debug(gc, verify)("%s", _old_gen->name());
1001   _old_gen->verify();
1002 
1003   log_debug(gc, verify)("%s", _old_gen->name());
1004   _young_gen->verify();
1005 
1006   log_debug(gc, verify)("RemSet");
1007   rem_set()->verify();
1008 }
1009 
1010 void GenCollectedHeap::print_on(outputStream* st) const {
1011   _young_gen->print_on(st);
1012   _old_gen->print_on(st);
1013   MetaspaceAux::print_on(st);
1014 }
1015 
1016 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1017 }
1018 
1019 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1020 }
1021 
1022 void GenCollectedHeap::print_tracing_info() const {
1023   if (log_is_enabled(Debug, gc, heap, exit)) {
1024     LogStreamHandle(Debug, gc, heap, exit) lsh;
1025     _young_gen->print_summary_info_on(&lsh);
1026     _old_gen->print_summary_info_on(&lsh);
1027   }
1028 }
1029 
1030 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1031   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1032                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1033   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1034                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1035 }
1036 
1037 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1038  private:
1039   bool _full;
1040  public:
1041   void do_generation(Generation* gen) {
1042     gen->gc_prologue(_full);
1043   }
1044   GenGCPrologueClosure(bool full) : _full(full) {};
1045 };
1046 
1047 void GenCollectedHeap::gc_prologue(bool full) {
1048   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1049 
1050   // Fill TLAB's and such
1051   CollectedHeap::accumulate_statistics_all_tlabs();
1052   ensure_parsability(true);   // retire TLABs
1053 
1054   // Walk generations
1055   GenGCPrologueClosure blk(full);
1056   generation_iterate(&blk, false);  // not old-to-young.
1057 };
1058 
1059 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1060  private:
1061   bool _full;
1062  public:
1063   void do_generation(Generation* gen) {
1064     gen->gc_epilogue(_full);
1065   }
1066   GenGCEpilogueClosure(bool full) : _full(full) {};
1067 };
1068 
1069 void GenCollectedHeap::gc_epilogue(bool full) {
1070 #if COMPILER2_OR_JVMCI
1071   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1072   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1073   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1074 #endif // COMPILER2_OR_JVMCI
1075 
1076   resize_all_tlabs();
1077 
1078   GenGCEpilogueClosure blk(full);
1079   generation_iterate(&blk, false);  // not old-to-young.
1080 
1081   if (!CleanChunkPoolAsync) {
1082     Chunk::clean_chunk_pool();
1083   }
1084 
1085   MetaspaceCounters::update_performance_counters();
1086   CompressedClassSpaceCounters::update_performance_counters();
1087 };
1088 
1089 #ifndef PRODUCT
1090 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1091  private:
1092  public:
1093   void do_generation(Generation* gen) {
1094     gen->record_spaces_top();
1095   }
1096 };
1097 
1098 void GenCollectedHeap::record_gen_tops_before_GC() {
1099   if (ZapUnusedHeapArea) {
1100     GenGCSaveTopsBeforeGCClosure blk;
1101     generation_iterate(&blk, false);  // not old-to-young.
1102   }
1103 }
1104 #endif  // not PRODUCT
1105 
1106 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1107  public:
1108   void do_generation(Generation* gen) {
1109     gen->ensure_parsability();
1110   }
1111 };
1112 
1113 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1114   CollectedHeap::ensure_parsability(retire_tlabs);
1115   GenEnsureParsabilityClosure ep_cl;
1116   generation_iterate(&ep_cl, false);
1117 }
1118 
1119 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1120                                               oop obj,
1121                                               size_t obj_size) {
1122   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1123   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1124   HeapWord* result = NULL;
1125 
1126   result = old_gen->expand_and_allocate(obj_size, false);
1127 
1128   if (result != NULL) {
1129     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1130   }
1131   return oop(result);
1132 }
1133 
1134 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1135   jlong _time;   // in ms
1136   jlong _now;    // in ms
1137 
1138  public:
1139   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1140 
1141   jlong time() { return _time; }
1142 
1143   void do_generation(Generation* gen) {
1144     _time = MIN2(_time, gen->time_of_last_gc(_now));
1145   }
1146 };
1147 
1148 jlong GenCollectedHeap::millis_since_last_gc() {
1149   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1150   // provided the underlying platform provides such a time source
1151   // (and it is bug free). So we still have to guard against getting
1152   // back a time later than 'now'.
1153   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1154   GenTimeOfLastGCClosure tolgc_cl(now);
1155   // iterate over generations getting the oldest
1156   // time that a generation was collected
1157   generation_iterate(&tolgc_cl, false);
1158 
1159   jlong retVal = now - tolgc_cl.time();
1160   if (retVal < 0) {
1161     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1162        ". returning zero instead.", retVal);
1163     return 0;
1164   }
1165   return retVal;
1166 }