1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/heapRegion.inline.hpp"
  42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  44 #include "gc_implementation/g1/vm_operations_g1.hpp"
  45 #include "gc_implementation/shared/isGCActiveMark.hpp"
  46 #include "memory/gcLocker.inline.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/generationSpec.hpp"
  49 #include "memory/referenceProcessor.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oop.pcgc.inline.hpp"
  52 #include "runtime/vmThread.hpp"
  53 
  54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  55 
  56 // turn it on so that the contents of the young list (scan-only /
  57 // to-be-collected) are printed at "strategic" points before / during
  58 // / after the collection --- this is useful for debugging
  59 #define YOUNG_LIST_VERBOSE 0
  60 // CURRENT STATUS
  61 // This file is under construction.  Search for "FIXME".
  62 
  63 // INVARIANTS/NOTES
  64 //
  65 // All allocation activity covered by the G1CollectedHeap interface is
  66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  67 // and allocate_new_tlab, which are the "entry" points to the
  68 // allocation code from the rest of the JVM.  (Note that this does not
  69 // apply to TLAB allocation, which is not part of this interface: it
  70 // is done by clients of this interface.)
  71 
  72 // Notes on implementation of parallelism in different tasks.
  73 //
  74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  76 // It does use run_task() which sets _n_workers in the task.
  77 // G1ParTask executes g1_process_strong_roots() ->
  78 // SharedHeap::process_strong_roots() which calls eventuall to
  79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  82 //
  83 
  84 // Local to this file.
  85 
  86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  87   SuspendibleThreadSet* _sts;
  88   G1RemSet* _g1rs;
  89   ConcurrentG1Refine* _cg1r;
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  93                               G1RemSet* g1rs,
  94                               ConcurrentG1Refine* cg1r) :
  95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  96   {}
  97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  98     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && _sts->should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111   void set_concurrent(bool b) { _concurrent = b; }
 112 };
 113 
 114 
 115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 116   int _calls;
 117   G1CollectedHeap* _g1h;
 118   CardTableModRefBS* _ctbs;
 119   int _histo[256];
 120 public:
 121   ClearLoggedCardTableEntryClosure() :
 122     _calls(0)
 123   {
 124     _g1h = G1CollectedHeap::heap();
 125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 126     for (int i = 0; i < 256; i++) _histo[i] = 0;
 127   }
 128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 130       _calls++;
 131       unsigned char* ujb = (unsigned char*)card_ptr;
 132       int ind = (int)(*ujb);
 133       _histo[ind]++;
 134       *card_ptr = -1;
 135     }
 136     return true;
 137   }
 138   int calls() { return _calls; }
 139   void print_histo() {
 140     gclog_or_tty->print_cr("Card table value histogram:");
 141     for (int i = 0; i < 256; i++) {
 142       if (_histo[i] != 0) {
 143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 144       }
 145     }
 146   }
 147 };
 148 
 149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 150   int _calls;
 151   G1CollectedHeap* _g1h;
 152   CardTableModRefBS* _ctbs;
 153 public:
 154   RedirtyLoggedCardTableEntryClosure() :
 155     _calls(0)
 156   {
 157     _g1h = G1CollectedHeap::heap();
 158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 159   }
 160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 162       _calls++;
 163       *card_ptr = 0;
 164     }
 165     return true;
 166   }
 167   int calls() { return _calls; }
 168 };
 169 
 170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 171 public:
 172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 173     *card_ptr = CardTableModRefBS::dirty_card_val();
 174     return true;
 175   }
 176 };
 177 
 178 YoungList::YoungList(G1CollectedHeap* g1h) :
 179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 181   guarantee(check_list_empty(false), "just making sure...");
 182 }
 183 
 184 void YoungList::push_region(HeapRegion *hr) {
 185   assert(!hr->is_young(), "should not already be young");
 186   assert(hr->get_next_young_region() == NULL, "cause it should!");
 187 
 188   hr->set_next_young_region(_head);
 189   _head = hr;
 190 
 191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 192   ++_length;
 193 }
 194 
 195 void YoungList::add_survivor_region(HeapRegion* hr) {
 196   assert(hr->is_survivor(), "should be flagged as survivor region");
 197   assert(hr->get_next_young_region() == NULL, "cause it should!");
 198 
 199   hr->set_next_young_region(_survivor_head);
 200   if (_survivor_head == NULL) {
 201     _survivor_tail = hr;
 202   }
 203   _survivor_head = hr;
 204   ++_survivor_length;
 205 }
 206 
 207 void YoungList::empty_list(HeapRegion* list) {
 208   while (list != NULL) {
 209     HeapRegion* next = list->get_next_young_region();
 210     list->set_next_young_region(NULL);
 211     list->uninstall_surv_rate_group();
 212     list->set_not_young();
 213     list = next;
 214   }
 215 }
 216 
 217 void YoungList::empty_list() {
 218   assert(check_list_well_formed(), "young list should be well formed");
 219 
 220   empty_list(_head);
 221   _head = NULL;
 222   _length = 0;
 223 
 224   empty_list(_survivor_head);
 225   _survivor_head = NULL;
 226   _survivor_tail = NULL;
 227   _survivor_length = 0;
 228 
 229   _last_sampled_rs_lengths = 0;
 230 
 231   assert(check_list_empty(false), "just making sure...");
 232 }
 233 
 234 bool YoungList::check_list_well_formed() {
 235   bool ret = true;
 236 
 237   uint length = 0;
 238   HeapRegion* curr = _head;
 239   HeapRegion* last = NULL;
 240   while (curr != NULL) {
 241     if (!curr->is_young()) {
 242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 243                              "incorrectly tagged (y: %d, surv: %d)",
 244                              curr->bottom(), curr->end(),
 245                              curr->is_young(), curr->is_survivor());
 246       ret = false;
 247     }
 248     ++length;
 249     last = curr;
 250     curr = curr->get_next_young_region();
 251   }
 252   ret = ret && (length == _length);
 253 
 254   if (!ret) {
 255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 257                            length, _length);
 258   }
 259 
 260   return ret;
 261 }
 262 
 263 bool YoungList::check_list_empty(bool check_sample) {
 264   bool ret = true;
 265 
 266   if (_length != 0) {
 267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 268                   _length);
 269     ret = false;
 270   }
 271   if (check_sample && _last_sampled_rs_lengths != 0) {
 272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 273     ret = false;
 274   }
 275   if (_head != NULL) {
 276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 277     ret = false;
 278   }
 279   if (!ret) {
 280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 281   }
 282 
 283   return ret;
 284 }
 285 
 286 void
 287 YoungList::rs_length_sampling_init() {
 288   _sampled_rs_lengths = 0;
 289   _curr               = _head;
 290 }
 291 
 292 bool
 293 YoungList::rs_length_sampling_more() {
 294   return _curr != NULL;
 295 }
 296 
 297 void
 298 YoungList::rs_length_sampling_next() {
 299   assert( _curr != NULL, "invariant" );
 300   size_t rs_length = _curr->rem_set()->occupied();
 301 
 302   _sampled_rs_lengths += rs_length;
 303 
 304   // The current region may not yet have been added to the
 305   // incremental collection set (it gets added when it is
 306   // retired as the current allocation region).
 307   if (_curr->in_collection_set()) {
 308     // Update the collection set policy information for this region
 309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 310   }
 311 
 312   _curr = _curr->get_next_young_region();
 313   if (_curr == NULL) {
 314     _last_sampled_rs_lengths = _sampled_rs_lengths;
 315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 316   }
 317 }
 318 
 319 void
 320 YoungList::reset_auxilary_lists() {
 321   guarantee( is_empty(), "young list should be empty" );
 322   assert(check_list_well_formed(), "young list should be well formed");
 323 
 324   // Add survivor regions to SurvRateGroup.
 325   _g1h->g1_policy()->note_start_adding_survivor_regions();
 326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 327 
 328   int young_index_in_cset = 0;
 329   for (HeapRegion* curr = _survivor_head;
 330        curr != NULL;
 331        curr = curr->get_next_young_region()) {
 332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 333 
 334     // The region is a non-empty survivor so let's add it to
 335     // the incremental collection set for the next evacuation
 336     // pause.
 337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 338     young_index_in_cset += 1;
 339   }
 340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 342 
 343   _head   = _survivor_head;
 344   _length = _survivor_length;
 345   if (_survivor_head != NULL) {
 346     assert(_survivor_tail != NULL, "cause it shouldn't be");
 347     assert(_survivor_length > 0, "invariant");
 348     _survivor_tail->set_next_young_region(NULL);
 349   }
 350 
 351   // Don't clear the survivor list handles until the start of
 352   // the next evacuation pause - we need it in order to re-tag
 353   // the survivor regions from this evacuation pause as 'young'
 354   // at the start of the next.
 355 
 356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 357 
 358   assert(check_list_well_formed(), "young list should be well formed");
 359 }
 360 
 361 void YoungList::print() {
 362   HeapRegion* lists[] = {_head,   _survivor_head};
 363   const char* names[] = {"YOUNG", "SURVIVOR"};
 364 
 365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 367     HeapRegion *curr = lists[list];
 368     if (curr == NULL)
 369       gclog_or_tty->print_cr("  empty");
 370     while (curr != NULL) {
 371       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 372                              HR_FORMAT_PARAMS(curr),
 373                              curr->prev_top_at_mark_start(),
 374                              curr->next_top_at_mark_start(),
 375                              curr->age_in_surv_rate_group_cond());
 376       curr = curr->get_next_young_region();
 377     }
 378   }
 379 
 380   gclog_or_tty->print_cr("");
 381 }
 382 
 383 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 384 {
 385   // Claim the right to put the region on the dirty cards region list
 386   // by installing a self pointer.
 387   HeapRegion* next = hr->get_next_dirty_cards_region();
 388   if (next == NULL) {
 389     HeapRegion* res = (HeapRegion*)
 390       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 391                           NULL);
 392     if (res == NULL) {
 393       HeapRegion* head;
 394       do {
 395         // Put the region to the dirty cards region list.
 396         head = _dirty_cards_region_list;
 397         next = (HeapRegion*)
 398           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 399         if (next == head) {
 400           assert(hr->get_next_dirty_cards_region() == hr,
 401                  "hr->get_next_dirty_cards_region() != hr");
 402           if (next == NULL) {
 403             // The last region in the list points to itself.
 404             hr->set_next_dirty_cards_region(hr);
 405           } else {
 406             hr->set_next_dirty_cards_region(next);
 407           }
 408         }
 409       } while (next != head);
 410     }
 411   }
 412 }
 413 
 414 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 415 {
 416   HeapRegion* head;
 417   HeapRegion* hr;
 418   do {
 419     head = _dirty_cards_region_list;
 420     if (head == NULL) {
 421       return NULL;
 422     }
 423     HeapRegion* new_head = head->get_next_dirty_cards_region();
 424     if (head == new_head) {
 425       // The last region.
 426       new_head = NULL;
 427     }
 428     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 429                                           head);
 430   } while (hr != head);
 431   assert(hr != NULL, "invariant");
 432   hr->set_next_dirty_cards_region(NULL);
 433   return hr;
 434 }
 435 
 436 void G1CollectedHeap::stop_conc_gc_threads() {
 437   _cg1r->stop();
 438   _cmThread->stop();
 439 }
 440 
 441 #ifdef ASSERT
 442 // A region is added to the collection set as it is retired
 443 // so an address p can point to a region which will be in the
 444 // collection set but has not yet been retired.  This method
 445 // therefore is only accurate during a GC pause after all
 446 // regions have been retired.  It is used for debugging
 447 // to check if an nmethod has references to objects that can
 448 // be move during a partial collection.  Though it can be
 449 // inaccurate, it is sufficient for G1 because the conservative
 450 // implementation of is_scavengable() for G1 will indicate that
 451 // all nmethods must be scanned during a partial collection.
 452 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 453   HeapRegion* hr = heap_region_containing(p);
 454   return hr != NULL && hr->in_collection_set();
 455 }
 456 #endif
 457 
 458 // Returns true if the reference points to an object that
 459 // can move in an incremental collecction.
 460 bool G1CollectedHeap::is_scavengable(const void* p) {
 461   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 462   G1CollectorPolicy* g1p = g1h->g1_policy();
 463   HeapRegion* hr = heap_region_containing(p);
 464   if (hr == NULL) {
 465      // null
 466      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 467      return false;
 468   } else {
 469     return !hr->isHumongous();
 470   }
 471 }
 472 
 473 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 474   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 475   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 476 
 477   // Count the dirty cards at the start.
 478   CountNonCleanMemRegionClosure count1(this);
 479   ct_bs->mod_card_iterate(&count1);
 480   int orig_count = count1.n();
 481 
 482   // First clear the logged cards.
 483   ClearLoggedCardTableEntryClosure clear;
 484   dcqs.set_closure(&clear);
 485   dcqs.apply_closure_to_all_completed_buffers();
 486   dcqs.iterate_closure_all_threads(false);
 487   clear.print_histo();
 488 
 489   // Now ensure that there's no dirty cards.
 490   CountNonCleanMemRegionClosure count2(this);
 491   ct_bs->mod_card_iterate(&count2);
 492   if (count2.n() != 0) {
 493     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 494                            count2.n(), orig_count);
 495   }
 496   guarantee(count2.n() == 0, "Card table should be clean.");
 497 
 498   RedirtyLoggedCardTableEntryClosure redirty;
 499   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 500   dcqs.apply_closure_to_all_completed_buffers();
 501   dcqs.iterate_closure_all_threads(false);
 502   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 503                          clear.calls(), orig_count);
 504   guarantee(redirty.calls() == clear.calls(),
 505             "Or else mechanism is broken.");
 506 
 507   CountNonCleanMemRegionClosure count3(this);
 508   ct_bs->mod_card_iterate(&count3);
 509   if (count3.n() != orig_count) {
 510     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 511                            orig_count, count3.n());
 512     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 513   }
 514 
 515   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 516 }
 517 
 518 // Private class members.
 519 
 520 G1CollectedHeap* G1CollectedHeap::_g1h;
 521 
 522 // Private methods.
 523 
 524 HeapRegion*
 525 G1CollectedHeap::new_region_try_secondary_free_list() {
 526   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 527   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 528     if (!_secondary_free_list.is_empty()) {
 529       if (G1ConcRegionFreeingVerbose) {
 530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 531                                "secondary_free_list has %u entries",
 532                                _secondary_free_list.length());
 533       }
 534       // It looks as if there are free regions available on the
 535       // secondary_free_list. Let's move them to the free_list and try
 536       // again to allocate from it.
 537       append_secondary_free_list();
 538 
 539       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 540              "empty we should have moved at least one entry to the free_list");
 541       HeapRegion* res = _free_list.remove_head();
 542       if (G1ConcRegionFreeingVerbose) {
 543         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 544                                "allocated "HR_FORMAT" from secondary_free_list",
 545                                HR_FORMAT_PARAMS(res));
 546       }
 547       return res;
 548     }
 549 
 550     // Wait here until we get notifed either when (a) there are no
 551     // more free regions coming or (b) some regions have been moved on
 552     // the secondary_free_list.
 553     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 554   }
 555 
 556   if (G1ConcRegionFreeingVerbose) {
 557     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 558                            "could not allocate from secondary_free_list");
 559   }
 560   return NULL;
 561 }
 562 
 563 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 564   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 565          "the only time we use this to allocate a humongous region is "
 566          "when we are allocating a single humongous region");
 567 
 568   HeapRegion* res;
 569   if (G1StressConcRegionFreeing) {
 570     if (!_secondary_free_list.is_empty()) {
 571       if (G1ConcRegionFreeingVerbose) {
 572         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 573                                "forced to look at the secondary_free_list");
 574       }
 575       res = new_region_try_secondary_free_list();
 576       if (res != NULL) {
 577         return res;
 578       }
 579     }
 580   }
 581   res = _free_list.remove_head_or_null();
 582   if (res == NULL) {
 583     if (G1ConcRegionFreeingVerbose) {
 584       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 585                              "res == NULL, trying the secondary_free_list");
 586     }
 587     res = new_region_try_secondary_free_list();
 588   }
 589   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 590     // Currently, only attempts to allocate GC alloc regions set
 591     // do_expand to true. So, we should only reach here during a
 592     // safepoint. If this assumption changes we might have to
 593     // reconsider the use of _expand_heap_after_alloc_failure.
 594     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 595 
 596     ergo_verbose1(ErgoHeapSizing,
 597                   "attempt heap expansion",
 598                   ergo_format_reason("region allocation request failed")
 599                   ergo_format_byte("allocation request"),
 600                   word_size * HeapWordSize);
 601     if (expand(word_size * HeapWordSize)) {
 602       // Given that expand() succeeded in expanding the heap, and we
 603       // always expand the heap by an amount aligned to the heap
 604       // region size, the free list should in theory not be empty. So
 605       // it would probably be OK to use remove_head(). But the extra
 606       // check for NULL is unlikely to be a performance issue here (we
 607       // just expanded the heap!) so let's just be conservative and
 608       // use remove_head_or_null().
 609       res = _free_list.remove_head_or_null();
 610     } else {
 611       _expand_heap_after_alloc_failure = false;
 612     }
 613   }
 614   return res;
 615 }
 616 
 617 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 618                                                         size_t word_size) {
 619   assert(isHumongous(word_size), "word_size should be humongous");
 620   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 621 
 622   uint first = G1_NULL_HRS_INDEX;
 623   if (num_regions == 1) {
 624     // Only one region to allocate, no need to go through the slower
 625     // path. The caller will attempt the expasion if this fails, so
 626     // let's not try to expand here too.
 627     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 628     if (hr != NULL) {
 629       first = hr->hrs_index();
 630     } else {
 631       first = G1_NULL_HRS_INDEX;
 632     }
 633   } else {
 634     // We can't allocate humongous regions while cleanupComplete() is
 635     // running, since some of the regions we find to be empty might not
 636     // yet be added to the free list and it is not straightforward to
 637     // know which list they are on so that we can remove them. Note
 638     // that we only need to do this if we need to allocate more than
 639     // one region to satisfy the current humongous allocation
 640     // request. If we are only allocating one region we use the common
 641     // region allocation code (see above).
 642     wait_while_free_regions_coming();
 643     append_secondary_free_list_if_not_empty_with_lock();
 644 
 645     if (free_regions() >= num_regions) {
 646       first = _hrs.find_contiguous(num_regions);
 647       if (first != G1_NULL_HRS_INDEX) {
 648         for (uint i = first; i < first + num_regions; ++i) {
 649           HeapRegion* hr = region_at(i);
 650           assert(hr->is_empty(), "sanity");
 651           assert(is_on_master_free_list(hr), "sanity");
 652           hr->set_pending_removal(true);
 653         }
 654         _free_list.remove_all_pending(num_regions);
 655       }
 656     }
 657   }
 658   return first;
 659 }
 660 
 661 HeapWord*
 662 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 663                                                            uint num_regions,
 664                                                            size_t word_size) {
 665   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 666   assert(isHumongous(word_size), "word_size should be humongous");
 667   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 668 
 669   // Index of last region in the series + 1.
 670   uint last = first + num_regions;
 671 
 672   // We need to initialize the region(s) we just discovered. This is
 673   // a bit tricky given that it can happen concurrently with
 674   // refinement threads refining cards on these regions and
 675   // potentially wanting to refine the BOT as they are scanning
 676   // those cards (this can happen shortly after a cleanup; see CR
 677   // 6991377). So we have to set up the region(s) carefully and in
 678   // a specific order.
 679 
 680   // The word size sum of all the regions we will allocate.
 681   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 682   assert(word_size <= word_size_sum, "sanity");
 683 
 684   // This will be the "starts humongous" region.
 685   HeapRegion* first_hr = region_at(first);
 686   // The header of the new object will be placed at the bottom of
 687   // the first region.
 688   HeapWord* new_obj = first_hr->bottom();
 689   // This will be the new end of the first region in the series that
 690   // should also match the end of the last region in the seriers.
 691   HeapWord* new_end = new_obj + word_size_sum;
 692   // This will be the new top of the first region that will reflect
 693   // this allocation.
 694   HeapWord* new_top = new_obj + word_size;
 695 
 696   // First, we need to zero the header of the space that we will be
 697   // allocating. When we update top further down, some refinement
 698   // threads might try to scan the region. By zeroing the header we
 699   // ensure that any thread that will try to scan the region will
 700   // come across the zero klass word and bail out.
 701   //
 702   // NOTE: It would not have been correct to have used
 703   // CollectedHeap::fill_with_object() and make the space look like
 704   // an int array. The thread that is doing the allocation will
 705   // later update the object header to a potentially different array
 706   // type and, for a very short period of time, the klass and length
 707   // fields will be inconsistent. This could cause a refinement
 708   // thread to calculate the object size incorrectly.
 709   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 710 
 711   // We will set up the first region as "starts humongous". This
 712   // will also update the BOT covering all the regions to reflect
 713   // that there is a single object that starts at the bottom of the
 714   // first region.
 715   first_hr->set_startsHumongous(new_top, new_end);
 716 
 717   // Then, if there are any, we will set up the "continues
 718   // humongous" regions.
 719   HeapRegion* hr = NULL;
 720   for (uint i = first + 1; i < last; ++i) {
 721     hr = region_at(i);
 722     hr->set_continuesHumongous(first_hr);
 723   }
 724   // If we have "continues humongous" regions (hr != NULL), then the
 725   // end of the last one should match new_end.
 726   assert(hr == NULL || hr->end() == new_end, "sanity");
 727 
 728   // Up to this point no concurrent thread would have been able to
 729   // do any scanning on any region in this series. All the top
 730   // fields still point to bottom, so the intersection between
 731   // [bottom,top] and [card_start,card_end] will be empty. Before we
 732   // update the top fields, we'll do a storestore to make sure that
 733   // no thread sees the update to top before the zeroing of the
 734   // object header and the BOT initialization.
 735   OrderAccess::storestore();
 736 
 737   // Now that the BOT and the object header have been initialized,
 738   // we can update top of the "starts humongous" region.
 739   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 740          "new_top should be in this region");
 741   first_hr->set_top(new_top);
 742   if (_hr_printer.is_active()) {
 743     HeapWord* bottom = first_hr->bottom();
 744     HeapWord* end = first_hr->orig_end();
 745     if ((first + 1) == last) {
 746       // the series has a single humongous region
 747       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 748     } else {
 749       // the series has more than one humongous regions
 750       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 751     }
 752   }
 753 
 754   // Now, we will update the top fields of the "continues humongous"
 755   // regions. The reason we need to do this is that, otherwise,
 756   // these regions would look empty and this will confuse parts of
 757   // G1. For example, the code that looks for a consecutive number
 758   // of empty regions will consider them empty and try to
 759   // re-allocate them. We can extend is_empty() to also include
 760   // !continuesHumongous(), but it is easier to just update the top
 761   // fields here. The way we set top for all regions (i.e., top ==
 762   // end for all regions but the last one, top == new_top for the
 763   // last one) is actually used when we will free up the humongous
 764   // region in free_humongous_region().
 765   hr = NULL;
 766   for (uint i = first + 1; i < last; ++i) {
 767     hr = region_at(i);
 768     if ((i + 1) == last) {
 769       // last continues humongous region
 770       assert(hr->bottom() < new_top && new_top <= hr->end(),
 771              "new_top should fall on this region");
 772       hr->set_top(new_top);
 773       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 774     } else {
 775       // not last one
 776       assert(new_top > hr->end(), "new_top should be above this region");
 777       hr->set_top(hr->end());
 778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 779     }
 780   }
 781   // If we have continues humongous regions (hr != NULL), then the
 782   // end of the last one should match new_end and its top should
 783   // match new_top.
 784   assert(hr == NULL ||
 785          (hr->end() == new_end && hr->top() == new_top), "sanity");
 786 
 787   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 788   _summary_bytes_used += first_hr->used();
 789   _humongous_set.add(first_hr);
 790 
 791   return new_obj;
 792 }
 793 
 794 // If could fit into free regions w/o expansion, try.
 795 // Otherwise, if can expand, do so.
 796 // Otherwise, if using ex regions might help, try with ex given back.
 797 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 798   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 799 
 800   verify_region_sets_optional();
 801 
 802   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 803   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 804   uint x_num = expansion_regions();
 805   uint fs = _hrs.free_suffix();
 806   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 807   if (first == G1_NULL_HRS_INDEX) {
 808     // The only thing we can do now is attempt expansion.
 809     if (fs + x_num >= num_regions) {
 810       // If the number of regions we're trying to allocate for this
 811       // object is at most the number of regions in the free suffix,
 812       // then the call to humongous_obj_allocate_find_first() above
 813       // should have succeeded and we wouldn't be here.
 814       //
 815       // We should only be trying to expand when the free suffix is
 816       // not sufficient for the object _and_ we have some expansion
 817       // room available.
 818       assert(num_regions > fs, "earlier allocation should have succeeded");
 819 
 820       ergo_verbose1(ErgoHeapSizing,
 821                     "attempt heap expansion",
 822                     ergo_format_reason("humongous allocation request failed")
 823                     ergo_format_byte("allocation request"),
 824                     word_size * HeapWordSize);
 825       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 826         // Even though the heap was expanded, it might not have
 827         // reached the desired size. So, we cannot assume that the
 828         // allocation will succeed.
 829         first = humongous_obj_allocate_find_first(num_regions, word_size);
 830       }
 831     }
 832   }
 833 
 834   HeapWord* result = NULL;
 835   if (first != G1_NULL_HRS_INDEX) {
 836     result =
 837       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 838     assert(result != NULL, "it should always return a valid result");
 839 
 840     // A successful humongous object allocation changes the used space
 841     // information of the old generation so we need to recalculate the
 842     // sizes and update the jstat counters here.
 843     g1mm()->update_sizes();
 844   }
 845 
 846   verify_region_sets_optional();
 847 
 848   return result;
 849 }
 850 
 851 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 852   assert_heap_not_locked_and_not_at_safepoint();
 853   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 854 
 855   unsigned int dummy_gc_count_before;
 856   int dummy_gclocker_retry_count = 0;
 857   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 858 }
 859 
 860 HeapWord*
 861 G1CollectedHeap::mem_allocate(size_t word_size,
 862                               bool*  gc_overhead_limit_was_exceeded) {
 863   assert_heap_not_locked_and_not_at_safepoint();
 864 
 865   // Loop until the allocation is satisified, or unsatisfied after GC.
 866   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 867     unsigned int gc_count_before;
 868 
 869     HeapWord* result = NULL;
 870     if (!isHumongous(word_size)) {
 871       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 872     } else {
 873       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 874     }
 875     if (result != NULL) {
 876       return result;
 877     }
 878 
 879     // Create the garbage collection operation...
 880     VM_G1CollectForAllocation op(gc_count_before, word_size);
 881     // ...and get the VM thread to execute it.
 882     VMThread::execute(&op);
 883 
 884     if (op.prologue_succeeded() && op.pause_succeeded()) {
 885       // If the operation was successful we'll return the result even
 886       // if it is NULL. If the allocation attempt failed immediately
 887       // after a Full GC, it's unlikely we'll be able to allocate now.
 888       HeapWord* result = op.result();
 889       if (result != NULL && !isHumongous(word_size)) {
 890         // Allocations that take place on VM operations do not do any
 891         // card dirtying and we have to do it here. We only have to do
 892         // this for non-humongous allocations, though.
 893         dirty_young_block(result, word_size);
 894       }
 895       return result;
 896     } else {
 897       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 898         return NULL;
 899       }
 900       assert(op.result() == NULL,
 901              "the result should be NULL if the VM op did not succeed");
 902     }
 903 
 904     // Give a warning if we seem to be looping forever.
 905     if ((QueuedAllocationWarningCount > 0) &&
 906         (try_count % QueuedAllocationWarningCount == 0)) {
 907       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 908     }
 909   }
 910 
 911   ShouldNotReachHere();
 912   return NULL;
 913 }
 914 
 915 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 916                                            unsigned int *gc_count_before_ret,
 917                                            int* gclocker_retry_count_ret) {
 918   // Make sure you read the note in attempt_allocation_humongous().
 919 
 920   assert_heap_not_locked_and_not_at_safepoint();
 921   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 922          "be called for humongous allocation requests");
 923 
 924   // We should only get here after the first-level allocation attempt
 925   // (attempt_allocation()) failed to allocate.
 926 
 927   // We will loop until a) we manage to successfully perform the
 928   // allocation or b) we successfully schedule a collection which
 929   // fails to perform the allocation. b) is the only case when we'll
 930   // return NULL.
 931   HeapWord* result = NULL;
 932   for (int try_count = 1; /* we'll return */; try_count += 1) {
 933     bool should_try_gc;
 934     unsigned int gc_count_before;
 935 
 936     {
 937       MutexLockerEx x(Heap_lock);
 938 
 939       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 940                                                       false /* bot_updates */);
 941       if (result != NULL) {
 942         return result;
 943       }
 944 
 945       // If we reach here, attempt_allocation_locked() above failed to
 946       // allocate a new region. So the mutator alloc region should be NULL.
 947       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 948 
 949       if (GC_locker::is_active_and_needs_gc()) {
 950         if (g1_policy()->can_expand_young_list()) {
 951           // No need for an ergo verbose message here,
 952           // can_expand_young_list() does this when it returns true.
 953           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 954                                                       false /* bot_updates */);
 955           if (result != NULL) {
 956             return result;
 957           }
 958         }
 959         should_try_gc = false;
 960       } else {
 961         // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       bool succeeded;
 978       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 979       if (result != NULL) {
 980         assert(succeeded, "only way to get back a non-NULL result");
 981         return result;
 982       }
 983 
 984       if (succeeded) {
 985         // If we get here we successfully scheduled a collection which
 986         // failed to allocate. No point in trying to allocate
 987         // further. We'll just return NULL.
 988         MutexLockerEx x(Heap_lock);
 989         *gc_count_before_ret = total_collections();
 990         return NULL;
 991       }
 992     } else {
 993       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 994         MutexLockerEx x(Heap_lock);
 995         *gc_count_before_ret = total_collections();
 996         return NULL;
 997       }
 998       // The GCLocker is either active or the GCLocker initiated
 999       // GC has not yet been performed. Stall until it is and
1000       // then retry the allocation.
1001       GC_locker::stall_until_clear();
1002       (*gclocker_retry_count_ret) += 1;
1003     }
1004 
1005     // We can reach here if we were unsuccessul in scheduling a
1006     // collection (because another thread beat us to it) or if we were
1007     // stalled due to the GC locker. In either can we should retry the
1008     // allocation attempt in case another thread successfully
1009     // performed a collection and reclaimed enough space. We do the
1010     // first attempt (without holding the Heap_lock) here and the
1011     // follow-on attempt will be at the start of the next loop
1012     // iteration (after taking the Heap_lock).
1013     result = _mutator_alloc_region.attempt_allocation(word_size,
1014                                                       false /* bot_updates */);
1015     if (result != NULL) {
1016       return result;
1017     }
1018 
1019     // Give a warning if we seem to be looping forever.
1020     if ((QueuedAllocationWarningCount > 0) &&
1021         (try_count % QueuedAllocationWarningCount == 0)) {
1022       warning("G1CollectedHeap::attempt_allocation_slow() "
1023               "retries %d times", try_count);
1024     }
1025   }
1026 
1027   ShouldNotReachHere();
1028   return NULL;
1029 }
1030 
1031 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1032                                           unsigned int * gc_count_before_ret,
1033                                           int* gclocker_retry_count_ret) {
1034   // The structure of this method has a lot of similarities to
1035   // attempt_allocation_slow(). The reason these two were not merged
1036   // into a single one is that such a method would require several "if
1037   // allocation is not humongous do this, otherwise do that"
1038   // conditional paths which would obscure its flow. In fact, an early
1039   // version of this code did use a unified method which was harder to
1040   // follow and, as a result, it had subtle bugs that were hard to
1041   // track down. So keeping these two methods separate allows each to
1042   // be more readable. It will be good to keep these two in sync as
1043   // much as possible.
1044 
1045   assert_heap_not_locked_and_not_at_safepoint();
1046   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1047          "should only be called for humongous allocations");
1048 
1049   // Humongous objects can exhaust the heap quickly, so we should check if we
1050   // need to start a marking cycle at each humongous object allocation. We do
1051   // the check before we do the actual allocation. The reason for doing it
1052   // before the allocation is that we avoid having to keep track of the newly
1053   // allocated memory while we do a GC.
1054   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1055                                            word_size)) {
1056     collect(GCCause::_g1_humongous_allocation);
1057   }
1058 
1059   // We will loop until a) we manage to successfully perform the
1060   // allocation or b) we successfully schedule a collection which
1061   // fails to perform the allocation. b) is the only case when we'll
1062   // return NULL.
1063   HeapWord* result = NULL;
1064   for (int try_count = 1; /* we'll return */; try_count += 1) {
1065     bool should_try_gc;
1066     unsigned int gc_count_before;
1067 
1068     {
1069       MutexLockerEx x(Heap_lock);
1070 
1071       // Given that humongous objects are not allocated in young
1072       // regions, we'll first try to do the allocation without doing a
1073       // collection hoping that there's enough space in the heap.
1074       result = humongous_obj_allocate(word_size);
1075       if (result != NULL) {
1076         return result;
1077       }
1078 
1079       if (GC_locker::is_active_and_needs_gc()) {
1080         should_try_gc = false;
1081       } else {
1082          // The GCLocker may not be active but the GCLocker initiated
1083         // GC may not yet have been performed (GCLocker::needs_gc()
1084         // returns true). In this case we do not try this GC and
1085         // wait until the GCLocker initiated GC is performed, and
1086         // then retry the allocation.
1087         if (GC_locker::needs_gc()) {
1088           should_try_gc = false;
1089         } else {
1090           // Read the GC count while still holding the Heap_lock.
1091           gc_count_before = total_collections();
1092           should_try_gc = true;
1093         }
1094       }
1095     }
1096 
1097     if (should_try_gc) {
1098       // If we failed to allocate the humongous object, we should try to
1099       // do a collection pause (if we're allowed) in case it reclaims
1100       // enough space for the allocation to succeed after the pause.
1101 
1102       bool succeeded;
1103       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1104       if (result != NULL) {
1105         assert(succeeded, "only way to get back a non-NULL result");
1106         return result;
1107       }
1108 
1109       if (succeeded) {
1110         // If we get here we successfully scheduled a collection which
1111         // failed to allocate. No point in trying to allocate
1112         // further. We'll just return NULL.
1113         MutexLockerEx x(Heap_lock);
1114         *gc_count_before_ret = total_collections();
1115         return NULL;
1116       }
1117     } else {
1118       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1119         MutexLockerEx x(Heap_lock);
1120         *gc_count_before_ret = total_collections();
1121         return NULL;
1122       }
1123       // The GCLocker is either active or the GCLocker initiated
1124       // GC has not yet been performed. Stall until it is and
1125       // then retry the allocation.
1126       GC_locker::stall_until_clear();
1127       (*gclocker_retry_count_ret) += 1;
1128     }
1129 
1130     // We can reach here if we were unsuccessul in scheduling a
1131     // collection (because another thread beat us to it) or if we were
1132     // stalled due to the GC locker. In either can we should retry the
1133     // allocation attempt in case another thread successfully
1134     // performed a collection and reclaimed enough space.  Give a
1135     // warning if we seem to be looping forever.
1136 
1137     if ((QueuedAllocationWarningCount > 0) &&
1138         (try_count % QueuedAllocationWarningCount == 0)) {
1139       warning("G1CollectedHeap::attempt_allocation_humongous() "
1140               "retries %d times", try_count);
1141     }
1142   }
1143 
1144   ShouldNotReachHere();
1145   return NULL;
1146 }
1147 
1148 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1149                                        bool expect_null_mutator_alloc_region) {
1150   assert_at_safepoint(true /* should_be_vm_thread */);
1151   assert(_mutator_alloc_region.get() == NULL ||
1152                                              !expect_null_mutator_alloc_region,
1153          "the current alloc region was unexpectedly found to be non-NULL");
1154 
1155   if (!isHumongous(word_size)) {
1156     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1157                                                       false /* bot_updates */);
1158   } else {
1159     HeapWord* result = humongous_obj_allocate(word_size);
1160     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1161       g1_policy()->set_initiate_conc_mark_if_possible();
1162     }
1163     return result;
1164   }
1165 
1166   ShouldNotReachHere();
1167 }
1168 
1169 class PostMCRemSetClearClosure: public HeapRegionClosure {
1170   G1CollectedHeap* _g1h;
1171   ModRefBarrierSet* _mr_bs;
1172 public:
1173   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1174     _g1h(g1h), _mr_bs(mr_bs) { }
1175   bool doHeapRegion(HeapRegion* r) {
1176     if (r->continuesHumongous()) {
1177       return false;
1178     }
1179     _g1h->reset_gc_time_stamps(r);
1180     HeapRegionRemSet* hrrs = r->rem_set();
1181     if (hrrs != NULL) hrrs->clear();
1182     // You might think here that we could clear just the cards
1183     // corresponding to the used region.  But no: if we leave a dirty card
1184     // in a region we might allocate into, then it would prevent that card
1185     // from being enqueued, and cause it to be missed.
1186     // Re: the performance cost: we shouldn't be doing full GC anyway!
1187     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1188     return false;
1189   }
1190 };
1191 
1192 void G1CollectedHeap::clear_rsets_post_compaction() {
1193   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1194   heap_region_iterate(&rs_clear);
1195 }
1196 
1197 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1198   G1CollectedHeap*   _g1h;
1199   UpdateRSOopClosure _cl;
1200   int                _worker_i;
1201 public:
1202   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1203     _cl(g1->g1_rem_set(), worker_i),
1204     _worker_i(worker_i),
1205     _g1h(g1)
1206   { }
1207 
1208   bool doHeapRegion(HeapRegion* r) {
1209     if (!r->continuesHumongous()) {
1210       _cl.set_from(r);
1211       r->oop_iterate(&_cl);
1212     }
1213     return false;
1214   }
1215 };
1216 
1217 class ParRebuildRSTask: public AbstractGangTask {
1218   G1CollectedHeap* _g1;
1219 public:
1220   ParRebuildRSTask(G1CollectedHeap* g1)
1221     : AbstractGangTask("ParRebuildRSTask"),
1222       _g1(g1)
1223   { }
1224 
1225   void work(uint worker_id) {
1226     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1227     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1228                                           _g1->workers()->active_workers(),
1229                                          HeapRegion::RebuildRSClaimValue);
1230   }
1231 };
1232 
1233 class PostCompactionPrinterClosure: public HeapRegionClosure {
1234 private:
1235   G1HRPrinter* _hr_printer;
1236 public:
1237   bool doHeapRegion(HeapRegion* hr) {
1238     assert(!hr->is_young(), "not expecting to find young regions");
1239     // We only generate output for non-empty regions.
1240     if (!hr->is_empty()) {
1241       if (!hr->isHumongous()) {
1242         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1243       } else if (hr->startsHumongous()) {
1244         if (hr->region_num() == 1) {
1245           // single humongous region
1246           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1247         } else {
1248           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1249         }
1250       } else {
1251         assert(hr->continuesHumongous(), "only way to get here");
1252         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1253       }
1254     }
1255     return false;
1256   }
1257 
1258   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1259     : _hr_printer(hr_printer) { }
1260 };
1261 
1262 void G1CollectedHeap::print_hrs_post_compaction() {
1263   PostCompactionPrinterClosure cl(hr_printer());
1264   heap_region_iterate(&cl);
1265 }
1266 
1267 double G1CollectedHeap::verify(bool guard, const char* msg) {
1268   double verify_time_ms = 0.0;
1269 
1270   if (guard && total_collections() >= VerifyGCStartAt) {
1271     double verify_start = os::elapsedTime();
1272     HandleMark hm;  // Discard invalid handles created during verification
1273     prepare_for_verify();
1274     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
1275     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1276   }
1277 
1278   return verify_time_ms;
1279 }
1280 
1281 void G1CollectedHeap::verify_before_gc() {
1282   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1283   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1284 }
1285 
1286 void G1CollectedHeap::verify_after_gc() {
1287   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1288   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1289 }
1290 
1291 bool G1CollectedHeap::do_collection(bool explicit_gc,
1292                                     bool clear_all_soft_refs,
1293                                     size_t word_size) {
1294   assert_at_safepoint(true /* should_be_vm_thread */);
1295 
1296   if (GC_locker::check_active_before_gc()) {
1297     return false;
1298   }
1299 
1300   SvcGCMarker sgcm(SvcGCMarker::FULL);
1301   ResourceMark rm;
1302 
1303   print_heap_before_gc();
1304 
1305   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1306 
1307   HRSPhaseSetter x(HRSPhaseFullGC);
1308   verify_region_sets_optional();
1309 
1310   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1311                            collector_policy()->should_clear_all_soft_refs();
1312 
1313   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1314 
1315   {
1316     IsGCActiveMark x;
1317 
1318     // Timing
1319     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1320     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1321     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1322 
1323     {
1324       TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1325       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1326       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1327 
1328       double start = os::elapsedTime();
1329       g1_policy()->record_full_collection_start();
1330 
1331       // Note: When we have a more flexible GC logging framework that
1332       // allows us to add optional attributes to a GC log record we
1333       // could consider timing and reporting how long we wait in the
1334       // following two methods.
1335       wait_while_free_regions_coming();
1336       // If we start the compaction before the CM threads finish
1337       // scanning the root regions we might trip them over as we'll
1338       // be moving objects / updating references. So let's wait until
1339       // they are done. By telling them to abort, they should complete
1340       // early.
1341       _cm->root_regions()->abort();
1342       _cm->root_regions()->wait_until_scan_finished();
1343       append_secondary_free_list_if_not_empty_with_lock();
1344 
1345       gc_prologue(true);
1346       increment_total_collections(true /* full gc */);
1347       increment_old_marking_cycles_started();
1348 
1349       assert(used() == recalculate_used(), "Should be equal");
1350 
1351       verify_before_gc();
1352 
1353       pre_full_gc_dump();
1354 
1355       COMPILER2_PRESENT(DerivedPointerTable::clear());
1356 
1357       // Disable discovery and empty the discovered lists
1358       // for the CM ref processor.
1359       ref_processor_cm()->disable_discovery();
1360       ref_processor_cm()->abandon_partial_discovery();
1361       ref_processor_cm()->verify_no_references_recorded();
1362 
1363       // Abandon current iterations of concurrent marking and concurrent
1364       // refinement, if any are in progress. We have to do this before
1365       // wait_until_scan_finished() below.
1366       concurrent_mark()->abort();
1367 
1368       // Make sure we'll choose a new allocation region afterwards.
1369       release_mutator_alloc_region();
1370       abandon_gc_alloc_regions();
1371       g1_rem_set()->cleanupHRRS();
1372 
1373       // We should call this after we retire any currently active alloc
1374       // regions so that all the ALLOC / RETIRE events are generated
1375       // before the start GC event.
1376       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1377 
1378       // We may have added regions to the current incremental collection
1379       // set between the last GC or pause and now. We need to clear the
1380       // incremental collection set and then start rebuilding it afresh
1381       // after this full GC.
1382       abandon_collection_set(g1_policy()->inc_cset_head());
1383       g1_policy()->clear_incremental_cset();
1384       g1_policy()->stop_incremental_cset_building();
1385 
1386       tear_down_region_sets(false /* free_list_only */);
1387       g1_policy()->set_gcs_are_young(true);
1388 
1389       // See the comments in g1CollectedHeap.hpp and
1390       // G1CollectedHeap::ref_processing_init() about
1391       // how reference processing currently works in G1.
1392 
1393       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1394       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1395 
1396       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1397       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1398 
1399       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1400       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1401 
1402       // Do collection work
1403       {
1404         HandleMark hm;  // Discard invalid handles created during gc
1405         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1406       }
1407 
1408       assert(free_regions() == 0, "we should not have added any free regions");
1409       rebuild_region_sets(false /* free_list_only */);
1410 
1411       // Enqueue any discovered reference objects that have
1412       // not been removed from the discovered lists.
1413       ref_processor_stw()->enqueue_discovered_references();
1414 
1415       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1416 
1417       MemoryService::track_memory_usage();
1418 
1419       verify_after_gc();
1420 
1421       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1422       ref_processor_stw()->verify_no_references_recorded();
1423 
1424       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1425       ClassLoaderDataGraph::purge();
1426     MetaspaceAux::verify_metrics();
1427 
1428       // Note: since we've just done a full GC, concurrent
1429       // marking is no longer active. Therefore we need not
1430       // re-enable reference discovery for the CM ref processor.
1431       // That will be done at the start of the next marking cycle.
1432       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1433       ref_processor_cm()->verify_no_references_recorded();
1434 
1435       reset_gc_time_stamp();
1436       // Since everything potentially moved, we will clear all remembered
1437       // sets, and clear all cards.  Later we will rebuild remebered
1438       // sets. We will also reset the GC time stamps of the regions.
1439       clear_rsets_post_compaction();
1440       check_gc_time_stamps();
1441 
1442       // Resize the heap if necessary.
1443       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1444 
1445       if (_hr_printer.is_active()) {
1446         // We should do this after we potentially resize the heap so
1447         // that all the COMMIT / UNCOMMIT events are generated before
1448         // the end GC event.
1449 
1450         print_hrs_post_compaction();
1451         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1452       }
1453 
1454       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1455       if (hot_card_cache->use_cache()) {
1456         hot_card_cache->reset_card_counts();
1457         hot_card_cache->reset_hot_cache();
1458       }
1459 
1460       // Rebuild remembered sets of all regions.
1461       if (G1CollectedHeap::use_parallel_gc_threads()) {
1462         uint n_workers =
1463           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1464                                                   workers()->active_workers(),
1465                                                   Threads::number_of_non_daemon_threads());
1466         assert(UseDynamicNumberOfGCThreads ||
1467                n_workers == workers()->total_workers(),
1468                "If not dynamic should be using all the  workers");
1469         workers()->set_active_workers(n_workers);
1470         // Set parallel threads in the heap (_n_par_threads) only
1471         // before a parallel phase and always reset it to 0 after
1472         // the phase so that the number of parallel threads does
1473         // no get carried forward to a serial phase where there
1474         // may be code that is "possibly_parallel".
1475         set_par_threads(n_workers);
1476 
1477         ParRebuildRSTask rebuild_rs_task(this);
1478         assert(check_heap_region_claim_values(
1479                HeapRegion::InitialClaimValue), "sanity check");
1480         assert(UseDynamicNumberOfGCThreads ||
1481                workers()->active_workers() == workers()->total_workers(),
1482                "Unless dynamic should use total workers");
1483         // Use the most recent number of  active workers
1484         assert(workers()->active_workers() > 0,
1485                "Active workers not properly set");
1486         set_par_threads(workers()->active_workers());
1487         workers()->run_task(&rebuild_rs_task);
1488         set_par_threads(0);
1489         assert(check_heap_region_claim_values(
1490                HeapRegion::RebuildRSClaimValue), "sanity check");
1491         reset_heap_region_claim_values();
1492       } else {
1493         RebuildRSOutOfRegionClosure rebuild_rs(this);
1494         heap_region_iterate(&rebuild_rs);
1495       }
1496 
1497       if (true) { // FIXME
1498         MetaspaceGC::compute_new_size();
1499       }
1500 
1501 #ifdef TRACESPINNING
1502       ParallelTaskTerminator::print_termination_counts();
1503 #endif
1504 
1505       // Discard all rset updates
1506       JavaThread::dirty_card_queue_set().abandon_logs();
1507       assert(!G1DeferredRSUpdate
1508              || (G1DeferredRSUpdate &&
1509                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1510 
1511       _young_list->reset_sampled_info();
1512       // At this point there should be no regions in the
1513       // entire heap tagged as young.
1514       assert(check_young_list_empty(true /* check_heap */),
1515              "young list should be empty at this point");
1516 
1517       // Update the number of full collections that have been completed.
1518       increment_old_marking_cycles_completed(false /* concurrent */);
1519 
1520       _hrs.verify_optional();
1521       verify_region_sets_optional();
1522 
1523       // Start a new incremental collection set for the next pause
1524       assert(g1_policy()->collection_set() == NULL, "must be");
1525       g1_policy()->start_incremental_cset_building();
1526 
1527       // Clear the _cset_fast_test bitmap in anticipation of adding
1528       // regions to the incremental collection set for the next
1529       // evacuation pause.
1530       clear_cset_fast_test();
1531 
1532       init_mutator_alloc_region();
1533 
1534       double end = os::elapsedTime();
1535       g1_policy()->record_full_collection_end();
1536 
1537       if (G1Log::fine()) {
1538         g1_policy()->print_heap_transition();
1539       }
1540 
1541       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1542       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1543       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1544       // before any GC notifications are raised.
1545       g1mm()->update_sizes();
1546 
1547       gc_epilogue(true);
1548     }
1549 
1550     if (G1Log::finer()) {
1551       g1_policy()->print_detailed_heap_transition(true /* full */);
1552     }
1553 
1554     print_heap_after_gc();
1555 
1556     post_full_gc_dump();
1557   }
1558 
1559   return true;
1560 }
1561 
1562 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563   // do_collection() will return whether it succeeded in performing
1564   // the GC. Currently, there is no facility on the
1565   // do_full_collection() API to notify the caller than the collection
1566   // did not succeed (e.g., because it was locked out by the GC
1567   // locker). So, right now, we'll ignore the return value.
1568   bool dummy = do_collection(true,                /* explicit_gc */
1569                              clear_all_soft_refs,
1570                              0                    /* word_size */);
1571 }
1572 
1573 // This code is mostly copied from TenuredGeneration.
1574 void
1575 G1CollectedHeap::
1576 resize_if_necessary_after_full_collection(size_t word_size) {
1577   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1578 
1579   // Include the current allocation, if any, and bytes that will be
1580   // pre-allocated to support collections, as "used".
1581   const size_t used_after_gc = used();
1582   const size_t capacity_after_gc = capacity();
1583   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1584 
1585   // This is enforced in arguments.cpp.
1586   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1587          "otherwise the code below doesn't make sense");
1588 
1589   // We don't have floating point command-line arguments
1590   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1591   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1592   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1593   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1594 
1595   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1596   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1597 
1598   // We have to be careful here as these two calculations can overflow
1599   // 32-bit size_t's.
1600   double used_after_gc_d = (double) used_after_gc;
1601   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1602   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1603 
1604   // Let's make sure that they are both under the max heap size, which
1605   // by default will make them fit into a size_t.
1606   double desired_capacity_upper_bound = (double) max_heap_size;
1607   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1608                                     desired_capacity_upper_bound);
1609   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1610                                     desired_capacity_upper_bound);
1611 
1612   // We can now safely turn them into size_t's.
1613   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1614   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1615 
1616   // This assert only makes sense here, before we adjust them
1617   // with respect to the min and max heap size.
1618   assert(minimum_desired_capacity <= maximum_desired_capacity,
1619          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1620                  "maximum_desired_capacity = "SIZE_FORMAT,
1621                  minimum_desired_capacity, maximum_desired_capacity));
1622 
1623   // Should not be greater than the heap max size. No need to adjust
1624   // it with respect to the heap min size as it's a lower bound (i.e.,
1625   // we'll try to make the capacity larger than it, not smaller).
1626   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1627   // Should not be less than the heap min size. No need to adjust it
1628   // with respect to the heap max size as it's an upper bound (i.e.,
1629   // we'll try to make the capacity smaller than it, not greater).
1630   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1631 
1632   if (capacity_after_gc < minimum_desired_capacity) {
1633     // Don't expand unless it's significant
1634     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1635     ergo_verbose4(ErgoHeapSizing,
1636                   "attempt heap expansion",
1637                   ergo_format_reason("capacity lower than "
1638                                      "min desired capacity after Full GC")
1639                   ergo_format_byte("capacity")
1640                   ergo_format_byte("occupancy")
1641                   ergo_format_byte_perc("min desired capacity"),
1642                   capacity_after_gc, used_after_gc,
1643                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1644     expand(expand_bytes);
1645 
1646     // No expansion, now see if we want to shrink
1647   } else if (capacity_after_gc > maximum_desired_capacity) {
1648     // Capacity too large, compute shrinking size
1649     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1650     ergo_verbose4(ErgoHeapSizing,
1651                   "attempt heap shrinking",
1652                   ergo_format_reason("capacity higher than "
1653                                      "max desired capacity after Full GC")
1654                   ergo_format_byte("capacity")
1655                   ergo_format_byte("occupancy")
1656                   ergo_format_byte_perc("max desired capacity"),
1657                   capacity_after_gc, used_after_gc,
1658                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1659     shrink(shrink_bytes);
1660   }
1661 }
1662 
1663 
1664 HeapWord*
1665 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1666                                            bool* succeeded) {
1667   assert_at_safepoint(true /* should_be_vm_thread */);
1668 
1669   *succeeded = true;
1670   // Let's attempt the allocation first.
1671   HeapWord* result =
1672     attempt_allocation_at_safepoint(word_size,
1673                                  false /* expect_null_mutator_alloc_region */);
1674   if (result != NULL) {
1675     assert(*succeeded, "sanity");
1676     return result;
1677   }
1678 
1679   // In a G1 heap, we're supposed to keep allocation from failing by
1680   // incremental pauses.  Therefore, at least for now, we'll favor
1681   // expansion over collection.  (This might change in the future if we can
1682   // do something smarter than full collection to satisfy a failed alloc.)
1683   result = expand_and_allocate(word_size);
1684   if (result != NULL) {
1685     assert(*succeeded, "sanity");
1686     return result;
1687   }
1688 
1689   // Expansion didn't work, we'll try to do a Full GC.
1690   bool gc_succeeded = do_collection(false, /* explicit_gc */
1691                                     false, /* clear_all_soft_refs */
1692                                     word_size);
1693   if (!gc_succeeded) {
1694     *succeeded = false;
1695     return NULL;
1696   }
1697 
1698   // Retry the allocation
1699   result = attempt_allocation_at_safepoint(word_size,
1700                                   true /* expect_null_mutator_alloc_region */);
1701   if (result != NULL) {
1702     assert(*succeeded, "sanity");
1703     return result;
1704   }
1705 
1706   // Then, try a Full GC that will collect all soft references.
1707   gc_succeeded = do_collection(false, /* explicit_gc */
1708                                true,  /* clear_all_soft_refs */
1709                                word_size);
1710   if (!gc_succeeded) {
1711     *succeeded = false;
1712     return NULL;
1713   }
1714 
1715   // Retry the allocation once more
1716   result = attempt_allocation_at_safepoint(word_size,
1717                                   true /* expect_null_mutator_alloc_region */);
1718   if (result != NULL) {
1719     assert(*succeeded, "sanity");
1720     return result;
1721   }
1722 
1723   assert(!collector_policy()->should_clear_all_soft_refs(),
1724          "Flag should have been handled and cleared prior to this point");
1725 
1726   // What else?  We might try synchronous finalization later.  If the total
1727   // space available is large enough for the allocation, then a more
1728   // complete compaction phase than we've tried so far might be
1729   // appropriate.
1730   assert(*succeeded, "sanity");
1731   return NULL;
1732 }
1733 
1734 // Attempting to expand the heap sufficiently
1735 // to support an allocation of the given "word_size".  If
1736 // successful, perform the allocation and return the address of the
1737 // allocated block, or else "NULL".
1738 
1739 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1740   assert_at_safepoint(true /* should_be_vm_thread */);
1741 
1742   verify_region_sets_optional();
1743 
1744   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1745   ergo_verbose1(ErgoHeapSizing,
1746                 "attempt heap expansion",
1747                 ergo_format_reason("allocation request failed")
1748                 ergo_format_byte("allocation request"),
1749                 word_size * HeapWordSize);
1750   if (expand(expand_bytes)) {
1751     _hrs.verify_optional();
1752     verify_region_sets_optional();
1753     return attempt_allocation_at_safepoint(word_size,
1754                                  false /* expect_null_mutator_alloc_region */);
1755   }
1756   return NULL;
1757 }
1758 
1759 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1760                                              HeapWord* new_end) {
1761   assert(old_end != new_end, "don't call this otherwise");
1762   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1763 
1764   // Update the committed mem region.
1765   _g1_committed.set_end(new_end);
1766   // Tell the card table about the update.
1767   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1768   // Tell the BOT about the update.
1769   _bot_shared->resize(_g1_committed.word_size());
1770   // Tell the hot card cache about the update
1771   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1772 }
1773 
1774 bool G1CollectedHeap::expand(size_t expand_bytes) {
1775   size_t old_mem_size = _g1_storage.committed_size();
1776   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1777   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1778                                        HeapRegion::GrainBytes);
1779   ergo_verbose2(ErgoHeapSizing,
1780                 "expand the heap",
1781                 ergo_format_byte("requested expansion amount")
1782                 ergo_format_byte("attempted expansion amount"),
1783                 expand_bytes, aligned_expand_bytes);
1784 
1785   // First commit the memory.
1786   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1787   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1788   if (successful) {
1789     // Then propagate this update to the necessary data structures.
1790     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1791     update_committed_space(old_end, new_end);
1792 
1793     FreeRegionList expansion_list("Local Expansion List");
1794     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1795     assert(mr.start() == old_end, "post-condition");
1796     // mr might be a smaller region than what was requested if
1797     // expand_by() was unable to allocate the HeapRegion instances
1798     assert(mr.end() <= new_end, "post-condition");
1799 
1800     size_t actual_expand_bytes = mr.byte_size();
1801     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1802     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1803            "post-condition");
1804     if (actual_expand_bytes < aligned_expand_bytes) {
1805       // We could not expand _hrs to the desired size. In this case we
1806       // need to shrink the committed space accordingly.
1807       assert(mr.end() < new_end, "invariant");
1808 
1809       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1810       // First uncommit the memory.
1811       _g1_storage.shrink_by(diff_bytes);
1812       // Then propagate this update to the necessary data structures.
1813       update_committed_space(new_end, mr.end());
1814     }
1815     _free_list.add_as_tail(&expansion_list);
1816 
1817     if (_hr_printer.is_active()) {
1818       HeapWord* curr = mr.start();
1819       while (curr < mr.end()) {
1820         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1821         _hr_printer.commit(curr, curr_end);
1822         curr = curr_end;
1823       }
1824       assert(curr == mr.end(), "post-condition");
1825     }
1826     g1_policy()->record_new_heap_size(n_regions());
1827   } else {
1828     ergo_verbose0(ErgoHeapSizing,
1829                   "did not expand the heap",
1830                   ergo_format_reason("heap expansion operation failed"));
1831     // The expansion of the virtual storage space was unsuccessful.
1832     // Let's see if it was because we ran out of swap.
1833     if (G1ExitOnExpansionFailure &&
1834         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1835       // We had head room...
1836       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1837     }
1838   }
1839   return successful;
1840 }
1841 
1842 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1843   size_t old_mem_size = _g1_storage.committed_size();
1844   size_t aligned_shrink_bytes =
1845     ReservedSpace::page_align_size_down(shrink_bytes);
1846   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1847                                          HeapRegion::GrainBytes);
1848   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1849 
1850   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1851   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1852   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1853 
1854   ergo_verbose3(ErgoHeapSizing,
1855                 "shrink the heap",
1856                 ergo_format_byte("requested shrinking amount")
1857                 ergo_format_byte("aligned shrinking amount")
1858                 ergo_format_byte("attempted shrinking amount"),
1859                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1860   if (num_regions_removed > 0) {
1861     _g1_storage.shrink_by(shrunk_bytes);
1862     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1863 
1864     if (_hr_printer.is_active()) {
1865       HeapWord* curr = old_end;
1866       while (curr > new_end) {
1867         HeapWord* curr_end = curr;
1868         curr -= HeapRegion::GrainWords;
1869         _hr_printer.uncommit(curr, curr_end);
1870       }
1871     }
1872 
1873     _expansion_regions += num_regions_removed;
1874     update_committed_space(old_end, new_end);
1875     HeapRegionRemSet::shrink_heap(n_regions());
1876     g1_policy()->record_new_heap_size(n_regions());
1877   } else {
1878     ergo_verbose0(ErgoHeapSizing,
1879                   "did not shrink the heap",
1880                   ergo_format_reason("heap shrinking operation failed"));
1881   }
1882 }
1883 
1884 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1885   verify_region_sets_optional();
1886 
1887   // We should only reach here at the end of a Full GC which means we
1888   // should not not be holding to any GC alloc regions. The method
1889   // below will make sure of that and do any remaining clean up.
1890   abandon_gc_alloc_regions();
1891 
1892   // Instead of tearing down / rebuilding the free lists here, we
1893   // could instead use the remove_all_pending() method on free_list to
1894   // remove only the ones that we need to remove.
1895   tear_down_region_sets(true /* free_list_only */);
1896   shrink_helper(shrink_bytes);
1897   rebuild_region_sets(true /* free_list_only */);
1898 
1899   _hrs.verify_optional();
1900   verify_region_sets_optional();
1901 }
1902 
1903 // Public methods.
1904 
1905 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1906 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1907 #endif // _MSC_VER
1908 
1909 
1910 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1911   SharedHeap(policy_),
1912   _g1_policy(policy_),
1913   _dirty_card_queue_set(false),
1914   _into_cset_dirty_card_queue_set(false),
1915   _is_alive_closure_cm(this),
1916   _is_alive_closure_stw(this),
1917   _ref_processor_cm(NULL),
1918   _ref_processor_stw(NULL),
1919   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1920   _bot_shared(NULL),
1921   _evac_failure_scan_stack(NULL) ,
1922   _mark_in_progress(false),
1923   _cg1r(NULL), _summary_bytes_used(0),
1924   _g1mm(NULL),
1925   _refine_cte_cl(NULL),
1926   _full_collection(false),
1927   _free_list("Master Free List"),
1928   _secondary_free_list("Secondary Free List"),
1929   _old_set("Old Set"),
1930   _humongous_set("Master Humongous Set"),
1931   _free_regions_coming(false),
1932   _young_list(new YoungList(this)),
1933   _gc_time_stamp(0),
1934   _retained_old_gc_alloc_region(NULL),
1935   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1936   _old_plab_stats(OldPLABSize, PLABWeight),
1937   _expand_heap_after_alloc_failure(true),
1938   _surviving_young_words(NULL),
1939   _old_marking_cycles_started(0),
1940   _old_marking_cycles_completed(0),
1941   _in_cset_fast_test(NULL),
1942   _in_cset_fast_test_base(NULL),
1943   _dirty_cards_region_list(NULL),
1944   _worker_cset_start_region(NULL),
1945   _worker_cset_start_region_time_stamp(NULL) {
1946   _g1h = this; // To catch bugs.
1947   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1948     vm_exit_during_initialization("Failed necessary allocation.");
1949   }
1950 
1951   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1952 
1953   int n_queues = MAX2((int)ParallelGCThreads, 1);
1954   _task_queues = new RefToScanQueueSet(n_queues);
1955 
1956   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1957   assert(n_rem_sets > 0, "Invariant.");
1958 
1959   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1960   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1961 
1962   for (int i = 0; i < n_queues; i++) {
1963     RefToScanQueue* q = new RefToScanQueue();
1964     q->initialize();
1965     _task_queues->register_queue(i, q);
1966   }
1967 
1968   clear_cset_start_regions();
1969 
1970   // Initialize the G1EvacuationFailureALot counters and flags.
1971   NOT_PRODUCT(reset_evacuation_should_fail();)
1972 
1973   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1974 }
1975 
1976 jint G1CollectedHeap::initialize() {
1977   CollectedHeap::pre_initialize();
1978   os::enable_vtime();
1979 
1980   G1Log::init();
1981 
1982   // Necessary to satisfy locking discipline assertions.
1983 
1984   MutexLocker x(Heap_lock);
1985 
1986   // We have to initialize the printer before committing the heap, as
1987   // it will be used then.
1988   _hr_printer.set_active(G1PrintHeapRegions);
1989 
1990   // While there are no constraints in the GC code that HeapWordSize
1991   // be any particular value, there are multiple other areas in the
1992   // system which believe this to be true (e.g. oop->object_size in some
1993   // cases incorrectly returns the size in wordSize units rather than
1994   // HeapWordSize).
1995   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1996 
1997   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1998   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1999 
2000   // Ensure that the sizes are properly aligned.
2001   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2002   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2003 
2004   _cg1r = new ConcurrentG1Refine(this);
2005 
2006   // Reserve the maximum.
2007 
2008   // When compressed oops are enabled, the preferred heap base
2009   // is calculated by subtracting the requested size from the
2010   // 32Gb boundary and using the result as the base address for
2011   // heap reservation. If the requested size is not aligned to
2012   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2013   // into the ReservedHeapSpace constructor) then the actual
2014   // base of the reserved heap may end up differing from the
2015   // address that was requested (i.e. the preferred heap base).
2016   // If this happens then we could end up using a non-optimal
2017   // compressed oops mode.
2018 
2019   // Since max_byte_size is aligned to the size of a heap region (checked
2020   // above).
2021   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2022 
2023   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2024                                                  HeapRegion::GrainBytes);
2025 
2026   // It is important to do this in a way such that concurrent readers can't
2027   // temporarily think somethings in the heap.  (I've actually seen this
2028   // happen in asserts: DLD.)
2029   _reserved.set_word_size(0);
2030   _reserved.set_start((HeapWord*)heap_rs.base());
2031   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2032 
2033   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2034 
2035   // Create the gen rem set (and barrier set) for the entire reserved region.
2036   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2037   set_barrier_set(rem_set()->bs());
2038   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2039     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2040   } else {
2041     vm_exit_during_initialization("G1 requires a mod ref bs.");
2042     return JNI_ENOMEM;
2043   }
2044 
2045   // Also create a G1 rem set.
2046   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2047     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2048   } else {
2049     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2050     return JNI_ENOMEM;
2051   }
2052 
2053   // Carve out the G1 part of the heap.
2054 
2055   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2056   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2057                            g1_rs.size()/HeapWordSize);
2058 
2059   _g1_storage.initialize(g1_rs, 0);
2060   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2061   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2062                   (HeapWord*) _g1_reserved.end(),
2063                   _expansion_regions);
2064 
2065   // Do later initialization work for concurrent refinement.
2066   _cg1r->init();
2067 
2068   // 6843694 - ensure that the maximum region index can fit
2069   // in the remembered set structures.
2070   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2071   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2072 
2073   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2074   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2075   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2076             "too many cards per region");
2077 
2078   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2079 
2080   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2081                                              heap_word_size(init_byte_size));
2082 
2083   _g1h = this;
2084 
2085   _in_cset_fast_test_length = max_regions();
2086   _in_cset_fast_test_base =
2087                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2088 
2089   // We're biasing _in_cset_fast_test to avoid subtracting the
2090   // beginning of the heap every time we want to index; basically
2091   // it's the same with what we do with the card table.
2092   _in_cset_fast_test = _in_cset_fast_test_base -
2093                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2094 
2095   // Clear the _cset_fast_test bitmap in anticipation of adding
2096   // regions to the incremental collection set for the first
2097   // evacuation pause.
2098   clear_cset_fast_test();
2099 
2100   // Create the ConcurrentMark data structure and thread.
2101   // (Must do this late, so that "max_regions" is defined.)
2102   _cm = new ConcurrentMark(this, heap_rs);
2103   if (_cm == NULL || !_cm->completed_initialization()) {
2104     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2105     return JNI_ENOMEM;
2106   }
2107   _cmThread = _cm->cmThread();
2108 
2109   // Initialize the from_card cache structure of HeapRegionRemSet.
2110   HeapRegionRemSet::init_heap(max_regions());
2111 
2112   // Now expand into the initial heap size.
2113   if (!expand(init_byte_size)) {
2114     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2115     return JNI_ENOMEM;
2116   }
2117 
2118   // Perform any initialization actions delegated to the policy.
2119   g1_policy()->init();
2120 
2121   _refine_cte_cl =
2122     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2123                                     g1_rem_set(),
2124                                     concurrent_g1_refine());
2125   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2126 
2127   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2128                                                SATB_Q_FL_lock,
2129                                                G1SATBProcessCompletedThreshold,
2130                                                Shared_SATB_Q_lock);
2131 
2132   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2133                                                 DirtyCardQ_FL_lock,
2134                                                 concurrent_g1_refine()->yellow_zone(),
2135                                                 concurrent_g1_refine()->red_zone(),
2136                                                 Shared_DirtyCardQ_lock);
2137 
2138   if (G1DeferredRSUpdate) {
2139     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2140                                       DirtyCardQ_FL_lock,
2141                                       -1, // never trigger processing
2142                                       -1, // no limit on length
2143                                       Shared_DirtyCardQ_lock,
2144                                       &JavaThread::dirty_card_queue_set());
2145   }
2146 
2147   // Initialize the card queue set used to hold cards containing
2148   // references into the collection set.
2149   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2150                                              DirtyCardQ_FL_lock,
2151                                              -1, // never trigger processing
2152                                              -1, // no limit on length
2153                                              Shared_DirtyCardQ_lock,
2154                                              &JavaThread::dirty_card_queue_set());
2155 
2156   // In case we're keeping closure specialization stats, initialize those
2157   // counts and that mechanism.
2158   SpecializationStats::clear();
2159 
2160   // Here we allocate the dummy full region that is required by the
2161   // G1AllocRegion class. If we don't pass an address in the reserved
2162   // space here, lots of asserts fire.
2163 
2164   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2165                                              _g1_reserved.start());
2166   // We'll re-use the same region whether the alloc region will
2167   // require BOT updates or not and, if it doesn't, then a non-young
2168   // region will complain that it cannot support allocations without
2169   // BOT updates. So we'll tag the dummy region as young to avoid that.
2170   dummy_region->set_young();
2171   // Make sure it's full.
2172   dummy_region->set_top(dummy_region->end());
2173   G1AllocRegion::setup(this, dummy_region);
2174 
2175   init_mutator_alloc_region();
2176 
2177   // Do create of the monitoring and management support so that
2178   // values in the heap have been properly initialized.
2179   _g1mm = new G1MonitoringSupport(this);
2180 
2181   return JNI_OK;
2182 }
2183 
2184 void G1CollectedHeap::ref_processing_init() {
2185   // Reference processing in G1 currently works as follows:
2186   //
2187   // * There are two reference processor instances. One is
2188   //   used to record and process discovered references
2189   //   during concurrent marking; the other is used to
2190   //   record and process references during STW pauses
2191   //   (both full and incremental).
2192   // * Both ref processors need to 'span' the entire heap as
2193   //   the regions in the collection set may be dotted around.
2194   //
2195   // * For the concurrent marking ref processor:
2196   //   * Reference discovery is enabled at initial marking.
2197   //   * Reference discovery is disabled and the discovered
2198   //     references processed etc during remarking.
2199   //   * Reference discovery is MT (see below).
2200   //   * Reference discovery requires a barrier (see below).
2201   //   * Reference processing may or may not be MT
2202   //     (depending on the value of ParallelRefProcEnabled
2203   //     and ParallelGCThreads).
2204   //   * A full GC disables reference discovery by the CM
2205   //     ref processor and abandons any entries on it's
2206   //     discovered lists.
2207   //
2208   // * For the STW processor:
2209   //   * Non MT discovery is enabled at the start of a full GC.
2210   //   * Processing and enqueueing during a full GC is non-MT.
2211   //   * During a full GC, references are processed after marking.
2212   //
2213   //   * Discovery (may or may not be MT) is enabled at the start
2214   //     of an incremental evacuation pause.
2215   //   * References are processed near the end of a STW evacuation pause.
2216   //   * For both types of GC:
2217   //     * Discovery is atomic - i.e. not concurrent.
2218   //     * Reference discovery will not need a barrier.
2219 
2220   SharedHeap::ref_processing_init();
2221   MemRegion mr = reserved_region();
2222 
2223   // Concurrent Mark ref processor
2224   _ref_processor_cm =
2225     new ReferenceProcessor(mr,    // span
2226                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2227                                 // mt processing
2228                            (int) ParallelGCThreads,
2229                                 // degree of mt processing
2230                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2231                                 // mt discovery
2232                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2233                                 // degree of mt discovery
2234                            false,
2235                                 // Reference discovery is not atomic
2236                            &_is_alive_closure_cm,
2237                                 // is alive closure
2238                                 // (for efficiency/performance)
2239                            true);
2240                                 // Setting next fields of discovered
2241                                 // lists requires a barrier.
2242 
2243   // STW ref processor
2244   _ref_processor_stw =
2245     new ReferenceProcessor(mr,    // span
2246                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2247                                 // mt processing
2248                            MAX2((int)ParallelGCThreads, 1),
2249                                 // degree of mt processing
2250                            (ParallelGCThreads > 1),
2251                                 // mt discovery
2252                            MAX2((int)ParallelGCThreads, 1),
2253                                 // degree of mt discovery
2254                            true,
2255                                 // Reference discovery is atomic
2256                            &_is_alive_closure_stw,
2257                                 // is alive closure
2258                                 // (for efficiency/performance)
2259                            false);
2260                                 // Setting next fields of discovered
2261                                 // lists requires a barrier.
2262 }
2263 
2264 size_t G1CollectedHeap::capacity() const {
2265   return _g1_committed.byte_size();
2266 }
2267 
2268 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2269   assert(!hr->continuesHumongous(), "pre-condition");
2270   hr->reset_gc_time_stamp();
2271   if (hr->startsHumongous()) {
2272     uint first_index = hr->hrs_index() + 1;
2273     uint last_index = hr->last_hc_index();
2274     for (uint i = first_index; i < last_index; i += 1) {
2275       HeapRegion* chr = region_at(i);
2276       assert(chr->continuesHumongous(), "sanity");
2277       chr->reset_gc_time_stamp();
2278     }
2279   }
2280 }
2281 
2282 #ifndef PRODUCT
2283 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2284 private:
2285   unsigned _gc_time_stamp;
2286   bool _failures;
2287 
2288 public:
2289   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2290     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2291 
2292   virtual bool doHeapRegion(HeapRegion* hr) {
2293     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2294     if (_gc_time_stamp != region_gc_time_stamp) {
2295       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2296                              "expected %d", HR_FORMAT_PARAMS(hr),
2297                              region_gc_time_stamp, _gc_time_stamp);
2298       _failures = true;
2299     }
2300     return false;
2301   }
2302 
2303   bool failures() { return _failures; }
2304 };
2305 
2306 void G1CollectedHeap::check_gc_time_stamps() {
2307   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2308   heap_region_iterate(&cl);
2309   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2310 }
2311 #endif // PRODUCT
2312 
2313 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2314                                                  DirtyCardQueue* into_cset_dcq,
2315                                                  bool concurrent,
2316                                                  int worker_i) {
2317   // Clean cards in the hot card cache
2318   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2319   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2320 
2321   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2322   int n_completed_buffers = 0;
2323   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2324     n_completed_buffers++;
2325   }
2326   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2327   dcqs.clear_n_completed_buffers();
2328   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2329 }
2330 
2331 
2332 // Computes the sum of the storage used by the various regions.
2333 
2334 size_t G1CollectedHeap::used() const {
2335   assert(Heap_lock->owner() != NULL,
2336          "Should be owned on this thread's behalf.");
2337   size_t result = _summary_bytes_used;
2338   // Read only once in case it is set to NULL concurrently
2339   HeapRegion* hr = _mutator_alloc_region.get();
2340   if (hr != NULL)
2341     result += hr->used();
2342   return result;
2343 }
2344 
2345 size_t G1CollectedHeap::used_unlocked() const {
2346   size_t result = _summary_bytes_used;
2347   return result;
2348 }
2349 
2350 class SumUsedClosure: public HeapRegionClosure {
2351   size_t _used;
2352 public:
2353   SumUsedClosure() : _used(0) {}
2354   bool doHeapRegion(HeapRegion* r) {
2355     if (!r->continuesHumongous()) {
2356       _used += r->used();
2357     }
2358     return false;
2359   }
2360   size_t result() { return _used; }
2361 };
2362 
2363 size_t G1CollectedHeap::recalculate_used() const {
2364   SumUsedClosure blk;
2365   heap_region_iterate(&blk);
2366   return blk.result();
2367 }
2368 
2369 size_t G1CollectedHeap::unsafe_max_alloc() {
2370   if (free_regions() > 0) return HeapRegion::GrainBytes;
2371   // otherwise, is there space in the current allocation region?
2372 
2373   // We need to store the current allocation region in a local variable
2374   // here. The problem is that this method doesn't take any locks and
2375   // there may be other threads which overwrite the current allocation
2376   // region field. attempt_allocation(), for example, sets it to NULL
2377   // and this can happen *after* the NULL check here but before the call
2378   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2379   // to be a problem in the optimized build, since the two loads of the
2380   // current allocation region field are optimized away.
2381   HeapRegion* hr = _mutator_alloc_region.get();
2382   if (hr == NULL) {
2383     return 0;
2384   }
2385   return hr->free();
2386 }
2387 
2388 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2389   switch (cause) {
2390     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2391     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2392     case GCCause::_g1_humongous_allocation: return true;
2393     default:                                return false;
2394   }
2395 }
2396 
2397 #ifndef PRODUCT
2398 void G1CollectedHeap::allocate_dummy_regions() {
2399   // Let's fill up most of the region
2400   size_t word_size = HeapRegion::GrainWords - 1024;
2401   // And as a result the region we'll allocate will be humongous.
2402   guarantee(isHumongous(word_size), "sanity");
2403 
2404   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2405     // Let's use the existing mechanism for the allocation
2406     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2407     if (dummy_obj != NULL) {
2408       MemRegion mr(dummy_obj, word_size);
2409       CollectedHeap::fill_with_object(mr);
2410     } else {
2411       // If we can't allocate once, we probably cannot allocate
2412       // again. Let's get out of the loop.
2413       break;
2414     }
2415   }
2416 }
2417 #endif // !PRODUCT
2418 
2419 void G1CollectedHeap::increment_old_marking_cycles_started() {
2420   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2421     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2422     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2423     _old_marking_cycles_started, _old_marking_cycles_completed));
2424 
2425   _old_marking_cycles_started++;
2426 }
2427 
2428 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2429   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2430 
2431   // We assume that if concurrent == true, then the caller is a
2432   // concurrent thread that was joined the Suspendible Thread
2433   // Set. If there's ever a cheap way to check this, we should add an
2434   // assert here.
2435 
2436   // Given that this method is called at the end of a Full GC or of a
2437   // concurrent cycle, and those can be nested (i.e., a Full GC can
2438   // interrupt a concurrent cycle), the number of full collections
2439   // completed should be either one (in the case where there was no
2440   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2441   // behind the number of full collections started.
2442 
2443   // This is the case for the inner caller, i.e. a Full GC.
2444   assert(concurrent ||
2445          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2446          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2447          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2448                  "is inconsistent with _old_marking_cycles_completed = %u",
2449                  _old_marking_cycles_started, _old_marking_cycles_completed));
2450 
2451   // This is the case for the outer caller, i.e. the concurrent cycle.
2452   assert(!concurrent ||
2453          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2454          err_msg("for outer caller (concurrent cycle): "
2455                  "_old_marking_cycles_started = %u "
2456                  "is inconsistent with _old_marking_cycles_completed = %u",
2457                  _old_marking_cycles_started, _old_marking_cycles_completed));
2458 
2459   _old_marking_cycles_completed += 1;
2460 
2461   // We need to clear the "in_progress" flag in the CM thread before
2462   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2463   // is set) so that if a waiter requests another System.gc() it doesn't
2464   // incorrectly see that a marking cyle is still in progress.
2465   if (concurrent) {
2466     _cmThread->clear_in_progress();
2467   }
2468 
2469   // This notify_all() will ensure that a thread that called
2470   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2471   // and it's waiting for a full GC to finish will be woken up. It is
2472   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2473   FullGCCount_lock->notify_all();
2474 }
2475 
2476 void G1CollectedHeap::collect(GCCause::Cause cause) {
2477   assert_heap_not_locked();
2478 
2479   unsigned int gc_count_before;
2480   unsigned int old_marking_count_before;
2481   bool retry_gc;
2482 
2483   do {
2484     retry_gc = false;
2485 
2486     {
2487       MutexLocker ml(Heap_lock);
2488 
2489       // Read the GC count while holding the Heap_lock
2490       gc_count_before = total_collections();
2491       old_marking_count_before = _old_marking_cycles_started;
2492     }
2493 
2494     if (should_do_concurrent_full_gc(cause)) {
2495       // Schedule an initial-mark evacuation pause that will start a
2496       // concurrent cycle. We're setting word_size to 0 which means that
2497       // we are not requesting a post-GC allocation.
2498       VM_G1IncCollectionPause op(gc_count_before,
2499                                  0,     /* word_size */
2500                                  true,  /* should_initiate_conc_mark */
2501                                  g1_policy()->max_pause_time_ms(),
2502                                  cause);
2503 
2504       VMThread::execute(&op);
2505       if (!op.pause_succeeded()) {
2506         if (old_marking_count_before == _old_marking_cycles_started) {
2507           retry_gc = op.should_retry_gc();
2508         } else {
2509           // A Full GC happened while we were trying to schedule the
2510           // initial-mark GC. No point in starting a new cycle given
2511           // that the whole heap was collected anyway.
2512         }
2513 
2514         if (retry_gc) {
2515           if (GC_locker::is_active_and_needs_gc()) {
2516             GC_locker::stall_until_clear();
2517           }
2518         }
2519       }
2520     } else {
2521       if (cause == GCCause::_gc_locker
2522           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2523 
2524         // Schedule a standard evacuation pause. We're setting word_size
2525         // to 0 which means that we are not requesting a post-GC allocation.
2526         VM_G1IncCollectionPause op(gc_count_before,
2527                                    0,     /* word_size */
2528                                    false, /* should_initiate_conc_mark */
2529                                    g1_policy()->max_pause_time_ms(),
2530                                    cause);
2531         VMThread::execute(&op);
2532       } else {
2533         // Schedule a Full GC.
2534         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2535         VMThread::execute(&op);
2536       }
2537     }
2538   } while (retry_gc);
2539 }
2540 
2541 bool G1CollectedHeap::is_in(const void* p) const {
2542   if (_g1_committed.contains(p)) {
2543     // Given that we know that p is in the committed space,
2544     // heap_region_containing_raw() should successfully
2545     // return the containing region.
2546     HeapRegion* hr = heap_region_containing_raw(p);
2547     return hr->is_in(p);
2548   } else {
2549     return false;
2550   }
2551 }
2552 
2553 // Iteration functions.
2554 
2555 // Iterates an OopClosure over all ref-containing fields of objects
2556 // within a HeapRegion.
2557 
2558 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2559   MemRegion _mr;
2560   ExtendedOopClosure* _cl;
2561 public:
2562   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2563     : _mr(mr), _cl(cl) {}
2564   bool doHeapRegion(HeapRegion* r) {
2565     if (!r->continuesHumongous()) {
2566       r->oop_iterate(_cl);
2567     }
2568     return false;
2569   }
2570 };
2571 
2572 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2573   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2574   heap_region_iterate(&blk);
2575 }
2576 
2577 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2578   IterateOopClosureRegionClosure blk(mr, cl);
2579   heap_region_iterate(&blk);
2580 }
2581 
2582 // Iterates an ObjectClosure over all objects within a HeapRegion.
2583 
2584 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2585   ObjectClosure* _cl;
2586 public:
2587   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2588   bool doHeapRegion(HeapRegion* r) {
2589     if (! r->continuesHumongous()) {
2590       r->object_iterate(_cl);
2591     }
2592     return false;
2593   }
2594 };
2595 
2596 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2597   IterateObjectClosureRegionClosure blk(cl);
2598   heap_region_iterate(&blk);
2599 }
2600 
2601 // Calls a SpaceClosure on a HeapRegion.
2602 
2603 class SpaceClosureRegionClosure: public HeapRegionClosure {
2604   SpaceClosure* _cl;
2605 public:
2606   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2607   bool doHeapRegion(HeapRegion* r) {
2608     _cl->do_space(r);
2609     return false;
2610   }
2611 };
2612 
2613 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2614   SpaceClosureRegionClosure blk(cl);
2615   heap_region_iterate(&blk);
2616 }
2617 
2618 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2619   _hrs.iterate(cl);
2620 }
2621 
2622 void
2623 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2624                                                  uint worker_id,
2625                                                  uint no_of_par_workers,
2626                                                  jint claim_value) {
2627   const uint regions = n_regions();
2628   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2629                              no_of_par_workers :
2630                              1);
2631   assert(UseDynamicNumberOfGCThreads ||
2632          no_of_par_workers == workers()->total_workers(),
2633          "Non dynamic should use fixed number of workers");
2634   // try to spread out the starting points of the workers
2635   const HeapRegion* start_hr =
2636                         start_region_for_worker(worker_id, no_of_par_workers);
2637   const uint start_index = start_hr->hrs_index();
2638 
2639   // each worker will actually look at all regions
2640   for (uint count = 0; count < regions; ++count) {
2641     const uint index = (start_index + count) % regions;
2642     assert(0 <= index && index < regions, "sanity");
2643     HeapRegion* r = region_at(index);
2644     // we'll ignore "continues humongous" regions (we'll process them
2645     // when we come across their corresponding "start humongous"
2646     // region) and regions already claimed
2647     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2648       continue;
2649     }
2650     // OK, try to claim it
2651     if (r->claimHeapRegion(claim_value)) {
2652       // success!
2653       assert(!r->continuesHumongous(), "sanity");
2654       if (r->startsHumongous()) {
2655         // If the region is "starts humongous" we'll iterate over its
2656         // "continues humongous" first; in fact we'll do them
2657         // first. The order is important. In on case, calling the
2658         // closure on the "starts humongous" region might de-allocate
2659         // and clear all its "continues humongous" regions and, as a
2660         // result, we might end up processing them twice. So, we'll do
2661         // them first (notice: most closures will ignore them anyway) and
2662         // then we'll do the "starts humongous" region.
2663         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2664           HeapRegion* chr = region_at(ch_index);
2665 
2666           // if the region has already been claimed or it's not
2667           // "continues humongous" we're done
2668           if (chr->claim_value() == claim_value ||
2669               !chr->continuesHumongous()) {
2670             break;
2671           }
2672 
2673           // Noone should have claimed it directly. We can given
2674           // that we claimed its "starts humongous" region.
2675           assert(chr->claim_value() != claim_value, "sanity");
2676           assert(chr->humongous_start_region() == r, "sanity");
2677 
2678           if (chr->claimHeapRegion(claim_value)) {
2679             // we should always be able to claim it; noone else should
2680             // be trying to claim this region
2681 
2682             bool res2 = cl->doHeapRegion(chr);
2683             assert(!res2, "Should not abort");
2684 
2685             // Right now, this holds (i.e., no closure that actually
2686             // does something with "continues humongous" regions
2687             // clears them). We might have to weaken it in the future,
2688             // but let's leave these two asserts here for extra safety.
2689             assert(chr->continuesHumongous(), "should still be the case");
2690             assert(chr->humongous_start_region() == r, "sanity");
2691           } else {
2692             guarantee(false, "we should not reach here");
2693           }
2694         }
2695       }
2696 
2697       assert(!r->continuesHumongous(), "sanity");
2698       bool res = cl->doHeapRegion(r);
2699       assert(!res, "Should not abort");
2700     }
2701   }
2702 }
2703 
2704 class ResetClaimValuesClosure: public HeapRegionClosure {
2705 public:
2706   bool doHeapRegion(HeapRegion* r) {
2707     r->set_claim_value(HeapRegion::InitialClaimValue);
2708     return false;
2709   }
2710 };
2711 
2712 void G1CollectedHeap::reset_heap_region_claim_values() {
2713   ResetClaimValuesClosure blk;
2714   heap_region_iterate(&blk);
2715 }
2716 
2717 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2718   ResetClaimValuesClosure blk;
2719   collection_set_iterate(&blk);
2720 }
2721 
2722 #ifdef ASSERT
2723 // This checks whether all regions in the heap have the correct claim
2724 // value. I also piggy-backed on this a check to ensure that the
2725 // humongous_start_region() information on "continues humongous"
2726 // regions is correct.
2727 
2728 class CheckClaimValuesClosure : public HeapRegionClosure {
2729 private:
2730   jint _claim_value;
2731   uint _failures;
2732   HeapRegion* _sh_region;
2733 
2734 public:
2735   CheckClaimValuesClosure(jint claim_value) :
2736     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2737   bool doHeapRegion(HeapRegion* r) {
2738     if (r->claim_value() != _claim_value) {
2739       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2740                              "claim value = %d, should be %d",
2741                              HR_FORMAT_PARAMS(r),
2742                              r->claim_value(), _claim_value);
2743       ++_failures;
2744     }
2745     if (!r->isHumongous()) {
2746       _sh_region = NULL;
2747     } else if (r->startsHumongous()) {
2748       _sh_region = r;
2749     } else if (r->continuesHumongous()) {
2750       if (r->humongous_start_region() != _sh_region) {
2751         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2752                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2753                                HR_FORMAT_PARAMS(r),
2754                                r->humongous_start_region(),
2755                                _sh_region);
2756         ++_failures;
2757       }
2758     }
2759     return false;
2760   }
2761   uint failures() { return _failures; }
2762 };
2763 
2764 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2765   CheckClaimValuesClosure cl(claim_value);
2766   heap_region_iterate(&cl);
2767   return cl.failures() == 0;
2768 }
2769 
2770 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2771 private:
2772   jint _claim_value;
2773   uint _failures;
2774 
2775 public:
2776   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2777     _claim_value(claim_value), _failures(0) { }
2778 
2779   uint failures() { return _failures; }
2780 
2781   bool doHeapRegion(HeapRegion* hr) {
2782     assert(hr->in_collection_set(), "how?");
2783     assert(!hr->isHumongous(), "H-region in CSet");
2784     if (hr->claim_value() != _claim_value) {
2785       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2786                              "claim value = %d, should be %d",
2787                              HR_FORMAT_PARAMS(hr),
2788                              hr->claim_value(), _claim_value);
2789       _failures += 1;
2790     }
2791     return false;
2792   }
2793 };
2794 
2795 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2796   CheckClaimValuesInCSetHRClosure cl(claim_value);
2797   collection_set_iterate(&cl);
2798   return cl.failures() == 0;
2799 }
2800 #endif // ASSERT
2801 
2802 // Clear the cached CSet starting regions and (more importantly)
2803 // the time stamps. Called when we reset the GC time stamp.
2804 void G1CollectedHeap::clear_cset_start_regions() {
2805   assert(_worker_cset_start_region != NULL, "sanity");
2806   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2807 
2808   int n_queues = MAX2((int)ParallelGCThreads, 1);
2809   for (int i = 0; i < n_queues; i++) {
2810     _worker_cset_start_region[i] = NULL;
2811     _worker_cset_start_region_time_stamp[i] = 0;
2812   }
2813 }
2814 
2815 // Given the id of a worker, obtain or calculate a suitable
2816 // starting region for iterating over the current collection set.
2817 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2818   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2819 
2820   HeapRegion* result = NULL;
2821   unsigned gc_time_stamp = get_gc_time_stamp();
2822 
2823   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2824     // Cached starting region for current worker was set
2825     // during the current pause - so it's valid.
2826     // Note: the cached starting heap region may be NULL
2827     // (when the collection set is empty).
2828     result = _worker_cset_start_region[worker_i];
2829     assert(result == NULL || result->in_collection_set(), "sanity");
2830     return result;
2831   }
2832 
2833   // The cached entry was not valid so let's calculate
2834   // a suitable starting heap region for this worker.
2835 
2836   // We want the parallel threads to start their collection
2837   // set iteration at different collection set regions to
2838   // avoid contention.
2839   // If we have:
2840   //          n collection set regions
2841   //          p threads
2842   // Then thread t will start at region floor ((t * n) / p)
2843 
2844   result = g1_policy()->collection_set();
2845   if (G1CollectedHeap::use_parallel_gc_threads()) {
2846     uint cs_size = g1_policy()->cset_region_length();
2847     uint active_workers = workers()->active_workers();
2848     assert(UseDynamicNumberOfGCThreads ||
2849              active_workers == workers()->total_workers(),
2850              "Unless dynamic should use total workers");
2851 
2852     uint end_ind   = (cs_size * worker_i) / active_workers;
2853     uint start_ind = 0;
2854 
2855     if (worker_i > 0 &&
2856         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2857       // Previous workers starting region is valid
2858       // so let's iterate from there
2859       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2860       result = _worker_cset_start_region[worker_i - 1];
2861     }
2862 
2863     for (uint i = start_ind; i < end_ind; i++) {
2864       result = result->next_in_collection_set();
2865     }
2866   }
2867 
2868   // Note: the calculated starting heap region may be NULL
2869   // (when the collection set is empty).
2870   assert(result == NULL || result->in_collection_set(), "sanity");
2871   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2872          "should be updated only once per pause");
2873   _worker_cset_start_region[worker_i] = result;
2874   OrderAccess::storestore();
2875   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2876   return result;
2877 }
2878 
2879 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2880                                                      uint no_of_par_workers) {
2881   uint worker_num =
2882            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2883   assert(UseDynamicNumberOfGCThreads ||
2884          no_of_par_workers == workers()->total_workers(),
2885          "Non dynamic should use fixed number of workers");
2886   const uint start_index = n_regions() * worker_i / worker_num;
2887   return region_at(start_index);
2888 }
2889 
2890 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2891   HeapRegion* r = g1_policy()->collection_set();
2892   while (r != NULL) {
2893     HeapRegion* next = r->next_in_collection_set();
2894     if (cl->doHeapRegion(r)) {
2895       cl->incomplete();
2896       return;
2897     }
2898     r = next;
2899   }
2900 }
2901 
2902 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2903                                                   HeapRegionClosure *cl) {
2904   if (r == NULL) {
2905     // The CSet is empty so there's nothing to do.
2906     return;
2907   }
2908 
2909   assert(r->in_collection_set(),
2910          "Start region must be a member of the collection set.");
2911   HeapRegion* cur = r;
2912   while (cur != NULL) {
2913     HeapRegion* next = cur->next_in_collection_set();
2914     if (cl->doHeapRegion(cur) && false) {
2915       cl->incomplete();
2916       return;
2917     }
2918     cur = next;
2919   }
2920   cur = g1_policy()->collection_set();
2921   while (cur != r) {
2922     HeapRegion* next = cur->next_in_collection_set();
2923     if (cl->doHeapRegion(cur) && false) {
2924       cl->incomplete();
2925       return;
2926     }
2927     cur = next;
2928   }
2929 }
2930 
2931 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2932   return n_regions() > 0 ? region_at(0) : NULL;
2933 }
2934 
2935 
2936 Space* G1CollectedHeap::space_containing(const void* addr) const {
2937   Space* res = heap_region_containing(addr);
2938   return res;
2939 }
2940 
2941 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2942   Space* sp = space_containing(addr);
2943   if (sp != NULL) {
2944     return sp->block_start(addr);
2945   }
2946   return NULL;
2947 }
2948 
2949 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2950   Space* sp = space_containing(addr);
2951   assert(sp != NULL, "block_size of address outside of heap");
2952   return sp->block_size(addr);
2953 }
2954 
2955 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2956   Space* sp = space_containing(addr);
2957   return sp->block_is_obj(addr);
2958 }
2959 
2960 bool G1CollectedHeap::supports_tlab_allocation() const {
2961   return true;
2962 }
2963 
2964 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2965   return HeapRegion::GrainBytes;
2966 }
2967 
2968 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2969   // Return the remaining space in the cur alloc region, but not less than
2970   // the min TLAB size.
2971 
2972   // Also, this value can be at most the humongous object threshold,
2973   // since we can't allow tlabs to grow big enough to accomodate
2974   // humongous objects.
2975 
2976   HeapRegion* hr = _mutator_alloc_region.get();
2977   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2978   if (hr == NULL) {
2979     return max_tlab_size;
2980   } else {
2981     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2982   }
2983 }
2984 
2985 size_t G1CollectedHeap::max_capacity() const {
2986   return _g1_reserved.byte_size();
2987 }
2988 
2989 jlong G1CollectedHeap::millis_since_last_gc() {
2990   // assert(false, "NYI");
2991   return 0;
2992 }
2993 
2994 void G1CollectedHeap::prepare_for_verify() {
2995   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2996     ensure_parsability(false);
2997   }
2998   g1_rem_set()->prepare_for_verify();
2999 }
3000 
3001 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3002                                               VerifyOption vo) {
3003   switch (vo) {
3004   case VerifyOption_G1UsePrevMarking:
3005     return hr->obj_allocated_since_prev_marking(obj);
3006   case VerifyOption_G1UseNextMarking:
3007     return hr->obj_allocated_since_next_marking(obj);
3008   case VerifyOption_G1UseMarkWord:
3009     return false;
3010   default:
3011     ShouldNotReachHere();
3012   }
3013   return false; // keep some compilers happy
3014 }
3015 
3016 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3017   switch (vo) {
3018   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3019   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3020   case VerifyOption_G1UseMarkWord:    return NULL;
3021   default:                            ShouldNotReachHere();
3022   }
3023   return NULL; // keep some compilers happy
3024 }
3025 
3026 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3027   switch (vo) {
3028   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3029   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3030   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3031   default:                            ShouldNotReachHere();
3032   }
3033   return false; // keep some compilers happy
3034 }
3035 
3036 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3037   switch (vo) {
3038   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3039   case VerifyOption_G1UseNextMarking: return "NTAMS";
3040   case VerifyOption_G1UseMarkWord:    return "NONE";
3041   default:                            ShouldNotReachHere();
3042   }
3043   return NULL; // keep some compilers happy
3044 }
3045 
3046 class VerifyLivenessOopClosure: public OopClosure {
3047   G1CollectedHeap* _g1h;
3048   VerifyOption _vo;
3049 public:
3050   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3051     _g1h(g1h), _vo(vo)
3052   { }
3053   void do_oop(narrowOop *p) { do_oop_work(p); }
3054   void do_oop(      oop *p) { do_oop_work(p); }
3055 
3056   template <class T> void do_oop_work(T *p) {
3057     oop obj = oopDesc::load_decode_heap_oop(p);
3058     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3059               "Dead object referenced by a not dead object");
3060   }
3061 };
3062 
3063 class VerifyObjsInRegionClosure: public ObjectClosure {
3064 private:
3065   G1CollectedHeap* _g1h;
3066   size_t _live_bytes;
3067   HeapRegion *_hr;
3068   VerifyOption _vo;
3069 public:
3070   // _vo == UsePrevMarking -> use "prev" marking information,
3071   // _vo == UseNextMarking -> use "next" marking information,
3072   // _vo == UseMarkWord    -> use mark word from object header.
3073   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3074     : _live_bytes(0), _hr(hr), _vo(vo) {
3075     _g1h = G1CollectedHeap::heap();
3076   }
3077   void do_object(oop o) {
3078     VerifyLivenessOopClosure isLive(_g1h, _vo);
3079     assert(o != NULL, "Huh?");
3080     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3081       // If the object is alive according to the mark word,
3082       // then verify that the marking information agrees.
3083       // Note we can't verify the contra-positive of the
3084       // above: if the object is dead (according to the mark
3085       // word), it may not be marked, or may have been marked
3086       // but has since became dead, or may have been allocated
3087       // since the last marking.
3088       if (_vo == VerifyOption_G1UseMarkWord) {
3089         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3090       }
3091 
3092       o->oop_iterate_no_header(&isLive);
3093       if (!_hr->obj_allocated_since_prev_marking(o)) {
3094         size_t obj_size = o->size();    // Make sure we don't overflow
3095         _live_bytes += (obj_size * HeapWordSize);
3096       }
3097     }
3098   }
3099   size_t live_bytes() { return _live_bytes; }
3100 };
3101 
3102 class PrintObjsInRegionClosure : public ObjectClosure {
3103   HeapRegion *_hr;
3104   G1CollectedHeap *_g1;
3105 public:
3106   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3107     _g1 = G1CollectedHeap::heap();
3108   };
3109 
3110   void do_object(oop o) {
3111     if (o != NULL) {
3112       HeapWord *start = (HeapWord *) o;
3113       size_t word_sz = o->size();
3114       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3115                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3116                           (void*) o, word_sz,
3117                           _g1->isMarkedPrev(o),
3118                           _g1->isMarkedNext(o),
3119                           _hr->obj_allocated_since_prev_marking(o));
3120       HeapWord *end = start + word_sz;
3121       HeapWord *cur;
3122       int *val;
3123       for (cur = start; cur < end; cur++) {
3124         val = (int *) cur;
3125         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3126       }
3127     }
3128   }
3129 };
3130 
3131 class VerifyRegionClosure: public HeapRegionClosure {
3132 private:
3133   bool             _par;
3134   VerifyOption     _vo;
3135   bool             _failures;
3136 public:
3137   // _vo == UsePrevMarking -> use "prev" marking information,
3138   // _vo == UseNextMarking -> use "next" marking information,
3139   // _vo == UseMarkWord    -> use mark word from object header.
3140   VerifyRegionClosure(bool par, VerifyOption vo)
3141     : _par(par),
3142       _vo(vo),
3143       _failures(false) {}
3144 
3145   bool failures() {
3146     return _failures;
3147   }
3148 
3149   bool doHeapRegion(HeapRegion* r) {
3150     if (!r->continuesHumongous()) {
3151       bool failures = false;
3152       r->verify(_vo, &failures);
3153       if (failures) {
3154         _failures = true;
3155       } else {
3156         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3157         r->object_iterate(&not_dead_yet_cl);
3158         if (_vo != VerifyOption_G1UseNextMarking) {
3159           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3160             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3161                                    "max_live_bytes "SIZE_FORMAT" "
3162                                    "< calculated "SIZE_FORMAT,
3163                                    r->bottom(), r->end(),
3164                                    r->max_live_bytes(),
3165                                  not_dead_yet_cl.live_bytes());
3166             _failures = true;
3167           }
3168         } else {
3169           // When vo == UseNextMarking we cannot currently do a sanity
3170           // check on the live bytes as the calculation has not been
3171           // finalized yet.
3172         }
3173       }
3174     }
3175     return false; // stop the region iteration if we hit a failure
3176   }
3177 };
3178 
3179 class YoungRefCounterClosure : public OopClosure {
3180   G1CollectedHeap* _g1h;
3181   int              _count;
3182  public:
3183   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3184   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3185   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3186 
3187   int count() { return _count; }
3188   void reset_count() { _count = 0; };
3189 };
3190 
3191 class VerifyKlassClosure: public KlassClosure {
3192   YoungRefCounterClosure _young_ref_counter_closure;
3193   OopClosure *_oop_closure;
3194  public:
3195   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3196   void do_klass(Klass* k) {
3197     k->oops_do(_oop_closure);
3198 
3199     _young_ref_counter_closure.reset_count();
3200     k->oops_do(&_young_ref_counter_closure);
3201     if (_young_ref_counter_closure.count() > 0) {
3202       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3203     }
3204   }
3205 };
3206 
3207 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3208 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3209 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3210 //       we can change this closure to extend the simpler OopClosure.
3211 class VerifyRootsClosure: public OopsInGenClosure {
3212 private:
3213   G1CollectedHeap* _g1h;
3214   VerifyOption     _vo;
3215   bool             _failures;
3216 public:
3217   // _vo == UsePrevMarking -> use "prev" marking information,
3218   // _vo == UseNextMarking -> use "next" marking information,
3219   // _vo == UseMarkWord    -> use mark word from object header.
3220   VerifyRootsClosure(VerifyOption vo) :
3221     _g1h(G1CollectedHeap::heap()),
3222     _vo(vo),
3223     _failures(false) { }
3224 
3225   bool failures() { return _failures; }
3226 
3227   template <class T> void do_oop_nv(T* p) {
3228     T heap_oop = oopDesc::load_heap_oop(p);
3229     if (!oopDesc::is_null(heap_oop)) {
3230       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3231       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3232         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3233                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3234         if (_vo == VerifyOption_G1UseMarkWord) {
3235           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3236         }
3237         obj->print_on(gclog_or_tty);
3238         _failures = true;
3239       }
3240     }
3241   }
3242 
3243   void do_oop(oop* p)       { do_oop_nv(p); }
3244   void do_oop(narrowOop* p) { do_oop_nv(p); }
3245 };
3246 
3247 // This is the task used for parallel heap verification.
3248 
3249 class G1ParVerifyTask: public AbstractGangTask {
3250 private:
3251   G1CollectedHeap* _g1h;
3252   VerifyOption     _vo;
3253   bool             _failures;
3254 
3255 public:
3256   // _vo == UsePrevMarking -> use "prev" marking information,
3257   // _vo == UseNextMarking -> use "next" marking information,
3258   // _vo == UseMarkWord    -> use mark word from object header.
3259   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3260     AbstractGangTask("Parallel verify task"),
3261     _g1h(g1h),
3262     _vo(vo),
3263     _failures(false) { }
3264 
3265   bool failures() {
3266     return _failures;
3267   }
3268 
3269   void work(uint worker_id) {
3270     HandleMark hm;
3271     VerifyRegionClosure blk(true, _vo);
3272     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3273                                           _g1h->workers()->active_workers(),
3274                                           HeapRegion::ParVerifyClaimValue);
3275     if (blk.failures()) {
3276       _failures = true;
3277     }
3278   }
3279 };
3280 
3281 void G1CollectedHeap::verify(bool silent) {
3282   verify(silent, VerifyOption_G1UsePrevMarking);
3283 }
3284 
3285 void G1CollectedHeap::verify(bool silent,
3286                              VerifyOption vo) {
3287   if (SafepointSynchronize::is_at_safepoint()) {
3288     if (!silent) { gclog_or_tty->print("Roots "); }
3289     VerifyRootsClosure rootsCl(vo);
3290 
3291     assert(Thread::current()->is_VM_thread(),
3292            "Expected to be executed serially by the VM thread at this point");
3293 
3294     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3295     VerifyKlassClosure klassCl(this, &rootsCl);
3296 
3297     // We apply the relevant closures to all the oops in the
3298     // system dictionary, the string table and the code cache.
3299     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3300 
3301     // Need cleared claim bits for the strong roots processing
3302     ClassLoaderDataGraph::clear_claimed_marks();
3303 
3304     process_strong_roots(true,      // activate StrongRootsScope
3305                          false,     // we set "is scavenging" to false,
3306                                     // so we don't reset the dirty cards.
3307                          ScanningOption(so),  // roots scanning options
3308                          &rootsCl,
3309                          &blobsCl,
3310                          &klassCl
3311                          );
3312 
3313     bool failures = rootsCl.failures();
3314 
3315     if (vo != VerifyOption_G1UseMarkWord) {
3316       // If we're verifying during a full GC then the region sets
3317       // will have been torn down at the start of the GC. Therefore
3318       // verifying the region sets will fail. So we only verify
3319       // the region sets when not in a full GC.
3320       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3321       verify_region_sets();
3322     }
3323 
3324     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3325     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3326       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3327              "sanity check");
3328 
3329       G1ParVerifyTask task(this, vo);
3330       assert(UseDynamicNumberOfGCThreads ||
3331         workers()->active_workers() == workers()->total_workers(),
3332         "If not dynamic should be using all the workers");
3333       int n_workers = workers()->active_workers();
3334       set_par_threads(n_workers);
3335       workers()->run_task(&task);
3336       set_par_threads(0);
3337       if (task.failures()) {
3338         failures = true;
3339       }
3340 
3341       // Checks that the expected amount of parallel work was done.
3342       // The implication is that n_workers is > 0.
3343       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3344              "sanity check");
3345 
3346       reset_heap_region_claim_values();
3347 
3348       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3349              "sanity check");
3350     } else {
3351       VerifyRegionClosure blk(false, vo);
3352       heap_region_iterate(&blk);
3353       if (blk.failures()) {
3354         failures = true;
3355       }
3356     }
3357     if (!silent) gclog_or_tty->print("RemSet ");
3358     rem_set()->verify();
3359 
3360     if (failures) {
3361       gclog_or_tty->print_cr("Heap:");
3362       // It helps to have the per-region information in the output to
3363       // help us track down what went wrong. This is why we call
3364       // print_extended_on() instead of print_on().
3365       print_extended_on(gclog_or_tty);
3366       gclog_or_tty->print_cr("");
3367 #ifndef PRODUCT
3368       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3369         concurrent_mark()->print_reachable("at-verification-failure",
3370                                            vo, false /* all */);
3371       }
3372 #endif
3373       gclog_or_tty->flush();
3374     }
3375     guarantee(!failures, "there should not have been any failures");
3376   } else {
3377     if (!silent)
3378       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3379   }
3380 }
3381 
3382 class PrintRegionClosure: public HeapRegionClosure {
3383   outputStream* _st;
3384 public:
3385   PrintRegionClosure(outputStream* st) : _st(st) {}
3386   bool doHeapRegion(HeapRegion* r) {
3387     r->print_on(_st);
3388     return false;
3389   }
3390 };
3391 
3392 void G1CollectedHeap::print_on(outputStream* st) const {
3393   st->print(" %-20s", "garbage-first heap");
3394   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3395             capacity()/K, used_unlocked()/K);
3396   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3397             _g1_storage.low_boundary(),
3398             _g1_storage.high(),
3399             _g1_storage.high_boundary());
3400   st->cr();
3401   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3402   uint young_regions = _young_list->length();
3403   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3404             (size_t) young_regions * HeapRegion::GrainBytes / K);
3405   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3406   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3407             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3408   st->cr();
3409   MetaspaceAux::print_on(st);
3410 }
3411 
3412 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3413   print_on(st);
3414 
3415   // Print the per-region information.
3416   st->cr();
3417   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3418                "HS=humongous(starts), HC=humongous(continues), "
3419                "CS=collection set, F=free, TS=gc time stamp, "
3420                "PTAMS=previous top-at-mark-start, "
3421                "NTAMS=next top-at-mark-start)");
3422   PrintRegionClosure blk(st);
3423   heap_region_iterate(&blk);
3424 }
3425 
3426 void G1CollectedHeap::print_on_error(outputStream* st) const {
3427   this->CollectedHeap::print_on_error(st);
3428 
3429   if (_cm != NULL) {
3430     st->cr();
3431     _cm->print_on_error(st);
3432   }
3433 }
3434 
3435 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3436   if (G1CollectedHeap::use_parallel_gc_threads()) {
3437     workers()->print_worker_threads_on(st);
3438   }
3439   _cmThread->print_on(st);
3440   st->cr();
3441   _cm->print_worker_threads_on(st);
3442   _cg1r->print_worker_threads_on(st);
3443 }
3444 
3445 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3446   if (G1CollectedHeap::use_parallel_gc_threads()) {
3447     workers()->threads_do(tc);
3448   }
3449   tc->do_thread(_cmThread);
3450   _cg1r->threads_do(tc);
3451 }
3452 
3453 void G1CollectedHeap::print_tracing_info() const {
3454   // We'll overload this to mean "trace GC pause statistics."
3455   if (TraceGen0Time || TraceGen1Time) {
3456     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3457     // to that.
3458     g1_policy()->print_tracing_info();
3459   }
3460   if (G1SummarizeRSetStats) {
3461     g1_rem_set()->print_summary_info();
3462   }
3463   if (G1SummarizeConcMark) {
3464     concurrent_mark()->print_summary_info();
3465   }
3466   g1_policy()->print_yg_surv_rate_info();
3467   SpecializationStats::print();
3468 }
3469 
3470 #ifndef PRODUCT
3471 // Helpful for debugging RSet issues.
3472 
3473 class PrintRSetsClosure : public HeapRegionClosure {
3474 private:
3475   const char* _msg;
3476   size_t _occupied_sum;
3477 
3478 public:
3479   bool doHeapRegion(HeapRegion* r) {
3480     HeapRegionRemSet* hrrs = r->rem_set();
3481     size_t occupied = hrrs->occupied();
3482     _occupied_sum += occupied;
3483 
3484     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3485                            HR_FORMAT_PARAMS(r));
3486     if (occupied == 0) {
3487       gclog_or_tty->print_cr("  RSet is empty");
3488     } else {
3489       hrrs->print();
3490     }
3491     gclog_or_tty->print_cr("----------");
3492     return false;
3493   }
3494 
3495   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3496     gclog_or_tty->cr();
3497     gclog_or_tty->print_cr("========================================");
3498     gclog_or_tty->print_cr(msg);
3499     gclog_or_tty->cr();
3500   }
3501 
3502   ~PrintRSetsClosure() {
3503     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3504     gclog_or_tty->print_cr("========================================");
3505     gclog_or_tty->cr();
3506   }
3507 };
3508 
3509 void G1CollectedHeap::print_cset_rsets() {
3510   PrintRSetsClosure cl("Printing CSet RSets");
3511   collection_set_iterate(&cl);
3512 }
3513 
3514 void G1CollectedHeap::print_all_rsets() {
3515   PrintRSetsClosure cl("Printing All RSets");;
3516   heap_region_iterate(&cl);
3517 }
3518 #endif // PRODUCT
3519 
3520 G1CollectedHeap* G1CollectedHeap::heap() {
3521   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3522          "not a garbage-first heap");
3523   return _g1h;
3524 }
3525 
3526 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3527   // always_do_update_barrier = false;
3528   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3529   // Fill TLAB's and such
3530   ensure_parsability(true);
3531 }
3532 
3533 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3534   // FIXME: what is this about?
3535   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3536   // is set.
3537   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3538                         "derived pointer present"));
3539   // always_do_update_barrier = true;
3540 
3541   // We have just completed a GC. Update the soft reference
3542   // policy with the new heap occupancy
3543   Universe::update_heap_info_at_gc();
3544 }
3545 
3546 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3547                                                unsigned int gc_count_before,
3548                                                bool* succeeded) {
3549   assert_heap_not_locked_and_not_at_safepoint();
3550   g1_policy()->record_stop_world_start();
3551   VM_G1IncCollectionPause op(gc_count_before,
3552                              word_size,
3553                              false, /* should_initiate_conc_mark */
3554                              g1_policy()->max_pause_time_ms(),
3555                              GCCause::_g1_inc_collection_pause);
3556   VMThread::execute(&op);
3557 
3558   HeapWord* result = op.result();
3559   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3560   assert(result == NULL || ret_succeeded,
3561          "the result should be NULL if the VM did not succeed");
3562   *succeeded = ret_succeeded;
3563 
3564   assert_heap_not_locked();
3565   return result;
3566 }
3567 
3568 void
3569 G1CollectedHeap::doConcurrentMark() {
3570   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3571   if (!_cmThread->in_progress()) {
3572     _cmThread->set_started();
3573     CGC_lock->notify();
3574   }
3575 }
3576 
3577 size_t G1CollectedHeap::pending_card_num() {
3578   size_t extra_cards = 0;
3579   JavaThread *curr = Threads::first();
3580   while (curr != NULL) {
3581     DirtyCardQueue& dcq = curr->dirty_card_queue();
3582     extra_cards += dcq.size();
3583     curr = curr->next();
3584   }
3585   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3586   size_t buffer_size = dcqs.buffer_size();
3587   size_t buffer_num = dcqs.completed_buffers_num();
3588 
3589   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3590   // in bytes - not the number of 'entries'. We need to convert
3591   // into a number of cards.
3592   return (buffer_size * buffer_num + extra_cards) / oopSize;
3593 }
3594 
3595 size_t G1CollectedHeap::cards_scanned() {
3596   return g1_rem_set()->cardsScanned();
3597 }
3598 
3599 void
3600 G1CollectedHeap::setup_surviving_young_words() {
3601   assert(_surviving_young_words == NULL, "pre-condition");
3602   uint array_length = g1_policy()->young_cset_region_length();
3603   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3604   if (_surviving_young_words == NULL) {
3605     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3606                           "Not enough space for young surv words summary.");
3607   }
3608   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3609 #ifdef ASSERT
3610   for (uint i = 0;  i < array_length; ++i) {
3611     assert( _surviving_young_words[i] == 0, "memset above" );
3612   }
3613 #endif // !ASSERT
3614 }
3615 
3616 void
3617 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3618   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3619   uint array_length = g1_policy()->young_cset_region_length();
3620   for (uint i = 0; i < array_length; ++i) {
3621     _surviving_young_words[i] += surv_young_words[i];
3622   }
3623 }
3624 
3625 void
3626 G1CollectedHeap::cleanup_surviving_young_words() {
3627   guarantee( _surviving_young_words != NULL, "pre-condition" );
3628   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3629   _surviving_young_words = NULL;
3630 }
3631 
3632 #ifdef ASSERT
3633 class VerifyCSetClosure: public HeapRegionClosure {
3634 public:
3635   bool doHeapRegion(HeapRegion* hr) {
3636     // Here we check that the CSet region's RSet is ready for parallel
3637     // iteration. The fields that we'll verify are only manipulated
3638     // when the region is part of a CSet and is collected. Afterwards,
3639     // we reset these fields when we clear the region's RSet (when the
3640     // region is freed) so they are ready when the region is
3641     // re-allocated. The only exception to this is if there's an
3642     // evacuation failure and instead of freeing the region we leave
3643     // it in the heap. In that case, we reset these fields during
3644     // evacuation failure handling.
3645     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3646 
3647     // Here's a good place to add any other checks we'd like to
3648     // perform on CSet regions.
3649     return false;
3650   }
3651 };
3652 #endif // ASSERT
3653 
3654 #if TASKQUEUE_STATS
3655 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3656   st->print_raw_cr("GC Task Stats");
3657   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3658   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3659 }
3660 
3661 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3662   print_taskqueue_stats_hdr(st);
3663 
3664   TaskQueueStats totals;
3665   const int n = workers() != NULL ? workers()->total_workers() : 1;
3666   for (int i = 0; i < n; ++i) {
3667     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3668     totals += task_queue(i)->stats;
3669   }
3670   st->print_raw("tot "); totals.print(st); st->cr();
3671 
3672   DEBUG_ONLY(totals.verify());
3673 }
3674 
3675 void G1CollectedHeap::reset_taskqueue_stats() {
3676   const int n = workers() != NULL ? workers()->total_workers() : 1;
3677   for (int i = 0; i < n; ++i) {
3678     task_queue(i)->stats.reset();
3679   }
3680 }
3681 #endif // TASKQUEUE_STATS
3682 
3683 void G1CollectedHeap::log_gc_header() {
3684   if (!G1Log::fine()) {
3685     return;
3686   }
3687 
3688   gclog_or_tty->date_stamp(PrintGCDateStamps);
3689   gclog_or_tty->stamp(PrintGCTimeStamps);
3690 
3691   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3692     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3693     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3694 
3695   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3696 }
3697 
3698 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3699   if (!G1Log::fine()) {
3700     return;
3701   }
3702 
3703   if (G1Log::finer()) {
3704     if (evacuation_failed()) {
3705       gclog_or_tty->print(" (to-space exhausted)");
3706     }
3707     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3708     g1_policy()->phase_times()->note_gc_end();
3709     g1_policy()->phase_times()->print(pause_time_sec);
3710     g1_policy()->print_detailed_heap_transition();
3711   } else {
3712     if (evacuation_failed()) {
3713       gclog_or_tty->print("--");
3714     }
3715     g1_policy()->print_heap_transition();
3716     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3717   }
3718   gclog_or_tty->flush();
3719 }
3720 
3721 bool
3722 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3723   assert_at_safepoint(true /* should_be_vm_thread */);
3724   guarantee(!is_gc_active(), "collection is not reentrant");
3725 
3726   if (GC_locker::check_active_before_gc()) {
3727     return false;
3728   }
3729 
3730   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3731   ResourceMark rm;
3732 
3733   print_heap_before_gc();
3734 
3735   HRSPhaseSetter x(HRSPhaseEvacuation);
3736   verify_region_sets_optional();
3737   verify_dirty_young_regions();
3738 
3739   // This call will decide whether this pause is an initial-mark
3740   // pause. If it is, during_initial_mark_pause() will return true
3741   // for the duration of this pause.
3742   g1_policy()->decide_on_conc_mark_initiation();
3743 
3744   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3745   assert(!g1_policy()->during_initial_mark_pause() ||
3746           g1_policy()->gcs_are_young(), "sanity");
3747 
3748   // We also do not allow mixed GCs during marking.
3749   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3750 
3751   // Record whether this pause is an initial mark. When the current
3752   // thread has completed its logging output and it's safe to signal
3753   // the CM thread, the flag's value in the policy has been reset.
3754   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3755 
3756   // Inner scope for scope based logging, timers, and stats collection
3757   {
3758     if (g1_policy()->during_initial_mark_pause()) {
3759       // We are about to start a marking cycle, so we increment the
3760       // full collection counter.
3761       increment_old_marking_cycles_started();
3762     }
3763     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3764 
3765     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3766                                 workers()->active_workers() : 1);
3767     double pause_start_sec = os::elapsedTime();
3768     g1_policy()->phase_times()->note_gc_start(active_workers);
3769     log_gc_header();
3770 
3771     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3772     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3773 
3774     // If the secondary_free_list is not empty, append it to the
3775     // free_list. No need to wait for the cleanup operation to finish;
3776     // the region allocation code will check the secondary_free_list
3777     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3778     // set, skip this step so that the region allocation code has to
3779     // get entries from the secondary_free_list.
3780     if (!G1StressConcRegionFreeing) {
3781       append_secondary_free_list_if_not_empty_with_lock();
3782     }
3783 
3784     assert(check_young_list_well_formed(),
3785       "young list should be well formed");
3786 
3787     // Don't dynamically change the number of GC threads this early.  A value of
3788     // 0 is used to indicate serial work.  When parallel work is done,
3789     // it will be set.
3790 
3791     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3792       IsGCActiveMark x;
3793 
3794       gc_prologue(false);
3795       increment_total_collections(false /* full gc */);
3796       increment_gc_time_stamp();
3797 
3798       verify_before_gc();
3799 
3800       COMPILER2_PRESENT(DerivedPointerTable::clear());
3801 
3802       // Please see comment in g1CollectedHeap.hpp and
3803       // G1CollectedHeap::ref_processing_init() to see how
3804       // reference processing currently works in G1.
3805 
3806       // Enable discovery in the STW reference processor
3807       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3808                                             true /*verify_no_refs*/);
3809 
3810       {
3811         // We want to temporarily turn off discovery by the
3812         // CM ref processor, if necessary, and turn it back on
3813         // on again later if we do. Using a scoped
3814         // NoRefDiscovery object will do this.
3815         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3816 
3817         // Forget the current alloc region (we might even choose it to be part
3818         // of the collection set!).
3819         release_mutator_alloc_region();
3820 
3821         // We should call this after we retire the mutator alloc
3822         // region(s) so that all the ALLOC / RETIRE events are generated
3823         // before the start GC event.
3824         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3825 
3826         // This timing is only used by the ergonomics to handle our pause target.
3827         // It is unclear why this should not include the full pause. We will
3828         // investigate this in CR 7178365.
3829         //
3830         // Preserving the old comment here if that helps the investigation:
3831         //
3832         // The elapsed time induced by the start time below deliberately elides
3833         // the possible verification above.
3834         double sample_start_time_sec = os::elapsedTime();
3835 
3836 #if YOUNG_LIST_VERBOSE
3837         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3838         _young_list->print();
3839         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3840 #endif // YOUNG_LIST_VERBOSE
3841 
3842         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3843 
3844         double scan_wait_start = os::elapsedTime();
3845         // We have to wait until the CM threads finish scanning the
3846         // root regions as it's the only way to ensure that all the
3847         // objects on them have been correctly scanned before we start
3848         // moving them during the GC.
3849         bool waited = _cm->root_regions()->wait_until_scan_finished();
3850         double wait_time_ms = 0.0;
3851         if (waited) {
3852           double scan_wait_end = os::elapsedTime();
3853           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3854         }
3855         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3856 
3857 #if YOUNG_LIST_VERBOSE
3858         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3859         _young_list->print();
3860 #endif // YOUNG_LIST_VERBOSE
3861 
3862         if (g1_policy()->during_initial_mark_pause()) {
3863           concurrent_mark()->checkpointRootsInitialPre();
3864         }
3865 
3866 #if YOUNG_LIST_VERBOSE
3867         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3868         _young_list->print();
3869         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3870 #endif // YOUNG_LIST_VERBOSE
3871 
3872         g1_policy()->finalize_cset(target_pause_time_ms);
3873 
3874         _cm->note_start_of_gc();
3875         // We should not verify the per-thread SATB buffers given that
3876         // we have not filtered them yet (we'll do so during the
3877         // GC). We also call this after finalize_cset() to
3878         // ensure that the CSet has been finalized.
3879         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3880                                  true  /* verify_enqueued_buffers */,
3881                                  false /* verify_thread_buffers */,
3882                                  true  /* verify_fingers */);
3883 
3884         if (_hr_printer.is_active()) {
3885           HeapRegion* hr = g1_policy()->collection_set();
3886           while (hr != NULL) {
3887             G1HRPrinter::RegionType type;
3888             if (!hr->is_young()) {
3889               type = G1HRPrinter::Old;
3890             } else if (hr->is_survivor()) {
3891               type = G1HRPrinter::Survivor;
3892             } else {
3893               type = G1HRPrinter::Eden;
3894             }
3895             _hr_printer.cset(hr);
3896             hr = hr->next_in_collection_set();
3897           }
3898         }
3899 
3900 #ifdef ASSERT
3901         VerifyCSetClosure cl;
3902         collection_set_iterate(&cl);
3903 #endif // ASSERT
3904 
3905         setup_surviving_young_words();
3906 
3907         // Initialize the GC alloc regions.
3908         init_gc_alloc_regions();
3909 
3910         // Actually do the work...
3911         evacuate_collection_set();
3912 
3913         // We do this to mainly verify the per-thread SATB buffers
3914         // (which have been filtered by now) since we didn't verify
3915         // them earlier. No point in re-checking the stacks / enqueued
3916         // buffers given that the CSet has not changed since last time
3917         // we checked.
3918         _cm->verify_no_cset_oops(false /* verify_stacks */,
3919                                  false /* verify_enqueued_buffers */,
3920                                  true  /* verify_thread_buffers */,
3921                                  true  /* verify_fingers */);
3922 
3923         free_collection_set(g1_policy()->collection_set());
3924         g1_policy()->clear_collection_set();
3925 
3926         cleanup_surviving_young_words();
3927 
3928         // Start a new incremental collection set for the next pause.
3929         g1_policy()->start_incremental_cset_building();
3930 
3931         // Clear the _cset_fast_test bitmap in anticipation of adding
3932         // regions to the incremental collection set for the next
3933         // evacuation pause.
3934         clear_cset_fast_test();
3935 
3936         _young_list->reset_sampled_info();
3937 
3938         // Don't check the whole heap at this point as the
3939         // GC alloc regions from this pause have been tagged
3940         // as survivors and moved on to the survivor list.
3941         // Survivor regions will fail the !is_young() check.
3942         assert(check_young_list_empty(false /* check_heap */),
3943           "young list should be empty");
3944 
3945 #if YOUNG_LIST_VERBOSE
3946         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3947         _young_list->print();
3948 #endif // YOUNG_LIST_VERBOSE
3949 
3950         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3951                                             _young_list->first_survivor_region(),
3952                                             _young_list->last_survivor_region());
3953 
3954         _young_list->reset_auxilary_lists();
3955 
3956         if (evacuation_failed()) {
3957           _summary_bytes_used = recalculate_used();
3958         } else {
3959           // The "used" of the the collection set have already been subtracted
3960           // when they were freed.  Add in the bytes evacuated.
3961           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3962         }
3963 
3964         if (g1_policy()->during_initial_mark_pause()) {
3965           // We have to do this before we notify the CM threads that
3966           // they can start working to make sure that all the
3967           // appropriate initialization is done on the CM object.
3968           concurrent_mark()->checkpointRootsInitialPost();
3969           set_marking_started();
3970           // Note that we don't actually trigger the CM thread at
3971           // this point. We do that later when we're sure that
3972           // the current thread has completed its logging output.
3973         }
3974 
3975         allocate_dummy_regions();
3976 
3977 #if YOUNG_LIST_VERBOSE
3978         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3979         _young_list->print();
3980         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3981 #endif // YOUNG_LIST_VERBOSE
3982 
3983         init_mutator_alloc_region();
3984 
3985         {
3986           size_t expand_bytes = g1_policy()->expansion_amount();
3987           if (expand_bytes > 0) {
3988             size_t bytes_before = capacity();
3989             // No need for an ergo verbose message here,
3990             // expansion_amount() does this when it returns a value > 0.
3991             if (!expand(expand_bytes)) {
3992               // We failed to expand the heap so let's verify that
3993               // committed/uncommitted amount match the backing store
3994               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3995               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3996             }
3997           }
3998         }
3999 
4000         // We redo the verificaiton but now wrt to the new CSet which
4001         // has just got initialized after the previous CSet was freed.
4002         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4003                                  true  /* verify_enqueued_buffers */,
4004                                  true  /* verify_thread_buffers */,
4005                                  true  /* verify_fingers */);
4006         _cm->note_end_of_gc();
4007 
4008         // This timing is only used by the ergonomics to handle our pause target.
4009         // It is unclear why this should not include the full pause. We will
4010         // investigate this in CR 7178365.
4011         double sample_end_time_sec = os::elapsedTime();
4012         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4013         g1_policy()->record_collection_pause_end(pause_time_ms);
4014 
4015         MemoryService::track_memory_usage();
4016 
4017         // In prepare_for_verify() below we'll need to scan the deferred
4018         // update buffers to bring the RSets up-to-date if
4019         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4020         // the update buffers we'll probably need to scan cards on the
4021         // regions we just allocated to (i.e., the GC alloc
4022         // regions). However, during the last GC we called
4023         // set_saved_mark() on all the GC alloc regions, so card
4024         // scanning might skip the [saved_mark_word()...top()] area of
4025         // those regions (i.e., the area we allocated objects into
4026         // during the last GC). But it shouldn't. Given that
4027         // saved_mark_word() is conditional on whether the GC time stamp
4028         // on the region is current or not, by incrementing the GC time
4029         // stamp here we invalidate all the GC time stamps on all the
4030         // regions and saved_mark_word() will simply return top() for
4031         // all the regions. This is a nicer way of ensuring this rather
4032         // than iterating over the regions and fixing them. In fact, the
4033         // GC time stamp increment here also ensures that
4034         // saved_mark_word() will return top() between pauses, i.e.,
4035         // during concurrent refinement. So we don't need the
4036         // is_gc_active() check to decided which top to use when
4037         // scanning cards (see CR 7039627).
4038         increment_gc_time_stamp();
4039 
4040         verify_after_gc();
4041 
4042         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4043         ref_processor_stw()->verify_no_references_recorded();
4044 
4045         // CM reference discovery will be re-enabled if necessary.
4046       }
4047 
4048       // We should do this after we potentially expand the heap so
4049       // that all the COMMIT events are generated before the end GC
4050       // event, and after we retire the GC alloc regions so that all
4051       // RETIRE events are generated before the end GC event.
4052       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4053 
4054       if (mark_in_progress()) {
4055         concurrent_mark()->update_g1_committed();
4056       }
4057 
4058 #ifdef TRACESPINNING
4059       ParallelTaskTerminator::print_termination_counts();
4060 #endif
4061 
4062       gc_epilogue(false);
4063     }
4064 
4065     // Print the remainder of the GC log output.
4066     log_gc_footer(os::elapsedTime() - pause_start_sec);
4067 
4068     // It is not yet to safe to tell the concurrent mark to
4069     // start as we have some optional output below. We don't want the
4070     // output from the concurrent mark thread interfering with this
4071     // logging output either.
4072 
4073     _hrs.verify_optional();
4074     verify_region_sets_optional();
4075 
4076     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4077     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4078 
4079     print_heap_after_gc();
4080 
4081     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4082     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4083     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4084     // before any GC notifications are raised.
4085     g1mm()->update_sizes();
4086   }
4087 
4088   if (G1SummarizeRSetStats &&
4089       (G1SummarizeRSetStatsPeriod > 0) &&
4090       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4091     g1_rem_set()->print_summary_info();
4092   }
4093 
4094   // It should now be safe to tell the concurrent mark thread to start
4095   // without its logging output interfering with the logging output
4096   // that came from the pause.
4097 
4098   if (should_start_conc_mark) {
4099     // CAUTION: after the doConcurrentMark() call below,
4100     // the concurrent marking thread(s) could be running
4101     // concurrently with us. Make sure that anything after
4102     // this point does not assume that we are the only GC thread
4103     // running. Note: of course, the actual marking work will
4104     // not start until the safepoint itself is released in
4105     // ConcurrentGCThread::safepoint_desynchronize().
4106     doConcurrentMark();
4107   }
4108 
4109   return true;
4110 }
4111 
4112 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4113 {
4114   size_t gclab_word_size;
4115   switch (purpose) {
4116     case GCAllocForSurvived:
4117       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4118       break;
4119     case GCAllocForTenured:
4120       gclab_word_size = _old_plab_stats.desired_plab_sz();
4121       break;
4122     default:
4123       assert(false, "unknown GCAllocPurpose");
4124       gclab_word_size = _old_plab_stats.desired_plab_sz();
4125       break;
4126   }
4127 
4128   // Prevent humongous PLAB sizes for two reasons:
4129   // * PLABs are allocated using a similar paths as oops, but should
4130   //   never be in a humongous region
4131   // * Allowing humongous PLABs needlessly churns the region free lists
4132   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4133 }
4134 
4135 void G1CollectedHeap::init_mutator_alloc_region() {
4136   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4137   _mutator_alloc_region.init();
4138 }
4139 
4140 void G1CollectedHeap::release_mutator_alloc_region() {
4141   _mutator_alloc_region.release();
4142   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4143 }
4144 
4145 void G1CollectedHeap::init_gc_alloc_regions() {
4146   assert_at_safepoint(true /* should_be_vm_thread */);
4147 
4148   _survivor_gc_alloc_region.init();
4149   _old_gc_alloc_region.init();
4150   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4151   _retained_old_gc_alloc_region = NULL;
4152 
4153   // We will discard the current GC alloc region if:
4154   // a) it's in the collection set (it can happen!),
4155   // b) it's already full (no point in using it),
4156   // c) it's empty (this means that it was emptied during
4157   // a cleanup and it should be on the free list now), or
4158   // d) it's humongous (this means that it was emptied
4159   // during a cleanup and was added to the free list, but
4160   // has been subseqently used to allocate a humongous
4161   // object that may be less than the region size).
4162   if (retained_region != NULL &&
4163       !retained_region->in_collection_set() &&
4164       !(retained_region->top() == retained_region->end()) &&
4165       !retained_region->is_empty() &&
4166       !retained_region->isHumongous()) {
4167     retained_region->set_saved_mark();
4168     // The retained region was added to the old region set when it was
4169     // retired. We have to remove it now, since we don't allow regions
4170     // we allocate to in the region sets. We'll re-add it later, when
4171     // it's retired again.
4172     _old_set.remove(retained_region);
4173     bool during_im = g1_policy()->during_initial_mark_pause();
4174     retained_region->note_start_of_copying(during_im);
4175     _old_gc_alloc_region.set(retained_region);
4176     _hr_printer.reuse(retained_region);
4177   }
4178 }
4179 
4180 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
4181   _survivor_gc_alloc_region.release();
4182   // If we have an old GC alloc region to release, we'll save it in
4183   // _retained_old_gc_alloc_region. If we don't
4184   // _retained_old_gc_alloc_region will become NULL. This is what we
4185   // want either way so no reason to check explicitly for either
4186   // condition.
4187   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4188 
4189   if (ResizePLAB) {
4190     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4191     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4192   }
4193 }
4194 
4195 void G1CollectedHeap::abandon_gc_alloc_regions() {
4196   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4197   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4198   _retained_old_gc_alloc_region = NULL;
4199 }
4200 
4201 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4202   _drain_in_progress = false;
4203   set_evac_failure_closure(cl);
4204   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4205 }
4206 
4207 void G1CollectedHeap::finalize_for_evac_failure() {
4208   assert(_evac_failure_scan_stack != NULL &&
4209          _evac_failure_scan_stack->length() == 0,
4210          "Postcondition");
4211   assert(!_drain_in_progress, "Postcondition");
4212   delete _evac_failure_scan_stack;
4213   _evac_failure_scan_stack = NULL;
4214 }
4215 
4216 void G1CollectedHeap::remove_self_forwarding_pointers() {
4217   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4218 
4219   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4220 
4221   if (G1CollectedHeap::use_parallel_gc_threads()) {
4222     set_par_threads();
4223     workers()->run_task(&rsfp_task);
4224     set_par_threads(0);
4225   } else {
4226     rsfp_task.work(0);
4227   }
4228 
4229   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4230 
4231   // Reset the claim values in the regions in the collection set.
4232   reset_cset_heap_region_claim_values();
4233 
4234   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4235 
4236   // Now restore saved marks, if any.
4237   assert(_objs_with_preserved_marks.size() ==
4238             _preserved_marks_of_objs.size(), "Both or none.");
4239   while (!_objs_with_preserved_marks.is_empty()) {
4240     oop obj = _objs_with_preserved_marks.pop();
4241     markOop m = _preserved_marks_of_objs.pop();
4242     obj->set_mark(m);
4243   }
4244   _objs_with_preserved_marks.clear(true);
4245   _preserved_marks_of_objs.clear(true);
4246 }
4247 
4248 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4249   _evac_failure_scan_stack->push(obj);
4250 }
4251 
4252 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4253   assert(_evac_failure_scan_stack != NULL, "precondition");
4254 
4255   while (_evac_failure_scan_stack->length() > 0) {
4256      oop obj = _evac_failure_scan_stack->pop();
4257      _evac_failure_closure->set_region(heap_region_containing(obj));
4258      obj->oop_iterate_backwards(_evac_failure_closure);
4259   }
4260 }
4261 
4262 oop
4263 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4264                                                oop old) {
4265   assert(obj_in_cs(old),
4266          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4267                  (HeapWord*) old));
4268   markOop m = old->mark();
4269   oop forward_ptr = old->forward_to_atomic(old);
4270   if (forward_ptr == NULL) {
4271     // Forward-to-self succeeded.
4272 
4273     if (_evac_failure_closure != cl) {
4274       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4275       assert(!_drain_in_progress,
4276              "Should only be true while someone holds the lock.");
4277       // Set the global evac-failure closure to the current thread's.
4278       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4279       set_evac_failure_closure(cl);
4280       // Now do the common part.
4281       handle_evacuation_failure_common(old, m);
4282       // Reset to NULL.
4283       set_evac_failure_closure(NULL);
4284     } else {
4285       // The lock is already held, and this is recursive.
4286       assert(_drain_in_progress, "This should only be the recursive case.");
4287       handle_evacuation_failure_common(old, m);
4288     }
4289     return old;
4290   } else {
4291     // Forward-to-self failed. Either someone else managed to allocate
4292     // space for this object (old != forward_ptr) or they beat us in
4293     // self-forwarding it (old == forward_ptr).
4294     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4295            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4296                    "should not be in the CSet",
4297                    (HeapWord*) old, (HeapWord*) forward_ptr));
4298     return forward_ptr;
4299   }
4300 }
4301 
4302 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4303   set_evacuation_failed(true);
4304 
4305   preserve_mark_if_necessary(old, m);
4306 
4307   HeapRegion* r = heap_region_containing(old);
4308   if (!r->evacuation_failed()) {
4309     r->set_evacuation_failed(true);
4310     _hr_printer.evac_failure(r);
4311   }
4312 
4313   push_on_evac_failure_scan_stack(old);
4314 
4315   if (!_drain_in_progress) {
4316     // prevent recursion in copy_to_survivor_space()
4317     _drain_in_progress = true;
4318     drain_evac_failure_scan_stack();
4319     _drain_in_progress = false;
4320   }
4321 }
4322 
4323 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4324   assert(evacuation_failed(), "Oversaving!");
4325   // We want to call the "for_promotion_failure" version only in the
4326   // case of a promotion failure.
4327   if (m->must_be_preserved_for_promotion_failure(obj)) {
4328     _objs_with_preserved_marks.push(obj);
4329     _preserved_marks_of_objs.push(m);
4330   }
4331 }
4332 
4333 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4334                                                   size_t word_size) {
4335   if (purpose == GCAllocForSurvived) {
4336     HeapWord* result = survivor_attempt_allocation(word_size);
4337     if (result != NULL) {
4338       return result;
4339     } else {
4340       // Let's try to allocate in the old gen in case we can fit the
4341       // object there.
4342       return old_attempt_allocation(word_size);
4343     }
4344   } else {
4345     assert(purpose ==  GCAllocForTenured, "sanity");
4346     HeapWord* result = old_attempt_allocation(word_size);
4347     if (result != NULL) {
4348       return result;
4349     } else {
4350       // Let's try to allocate in the survivors in case we can fit the
4351       // object there.
4352       return survivor_attempt_allocation(word_size);
4353     }
4354   }
4355 
4356   ShouldNotReachHere();
4357   // Trying to keep some compilers happy.
4358   return NULL;
4359 }
4360 
4361 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4362   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4363 
4364 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4365   : _g1h(g1h),
4366     _refs(g1h->task_queue(queue_num)),
4367     _dcq(&g1h->dirty_card_queue_set()),
4368     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4369     _g1_rem(g1h->g1_rem_set()),
4370     _hash_seed(17), _queue_num(queue_num),
4371     _term_attempts(0),
4372     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4373     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4374     _age_table(false),
4375     _strong_roots_time(0), _term_time(0),
4376     _alloc_buffer_waste(0), _undo_waste(0) {
4377   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4378   // we "sacrifice" entry 0 to keep track of surviving bytes for
4379   // non-young regions (where the age is -1)
4380   // We also add a few elements at the beginning and at the end in
4381   // an attempt to eliminate cache contention
4382   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4383   uint array_length = PADDING_ELEM_NUM +
4384                       real_length +
4385                       PADDING_ELEM_NUM;
4386   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4387   if (_surviving_young_words_base == NULL)
4388     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4389                           "Not enough space for young surv histo.");
4390   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4391   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4392 
4393   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4394   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4395 
4396   _start = os::elapsedTime();
4397 }
4398 
4399 void
4400 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4401 {
4402   st->print_raw_cr("GC Termination Stats");
4403   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4404                    " ------waste (KiB)------");
4405   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4406                    "  total   alloc    undo");
4407   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4408                    " ------- ------- -------");
4409 }
4410 
4411 void
4412 G1ParScanThreadState::print_termination_stats(int i,
4413                                               outputStream* const st) const
4414 {
4415   const double elapsed_ms = elapsed_time() * 1000.0;
4416   const double s_roots_ms = strong_roots_time() * 1000.0;
4417   const double term_ms    = term_time() * 1000.0;
4418   st->print_cr("%3d %9.2f %9.2f %6.2f "
4419                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4420                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4421                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4422                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4423                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4424                alloc_buffer_waste() * HeapWordSize / K,
4425                undo_waste() * HeapWordSize / K);
4426 }
4427 
4428 #ifdef ASSERT
4429 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4430   assert(ref != NULL, "invariant");
4431   assert(UseCompressedOops, "sanity");
4432   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4433   oop p = oopDesc::load_decode_heap_oop(ref);
4434   assert(_g1h->is_in_g1_reserved(p),
4435          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4436   return true;
4437 }
4438 
4439 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4440   assert(ref != NULL, "invariant");
4441   if (has_partial_array_mask(ref)) {
4442     // Must be in the collection set--it's already been copied.
4443     oop p = clear_partial_array_mask(ref);
4444     assert(_g1h->obj_in_cs(p),
4445            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4446   } else {
4447     oop p = oopDesc::load_decode_heap_oop(ref);
4448     assert(_g1h->is_in_g1_reserved(p),
4449            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4450   }
4451   return true;
4452 }
4453 
4454 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4455   if (ref.is_narrow()) {
4456     return verify_ref((narrowOop*) ref);
4457   } else {
4458     return verify_ref((oop*) ref);
4459   }
4460 }
4461 #endif // ASSERT
4462 
4463 void G1ParScanThreadState::trim_queue() {
4464   assert(_evac_cl != NULL, "not set");
4465   assert(_evac_failure_cl != NULL, "not set");
4466   assert(_partial_scan_cl != NULL, "not set");
4467 
4468   StarTask ref;
4469   do {
4470     // Drain the overflow stack first, so other threads can steal.
4471     while (refs()->pop_overflow(ref)) {
4472       deal_with_reference(ref);
4473     }
4474 
4475     while (refs()->pop_local(ref)) {
4476       deal_with_reference(ref);
4477     }
4478   } while (!refs()->is_empty());
4479 }
4480 
4481 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4482                                      G1ParScanThreadState* par_scan_state) :
4483   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4484   _par_scan_state(par_scan_state),
4485   _worker_id(par_scan_state->queue_num()),
4486   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4487   _mark_in_progress(_g1->mark_in_progress()) { }
4488 
4489 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4490 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4491 #ifdef ASSERT
4492   HeapRegion* hr = _g1->heap_region_containing(obj);
4493   assert(hr != NULL, "sanity");
4494   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4495 #endif // ASSERT
4496 
4497   // We know that the object is not moving so it's safe to read its size.
4498   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4499 }
4500 
4501 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4502 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4503   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4504 #ifdef ASSERT
4505   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4506   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4507   assert(from_obj != to_obj, "should not be self-forwarded");
4508 
4509   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4510   assert(from_hr != NULL, "sanity");
4511   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4512 
4513   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4514   assert(to_hr != NULL, "sanity");
4515   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4516 #endif // ASSERT
4517 
4518   // The object might be in the process of being copied by another
4519   // worker so we cannot trust that its to-space image is
4520   // well-formed. So we have to read its size from its from-space
4521   // image which we know should not be changing.
4522   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4523 }
4524 
4525 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4526 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4527   ::copy_to_survivor_space(oop old) {
4528   size_t word_sz = old->size();
4529   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4530   // +1 to make the -1 indexes valid...
4531   int       young_index = from_region->young_index_in_cset()+1;
4532   assert( (from_region->is_young() && young_index >  0) ||
4533          (!from_region->is_young() && young_index == 0), "invariant" );
4534   G1CollectorPolicy* g1p = _g1->g1_policy();
4535   markOop m = old->mark();
4536   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4537                                            : m->age();
4538   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4539                                                              word_sz);
4540   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4541 #ifndef PRODUCT
4542   // Should this evacuation fail?
4543   if (_g1->evacuation_should_fail()) {
4544     if (obj_ptr != NULL) {
4545       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4546       obj_ptr = NULL;
4547     }
4548   }
4549 #endif // !PRODUCT
4550 
4551   if (obj_ptr == NULL) {
4552     // This will either forward-to-self, or detect that someone else has
4553     // installed a forwarding pointer.
4554     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4555     return _g1->handle_evacuation_failure_par(cl, old);
4556   }
4557 
4558   oop obj = oop(obj_ptr);
4559 
4560   // We're going to allocate linearly, so might as well prefetch ahead.
4561   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4562 
4563   oop forward_ptr = old->forward_to_atomic(obj);
4564   if (forward_ptr == NULL) {
4565     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4566     if (g1p->track_object_age(alloc_purpose)) {
4567       // We could simply do obj->incr_age(). However, this causes a
4568       // performance issue. obj->incr_age() will first check whether
4569       // the object has a displaced mark by checking its mark word;
4570       // getting the mark word from the new location of the object
4571       // stalls. So, given that we already have the mark word and we
4572       // are about to install it anyway, it's better to increase the
4573       // age on the mark word, when the object does not have a
4574       // displaced mark word. We're not expecting many objects to have
4575       // a displaced marked word, so that case is not optimized
4576       // further (it could be...) and we simply call obj->incr_age().
4577 
4578       if (m->has_displaced_mark_helper()) {
4579         // in this case, we have to install the mark word first,
4580         // otherwise obj looks to be forwarded (the old mark word,
4581         // which contains the forward pointer, was copied)
4582         obj->set_mark(m);
4583         obj->incr_age();
4584       } else {
4585         m = m->incr_age();
4586         obj->set_mark(m);
4587       }
4588       _par_scan_state->age_table()->add(obj, word_sz);
4589     } else {
4590       obj->set_mark(m);
4591     }
4592 
4593     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4594     surv_young_words[young_index] += word_sz;
4595 
4596     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4597       // We keep track of the next start index in the length field of
4598       // the to-space object. The actual length can be found in the
4599       // length field of the from-space object.
4600       arrayOop(obj)->set_length(0);
4601       oop* old_p = set_partial_array_mask(old);
4602       _par_scan_state->push_on_queue(old_p);
4603     } else {
4604       // No point in using the slower heap_region_containing() method,
4605       // given that we know obj is in the heap.
4606       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4607       obj->oop_iterate_backwards(&_scanner);
4608     }
4609   } else {
4610     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4611     obj = forward_ptr;
4612   }
4613   return obj;
4614 }
4615 
4616 template <class T>
4617 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4618   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4619     _scanned_klass->record_modified_oops();
4620   }
4621 }
4622 
4623 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4624 template <class T>
4625 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4626 ::do_oop_work(T* p) {
4627   oop obj = oopDesc::load_decode_heap_oop(p);
4628   assert(barrier != G1BarrierRS || obj != NULL,
4629          "Precondition: G1BarrierRS implies obj is non-NULL");
4630 
4631   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4632 
4633   // here the null check is implicit in the cset_fast_test() test
4634   if (_g1->in_cset_fast_test(obj)) {
4635     oop forwardee;
4636     if (obj->is_forwarded()) {
4637       forwardee = obj->forwardee();
4638     } else {
4639       forwardee = copy_to_survivor_space(obj);
4640     }
4641     assert(forwardee != NULL, "forwardee should not be NULL");
4642     oopDesc::encode_store_heap_oop(p, forwardee);
4643     if (do_mark_object && forwardee != obj) {
4644       // If the object is self-forwarded we don't need to explicitly
4645       // mark it, the evacuation failure protocol will do so.
4646       mark_forwarded_object(obj, forwardee);
4647     }
4648 
4649     // When scanning the RS, we only care about objs in CS.
4650     if (barrier == G1BarrierRS) {
4651       _par_scan_state->update_rs(_from, p, _worker_id);
4652     } else if (barrier == G1BarrierKlass) {
4653       do_klass_barrier(p, forwardee);
4654     }
4655   } else {
4656     // The object is not in collection set. If we're a root scanning
4657     // closure during an initial mark pause (i.e. do_mark_object will
4658     // be true) then attempt to mark the object.
4659     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4660       mark_object(obj);
4661     }
4662   }
4663 
4664   if (barrier == G1BarrierEvac && obj != NULL) {
4665     _par_scan_state->update_rs(_from, p, _worker_id);
4666   }
4667 
4668   if (do_gen_barrier && obj != NULL) {
4669     par_do_barrier(p);
4670   }
4671 }
4672 
4673 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4674 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4675 
4676 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4677   assert(has_partial_array_mask(p), "invariant");
4678   oop from_obj = clear_partial_array_mask(p);
4679 
4680   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4681   assert(from_obj->is_objArray(), "must be obj array");
4682   objArrayOop from_obj_array = objArrayOop(from_obj);
4683   // The from-space object contains the real length.
4684   int length                 = from_obj_array->length();
4685 
4686   assert(from_obj->is_forwarded(), "must be forwarded");
4687   oop to_obj                 = from_obj->forwardee();
4688   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4689   objArrayOop to_obj_array   = objArrayOop(to_obj);
4690   // We keep track of the next start index in the length field of the
4691   // to-space object.
4692   int next_index             = to_obj_array->length();
4693   assert(0 <= next_index && next_index < length,
4694          err_msg("invariant, next index: %d, length: %d", next_index, length));
4695 
4696   int start                  = next_index;
4697   int end                    = length;
4698   int remainder              = end - start;
4699   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4700   if (remainder > 2 * ParGCArrayScanChunk) {
4701     end = start + ParGCArrayScanChunk;
4702     to_obj_array->set_length(end);
4703     // Push the remainder before we process the range in case another
4704     // worker has run out of things to do and can steal it.
4705     oop* from_obj_p = set_partial_array_mask(from_obj);
4706     _par_scan_state->push_on_queue(from_obj_p);
4707   } else {
4708     assert(length == end, "sanity");
4709     // We'll process the final range for this object. Restore the length
4710     // so that the heap remains parsable in case of evacuation failure.
4711     to_obj_array->set_length(end);
4712   }
4713   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4714   // Process indexes [start,end). It will also process the header
4715   // along with the first chunk (i.e., the chunk with start == 0).
4716   // Note that at this point the length field of to_obj_array is not
4717   // correct given that we are using it to keep track of the next
4718   // start index. oop_iterate_range() (thankfully!) ignores the length
4719   // field and only relies on the start / end parameters.  It does
4720   // however return the size of the object which will be incorrect. So
4721   // we have to ignore it even if we wanted to use it.
4722   to_obj_array->oop_iterate_range(&_scanner, start, end);
4723 }
4724 
4725 class G1ParEvacuateFollowersClosure : public VoidClosure {
4726 protected:
4727   G1CollectedHeap*              _g1h;
4728   G1ParScanThreadState*         _par_scan_state;
4729   RefToScanQueueSet*            _queues;
4730   ParallelTaskTerminator*       _terminator;
4731 
4732   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4733   RefToScanQueueSet*      queues()         { return _queues; }
4734   ParallelTaskTerminator* terminator()     { return _terminator; }
4735 
4736 public:
4737   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4738                                 G1ParScanThreadState* par_scan_state,
4739                                 RefToScanQueueSet* queues,
4740                                 ParallelTaskTerminator* terminator)
4741     : _g1h(g1h), _par_scan_state(par_scan_state),
4742       _queues(queues), _terminator(terminator) {}
4743 
4744   void do_void();
4745 
4746 private:
4747   inline bool offer_termination();
4748 };
4749 
4750 bool G1ParEvacuateFollowersClosure::offer_termination() {
4751   G1ParScanThreadState* const pss = par_scan_state();
4752   pss->start_term_time();
4753   const bool res = terminator()->offer_termination();
4754   pss->end_term_time();
4755   return res;
4756 }
4757 
4758 void G1ParEvacuateFollowersClosure::do_void() {
4759   StarTask stolen_task;
4760   G1ParScanThreadState* const pss = par_scan_state();
4761   pss->trim_queue();
4762 
4763   do {
4764     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4765       assert(pss->verify_task(stolen_task), "sanity");
4766       if (stolen_task.is_narrow()) {
4767         pss->deal_with_reference((narrowOop*) stolen_task);
4768       } else {
4769         pss->deal_with_reference((oop*) stolen_task);
4770       }
4771 
4772       // We've just processed a reference and we might have made
4773       // available new entries on the queues. So we have to make sure
4774       // we drain the queues as necessary.
4775       pss->trim_queue();
4776     }
4777   } while (!offer_termination());
4778 
4779   pss->retire_alloc_buffers();
4780 }
4781 
4782 class G1KlassScanClosure : public KlassClosure {
4783  G1ParCopyHelper* _closure;
4784  bool             _process_only_dirty;
4785  int              _count;
4786  public:
4787   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4788       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4789   void do_klass(Klass* klass) {
4790     // If the klass has not been dirtied we know that there's
4791     // no references into  the young gen and we can skip it.
4792    if (!_process_only_dirty || klass->has_modified_oops()) {
4793       // Clean the klass since we're going to scavenge all the metadata.
4794       klass->clear_modified_oops();
4795 
4796       // Tell the closure that this klass is the Klass to scavenge
4797       // and is the one to dirty if oops are left pointing into the young gen.
4798       _closure->set_scanned_klass(klass);
4799 
4800       klass->oops_do(_closure);
4801 
4802       _closure->set_scanned_klass(NULL);
4803     }
4804     _count++;
4805   }
4806 };
4807 
4808 class G1ParTask : public AbstractGangTask {
4809 protected:
4810   G1CollectedHeap*       _g1h;
4811   RefToScanQueueSet      *_queues;
4812   ParallelTaskTerminator _terminator;
4813   uint _n_workers;
4814 
4815   Mutex _stats_lock;
4816   Mutex* stats_lock() { return &_stats_lock; }
4817 
4818   size_t getNCards() {
4819     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4820       / G1BlockOffsetSharedArray::N_bytes;
4821   }
4822 
4823 public:
4824   G1ParTask(G1CollectedHeap* g1h,
4825             RefToScanQueueSet *task_queues)
4826     : AbstractGangTask("G1 collection"),
4827       _g1h(g1h),
4828       _queues(task_queues),
4829       _terminator(0, _queues),
4830       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4831   {}
4832 
4833   RefToScanQueueSet* queues() { return _queues; }
4834 
4835   RefToScanQueue *work_queue(int i) {
4836     return queues()->queue(i);
4837   }
4838 
4839   ParallelTaskTerminator* terminator() { return &_terminator; }
4840 
4841   virtual void set_for_termination(int active_workers) {
4842     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4843     // in the young space (_par_seq_tasks) in the G1 heap
4844     // for SequentialSubTasksDone.
4845     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4846     // both of which need setting by set_n_termination().
4847     _g1h->SharedHeap::set_n_termination(active_workers);
4848     _g1h->set_n_termination(active_workers);
4849     terminator()->reset_for_reuse(active_workers);
4850     _n_workers = active_workers;
4851   }
4852 
4853   void work(uint worker_id) {
4854     if (worker_id >= _n_workers) return;  // no work needed this round
4855 
4856     double start_time_ms = os::elapsedTime() * 1000.0;
4857     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4858 
4859     {
4860       ResourceMark rm;
4861       HandleMark   hm;
4862 
4863       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4864 
4865       G1ParScanThreadState            pss(_g1h, worker_id);
4866       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4867       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4868       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4869 
4870       pss.set_evac_closure(&scan_evac_cl);
4871       pss.set_evac_failure_closure(&evac_failure_cl);
4872       pss.set_partial_scan_closure(&partial_scan_cl);
4873 
4874       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4875       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4876 
4877       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4878       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
4879 
4880       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
4881       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
4882       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4883 
4884       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4885       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4886 
4887       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4888         // We also need to mark copied objects.
4889         scan_root_cl = &scan_mark_root_cl;
4890         scan_klasses_cl = &scan_mark_klasses_cl_s;
4891       }
4892 
4893       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4894 
4895       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
4896 
4897       pss.start_strong_roots();
4898       _g1h->g1_process_strong_roots(/* is scavenging */ true,
4899                                     SharedHeap::ScanningOption(so),
4900                                     scan_root_cl,
4901                                     &push_heap_rs_cl,
4902                                     scan_klasses_cl,
4903                                     worker_id);
4904       pss.end_strong_roots();
4905 
4906       {
4907         double start = os::elapsedTime();
4908         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4909         evac.do_void();
4910         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4911         double term_ms = pss.term_time()*1000.0;
4912         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4913         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4914       }
4915       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4916       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4917 
4918       if (ParallelGCVerbose) {
4919         MutexLocker x(stats_lock());
4920         pss.print_termination_stats(worker_id);
4921       }
4922 
4923       assert(pss.refs()->is_empty(), "should be empty");
4924 
4925       // Close the inner scope so that the ResourceMark and HandleMark
4926       // destructors are executed here and are included as part of the
4927       // "GC Worker Time".
4928     }
4929 
4930     double end_time_ms = os::elapsedTime() * 1000.0;
4931     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4932   }
4933 };
4934 
4935 // *** Common G1 Evacuation Stuff
4936 
4937 // Closures that support the filtering of CodeBlobs scanned during
4938 // external root scanning.
4939 
4940 // Closure applied to reference fields in code blobs (specifically nmethods)
4941 // to determine whether an nmethod contains references that point into
4942 // the collection set. Used as a predicate when walking code roots so
4943 // that only nmethods that point into the collection set are added to the
4944 // 'marked' list.
4945 
4946 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4947 
4948   class G1PointsIntoCSOopClosure : public OopClosure {
4949     G1CollectedHeap* _g1;
4950     bool _points_into_cs;
4951   public:
4952     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4953       _g1(g1), _points_into_cs(false) { }
4954 
4955     bool points_into_cs() const { return _points_into_cs; }
4956 
4957     template <class T>
4958     void do_oop_nv(T* p) {
4959       if (!_points_into_cs) {
4960         T heap_oop = oopDesc::load_heap_oop(p);
4961         if (!oopDesc::is_null(heap_oop) &&
4962             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4963           _points_into_cs = true;
4964         }
4965       }
4966     }
4967 
4968     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4969     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4970   };
4971 
4972   G1CollectedHeap* _g1;
4973 
4974 public:
4975   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4976     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4977 
4978   virtual void do_code_blob(CodeBlob* cb) {
4979     nmethod* nm = cb->as_nmethod_or_null();
4980     if (nm != NULL && !(nm->test_oops_do_mark())) {
4981       G1PointsIntoCSOopClosure predicate_cl(_g1);
4982       nm->oops_do(&predicate_cl);
4983 
4984       if (predicate_cl.points_into_cs()) {
4985         // At least one of the reference fields or the oop relocations
4986         // in the nmethod points into the collection set. We have to
4987         // 'mark' this nmethod.
4988         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4989         // or MarkingCodeBlobClosure::do_code_blob() change.
4990         if (!nm->test_set_oops_do_mark()) {
4991           do_newly_marked_nmethod(nm);
4992         }
4993       }
4994     }
4995   }
4996 };
4997 
4998 // This method is run in a GC worker.
4999 
5000 void
5001 G1CollectedHeap::
5002 g1_process_strong_roots(bool is_scavenging,
5003                         ScanningOption so,
5004                         OopClosure* scan_non_heap_roots,
5005                         OopsInHeapRegionClosure* scan_rs,
5006                         G1KlassScanClosure* scan_klasses,
5007                         int worker_i) {
5008 
5009   // First scan the strong roots
5010   double ext_roots_start = os::elapsedTime();
5011   double closure_app_time_sec = 0.0;
5012 
5013   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5014 
5015   // Walk the code cache w/o buffering, because StarTask cannot handle
5016   // unaligned oop locations.
5017   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5018 
5019   process_strong_roots(false, // no scoping; this is parallel code
5020                        is_scavenging, so,
5021                        &buf_scan_non_heap_roots,
5022                        &eager_scan_code_roots,
5023                        scan_klasses
5024                        );
5025 
5026   // Now the CM ref_processor roots.
5027   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5028     // We need to treat the discovered reference lists of the
5029     // concurrent mark ref processor as roots and keep entries
5030     // (which are added by the marking threads) on them live
5031     // until they can be processed at the end of marking.
5032     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5033   }
5034 
5035   // Finish up any enqueued closure apps (attributed as object copy time).
5036   buf_scan_non_heap_roots.done();
5037 
5038   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5039 
5040   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5041 
5042   double ext_root_time_ms =
5043     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5044 
5045   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5046 
5047   // During conc marking we have to filter the per-thread SATB buffers
5048   // to make sure we remove any oops into the CSet (which will show up
5049   // as implicitly live).
5050   double satb_filtering_ms = 0.0;
5051   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5052     if (mark_in_progress()) {
5053       double satb_filter_start = os::elapsedTime();
5054 
5055       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5056 
5057       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5058     }
5059   }
5060   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5061 
5062   // Now scan the complement of the collection set.
5063   if (scan_rs != NULL) {
5064     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5065   }
5066   _process_strong_tasks->all_tasks_completed();
5067 }
5068 
5069 void
5070 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5071   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5072   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5073 }
5074 
5075 // Weak Reference Processing support
5076 
5077 // An always "is_alive" closure that is used to preserve referents.
5078 // If the object is non-null then it's alive.  Used in the preservation
5079 // of referent objects that are pointed to by reference objects
5080 // discovered by the CM ref processor.
5081 class G1AlwaysAliveClosure: public BoolObjectClosure {
5082   G1CollectedHeap* _g1;
5083 public:
5084   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5085   bool do_object_b(oop p) {
5086     if (p != NULL) {
5087       return true;
5088     }
5089     return false;
5090   }
5091 };
5092 
5093 bool G1STWIsAliveClosure::do_object_b(oop p) {
5094   // An object is reachable if it is outside the collection set,
5095   // or is inside and copied.
5096   return !_g1->obj_in_cs(p) || p->is_forwarded();
5097 }
5098 
5099 // Non Copying Keep Alive closure
5100 class G1KeepAliveClosure: public OopClosure {
5101   G1CollectedHeap* _g1;
5102 public:
5103   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5104   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5105   void do_oop(      oop* p) {
5106     oop obj = *p;
5107 
5108     if (_g1->obj_in_cs(obj)) {
5109       assert( obj->is_forwarded(), "invariant" );
5110       *p = obj->forwardee();
5111     }
5112   }
5113 };
5114 
5115 // Copying Keep Alive closure - can be called from both
5116 // serial and parallel code as long as different worker
5117 // threads utilize different G1ParScanThreadState instances
5118 // and different queues.
5119 
5120 class G1CopyingKeepAliveClosure: public OopClosure {
5121   G1CollectedHeap*         _g1h;
5122   OopClosure*              _copy_non_heap_obj_cl;
5123   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5124   G1ParScanThreadState*    _par_scan_state;
5125 
5126 public:
5127   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5128                             OopClosure* non_heap_obj_cl,
5129                             OopsInHeapRegionClosure* metadata_obj_cl,
5130                             G1ParScanThreadState* pss):
5131     _g1h(g1h),
5132     _copy_non_heap_obj_cl(non_heap_obj_cl),
5133     _copy_metadata_obj_cl(metadata_obj_cl),
5134     _par_scan_state(pss)
5135   {}
5136 
5137   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5138   virtual void do_oop(      oop* p) { do_oop_work(p); }
5139 
5140   template <class T> void do_oop_work(T* p) {
5141     oop obj = oopDesc::load_decode_heap_oop(p);
5142 
5143     if (_g1h->obj_in_cs(obj)) {
5144       // If the referent object has been forwarded (either copied
5145       // to a new location or to itself in the event of an
5146       // evacuation failure) then we need to update the reference
5147       // field and, if both reference and referent are in the G1
5148       // heap, update the RSet for the referent.
5149       //
5150       // If the referent has not been forwarded then we have to keep
5151       // it alive by policy. Therefore we have copy the referent.
5152       //
5153       // If the reference field is in the G1 heap then we can push
5154       // on the PSS queue. When the queue is drained (after each
5155       // phase of reference processing) the object and it's followers
5156       // will be copied, the reference field set to point to the
5157       // new location, and the RSet updated. Otherwise we need to
5158       // use the the non-heap or metadata closures directly to copy
5159       // the refernt object and update the pointer, while avoiding
5160       // updating the RSet.
5161 
5162       if (_g1h->is_in_g1_reserved(p)) {
5163         _par_scan_state->push_on_queue(p);
5164       } else {
5165         assert(!ClassLoaderDataGraph::contains((address)p),
5166                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5167                               PTR_FORMAT, p));
5168           _copy_non_heap_obj_cl->do_oop(p);
5169         }
5170       }
5171     }
5172 };
5173 
5174 // Serial drain queue closure. Called as the 'complete_gc'
5175 // closure for each discovered list in some of the
5176 // reference processing phases.
5177 
5178 class G1STWDrainQueueClosure: public VoidClosure {
5179 protected:
5180   G1CollectedHeap* _g1h;
5181   G1ParScanThreadState* _par_scan_state;
5182 
5183   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5184 
5185 public:
5186   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5187     _g1h(g1h),
5188     _par_scan_state(pss)
5189   { }
5190 
5191   void do_void() {
5192     G1ParScanThreadState* const pss = par_scan_state();
5193     pss->trim_queue();
5194   }
5195 };
5196 
5197 // Parallel Reference Processing closures
5198 
5199 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5200 // processing during G1 evacuation pauses.
5201 
5202 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5203 private:
5204   G1CollectedHeap*   _g1h;
5205   RefToScanQueueSet* _queues;
5206   FlexibleWorkGang*  _workers;
5207   int                _active_workers;
5208 
5209 public:
5210   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5211                         FlexibleWorkGang* workers,
5212                         RefToScanQueueSet *task_queues,
5213                         int n_workers) :
5214     _g1h(g1h),
5215     _queues(task_queues),
5216     _workers(workers),
5217     _active_workers(n_workers)
5218   {
5219     assert(n_workers > 0, "shouldn't call this otherwise");
5220   }
5221 
5222   // Executes the given task using concurrent marking worker threads.
5223   virtual void execute(ProcessTask& task);
5224   virtual void execute(EnqueueTask& task);
5225 };
5226 
5227 // Gang task for possibly parallel reference processing
5228 
5229 class G1STWRefProcTaskProxy: public AbstractGangTask {
5230   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5231   ProcessTask&     _proc_task;
5232   G1CollectedHeap* _g1h;
5233   RefToScanQueueSet *_task_queues;
5234   ParallelTaskTerminator* _terminator;
5235 
5236 public:
5237   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5238                      G1CollectedHeap* g1h,
5239                      RefToScanQueueSet *task_queues,
5240                      ParallelTaskTerminator* terminator) :
5241     AbstractGangTask("Process reference objects in parallel"),
5242     _proc_task(proc_task),
5243     _g1h(g1h),
5244     _task_queues(task_queues),
5245     _terminator(terminator)
5246   {}
5247 
5248   virtual void work(uint worker_id) {
5249     // The reference processing task executed by a single worker.
5250     ResourceMark rm;
5251     HandleMark   hm;
5252 
5253     G1STWIsAliveClosure is_alive(_g1h);
5254 
5255     G1ParScanThreadState pss(_g1h, worker_id);
5256 
5257     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5258     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5259     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5260 
5261     pss.set_evac_closure(&scan_evac_cl);
5262     pss.set_evac_failure_closure(&evac_failure_cl);
5263     pss.set_partial_scan_closure(&partial_scan_cl);
5264 
5265     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5266     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5267 
5268     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5269     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5270 
5271     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5272     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5273 
5274     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5275       // We also need to mark copied objects.
5276       copy_non_heap_cl = &copy_mark_non_heap_cl;
5277       copy_metadata_cl = &copy_mark_metadata_cl;
5278     }
5279 
5280     // Keep alive closure.
5281     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5282 
5283     // Complete GC closure
5284     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5285 
5286     // Call the reference processing task's work routine.
5287     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5288 
5289     // Note we cannot assert that the refs array is empty here as not all
5290     // of the processing tasks (specifically phase2 - pp2_work) execute
5291     // the complete_gc closure (which ordinarily would drain the queue) so
5292     // the queue may not be empty.
5293   }
5294 };
5295 
5296 // Driver routine for parallel reference processing.
5297 // Creates an instance of the ref processing gang
5298 // task and has the worker threads execute it.
5299 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5300   assert(_workers != NULL, "Need parallel worker threads.");
5301 
5302   ParallelTaskTerminator terminator(_active_workers, _queues);
5303   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5304 
5305   _g1h->set_par_threads(_active_workers);
5306   _workers->run_task(&proc_task_proxy);
5307   _g1h->set_par_threads(0);
5308 }
5309 
5310 // Gang task for parallel reference enqueueing.
5311 
5312 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5313   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5314   EnqueueTask& _enq_task;
5315 
5316 public:
5317   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5318     AbstractGangTask("Enqueue reference objects in parallel"),
5319     _enq_task(enq_task)
5320   { }
5321 
5322   virtual void work(uint worker_id) {
5323     _enq_task.work(worker_id);
5324   }
5325 };
5326 
5327 // Driver routine for parallel reference enqueing.
5328 // Creates an instance of the ref enqueueing gang
5329 // task and has the worker threads execute it.
5330 
5331 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5332   assert(_workers != NULL, "Need parallel worker threads.");
5333 
5334   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5335 
5336   _g1h->set_par_threads(_active_workers);
5337   _workers->run_task(&enq_task_proxy);
5338   _g1h->set_par_threads(0);
5339 }
5340 
5341 // End of weak reference support closures
5342 
5343 // Abstract task used to preserve (i.e. copy) any referent objects
5344 // that are in the collection set and are pointed to by reference
5345 // objects discovered by the CM ref processor.
5346 
5347 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5348 protected:
5349   G1CollectedHeap* _g1h;
5350   RefToScanQueueSet      *_queues;
5351   ParallelTaskTerminator _terminator;
5352   uint _n_workers;
5353 
5354 public:
5355   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5356     AbstractGangTask("ParPreserveCMReferents"),
5357     _g1h(g1h),
5358     _queues(task_queues),
5359     _terminator(workers, _queues),
5360     _n_workers(workers)
5361   { }
5362 
5363   void work(uint worker_id) {
5364     ResourceMark rm;
5365     HandleMark   hm;
5366 
5367     G1ParScanThreadState            pss(_g1h, worker_id);
5368     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5369     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5370     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5371 
5372     pss.set_evac_closure(&scan_evac_cl);
5373     pss.set_evac_failure_closure(&evac_failure_cl);
5374     pss.set_partial_scan_closure(&partial_scan_cl);
5375 
5376     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5377 
5378 
5379     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5380     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5381 
5382     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5383     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5384 
5385     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5386     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5387 
5388     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5389       // We also need to mark copied objects.
5390       copy_non_heap_cl = &copy_mark_non_heap_cl;
5391       copy_metadata_cl = &copy_mark_metadata_cl;
5392     }
5393 
5394     // Is alive closure
5395     G1AlwaysAliveClosure always_alive(_g1h);
5396 
5397     // Copying keep alive closure. Applied to referent objects that need
5398     // to be copied.
5399     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5400 
5401     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5402 
5403     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5404     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5405 
5406     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5407     // So this must be true - but assert just in case someone decides to
5408     // change the worker ids.
5409     assert(0 <= worker_id && worker_id < limit, "sanity");
5410     assert(!rp->discovery_is_atomic(), "check this code");
5411 
5412     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5413     for (uint idx = worker_id; idx < limit; idx += stride) {
5414       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5415 
5416       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5417       while (iter.has_next()) {
5418         // Since discovery is not atomic for the CM ref processor, we
5419         // can see some null referent objects.
5420         iter.load_ptrs(DEBUG_ONLY(true));
5421         oop ref = iter.obj();
5422 
5423         // This will filter nulls.
5424         if (iter.is_referent_alive()) {
5425           iter.make_referent_alive();
5426         }
5427         iter.move_to_next();
5428       }
5429     }
5430 
5431     // Drain the queue - which may cause stealing
5432     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5433     drain_queue.do_void();
5434     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5435     assert(pss.refs()->is_empty(), "should be");
5436   }
5437 };
5438 
5439 // Weak Reference processing during an evacuation pause (part 1).
5440 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5441   double ref_proc_start = os::elapsedTime();
5442 
5443   ReferenceProcessor* rp = _ref_processor_stw;
5444   assert(rp->discovery_enabled(), "should have been enabled");
5445 
5446   // Any reference objects, in the collection set, that were 'discovered'
5447   // by the CM ref processor should have already been copied (either by
5448   // applying the external root copy closure to the discovered lists, or
5449   // by following an RSet entry).
5450   //
5451   // But some of the referents, that are in the collection set, that these
5452   // reference objects point to may not have been copied: the STW ref
5453   // processor would have seen that the reference object had already
5454   // been 'discovered' and would have skipped discovering the reference,
5455   // but would not have treated the reference object as a regular oop.
5456   // As a reult the copy closure would not have been applied to the
5457   // referent object.
5458   //
5459   // We need to explicitly copy these referent objects - the references
5460   // will be processed at the end of remarking.
5461   //
5462   // We also need to do this copying before we process the reference
5463   // objects discovered by the STW ref processor in case one of these
5464   // referents points to another object which is also referenced by an
5465   // object discovered by the STW ref processor.
5466 
5467   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5468            no_of_gc_workers == workers()->active_workers(),
5469            "Need to reset active GC workers");
5470 
5471   set_par_threads(no_of_gc_workers);
5472   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5473                                                  no_of_gc_workers,
5474                                                  _task_queues);
5475 
5476   if (G1CollectedHeap::use_parallel_gc_threads()) {
5477     workers()->run_task(&keep_cm_referents);
5478   } else {
5479     keep_cm_referents.work(0);
5480   }
5481 
5482   set_par_threads(0);
5483 
5484   // Closure to test whether a referent is alive.
5485   G1STWIsAliveClosure is_alive(this);
5486 
5487   // Even when parallel reference processing is enabled, the processing
5488   // of JNI refs is serial and performed serially by the current thread
5489   // rather than by a worker. The following PSS will be used for processing
5490   // JNI refs.
5491 
5492   // Use only a single queue for this PSS.
5493   G1ParScanThreadState pss(this, 0);
5494 
5495   // We do not embed a reference processor in the copying/scanning
5496   // closures while we're actually processing the discovered
5497   // reference objects.
5498   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5499   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5500   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5501 
5502   pss.set_evac_closure(&scan_evac_cl);
5503   pss.set_evac_failure_closure(&evac_failure_cl);
5504   pss.set_partial_scan_closure(&partial_scan_cl);
5505 
5506   assert(pss.refs()->is_empty(), "pre-condition");
5507 
5508   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5509   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5510 
5511   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5512   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5513 
5514   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5515   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5516 
5517   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5518     // We also need to mark copied objects.
5519     copy_non_heap_cl = &copy_mark_non_heap_cl;
5520     copy_metadata_cl = &copy_mark_metadata_cl;
5521   }
5522 
5523   // Keep alive closure.
5524   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5525 
5526   // Serial Complete GC closure
5527   G1STWDrainQueueClosure drain_queue(this, &pss);
5528 
5529   // Setup the soft refs policy...
5530   rp->setup_policy(false);
5531 
5532   if (!rp->processing_is_mt()) {
5533     // Serial reference processing...
5534     rp->process_discovered_references(&is_alive,
5535                                       &keep_alive,
5536                                       &drain_queue,
5537                                       NULL);
5538   } else {
5539     // Parallel reference processing
5540     assert(rp->num_q() == no_of_gc_workers, "sanity");
5541     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5542 
5543     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5544     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5545   }
5546 
5547   // We have completed copying any necessary live referent objects
5548   // (that were not copied during the actual pause) so we can
5549   // retire any active alloc buffers
5550   pss.retire_alloc_buffers();
5551   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5552 
5553   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5554   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5555 }
5556 
5557 // Weak Reference processing during an evacuation pause (part 2).
5558 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5559   double ref_enq_start = os::elapsedTime();
5560 
5561   ReferenceProcessor* rp = _ref_processor_stw;
5562   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5563 
5564   // Now enqueue any remaining on the discovered lists on to
5565   // the pending list.
5566   if (!rp->processing_is_mt()) {
5567     // Serial reference processing...
5568     rp->enqueue_discovered_references();
5569   } else {
5570     // Parallel reference enqueuing
5571 
5572     assert(no_of_gc_workers == workers()->active_workers(),
5573            "Need to reset active workers");
5574     assert(rp->num_q() == no_of_gc_workers, "sanity");
5575     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5576 
5577     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5578     rp->enqueue_discovered_references(&par_task_executor);
5579   }
5580 
5581   rp->verify_no_references_recorded();
5582   assert(!rp->discovery_enabled(), "should have been disabled");
5583 
5584   // FIXME
5585   // CM's reference processing also cleans up the string and symbol tables.
5586   // Should we do that here also? We could, but it is a serial operation
5587   // and could signicantly increase the pause time.
5588 
5589   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5590   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5591 }
5592 
5593 void G1CollectedHeap::evacuate_collection_set() {
5594   _expand_heap_after_alloc_failure = true;
5595   set_evacuation_failed(false);
5596 
5597   // Should G1EvacuationFailureALot be in effect for this GC?
5598   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5599 
5600   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5601 
5602   // Disable the hot card cache.
5603   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5604   hot_card_cache->reset_hot_cache_claimed_index();
5605   hot_card_cache->set_use_cache(false);
5606 
5607   uint n_workers;
5608   if (G1CollectedHeap::use_parallel_gc_threads()) {
5609     n_workers =
5610       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5611                                      workers()->active_workers(),
5612                                      Threads::number_of_non_daemon_threads());
5613     assert(UseDynamicNumberOfGCThreads ||
5614            n_workers == workers()->total_workers(),
5615            "If not dynamic should be using all the  workers");
5616     workers()->set_active_workers(n_workers);
5617     set_par_threads(n_workers);
5618   } else {
5619     assert(n_par_threads() == 0,
5620            "Should be the original non-parallel value");
5621     n_workers = 1;
5622   }
5623 
5624   G1ParTask g1_par_task(this, _task_queues);
5625 
5626   init_for_evac_failure(NULL);
5627 
5628   rem_set()->prepare_for_younger_refs_iterate(true);
5629 
5630   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5631   double start_par_time_sec = os::elapsedTime();
5632   double end_par_time_sec;
5633 
5634   {
5635     StrongRootsScope srs(this);
5636 
5637     if (G1CollectedHeap::use_parallel_gc_threads()) {
5638       // The individual threads will set their evac-failure closures.
5639       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5640       // These tasks use ShareHeap::_process_strong_tasks
5641       assert(UseDynamicNumberOfGCThreads ||
5642              workers()->active_workers() == workers()->total_workers(),
5643              "If not dynamic should be using all the  workers");
5644       workers()->run_task(&g1_par_task);
5645     } else {
5646       g1_par_task.set_for_termination(n_workers);
5647       g1_par_task.work(0);
5648     }
5649     end_par_time_sec = os::elapsedTime();
5650 
5651     // Closing the inner scope will execute the destructor
5652     // for the StrongRootsScope object. We record the current
5653     // elapsed time before closing the scope so that time
5654     // taken for the SRS destructor is NOT included in the
5655     // reported parallel time.
5656   }
5657 
5658   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5659   g1_policy()->phase_times()->record_par_time(par_time_ms);
5660 
5661   double code_root_fixup_time_ms =
5662         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5663   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5664 
5665   set_par_threads(0);
5666 
5667   // Process any discovered reference objects - we have
5668   // to do this _before_ we retire the GC alloc regions
5669   // as we may have to copy some 'reachable' referent
5670   // objects (and their reachable sub-graphs) that were
5671   // not copied during the pause.
5672   process_discovered_references(n_workers);
5673 
5674   // Weak root processing.
5675   // Note: when JSR 292 is enabled and code blobs can contain
5676   // non-perm oops then we will need to process the code blobs
5677   // here too.
5678   {
5679     G1STWIsAliveClosure is_alive(this);
5680     G1KeepAliveClosure keep_alive(this);
5681     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5682   }
5683 
5684   release_gc_alloc_regions(n_workers);
5685   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5686 
5687   // Reset and re-enable the hot card cache.
5688   // Note the counts for the cards in the regions in the
5689   // collection set are reset when the collection set is freed.
5690   hot_card_cache->reset_hot_cache();
5691   hot_card_cache->set_use_cache(true);
5692 
5693   finalize_for_evac_failure();
5694 
5695   if (evacuation_failed()) {
5696     remove_self_forwarding_pointers();
5697 
5698     // Reset the G1EvacuationFailureALot counters and flags
5699     // Note: the values are reset only when an actual
5700     // evacuation failure occurs.
5701     NOT_PRODUCT(reset_evacuation_should_fail();)
5702   }
5703 
5704   // Enqueue any remaining references remaining on the STW
5705   // reference processor's discovered lists. We need to do
5706   // this after the card table is cleaned (and verified) as
5707   // the act of enqueuing entries on to the pending list
5708   // will log these updates (and dirty their associated
5709   // cards). We need these updates logged to update any
5710   // RSets.
5711   enqueue_discovered_references(n_workers);
5712 
5713   if (G1DeferredRSUpdate) {
5714     RedirtyLoggedCardTableEntryFastClosure redirty;
5715     dirty_card_queue_set().set_closure(&redirty);
5716     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5717 
5718     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5719     dcq.merge_bufferlists(&dirty_card_queue_set());
5720     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5721   }
5722   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5723 }
5724 
5725 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5726                                      size_t* pre_used,
5727                                      FreeRegionList* free_list,
5728                                      OldRegionSet* old_proxy_set,
5729                                      HumongousRegionSet* humongous_proxy_set,
5730                                      HRRSCleanupTask* hrrs_cleanup_task,
5731                                      bool par) {
5732   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5733     if (hr->isHumongous()) {
5734       assert(hr->startsHumongous(), "we should only see starts humongous");
5735       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5736     } else {
5737       _old_set.remove_with_proxy(hr, old_proxy_set);
5738       free_region(hr, pre_used, free_list, par);
5739     }
5740   } else {
5741     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5742   }
5743 }
5744 
5745 void G1CollectedHeap::free_region(HeapRegion* hr,
5746                                   size_t* pre_used,
5747                                   FreeRegionList* free_list,
5748                                   bool par) {
5749   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5750   assert(!hr->is_empty(), "the region should not be empty");
5751   assert(free_list != NULL, "pre-condition");
5752 
5753   // Clear the card counts for this region.
5754   // Note: we only need to do this if the region is not young
5755   // (since we don't refine cards in young regions).
5756   if (!hr->is_young()) {
5757     _cg1r->hot_card_cache()->reset_card_counts(hr);
5758   }
5759   *pre_used += hr->used();
5760   hr->hr_clear(par, true /* clear_space */);
5761   free_list->add_as_head(hr);
5762 }
5763 
5764 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5765                                      size_t* pre_used,
5766                                      FreeRegionList* free_list,
5767                                      HumongousRegionSet* humongous_proxy_set,
5768                                      bool par) {
5769   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5770   assert(free_list != NULL, "pre-condition");
5771   assert(humongous_proxy_set != NULL, "pre-condition");
5772 
5773   size_t hr_used = hr->used();
5774   size_t hr_capacity = hr->capacity();
5775   size_t hr_pre_used = 0;
5776   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5777   // We need to read this before we make the region non-humongous,
5778   // otherwise the information will be gone.
5779   uint last_index = hr->last_hc_index();
5780   hr->set_notHumongous();
5781   free_region(hr, &hr_pre_used, free_list, par);
5782 
5783   uint i = hr->hrs_index() + 1;
5784   while (i < last_index) {
5785     HeapRegion* curr_hr = region_at(i);
5786     assert(curr_hr->continuesHumongous(), "invariant");
5787     curr_hr->set_notHumongous();
5788     free_region(curr_hr, &hr_pre_used, free_list, par);
5789     i += 1;
5790   }
5791   assert(hr_pre_used == hr_used,
5792          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5793                  "should be the same", hr_pre_used, hr_used));
5794   *pre_used += hr_pre_used;
5795 }
5796 
5797 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5798                                        FreeRegionList* free_list,
5799                                        OldRegionSet* old_proxy_set,
5800                                        HumongousRegionSet* humongous_proxy_set,
5801                                        bool par) {
5802   if (pre_used > 0) {
5803     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5804     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5805     assert(_summary_bytes_used >= pre_used,
5806            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5807                    "should be >= pre_used: "SIZE_FORMAT,
5808                    _summary_bytes_used, pre_used));
5809     _summary_bytes_used -= pre_used;
5810   }
5811   if (free_list != NULL && !free_list->is_empty()) {
5812     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5813     _free_list.add_as_head(free_list);
5814   }
5815   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5816     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5817     _old_set.update_from_proxy(old_proxy_set);
5818   }
5819   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5820     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5821     _humongous_set.update_from_proxy(humongous_proxy_set);
5822   }
5823 }
5824 
5825 class G1ParCleanupCTTask : public AbstractGangTask {
5826   CardTableModRefBS* _ct_bs;
5827   G1CollectedHeap* _g1h;
5828   HeapRegion* volatile _su_head;
5829 public:
5830   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5831                      G1CollectedHeap* g1h) :
5832     AbstractGangTask("G1 Par Cleanup CT Task"),
5833     _ct_bs(ct_bs), _g1h(g1h) { }
5834 
5835   void work(uint worker_id) {
5836     HeapRegion* r;
5837     while (r = _g1h->pop_dirty_cards_region()) {
5838       clear_cards(r);
5839     }
5840   }
5841 
5842   void clear_cards(HeapRegion* r) {
5843     // Cards of the survivors should have already been dirtied.
5844     if (!r->is_survivor()) {
5845       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5846     }
5847   }
5848 };
5849 
5850 #ifndef PRODUCT
5851 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5852   G1CollectedHeap* _g1h;
5853   CardTableModRefBS* _ct_bs;
5854 public:
5855   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5856     : _g1h(g1h), _ct_bs(ct_bs) { }
5857   virtual bool doHeapRegion(HeapRegion* r) {
5858     if (r->is_survivor()) {
5859       _g1h->verify_dirty_region(r);
5860     } else {
5861       _g1h->verify_not_dirty_region(r);
5862     }
5863     return false;
5864   }
5865 };
5866 
5867 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5868   // All of the region should be clean.
5869   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5870   MemRegion mr(hr->bottom(), hr->end());
5871   ct_bs->verify_not_dirty_region(mr);
5872 }
5873 
5874 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5875   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5876   // dirty allocated blocks as they allocate them. The thread that
5877   // retires each region and replaces it with a new one will do a
5878   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5879   // not dirty that area (one less thing to have to do while holding
5880   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5881   // is dirty.
5882   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5883   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5884   ct_bs->verify_dirty_region(mr);
5885 }
5886 
5887 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5888   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5889   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5890     verify_dirty_region(hr);
5891   }
5892 }
5893 
5894 void G1CollectedHeap::verify_dirty_young_regions() {
5895   verify_dirty_young_list(_young_list->first_region());
5896 }
5897 #endif
5898 
5899 void G1CollectedHeap::cleanUpCardTable() {
5900   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5901   double start = os::elapsedTime();
5902 
5903   {
5904     // Iterate over the dirty cards region list.
5905     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5906 
5907     if (G1CollectedHeap::use_parallel_gc_threads()) {
5908       set_par_threads();
5909       workers()->run_task(&cleanup_task);
5910       set_par_threads(0);
5911     } else {
5912       while (_dirty_cards_region_list) {
5913         HeapRegion* r = _dirty_cards_region_list;
5914         cleanup_task.clear_cards(r);
5915         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5916         if (_dirty_cards_region_list == r) {
5917           // The last region.
5918           _dirty_cards_region_list = NULL;
5919         }
5920         r->set_next_dirty_cards_region(NULL);
5921       }
5922     }
5923 #ifndef PRODUCT
5924     if (G1VerifyCTCleanup || VerifyAfterGC) {
5925       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5926       heap_region_iterate(&cleanup_verifier);
5927     }
5928 #endif
5929   }
5930 
5931   double elapsed = os::elapsedTime() - start;
5932   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5933 }
5934 
5935 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5936   size_t pre_used = 0;
5937   FreeRegionList local_free_list("Local List for CSet Freeing");
5938 
5939   double young_time_ms     = 0.0;
5940   double non_young_time_ms = 0.0;
5941 
5942   // Since the collection set is a superset of the the young list,
5943   // all we need to do to clear the young list is clear its
5944   // head and length, and unlink any young regions in the code below
5945   _young_list->clear();
5946 
5947   G1CollectorPolicy* policy = g1_policy();
5948 
5949   double start_sec = os::elapsedTime();
5950   bool non_young = true;
5951 
5952   HeapRegion* cur = cs_head;
5953   int age_bound = -1;
5954   size_t rs_lengths = 0;
5955 
5956   while (cur != NULL) {
5957     assert(!is_on_master_free_list(cur), "sanity");
5958     if (non_young) {
5959       if (cur->is_young()) {
5960         double end_sec = os::elapsedTime();
5961         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5962         non_young_time_ms += elapsed_ms;
5963 
5964         start_sec = os::elapsedTime();
5965         non_young = false;
5966       }
5967     } else {
5968       if (!cur->is_young()) {
5969         double end_sec = os::elapsedTime();
5970         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5971         young_time_ms += elapsed_ms;
5972 
5973         start_sec = os::elapsedTime();
5974         non_young = true;
5975       }
5976     }
5977 
5978     rs_lengths += cur->rem_set()->occupied();
5979 
5980     HeapRegion* next = cur->next_in_collection_set();
5981     assert(cur->in_collection_set(), "bad CS");
5982     cur->set_next_in_collection_set(NULL);
5983     cur->set_in_collection_set(false);
5984 
5985     if (cur->is_young()) {
5986       int index = cur->young_index_in_cset();
5987       assert(index != -1, "invariant");
5988       assert((uint) index < policy->young_cset_region_length(), "invariant");
5989       size_t words_survived = _surviving_young_words[index];
5990       cur->record_surv_words_in_group(words_survived);
5991 
5992       // At this point the we have 'popped' cur from the collection set
5993       // (linked via next_in_collection_set()) but it is still in the
5994       // young list (linked via next_young_region()). Clear the
5995       // _next_young_region field.
5996       cur->set_next_young_region(NULL);
5997     } else {
5998       int index = cur->young_index_in_cset();
5999       assert(index == -1, "invariant");
6000     }
6001 
6002     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6003             (!cur->is_young() && cur->young_index_in_cset() == -1),
6004             "invariant" );
6005 
6006     if (!cur->evacuation_failed()) {
6007       MemRegion used_mr = cur->used_region();
6008 
6009       // And the region is empty.
6010       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6011       free_region(cur, &pre_used, &local_free_list, false /* par */);
6012     } else {
6013       cur->uninstall_surv_rate_group();
6014       if (cur->is_young()) {
6015         cur->set_young_index_in_cset(-1);
6016       }
6017       cur->set_not_young();
6018       cur->set_evacuation_failed(false);
6019       // The region is now considered to be old.
6020       _old_set.add(cur);
6021     }
6022     cur = next;
6023   }
6024 
6025   policy->record_max_rs_lengths(rs_lengths);
6026   policy->cset_regions_freed();
6027 
6028   double end_sec = os::elapsedTime();
6029   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6030 
6031   if (non_young) {
6032     non_young_time_ms += elapsed_ms;
6033   } else {
6034     young_time_ms += elapsed_ms;
6035   }
6036 
6037   update_sets_after_freeing_regions(pre_used, &local_free_list,
6038                                     NULL /* old_proxy_set */,
6039                                     NULL /* humongous_proxy_set */,
6040                                     false /* par */);
6041   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6042   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6043 }
6044 
6045 // This routine is similar to the above but does not record
6046 // any policy statistics or update free lists; we are abandoning
6047 // the current incremental collection set in preparation of a
6048 // full collection. After the full GC we will start to build up
6049 // the incremental collection set again.
6050 // This is only called when we're doing a full collection
6051 // and is immediately followed by the tearing down of the young list.
6052 
6053 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6054   HeapRegion* cur = cs_head;
6055 
6056   while (cur != NULL) {
6057     HeapRegion* next = cur->next_in_collection_set();
6058     assert(cur->in_collection_set(), "bad CS");
6059     cur->set_next_in_collection_set(NULL);
6060     cur->set_in_collection_set(false);
6061     cur->set_young_index_in_cset(-1);
6062     cur = next;
6063   }
6064 }
6065 
6066 void G1CollectedHeap::set_free_regions_coming() {
6067   if (G1ConcRegionFreeingVerbose) {
6068     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6069                            "setting free regions coming");
6070   }
6071 
6072   assert(!free_regions_coming(), "pre-condition");
6073   _free_regions_coming = true;
6074 }
6075 
6076 void G1CollectedHeap::reset_free_regions_coming() {
6077   assert(free_regions_coming(), "pre-condition");
6078 
6079   {
6080     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6081     _free_regions_coming = false;
6082     SecondaryFreeList_lock->notify_all();
6083   }
6084 
6085   if (G1ConcRegionFreeingVerbose) {
6086     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6087                            "reset free regions coming");
6088   }
6089 }
6090 
6091 void G1CollectedHeap::wait_while_free_regions_coming() {
6092   // Most of the time we won't have to wait, so let's do a quick test
6093   // first before we take the lock.
6094   if (!free_regions_coming()) {
6095     return;
6096   }
6097 
6098   if (G1ConcRegionFreeingVerbose) {
6099     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6100                            "waiting for free regions");
6101   }
6102 
6103   {
6104     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6105     while (free_regions_coming()) {
6106       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6107     }
6108   }
6109 
6110   if (G1ConcRegionFreeingVerbose) {
6111     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6112                            "done waiting for free regions");
6113   }
6114 }
6115 
6116 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6117   assert(heap_lock_held_for_gc(),
6118               "the heap lock should already be held by or for this thread");
6119   _young_list->push_region(hr);
6120 }
6121 
6122 class NoYoungRegionsClosure: public HeapRegionClosure {
6123 private:
6124   bool _success;
6125 public:
6126   NoYoungRegionsClosure() : _success(true) { }
6127   bool doHeapRegion(HeapRegion* r) {
6128     if (r->is_young()) {
6129       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6130                              r->bottom(), r->end());
6131       _success = false;
6132     }
6133     return false;
6134   }
6135   bool success() { return _success; }
6136 };
6137 
6138 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6139   bool ret = _young_list->check_list_empty(check_sample);
6140 
6141   if (check_heap) {
6142     NoYoungRegionsClosure closure;
6143     heap_region_iterate(&closure);
6144     ret = ret && closure.success();
6145   }
6146 
6147   return ret;
6148 }
6149 
6150 class TearDownRegionSetsClosure : public HeapRegionClosure {
6151 private:
6152   OldRegionSet *_old_set;
6153 
6154 public:
6155   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6156 
6157   bool doHeapRegion(HeapRegion* r) {
6158     if (r->is_empty()) {
6159       // We ignore empty regions, we'll empty the free list afterwards
6160     } else if (r->is_young()) {
6161       // We ignore young regions, we'll empty the young list afterwards
6162     } else if (r->isHumongous()) {
6163       // We ignore humongous regions, we're not tearing down the
6164       // humongous region set
6165     } else {
6166       // The rest should be old
6167       _old_set->remove(r);
6168     }
6169     return false;
6170   }
6171 
6172   ~TearDownRegionSetsClosure() {
6173     assert(_old_set->is_empty(), "post-condition");
6174   }
6175 };
6176 
6177 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6178   assert_at_safepoint(true /* should_be_vm_thread */);
6179 
6180   if (!free_list_only) {
6181     TearDownRegionSetsClosure cl(&_old_set);
6182     heap_region_iterate(&cl);
6183 
6184     // Need to do this after the heap iteration to be able to
6185     // recognize the young regions and ignore them during the iteration.
6186     _young_list->empty_list();
6187   }
6188   _free_list.remove_all();
6189 }
6190 
6191 class RebuildRegionSetsClosure : public HeapRegionClosure {
6192 private:
6193   bool            _free_list_only;
6194   OldRegionSet*   _old_set;
6195   FreeRegionList* _free_list;
6196   size_t          _total_used;
6197 
6198 public:
6199   RebuildRegionSetsClosure(bool free_list_only,
6200                            OldRegionSet* old_set, FreeRegionList* free_list) :
6201     _free_list_only(free_list_only),
6202     _old_set(old_set), _free_list(free_list), _total_used(0) {
6203     assert(_free_list->is_empty(), "pre-condition");
6204     if (!free_list_only) {
6205       assert(_old_set->is_empty(), "pre-condition");
6206     }
6207   }
6208 
6209   bool doHeapRegion(HeapRegion* r) {
6210     if (r->continuesHumongous()) {
6211       return false;
6212     }
6213 
6214     if (r->is_empty()) {
6215       // Add free regions to the free list
6216       _free_list->add_as_tail(r);
6217     } else if (!_free_list_only) {
6218       assert(!r->is_young(), "we should not come across young regions");
6219 
6220       if (r->isHumongous()) {
6221         // We ignore humongous regions, we left the humongous set unchanged
6222       } else {
6223         // The rest should be old, add them to the old set
6224         _old_set->add(r);
6225       }
6226       _total_used += r->used();
6227     }
6228 
6229     return false;
6230   }
6231 
6232   size_t total_used() {
6233     return _total_used;
6234   }
6235 };
6236 
6237 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6238   assert_at_safepoint(true /* should_be_vm_thread */);
6239 
6240   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6241   heap_region_iterate(&cl);
6242 
6243   if (!free_list_only) {
6244     _summary_bytes_used = cl.total_used();
6245   }
6246   assert(_summary_bytes_used == recalculate_used(),
6247          err_msg("inconsistent _summary_bytes_used, "
6248                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6249                  _summary_bytes_used, recalculate_used()));
6250 }
6251 
6252 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6253   _refine_cte_cl->set_concurrent(concurrent);
6254 }
6255 
6256 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6257   HeapRegion* hr = heap_region_containing(p);
6258   if (hr == NULL) {
6259     return false;
6260   } else {
6261     return hr->is_in(p);
6262   }
6263 }
6264 
6265 // Methods for the mutator alloc region
6266 
6267 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6268                                                       bool force) {
6269   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6270   assert(!force || g1_policy()->can_expand_young_list(),
6271          "if force is true we should be able to expand the young list");
6272   bool young_list_full = g1_policy()->is_young_list_full();
6273   if (force || !young_list_full) {
6274     HeapRegion* new_alloc_region = new_region(word_size,
6275                                               false /* do_expand */);
6276     if (new_alloc_region != NULL) {
6277       set_region_short_lived_locked(new_alloc_region);
6278       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6279       return new_alloc_region;
6280     }
6281   }
6282   return NULL;
6283 }
6284 
6285 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6286                                                   size_t allocated_bytes) {
6287   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6288   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6289 
6290   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6291   _summary_bytes_used += allocated_bytes;
6292   _hr_printer.retire(alloc_region);
6293   // We update the eden sizes here, when the region is retired,
6294   // instead of when it's allocated, since this is the point that its
6295   // used space has been recored in _summary_bytes_used.
6296   g1mm()->update_eden_size();
6297 }
6298 
6299 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6300                                                     bool force) {
6301   return _g1h->new_mutator_alloc_region(word_size, force);
6302 }
6303 
6304 void G1CollectedHeap::set_par_threads() {
6305   // Don't change the number of workers.  Use the value previously set
6306   // in the workgroup.
6307   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6308   uint n_workers = workers()->active_workers();
6309   assert(UseDynamicNumberOfGCThreads ||
6310            n_workers == workers()->total_workers(),
6311       "Otherwise should be using the total number of workers");
6312   if (n_workers == 0) {
6313     assert(false, "Should have been set in prior evacuation pause.");
6314     n_workers = ParallelGCThreads;
6315     workers()->set_active_workers(n_workers);
6316   }
6317   set_par_threads(n_workers);
6318 }
6319 
6320 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6321                                        size_t allocated_bytes) {
6322   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6323 }
6324 
6325 // Methods for the GC alloc regions
6326 
6327 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6328                                                  uint count,
6329                                                  GCAllocPurpose ap) {
6330   assert(FreeList_lock->owned_by_self(), "pre-condition");
6331 
6332   if (count < g1_policy()->max_regions(ap)) {
6333     HeapRegion* new_alloc_region = new_region(word_size,
6334                                               true /* do_expand */);
6335     if (new_alloc_region != NULL) {
6336       // We really only need to do this for old regions given that we
6337       // should never scan survivors. But it doesn't hurt to do it
6338       // for survivors too.
6339       new_alloc_region->set_saved_mark();
6340       if (ap == GCAllocForSurvived) {
6341         new_alloc_region->set_survivor();
6342         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6343       } else {
6344         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6345       }
6346       bool during_im = g1_policy()->during_initial_mark_pause();
6347       new_alloc_region->note_start_of_copying(during_im);
6348       return new_alloc_region;
6349     } else {
6350       g1_policy()->note_alloc_region_limit_reached(ap);
6351     }
6352   }
6353   return NULL;
6354 }
6355 
6356 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6357                                              size_t allocated_bytes,
6358                                              GCAllocPurpose ap) {
6359   bool during_im = g1_policy()->during_initial_mark_pause();
6360   alloc_region->note_end_of_copying(during_im);
6361   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6362   if (ap == GCAllocForSurvived) {
6363     young_list()->add_survivor_region(alloc_region);
6364   } else {
6365     _old_set.add(alloc_region);
6366   }
6367   _hr_printer.retire(alloc_region);
6368 }
6369 
6370 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6371                                                        bool force) {
6372   assert(!force, "not supported for GC alloc regions");
6373   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6374 }
6375 
6376 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6377                                           size_t allocated_bytes) {
6378   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6379                                GCAllocForSurvived);
6380 }
6381 
6382 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6383                                                   bool force) {
6384   assert(!force, "not supported for GC alloc regions");
6385   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6386 }
6387 
6388 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6389                                      size_t allocated_bytes) {
6390   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6391                                GCAllocForTenured);
6392 }
6393 // Heap region set verification
6394 
6395 class VerifyRegionListsClosure : public HeapRegionClosure {
6396 private:
6397   FreeRegionList*     _free_list;
6398   OldRegionSet*       _old_set;
6399   HumongousRegionSet* _humongous_set;
6400   uint                _region_count;
6401 
6402 public:
6403   VerifyRegionListsClosure(OldRegionSet* old_set,
6404                            HumongousRegionSet* humongous_set,
6405                            FreeRegionList* free_list) :
6406     _old_set(old_set), _humongous_set(humongous_set),
6407     _free_list(free_list), _region_count(0) { }
6408 
6409   uint region_count() { return _region_count; }
6410 
6411   bool doHeapRegion(HeapRegion* hr) {
6412     _region_count += 1;
6413 
6414     if (hr->continuesHumongous()) {
6415       return false;
6416     }
6417 
6418     if (hr->is_young()) {
6419       // TODO
6420     } else if (hr->startsHumongous()) {
6421       _humongous_set->verify_next_region(hr);
6422     } else if (hr->is_empty()) {
6423       _free_list->verify_next_region(hr);
6424     } else {
6425       _old_set->verify_next_region(hr);
6426     }
6427     return false;
6428   }
6429 };
6430 
6431 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6432                                              HeapWord* bottom) {
6433   HeapWord* end = bottom + HeapRegion::GrainWords;
6434   MemRegion mr(bottom, end);
6435   assert(_g1_reserved.contains(mr), "invariant");
6436   // This might return NULL if the allocation fails
6437   return new HeapRegion(hrs_index, _bot_shared, mr);
6438 }
6439 
6440 void G1CollectedHeap::verify_region_sets() {
6441   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6442 
6443   // First, check the explicit lists.
6444   _free_list.verify();
6445   {
6446     // Given that a concurrent operation might be adding regions to
6447     // the secondary free list we have to take the lock before
6448     // verifying it.
6449     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6450     _secondary_free_list.verify();
6451   }
6452   _old_set.verify();
6453   _humongous_set.verify();
6454 
6455   // If a concurrent region freeing operation is in progress it will
6456   // be difficult to correctly attributed any free regions we come
6457   // across to the correct free list given that they might belong to
6458   // one of several (free_list, secondary_free_list, any local lists,
6459   // etc.). So, if that's the case we will skip the rest of the
6460   // verification operation. Alternatively, waiting for the concurrent
6461   // operation to complete will have a non-trivial effect on the GC's
6462   // operation (no concurrent operation will last longer than the
6463   // interval between two calls to verification) and it might hide
6464   // any issues that we would like to catch during testing.
6465   if (free_regions_coming()) {
6466     return;
6467   }
6468 
6469   // Make sure we append the secondary_free_list on the free_list so
6470   // that all free regions we will come across can be safely
6471   // attributed to the free_list.
6472   append_secondary_free_list_if_not_empty_with_lock();
6473 
6474   // Finally, make sure that the region accounting in the lists is
6475   // consistent with what we see in the heap.
6476   _old_set.verify_start();
6477   _humongous_set.verify_start();
6478   _free_list.verify_start();
6479 
6480   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6481   heap_region_iterate(&cl);
6482 
6483   _old_set.verify_end();
6484   _humongous_set.verify_end();
6485   _free_list.verify_end();
6486 }