1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/vmGCOperations.hpp"
  32 #include "gc_interface/collectedHeap.inline.hpp"
  33 #include "memory/filemap.hpp"
  34 #include "memory/gcLocker.inline.hpp"
  35 #include "memory/genCollectedHeap.hpp"
  36 #include "memory/genOopClosures.inline.hpp"
  37 #include "memory/generation.inline.hpp"
  38 #include "memory/generationSpec.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/sharedHeap.hpp"
  41 #include "memory/space.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/oop.inline2.hpp"
  44 #include "runtime/biasedLocking.hpp"
  45 #include "runtime/fprofiler.hpp"
  46 #include "runtime/handles.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/vmThread.hpp"
  50 #include "services/memoryService.hpp"
  51 #include "utilities/vmError.hpp"
  52 #include "utilities/workgroup.hpp"
  53 #include "utilities/macros.hpp"
  54 #if INCLUDE_ALL_GCS
  55 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  56 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  57 #endif // INCLUDE_ALL_GCS
  58 
  59 GenCollectedHeap* GenCollectedHeap::_gch;
  60 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  61 
  62 // The set of potentially parallel tasks in strong root scanning.
  63 enum GCH_process_strong_roots_tasks {
  64   // We probably want to parallelize both of these internally, but for now...
  65   GCH_PS_younger_gens,
  66   // Leave this one last.
  67   GCH_PS_NumElements
  68 };
  69 
  70 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  71   SharedHeap(policy),
  72   _gen_policy(policy),
  73   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  74   _full_collections_completed(0)
  75 {
  76   if (_gen_process_strong_tasks == NULL ||
  77       !_gen_process_strong_tasks->valid()) {
  78     vm_exit_during_initialization("Failed necessary allocation.");
  79   }
  80   assert(policy != NULL, "Sanity check");
  81 }
  82 
  83 jint GenCollectedHeap::initialize() {
  84   CollectedHeap::pre_initialize();
  85 
  86   int i;
  87   _n_gens = gen_policy()->number_of_generations();
  88 
  89   // While there are no constraints in the GC code that HeapWordSize
  90   // be any particular value, there are multiple other areas in the
  91   // system which believe this to be true (e.g. oop->object_size in some
  92   // cases incorrectly returns the size in wordSize units rather than
  93   // HeapWordSize).
  94   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  95 
  96   // The heap must be at least as aligned as generations.
  97   size_t alignment = Generation::GenGrain;
  98 
  99   _gen_specs = gen_policy()->generations();
 100 
 101   // Make sure the sizes are all aligned.
 102   for (i = 0; i < _n_gens; i++) {
 103     _gen_specs[i]->align(alignment);
 104   }
 105 
 106   // Allocate space for the heap.
 107 
 108   char* heap_address;
 109   size_t total_reserved = 0;
 110   int n_covered_regions = 0;
 111   ReservedSpace heap_rs(0);
 112 
 113   heap_address = allocate(alignment, &total_reserved,
 114                           &n_covered_regions, &heap_rs);
 115 
 116   if (!heap_rs.is_reserved()) {
 117     vm_shutdown_during_initialization(
 118       "Could not reserve enough space for object heap");
 119     return JNI_ENOMEM;
 120   }
 121 
 122   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 123                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 124 
 125   // It is important to do this in a way such that concurrent readers can't
 126   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
 127   _reserved.set_word_size(0);
 128   _reserved.set_start((HeapWord*)heap_rs.base());
 129   size_t actual_heap_size = heap_rs.size();
 130   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
 131 
 132   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
 133   set_barrier_set(rem_set()->bs());
 134 
 135   _gch = this;
 136 
 137   for (i = 0; i < _n_gens; i++) {
 138     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
 139     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 140     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 141   }
 142   clear_incremental_collection_failed();
 143 
 144 #if INCLUDE_ALL_GCS
 145   // If we are running CMS, create the collector responsible
 146   // for collecting the CMS generations.
 147   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 148     bool success = create_cms_collector();
 149     if (!success) return JNI_ENOMEM;
 150   }
 151 #endif // INCLUDE_ALL_GCS
 152 
 153   return JNI_OK;
 154 }
 155 
 156 
 157 char* GenCollectedHeap::allocate(size_t alignment,
 158                                  size_t* _total_reserved,
 159                                  int* _n_covered_regions,
 160                                  ReservedSpace* heap_rs){
 161   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 162     "the maximum representable size";
 163 
 164   // Now figure out the total size.
 165   size_t total_reserved = 0;
 166   int n_covered_regions = 0;
 167   const size_t pageSize = UseLargePages ?
 168       os::large_page_size() : os::vm_page_size();
 169 
 170   for (int i = 0; i < _n_gens; i++) {
 171     total_reserved += _gen_specs[i]->max_size();
 172     if (total_reserved < _gen_specs[i]->max_size()) {
 173       vm_exit_during_initialization(overflow_msg);
 174     }
 175     n_covered_regions += _gen_specs[i]->n_covered_regions();
 176   }
 177   assert(total_reserved % pageSize == 0,
 178          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
 179                  SIZE_FORMAT, total_reserved, pageSize));
 180 
 181   // Needed until the cardtable is fixed to have the right number
 182   // of covered regions.
 183   n_covered_regions += 2;
 184 
 185   if (UseLargePages) {
 186     assert(total_reserved != 0, "total_reserved cannot be 0");
 187     total_reserved = round_to(total_reserved, os::large_page_size());
 188     if (total_reserved < os::large_page_size()) {
 189       vm_exit_during_initialization(overflow_msg);
 190     }
 191   }
 192 
 193       *_total_reserved = total_reserved;
 194       *_n_covered_regions = n_covered_regions;
 195   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 196   return heap_rs->base();
 197 }
 198 
 199 
 200 void GenCollectedHeap::post_initialize() {
 201   SharedHeap::post_initialize();
 202   TwoGenerationCollectorPolicy *policy =
 203     (TwoGenerationCollectorPolicy *)collector_policy();
 204   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
 205   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 206   assert(def_new_gen->kind() == Generation::DefNew ||
 207          def_new_gen->kind() == Generation::ParNew ||
 208          def_new_gen->kind() == Generation::ASParNew,
 209          "Wrong generation kind");
 210 
 211   Generation* old_gen = get_gen(1);
 212   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 213          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
 214          old_gen->kind() == Generation::MarkSweepCompact,
 215     "Wrong generation kind");
 216 
 217   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 218                                  old_gen->capacity(),
 219                                  def_new_gen->from()->capacity());
 220   policy->initialize_gc_policy_counters();
 221 }
 222 
 223 void GenCollectedHeap::ref_processing_init() {
 224   SharedHeap::ref_processing_init();
 225   for (int i = 0; i < _n_gens; i++) {
 226     _gens[i]->ref_processor_init();
 227   }
 228 }
 229 
 230 size_t GenCollectedHeap::capacity() const {
 231   size_t res = 0;
 232   for (int i = 0; i < _n_gens; i++) {
 233     res += _gens[i]->capacity();
 234   }
 235   return res;
 236 }
 237 
 238 size_t GenCollectedHeap::used() const {
 239   size_t res = 0;
 240   for (int i = 0; i < _n_gens; i++) {
 241     res += _gens[i]->used();
 242   }
 243   return res;
 244 }
 245 
 246 // Save the "used_region" for generations level and lower.
 247 void GenCollectedHeap::save_used_regions(int level) {
 248   assert(level < _n_gens, "Illegal level parameter");
 249   for (int i = level; i >= 0; i--) {
 250     _gens[i]->save_used_region();
 251   }
 252 }
 253 
 254 size_t GenCollectedHeap::max_capacity() const {
 255   size_t res = 0;
 256   for (int i = 0; i < _n_gens; i++) {
 257     res += _gens[i]->max_capacity();
 258   }
 259   return res;
 260 }
 261 
 262 // Update the _full_collections_completed counter
 263 // at the end of a stop-world full GC.
 264 unsigned int GenCollectedHeap::update_full_collections_completed() {
 265   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 266   assert(_full_collections_completed <= _total_full_collections,
 267          "Can't complete more collections than were started");
 268   _full_collections_completed = _total_full_collections;
 269   ml.notify_all();
 270   return _full_collections_completed;
 271 }
 272 
 273 // Update the _full_collections_completed counter, as appropriate,
 274 // at the end of a concurrent GC cycle. Note the conditional update
 275 // below to allow this method to be called by a concurrent collector
 276 // without synchronizing in any manner with the VM thread (which
 277 // may already have initiated a STW full collection "concurrently").
 278 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 279   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 280   assert((_full_collections_completed <= _total_full_collections) &&
 281          (count <= _total_full_collections),
 282          "Can't complete more collections than were started");
 283   if (count > _full_collections_completed) {
 284     _full_collections_completed = count;
 285     ml.notify_all();
 286   }
 287   return _full_collections_completed;
 288 }
 289 
 290 
 291 #ifndef PRODUCT
 292 // Override of memory state checking method in CollectedHeap:
 293 // Some collectors (CMS for example) can't have badHeapWordVal written
 294 // in the first two words of an object. (For instance , in the case of
 295 // CMS these words hold state used to synchronize between certain
 296 // (concurrent) GC steps and direct allocating mutators.)
 297 // The skip_header_HeapWords() method below, allows us to skip
 298 // over the requisite number of HeapWord's. Note that (for
 299 // generational collectors) this means that those many words are
 300 // skipped in each object, irrespective of the generation in which
 301 // that object lives. The resultant loss of precision seems to be
 302 // harmless and the pain of avoiding that imprecision appears somewhat
 303 // higher than we are prepared to pay for such rudimentary debugging
 304 // support.
 305 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 306                                                          size_t size) {
 307   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 308     // We are asked to check a size in HeapWords,
 309     // but the memory is mangled in juint words.
 310     juint* start = (juint*) (addr + skip_header_HeapWords());
 311     juint* end   = (juint*) (addr + size);
 312     for (juint* slot = start; slot < end; slot += 1) {
 313       assert(*slot == badHeapWordVal,
 314              "Found non badHeapWordValue in pre-allocation check");
 315     }
 316   }
 317 }
 318 #endif
 319 
 320 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 321                                                bool is_tlab,
 322                                                bool first_only) {
 323   HeapWord* res;
 324   for (int i = 0; i < _n_gens; i++) {
 325     if (_gens[i]->should_allocate(size, is_tlab)) {
 326       res = _gens[i]->allocate(size, is_tlab);
 327       if (res != NULL) return res;
 328       else if (first_only) break;
 329     }
 330   }
 331   // Otherwise...
 332   return NULL;
 333 }
 334 
 335 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 336                                          bool* gc_overhead_limit_was_exceeded) {
 337   return collector_policy()->mem_allocate_work(size,
 338                                                false /* is_tlab */,
 339                                                gc_overhead_limit_was_exceeded);
 340 }
 341 
 342 bool GenCollectedHeap::must_clear_all_soft_refs() {
 343   return _gc_cause == GCCause::_last_ditch_collection;
 344 }
 345 
 346 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 347   return UseConcMarkSweepGC &&
 348          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 349           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 350 }
 351 
 352 void GenCollectedHeap::do_collection(bool  full,
 353                                      bool   clear_all_soft_refs,
 354                                      size_t size,
 355                                      bool   is_tlab,
 356                                      int    max_level) {
 357   bool prepared_for_verification = false;
 358   ResourceMark rm;
 359   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 360 
 361   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 362   assert(my_thread->is_VM_thread() ||
 363          my_thread->is_ConcurrentGC_thread(),
 364          "incorrect thread type capability");
 365   assert(Heap_lock->is_locked(),
 366          "the requesting thread should have the Heap_lock");
 367   guarantee(!is_gc_active(), "collection is not reentrant");
 368   assert(max_level < n_gens(), "sanity check");
 369 
 370   if (GC_locker::check_active_before_gc()) {
 371     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 372   }
 373 
 374   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 375                           collector_policy()->should_clear_all_soft_refs();
 376 
 377   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 378 
 379   const size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
 380 
 381   print_heap_before_gc();
 382 
 383   {
 384     FlagSetting fl(_is_gc_active, true);
 385 
 386     bool complete = full && (max_level == (n_gens()-1));
 387     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 388     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 389     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 390     TraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, gclog_or_tty);
 391 
 392     gc_prologue(complete);
 393     increment_total_collections(complete);
 394 
 395     size_t gch_prev_used = used();
 396 
 397     int starting_level = 0;
 398     if (full) {
 399       // Search for the oldest generation which will collect all younger
 400       // generations, and start collection loop there.
 401       for (int i = max_level; i >= 0; i--) {
 402         if (_gens[i]->full_collects_younger_generations()) {
 403           starting_level = i;
 404           break;
 405         }
 406       }
 407     }
 408 
 409     bool must_restore_marks_for_biased_locking = false;
 410 
 411     int max_level_collected = starting_level;
 412     for (int i = starting_level; i <= max_level; i++) {
 413       if (_gens[i]->should_collect(full, size, is_tlab)) {
 414         if (i == n_gens() - 1) {  // a major collection is to happen
 415           if (!complete) {
 416             // The full_collections increment was missed above.
 417             increment_total_full_collections();
 418           }
 419           pre_full_gc_dump();    // do any pre full gc dumps
 420         }
 421         // Timer for individual generations. Last argument is false: no CR
 422         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
 423         TraceCollectorStats tcs(_gens[i]->counters());
 424         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 425 
 426         size_t prev_used = _gens[i]->used();
 427         _gens[i]->stat_record()->invocations++;
 428         _gens[i]->stat_record()->accumulated_time.start();
 429 
 430         // Must be done anew before each collection because
 431         // a previous collection will do mangling and will
 432         // change top of some spaces.
 433         record_gen_tops_before_GC();
 434 
 435         if (PrintGC && Verbose) {
 436           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 437                      i,
 438                      _gens[i]->stat_record()->invocations,
 439                      size*HeapWordSize);
 440         }
 441 
 442         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 443             total_collections() >= VerifyGCStartAt) {
 444           HandleMark hm;  // Discard invalid handles created during verification
 445           if (!prepared_for_verification) {
 446             prepare_for_verify();
 447             prepared_for_verification = true;
 448           }
 449           Universe::verify(" VerifyBeforeGC:");
 450         }
 451         COMPILER2_PRESENT(DerivedPointerTable::clear());
 452 
 453         if (!must_restore_marks_for_biased_locking &&
 454             _gens[i]->performs_in_place_marking()) {
 455           // We perform this mark word preservation work lazily
 456           // because it's only at this point that we know whether we
 457           // absolutely have to do it; we want to avoid doing it for
 458           // scavenge-only collections where it's unnecessary
 459           must_restore_marks_for_biased_locking = true;
 460           BiasedLocking::preserve_marks();
 461         }
 462 
 463         // Do collection work
 464         {
 465           // Note on ref discovery: For what appear to be historical reasons,
 466           // GCH enables and disabled (by enqueing) refs discovery.
 467           // In the future this should be moved into the generation's
 468           // collect method so that ref discovery and enqueueing concerns
 469           // are local to a generation. The collect method could return
 470           // an appropriate indication in the case that notification on
 471           // the ref lock was needed. This will make the treatment of
 472           // weak refs more uniform (and indeed remove such concerns
 473           // from GCH). XXX
 474 
 475           HandleMark hm;  // Discard invalid handles created during gc
 476           save_marks();   // save marks for all gens
 477           // We want to discover references, but not process them yet.
 478           // This mode is disabled in process_discovered_references if the
 479           // generation does some collection work, or in
 480           // enqueue_discovered_references if the generation returns
 481           // without doing any work.
 482           ReferenceProcessor* rp = _gens[i]->ref_processor();
 483           // If the discovery of ("weak") refs in this generation is
 484           // atomic wrt other collectors in this configuration, we
 485           // are guaranteed to have empty discovered ref lists.
 486           if (rp->discovery_is_atomic()) {
 487             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 488             rp->setup_policy(do_clear_all_soft_refs);
 489           } else {
 490             // collect() below will enable discovery as appropriate
 491           }
 492           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 493           if (!rp->enqueuing_is_done()) {
 494             rp->enqueue_discovered_references();
 495           } else {
 496             rp->set_enqueuing_is_done(false);
 497           }
 498           rp->verify_no_references_recorded();
 499         }
 500         max_level_collected = i;
 501 
 502         // Determine if allocation request was met.
 503         if (size > 0) {
 504           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 505             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 506               size = 0;
 507             }
 508           }
 509         }
 510 
 511         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 512 
 513         _gens[i]->stat_record()->accumulated_time.stop();
 514 
 515         update_gc_stats(i, full);
 516 
 517         if (VerifyAfterGC && i >= VerifyGCLevel &&
 518             total_collections() >= VerifyGCStartAt) {
 519           HandleMark hm;  // Discard invalid handles created during verification
 520           Universe::verify(" VerifyAfterGC:");
 521         }
 522 
 523         if (PrintGCDetails) {
 524           gclog_or_tty->print(":");
 525           _gens[i]->print_heap_change(prev_used);
 526         }
 527       }
 528     }
 529 
 530     // Update "complete" boolean wrt what actually transpired --
 531     // for instance, a promotion failure could have led to
 532     // a whole heap collection.
 533     complete = complete || (max_level_collected == n_gens() - 1);
 534 
 535     if (complete) { // We did a "major" collection
 536       post_full_gc_dump();   // do any post full gc dumps
 537     }
 538 
 539     if (PrintGCDetails) {
 540       print_heap_change(gch_prev_used);
 541 
 542       // Print metaspace info for full GC with PrintGCDetails flag.
 543       if (complete) {
 544         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 545       }
 546     }
 547 
 548     for (int j = max_level_collected; j >= 0; j -= 1) {
 549       // Adjust generation sizes.
 550       _gens[j]->compute_new_size();
 551     }
 552 
 553     if (complete) {
 554       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 555       ClassLoaderDataGraph::purge();
 556       MetaspaceAux::verify_metrics();
 557       // Resize the metaspace capacity after full collections
 558       MetaspaceGC::compute_new_size();
 559       update_full_collections_completed();
 560     }
 561 
 562     // Track memory usage and detect low memory after GC finishes
 563     MemoryService::track_memory_usage();
 564 
 565     gc_epilogue(complete);
 566 
 567     if (must_restore_marks_for_biased_locking) {
 568       BiasedLocking::restore_marks();
 569     }
 570   }
 571 
 572   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
 573   AdaptiveSizePolicyOutput(sp, total_collections());
 574 
 575   print_heap_after_gc();
 576 
 577 #ifdef TRACESPINNING
 578   ParallelTaskTerminator::print_termination_counts();
 579 #endif
 580 }
 581 
 582 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 583   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 584 }
 585 
 586 void GenCollectedHeap::set_par_threads(uint t) {
 587   SharedHeap::set_par_threads(t);
 588   _gen_process_strong_tasks->set_n_threads(t);
 589 }
 590 
 591 void GenCollectedHeap::
 592 gen_process_strong_roots(int level,
 593                          bool younger_gens_as_roots,
 594                          bool activate_scope,
 595                          bool is_scavenging,
 596                          SharedHeap::ScanningOption so,
 597                          OopsInGenClosure* not_older_gens,
 598                          bool do_code_roots,
 599                          OopsInGenClosure* older_gens,
 600                          KlassClosure* klass_closure) {
 601   // General strong roots.
 602 
 603   if (!do_code_roots) {
 604     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
 605                                      not_older_gens, NULL, klass_closure);
 606   } else {
 607     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
 608     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
 609     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
 610                                      not_older_gens, &code_roots, klass_closure);
 611   }
 612 
 613   if (younger_gens_as_roots) {
 614     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 615       for (int i = 0; i < level; i++) {
 616         not_older_gens->set_generation(_gens[i]);
 617         _gens[i]->oop_iterate(not_older_gens);
 618       }
 619       not_older_gens->reset_generation();
 620     }
 621   }
 622   // When collection is parallel, all threads get to cooperate to do
 623   // older-gen scanning.
 624   for (int i = level+1; i < _n_gens; i++) {
 625     older_gens->set_generation(_gens[i]);
 626     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 627     older_gens->reset_generation();
 628   }
 629 
 630   _gen_process_strong_tasks->all_tasks_completed();
 631 }
 632 
 633 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
 634                                               CodeBlobClosure* code_roots) {
 635   SharedHeap::process_weak_roots(root_closure, code_roots);
 636   // "Local" "weak" refs
 637   for (int i = 0; i < _n_gens; i++) {
 638     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 639   }
 640 }
 641 
 642 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 643 void GenCollectedHeap::                                                 \
 644 oop_since_save_marks_iterate(int level,                                 \
 645                              OopClosureType* cur,                       \
 646                              OopClosureType* older) {                   \
 647   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 648   for (int i = level+1; i < n_gens(); i++) {                            \
 649     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 650   }                                                                     \
 651 }
 652 
 653 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 654 
 655 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 656 
 657 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 658   for (int i = level; i < _n_gens; i++) {
 659     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 660   }
 661   return true;
 662 }
 663 
 664 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 665   return _gens[0]->supports_inline_contig_alloc();
 666 }
 667 
 668 HeapWord** GenCollectedHeap::top_addr() const {
 669   return _gens[0]->top_addr();
 670 }
 671 
 672 HeapWord** GenCollectedHeap::end_addr() const {
 673   return _gens[0]->end_addr();
 674 }
 675 
 676 size_t GenCollectedHeap::unsafe_max_alloc() {
 677   return _gens[0]->unsafe_max_alloc_nogc();
 678 }
 679 
 680 // public collection interfaces
 681 
 682 void GenCollectedHeap::collect(GCCause::Cause cause) {
 683   if (should_do_concurrent_full_gc(cause)) {
 684 #if INCLUDE_ALL_GCS
 685     // mostly concurrent full collection
 686     collect_mostly_concurrent(cause);
 687 #else  // INCLUDE_ALL_GCS
 688     ShouldNotReachHere();
 689 #endif // INCLUDE_ALL_GCS
 690   } else {
 691 #ifdef ASSERT
 692     if (cause == GCCause::_scavenge_alot) {
 693       // minor collection only
 694       collect(cause, 0);
 695     } else {
 696       // Stop-the-world full collection
 697       collect(cause, n_gens() - 1);
 698     }
 699 #else
 700     // Stop-the-world full collection
 701     collect(cause, n_gens() - 1);
 702 #endif
 703   }
 704 }
 705 
 706 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 707   // The caller doesn't have the Heap_lock
 708   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 709   MutexLocker ml(Heap_lock);
 710   collect_locked(cause, max_level);
 711 }
 712 
 713 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 714   // The caller has the Heap_lock
 715   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 716   collect_locked(cause, n_gens() - 1);
 717 }
 718 
 719 // this is the private collection interface
 720 // The Heap_lock is expected to be held on entry.
 721 
 722 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 723   // Read the GC count while holding the Heap_lock
 724   unsigned int gc_count_before      = total_collections();
 725   unsigned int full_gc_count_before = total_full_collections();
 726   {
 727     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 728     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 729                          cause, max_level);
 730     VMThread::execute(&op);
 731   }
 732 }
 733 
 734 #if INCLUDE_ALL_GCS
 735 bool GenCollectedHeap::create_cms_collector() {
 736 
 737   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
 738          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
 739          "Unexpected generation kinds");
 740   // Skip two header words in the block content verification
 741   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 742   CMSCollector* collector = new CMSCollector(
 743     (ConcurrentMarkSweepGeneration*)_gens[1],
 744     _rem_set->as_CardTableRS(),
 745     (ConcurrentMarkSweepPolicy*) collector_policy());
 746 
 747   if (collector == NULL || !collector->completed_initialization()) {
 748     if (collector) {
 749       delete collector;  // Be nice in embedded situation
 750     }
 751     vm_shutdown_during_initialization("Could not create CMS collector");
 752     return false;
 753   }
 754   return true;  // success
 755 }
 756 
 757 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 758   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 759 
 760   MutexLocker ml(Heap_lock);
 761   // Read the GC counts while holding the Heap_lock
 762   unsigned int full_gc_count_before = total_full_collections();
 763   unsigned int gc_count_before      = total_collections();
 764   {
 765     MutexUnlocker mu(Heap_lock);
 766     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 767     VMThread::execute(&op);
 768   }
 769 }
 770 #endif // INCLUDE_ALL_GCS
 771 
 772 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 773    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 774 }
 775 
 776 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 777                                           int max_level) {
 778   int local_max_level;
 779   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 780       gc_cause() == GCCause::_gc_locker) {
 781     local_max_level = 0;
 782   } else {
 783     local_max_level = max_level;
 784   }
 785 
 786   do_collection(true                 /* full */,
 787                 clear_all_soft_refs  /* clear_all_soft_refs */,
 788                 0                    /* size */,
 789                 false                /* is_tlab */,
 790                 local_max_level      /* max_level */);
 791   // Hack XXX FIX ME !!!
 792   // A scavenge may not have been attempted, or may have
 793   // been attempted and failed, because the old gen was too full
 794   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 795       incremental_collection_will_fail(false /* don't consult_young */)) {
 796     if (PrintGCDetails) {
 797       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 798                              "because scavenge failed");
 799     }
 800     // This time allow the old gen to be collected as well
 801     do_collection(true                 /* full */,
 802                   clear_all_soft_refs  /* clear_all_soft_refs */,
 803                   0                    /* size */,
 804                   false                /* is_tlab */,
 805                   n_gens() - 1         /* max_level */);
 806   }
 807 }
 808 
 809 bool GenCollectedHeap::is_in_young(oop p) {
 810   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 811   assert(result == _gens[0]->is_in_reserved(p),
 812          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
 813   return result;
 814 }
 815 
 816 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 817 bool GenCollectedHeap::is_in(const void* p) const {
 818   #ifndef ASSERT
 819   guarantee(VerifyBeforeGC      ||
 820             VerifyDuringGC      ||
 821             VerifyBeforeExit    ||
 822             VerifyDuringStartup ||
 823             PrintAssembly       ||
 824             tty->count() != 0   ||   // already printing
 825             VerifyAfterGC       ||
 826     VMError::fatal_error_in_progress(), "too expensive");
 827 
 828   #endif
 829   // This might be sped up with a cache of the last generation that
 830   // answered yes.
 831   for (int i = 0; i < _n_gens; i++) {
 832     if (_gens[i]->is_in(p)) return true;
 833   }
 834   // Otherwise...
 835   return false;
 836 }
 837 
 838 #ifdef ASSERT
 839 // Don't implement this by using is_in_young().  This method is used
 840 // in some cases to check that is_in_young() is correct.
 841 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 842   assert(is_in_reserved(p) || p == NULL,
 843     "Does not work if address is non-null and outside of the heap");
 844   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 845 }
 846 #endif
 847 
 848 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 849   for (int i = 0; i < _n_gens; i++) {
 850     _gens[i]->oop_iterate(cl);
 851   }
 852 }
 853 
 854 void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 855   for (int i = 0; i < _n_gens; i++) {
 856     _gens[i]->oop_iterate(mr, cl);
 857   }
 858 }
 859 
 860 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 861   for (int i = 0; i < _n_gens; i++) {
 862     _gens[i]->object_iterate(cl);
 863   }
 864 }
 865 
 866 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 867   for (int i = 0; i < _n_gens; i++) {
 868     _gens[i]->safe_object_iterate(cl);
 869   }
 870 }
 871 
 872 Space* GenCollectedHeap::space_containing(const void* addr) const {
 873   for (int i = 0; i < _n_gens; i++) {
 874     Space* res = _gens[i]->space_containing(addr);
 875     if (res != NULL) return res;
 876   }
 877   // Otherwise...
 878   assert(false, "Could not find containing space");
 879   return NULL;
 880 }
 881 
 882 
 883 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 884   assert(is_in_reserved(addr), "block_start of address outside of heap");
 885   for (int i = 0; i < _n_gens; i++) {
 886     if (_gens[i]->is_in_reserved(addr)) {
 887       assert(_gens[i]->is_in(addr),
 888              "addr should be in allocated part of generation");
 889       return _gens[i]->block_start(addr);
 890     }
 891   }
 892   assert(false, "Some generation should contain the address");
 893   return NULL;
 894 }
 895 
 896 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 897   assert(is_in_reserved(addr), "block_size of address outside of heap");
 898   for (int i = 0; i < _n_gens; i++) {
 899     if (_gens[i]->is_in_reserved(addr)) {
 900       assert(_gens[i]->is_in(addr),
 901              "addr should be in allocated part of generation");
 902       return _gens[i]->block_size(addr);
 903     }
 904   }
 905   assert(false, "Some generation should contain the address");
 906   return 0;
 907 }
 908 
 909 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 910   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 911   assert(block_start(addr) == addr, "addr must be a block start");
 912   for (int i = 0; i < _n_gens; i++) {
 913     if (_gens[i]->is_in_reserved(addr)) {
 914       return _gens[i]->block_is_obj(addr);
 915     }
 916   }
 917   assert(false, "Some generation should contain the address");
 918   return false;
 919 }
 920 
 921 bool GenCollectedHeap::supports_tlab_allocation() const {
 922   for (int i = 0; i < _n_gens; i += 1) {
 923     if (_gens[i]->supports_tlab_allocation()) {
 924       return true;
 925     }
 926   }
 927   return false;
 928 }
 929 
 930 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 931   size_t result = 0;
 932   for (int i = 0; i < _n_gens; i += 1) {
 933     if (_gens[i]->supports_tlab_allocation()) {
 934       result += _gens[i]->tlab_capacity();
 935     }
 936   }
 937   return result;
 938 }
 939 
 940 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 941   size_t result = 0;
 942   for (int i = 0; i < _n_gens; i += 1) {
 943     if (_gens[i]->supports_tlab_allocation()) {
 944       result += _gens[i]->unsafe_max_tlab_alloc();
 945     }
 946   }
 947   return result;
 948 }
 949 
 950 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 951   bool gc_overhead_limit_was_exceeded;
 952   return collector_policy()->mem_allocate_work(size /* size */,
 953                                                true /* is_tlab */,
 954                                                &gc_overhead_limit_was_exceeded);
 955 }
 956 
 957 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 958 // from the list headed by "*prev_ptr".
 959 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 960   bool first = true;
 961   size_t min_size = 0;   // "first" makes this conceptually infinite.
 962   ScratchBlock **smallest_ptr, *smallest;
 963   ScratchBlock  *cur = *prev_ptr;
 964   while (cur) {
 965     assert(*prev_ptr == cur, "just checking");
 966     if (first || cur->num_words < min_size) {
 967       smallest_ptr = prev_ptr;
 968       smallest     = cur;
 969       min_size     = smallest->num_words;
 970       first        = false;
 971     }
 972     prev_ptr = &cur->next;
 973     cur     =  cur->next;
 974   }
 975   smallest      = *smallest_ptr;
 976   *smallest_ptr = smallest->next;
 977   return smallest;
 978 }
 979 
 980 // Sort the scratch block list headed by res into decreasing size order,
 981 // and set "res" to the result.
 982 static void sort_scratch_list(ScratchBlock*& list) {
 983   ScratchBlock* sorted = NULL;
 984   ScratchBlock* unsorted = list;
 985   while (unsorted) {
 986     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 987     smallest->next  = sorted;
 988     sorted          = smallest;
 989   }
 990   list = sorted;
 991 }
 992 
 993 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 994                                                size_t max_alloc_words) {
 995   ScratchBlock* res = NULL;
 996   for (int i = 0; i < _n_gens; i++) {
 997     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
 998   }
 999   sort_scratch_list(res);
1000   return res;
1001 }
1002 
1003 void GenCollectedHeap::release_scratch() {
1004   for (int i = 0; i < _n_gens; i++) {
1005     _gens[i]->reset_scratch();
1006   }
1007 }
1008 
1009 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1010   void do_generation(Generation* gen) {
1011     gen->prepare_for_verify();
1012   }
1013 };
1014 
1015 void GenCollectedHeap::prepare_for_verify() {
1016   ensure_parsability(false);        // no need to retire TLABs
1017   GenPrepareForVerifyClosure blk;
1018   generation_iterate(&blk, false);
1019 }
1020 
1021 
1022 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1023                                           bool old_to_young) {
1024   if (old_to_young) {
1025     for (int i = _n_gens-1; i >= 0; i--) {
1026       cl->do_generation(_gens[i]);
1027     }
1028   } else {
1029     for (int i = 0; i < _n_gens; i++) {
1030       cl->do_generation(_gens[i]);
1031     }
1032   }
1033 }
1034 
1035 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1036   for (int i = 0; i < _n_gens; i++) {
1037     _gens[i]->space_iterate(cl, true);
1038   }
1039 }
1040 
1041 bool GenCollectedHeap::is_maximal_no_gc() const {
1042   for (int i = 0; i < _n_gens; i++) {
1043     if (!_gens[i]->is_maximal_no_gc()) {
1044       return false;
1045     }
1046   }
1047   return true;
1048 }
1049 
1050 void GenCollectedHeap::save_marks() {
1051   for (int i = 0; i < _n_gens; i++) {
1052     _gens[i]->save_marks();
1053   }
1054 }
1055 
1056 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
1057   for (int i = 0; i <= collectedGen; i++) {
1058     _gens[i]->compute_new_size();
1059   }
1060 }
1061 
1062 GenCollectedHeap* GenCollectedHeap::heap() {
1063   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1064   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1065   return _gch;
1066 }
1067 
1068 
1069 void GenCollectedHeap::prepare_for_compaction() {
1070   Generation* scanning_gen = _gens[_n_gens-1];
1071   // Start by compacting into same gen.
1072   CompactPoint cp(scanning_gen, NULL, NULL);
1073   while (scanning_gen != NULL) {
1074     scanning_gen->prepare_for_compaction(&cp);
1075     scanning_gen = prev_gen(scanning_gen);
1076   }
1077 }
1078 
1079 GCStats* GenCollectedHeap::gc_stats(int level) const {
1080   return _gens[level]->gc_stats();
1081 }
1082 
1083 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1084   for (int i = _n_gens-1; i >= 0; i--) {
1085     Generation* g = _gens[i];
1086     if (!silent) {
1087       gclog_or_tty->print(g->name());
1088       gclog_or_tty->print(" ");
1089     }
1090     g->verify();
1091   }
1092   if (!silent) {
1093     gclog_or_tty->print("remset ");
1094   }
1095   rem_set()->verify();
1096 }
1097 
1098 void GenCollectedHeap::print_on(outputStream* st) const {
1099   for (int i = 0; i < _n_gens; i++) {
1100     _gens[i]->print_on(st);
1101   }
1102   MetaspaceAux::print_on(st);
1103 }
1104 
1105 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1106   if (workers() != NULL) {
1107     workers()->threads_do(tc);
1108   }
1109 #if INCLUDE_ALL_GCS
1110   if (UseConcMarkSweepGC) {
1111     ConcurrentMarkSweepThread::threads_do(tc);
1112   }
1113 #endif // INCLUDE_ALL_GCS
1114 }
1115 
1116 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1117 #if INCLUDE_ALL_GCS
1118   if (UseParNewGC) {
1119     workers()->print_worker_threads_on(st);
1120   }
1121   if (UseConcMarkSweepGC) {
1122     ConcurrentMarkSweepThread::print_all_on(st);
1123   }
1124 #endif // INCLUDE_ALL_GCS
1125 }
1126 
1127 void GenCollectedHeap::print_on_error(outputStream* st) const {
1128   this->CollectedHeap::print_on_error(st);
1129 
1130 #if INCLUDE_ALL_GCS
1131   if (UseConcMarkSweepGC) {
1132     st->cr();
1133     CMSCollector::print_on_error(st);
1134   }
1135 #endif // INCLUDE_ALL_GCS
1136 }
1137 
1138 void GenCollectedHeap::print_tracing_info() const {
1139   if (TraceGen0Time) {
1140     get_gen(0)->print_summary_info();
1141   }
1142   if (TraceGen1Time) {
1143     get_gen(1)->print_summary_info();
1144   }
1145 }
1146 
1147 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1148   if (PrintGCDetails && Verbose) {
1149     gclog_or_tty->print(" "  SIZE_FORMAT
1150                         "->" SIZE_FORMAT
1151                         "("  SIZE_FORMAT ")",
1152                         prev_used, used(), capacity());
1153   } else {
1154     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1155                         "->" SIZE_FORMAT "K"
1156                         "("  SIZE_FORMAT "K)",
1157                         prev_used / K, used() / K, capacity() / K);
1158   }
1159 }
1160 
1161 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1162  private:
1163   bool _full;
1164  public:
1165   void do_generation(Generation* gen) {
1166     gen->gc_prologue(_full);
1167   }
1168   GenGCPrologueClosure(bool full) : _full(full) {};
1169 };
1170 
1171 void GenCollectedHeap::gc_prologue(bool full) {
1172   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1173 
1174   always_do_update_barrier = false;
1175   // Fill TLAB's and such
1176   CollectedHeap::accumulate_statistics_all_tlabs();
1177   ensure_parsability(true);   // retire TLABs
1178 
1179   // Walk generations
1180   GenGCPrologueClosure blk(full);
1181   generation_iterate(&blk, false);  // not old-to-young.
1182 };
1183 
1184 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1185  private:
1186   bool _full;
1187  public:
1188   void do_generation(Generation* gen) {
1189     gen->gc_epilogue(_full);
1190   }
1191   GenGCEpilogueClosure(bool full) : _full(full) {};
1192 };
1193 
1194 void GenCollectedHeap::gc_epilogue(bool full) {
1195 #ifdef COMPILER2
1196   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1197   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1198   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1199 #endif /* COMPILER2 */
1200 
1201   resize_all_tlabs();
1202 
1203   GenGCEpilogueClosure blk(full);
1204   generation_iterate(&blk, false);  // not old-to-young.
1205 
1206   if (!CleanChunkPoolAsync) {
1207     Chunk::clean_chunk_pool();
1208   }
1209 
1210   MetaspaceCounters::update_performance_counters();
1211 
1212   always_do_update_barrier = UseConcMarkSweepGC;
1213 };
1214 
1215 #ifndef PRODUCT
1216 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1217  private:
1218  public:
1219   void do_generation(Generation* gen) {
1220     gen->record_spaces_top();
1221   }
1222 };
1223 
1224 void GenCollectedHeap::record_gen_tops_before_GC() {
1225   if (ZapUnusedHeapArea) {
1226     GenGCSaveTopsBeforeGCClosure blk;
1227     generation_iterate(&blk, false);  // not old-to-young.
1228   }
1229 }
1230 #endif  // not PRODUCT
1231 
1232 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1233  public:
1234   void do_generation(Generation* gen) {
1235     gen->ensure_parsability();
1236   }
1237 };
1238 
1239 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1240   CollectedHeap::ensure_parsability(retire_tlabs);
1241   GenEnsureParsabilityClosure ep_cl;
1242   generation_iterate(&ep_cl, false);
1243 }
1244 
1245 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
1246                                               oop obj,
1247                                               size_t obj_size) {
1248   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1249   HeapWord* result = NULL;
1250 
1251   // First give each higher generation a chance to allocate the promoted object.
1252   Generation* allocator = next_gen(gen);
1253   if (allocator != NULL) {
1254     do {
1255       result = allocator->allocate(obj_size, false);
1256     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
1257   }
1258 
1259   if (result == NULL) {
1260     // Then give gen and higher generations a chance to expand and allocate the
1261     // object.
1262     do {
1263       result = gen->expand_and_allocate(obj_size, false);
1264     } while (result == NULL && (gen = next_gen(gen)) != NULL);
1265   }
1266 
1267   if (result != NULL) {
1268     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1269   }
1270   return oop(result);
1271 }
1272 
1273 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1274   jlong _time;   // in ms
1275   jlong _now;    // in ms
1276 
1277  public:
1278   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1279 
1280   jlong time() { return _time; }
1281 
1282   void do_generation(Generation* gen) {
1283     _time = MIN2(_time, gen->time_of_last_gc(_now));
1284   }
1285 };
1286 
1287 jlong GenCollectedHeap::millis_since_last_gc() {
1288   // We need a monotonically non-deccreasing time in ms but
1289   // os::javaTimeMillis() does not guarantee monotonicity.
1290   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1291   GenTimeOfLastGCClosure tolgc_cl(now);
1292   // iterate over generations getting the oldest
1293   // time that a generation was collected
1294   generation_iterate(&tolgc_cl, false);
1295 
1296   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1297   // provided the underlying platform provides such a time source
1298   // (and it is bug free). So we still have to guard against getting
1299   // back a time later than 'now'.
1300   jlong retVal = now - tolgc_cl.time();
1301   if (retVal < 0) {
1302     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
1303     return 0;
1304   }
1305   return retVal;
1306 }