1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/dictionary.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc_implementation/shared/markSweep.inline.hpp"
  31 #include "gc_interface/collectedHeap.inline.hpp"
  32 #include "memory/heapInspection.hpp"
  33 #include "memory/metadataFactory.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "oops/oop.inline2.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "utilities/stack.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  44 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  45 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 void Klass::set_name(Symbol* n) {
  49   _name = n;
  50   if (_name != NULL) _name->increment_refcount();
  51 }
  52 
  53 bool Klass::is_subclass_of(const Klass* k) const {
  54   // Run up the super chain and check
  55   if (this == k) return true;
  56 
  57   Klass* t = const_cast<Klass*>(this)->super();
  58 
  59   while (t != NULL) {
  60     if (t == k) return true;
  61     t = t->super();
  62   }
  63   return false;
  64 }
  65 
  66 bool Klass::search_secondary_supers(Klass* k) const {
  67   // Put some extra logic here out-of-line, before the search proper.
  68   // This cuts down the size of the inline method.
  69 
  70   // This is necessary, since I am never in my own secondary_super list.
  71   if (this == k)
  72     return true;
  73   // Scan the array-of-objects for a match
  74   int cnt = secondary_supers()->length();
  75   for (int i = 0; i < cnt; i++) {
  76     if (secondary_supers()->at(i) == k) {
  77       ((Klass*)this)->set_secondary_super_cache(k);
  78       return true;
  79     }
  80   }
  81   return false;
  82 }
  83 
  84 // Return self, except for abstract classes with exactly 1
  85 // implementor.  Then return the 1 concrete implementation.
  86 Klass *Klass::up_cast_abstract() {
  87   Klass *r = this;
  88   while( r->is_abstract() ) {   // Receiver is abstract?
  89     Klass *s = r->subklass();   // Check for exactly 1 subklass
  90     if( !s || s->next_sibling() ) // Oops; wrong count; give up
  91       return this;              // Return 'this' as a no-progress flag
  92     r = s;                    // Loop till find concrete class
  93   }
  94   return r;                   // Return the 1 concrete class
  95 }
  96 
  97 // Find LCA in class hierarchy
  98 Klass *Klass::LCA( Klass *k2 ) {
  99   Klass *k1 = this;
 100   while( 1 ) {
 101     if( k1->is_subtype_of(k2) ) return k2;
 102     if( k2->is_subtype_of(k1) ) return k1;
 103     k1 = k1->super();
 104     k2 = k2->super();
 105   }
 106 }
 107 
 108 
 109 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 110   ResourceMark rm(THREAD);
 111   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 112             : vmSymbols::java_lang_InstantiationException(), external_name());
 113 }
 114 
 115 
 116 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 117   THROW(vmSymbols::java_lang_ArrayStoreException());
 118 }
 119 
 120 
 121 void Klass::initialize(TRAPS) {
 122   ShouldNotReachHere();
 123 }
 124 
 125 bool Klass::compute_is_subtype_of(Klass* k) {
 126   assert(k->is_klass(), "argument must be a class");
 127   return is_subclass_of(k);
 128 }
 129 
 130 
 131 Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
 132 #ifdef ASSERT
 133   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 134                 " Likely error: reflection method does not correctly"
 135                 " wrap return value in a mirror object.");
 136 #endif
 137   ShouldNotReachHere();
 138   return NULL;
 139 }
 140 
 141 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) {
 142   return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
 143                              Metaspace::ClassType, CHECK_NULL);
 144 }
 145 
 146 Klass::Klass() {
 147   Klass* k = this;
 148 
 149   // Preinitialize supertype information.
 150   // A later call to initialize_supers() may update these settings:
 151   set_super(NULL);
 152   for (juint i = 0; i < Klass::primary_super_limit(); i++) {
 153     _primary_supers[i] = NULL;
 154   }
 155   set_secondary_supers(NULL);
 156   set_secondary_super_cache(NULL);
 157   _primary_supers[0] = k;
 158   set_super_check_offset(in_bytes(primary_supers_offset()));
 159 
 160   set_java_mirror(NULL);
 161   set_modifier_flags(0);
 162   set_layout_helper(Klass::_lh_neutral_value);
 163   set_name(NULL);
 164   AccessFlags af;
 165   af.set_flags(0);
 166   set_access_flags(af);
 167   set_subklass(NULL);
 168   set_next_sibling(NULL);
 169   set_next_link(NULL);
 170   TRACE_SET_KLASS_TRACE_ID(this, 0);
 171 
 172   set_prototype_header(markOopDesc::prototype());
 173   set_biased_lock_revocation_count(0);
 174   set_last_biased_lock_bulk_revocation_time(0);
 175 
 176   // The klass doesn't have any references at this point.
 177   clear_modified_oops();
 178   clear_accumulated_modified_oops();
 179 }
 180 
 181 jint Klass::array_layout_helper(BasicType etype) {
 182   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 183   // Note that T_ARRAY is not allowed here.
 184   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 185   int  esize = type2aelembytes(etype);
 186   bool isobj = (etype == T_OBJECT);
 187   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 188   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 189 
 190   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 191   assert(layout_helper_is_array(lh), "correct kind");
 192   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 193   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 194   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 195   assert(layout_helper_element_type(lh) == etype, "correct decode");
 196   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 197 
 198   return lh;
 199 }
 200 
 201 bool Klass::can_be_primary_super_slow() const {
 202   if (super() == NULL)
 203     return true;
 204   else if (super()->super_depth() >= primary_super_limit()-1)
 205     return false;
 206   else
 207     return true;
 208 }
 209 
 210 void Klass::initialize_supers(Klass* k, TRAPS) {
 211   if (FastSuperclassLimit == 0) {
 212     // None of the other machinery matters.
 213     set_super(k);
 214     return;
 215   }
 216   if (k == NULL) {
 217     set_super(NULL);
 218     _primary_supers[0] = this;
 219     assert(super_depth() == 0, "Object must already be initialized properly");
 220   } else if (k != super() || k == SystemDictionary::Object_klass()) {
 221     assert(super() == NULL || super() == SystemDictionary::Object_klass(),
 222            "initialize this only once to a non-trivial value");
 223     set_super(k);
 224     Klass* sup = k;
 225     int sup_depth = sup->super_depth();
 226     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 227     if (!can_be_primary_super_slow())
 228       my_depth = primary_super_limit();
 229     for (juint i = 0; i < my_depth; i++) {
 230       _primary_supers[i] = sup->_primary_supers[i];
 231     }
 232     Klass* *super_check_cell;
 233     if (my_depth < primary_super_limit()) {
 234       _primary_supers[my_depth] = this;
 235       super_check_cell = &_primary_supers[my_depth];
 236     } else {
 237       // Overflow of the primary_supers array forces me to be secondary.
 238       super_check_cell = &_secondary_super_cache;
 239     }
 240     set_super_check_offset((address)super_check_cell - (address) this);
 241 
 242 #ifdef ASSERT
 243     {
 244       juint j = super_depth();
 245       assert(j == my_depth, "computed accessor gets right answer");
 246       Klass* t = this;
 247       while (!t->can_be_primary_super()) {
 248         t = t->super();
 249         j = t->super_depth();
 250       }
 251       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 252         assert(primary_super_of_depth(j1) == NULL, "super list padding");
 253       }
 254       while (t != NULL) {
 255         assert(primary_super_of_depth(j) == t, "super list initialization");
 256         t = t->super();
 257         --j;
 258       }
 259       assert(j == (juint)-1, "correct depth count");
 260     }
 261 #endif
 262   }
 263 
 264   if (secondary_supers() == NULL) {
 265     KlassHandle this_kh (THREAD, this);
 266 
 267     // Now compute the list of secondary supertypes.
 268     // Secondaries can occasionally be on the super chain,
 269     // if the inline "_primary_supers" array overflows.
 270     int extras = 0;
 271     Klass* p;
 272     for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 273       ++extras;
 274     }
 275 
 276     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 277 
 278     // Compute the "real" non-extra secondaries.
 279     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
 280     if (secondaries == NULL) {
 281       // secondary_supers set by compute_secondary_supers
 282       return;
 283     }
 284 
 285     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 286 
 287     for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 288       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 289 
 290       // This happens frequently for very deeply nested arrays: the
 291       // primary superclass chain overflows into the secondary.  The
 292       // secondary list contains the element_klass's secondaries with
 293       // an extra array dimension added.  If the element_klass's
 294       // secondary list already contains some primary overflows, they
 295       // (with the extra level of array-ness) will collide with the
 296       // normal primary superclass overflows.
 297       for( i = 0; i < secondaries->length(); i++ ) {
 298         if( secondaries->at(i) == p )
 299           break;
 300       }
 301       if( i < secondaries->length() )
 302         continue;               // It's a dup, don't put it in
 303       primaries->push(p);
 304     }
 305     // Combine the two arrays into a metadata object to pack the array.
 306     // The primaries are added in the reverse order, then the secondaries.
 307     int new_length = primaries->length() + secondaries->length();
 308     Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
 309                                        class_loader_data(), new_length, CHECK);
 310     int fill_p = primaries->length();
 311     for (int j = 0; j < fill_p; j++) {
 312       s2->at_put(j, primaries->pop());  // add primaries in reverse order.
 313     }
 314     for( int j = 0; j < secondaries->length(); j++ ) {
 315       s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 316     }
 317 
 318   #ifdef ASSERT
 319       // We must not copy any NULL placeholders left over from bootstrap.
 320     for (int j = 0; j < s2->length(); j++) {
 321       assert(s2->at(j) != NULL, "correct bootstrapping order");
 322     }
 323   #endif
 324 
 325     this_kh->set_secondary_supers(s2);
 326   }
 327 }
 328 
 329 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
 330   assert(num_extra_slots == 0, "override for complex klasses");
 331   set_secondary_supers(Universe::the_empty_klass_array());
 332   return NULL;
 333 }
 334 
 335 
 336 Klass* Klass::subklass() const {
 337   return _subklass == NULL ? NULL : _subklass;
 338 }
 339 
 340 InstanceKlass* Klass::superklass() const {
 341   assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
 342   return _super == NULL ? NULL : InstanceKlass::cast(_super);
 343 }
 344 
 345 Klass* Klass::next_sibling() const {
 346   return _next_sibling == NULL ? NULL : _next_sibling;
 347 }
 348 
 349 void Klass::set_subklass(Klass* s) {
 350   assert(s != this, "sanity check");
 351   _subklass = s;
 352 }
 353 
 354 void Klass::set_next_sibling(Klass* s) {
 355   assert(s != this, "sanity check");
 356   _next_sibling = s;
 357 }
 358 
 359 void Klass::append_to_sibling_list() {
 360   debug_only(verify();)
 361   // add ourselves to superklass' subklass list
 362   InstanceKlass* super = superklass();
 363   if (super == NULL) return;        // special case: class Object
 364   assert((!super->is_interface()    // interfaces cannot be supers
 365           && (super->superklass() == NULL || !is_interface())),
 366          "an interface can only be a subklass of Object");
 367   Klass* prev_first_subklass = super->subklass_oop();
 368   if (prev_first_subklass != NULL) {
 369     // set our sibling to be the superklass' previous first subklass
 370     set_next_sibling(prev_first_subklass);
 371   }
 372   // make ourselves the superklass' first subklass
 373   super->set_subklass(this);
 374   debug_only(verify();)
 375 }
 376 
 377 bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
 378   assert(is_metadata(), "p is not meta-data");
 379   assert(ClassLoaderDataGraph::contains((address)this), "is in the metaspace");
 380 
 381 #ifdef ASSERT
 382   // The class is alive iff the class loader is alive.
 383   oop loader = class_loader();
 384   bool loader_alive = (loader == NULL) || is_alive->do_object_b(loader);
 385 #endif // ASSERT
 386 
 387   // The class is alive if it's mirror is alive (which should be marked if the
 388   // loader is alive) unless it's an anoymous class.
 389   bool mirror_alive = is_alive->do_object_b(java_mirror());
 390   assert(!mirror_alive || loader_alive, "loader must be alive if the mirror is"
 391                         " but not the other way around with anonymous classes");
 392   return mirror_alive;
 393 }
 394 
 395 void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
 396   if (!ClassUnloading) {
 397     return;
 398   }
 399 
 400   Klass* root = SystemDictionary::Object_klass();
 401   Stack<Klass*, mtGC> stack;
 402 
 403   stack.push(root);
 404   while (!stack.is_empty()) {
 405     Klass* current = stack.pop();
 406 
 407     assert(current->is_loader_alive(is_alive), "just checking, this should be live");
 408 
 409     // Find and set the first alive subklass
 410     Klass* sub = current->subklass_oop();
 411     while (sub != NULL && !sub->is_loader_alive(is_alive)) {
 412 #ifndef PRODUCT
 413       if (TraceClassUnloading && WizardMode) {
 414         ResourceMark rm;
 415         tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
 416       }
 417 #endif
 418       sub = sub->next_sibling_oop();
 419     }
 420     current->set_subklass(sub);
 421     if (sub != NULL) {
 422       stack.push(sub);
 423     }
 424 
 425     // Find and set the first alive sibling
 426     Klass* sibling = current->next_sibling_oop();
 427     while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
 428       if (TraceClassUnloading && WizardMode) {
 429         ResourceMark rm;
 430         tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
 431       }
 432       sibling = sibling->next_sibling_oop();
 433     }
 434     current->set_next_sibling(sibling);
 435     if (sibling != NULL) {
 436       stack.push(sibling);
 437     }
 438 
 439     // Clean the implementors list and method data.
 440     if (current->oop_is_instance()) {
 441       InstanceKlass* ik = InstanceKlass::cast(current);
 442       ik->clean_implementors_list(is_alive);
 443       ik->clean_method_data(is_alive);
 444     }
 445   }
 446 }
 447 
 448 void Klass::klass_update_barrier_set(oop v) {
 449   record_modified_oops();
 450 }
 451 
 452 void Klass::klass_update_barrier_set_pre(void* p, oop v) {
 453   // This barrier used by G1, where it's used remember the old oop values,
 454   // so that we don't forget any objects that were live at the snapshot at
 455   // the beginning. This function is only used when we write oops into
 456   // Klasses. Since the Klasses are used as roots in G1, we don't have to
 457   // do anything here.
 458 }
 459 
 460 void Klass::klass_oop_store(oop* p, oop v) {
 461   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 462   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 463 
 464   // do the store
 465   if (always_do_update_barrier) {
 466     klass_oop_store((volatile oop*)p, v);
 467   } else {
 468     klass_update_barrier_set_pre((void*)p, v);
 469     *p = v;
 470     klass_update_barrier_set(v);
 471   }
 472 }
 473 
 474 void Klass::klass_oop_store(volatile oop* p, oop v) {
 475   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 476   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 477 
 478   klass_update_barrier_set_pre((void*)p, v);
 479   OrderAccess::release_store_ptr(p, v);
 480   klass_update_barrier_set(v);
 481 }
 482 
 483 void Klass::oops_do(OopClosure* cl) {
 484   cl->do_oop(&_java_mirror);
 485 }
 486 
 487 void Klass::remove_unshareable_info() {
 488   if (!DumpSharedSpaces) {
 489     // Clean up after OOM during class loading
 490     if (class_loader_data() != NULL) {
 491       class_loader_data()->remove_class(this);
 492     }
 493   }
 494   set_subklass(NULL);
 495   set_next_sibling(NULL);
 496   // Clear the java mirror
 497   set_java_mirror(NULL);
 498   set_next_link(NULL);
 499 
 500   // Null out class_loader_data because we don't share that yet.
 501   set_class_loader_data(NULL);
 502 }
 503 
 504 void Klass::restore_unshareable_info(TRAPS) {
 505   ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
 506   // Restore class_loader_data to the null class loader data
 507   set_class_loader_data(loader_data);
 508 
 509   // Add to null class loader list first before creating the mirror
 510   // (same order as class file parsing)
 511   loader_data->add_class(this);
 512 
 513   // Recreate the class mirror.  The protection_domain is always null for
 514   // boot loader, for now.
 515   java_lang_Class::create_mirror(this, Handle(NULL), CHECK);
 516 }
 517 
 518 Klass* Klass::array_klass_or_null(int rank) {
 519   EXCEPTION_MARK;
 520   // No exception can be thrown by array_klass_impl when called with or_null == true.
 521   // (In anycase, the execption mark will fail if it do so)
 522   return array_klass_impl(true, rank, THREAD);
 523 }
 524 
 525 
 526 Klass* Klass::array_klass_or_null() {
 527   EXCEPTION_MARK;
 528   // No exception can be thrown by array_klass_impl when called with or_null == true.
 529   // (In anycase, the execption mark will fail if it do so)
 530   return array_klass_impl(true, THREAD);
 531 }
 532 
 533 
 534 Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
 535   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 536   return NULL;
 537 }
 538 
 539 
 540 Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
 541   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 542   return NULL;
 543 }
 544 
 545 oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
 546 
 547 const char* Klass::external_name() const {
 548   if (oop_is_instance()) {
 549     InstanceKlass* ik = (InstanceKlass*) this;
 550     if (ik->is_anonymous()) {
 551       assert(EnableInvokeDynamic, "");
 552       intptr_t hash = 0;
 553       if (ik->java_mirror() != NULL) {
 554         // java_mirror might not be created yet, return 0 as hash.
 555         hash = ik->java_mirror()->identity_hash();
 556       }
 557       char     hash_buf[40];
 558       sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
 559       size_t   hash_len = strlen(hash_buf);
 560 
 561       size_t result_len = name()->utf8_length();
 562       char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
 563       name()->as_klass_external_name(result, (int) result_len + 1);
 564       assert(strlen(result) == result_len, "");
 565       strcpy(result + result_len, hash_buf);
 566       assert(strlen(result) == result_len + hash_len, "");
 567       return result;
 568     }
 569   }
 570   if (name() == NULL)  return "<unknown>";
 571   return name()->as_klass_external_name();
 572 }
 573 
 574 
 575 const char* Klass::signature_name() const {
 576   if (name() == NULL)  return "<unknown>";
 577   return name()->as_C_string();
 578 }
 579 
 580 // Unless overridden, modifier_flags is 0.
 581 jint Klass::compute_modifier_flags(TRAPS) const {
 582   return 0;
 583 }
 584 
 585 int Klass::atomic_incr_biased_lock_revocation_count() {
 586   return (int) Atomic::add(1, &_biased_lock_revocation_count);
 587 }
 588 
 589 // Unless overridden, jvmti_class_status has no flags set.
 590 jint Klass::jvmti_class_status() const {
 591   return 0;
 592 }
 593 
 594 
 595 // Printing
 596 
 597 void Klass::print_on(outputStream* st) const {
 598   ResourceMark rm;
 599   // print title
 600   st->print("%s", internal_name());
 601   print_address_on(st);
 602   st->cr();
 603 }
 604 
 605 void Klass::oop_print_on(oop obj, outputStream* st) {
 606   ResourceMark rm;
 607   // print title
 608   st->print_cr("%s ", internal_name());
 609   obj->print_address_on(st);
 610 
 611   if (WizardMode) {
 612      // print header
 613      obj->mark()->print_on(st);
 614   }
 615 
 616   // print class
 617   st->print(" - klass: ");
 618   obj->klass()->print_value_on(st);
 619   st->cr();
 620 }
 621 
 622 void Klass::oop_print_value_on(oop obj, outputStream* st) {
 623   // print title
 624   ResourceMark rm;              // Cannot print in debug mode without this
 625   st->print("%s", internal_name());
 626   obj->print_address_on(st);
 627 }
 628 
 629 #if INCLUDE_SERVICES
 630 // Size Statistics
 631 void Klass::collect_statistics(KlassSizeStats *sz) const {
 632   sz->_klass_bytes = sz->count(this);
 633   sz->_mirror_bytes = sz->count(java_mirror());
 634   sz->_secondary_supers_bytes = sz->count_array(secondary_supers());
 635 
 636   sz->_ro_bytes += sz->_secondary_supers_bytes;
 637   sz->_rw_bytes += sz->_klass_bytes + sz->_mirror_bytes;
 638 }
 639 #endif // INCLUDE_SERVICES
 640 
 641 // Verification
 642 
 643 void Klass::verify_on(outputStream* st) {
 644   guarantee(!Universe::heap()->is_in_reserved(this), "Shouldn't be");
 645   guarantee(this->is_metadata(), "should be in metaspace");
 646 
 647   assert(ClassLoaderDataGraph::contains((address)this), "Should be");
 648 
 649   guarantee(this->is_klass(),"should be klass");
 650 
 651   if (super() != NULL) {
 652     guarantee(super()->is_metadata(), "should be in metaspace");
 653     guarantee(super()->is_klass(), "should be klass");
 654   }
 655   if (secondary_super_cache() != NULL) {
 656     Klass* ko = secondary_super_cache();
 657     guarantee(ko->is_metadata(), "should be in metaspace");
 658     guarantee(ko->is_klass(), "should be klass");
 659   }
 660   for ( uint i = 0; i < primary_super_limit(); i++ ) {
 661     Klass* ko = _primary_supers[i];
 662     if (ko != NULL) {
 663       guarantee(ko->is_metadata(), "should be in metaspace");
 664       guarantee(ko->is_klass(), "should be klass");
 665     }
 666   }
 667 
 668   if (java_mirror() != NULL) {
 669     guarantee(java_mirror()->is_oop(), "should be instance");
 670   }
 671 }
 672 
 673 void Klass::oop_verify_on(oop obj, outputStream* st) {
 674   guarantee(obj->is_oop(),  "should be oop");
 675   guarantee(obj->klass()->is_metadata(), "should not be in Java heap");
 676   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
 677 }
 678 
 679 #ifndef PRODUCT
 680 
 681 void Klass::verify_vtable_index(int i) {
 682   if (oop_is_instance()) {
 683     assert(i>=0 && i<((InstanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
 684   } else {
 685     assert(oop_is_array(), "Must be");
 686     assert(i>=0 && i<((ArrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
 687   }
 688 }
 689 
 690 #endif