1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/xmlstream.hpp"
  60 #ifdef TARGET_ARCH_x86
  61 # include "nativeInst_x86.hpp"
  62 # include "vmreg_x86.inline.hpp"
  63 #endif
  64 #ifdef TARGET_ARCH_sparc
  65 # include "nativeInst_sparc.hpp"
  66 # include "vmreg_sparc.inline.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_zero
  69 # include "nativeInst_zero.hpp"
  70 # include "vmreg_zero.inline.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_arm
  73 # include "nativeInst_arm.hpp"
  74 # include "vmreg_arm.inline.hpp"
  75 #endif
  76 #ifdef TARGET_ARCH_ppc
  77 # include "nativeInst_ppc.hpp"
  78 # include "vmreg_ppc.inline.hpp"
  79 #endif
  80 #ifdef COMPILER1
  81 #include "c1/c1_Runtime1.hpp"
  82 #endif
  83 
  84 // Shared stub locations
  85 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  86 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  90 
  91 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  95 
  96 #ifdef COMPILER2
  97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  98 #endif // COMPILER2
  99 
 100 
 101 //----------------------------generate_stubs-----------------------------------
 102 void SharedRuntime::generate_stubs() {
 103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 108 
 109 #ifdef COMPILER2
 110   // Vectors are generated only by C2.
 111   if (is_wide_vector(MaxVectorSize)) {
 112     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 113   }
 114 #endif // COMPILER2
 115   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 116   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 117 
 118   generate_deopt_blob();
 119 
 120 #ifdef COMPILER2
 121   generate_uncommon_trap_blob();
 122 #endif // COMPILER2
 123 }
 124 
 125 #include <math.h>
 126 
 127 #ifndef USDT2
 128 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 129 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 130                       char*, int, char*, int, char*, int);
 131 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 132                       char*, int, char*, int, char*, int);
 133 #endif /* !USDT2 */
 134 
 135 // Implementation of SharedRuntime
 136 
 137 #ifndef PRODUCT
 138 // For statistics
 139 int SharedRuntime::_ic_miss_ctr = 0;
 140 int SharedRuntime::_wrong_method_ctr = 0;
 141 int SharedRuntime::_resolve_static_ctr = 0;
 142 int SharedRuntime::_resolve_virtual_ctr = 0;
 143 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 144 int SharedRuntime::_implicit_null_throws = 0;
 145 int SharedRuntime::_implicit_div0_throws = 0;
 146 int SharedRuntime::_throw_null_ctr = 0;
 147 
 148 int SharedRuntime::_nof_normal_calls = 0;
 149 int SharedRuntime::_nof_optimized_calls = 0;
 150 int SharedRuntime::_nof_inlined_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_calls = 0;
 152 int SharedRuntime::_nof_static_calls = 0;
 153 int SharedRuntime::_nof_inlined_static_calls = 0;
 154 int SharedRuntime::_nof_interface_calls = 0;
 155 int SharedRuntime::_nof_optimized_interface_calls = 0;
 156 int SharedRuntime::_nof_inlined_interface_calls = 0;
 157 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 158 int SharedRuntime::_nof_removable_exceptions = 0;
 159 
 160 int SharedRuntime::_new_instance_ctr=0;
 161 int SharedRuntime::_new_array_ctr=0;
 162 int SharedRuntime::_multi1_ctr=0;
 163 int SharedRuntime::_multi2_ctr=0;
 164 int SharedRuntime::_multi3_ctr=0;
 165 int SharedRuntime::_multi4_ctr=0;
 166 int SharedRuntime::_multi5_ctr=0;
 167 int SharedRuntime::_mon_enter_stub_ctr=0;
 168 int SharedRuntime::_mon_exit_stub_ctr=0;
 169 int SharedRuntime::_mon_enter_ctr=0;
 170 int SharedRuntime::_mon_exit_ctr=0;
 171 int SharedRuntime::_partial_subtype_ctr=0;
 172 int SharedRuntime::_jbyte_array_copy_ctr=0;
 173 int SharedRuntime::_jshort_array_copy_ctr=0;
 174 int SharedRuntime::_jint_array_copy_ctr=0;
 175 int SharedRuntime::_jlong_array_copy_ctr=0;
 176 int SharedRuntime::_oop_array_copy_ctr=0;
 177 int SharedRuntime::_checkcast_array_copy_ctr=0;
 178 int SharedRuntime::_unsafe_array_copy_ctr=0;
 179 int SharedRuntime::_generic_array_copy_ctr=0;
 180 int SharedRuntime::_slow_array_copy_ctr=0;
 181 int SharedRuntime::_find_handler_ctr=0;
 182 int SharedRuntime::_rethrow_ctr=0;
 183 
 184 int     SharedRuntime::_ICmiss_index                    = 0;
 185 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 186 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 187 
 188 
 189 void SharedRuntime::trace_ic_miss(address at) {
 190   for (int i = 0; i < _ICmiss_index; i++) {
 191     if (_ICmiss_at[i] == at) {
 192       _ICmiss_count[i]++;
 193       return;
 194     }
 195   }
 196   int index = _ICmiss_index++;
 197   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 198   _ICmiss_at[index] = at;
 199   _ICmiss_count[index] = 1;
 200 }
 201 
 202 void SharedRuntime::print_ic_miss_histogram() {
 203   if (ICMissHistogram) {
 204     tty->print_cr ("IC Miss Histogram:");
 205     int tot_misses = 0;
 206     for (int i = 0; i < _ICmiss_index; i++) {
 207       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 208       tot_misses += _ICmiss_count[i];
 209     }
 210     tty->print_cr ("Total IC misses: %7d", tot_misses);
 211   }
 212 }
 213 #endif // PRODUCT
 214 
 215 #ifndef SERIALGC
 216 
 217 // G1 write-barrier pre: executed before a pointer store.
 218 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 219   if (orig == NULL) {
 220     assert(false, "should be optimized out");
 221     return;
 222   }
 223   assert(orig->is_oop(true /* ignore mark word */), "Error");
 224   // store the original value that was in the field reference
 225   thread->satb_mark_queue().enqueue(orig);
 226 JRT_END
 227 
 228 // G1 write-barrier post: executed after a pointer store.
 229 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 230   thread->dirty_card_queue().enqueue(card_addr);
 231 JRT_END
 232 
 233 #endif // !SERIALGC
 234 
 235 
 236 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 237   return x * y;
 238 JRT_END
 239 
 240 
 241 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 242   if (x == min_jlong && y == CONST64(-1)) {
 243     return x;
 244   } else {
 245     return x / y;
 246   }
 247 JRT_END
 248 
 249 
 250 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 251   if (x == min_jlong && y == CONST64(-1)) {
 252     return 0;
 253   } else {
 254     return x % y;
 255   }
 256 JRT_END
 257 
 258 
 259 const juint  float_sign_mask  = 0x7FFFFFFF;
 260 const juint  float_infinity   = 0x7F800000;
 261 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 262 const julong double_infinity  = CONST64(0x7FF0000000000000);
 263 
 264 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 265 #ifdef _WIN64
 266   // 64-bit Windows on amd64 returns the wrong values for
 267   // infinity operands.
 268   union { jfloat f; juint i; } xbits, ybits;
 269   xbits.f = x;
 270   ybits.f = y;
 271   // x Mod Infinity == x unless x is infinity
 272   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 273        ((ybits.i & float_sign_mask) == float_infinity) ) {
 274     return x;
 275   }
 276 #endif
 277   return ((jfloat)fmod((double)x,(double)y));
 278 JRT_END
 279 
 280 
 281 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 282 #ifdef _WIN64
 283   union { jdouble d; julong l; } xbits, ybits;
 284   xbits.d = x;
 285   ybits.d = y;
 286   // x Mod Infinity == x unless x is infinity
 287   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 288        ((ybits.l & double_sign_mask) == double_infinity) ) {
 289     return x;
 290   }
 291 #endif
 292   return ((jdouble)fmod((double)x,(double)y));
 293 JRT_END
 294 
 295 #ifdef __SOFTFP__
 296 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 297   return x + y;
 298 JRT_END
 299 
 300 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 301   return x - y;
 302 JRT_END
 303 
 304 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 305   return x * y;
 306 JRT_END
 307 
 308 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 309   return x / y;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 313   return x + y;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 317   return x - y;
 318 JRT_END
 319 
 320 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 321   return x * y;
 322 JRT_END
 323 
 324 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 325   return x / y;
 326 JRT_END
 327 
 328 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 329   return (jfloat)x;
 330 JRT_END
 331 
 332 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 333   return (jdouble)x;
 334 JRT_END
 335 
 336 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 337   return (jdouble)x;
 338 JRT_END
 339 
 340 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 341   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 342 JRT_END
 343 
 344 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 345   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 346 JRT_END
 347 
 348 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 349   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 350 JRT_END
 351 
 352 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 353   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 354 JRT_END
 355 
 356 // Functions to return the opposite of the aeabi functions for nan.
 357 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 358   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 362   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 366   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 370   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 374   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 375 JRT_END
 376 
 377 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 378   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 379 JRT_END
 380 
 381 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 382   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 383 JRT_END
 384 
 385 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 386   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 387 JRT_END
 388 
 389 // Intrinsics make gcc generate code for these.
 390 float  SharedRuntime::fneg(float f)   {
 391   return -f;
 392 }
 393 
 394 double SharedRuntime::dneg(double f)  {
 395   return -f;
 396 }
 397 
 398 #endif // __SOFTFP__
 399 
 400 #if defined(__SOFTFP__) || defined(E500V2)
 401 // Intrinsics make gcc generate code for these.
 402 double SharedRuntime::dabs(double f)  {
 403   return (f <= (double)0.0) ? (double)0.0 - f : f;
 404 }
 405 
 406 #endif
 407 
 408 #if defined(__SOFTFP__) || defined(PPC)
 409 double SharedRuntime::dsqrt(double f) {
 410   return sqrt(f);
 411 }
 412 #endif
 413 
 414 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jfloat) max_jint)
 418     return max_jint;
 419   if (x <= (jfloat) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jfloat) max_jlong)
 429     return max_jlong;
 430   if (x <= (jfloat) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jdouble) max_jint)
 440     return max_jint;
 441   if (x <= (jdouble) min_jint)
 442     return min_jint;
 443   return (jint) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 448   if (g_isnan(x))
 449     return 0;
 450   if (x >= (jdouble) max_jlong)
 451     return max_jlong;
 452   if (x <= (jdouble) min_jlong)
 453     return min_jlong;
 454   return (jlong) x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 459   return (jfloat)x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 464   return (jfloat)x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 469   return (jdouble)x;
 470 JRT_END
 471 
 472 // Exception handling accross interpreter/compiler boundaries
 473 //
 474 // exception_handler_for_return_address(...) returns the continuation address.
 475 // The continuation address is the entry point of the exception handler of the
 476 // previous frame depending on the return address.
 477 
 478 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 479   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 480 
 481   // Reset method handle flag.
 482   thread->set_is_method_handle_return(false);
 483 
 484   // The fastest case first
 485   CodeBlob* blob = CodeCache::find_blob(return_address);
 486   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 487   if (nm != NULL) {
 488     // Set flag if return address is a method handle call site.
 489     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 490     // native nmethods don't have exception handlers
 491     assert(!nm->is_native_method(), "no exception handler");
 492     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 493     if (nm->is_deopt_pc(return_address)) {
 494       return SharedRuntime::deopt_blob()->unpack_with_exception();
 495     } else {
 496       return nm->exception_begin();
 497     }
 498   }
 499 
 500   // Entry code
 501   if (StubRoutines::returns_to_call_stub(return_address)) {
 502     return StubRoutines::catch_exception_entry();
 503   }
 504   // Interpreted code
 505   if (Interpreter::contains(return_address)) {
 506     return Interpreter::rethrow_exception_entry();
 507   }
 508 
 509   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 510   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 511 
 512 #ifndef PRODUCT
 513   { ResourceMark rm;
 514     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 515     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 516     tty->print_cr("b) other problem");
 517   }
 518 #endif // PRODUCT
 519 
 520   ShouldNotReachHere();
 521   return NULL;
 522 }
 523 
 524 
 525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 526   return raw_exception_handler_for_return_address(thread, return_address);
 527 JRT_END
 528 
 529 
 530 address SharedRuntime::get_poll_stub(address pc) {
 531   address stub;
 532   // Look up the code blob
 533   CodeBlob *cb = CodeCache::find_blob(pc);
 534 
 535   // Should be an nmethod
 536   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 537 
 538   // Look up the relocation information
 539   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 540     "safepoint polling: type must be poll" );
 541 
 542   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 543     "Only polling locations are used for safepoint");
 544 
 545   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 546   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 547   if (at_poll_return) {
 548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 549            "polling page return stub not created yet");
 550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 551   } else if (has_wide_vectors) {
 552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 553            "polling page vectors safepoint stub not created yet");
 554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 555   } else {
 556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 557            "polling page safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 559   }
 560 #ifndef PRODUCT
 561   if( TraceSafepoint ) {
 562     char buf[256];
 563     jio_snprintf(buf, sizeof(buf),
 564                  "... found polling page %s exception at pc = "
 565                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 566                  at_poll_return ? "return" : "loop",
 567                  (intptr_t)pc, (intptr_t)stub);
 568     tty->print_raw_cr(buf);
 569   }
 570 #endif // PRODUCT
 571   return stub;
 572 }
 573 
 574 
 575 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 576   assert(caller.is_interpreted_frame(), "");
 577   int args_size = ArgumentSizeComputer(sig).size() + 1;
 578   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 579   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 580   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 581   return result;
 582 }
 583 
 584 
 585 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 586   if (JvmtiExport::can_post_on_exceptions()) {
 587     vframeStream vfst(thread, true);
 588     methodHandle method = methodHandle(thread, vfst.method());
 589     address bcp = method()->bcp_from(vfst.bci());
 590     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 591   }
 592   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 593 }
 594 
 595 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 596   Handle h_exception = Exceptions::new_exception(thread, name, message);
 597   throw_and_post_jvmti_exception(thread, h_exception);
 598 }
 599 
 600 // The interpreter code to call this tracing function is only
 601 // called/generated when TraceRedefineClasses has the right bits
 602 // set. Since obsolete methods are never compiled, we don't have
 603 // to modify the compilers to generate calls to this function.
 604 //
 605 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 606     JavaThread* thread, Method* method))
 607   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 608 
 609   if (method->is_obsolete()) {
 610     // We are calling an obsolete method, but this is not necessarily
 611     // an error. Our method could have been redefined just after we
 612     // fetched the Method* from the constant pool.
 613 
 614     // RC_TRACE macro has an embedded ResourceMark
 615     RC_TRACE_WITH_THREAD(0x00001000, thread,
 616                          ("calling obsolete method '%s'",
 617                           method->name_and_sig_as_C_string()));
 618     if (RC_TRACE_ENABLED(0x00002000)) {
 619       // this option is provided to debug calls to obsolete methods
 620       guarantee(false, "faulting at call to an obsolete method.");
 621     }
 622   }
 623   return 0;
 624 JRT_END
 625 
 626 // ret_pc points into caller; we are returning caller's exception handler
 627 // for given exception
 628 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 629                                                     bool force_unwind, bool top_frame_only) {
 630   assert(nm != NULL, "must exist");
 631   ResourceMark rm;
 632 
 633   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 634   // determine handler bci, if any
 635   EXCEPTION_MARK;
 636 
 637   int handler_bci = -1;
 638   int scope_depth = 0;
 639   if (!force_unwind) {
 640     int bci = sd->bci();
 641     bool recursive_exception = false;
 642     do {
 643       bool skip_scope_increment = false;
 644       // exception handler lookup
 645       KlassHandle ek (THREAD, exception->klass());
 646       methodHandle mh(THREAD, sd->method());
 647       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 648       if (HAS_PENDING_EXCEPTION) {
 649         recursive_exception = true;
 650         // We threw an exception while trying to find the exception handler.
 651         // Transfer the new exception to the exception handle which will
 652         // be set into thread local storage, and do another lookup for an
 653         // exception handler for this exception, this time starting at the
 654         // BCI of the exception handler which caused the exception to be
 655         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 656         // argument to ensure that the correct exception is thrown (4870175).
 657         exception = Handle(THREAD, PENDING_EXCEPTION);
 658         CLEAR_PENDING_EXCEPTION;
 659         if (handler_bci >= 0) {
 660           bci = handler_bci;
 661           handler_bci = -1;
 662           skip_scope_increment = true;
 663         }
 664       }
 665       else {
 666         recursive_exception = false;
 667       }
 668       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 669         sd = sd->sender();
 670         if (sd != NULL) {
 671           bci = sd->bci();
 672         }
 673         ++scope_depth;
 674       }
 675     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 676   }
 677 
 678   // found handling method => lookup exception handler
 679   int catch_pco = ret_pc - nm->code_begin();
 680 
 681   ExceptionHandlerTable table(nm);
 682   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 683   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 684     // Allow abbreviated catch tables.  The idea is to allow a method
 685     // to materialize its exceptions without committing to the exact
 686     // routing of exceptions.  In particular this is needed for adding
 687     // a synthethic handler to unlock monitors when inlining
 688     // synchonized methods since the unlock path isn't represented in
 689     // the bytecodes.
 690     t = table.entry_for(catch_pco, -1, 0);
 691   }
 692 
 693 #ifdef COMPILER1
 694   if (t == NULL && nm->is_compiled_by_c1()) {
 695     assert(nm->unwind_handler_begin() != NULL, "");
 696     return nm->unwind_handler_begin();
 697   }
 698 #endif
 699 
 700   if (t == NULL) {
 701     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 702     tty->print_cr("   Exception:");
 703     exception->print();
 704     tty->cr();
 705     tty->print_cr(" Compiled exception table :");
 706     table.print();
 707     nm->print_code();
 708     guarantee(false, "missing exception handler");
 709     return NULL;
 710   }
 711 
 712   return nm->code_begin() + t->pco();
 713 }
 714 
 715 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 716   // These errors occur only at call sites
 717   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 718 JRT_END
 719 
 720 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 721   // These errors occur only at call sites
 722   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 723 JRT_END
 724 
 725 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 734   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 735   // cache sites (when the callee activation is not yet set up) so we are at a call site
 736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 737 JRT_END
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 740   // We avoid using the normal exception construction in this case because
 741   // it performs an upcall to Java, and we're already out of stack space.
 742   Klass* k = SystemDictionary::StackOverflowError_klass();
 743   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 744   Handle exception (thread, exception_oop);
 745   if (StackTraceInThrowable) {
 746     java_lang_Throwable::fill_in_stack_trace(exception);
 747   }
 748   throw_and_post_jvmti_exception(thread, exception);
 749 JRT_END
 750 
 751 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 752                                                            address pc,
 753                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 754 {
 755   address target_pc = NULL;
 756 
 757   if (Interpreter::contains(pc)) {
 758 #ifdef CC_INTERP
 759     // C++ interpreter doesn't throw implicit exceptions
 760     ShouldNotReachHere();
 761 #else
 762     switch (exception_kind) {
 763       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 764       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 765       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 766       default:                      ShouldNotReachHere();
 767     }
 768 #endif // !CC_INTERP
 769   } else {
 770     switch (exception_kind) {
 771       case STACK_OVERFLOW: {
 772         // Stack overflow only occurs upon frame setup; the callee is
 773         // going to be unwound. Dispatch to a shared runtime stub
 774         // which will cause the StackOverflowError to be fabricated
 775         // and processed.
 776         // For stack overflow in deoptimization blob, cleanup thread.
 777         if (thread->deopt_mark() != NULL) {
 778           Deoptimization::cleanup_deopt_info(thread, NULL);
 779         }
 780         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 781         return StubRoutines::throw_StackOverflowError_entry();
 782       }
 783 
 784       case IMPLICIT_NULL: {
 785         if (VtableStubs::contains(pc)) {
 786           // We haven't yet entered the callee frame. Fabricate an
 787           // exception and begin dispatching it in the caller. Since
 788           // the caller was at a call site, it's safe to destroy all
 789           // caller-saved registers, as these entry points do.
 790           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 791 
 792           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 793           if (vt_stub == NULL) return NULL;
 794 
 795           if (vt_stub->is_abstract_method_error(pc)) {
 796             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 797             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 798             return StubRoutines::throw_AbstractMethodError_entry();
 799           } else {
 800             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 801             return StubRoutines::throw_NullPointerException_at_call_entry();
 802           }
 803         } else {
 804           CodeBlob* cb = CodeCache::find_blob(pc);
 805 
 806           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 807           if (cb == NULL) return NULL;
 808 
 809           // Exception happened in CodeCache. Must be either:
 810           // 1. Inline-cache check in C2I handler blob,
 811           // 2. Inline-cache check in nmethod, or
 812           // 3. Implict null exception in nmethod
 813 
 814           if (!cb->is_nmethod()) {
 815             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 816                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 817             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 818             // There is no handler here, so we will simply unwind.
 819             return StubRoutines::throw_NullPointerException_at_call_entry();
 820           }
 821 
 822           // Otherwise, it's an nmethod.  Consult its exception handlers.
 823           nmethod* nm = (nmethod*)cb;
 824           if (nm->inlinecache_check_contains(pc)) {
 825             // exception happened inside inline-cache check code
 826             // => the nmethod is not yet active (i.e., the frame
 827             // is not set up yet) => use return address pushed by
 828             // caller => don't push another return address
 829             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 830             return StubRoutines::throw_NullPointerException_at_call_entry();
 831           }
 832 
 833           if (nm->method()->is_method_handle_intrinsic()) {
 834             // exception happened inside MH dispatch code, similar to a vtable stub
 835             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 836             return StubRoutines::throw_NullPointerException_at_call_entry();
 837           }
 838 
 839 #ifndef PRODUCT
 840           _implicit_null_throws++;
 841 #endif
 842           target_pc = nm->continuation_for_implicit_exception(pc);
 843           // If there's an unexpected fault, target_pc might be NULL,
 844           // in which case we want to fall through into the normal
 845           // error handling code.
 846         }
 847 
 848         break; // fall through
 849       }
 850 
 851 
 852       case IMPLICIT_DIVIDE_BY_ZERO: {
 853         nmethod* nm = CodeCache::find_nmethod(pc);
 854         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 855 #ifndef PRODUCT
 856         _implicit_div0_throws++;
 857 #endif
 858         target_pc = nm->continuation_for_implicit_exception(pc);
 859         // If there's an unexpected fault, target_pc might be NULL,
 860         // in which case we want to fall through into the normal
 861         // error handling code.
 862         break; // fall through
 863       }
 864 
 865       default: ShouldNotReachHere();
 866     }
 867 
 868     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 869 
 870     // for AbortVMOnException flag
 871     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 872     if (exception_kind == IMPLICIT_NULL) {
 873       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 874     } else {
 875       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 876     }
 877     return target_pc;
 878   }
 879 
 880   ShouldNotReachHere();
 881   return NULL;
 882 }
 883 
 884 
 885 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 886 {
 887   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 888 }
 889 JNI_END
 890 
 891 JNI_ENTRY(void, throw_unsupported_operation_exception(JNIEnv* env, ...))
 892 {
 893   THROW(vmSymbols::java_lang_UnsupportedOperationException());
 894 }
 895 JNI_END
 896 
 897 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 898   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 899 }
 900 
 901 address SharedRuntime::native_method_throw_unsupported_operation_exception_entry() {
 902   return CAST_FROM_FN_PTR(address, &throw_unsupported_operation_exception);
 903 }
 904 
 905 
 906 #ifndef PRODUCT
 907 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 908   const frame f = thread->last_frame();
 909   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 910 #ifndef PRODUCT
 911   methodHandle mh(THREAD, f.interpreter_frame_method());
 912   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 913 #endif // !PRODUCT
 914   return preserve_this_value;
 915 JRT_END
 916 #endif // !PRODUCT
 917 
 918 
 919 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 920   os::yield_all(attempts);
 921 JRT_END
 922 
 923 
 924 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 925   assert(obj->is_oop(), "must be a valid oop");
 926   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 927   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 928 JRT_END
 929 
 930 
 931 jlong SharedRuntime::get_java_tid(Thread* thread) {
 932   if (thread != NULL) {
 933     if (thread->is_Java_thread()) {
 934       oop obj = ((JavaThread*)thread)->threadObj();
 935       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 936     }
 937   }
 938   return 0;
 939 }
 940 
 941 /**
 942  * This function ought to be a void function, but cannot be because
 943  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 944  * 6254741.  Once that is fixed we can remove the dummy return value.
 945  */
 946 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 947   return dtrace_object_alloc_base(Thread::current(), o);
 948 }
 949 
 950 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 951   assert(DTraceAllocProbes, "wrong call");
 952   Klass* klass = o->klass();
 953   int size = o->size();
 954   Symbol* name = klass->name();
 955 #ifndef USDT2
 956   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 957                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 958 #else /* USDT2 */
 959   HOTSPOT_OBJECT_ALLOC(
 960                    get_java_tid(thread),
 961                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 962 #endif /* USDT2 */
 963   return 0;
 964 }
 965 
 966 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 967     JavaThread* thread, Method* method))
 968   assert(DTraceMethodProbes, "wrong call");
 969   Symbol* kname = method->klass_name();
 970   Symbol* name = method->name();
 971   Symbol* sig = method->signature();
 972 #ifndef USDT2
 973   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 974       kname->bytes(), kname->utf8_length(),
 975       name->bytes(), name->utf8_length(),
 976       sig->bytes(), sig->utf8_length());
 977 #else /* USDT2 */
 978   HOTSPOT_METHOD_ENTRY(
 979       get_java_tid(thread),
 980       (char *) kname->bytes(), kname->utf8_length(),
 981       (char *) name->bytes(), name->utf8_length(),
 982       (char *) sig->bytes(), sig->utf8_length());
 983 #endif /* USDT2 */
 984   return 0;
 985 JRT_END
 986 
 987 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 988     JavaThread* thread, Method* method))
 989   assert(DTraceMethodProbes, "wrong call");
 990   Symbol* kname = method->klass_name();
 991   Symbol* name = method->name();
 992   Symbol* sig = method->signature();
 993 #ifndef USDT2
 994   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 995       kname->bytes(), kname->utf8_length(),
 996       name->bytes(), name->utf8_length(),
 997       sig->bytes(), sig->utf8_length());
 998 #else /* USDT2 */
 999   HOTSPOT_METHOD_RETURN(
1000       get_java_tid(thread),
1001       (char *) kname->bytes(), kname->utf8_length(),
1002       (char *) name->bytes(), name->utf8_length(),
1003       (char *) sig->bytes(), sig->utf8_length());
1004 #endif /* USDT2 */
1005   return 0;
1006 JRT_END
1007 
1008 
1009 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1010 // for a call current in progress, i.e., arguments has been pushed on stack
1011 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1012 // vtable updates, etc.  Caller frame must be compiled.
1013 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1014   ResourceMark rm(THREAD);
1015 
1016   // last java frame on stack (which includes native call frames)
1017   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1018 
1019   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1020 }
1021 
1022 
1023 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1024 // for a call current in progress, i.e., arguments has been pushed on stack
1025 // but callee has not been invoked yet.  Caller frame must be compiled.
1026 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1027                                               vframeStream& vfst,
1028                                               Bytecodes::Code& bc,
1029                                               CallInfo& callinfo, TRAPS) {
1030   Handle receiver;
1031   Handle nullHandle;  //create a handy null handle for exception returns
1032 
1033   assert(!vfst.at_end(), "Java frame must exist");
1034 
1035   // Find caller and bci from vframe
1036   methodHandle caller(THREAD, vfst.method());
1037   int          bci   = vfst.bci();
1038 
1039   // Find bytecode
1040   Bytecode_invoke bytecode(caller, bci);
1041   bc = bytecode.invoke_code();
1042   int bytecode_index = bytecode.index();
1043 
1044   // Find receiver for non-static call
1045   if (bc != Bytecodes::_invokestatic &&
1046       bc != Bytecodes::_invokedynamic) {
1047     // This register map must be update since we need to find the receiver for
1048     // compiled frames. The receiver might be in a register.
1049     RegisterMap reg_map2(thread);
1050     frame stubFrame   = thread->last_frame();
1051     // Caller-frame is a compiled frame
1052     frame callerFrame = stubFrame.sender(&reg_map2);
1053 
1054     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1055     if (callee.is_null()) {
1056       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1057     }
1058     // Retrieve from a compiled argument list
1059     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1060 
1061     if (receiver.is_null()) {
1062       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1063     }
1064   }
1065 
1066   // Resolve method. This is parameterized by bytecode.
1067   constantPoolHandle constants(THREAD, caller->constants());
1068   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1069   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1070 
1071 #ifdef ASSERT
1072   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1073   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1074     assert(receiver.not_null(), "should have thrown exception");
1075     KlassHandle receiver_klass(THREAD, receiver->klass());
1076     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1077                             // klass is already loaded
1078     KlassHandle static_receiver_klass(THREAD, rk);
1079     // Method handle invokes might have been optimized to a direct call
1080     // so don't check for the receiver class.
1081     // FIXME this weakens the assert too much
1082     methodHandle callee = callinfo.selected_method();
1083     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1084            callee->is_method_handle_intrinsic() ||
1085            callee->is_compiled_lambda_form(),
1086            "actual receiver must be subclass of static receiver klass");
1087     if (receiver_klass->oop_is_instance()) {
1088       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1089         tty->print_cr("ERROR: Klass not yet initialized!!");
1090         receiver_klass()->print();
1091       }
1092       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1093     }
1094   }
1095 #endif
1096 
1097   return receiver;
1098 }
1099 
1100 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1101   ResourceMark rm(THREAD);
1102   // We need first to check if any Java activations (compiled, interpreted)
1103   // exist on the stack since last JavaCall.  If not, we need
1104   // to get the target method from the JavaCall wrapper.
1105   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1106   methodHandle callee_method;
1107   if (vfst.at_end()) {
1108     // No Java frames were found on stack since we did the JavaCall.
1109     // Hence the stack can only contain an entry_frame.  We need to
1110     // find the target method from the stub frame.
1111     RegisterMap reg_map(thread, false);
1112     frame fr = thread->last_frame();
1113     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1114     fr = fr.sender(&reg_map);
1115     assert(fr.is_entry_frame(), "must be");
1116     // fr is now pointing to the entry frame.
1117     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1118     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1119   } else {
1120     Bytecodes::Code bc;
1121     CallInfo callinfo;
1122     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1123     callee_method = callinfo.selected_method();
1124   }
1125   assert(callee_method()->is_method(), "must be");
1126   return callee_method;
1127 }
1128 
1129 // Resolves a call.
1130 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1131                                            bool is_virtual,
1132                                            bool is_optimized, TRAPS) {
1133   methodHandle callee_method;
1134   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1135   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1136     int retry_count = 0;
1137     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1138            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1139       // If has a pending exception then there is no need to re-try to
1140       // resolve this method.
1141       // If the method has been redefined, we need to try again.
1142       // Hack: we have no way to update the vtables of arrays, so don't
1143       // require that java.lang.Object has been updated.
1144 
1145       // It is very unlikely that method is redefined more than 100 times
1146       // in the middle of resolve. If it is looping here more than 100 times
1147       // means then there could be a bug here.
1148       guarantee((retry_count++ < 100),
1149                 "Could not resolve to latest version of redefined method");
1150       // method is redefined in the middle of resolve so re-try.
1151       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1152     }
1153   }
1154   return callee_method;
1155 }
1156 
1157 // Resolves a call.  The compilers generate code for calls that go here
1158 // and are patched with the real destination of the call.
1159 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1160                                            bool is_virtual,
1161                                            bool is_optimized, TRAPS) {
1162 
1163   ResourceMark rm(thread);
1164   RegisterMap cbl_map(thread, false);
1165   frame caller_frame = thread->last_frame().sender(&cbl_map);
1166 
1167   CodeBlob* caller_cb = caller_frame.cb();
1168   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1169   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1170   // make sure caller is not getting deoptimized
1171   // and removed before we are done with it.
1172   // CLEANUP - with lazy deopt shouldn't need this lock
1173   nmethodLocker caller_lock(caller_nm);
1174 
1175 
1176   // determine call info & receiver
1177   // note: a) receiver is NULL for static calls
1178   //       b) an exception is thrown if receiver is NULL for non-static calls
1179   CallInfo call_info;
1180   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1181   Handle receiver = find_callee_info(thread, invoke_code,
1182                                      call_info, CHECK_(methodHandle()));
1183   methodHandle callee_method = call_info.selected_method();
1184 
1185   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1186          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1187          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1188          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1189 
1190 #ifndef PRODUCT
1191   // tracing/debugging/statistics
1192   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1193                 (is_virtual) ? (&_resolve_virtual_ctr) :
1194                                (&_resolve_static_ctr);
1195   Atomic::inc(addr);
1196 
1197   if (TraceCallFixup) {
1198     ResourceMark rm(thread);
1199     tty->print("resolving %s%s (%s) call to",
1200       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1201       Bytecodes::name(invoke_code));
1202     callee_method->print_short_name(tty);
1203     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1204   }
1205 #endif
1206 
1207   // JSR 292 key invariant:
1208   // If the resolved method is a MethodHandle invoke target the call
1209   // site must be a MethodHandle call site, because the lambda form might tail-call
1210   // leaving the stack in a state unknown to either caller or callee
1211   // TODO detune for now but we might need it again
1212 //  assert(!callee_method->is_compiled_lambda_form() ||
1213 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1214 
1215   // Compute entry points. This might require generation of C2I converter
1216   // frames, so we cannot be holding any locks here. Furthermore, the
1217   // computation of the entry points is independent of patching the call.  We
1218   // always return the entry-point, but we only patch the stub if the call has
1219   // not been deoptimized.  Return values: For a virtual call this is an
1220   // (cached_oop, destination address) pair. For a static call/optimized
1221   // virtual this is just a destination address.
1222 
1223   StaticCallInfo static_call_info;
1224   CompiledICInfo virtual_call_info;
1225 
1226   // Make sure the callee nmethod does not get deoptimized and removed before
1227   // we are done patching the code.
1228   nmethod* callee_nm = callee_method->code();
1229   nmethodLocker nl_callee(callee_nm);
1230 #ifdef ASSERT
1231   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1232 #endif
1233 
1234   if (is_virtual) {
1235     assert(receiver.not_null(), "sanity check");
1236     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1237     KlassHandle h_klass(THREAD, receiver->klass());
1238     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1239                      is_optimized, static_bound, virtual_call_info,
1240                      CHECK_(methodHandle()));
1241   } else {
1242     // static call
1243     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1244   }
1245 
1246   // grab lock, check for deoptimization and potentially patch caller
1247   {
1248     MutexLocker ml_patch(CompiledIC_lock);
1249 
1250     // Now that we are ready to patch if the Method* was redefined then
1251     // don't update call site and let the caller retry.
1252 
1253     if (!callee_method->is_old()) {
1254 #ifdef ASSERT
1255       // We must not try to patch to jump to an already unloaded method.
1256       if (dest_entry_point != 0) {
1257         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1258                "should not unload nmethod while locked");
1259       }
1260 #endif
1261       if (is_virtual) {
1262         nmethod* nm = callee_nm;
1263         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1264         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1265         if (inline_cache->is_clean()) {
1266           inline_cache->set_to_monomorphic(virtual_call_info);
1267         }
1268       } else {
1269         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1270         if (ssc->is_clean()) ssc->set(static_call_info);
1271       }
1272     }
1273 
1274   } // unlock CompiledIC_lock
1275 
1276   return callee_method;
1277 }
1278 
1279 
1280 // Inline caches exist only in compiled code
1281 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1282 #ifdef ASSERT
1283   RegisterMap reg_map(thread, false);
1284   frame stub_frame = thread->last_frame();
1285   assert(stub_frame.is_runtime_frame(), "sanity check");
1286   frame caller_frame = stub_frame.sender(&reg_map);
1287   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1288 #endif /* ASSERT */
1289 
1290   methodHandle callee_method;
1291   JRT_BLOCK
1292     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1293     // Return Method* through TLS
1294     thread->set_vm_result_2(callee_method());
1295   JRT_BLOCK_END
1296   // return compiled code entry point after potential safepoints
1297   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1298   return callee_method->verified_code_entry();
1299 JRT_END
1300 
1301 
1302 // Handle call site that has been made non-entrant
1303 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1304   // 6243940 We might end up in here if the callee is deoptimized
1305   // as we race to call it.  We don't want to take a safepoint if
1306   // the caller was interpreted because the caller frame will look
1307   // interpreted to the stack walkers and arguments are now
1308   // "compiled" so it is much better to make this transition
1309   // invisible to the stack walking code. The i2c path will
1310   // place the callee method in the callee_target. It is stashed
1311   // there because if we try and find the callee by normal means a
1312   // safepoint is possible and have trouble gc'ing the compiled args.
1313   RegisterMap reg_map(thread, false);
1314   frame stub_frame = thread->last_frame();
1315   assert(stub_frame.is_runtime_frame(), "sanity check");
1316   frame caller_frame = stub_frame.sender(&reg_map);
1317 
1318   // MethodHandle invokes don't have a CompiledIC and should always
1319   // simply redispatch to the callee_target.
1320   address   sender_pc = caller_frame.pc();
1321   CodeBlob* sender_cb = caller_frame.cb();
1322   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1323 
1324   if (caller_frame.is_interpreted_frame() ||
1325       caller_frame.is_entry_frame()) {
1326     Method* callee = thread->callee_target();
1327     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1328     thread->set_vm_result_2(callee);
1329     thread->set_callee_target(NULL);
1330     return callee->get_c2i_entry();
1331   }
1332 
1333   // Must be compiled to compiled path which is safe to stackwalk
1334   methodHandle callee_method;
1335   JRT_BLOCK
1336     // Force resolving of caller (if we called from compiled frame)
1337     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1338     thread->set_vm_result_2(callee_method());
1339   JRT_BLOCK_END
1340   // return compiled code entry point after potential safepoints
1341   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1342   return callee_method->verified_code_entry();
1343 JRT_END
1344 
1345 
1346 // resolve a static call and patch code
1347 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1348   methodHandle callee_method;
1349   JRT_BLOCK
1350     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1351     thread->set_vm_result_2(callee_method());
1352   JRT_BLOCK_END
1353   // return compiled code entry point after potential safepoints
1354   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1355   return callee_method->verified_code_entry();
1356 JRT_END
1357 
1358 
1359 // resolve virtual call and update inline cache to monomorphic
1360 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1361   methodHandle callee_method;
1362   JRT_BLOCK
1363     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1364     thread->set_vm_result_2(callee_method());
1365   JRT_BLOCK_END
1366   // return compiled code entry point after potential safepoints
1367   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1368   return callee_method->verified_code_entry();
1369 JRT_END
1370 
1371 
1372 // Resolve a virtual call that can be statically bound (e.g., always
1373 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1374 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1375   methodHandle callee_method;
1376   JRT_BLOCK
1377     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1378     thread->set_vm_result_2(callee_method());
1379   JRT_BLOCK_END
1380   // return compiled code entry point after potential safepoints
1381   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1382   return callee_method->verified_code_entry();
1383 JRT_END
1384 
1385 
1386 
1387 
1388 
1389 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1390   ResourceMark rm(thread);
1391   CallInfo call_info;
1392   Bytecodes::Code bc;
1393 
1394   // receiver is NULL for static calls. An exception is thrown for NULL
1395   // receivers for non-static calls
1396   Handle receiver = find_callee_info(thread, bc, call_info,
1397                                      CHECK_(methodHandle()));
1398   // Compiler1 can produce virtual call sites that can actually be statically bound
1399   // If we fell thru to below we would think that the site was going megamorphic
1400   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1401   // we'd try and do a vtable dispatch however methods that can be statically bound
1402   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1403   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1404   // plain ic_miss) and the site will be converted to an optimized virtual call site
1405   // never to miss again. I don't believe C2 will produce code like this but if it
1406   // did this would still be the correct thing to do for it too, hence no ifdef.
1407   //
1408   if (call_info.resolved_method()->can_be_statically_bound()) {
1409     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1410     if (TraceCallFixup) {
1411       RegisterMap reg_map(thread, false);
1412       frame caller_frame = thread->last_frame().sender(&reg_map);
1413       ResourceMark rm(thread);
1414       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1415       callee_method->print_short_name(tty);
1416       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1417       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1418     }
1419     return callee_method;
1420   }
1421 
1422   methodHandle callee_method = call_info.selected_method();
1423 
1424   bool should_be_mono = false;
1425 
1426 #ifndef PRODUCT
1427   Atomic::inc(&_ic_miss_ctr);
1428 
1429   // Statistics & Tracing
1430   if (TraceCallFixup) {
1431     ResourceMark rm(thread);
1432     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1433     callee_method->print_short_name(tty);
1434     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1435   }
1436 
1437   if (ICMissHistogram) {
1438     MutexLocker m(VMStatistic_lock);
1439     RegisterMap reg_map(thread, false);
1440     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1441     // produce statistics under the lock
1442     trace_ic_miss(f.pc());
1443   }
1444 #endif
1445 
1446   // install an event collector so that when a vtable stub is created the
1447   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1448   // event can't be posted when the stub is created as locks are held
1449   // - instead the event will be deferred until the event collector goes
1450   // out of scope.
1451   JvmtiDynamicCodeEventCollector event_collector;
1452 
1453   // Update inline cache to megamorphic. Skip update if caller has been
1454   // made non-entrant or we are called from interpreted.
1455   { MutexLocker ml_patch (CompiledIC_lock);
1456     RegisterMap reg_map(thread, false);
1457     frame caller_frame = thread->last_frame().sender(&reg_map);
1458     CodeBlob* cb = caller_frame.cb();
1459     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1460       // Not a non-entrant nmethod, so find inline_cache
1461       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1462       bool should_be_mono = false;
1463       if (inline_cache->is_optimized()) {
1464         if (TraceCallFixup) {
1465           ResourceMark rm(thread);
1466           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1467           callee_method->print_short_name(tty);
1468           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1469         }
1470         should_be_mono = true;
1471       } else if (inline_cache->is_icholder_call()) {
1472         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1473         if ( ic_oop != NULL) {
1474 
1475           if (receiver()->klass() == ic_oop->holder_klass()) {
1476             // This isn't a real miss. We must have seen that compiled code
1477             // is now available and we want the call site converted to a
1478             // monomorphic compiled call site.
1479             // We can't assert for callee_method->code() != NULL because it
1480             // could have been deoptimized in the meantime
1481             if (TraceCallFixup) {
1482               ResourceMark rm(thread);
1483               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1484               callee_method->print_short_name(tty);
1485               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1486             }
1487             should_be_mono = true;
1488           }
1489         }
1490       }
1491 
1492       if (should_be_mono) {
1493 
1494         // We have a path that was monomorphic but was going interpreted
1495         // and now we have (or had) a compiled entry. We correct the IC
1496         // by using a new icBuffer.
1497         CompiledICInfo info;
1498         KlassHandle receiver_klass(THREAD, receiver()->klass());
1499         inline_cache->compute_monomorphic_entry(callee_method,
1500                                                 receiver_klass,
1501                                                 inline_cache->is_optimized(),
1502                                                 false,
1503                                                 info, CHECK_(methodHandle()));
1504         inline_cache->set_to_monomorphic(info);
1505       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1506         // Change to megamorphic
1507         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1508       } else {
1509         // Either clean or megamorphic
1510       }
1511     }
1512   } // Release CompiledIC_lock
1513 
1514   return callee_method;
1515 }
1516 
1517 //
1518 // Resets a call-site in compiled code so it will get resolved again.
1519 // This routines handles both virtual call sites, optimized virtual call
1520 // sites, and static call sites. Typically used to change a call sites
1521 // destination from compiled to interpreted.
1522 //
1523 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1524   ResourceMark rm(thread);
1525   RegisterMap reg_map(thread, false);
1526   frame stub_frame = thread->last_frame();
1527   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1528   frame caller = stub_frame.sender(&reg_map);
1529 
1530   // Do nothing if the frame isn't a live compiled frame.
1531   // nmethod could be deoptimized by the time we get here
1532   // so no update to the caller is needed.
1533 
1534   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1535 
1536     address pc = caller.pc();
1537 
1538     // Default call_addr is the location of the "basic" call.
1539     // Determine the address of the call we a reresolving. With
1540     // Inline Caches we will always find a recognizable call.
1541     // With Inline Caches disabled we may or may not find a
1542     // recognizable call. We will always find a call for static
1543     // calls and for optimized virtual calls. For vanilla virtual
1544     // calls it depends on the state of the UseInlineCaches switch.
1545     //
1546     // With Inline Caches disabled we can get here for a virtual call
1547     // for two reasons:
1548     //   1 - calling an abstract method. The vtable for abstract methods
1549     //       will run us thru handle_wrong_method and we will eventually
1550     //       end up in the interpreter to throw the ame.
1551     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1552     //       call and between the time we fetch the entry address and
1553     //       we jump to it the target gets deoptimized. Similar to 1
1554     //       we will wind up in the interprter (thru a c2i with c2).
1555     //
1556     address call_addr = NULL;
1557     {
1558       // Get call instruction under lock because another thread may be
1559       // busy patching it.
1560       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1561       // Location of call instruction
1562       if (NativeCall::is_call_before(pc)) {
1563         NativeCall *ncall = nativeCall_before(pc);
1564         call_addr = ncall->instruction_address();
1565       }
1566     }
1567 
1568     // Check for static or virtual call
1569     bool is_static_call = false;
1570     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1571     // Make sure nmethod doesn't get deoptimized and removed until
1572     // this is done with it.
1573     // CLEANUP - with lazy deopt shouldn't need this lock
1574     nmethodLocker nmlock(caller_nm);
1575 
1576     if (call_addr != NULL) {
1577       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1578       int ret = iter.next(); // Get item
1579       if (ret) {
1580         assert(iter.addr() == call_addr, "must find call");
1581         if (iter.type() == relocInfo::static_call_type) {
1582           is_static_call = true;
1583         } else {
1584           assert(iter.type() == relocInfo::virtual_call_type ||
1585                  iter.type() == relocInfo::opt_virtual_call_type
1586                 , "unexpected relocInfo. type");
1587         }
1588       } else {
1589         assert(!UseInlineCaches, "relocation info. must exist for this address");
1590       }
1591 
1592       // Cleaning the inline cache will force a new resolve. This is more robust
1593       // than directly setting it to the new destination, since resolving of calls
1594       // is always done through the same code path. (experience shows that it
1595       // leads to very hard to track down bugs, if an inline cache gets updated
1596       // to a wrong method). It should not be performance critical, since the
1597       // resolve is only done once.
1598 
1599       MutexLocker ml(CompiledIC_lock);
1600       //
1601       // We do not patch the call site if the nmethod has been made non-entrant
1602       // as it is a waste of time
1603       //
1604       if (caller_nm->is_in_use()) {
1605         if (is_static_call) {
1606           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1607           ssc->set_to_clean();
1608         } else {
1609           // compiled, dispatched call (which used to call an interpreted method)
1610           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1611           inline_cache->set_to_clean();
1612         }
1613       }
1614     }
1615 
1616   }
1617 
1618   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1619 
1620 
1621 #ifndef PRODUCT
1622   Atomic::inc(&_wrong_method_ctr);
1623 
1624   if (TraceCallFixup) {
1625     ResourceMark rm(thread);
1626     tty->print("handle_wrong_method reresolving call to");
1627     callee_method->print_short_name(tty);
1628     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1629   }
1630 #endif
1631 
1632   return callee_method;
1633 }
1634 
1635 #ifdef ASSERT
1636 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1637                                                                 const BasicType* sig_bt,
1638                                                                 const VMRegPair* regs) {
1639   ResourceMark rm;
1640   const int total_args_passed = method->size_of_parameters();
1641   const VMRegPair*    regs_with_member_name = regs;
1642         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1643 
1644   const int member_arg_pos = total_args_passed - 1;
1645   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1646   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1647 
1648   const bool is_outgoing = method->is_method_handle_intrinsic();
1649   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1650 
1651   for (int i = 0; i < member_arg_pos; i++) {
1652     VMReg a =    regs_with_member_name[i].first();
1653     VMReg b = regs_without_member_name[i].first();
1654     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1655   }
1656   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1657 }
1658 #endif
1659 
1660 // ---------------------------------------------------------------------------
1661 // We are calling the interpreter via a c2i. Normally this would mean that
1662 // we were called by a compiled method. However we could have lost a race
1663 // where we went int -> i2c -> c2i and so the caller could in fact be
1664 // interpreted. If the caller is compiled we attempt to patch the caller
1665 // so he no longer calls into the interpreter.
1666 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1667   Method* moop(method);
1668 
1669   address entry_point = moop->from_compiled_entry();
1670 
1671   // It's possible that deoptimization can occur at a call site which hasn't
1672   // been resolved yet, in which case this function will be called from
1673   // an nmethod that has been patched for deopt and we can ignore the
1674   // request for a fixup.
1675   // Also it is possible that we lost a race in that from_compiled_entry
1676   // is now back to the i2c in that case we don't need to patch and if
1677   // we did we'd leap into space because the callsite needs to use
1678   // "to interpreter" stub in order to load up the Method*. Don't
1679   // ask me how I know this...
1680 
1681   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1682   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1683     return;
1684   }
1685 
1686   // The check above makes sure this is a nmethod.
1687   nmethod* nm = cb->as_nmethod_or_null();
1688   assert(nm, "must be");
1689 
1690   // Get the return PC for the passed caller PC.
1691   address return_pc = caller_pc + frame::pc_return_offset;
1692 
1693   // There is a benign race here. We could be attempting to patch to a compiled
1694   // entry point at the same time the callee is being deoptimized. If that is
1695   // the case then entry_point may in fact point to a c2i and we'd patch the
1696   // call site with the same old data. clear_code will set code() to NULL
1697   // at the end of it. If we happen to see that NULL then we can skip trying
1698   // to patch. If we hit the window where the callee has a c2i in the
1699   // from_compiled_entry and the NULL isn't present yet then we lose the race
1700   // and patch the code with the same old data. Asi es la vida.
1701 
1702   if (moop->code() == NULL) return;
1703 
1704   if (nm->is_in_use()) {
1705 
1706     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1707     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1708     if (NativeCall::is_call_before(return_pc)) {
1709       NativeCall *call = nativeCall_before(return_pc);
1710       //
1711       // bug 6281185. We might get here after resolving a call site to a vanilla
1712       // virtual call. Because the resolvee uses the verified entry it may then
1713       // see compiled code and attempt to patch the site by calling us. This would
1714       // then incorrectly convert the call site to optimized and its downhill from
1715       // there. If you're lucky you'll get the assert in the bugid, if not you've
1716       // just made a call site that could be megamorphic into a monomorphic site
1717       // for the rest of its life! Just another racing bug in the life of
1718       // fixup_callers_callsite ...
1719       //
1720       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1721       iter.next();
1722       assert(iter.has_current(), "must have a reloc at java call site");
1723       relocInfo::relocType typ = iter.reloc()->type();
1724       if ( typ != relocInfo::static_call_type &&
1725            typ != relocInfo::opt_virtual_call_type &&
1726            typ != relocInfo::static_stub_type) {
1727         return;
1728       }
1729       address destination = call->destination();
1730       if (destination != entry_point) {
1731         CodeBlob* callee = CodeCache::find_blob(destination);
1732         // callee == cb seems weird. It means calling interpreter thru stub.
1733         if (callee == cb || callee->is_adapter_blob()) {
1734           // static call or optimized virtual
1735           if (TraceCallFixup) {
1736             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1737             moop->print_short_name(tty);
1738             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1739           }
1740           call->set_destination_mt_safe(entry_point);
1741         } else {
1742           if (TraceCallFixup) {
1743             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1744             moop->print_short_name(tty);
1745             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1746           }
1747           // assert is too strong could also be resolve destinations.
1748           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1749         }
1750       } else {
1751           if (TraceCallFixup) {
1752             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1753             moop->print_short_name(tty);
1754             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1755           }
1756       }
1757     }
1758   }
1759 IRT_END
1760 
1761 
1762 // same as JVM_Arraycopy, but called directly from compiled code
1763 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1764                                                 oopDesc* dest, jint dest_pos,
1765                                                 jint length,
1766                                                 JavaThread* thread)) {
1767 #ifndef PRODUCT
1768   _slow_array_copy_ctr++;
1769 #endif
1770   // Check if we have null pointers
1771   if (src == NULL || dest == NULL) {
1772     THROW(vmSymbols::java_lang_NullPointerException());
1773   }
1774   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1775   // even though the copy_array API also performs dynamic checks to ensure
1776   // that src and dest are truly arrays (and are conformable).
1777   // The copy_array mechanism is awkward and could be removed, but
1778   // the compilers don't call this function except as a last resort,
1779   // so it probably doesn't matter.
1780   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1781                                         (arrayOopDesc*)dest, dest_pos,
1782                                         length, thread);
1783 }
1784 JRT_END
1785 
1786 char* SharedRuntime::generate_class_cast_message(
1787     JavaThread* thread, const char* objName) {
1788 
1789   // Get target class name from the checkcast instruction
1790   vframeStream vfst(thread, true);
1791   assert(!vfst.at_end(), "Java frame must exist");
1792   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1793   Klass* targetKlass = vfst.method()->constants()->klass_at(
1794     cc.index(), thread);
1795   return generate_class_cast_message(objName, targetKlass->external_name());
1796 }
1797 
1798 char* SharedRuntime::generate_class_cast_message(
1799     const char* objName, const char* targetKlassName, const char* desc) {
1800   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1801 
1802   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1803   if (NULL == message) {
1804     // Shouldn't happen, but don't cause even more problems if it does
1805     message = const_cast<char*>(objName);
1806   } else {
1807     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1808   }
1809   return message;
1810 }
1811 
1812 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1813   (void) JavaThread::current()->reguard_stack();
1814 JRT_END
1815 
1816 
1817 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1818 #ifndef PRODUCT
1819 int SharedRuntime::_monitor_enter_ctr=0;
1820 #endif
1821 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1822   oop obj(_obj);
1823 #ifndef PRODUCT
1824   _monitor_enter_ctr++;             // monitor enter slow
1825 #endif
1826   if (PrintBiasedLockingStatistics) {
1827     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1828   }
1829   Handle h_obj(THREAD, obj);
1830   if (UseBiasedLocking) {
1831     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1832     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1833   } else {
1834     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1835   }
1836   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1837 JRT_END
1838 
1839 #ifndef PRODUCT
1840 int SharedRuntime::_monitor_exit_ctr=0;
1841 #endif
1842 // Handles the uncommon cases of monitor unlocking in compiled code
1843 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1844    oop obj(_obj);
1845 #ifndef PRODUCT
1846   _monitor_exit_ctr++;              // monitor exit slow
1847 #endif
1848   Thread* THREAD = JavaThread::current();
1849   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1850   // testing was unable to ever fire the assert that guarded it so I have removed it.
1851   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1852 #undef MIGHT_HAVE_PENDING
1853 #ifdef MIGHT_HAVE_PENDING
1854   // Save and restore any pending_exception around the exception mark.
1855   // While the slow_exit must not throw an exception, we could come into
1856   // this routine with one set.
1857   oop pending_excep = NULL;
1858   const char* pending_file;
1859   int pending_line;
1860   if (HAS_PENDING_EXCEPTION) {
1861     pending_excep = PENDING_EXCEPTION;
1862     pending_file  = THREAD->exception_file();
1863     pending_line  = THREAD->exception_line();
1864     CLEAR_PENDING_EXCEPTION;
1865   }
1866 #endif /* MIGHT_HAVE_PENDING */
1867 
1868   {
1869     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1870     EXCEPTION_MARK;
1871     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1872   }
1873 
1874 #ifdef MIGHT_HAVE_PENDING
1875   if (pending_excep != NULL) {
1876     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1877   }
1878 #endif /* MIGHT_HAVE_PENDING */
1879 JRT_END
1880 
1881 #ifndef PRODUCT
1882 
1883 void SharedRuntime::print_statistics() {
1884   ttyLocker ttyl;
1885   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1886 
1887   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1888   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1889   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1890 
1891   SharedRuntime::print_ic_miss_histogram();
1892 
1893   if (CountRemovableExceptions) {
1894     if (_nof_removable_exceptions > 0) {
1895       Unimplemented(); // this counter is not yet incremented
1896       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1897     }
1898   }
1899 
1900   // Dump the JRT_ENTRY counters
1901   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1902   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1903   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1904   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1905   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1906   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1907   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1908 
1909   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1910   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1911   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1912   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1913   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1914 
1915   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1916   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1917   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1918   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1919   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1920   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1921   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1922   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1923   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1924   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1925   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1926   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1927   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1928   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1929   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1930   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1931 
1932   AdapterHandlerLibrary::print_statistics();
1933 
1934   if (xtty != NULL)  xtty->tail("statistics");
1935 }
1936 
1937 inline double percent(int x, int y) {
1938   return 100.0 * x / MAX2(y, 1);
1939 }
1940 
1941 class MethodArityHistogram {
1942  public:
1943   enum { MAX_ARITY = 256 };
1944  private:
1945   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1946   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1947   static int _max_arity;                      // max. arity seen
1948   static int _max_size;                       // max. arg size seen
1949 
1950   static void add_method_to_histogram(nmethod* nm) {
1951     Method* m = nm->method();
1952     ArgumentCount args(m->signature());
1953     int arity   = args.size() + (m->is_static() ? 0 : 1);
1954     int argsize = m->size_of_parameters();
1955     arity   = MIN2(arity, MAX_ARITY-1);
1956     argsize = MIN2(argsize, MAX_ARITY-1);
1957     int count = nm->method()->compiled_invocation_count();
1958     _arity_histogram[arity]  += count;
1959     _size_histogram[argsize] += count;
1960     _max_arity = MAX2(_max_arity, arity);
1961     _max_size  = MAX2(_max_size, argsize);
1962   }
1963 
1964   void print_histogram_helper(int n, int* histo, const char* name) {
1965     const int N = MIN2(5, n);
1966     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1967     double sum = 0;
1968     double weighted_sum = 0;
1969     int i;
1970     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1971     double rest = sum;
1972     double percent = sum / 100;
1973     for (i = 0; i <= N; i++) {
1974       rest -= histo[i];
1975       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1976     }
1977     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1978     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1979   }
1980 
1981   void print_histogram() {
1982     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1983     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1984     tty->print_cr("\nSame for parameter size (in words):");
1985     print_histogram_helper(_max_size, _size_histogram, "size");
1986     tty->cr();
1987   }
1988 
1989  public:
1990   MethodArityHistogram() {
1991     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1992     _max_arity = _max_size = 0;
1993     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1994     CodeCache::nmethods_do(add_method_to_histogram);
1995     print_histogram();
1996   }
1997 };
1998 
1999 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2000 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2001 int MethodArityHistogram::_max_arity;
2002 int MethodArityHistogram::_max_size;
2003 
2004 void SharedRuntime::print_call_statistics(int comp_total) {
2005   tty->print_cr("Calls from compiled code:");
2006   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2007   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2008   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2009   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2010   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2011   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2012   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2013   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2014   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2015   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2016   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2017   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2018   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2019   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2020   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2021   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2022   tty->cr();
2023   tty->print_cr("Note 1: counter updates are not MT-safe.");
2024   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2025   tty->print_cr("        %% in nested categories are relative to their category");
2026   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2027   tty->cr();
2028 
2029   MethodArityHistogram h;
2030 }
2031 #endif
2032 
2033 
2034 // A simple wrapper class around the calling convention information
2035 // that allows sharing of adapters for the same calling convention.
2036 class AdapterFingerPrint : public CHeapObj<mtCode> {
2037  private:
2038   enum {
2039     _basic_type_bits = 4,
2040     _basic_type_mask = right_n_bits(_basic_type_bits),
2041     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2042     _compact_int_count = 3
2043   };
2044   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2045   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2046 
2047   union {
2048     int  _compact[_compact_int_count];
2049     int* _fingerprint;
2050   } _value;
2051   int _length; // A negative length indicates the fingerprint is in the compact form,
2052                // Otherwise _value._fingerprint is the array.
2053 
2054   // Remap BasicTypes that are handled equivalently by the adapters.
2055   // These are correct for the current system but someday it might be
2056   // necessary to make this mapping platform dependent.
2057   static int adapter_encoding(BasicType in) {
2058     switch(in) {
2059       case T_BOOLEAN:
2060       case T_BYTE:
2061       case T_SHORT:
2062       case T_CHAR:
2063         // There are all promoted to T_INT in the calling convention
2064         return T_INT;
2065 
2066       case T_OBJECT:
2067       case T_ARRAY:
2068         // In other words, we assume that any register good enough for
2069         // an int or long is good enough for a managed pointer.
2070 #ifdef _LP64
2071         return T_LONG;
2072 #else
2073         return T_INT;
2074 #endif
2075 
2076       case T_INT:
2077       case T_LONG:
2078       case T_FLOAT:
2079       case T_DOUBLE:
2080       case T_VOID:
2081         return in;
2082 
2083       default:
2084         ShouldNotReachHere();
2085         return T_CONFLICT;
2086     }
2087   }
2088 
2089  public:
2090   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2091     // The fingerprint is based on the BasicType signature encoded
2092     // into an array of ints with eight entries per int.
2093     int* ptr;
2094     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2095     if (len <= _compact_int_count) {
2096       assert(_compact_int_count == 3, "else change next line");
2097       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2098       // Storing the signature encoded as signed chars hits about 98%
2099       // of the time.
2100       _length = -len;
2101       ptr = _value._compact;
2102     } else {
2103       _length = len;
2104       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2105       ptr = _value._fingerprint;
2106     }
2107 
2108     // Now pack the BasicTypes with 8 per int
2109     int sig_index = 0;
2110     for (int index = 0; index < len; index++) {
2111       int value = 0;
2112       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2113         int bt = ((sig_index < total_args_passed)
2114                   ? adapter_encoding(sig_bt[sig_index++])
2115                   : 0);
2116         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2117         value = (value << _basic_type_bits) | bt;
2118       }
2119       ptr[index] = value;
2120     }
2121   }
2122 
2123   ~AdapterFingerPrint() {
2124     if (_length > 0) {
2125       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2126     }
2127   }
2128 
2129   int value(int index) {
2130     if (_length < 0) {
2131       return _value._compact[index];
2132     }
2133     return _value._fingerprint[index];
2134   }
2135   int length() {
2136     if (_length < 0) return -_length;
2137     return _length;
2138   }
2139 
2140   bool is_compact() {
2141     return _length <= 0;
2142   }
2143 
2144   unsigned int compute_hash() {
2145     int hash = 0;
2146     for (int i = 0; i < length(); i++) {
2147       int v = value(i);
2148       hash = (hash << 8) ^ v ^ (hash >> 5);
2149     }
2150     return (unsigned int)hash;
2151   }
2152 
2153   const char* as_string() {
2154     stringStream st;
2155     st.print("0x");
2156     for (int i = 0; i < length(); i++) {
2157       st.print("%08x", value(i));
2158     }
2159     return st.as_string();
2160   }
2161 
2162   bool equals(AdapterFingerPrint* other) {
2163     if (other->_length != _length) {
2164       return false;
2165     }
2166     if (_length < 0) {
2167       assert(_compact_int_count == 3, "else change next line");
2168       return _value._compact[0] == other->_value._compact[0] &&
2169              _value._compact[1] == other->_value._compact[1] &&
2170              _value._compact[2] == other->_value._compact[2];
2171     } else {
2172       for (int i = 0; i < _length; i++) {
2173         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2174           return false;
2175         }
2176       }
2177     }
2178     return true;
2179   }
2180 };
2181 
2182 
2183 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2184 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2185   friend class AdapterHandlerTableIterator;
2186 
2187  private:
2188 
2189 #ifndef PRODUCT
2190   static int _lookups; // number of calls to lookup
2191   static int _buckets; // number of buckets checked
2192   static int _equals;  // number of buckets checked with matching hash
2193   static int _hits;    // number of successful lookups
2194   static int _compact; // number of equals calls with compact signature
2195 #endif
2196 
2197   AdapterHandlerEntry* bucket(int i) {
2198     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2199   }
2200 
2201  public:
2202   AdapterHandlerTable()
2203     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2204 
2205   // Create a new entry suitable for insertion in the table
2206   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2207     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2208     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2209     return entry;
2210   }
2211 
2212   // Insert an entry into the table
2213   void add(AdapterHandlerEntry* entry) {
2214     int index = hash_to_index(entry->hash());
2215     add_entry(index, entry);
2216   }
2217 
2218   void free_entry(AdapterHandlerEntry* entry) {
2219     entry->deallocate();
2220     BasicHashtable<mtCode>::free_entry(entry);
2221   }
2222 
2223   // Find a entry with the same fingerprint if it exists
2224   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2225     NOT_PRODUCT(_lookups++);
2226     AdapterFingerPrint fp(total_args_passed, sig_bt);
2227     unsigned int hash = fp.compute_hash();
2228     int index = hash_to_index(hash);
2229     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2230       NOT_PRODUCT(_buckets++);
2231       if (e->hash() == hash) {
2232         NOT_PRODUCT(_equals++);
2233         if (fp.equals(e->fingerprint())) {
2234 #ifndef PRODUCT
2235           if (fp.is_compact()) _compact++;
2236           _hits++;
2237 #endif
2238           return e;
2239         }
2240       }
2241     }
2242     return NULL;
2243   }
2244 
2245 #ifndef PRODUCT
2246   void print_statistics() {
2247     ResourceMark rm;
2248     int longest = 0;
2249     int empty = 0;
2250     int total = 0;
2251     int nonempty = 0;
2252     for (int index = 0; index < table_size(); index++) {
2253       int count = 0;
2254       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2255         count++;
2256       }
2257       if (count != 0) nonempty++;
2258       if (count == 0) empty++;
2259       if (count > longest) longest = count;
2260       total += count;
2261     }
2262     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2263                   empty, longest, total, total / (double)nonempty);
2264     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2265                   _lookups, _buckets, _equals, _hits, _compact);
2266   }
2267 #endif
2268 };
2269 
2270 
2271 #ifndef PRODUCT
2272 
2273 int AdapterHandlerTable::_lookups;
2274 int AdapterHandlerTable::_buckets;
2275 int AdapterHandlerTable::_equals;
2276 int AdapterHandlerTable::_hits;
2277 int AdapterHandlerTable::_compact;
2278 
2279 #endif
2280 
2281 class AdapterHandlerTableIterator : public StackObj {
2282  private:
2283   AdapterHandlerTable* _table;
2284   int _index;
2285   AdapterHandlerEntry* _current;
2286 
2287   void scan() {
2288     while (_index < _table->table_size()) {
2289       AdapterHandlerEntry* a = _table->bucket(_index);
2290       _index++;
2291       if (a != NULL) {
2292         _current = a;
2293         return;
2294       }
2295     }
2296   }
2297 
2298  public:
2299   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2300     scan();
2301   }
2302   bool has_next() {
2303     return _current != NULL;
2304   }
2305   AdapterHandlerEntry* next() {
2306     if (_current != NULL) {
2307       AdapterHandlerEntry* result = _current;
2308       _current = _current->next();
2309       if (_current == NULL) scan();
2310       return result;
2311     } else {
2312       return NULL;
2313     }
2314   }
2315 };
2316 
2317 
2318 // ---------------------------------------------------------------------------
2319 // Implementation of AdapterHandlerLibrary
2320 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2321 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2322 const int AdapterHandlerLibrary_size = 16*K;
2323 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2324 
2325 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2326   // Should be called only when AdapterHandlerLibrary_lock is active.
2327   if (_buffer == NULL) // Initialize lazily
2328       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2329   return _buffer;
2330 }
2331 
2332 void AdapterHandlerLibrary::initialize() {
2333   if (_adapters != NULL) return;
2334   _adapters = new AdapterHandlerTable();
2335 
2336   // Create a special handler for abstract methods.  Abstract methods
2337   // are never compiled so an i2c entry is somewhat meaningless, but
2338   // fill it in with something appropriate just in case.  Pass handle
2339   // wrong method for the c2i transitions.
2340   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2341   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2342                                                               StubRoutines::throw_AbstractMethodError_entry(),
2343                                                               wrong_method, wrong_method);
2344 }
2345 
2346 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2347                                                       address i2c_entry,
2348                                                       address c2i_entry,
2349                                                       address c2i_unverified_entry) {
2350   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2351 }
2352 
2353 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2354   // Use customized signature handler.  Need to lock around updates to
2355   // the AdapterHandlerTable (it is not safe for concurrent readers
2356   // and a single writer: this could be fixed if it becomes a
2357   // problem).
2358 
2359   // Get the address of the ic_miss handlers before we grab the
2360   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2361   // was caused by the initialization of the stubs happening
2362   // while we held the lock and then notifying jvmti while
2363   // holding it. This just forces the initialization to be a little
2364   // earlier.
2365   address ic_miss = SharedRuntime::get_ic_miss_stub();
2366   assert(ic_miss != NULL, "must have handler");
2367 
2368   ResourceMark rm;
2369 
2370   NOT_PRODUCT(int insts_size);
2371   AdapterBlob* B = NULL;
2372   AdapterHandlerEntry* entry = NULL;
2373   AdapterFingerPrint* fingerprint = NULL;
2374   {
2375     MutexLocker mu(AdapterHandlerLibrary_lock);
2376     // make sure data structure is initialized
2377     initialize();
2378 
2379     if (method->is_abstract()) {
2380       return _abstract_method_handler;
2381     }
2382 
2383     // Fill in the signature array, for the calling-convention call.
2384     int total_args_passed = method->size_of_parameters(); // All args on stack
2385 
2386     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2387     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2388     int i = 0;
2389     if (!method->is_static())  // Pass in receiver first
2390       sig_bt[i++] = T_OBJECT;
2391     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2392       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2393       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2394         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2395     }
2396     assert(i == total_args_passed, "");
2397 
2398     // Lookup method signature's fingerprint
2399     entry = _adapters->lookup(total_args_passed, sig_bt);
2400 
2401 #ifdef ASSERT
2402     AdapterHandlerEntry* shared_entry = NULL;
2403     if (VerifyAdapterSharing && entry != NULL) {
2404       shared_entry = entry;
2405       entry = NULL;
2406     }
2407 #endif
2408 
2409     if (entry != NULL) {
2410       return entry;
2411     }
2412 
2413     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2414     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2415 
2416     // Make a C heap allocated version of the fingerprint to store in the adapter
2417     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2418 
2419     // Create I2C & C2I handlers
2420 
2421     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2422     if (buf != NULL) {
2423       CodeBuffer buffer(buf);
2424       short buffer_locs[20];
2425       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2426                                              sizeof(buffer_locs)/sizeof(relocInfo));
2427       MacroAssembler _masm(&buffer);
2428 
2429       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2430                                                      total_args_passed,
2431                                                      comp_args_on_stack,
2432                                                      sig_bt,
2433                                                      regs,
2434                                                      fingerprint);
2435 
2436 #ifdef ASSERT
2437       if (VerifyAdapterSharing) {
2438         if (shared_entry != NULL) {
2439           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2440                  "code must match");
2441           // Release the one just created and return the original
2442           _adapters->free_entry(entry);
2443           return shared_entry;
2444         } else  {
2445           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2446         }
2447       }
2448 #endif
2449 
2450       B = AdapterBlob::create(&buffer);
2451       NOT_PRODUCT(insts_size = buffer.insts_size());
2452     }
2453     if (B == NULL) {
2454       // CodeCache is full, disable compilation
2455       // Ought to log this but compile log is only per compile thread
2456       // and we're some non descript Java thread.
2457       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2458       CompileBroker::handle_full_code_cache();
2459       return NULL; // Out of CodeCache space
2460     }
2461     entry->relocate(B->content_begin());
2462 #ifndef PRODUCT
2463     // debugging suppport
2464     if (PrintAdapterHandlers || PrintStubCode) {
2465       ttyLocker ttyl;
2466       entry->print_adapter_on(tty);
2467       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2468                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2469                     method->signature()->as_C_string(), insts_size);
2470       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2471       if (Verbose || PrintStubCode) {
2472         address first_pc = entry->base_address();
2473         if (first_pc != NULL) {
2474           Disassembler::decode(first_pc, first_pc + insts_size);
2475           tty->cr();
2476         }
2477       }
2478     }
2479 #endif
2480 
2481     _adapters->add(entry);
2482   }
2483   // Outside of the lock
2484   if (B != NULL) {
2485     char blob_id[256];
2486     jio_snprintf(blob_id,
2487                  sizeof(blob_id),
2488                  "%s(%s)@" PTR_FORMAT,
2489                  B->name(),
2490                  fingerprint->as_string(),
2491                  B->content_begin());
2492     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2493 
2494     if (JvmtiExport::should_post_dynamic_code_generated()) {
2495       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2496     }
2497   }
2498   return entry;
2499 }
2500 
2501 address AdapterHandlerEntry::base_address() {
2502   address base = _i2c_entry;
2503   if (base == NULL)  base = _c2i_entry;
2504   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2505   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2506   return base;
2507 }
2508 
2509 void AdapterHandlerEntry::relocate(address new_base) {
2510   address old_base = base_address();
2511   assert(old_base != NULL, "");
2512   ptrdiff_t delta = new_base - old_base;
2513   if (_i2c_entry != NULL)
2514     _i2c_entry += delta;
2515   if (_c2i_entry != NULL)
2516     _c2i_entry += delta;
2517   if (_c2i_unverified_entry != NULL)
2518     _c2i_unverified_entry += delta;
2519   assert(base_address() == new_base, "");
2520 }
2521 
2522 
2523 void AdapterHandlerEntry::deallocate() {
2524   delete _fingerprint;
2525 #ifdef ASSERT
2526   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2527   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
2528 #endif
2529 }
2530 
2531 
2532 #ifdef ASSERT
2533 // Capture the code before relocation so that it can be compared
2534 // against other versions.  If the code is captured after relocation
2535 // then relative instructions won't be equivalent.
2536 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2537   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2538   _code_length = length;
2539   memcpy(_saved_code, buffer, length);
2540   _total_args_passed = total_args_passed;
2541   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
2542   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2543 }
2544 
2545 
2546 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2547   if (length != _code_length) {
2548     return false;
2549   }
2550   for (int i = 0; i < length; i++) {
2551     if (buffer[i] != _saved_code[i]) {
2552       return false;
2553     }
2554   }
2555   return true;
2556 }
2557 #endif
2558 
2559 
2560 // Create a native wrapper for this native method.  The wrapper converts the
2561 // java compiled calling convention to the native convention, handlizes
2562 // arguments, and transitions to native.  On return from the native we transition
2563 // back to java blocking if a safepoint is in progress.
2564 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2565   ResourceMark rm;
2566   nmethod* nm = NULL;
2567 
2568   assert(method->is_native(), "must be native");
2569   assert(method->is_method_handle_intrinsic() ||
2570          method->has_native_function(), "must have something valid to call!");
2571 
2572   {
2573     // perform the work while holding the lock, but perform any printing outside the lock
2574     MutexLocker mu(AdapterHandlerLibrary_lock);
2575     // See if somebody beat us to it
2576     nm = method->code();
2577     if (nm) {
2578       return nm;
2579     }
2580 
2581     ResourceMark rm;
2582 
2583     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2584     if (buf != NULL) {
2585       CodeBuffer buffer(buf);
2586       double locs_buf[20];
2587       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2588       MacroAssembler _masm(&buffer);
2589 
2590       // Fill in the signature array, for the calling-convention call.
2591       const int total_args_passed = method->size_of_parameters();
2592 
2593       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2594       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2595       int i=0;
2596       if( !method->is_static() )  // Pass in receiver first
2597         sig_bt[i++] = T_OBJECT;
2598       SignatureStream ss(method->signature());
2599       for( ; !ss.at_return_type(); ss.next()) {
2600         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2601         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2602           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2603       }
2604       assert(i == total_args_passed, "");
2605       BasicType ret_type = ss.type();
2606 
2607       // Now get the compiled-Java layout as input (or output) arguments.
2608       // NOTE: Stubs for compiled entry points of method handle intrinsics
2609       // are just trampolines so the argument registers must be outgoing ones.
2610       const bool is_outgoing = method->is_method_handle_intrinsic();
2611       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2612 
2613       // Generate the compiled-to-native wrapper code
2614       nm = SharedRuntime::generate_native_wrapper(&_masm,
2615                                                   method,
2616                                                   compile_id,
2617                                                   sig_bt,
2618                                                   regs,
2619                                                   ret_type);
2620     }
2621   }
2622 
2623   // Must unlock before calling set_code
2624 
2625   // Install the generated code.
2626   if (nm != NULL) {
2627     if (PrintCompilation) {
2628       ttyLocker ttyl;
2629       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2630     }
2631     method->set_code(method, nm);
2632     nm->post_compiled_method_load_event();
2633   } else {
2634     // CodeCache is full, disable compilation
2635     CompileBroker::handle_full_code_cache();
2636   }
2637   return nm;
2638 }
2639 
2640 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2641   assert(thread == JavaThread::current(), "must be");
2642   // The code is about to enter a JNI lazy critical native method and
2643   // _needs_gc is true, so if this thread is already in a critical
2644   // section then just return, otherwise this thread should block
2645   // until needs_gc has been cleared.
2646   if (thread->in_critical()) {
2647     return;
2648   }
2649   // Lock and unlock a critical section to give the system a chance to block
2650   GC_locker::lock_critical(thread);
2651   GC_locker::unlock_critical(thread);
2652 JRT_END
2653 
2654 #ifdef HAVE_DTRACE_H
2655 // Create a dtrace nmethod for this method.  The wrapper converts the
2656 // java compiled calling convention to the native convention, makes a dummy call
2657 // (actually nops for the size of the call instruction, which become a trap if
2658 // probe is enabled). The returns to the caller. Since this all looks like a
2659 // leaf no thread transition is needed.
2660 
2661 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2662   ResourceMark rm;
2663   nmethod* nm = NULL;
2664 
2665   if (PrintCompilation) {
2666     ttyLocker ttyl;
2667     tty->print("---   n%s  ");
2668     method->print_short_name(tty);
2669     if (method->is_static()) {
2670       tty->print(" (static)");
2671     }
2672     tty->cr();
2673   }
2674 
2675   {
2676     // perform the work while holding the lock, but perform any printing
2677     // outside the lock
2678     MutexLocker mu(AdapterHandlerLibrary_lock);
2679     // See if somebody beat us to it
2680     nm = method->code();
2681     if (nm) {
2682       return nm;
2683     }
2684 
2685     ResourceMark rm;
2686 
2687     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2688     if (buf != NULL) {
2689       CodeBuffer buffer(buf);
2690       // Need a few relocation entries
2691       double locs_buf[20];
2692       buffer.insts()->initialize_shared_locs(
2693         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2694       MacroAssembler _masm(&buffer);
2695 
2696       // Generate the compiled-to-native wrapper code
2697       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2698     }
2699   }
2700   return nm;
2701 }
2702 
2703 // the dtrace method needs to convert java lang string to utf8 string.
2704 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2705   typeArrayOop jlsValue  = java_lang_String::value(src);
2706   int          jlsOffset = java_lang_String::offset(src);
2707   int          jlsLen    = java_lang_String::length(src);
2708   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2709                                            jlsValue->char_at_addr(jlsOffset);
2710   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2711   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2712 }
2713 #endif // ndef HAVE_DTRACE_H
2714 
2715 // -------------------------------------------------------------------------
2716 // Java-Java calling convention
2717 // (what you use when Java calls Java)
2718 
2719 //------------------------------name_for_receiver----------------------------------
2720 // For a given signature, return the VMReg for parameter 0.
2721 VMReg SharedRuntime::name_for_receiver() {
2722   VMRegPair regs;
2723   BasicType sig_bt = T_OBJECT;
2724   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2725   // Return argument 0 register.  In the LP64 build pointers
2726   // take 2 registers, but the VM wants only the 'main' name.
2727   return regs.first();
2728 }
2729 
2730 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2731   // This method is returning a data structure allocating as a
2732   // ResourceObject, so do not put any ResourceMarks in here.
2733   char *s = sig->as_C_string();
2734   int len = (int)strlen(s);
2735   *s++; len--;                  // Skip opening paren
2736   char *t = s+len;
2737   while( *(--t) != ')' ) ;      // Find close paren
2738 
2739   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2740   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2741   int cnt = 0;
2742   if (has_receiver) {
2743     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2744   }
2745 
2746   while( s < t ) {
2747     switch( *s++ ) {            // Switch on signature character
2748     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2749     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2750     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2751     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2752     case 'I': sig_bt[cnt++] = T_INT;     break;
2753     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2754     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2755     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2756     case 'V': sig_bt[cnt++] = T_VOID;    break;
2757     case 'L':                   // Oop
2758       while( *s++ != ';'  ) ;   // Skip signature
2759       sig_bt[cnt++] = T_OBJECT;
2760       break;
2761     case '[': {                 // Array
2762       do {                      // Skip optional size
2763         while( *s >= '0' && *s <= '9' ) s++;
2764       } while( *s++ == '[' );   // Nested arrays?
2765       // Skip element type
2766       if( s[-1] == 'L' )
2767         while( *s++ != ';'  ) ; // Skip signature
2768       sig_bt[cnt++] = T_ARRAY;
2769       break;
2770     }
2771     default : ShouldNotReachHere();
2772     }
2773   }
2774   assert( cnt < 256, "grow table size" );
2775 
2776   int comp_args_on_stack;
2777   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2778 
2779   // the calling convention doesn't count out_preserve_stack_slots so
2780   // we must add that in to get "true" stack offsets.
2781 
2782   if (comp_args_on_stack) {
2783     for (int i = 0; i < cnt; i++) {
2784       VMReg reg1 = regs[i].first();
2785       if( reg1->is_stack()) {
2786         // Yuck
2787         reg1 = reg1->bias(out_preserve_stack_slots());
2788       }
2789       VMReg reg2 = regs[i].second();
2790       if( reg2->is_stack()) {
2791         // Yuck
2792         reg2 = reg2->bias(out_preserve_stack_slots());
2793       }
2794       regs[i].set_pair(reg2, reg1);
2795     }
2796   }
2797 
2798   // results
2799   *arg_size = cnt;
2800   return regs;
2801 }
2802 
2803 // OSR Migration Code
2804 //
2805 // This code is used convert interpreter frames into compiled frames.  It is
2806 // called from very start of a compiled OSR nmethod.  A temp array is
2807 // allocated to hold the interesting bits of the interpreter frame.  All
2808 // active locks are inflated to allow them to move.  The displaced headers and
2809 // active interpeter locals are copied into the temp buffer.  Then we return
2810 // back to the compiled code.  The compiled code then pops the current
2811 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2812 // copies the interpreter locals and displaced headers where it wants.
2813 // Finally it calls back to free the temp buffer.
2814 //
2815 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2816 
2817 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2818 
2819 #ifdef IA64
2820   ShouldNotReachHere(); // NYI
2821 #endif /* IA64 */
2822 
2823   //
2824   // This code is dependent on the memory layout of the interpreter local
2825   // array and the monitors. On all of our platforms the layout is identical
2826   // so this code is shared. If some platform lays the their arrays out
2827   // differently then this code could move to platform specific code or
2828   // the code here could be modified to copy items one at a time using
2829   // frame accessor methods and be platform independent.
2830 
2831   frame fr = thread->last_frame();
2832   assert( fr.is_interpreted_frame(), "" );
2833   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2834 
2835   // Figure out how many monitors are active.
2836   int active_monitor_count = 0;
2837   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2838        kptr < fr.interpreter_frame_monitor_begin();
2839        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2840     if( kptr->obj() != NULL ) active_monitor_count++;
2841   }
2842 
2843   // QQQ we could place number of active monitors in the array so that compiled code
2844   // could double check it.
2845 
2846   Method* moop = fr.interpreter_frame_method();
2847   int max_locals = moop->max_locals();
2848   // Allocate temp buffer, 1 word per local & 2 per active monitor
2849   int buf_size_words = max_locals + active_monitor_count*2;
2850   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2851 
2852   // Copy the locals.  Order is preserved so that loading of longs works.
2853   // Since there's no GC I can copy the oops blindly.
2854   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2855   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2856                        (HeapWord*)&buf[0],
2857                        max_locals);
2858 
2859   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2860   int i = max_locals;
2861   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2862        kptr2 < fr.interpreter_frame_monitor_begin();
2863        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2864     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2865       BasicLock *lock = kptr2->lock();
2866       // Inflate so the displaced header becomes position-independent
2867       if (lock->displaced_header()->is_unlocked())
2868         ObjectSynchronizer::inflate_helper(kptr2->obj());
2869       // Now the displaced header is free to move
2870       buf[i++] = (intptr_t)lock->displaced_header();
2871       buf[i++] = (intptr_t)kptr2->obj();
2872     }
2873   }
2874   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2875 
2876   return buf;
2877 JRT_END
2878 
2879 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2880   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2881 JRT_END
2882 
2883 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2884   AdapterHandlerTableIterator iter(_adapters);
2885   while (iter.has_next()) {
2886     AdapterHandlerEntry* a = iter.next();
2887     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2888   }
2889   return false;
2890 }
2891 
2892 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2893   AdapterHandlerTableIterator iter(_adapters);
2894   while (iter.has_next()) {
2895     AdapterHandlerEntry* a = iter.next();
2896     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2897       st->print("Adapter for signature: ");
2898       a->print_adapter_on(tty);
2899       return;
2900     }
2901   }
2902   assert(false, "Should have found handler");
2903 }
2904 
2905 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2906   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2907                (intptr_t) this, fingerprint()->as_string(),
2908                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2909 
2910 }
2911 
2912 #ifndef PRODUCT
2913 
2914 void AdapterHandlerLibrary::print_statistics() {
2915   _adapters->print_statistics();
2916 }
2917 
2918 #endif /* PRODUCT */