1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/padded.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/markOop.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/atomic.inline.hpp"
  32 #include "runtime/biasedLocking.hpp"
  33 #include "runtime/handles.inline.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "runtime/objectMonitor.hpp"
  37 #include "runtime/objectMonitor.inline.hpp"
  38 #include "runtime/osThread.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/synchronizer.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 #include "utilities/dtrace.hpp"
  43 #include "utilities/events.hpp"
  44 #include "utilities/preserveException.hpp"
  45 
  46 #if defined(__GNUC__) && !defined(PPC64)
  47 // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  48   #define NOINLINE __attribute__((noinline))
  49 #else
  50   #define NOINLINE
  51 #endif
  52 
  53 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  54 
  55 // The "core" versions of monitor enter and exit reside in this file.
  56 // The interpreter and compilers contain specialized transliterated
  57 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  58 // for instance.  If you make changes here, make sure to modify the
  59 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  60 //
  61 // -----------------------------------------------------------------------------
  62 
  63 #ifdef DTRACE_ENABLED
  64 
  65 // Only bother with this argument setup if dtrace is available
  66 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  67 
  68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  69   char* bytes = NULL;                                                      \
  70   int len = 0;                                                             \
  71   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  72   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  73   if (klassname != NULL) {                                                 \
  74     bytes = (char*)klassname->bytes();                                     \
  75     len = klassname->utf8_length();                                        \
  76   }
  77 
  78 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  79   {                                                                        \
  80     if (DTraceMonitorProbes) {                                             \
  81       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  82       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  83                            (uintptr_t)(monitor), bytes, len, (millis));    \
  84     }                                                                      \
  85   }
  86 
  87 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  88 
  89 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  90   {                                                                        \
  91     if (DTraceMonitorProbes) {                                             \
  92       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  93       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  94                                     (uintptr_t)(monitor), bytes, len);     \
  95     }                                                                      \
  96   }
  97 
  98 #else //  ndef DTRACE_ENABLED
  99 
 100 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 101 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 102 
 103 #endif // ndef DTRACE_ENABLED
 104 
 105 // This exists only as a workaround of dtrace bug 6254741
 106 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 107   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 108   return 0;
 109 }
 110 
 111 #define NINFLATIONLOCKS 256
 112 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 113 
 114 // global list of blocks of monitors
 115 // gBlockList is really PaddedEnd<ObjectMonitor> *, but we don't
 116 // want to expose the PaddedEnd template more than necessary.
 117 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL;
 118 // global monitor free list
 119 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 120 // global monitor in-use list, for moribund threads,
 121 // monitors they inflated need to be scanned for deflation
 122 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 123 // count of entries in gOmInUseList
 124 int ObjectSynchronizer::gOmInUseCount = 0;
 125 
 126 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 127 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 128 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 129 
 130 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 131 
 132 
 133 // =====================> Quick functions
 134 
 135 // The quick_* forms are special fast-path variants used to improve
 136 // performance.  In the simplest case, a "quick_*" implementation could
 137 // simply return false, in which case the caller will perform the necessary
 138 // state transitions and call the slow-path form.
 139 // The fast-path is designed to handle frequently arising cases in an efficient
 140 // manner and is just a degenerate "optimistic" variant of the slow-path.
 141 // returns true  -- to indicate the call was satisfied.
 142 // returns false -- to indicate the call needs the services of the slow-path.
 143 // A no-loitering ordinance is in effect for code in the quick_* family
 144 // operators: safepoints or indefinite blocking (blocking that might span a
 145 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 146 // entry.
 147 
 148 // The LockNode emitted directly at the synchronization site would have
 149 // been too big if it were to have included support for the cases of inflated
 150 // recursive enter and exit, so they go here instead.
 151 // Note that we can't safely call AsyncPrintJavaStack() from within
 152 // quick_enter() as our thread state remains _in_Java.
 153 
 154 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 155                                      BasicLock * Lock) {
 156   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 157   assert(Self->is_Java_thread(), "invariant");
 158   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 159   No_Safepoint_Verifier nsv;
 160   if (obj == NULL) return false;       // Need to throw NPE
 161   const markOop mark = obj->mark();
 162 
 163   if (mark->has_monitor()) {
 164     ObjectMonitor * const m = mark->monitor();
 165     assert(m->object() == obj, "invariant");
 166     Thread * const owner = (Thread *) m->_owner;
 167 
 168     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 169     // and observability
 170     // Case: light contention possibly amenable to TLE
 171     // Case: TLE inimical operations such as nested/recursive synchronization
 172 
 173     if (owner == Self) {
 174       m->_recursions++;
 175       return true;
 176     }
 177 
 178     if (owner == NULL &&
 179         Atomic::cmpxchg_ptr(Self, &(m->_owner), NULL) == NULL) {
 180       assert(m->_recursions == 0, "invariant");
 181       assert(m->_owner == Self, "invariant");
 182       return true;
 183     }
 184   }
 185 
 186   // Note that we could inflate in quick_enter.
 187   // This is likely a useful optimization
 188   // Critically, in quick_enter() we must not:
 189   // -- perform bias revocation, or
 190   // -- block indefinitely, or
 191   // -- reach a safepoint
 192 
 193   return false;        // revert to slow-path
 194 }
 195 
 196 // -----------------------------------------------------------------------------
 197 //  Fast Monitor Enter/Exit
 198 // This the fast monitor enter. The interpreter and compiler use
 199 // some assembly copies of this code. Make sure update those code
 200 // if the following function is changed. The implementation is
 201 // extremely sensitive to race condition. Be careful.
 202 
 203 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 204                                     bool attempt_rebias, TRAPS) {
 205   if (UseBiasedLocking) {
 206     if (!SafepointSynchronize::is_at_safepoint()) {
 207       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 208       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 209         return;
 210       }
 211     } else {
 212       assert(!attempt_rebias, "can not rebias toward VM thread");
 213       BiasedLocking::revoke_at_safepoint(obj);
 214     }
 215     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 216   }
 217 
 218   slow_enter(obj, lock, THREAD);
 219 }
 220 
 221 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 222   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
 223   // if displaced header is null, the previous enter is recursive enter, no-op
 224   markOop dhw = lock->displaced_header();
 225   markOop mark;
 226   if (dhw == NULL) {
 227     // Recursive stack-lock.
 228     // Diagnostics -- Could be: stack-locked, inflating, inflated.
 229     mark = object->mark();
 230     assert(!mark->is_neutral(), "invariant");
 231     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
 232       assert(THREAD->is_lock_owned((address)mark->locker()), "invariant");
 233     }
 234     if (mark->has_monitor()) {
 235       ObjectMonitor * m = mark->monitor();
 236       assert(((oop)(m->object()))->mark() == mark, "invariant");
 237       assert(m->is_entered(THREAD), "invariant");
 238     }
 239     return;
 240   }
 241 
 242   mark = object->mark();
 243 
 244   // If the object is stack-locked by the current thread, try to
 245   // swing the displaced header from the box back to the mark.
 246   if (mark == (markOop) lock) {
 247     assert(dhw->is_neutral(), "invariant");
 248     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
 249       TEVENT(fast_exit: release stacklock);
 250       return;
 251     }
 252   }
 253 
 254   ObjectSynchronizer::inflate(THREAD, object)->exit(true, THREAD);
 255 }
 256 
 257 // -----------------------------------------------------------------------------
 258 // Interpreter/Compiler Slow Case
 259 // This routine is used to handle interpreter/compiler slow case
 260 // We don't need to use fast path here, because it must have been
 261 // failed in the interpreter/compiler code.
 262 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 263   markOop mark = obj->mark();
 264   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 265 
 266   if (mark->is_neutral()) {
 267     // Anticipate successful CAS -- the ST of the displaced mark must
 268     // be visible <= the ST performed by the CAS.
 269     lock->set_displaced_header(mark);
 270     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
 271       TEVENT(slow_enter: release stacklock);
 272       return;
 273     }
 274     // Fall through to inflate() ...
 275   } else if (mark->has_locker() &&
 276              THREAD->is_lock_owned((address)mark->locker())) {
 277     assert(lock != mark->locker(), "must not re-lock the same lock");
 278     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 279     lock->set_displaced_header(NULL);
 280     return;
 281   }
 282 
 283   // The object header will never be displaced to this lock,
 284   // so it does not matter what the value is, except that it
 285   // must be non-zero to avoid looking like a re-entrant lock,
 286   // and must not look locked either.
 287   lock->set_displaced_header(markOopDesc::unused_mark());
 288   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 289 }
 290 
 291 // This routine is used to handle interpreter/compiler slow case
 292 // We don't need to use fast path here, because it must have
 293 // failed in the interpreter/compiler code. Simply use the heavy
 294 // weight monitor should be ok, unless someone find otherwise.
 295 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 296   fast_exit(object, lock, THREAD);
 297 }
 298 
 299 // -----------------------------------------------------------------------------
 300 // Class Loader  support to workaround deadlocks on the class loader lock objects
 301 // Also used by GC
 302 // complete_exit()/reenter() are used to wait on a nested lock
 303 // i.e. to give up an outer lock completely and then re-enter
 304 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 305 //  1) complete_exit lock1 - saving recursion count
 306 //  2) wait on lock2
 307 //  3) when notified on lock2, unlock lock2
 308 //  4) reenter lock1 with original recursion count
 309 //  5) lock lock2
 310 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 311 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 312   TEVENT(complete_exit);
 313   if (UseBiasedLocking) {
 314     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 315     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 316   }
 317 
 318   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 319 
 320   return monitor->complete_exit(THREAD);
 321 }
 322 
 323 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 324 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 325   TEVENT(reenter);
 326   if (UseBiasedLocking) {
 327     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 328     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 329   }
 330 
 331   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 332 
 333   monitor->reenter(recursion, THREAD);
 334 }
 335 // -----------------------------------------------------------------------------
 336 // JNI locks on java objects
 337 // NOTE: must use heavy weight monitor to handle jni monitor enter
 338 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 339   // the current locking is from JNI instead of Java code
 340   TEVENT(jni_enter);
 341   if (UseBiasedLocking) {
 342     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 343     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 344   }
 345   THREAD->set_current_pending_monitor_is_from_java(false);
 346   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 347   THREAD->set_current_pending_monitor_is_from_java(true);
 348 }
 349 
 350 // NOTE: must use heavy weight monitor to handle jni monitor exit
 351 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 352   TEVENT(jni_exit);
 353   if (UseBiasedLocking) {
 354     Handle h_obj(THREAD, obj);
 355     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 356     obj = h_obj();
 357   }
 358   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 359 
 360   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
 361   // If this thread has locked the object, exit the monitor.  Note:  can't use
 362   // monitor->check(CHECK); must exit even if an exception is pending.
 363   if (monitor->check(THREAD)) {
 364     monitor->exit(true, THREAD);
 365   }
 366 }
 367 
 368 // -----------------------------------------------------------------------------
 369 // Internal VM locks on java objects
 370 // standard constructor, allows locking failures
 371 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 372   _dolock = doLock;
 373   _thread = thread;
 374   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 375   _obj = obj;
 376 
 377   if (_dolock) {
 378     TEVENT(ObjectLocker);
 379 
 380     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 381   }
 382 }
 383 
 384 ObjectLocker::~ObjectLocker() {
 385   if (_dolock) {
 386     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 387   }
 388 }
 389 
 390 
 391 // -----------------------------------------------------------------------------
 392 //  Wait/Notify/NotifyAll
 393 // NOTE: must use heavy weight monitor to handle wait()
 394 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 395   if (UseBiasedLocking) {
 396     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 397     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 398   }
 399   if (millis < 0) {
 400     TEVENT(wait - throw IAX);
 401     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 402   }
 403   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 404   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 405   monitor->wait(millis, true, THREAD);
 406 
 407   // This dummy call is in place to get around dtrace bug 6254741.  Once
 408   // that's fixed we can uncomment the following line, remove the call
 409   // and change this function back into a "void" func.
 410   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 411   return dtrace_waited_probe(monitor, obj, THREAD);
 412 }
 413 
 414 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 415   if (UseBiasedLocking) {
 416     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 417     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 418   }
 419   if (millis < 0) {
 420     TEVENT(wait - throw IAX);
 421     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 422   }
 423   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD);
 424 }
 425 
 426 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 427   if (UseBiasedLocking) {
 428     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 429     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 430   }
 431 
 432   markOop mark = obj->mark();
 433   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 434     return;
 435   }
 436   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
 437 }
 438 
 439 // NOTE: see comment of notify()
 440 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 441   if (UseBiasedLocking) {
 442     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 443     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 444   }
 445 
 446   markOop mark = obj->mark();
 447   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 448     return;
 449   }
 450   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
 451 }
 452 
 453 // -----------------------------------------------------------------------------
 454 // Hash Code handling
 455 //
 456 // Performance concern:
 457 // OrderAccess::storestore() calls release() which at one time stored 0
 458 // into the global volatile OrderAccess::dummy variable. This store was
 459 // unnecessary for correctness. Many threads storing into a common location
 460 // causes considerable cache migration or "sloshing" on large SMP systems.
 461 // As such, I avoided using OrderAccess::storestore(). In some cases
 462 // OrderAccess::fence() -- which incurs local latency on the executing
 463 // processor -- is a better choice as it scales on SMP systems.
 464 //
 465 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 466 // a discussion of coherency costs. Note that all our current reference
 467 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 468 // x64, and SPARC.
 469 //
 470 // As a general policy we use "volatile" to control compiler-based reordering
 471 // and explicit fences (barriers) to control for architectural reordering
 472 // performed by the CPU(s) or platform.
 473 
 474 struct SharedGlobals {
 475   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 476   // These are highly shared mostly-read variables.
 477   // To avoid false-sharing they need to be the sole occupants of a cache line.
 478   volatile int stwRandom;
 479   volatile int stwCycle;
 480   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 481   // Hot RW variable -- Sequester to avoid false-sharing
 482   volatile int hcSequence;
 483   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 484 };
 485 
 486 static SharedGlobals GVars;
 487 static int MonitorScavengeThreshold = 1000000;
 488 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 489 
 490 static markOop ReadStableMark(oop obj) {
 491   markOop mark = obj->mark();
 492   if (!mark->is_being_inflated()) {
 493     return mark;       // normal fast-path return
 494   }
 495 
 496   int its = 0;
 497   for (;;) {
 498     markOop mark = obj->mark();
 499     if (!mark->is_being_inflated()) {
 500       return mark;    // normal fast-path return
 501     }
 502 
 503     // The object is being inflated by some other thread.
 504     // The caller of ReadStableMark() must wait for inflation to complete.
 505     // Avoid live-lock
 506     // TODO: consider calling SafepointSynchronize::do_call_back() while
 507     // spinning to see if there's a safepoint pending.  If so, immediately
 508     // yielding or blocking would be appropriate.  Avoid spinning while
 509     // there is a safepoint pending.
 510     // TODO: add inflation contention performance counters.
 511     // TODO: restrict the aggregate number of spinners.
 512 
 513     ++its;
 514     if (its > 10000 || !os::is_MP()) {
 515       if (its & 1) {
 516         os::naked_yield();
 517         TEVENT(Inflate: INFLATING - yield);
 518       } else {
 519         // Note that the following code attenuates the livelock problem but is not
 520         // a complete remedy.  A more complete solution would require that the inflating
 521         // thread hold the associated inflation lock.  The following code simply restricts
 522         // the number of spinners to at most one.  We'll have N-2 threads blocked
 523         // on the inflationlock, 1 thread holding the inflation lock and using
 524         // a yield/park strategy, and 1 thread in the midst of inflation.
 525         // A more refined approach would be to change the encoding of INFLATING
 526         // to allow encapsulation of a native thread pointer.  Threads waiting for
 527         // inflation to complete would use CAS to push themselves onto a singly linked
 528         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 529         // and calling park().  When inflation was complete the thread that accomplished inflation
 530         // would detach the list and set the markword to inflated with a single CAS and
 531         // then for each thread on the list, set the flag and unpark() the thread.
 532         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 533         // wakes at most one thread whereas we need to wake the entire list.
 534         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 535         int YieldThenBlock = 0;
 536         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 537         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 538         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 539         while (obj->mark() == markOopDesc::INFLATING()) {
 540           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 541           // so we periodically call Self->_ParkEvent->park(1).
 542           // We use a mixed spin/yield/block mechanism.
 543           if ((YieldThenBlock++) >= 16) {
 544             Thread::current()->_ParkEvent->park(1);
 545           } else {
 546             os::naked_yield();
 547           }
 548         }
 549         Thread::muxRelease(gInflationLocks + ix);
 550         TEVENT(Inflate: INFLATING - yield/park);
 551       }
 552     } else {
 553       SpinPause();       // SMP-polite spinning
 554     }
 555   }
 556 }
 557 
 558 // hashCode() generation :
 559 //
 560 // Possibilities:
 561 // * MD5Digest of {obj,stwRandom}
 562 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 563 // * A DES- or AES-style SBox[] mechanism
 564 // * One of the Phi-based schemes, such as:
 565 //   2654435761 = 2^32 * Phi (golden ratio)
 566 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 567 // * A variation of Marsaglia's shift-xor RNG scheme.
 568 // * (obj ^ stwRandom) is appealing, but can result
 569 //   in undesirable regularity in the hashCode values of adjacent objects
 570 //   (objects allocated back-to-back, in particular).  This could potentially
 571 //   result in hashtable collisions and reduced hashtable efficiency.
 572 //   There are simple ways to "diffuse" the middle address bits over the
 573 //   generated hashCode values:
 574 
 575 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 576   intptr_t value = 0;
 577   if (hashCode == 0) {
 578     // This form uses an unguarded global Park-Miller RNG,
 579     // so it's possible for two threads to race and generate the same RNG.
 580     // On MP system we'll have lots of RW access to a global, so the
 581     // mechanism induces lots of coherency traffic.
 582     value = os::random();
 583   } else if (hashCode == 1) {
 584     // This variation has the property of being stable (idempotent)
 585     // between STW operations.  This can be useful in some of the 1-0
 586     // synchronization schemes.
 587     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 588     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 589   } else if (hashCode == 2) {
 590     value = 1;            // for sensitivity testing
 591   } else if (hashCode == 3) {
 592     value = ++GVars.hcSequence;
 593   } else if (hashCode == 4) {
 594     value = cast_from_oop<intptr_t>(obj);
 595   } else {
 596     // Marsaglia's xor-shift scheme with thread-specific state
 597     // This is probably the best overall implementation -- we'll
 598     // likely make this the default in future releases.
 599     unsigned t = Self->_hashStateX;
 600     t ^= (t << 11);
 601     Self->_hashStateX = Self->_hashStateY;
 602     Self->_hashStateY = Self->_hashStateZ;
 603     Self->_hashStateZ = Self->_hashStateW;
 604     unsigned v = Self->_hashStateW;
 605     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 606     Self->_hashStateW = v;
 607     value = v;
 608   }
 609 
 610   value &= markOopDesc::hash_mask;
 611   if (value == 0) value = 0xBAD;
 612   assert(value != markOopDesc::no_hash, "invariant");
 613   TEVENT(hashCode: GENERATE);
 614   return value;
 615 }
 616 
 617 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 618   if (UseBiasedLocking) {
 619     // NOTE: many places throughout the JVM do not expect a safepoint
 620     // to be taken here, in particular most operations on perm gen
 621     // objects. However, we only ever bias Java instances and all of
 622     // the call sites of identity_hash that might revoke biases have
 623     // been checked to make sure they can handle a safepoint. The
 624     // added check of the bias pattern is to avoid useless calls to
 625     // thread-local storage.
 626     if (obj->mark()->has_bias_pattern()) {
 627       // Handle for oop obj in case of STW safepoint
 628       Handle hobj(Self, obj);
 629       // Relaxing assertion for bug 6320749.
 630       assert(Universe::verify_in_progress() ||
 631              !SafepointSynchronize::is_at_safepoint(),
 632              "biases should not be seen by VM thread here");
 633       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 634       obj = hobj();
 635       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 636     }
 637   }
 638 
 639   // hashCode() is a heap mutator ...
 640   // Relaxing assertion for bug 6320749.
 641   assert(Universe::verify_in_progress() ||
 642          !SafepointSynchronize::is_at_safepoint(), "invariant");
 643   assert(Universe::verify_in_progress() ||
 644          Self->is_Java_thread() , "invariant");
 645   assert(Universe::verify_in_progress() ||
 646          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 647 
 648   ObjectMonitor* monitor = NULL;
 649   markOop temp, test;
 650   intptr_t hash;
 651   markOop mark = ReadStableMark(obj);
 652 
 653   // object should remain ineligible for biased locking
 654   assert(!mark->has_bias_pattern(), "invariant");
 655 
 656   if (mark->is_neutral()) {
 657     hash = mark->hash();              // this is a normal header
 658     if (hash) {                       // if it has hash, just return it
 659       return hash;
 660     }
 661     hash = get_next_hash(Self, obj);  // allocate a new hash code
 662     temp = mark->copy_set_hash(hash); // merge the hash code into header
 663     // use (machine word version) atomic operation to install the hash
 664     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
 665     if (test == mark) {
 666       return hash;
 667     }
 668     // If atomic operation failed, we must inflate the header
 669     // into heavy weight monitor. We could add more code here
 670     // for fast path, but it does not worth the complexity.
 671   } else if (mark->has_monitor()) {
 672     monitor = mark->monitor();
 673     temp = monitor->header();
 674     assert(temp->is_neutral(), "invariant");
 675     hash = temp->hash();
 676     if (hash) {
 677       return hash;
 678     }
 679     // Skip to the following code to reduce code size
 680   } else if (Self->is_lock_owned((address)mark->locker())) {
 681     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 682     assert(temp->is_neutral(), "invariant");
 683     hash = temp->hash();              // by current thread, check if the displaced
 684     if (hash) {                       // header contains hash code
 685       return hash;
 686     }
 687     // WARNING:
 688     //   The displaced header is strictly immutable.
 689     // It can NOT be changed in ANY cases. So we have
 690     // to inflate the header into heavyweight monitor
 691     // even the current thread owns the lock. The reason
 692     // is the BasicLock (stack slot) will be asynchronously
 693     // read by other threads during the inflate() function.
 694     // Any change to stack may not propagate to other threads
 695     // correctly.
 696   }
 697 
 698   // Inflate the monitor to set hash code
 699   monitor = ObjectSynchronizer::inflate(Self, obj);
 700   // Load displaced header and check it has hash code
 701   mark = monitor->header();
 702   assert(mark->is_neutral(), "invariant");
 703   hash = mark->hash();
 704   if (hash == 0) {
 705     hash = get_next_hash(Self, obj);
 706     temp = mark->copy_set_hash(hash); // merge hash code into header
 707     assert(temp->is_neutral(), "invariant");
 708     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 709     if (test != mark) {
 710       // The only update to the header in the monitor (outside GC)
 711       // is install the hash code. If someone add new usage of
 712       // displaced header, please update this code
 713       hash = test->hash();
 714       assert(test->is_neutral(), "invariant");
 715       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 716     }
 717   }
 718   // We finally get the hash
 719   return hash;
 720 }
 721 
 722 // Deprecated -- use FastHashCode() instead.
 723 
 724 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 725   return FastHashCode(Thread::current(), obj());
 726 }
 727 
 728 
 729 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 730                                                    Handle h_obj) {
 731   if (UseBiasedLocking) {
 732     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 733     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 734   }
 735 
 736   assert(thread == JavaThread::current(), "Can only be called on current thread");
 737   oop obj = h_obj();
 738 
 739   markOop mark = ReadStableMark(obj);
 740 
 741   // Uncontended case, header points to stack
 742   if (mark->has_locker()) {
 743     return thread->is_lock_owned((address)mark->locker());
 744   }
 745   // Contended case, header points to ObjectMonitor (tagged pointer)
 746   if (mark->has_monitor()) {
 747     ObjectMonitor* monitor = mark->monitor();
 748     return monitor->is_entered(thread) != 0;
 749   }
 750   // Unlocked case, header in place
 751   assert(mark->is_neutral(), "sanity check");
 752   return false;
 753 }
 754 
 755 // Be aware of this method could revoke bias of the lock object.
 756 // This method queries the ownership of the lock handle specified by 'h_obj'.
 757 // If the current thread owns the lock, it returns owner_self. If no
 758 // thread owns the lock, it returns owner_none. Otherwise, it will return
 759 // owner_other.
 760 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 761 (JavaThread *self, Handle h_obj) {
 762   // The caller must beware this method can revoke bias, and
 763   // revocation can result in a safepoint.
 764   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 765   assert(self->thread_state() != _thread_blocked, "invariant");
 766 
 767   // Possible mark states: neutral, biased, stack-locked, inflated
 768 
 769   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 770     // CASE: biased
 771     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 772     assert(!h_obj->mark()->has_bias_pattern(),
 773            "biases should be revoked by now");
 774   }
 775 
 776   assert(self == JavaThread::current(), "Can only be called on current thread");
 777   oop obj = h_obj();
 778   markOop mark = ReadStableMark(obj);
 779 
 780   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 781   if (mark->has_locker()) {
 782     return self->is_lock_owned((address)mark->locker()) ?
 783       owner_self : owner_other;
 784   }
 785 
 786   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 787   // The Object:ObjectMonitor relationship is stable as long as we're
 788   // not at a safepoint.
 789   if (mark->has_monitor()) {
 790     void * owner = mark->monitor()->_owner;
 791     if (owner == NULL) return owner_none;
 792     return (owner == self ||
 793             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 794   }
 795 
 796   // CASE: neutral
 797   assert(mark->is_neutral(), "sanity check");
 798   return owner_none;           // it's unlocked
 799 }
 800 
 801 // FIXME: jvmti should call this
 802 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 803   if (UseBiasedLocking) {
 804     if (SafepointSynchronize::is_at_safepoint()) {
 805       BiasedLocking::revoke_at_safepoint(h_obj);
 806     } else {
 807       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 808     }
 809     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 810   }
 811 
 812   oop obj = h_obj();
 813   address owner = NULL;
 814 
 815   markOop mark = ReadStableMark(obj);
 816 
 817   // Uncontended case, header points to stack
 818   if (mark->has_locker()) {
 819     owner = (address) mark->locker();
 820   }
 821 
 822   // Contended case, header points to ObjectMonitor (tagged pointer)
 823   if (mark->has_monitor()) {
 824     ObjectMonitor* monitor = mark->monitor();
 825     assert(monitor != NULL, "monitor should be non-null");
 826     owner = (address) monitor->owner();
 827   }
 828 
 829   if (owner != NULL) {
 830     // owning_thread_from_monitor_owner() may also return NULL here
 831     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 832   }
 833 
 834   // Unlocked case, header in place
 835   // Cannot have assertion since this object may have been
 836   // locked by another thread when reaching here.
 837   // assert(mark->is_neutral(), "sanity check");
 838 
 839   return NULL;
 840 }
 841 // Visitors ...
 842 
 843 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 844   PaddedEnd<ObjectMonitor> * block = (PaddedEnd<ObjectMonitor> *)gBlockList;
 845   ObjectMonitor* mid;
 846   while (block) {
 847     assert(block->object() == CHAINMARKER, "must be a block header");
 848     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 849       mid = (ObjectMonitor *)(block + i);
 850       oop object = (oop) mid->object();
 851       if (object != NULL) {
 852         closure->do_monitor(mid);
 853       }
 854     }
 855     block = (PaddedEnd<ObjectMonitor> *) block->FreeNext;
 856   }
 857 }
 858 
 859 // Get the next block in the block list.
 860 static inline ObjectMonitor* next(ObjectMonitor* block) {
 861   assert(block->object() == CHAINMARKER, "must be a block header");
 862   block = block->FreeNext;
 863   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 864   return block;
 865 }
 866 
 867 
 868 void ObjectSynchronizer::oops_do(OopClosure* f) {
 869   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 870   for (PaddedEnd<ObjectMonitor> * block =
 871        (PaddedEnd<ObjectMonitor> *)gBlockList; block != NULL;
 872        block = (PaddedEnd<ObjectMonitor> *)next(block)) {
 873     assert(block->object() == CHAINMARKER, "must be a block header");
 874     for (int i = 1; i < _BLOCKSIZE; i++) {
 875       ObjectMonitor* mid = (ObjectMonitor *)&block[i];
 876       if (mid->object() != NULL) {
 877         f->do_oop((oop*)mid->object_addr());
 878       }
 879     }
 880   }
 881 }
 882 
 883 
 884 // -----------------------------------------------------------------------------
 885 // ObjectMonitor Lifecycle
 886 // -----------------------
 887 // Inflation unlinks monitors from the global gFreeList and
 888 // associates them with objects.  Deflation -- which occurs at
 889 // STW-time -- disassociates idle monitors from objects.  Such
 890 // scavenged monitors are returned to the gFreeList.
 891 //
 892 // The global list is protected by gListLock.  All the critical sections
 893 // are short and operate in constant-time.
 894 //
 895 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 896 //
 897 // Lifecycle:
 898 // --   unassigned and on the global free list
 899 // --   unassigned and on a thread's private omFreeList
 900 // --   assigned to an object.  The object is inflated and the mark refers
 901 //      to the objectmonitor.
 902 
 903 
 904 // Constraining monitor pool growth via MonitorBound ...
 905 //
 906 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 907 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 908 // an inordinate number of monitors in circulation.
 909 // To avoid that scenario we can artificially induce a STW safepoint
 910 // if the pool appears to be growing past some reasonable bound.
 911 // Generally we favor time in space-time tradeoffs, but as there's no
 912 // natural back-pressure on the # of extant monitors we need to impose some
 913 // type of limit.  Beware that if MonitorBound is set to too low a value
 914 // we could just loop. In addition, if MonitorBound is set to a low value
 915 // we'll incur more safepoints, which are harmful to performance.
 916 // See also: GuaranteedSafepointInterval
 917 //
 918 // The current implementation uses asynchronous VM operations.
 919 
 920 static void InduceScavenge(Thread * Self, const char * Whence) {
 921   // Induce STW safepoint to trim monitors
 922   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
 923   // More precisely, trigger an asynchronous STW safepoint as the number
 924   // of active monitors passes the specified threshold.
 925   // TODO: assert thread state is reasonable
 926 
 927   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
 928     if (ObjectMonitor::Knob_Verbose) {
 929       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 930       ::fflush(stdout);
 931     }
 932     // Induce a 'null' safepoint to scavenge monitors
 933     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
 934     // to the VMthread and have a lifespan longer than that of this activation record.
 935     // The VMThread will delete the op when completed.
 936     VMThread::execute(new VM_ForceAsyncSafepoint());
 937 
 938     if (ObjectMonitor::Knob_Verbose) {
 939       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 940       ::fflush(stdout);
 941     }
 942   }
 943 }
 944 
 945 void ObjectSynchronizer::verifyInUse(Thread *Self) {
 946   ObjectMonitor* mid;
 947   int in_use_tally = 0;
 948   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
 949     in_use_tally++;
 950   }
 951   assert(in_use_tally == Self->omInUseCount, "in-use count off");
 952 
 953   int free_tally = 0;
 954   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
 955     free_tally++;
 956   }
 957   assert(free_tally == Self->omFreeCount, "free count off");
 958 }
 959 
 960 ObjectMonitor * NOINLINE ObjectSynchronizer::omAlloc(Thread * Self) {
 961   // A large MAXPRIVATE value reduces both list lock contention
 962   // and list coherency traffic, but also tends to increase the
 963   // number of objectMonitors in circulation as well as the STW
 964   // scavenge costs.  As usual, we lean toward time in space-time
 965   // tradeoffs.
 966   const int MAXPRIVATE = 1024;
 967   for (;;) {
 968     ObjectMonitor * m;
 969 
 970     // 1: try to allocate from the thread's local omFreeList.
 971     // Threads will attempt to allocate first from their local list, then
 972     // from the global list, and only after those attempts fail will the thread
 973     // attempt to instantiate new monitors.   Thread-local free lists take
 974     // heat off the gListLock and improve allocation latency, as well as reducing
 975     // coherency traffic on the shared global list.
 976     m = Self->omFreeList;
 977     if (m != NULL) {
 978       Self->omFreeList = m->FreeNext;
 979       Self->omFreeCount--;
 980       // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
 981       guarantee(m->object() == NULL, "invariant");
 982       if (MonitorInUseLists) {
 983         m->FreeNext = Self->omInUseList;
 984         Self->omInUseList = m;
 985         Self->omInUseCount++;
 986         if (ObjectMonitor::Knob_VerifyInUse) {
 987           verifyInUse(Self);
 988         }
 989       } else {
 990         m->FreeNext = NULL;
 991       }
 992       return m;
 993     }
 994 
 995     // 2: try to allocate from the global gFreeList
 996     // CONSIDER: use muxTry() instead of muxAcquire().
 997     // If the muxTry() fails then drop immediately into case 3.
 998     // If we're using thread-local free lists then try
 999     // to reprovision the caller's free list.
1000     if (gFreeList != NULL) {
1001       // Reprovision the thread's omFreeList.
1002       // Use bulk transfers to reduce the allocation rate and heat
1003       // on various locks.
1004       Thread::muxAcquire(&gListLock, "omAlloc");
1005       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1006         gMonitorFreeCount--;
1007         ObjectMonitor * take = gFreeList;
1008         gFreeList = take->FreeNext;
1009         guarantee(take->object() == NULL, "invariant");
1010         guarantee(!take->is_busy(), "invariant");
1011         take->Recycle();
1012         omRelease(Self, take, false);
1013       }
1014       Thread::muxRelease(&gListLock);
1015       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1016       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1017       TEVENT(omFirst - reprovision);
1018 
1019       const int mx = MonitorBound;
1020       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1021         // We can't safely induce a STW safepoint from omAlloc() as our thread
1022         // state may not be appropriate for such activities and callers may hold
1023         // naked oops, so instead we defer the action.
1024         InduceScavenge(Self, "omAlloc");
1025       }
1026       continue;
1027     }
1028 
1029     // 3: allocate a block of new ObjectMonitors
1030     // Both the local and global free lists are empty -- resort to malloc().
1031     // In the current implementation objectMonitors are TSM - immortal.
1032     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1033     // each ObjectMonitor to start at the beginning of a cache line,
1034     // so we use align_size_up().
1035     // A better solution would be to use C++ placement-new.
1036     // BEWARE: As it stands currently, we don't run the ctors!
1037     assert(_BLOCKSIZE > 1, "invariant");
1038     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1039     PaddedEnd<ObjectMonitor> * temp;
1040     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1041     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1042                                                       mtInternal);
1043     temp = (PaddedEnd<ObjectMonitor> *)
1044              align_size_up((intptr_t)real_malloc_addr,
1045                            DEFAULT_CACHE_LINE_SIZE);
1046 
1047     // NOTE: (almost) no way to recover if allocation failed.
1048     // We might be able to induce a STW safepoint and scavenge enough
1049     // objectMonitors to permit progress.
1050     if (temp == NULL) {
1051       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1052                             "Allocate ObjectMonitors");
1053     }
1054     (void)memset((void *) temp, 0, neededsize);
1055 
1056     // Format the block.
1057     // initialize the linked list, each monitor points to its next
1058     // forming the single linked free list, the very first monitor
1059     // will points to next block, which forms the block list.
1060     // The trick of using the 1st element in the block as gBlockList
1061     // linkage should be reconsidered.  A better implementation would
1062     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1063 
1064     for (int i = 1; i < _BLOCKSIZE; i++) {
1065       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1066     }
1067 
1068     // terminate the last monitor as the end of list
1069     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1070 
1071     // Element [0] is reserved for global list linkage
1072     temp[0].set_object(CHAINMARKER);
1073 
1074     // Consider carving out this thread's current request from the
1075     // block in hand.  This avoids some lock traffic and redundant
1076     // list activity.
1077 
1078     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1079     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1080     Thread::muxAcquire(&gListLock, "omAlloc [2]");
1081     gMonitorPopulation += _BLOCKSIZE-1;
1082     gMonitorFreeCount += _BLOCKSIZE-1;
1083 
1084     // Add the new block to the list of extant blocks (gBlockList).
1085     // The very first objectMonitor in a block is reserved and dedicated.
1086     // It serves as blocklist "next" linkage.
1087     temp[0].FreeNext = gBlockList;
1088     gBlockList = temp;
1089 
1090     // Add the new string of objectMonitors to the global free list
1091     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1092     gFreeList = temp + 1;
1093     Thread::muxRelease(&gListLock);
1094     TEVENT(Allocate block of monitors);
1095   }
1096 }
1097 
1098 // Place "m" on the caller's private per-thread omFreeList.
1099 // In practice there's no need to clamp or limit the number of
1100 // monitors on a thread's omFreeList as the only time we'll call
1101 // omRelease is to return a monitor to the free list after a CAS
1102 // attempt failed.  This doesn't allow unbounded #s of monitors to
1103 // accumulate on a thread's free list.
1104 //
1105 // Key constraint: all ObjectMonitors on a thread's free list and the global
1106 // free list must have their object field set to null. This prevents the
1107 // scavenger -- deflate_idle_monitors -- from reclaiming them.
1108 
1109 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1110                                    bool fromPerThreadAlloc) {
1111   guarantee(m->object() == NULL, "invariant");
1112   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1113   // Remove from omInUseList
1114   if (MonitorInUseLists && fromPerThreadAlloc) {
1115     ObjectMonitor* cur_mid_in_use = NULL;
1116     bool extracted = false;
1117     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1118       if (m == mid) {
1119         // extract from per-thread in-use list
1120         if (mid == Self->omInUseList) {
1121           Self->omInUseList = mid->FreeNext;
1122         } else if (cur_mid_in_use != NULL) {
1123           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1124         }
1125         extracted = true;
1126         Self->omInUseCount--;
1127         if (ObjectMonitor::Knob_VerifyInUse) {
1128           verifyInUse(Self);
1129         }
1130         break;
1131       }
1132     }
1133     assert(extracted, "Should have extracted from in-use list");
1134   }
1135 
1136   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1137   m->FreeNext = Self->omFreeList;
1138   Self->omFreeList = m;
1139   Self->omFreeCount++;
1140 }
1141 
1142 // Return the monitors of a moribund thread's local free list to
1143 // the global free list.  Typically a thread calls omFlush() when
1144 // it's dying.  We could also consider having the VM thread steal
1145 // monitors from threads that have not run java code over a few
1146 // consecutive STW safepoints.  Relatedly, we might decay
1147 // omFreeProvision at STW safepoints.
1148 //
1149 // Also return the monitors of a moribund thread's omInUseList to
1150 // a global gOmInUseList under the global list lock so these
1151 // will continue to be scanned.
1152 //
1153 // We currently call omFlush() from the Thread:: dtor _after the thread
1154 // has been excised from the thread list and is no longer a mutator.
1155 // That means that omFlush() can run concurrently with a safepoint and
1156 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1157 // be a better choice as we could safely reason that that the JVM is
1158 // not at a safepoint at the time of the call, and thus there could
1159 // be not inopportune interleavings between omFlush() and the scavenge
1160 // operator.
1161 
1162 void ObjectSynchronizer::omFlush(Thread * Self) {
1163   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1164   Self->omFreeList = NULL;
1165   ObjectMonitor * tail = NULL;
1166   int tally = 0;
1167   if (list != NULL) {
1168     ObjectMonitor * s;
1169     // The thread is going away, the per-thread free monitors
1170     // are freed via set_owner(NULL)
1171     // Link them to tail, which will be linked into the global free list
1172     // gFreeList below, under the gListLock
1173     for (s = list; s != NULL; s = s->FreeNext) {
1174       tally++;
1175       tail = s;
1176       guarantee(s->object() == NULL, "invariant");
1177       guarantee(!s->is_busy(), "invariant");
1178       s->set_owner(NULL);   // redundant but good hygiene
1179       TEVENT(omFlush - Move one);
1180     }
1181     guarantee(tail != NULL && list != NULL, "invariant");
1182   }
1183 
1184   ObjectMonitor * inUseList = Self->omInUseList;
1185   ObjectMonitor * inUseTail = NULL;
1186   int inUseTally = 0;
1187   if (inUseList != NULL) {
1188     Self->omInUseList = NULL;
1189     ObjectMonitor *cur_om;
1190     // The thread is going away, however the omInUseList inflated
1191     // monitors may still be in-use by other threads.
1192     // Link them to inUseTail, which will be linked into the global in-use list
1193     // gOmInUseList below, under the gListLock
1194     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1195       inUseTail = cur_om;
1196       inUseTally++;
1197     }
1198     assert(Self->omInUseCount == inUseTally, "in-use count off");
1199     Self->omInUseCount = 0;
1200     guarantee(inUseTail != NULL && inUseList != NULL, "invariant");
1201   }
1202 
1203   Thread::muxAcquire(&gListLock, "omFlush");
1204   if (tail != NULL) {
1205     tail->FreeNext = gFreeList;
1206     gFreeList = list;
1207     gMonitorFreeCount += tally;
1208   }
1209 
1210   if (inUseTail != NULL) {
1211     inUseTail->FreeNext = gOmInUseList;
1212     gOmInUseList = inUseList;
1213     gOmInUseCount += inUseTally;
1214   }
1215 
1216   Thread::muxRelease(&gListLock);
1217   TEVENT(omFlush);
1218 }
1219 
1220 // Fast path code shared by multiple functions
1221 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1222   markOop mark = obj->mark();
1223   if (mark->has_monitor()) {
1224     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1225     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1226     return mark->monitor();
1227   }
1228   return ObjectSynchronizer::inflate(Thread::current(), obj);
1229 }
1230 
1231 
1232 ObjectMonitor * NOINLINE ObjectSynchronizer::inflate(Thread * Self,
1233                                                      oop object) {
1234   // Inflate mutates the heap ...
1235   // Relaxing assertion for bug 6320749.
1236   assert(Universe::verify_in_progress() ||
1237          !SafepointSynchronize::is_at_safepoint(), "invariant");
1238 
1239   for (;;) {
1240     const markOop mark = object->mark();
1241     assert(!mark->has_bias_pattern(), "invariant");
1242 
1243     // The mark can be in one of the following states:
1244     // *  Inflated     - just return
1245     // *  Stack-locked - coerce it to inflated
1246     // *  INFLATING    - busy wait for conversion to complete
1247     // *  Neutral      - aggressively inflate the object.
1248     // *  BIASED       - Illegal.  We should never see this
1249 
1250     // CASE: inflated
1251     if (mark->has_monitor()) {
1252       ObjectMonitor * inf = mark->monitor();
1253       assert(inf->header()->is_neutral(), "invariant");
1254       assert(inf->object() == object, "invariant");
1255       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1256       return inf;
1257     }
1258 
1259     // CASE: inflation in progress - inflating over a stack-lock.
1260     // Some other thread is converting from stack-locked to inflated.
1261     // Only that thread can complete inflation -- other threads must wait.
1262     // The INFLATING value is transient.
1263     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1264     // We could always eliminate polling by parking the thread on some auxiliary list.
1265     if (mark == markOopDesc::INFLATING()) {
1266       TEVENT(Inflate: spin while INFLATING);
1267       ReadStableMark(object);
1268       continue;
1269     }
1270 
1271     // CASE: stack-locked
1272     // Could be stack-locked either by this thread or by some other thread.
1273     //
1274     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1275     // to install INFLATING into the mark word.  We originally installed INFLATING,
1276     // allocated the objectmonitor, and then finally STed the address of the
1277     // objectmonitor into the mark.  This was correct, but artificially lengthened
1278     // the interval in which INFLATED appeared in the mark, thus increasing
1279     // the odds of inflation contention.
1280     //
1281     // We now use per-thread private objectmonitor free lists.
1282     // These list are reprovisioned from the global free list outside the
1283     // critical INFLATING...ST interval.  A thread can transfer
1284     // multiple objectmonitors en-mass from the global free list to its local free list.
1285     // This reduces coherency traffic and lock contention on the global free list.
1286     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1287     // before or after the CAS(INFLATING) operation.
1288     // See the comments in omAlloc().
1289 
1290     if (mark->has_locker()) {
1291       ObjectMonitor * m = omAlloc(Self);
1292       // Optimistically prepare the objectmonitor - anticipate successful CAS
1293       // We do this before the CAS in order to minimize the length of time
1294       // in which INFLATING appears in the mark.
1295       m->Recycle();
1296       m->_Responsible  = NULL;
1297       m->_recursions   = 0;
1298       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1299 
1300       markOop cmp = (markOop) Atomic::cmpxchg_ptr(markOopDesc::INFLATING(), object->mark_addr(), mark);
1301       if (cmp != mark) {
1302         omRelease(Self, m, true);
1303         continue;       // Interference -- just retry
1304       }
1305 
1306       // We've successfully installed INFLATING (0) into the mark-word.
1307       // This is the only case where 0 will appear in a mark-work.
1308       // Only the singular thread that successfully swings the mark-word
1309       // to 0 can perform (or more precisely, complete) inflation.
1310       //
1311       // Why do we CAS a 0 into the mark-word instead of just CASing the
1312       // mark-word from the stack-locked value directly to the new inflated state?
1313       // Consider what happens when a thread unlocks a stack-locked object.
1314       // It attempts to use CAS to swing the displaced header value from the
1315       // on-stack basiclock back into the object header.  Recall also that the
1316       // header value (hashcode, etc) can reside in (a) the object header, or
1317       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1318       // header in an objectMonitor.  The inflate() routine must copy the header
1319       // value from the basiclock on the owner's stack to the objectMonitor, all
1320       // the while preserving the hashCode stability invariants.  If the owner
1321       // decides to release the lock while the value is 0, the unlock will fail
1322       // and control will eventually pass from slow_exit() to inflate.  The owner
1323       // will then spin, waiting for the 0 value to disappear.   Put another way,
1324       // the 0 causes the owner to stall if the owner happens to try to
1325       // drop the lock (restoring the header from the basiclock to the object)
1326       // while inflation is in-progress.  This protocol avoids races that might
1327       // would otherwise permit hashCode values to change or "flicker" for an object.
1328       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1329       // 0 serves as a "BUSY" inflate-in-progress indicator.
1330 
1331 
1332       // fetch the displaced mark from the owner's stack.
1333       // The owner can't die or unwind past the lock while our INFLATING
1334       // object is in the mark.  Furthermore the owner can't complete
1335       // an unlock on the object, either.
1336       markOop dmw = mark->displaced_mark_helper();
1337       assert(dmw->is_neutral(), "invariant");
1338 
1339       // Setup monitor fields to proper values -- prepare the monitor
1340       m->set_header(dmw);
1341 
1342       // Optimization: if the mark->locker stack address is associated
1343       // with this thread we could simply set m->_owner = Self.
1344       // Note that a thread can inflate an object
1345       // that it has stack-locked -- as might happen in wait() -- directly
1346       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1347       m->set_owner(mark->locker());
1348       m->set_object(object);
1349       // TODO-FIXME: assert BasicLock->dhw != 0.
1350 
1351       // Must preserve store ordering. The monitor state must
1352       // be stable at the time of publishing the monitor address.
1353       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1354       object->release_set_mark(markOopDesc::encode(m));
1355 
1356       // Hopefully the performance counters are allocated on distinct cache lines
1357       // to avoid false sharing on MP systems ...
1358       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc();
1359       TEVENT(Inflate: overwrite stacklock);
1360       if (TraceMonitorInflation) {
1361         if (object->is_instance()) {
1362           ResourceMark rm;
1363           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1364                         (void *) object, (intptr_t) object->mark(),
1365                         object->klass()->external_name());
1366         }
1367       }
1368       return m;
1369     }
1370 
1371     // CASE: neutral
1372     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1373     // If we know we're inflating for entry it's better to inflate by swinging a
1374     // pre-locked objectMonitor pointer into the object header.   A successful
1375     // CAS inflates the object *and* confers ownership to the inflating thread.
1376     // In the current implementation we use a 2-step mechanism where we CAS()
1377     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1378     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1379     // would be useful.
1380 
1381     assert(mark->is_neutral(), "invariant");
1382     ObjectMonitor * m = omAlloc(Self);
1383     // prepare m for installation - set monitor to initial state
1384     m->Recycle();
1385     m->set_header(mark);
1386     m->set_owner(NULL);
1387     m->set_object(object);
1388     m->_recursions   = 0;
1389     m->_Responsible  = NULL;
1390     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1391 
1392     if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1393       m->set_object(NULL);
1394       m->set_owner(NULL);
1395       m->Recycle();
1396       omRelease(Self, m, true);
1397       m = NULL;
1398       continue;
1399       // interference - the markword changed - just retry.
1400       // The state-transitions are one-way, so there's no chance of
1401       // live-lock -- "Inflated" is an absorbing state.
1402     }
1403 
1404     // Hopefully the performance counters are allocated on distinct
1405     // cache lines to avoid false sharing on MP systems ...
1406     if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc();
1407     TEVENT(Inflate: overwrite neutral);
1408     if (TraceMonitorInflation) {
1409       if (object->is_instance()) {
1410         ResourceMark rm;
1411         tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1412                       (void *) object, (intptr_t) object->mark(),
1413                       object->klass()->external_name());
1414       }
1415     }
1416     return m;
1417   }
1418 }
1419 
1420 
1421 // Deflate_idle_monitors() is called at all safepoints, immediately
1422 // after all mutators are stopped, but before any objects have moved.
1423 // It traverses the list of known monitors, deflating where possible.
1424 // The scavenged monitor are returned to the monitor free list.
1425 //
1426 // Beware that we scavenge at *every* stop-the-world point.
1427 // Having a large number of monitors in-circulation negatively
1428 // impacts the performance of some applications (e.g., PointBase).
1429 // Broadly, we want to minimize the # of monitors in circulation.
1430 //
1431 // We have added a flag, MonitorInUseLists, which creates a list
1432 // of active monitors for each thread. deflate_idle_monitors()
1433 // only scans the per-thread in-use lists. omAlloc() puts all
1434 // assigned monitors on the per-thread list. deflate_idle_monitors()
1435 // returns the non-busy monitors to the global free list.
1436 // When a thread dies, omFlush() adds the list of active monitors for
1437 // that thread to a global gOmInUseList acquiring the
1438 // global list lock. deflate_idle_monitors() acquires the global
1439 // list lock to scan for non-busy monitors to the global free list.
1440 // An alternative could have used a single global in-use list. The
1441 // downside would have been the additional cost of acquiring the global list lock
1442 // for every omAlloc().
1443 //
1444 // Perversely, the heap size -- and thus the STW safepoint rate --
1445 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1446 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1447 // This is an unfortunate aspect of this design.
1448 
1449 enum ManifestConstants {
1450   ClearResponsibleAtSTW   = 0,
1451   MaximumRecheckInterval  = 1000
1452 };
1453 
1454 // Deflate a single monitor if not in-use
1455 // Return true if deflated, false if in-use
1456 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1457                                          ObjectMonitor** freeHeadp,
1458                                          ObjectMonitor** freeTailp) {
1459   bool deflated;
1460   // Normal case ... The monitor is associated with obj.
1461   guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1462   guarantee(mid == obj->mark()->monitor(), "invariant");
1463   guarantee(mid->header()->is_neutral(), "invariant");
1464 
1465   if (mid->is_busy()) {
1466     if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1467     deflated = false;
1468   } else {
1469     // Deflate the monitor if it is no longer being used
1470     // It's idle - scavenge and return to the global free list
1471     // plain old deflation ...
1472     TEVENT(deflate_idle_monitors - scavenge1);
1473     if (TraceMonitorInflation) {
1474       if (obj->is_instance()) {
1475         ResourceMark rm;
1476         tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1477                       (void *) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
1478       }
1479     }
1480 
1481     // Restore the header back to obj
1482     obj->release_set_mark(mid->header());
1483     mid->clear();
1484 
1485     assert(mid->object() == NULL, "invariant");
1486 
1487     // Move the object to the working free list defined by freeHeadp, freeTailp
1488     if (*freeHeadp == NULL) *freeHeadp = mid;
1489     if (*freeTailp != NULL) {
1490       ObjectMonitor * prevtail = *freeTailp;
1491       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1492       prevtail->FreeNext = mid;
1493     }
1494     *freeTailp = mid;
1495     deflated = true;
1496   }
1497   return deflated;
1498 }
1499 
1500 // Walk a given monitor list, and deflate idle monitors
1501 // The given list could be a per-thread list or a global list
1502 // Caller acquires gListLock
1503 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1504                                              ObjectMonitor** freeHeadp,
1505                                              ObjectMonitor** freeTailp) {
1506   ObjectMonitor* mid;
1507   ObjectMonitor* next;
1508   ObjectMonitor* cur_mid_in_use = NULL;
1509   int deflated_count = 0;
1510 
1511   for (mid = *listHeadp; mid != NULL;) {
1512     oop obj = (oop) mid->object();
1513     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1514       // if deflate_monitor succeeded,
1515       // extract from per-thread in-use list
1516       if (mid == *listHeadp) {
1517         *listHeadp = mid->FreeNext;
1518       } else if (cur_mid_in_use != NULL) {
1519         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1520       }
1521       next = mid->FreeNext;
1522       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1523       mid = next;
1524       deflated_count++;
1525     } else {
1526       cur_mid_in_use = mid;
1527       mid = mid->FreeNext;
1528     }
1529   }
1530   return deflated_count;
1531 }
1532 
1533 void ObjectSynchronizer::deflate_idle_monitors() {
1534   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1535   int nInuse = 0;              // currently associated with objects
1536   int nInCirculation = 0;      // extant
1537   int nScavenged = 0;          // reclaimed
1538   bool deflated = false;
1539 
1540   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1541   ObjectMonitor * freeTailp = NULL;
1542 
1543   TEVENT(deflate_idle_monitors);
1544   // Prevent omFlush from changing mids in Thread dtor's during deflation
1545   // And in case the vm thread is acquiring a lock during a safepoint
1546   // See e.g. 6320749
1547   Thread::muxAcquire(&gListLock, "scavenge - return");
1548 
1549   if (MonitorInUseLists) {
1550     int inUse = 0;
1551     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1552       nInCirculation+= cur->omInUseCount;
1553       int deflated_count = deflate_monitor_list(cur->omInUseList_addr(), &freeHeadp, &freeTailp);
1554       cur->omInUseCount-= deflated_count;
1555       if (ObjectMonitor::Knob_VerifyInUse) {
1556         verifyInUse(cur);
1557       }
1558       nScavenged += deflated_count;
1559       nInuse += cur->omInUseCount;
1560     }
1561 
1562     // For moribund threads, scan gOmInUseList
1563     if (gOmInUseList) {
1564       nInCirculation += gOmInUseCount;
1565       int deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1566       gOmInUseCount-= deflated_count;
1567       nScavenged += deflated_count;
1568       nInuse += gOmInUseCount;
1569     }
1570 
1571   } else for (PaddedEnd<ObjectMonitor> * block =
1572               (PaddedEnd<ObjectMonitor> *)gBlockList; block != NULL;
1573               block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1574     // Iterate over all extant monitors - Scavenge all idle monitors.
1575     assert(block->object() == CHAINMARKER, "must be a block header");
1576     nInCirculation += _BLOCKSIZE;
1577     for (int i = 1; i < _BLOCKSIZE; i++) {
1578       ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1579       oop obj = (oop) mid->object();
1580 
1581       if (obj == NULL) {
1582         // The monitor is not associated with an object.
1583         // The monitor should either be a thread-specific private
1584         // free list or the global free list.
1585         // obj == NULL IMPLIES mid->is_busy() == 0
1586         guarantee(!mid->is_busy(), "invariant");
1587         continue;
1588       }
1589       deflated = deflate_monitor(mid, obj, &freeHeadp, &freeTailp);
1590 
1591       if (deflated) {
1592         mid->FreeNext = NULL;
1593         nScavenged++;
1594       } else {
1595         nInuse++;
1596       }
1597     }
1598   }
1599 
1600   gMonitorFreeCount += nScavenged;
1601 
1602   // Consider: audit gFreeList to ensure that gMonitorFreeCount and list agree.
1603 
1604   if (ObjectMonitor::Knob_Verbose) {
1605     ::printf("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
1606              nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1607              gMonitorPopulation, gMonitorFreeCount);
1608     ::fflush(stdout);
1609   }
1610 
1611   ForceMonitorScavenge = 0;    // Reset
1612 
1613   // Move the scavenged monitors back to the global free list.
1614   if (freeHeadp != NULL) {
1615     guarantee(freeTailp != NULL && nScavenged > 0, "invariant");
1616     assert(freeTailp->FreeNext == NULL, "invariant");
1617     // constant-time list splice - prepend scavenged segment to gFreeList
1618     freeTailp->FreeNext = gFreeList;
1619     gFreeList = freeHeadp;
1620   }
1621   Thread::muxRelease(&gListLock);
1622 
1623   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged);
1624   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
1625 
1626   // TODO: Add objectMonitor leak detection.
1627   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1628   GVars.stwRandom = os::random();
1629   GVars.stwCycle++;
1630 }
1631 
1632 // Monitor cleanup on JavaThread::exit
1633 
1634 // Iterate through monitor cache and attempt to release thread's monitors
1635 // Gives up on a particular monitor if an exception occurs, but continues
1636 // the overall iteration, swallowing the exception.
1637 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1638  private:
1639   TRAPS;
1640 
1641  public:
1642   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1643   void do_monitor(ObjectMonitor* mid) {
1644     if (mid->owner() == THREAD) {
1645       (void)mid->complete_exit(CHECK);
1646     }
1647   }
1648 };
1649 
1650 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1651 // ignored.  This is meant to be called during JNI thread detach which assumes
1652 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1653 // Scanning the extant monitor list can be time consuming.
1654 // A simple optimization is to add a per-thread flag that indicates a thread
1655 // called jni_monitorenter() during its lifetime.
1656 //
1657 // Instead of No_Savepoint_Verifier it might be cheaper to
1658 // use an idiom of the form:
1659 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1660 //   <code that must not run at safepoint>
1661 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1662 // Since the tests are extremely cheap we could leave them enabled
1663 // for normal product builds.
1664 
1665 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1666   assert(THREAD == JavaThread::current(), "must be current Java thread");
1667   No_Safepoint_Verifier nsv;
1668   ReleaseJavaMonitorsClosure rjmc(THREAD);
1669   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1670   ObjectSynchronizer::monitors_iterate(&rjmc);
1671   Thread::muxRelease(&gListLock);
1672   THREAD->clear_pending_exception();
1673 }
1674 
1675 //------------------------------------------------------------------------------
1676 // Debugging code
1677 
1678 void ObjectSynchronizer::sanity_checks(const bool verbose,
1679                                        const uint cache_line_size,
1680                                        int *error_cnt_ptr,
1681                                        int *warning_cnt_ptr) {
1682   u_char *addr_begin      = (u_char*)&GVars;
1683   u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
1684   u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
1685 
1686   if (verbose) {
1687     tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
1688                   sizeof(SharedGlobals));
1689   }
1690 
1691   uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
1692   if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
1693 
1694   uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
1695   if (verbose) {
1696     tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
1697   }
1698 
1699   if (cache_line_size != 0) {
1700     // We were able to determine the L1 data cache line size so
1701     // do some cache line specific sanity checks
1702 
1703     if (offset_stwRandom < cache_line_size) {
1704       tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
1705                     "to the struct beginning than a cache line which permits "
1706                     "false sharing.");
1707       (*warning_cnt_ptr)++;
1708     }
1709 
1710     if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
1711       tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
1712                     "SharedGlobals.hcSequence fields are closer than a cache "
1713                     "line which permits false sharing.");
1714       (*warning_cnt_ptr)++;
1715     }
1716 
1717     if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
1718       tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
1719                     "to the struct end than a cache line which permits false "
1720                     "sharing.");
1721       (*warning_cnt_ptr)++;
1722     }
1723   }
1724 }
1725 
1726 #ifndef PRODUCT
1727 
1728 // Verify all monitors in the monitor cache, the verification is weak.
1729 void ObjectSynchronizer::verify() {
1730   PaddedEnd<ObjectMonitor> * block = (PaddedEnd<ObjectMonitor> *)gBlockList;
1731   ObjectMonitor* mid;
1732   while (block) {
1733     assert(block->object() == CHAINMARKER, "must be a block header");
1734     for (int i = 1; i < _BLOCKSIZE; i++) {
1735       mid = (ObjectMonitor *)(block + i);
1736       oop object = (oop) mid->object();
1737       if (object != NULL) {
1738         mid->verify();
1739       }
1740     }
1741     block = (PaddedEnd<ObjectMonitor> *) block->FreeNext;
1742   }
1743 }
1744 
1745 // Check if monitor belongs to the monitor cache
1746 // The list is grow-only so it's *relatively* safe to traverse
1747 // the list of extant blocks without taking a lock.
1748 
1749 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1750   PaddedEnd<ObjectMonitor> * block = (PaddedEnd<ObjectMonitor> *)gBlockList;
1751 
1752   while (block) {
1753     assert(block->object() == CHAINMARKER, "must be a block header");
1754     if (monitor > (ObjectMonitor *)&block[0] &&
1755         monitor < (ObjectMonitor *)&block[_BLOCKSIZE]) {
1756       address mon = (address) monitor;
1757       address blk = (address) block;
1758       size_t diff = mon - blk;
1759       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "check");
1760       return 1;
1761     }
1762     block = (PaddedEnd<ObjectMonitor> *) block->FreeNext;
1763   }
1764   return 0;
1765 }
1766 
1767 #endif