Selectively Preserving
Pre-initialized Java Classes

Preserving Initialized Static Field Values by Caching Java
Heap Object Subgraphs
Jiangli Zhou/5.15.2020

Objective

e Provide a general solution for pre-initializing Java classes and
preserving the processed Java heap objects as part of the CDS (Class

Data Sharing) archive image for additional runtime savings

o Design doc (covers pre-linking and pre-resolution in addition to

pre-initialization)

https://docs.google.com/document/d/17RV8W6iqJj9HhjGSO9k1IXfs_9lvHDNgxxr8pFoeDys/edit?usp=sharing

Benefits

e Improve performance by avoiding executing Java bytecode in <clinit>

at runtime

o Faster server startup, save CPU usages

o May reduce GC and JIT compiler overhead

e Make it easier to do class pre-initialization for developers

Goals and Non-Goals

e Provide a flexible and general solution to cache pre-initialized Java
classes loaded by the builtin class loaders

e Work with static archiving (-Xshare:dump) that is currently available in JDK
11

e Extendable for the dynamic archiving (currently available in OpenJDK 14),

but is not the current focus
e Supporting classes loaded by user defined class loaders is not a goal in

the current scope

o Address separately

https://openjdk.java.net/jeps/350

What is Class Initialization

e Java VM Specification §5.5:

O

“A class or interface has at most one class or interface initialization method
and is initialized by the Java Virtual Machine invoking that method (§5.5). A
method is a class or interface initialization method if all of the following are

frue:
u It has the special name <clinit>.
u It is void (§4.3.3).
u In a class file whose version number is 51.0 or above, the method has its
ACC _STATIC flag set and takes no arguments (§4.6).” §2.9.2

“Initialization of a class or interface consists of executing its class or

interface initialization method (§2.9.2).”

Existing Selected Static Field Pre-initialization in JDK

e (Caching Java Heap Subgraphs introduced in OpenJDK 12 supports

pre-initializing selected static fields and preserving the initialized values

o Backported in JDK 11
o All Java objects reachable from the initialized static field (reference type) are

archived at dump time
m Copying objects to the Java heap archive regions

m Updating pointers to copied objects
o At runtime during the initialization of a class with archived static fields, the
archived values are retrieved and installed back to the mirror object

(5.1.classinstance of a loaded class)

https://wiki.openjdk.java.net/display/HotSpot/Caching+Java+Heap+Objects

Limitations of the Existing Static Field Pre-initialization

e Does not support application class well

e Only support a small set of selected static fields in JDK classes

o VM code maintains a list of hard-coded class and field names to indicate

which static fields for pre-initializing and archiving, e.g.:
{"jJava/lang/Integer$IntegerCache", "archivedCache"},
{"jdk/internal/module/ArchivedModuleGraph",

"archivedModuleGraph"},
e Archived static field values are stored separately from the mirror object

o Runtime needs to store the values back into the static fields

Limitations of the Existing Static Field Pre-initialization
(Continued)

e Final must be removed from static field declaration to avoid compiler error

e Field declarator must not include the variable initializer

e Java code needs to call
jdk.internal.misc.VM.initializeFromArchive (class) inclass

static initializer (<c1init>) to retrieve archived field values at runtime

static final class ListN<E> extends AbstractImmutablelList<E>
implements Serializable {
static @Stable List<?> EMPTY_LIST;

static {
VM.initializeFromArchive (ListN.class) ;
if (EMPTY LIST == null) ({

EMPTY LIST = new ListN<>();

https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=39?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=jdk.internal.misc&gs=kythe%3A%3Flang%3Djava%23cc25d6cc48f940433ae21f11b2b84df91e10517e2b27e1b47fe46167f32f4a23
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=32
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=ListN&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23c642ab34f324761f514f4279e47719afa2cd97770af67236a643edf5fb625c71
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=E&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23b2f900120bc21efc0367c501876a00ca09fb04fb134fe802ae27ddb3c2ea3e3c
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=102?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/io/Serializable.java;l=179
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/vm/annotation/Stable.java;l=89
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/List.java;l=138
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=EMPTY_LIST&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23ff64f3ebc1256e113091548ad47ef00e021fbb52902479bf01a5b27667b07223
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=32
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=448
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental

Overview of the General Class Pre-initialization and
Caching Proposal/Design

e Support selectively preserving pre-initialized JDK & application classes and

individual static fields

o Focus on class level support initially, general support for individual fields (partial
class pre-initialization) can be addresses when needed
o Not all classes (and static fields) are suitable for caching pre-initialized values
m Runtime context dependency (e.g. computed field value is unique to a particular
runtime environment, calling System.currentTimeMillis)
m Static field initialization creates Thread, file descriptor, etc
m Register native library, initialize field offsets for JNI access, etc
o Opt-in approach with annotation (adopted in this design)

m Easy to use and maintain; Minimal Java source modification; Minimal runtime overhead

Alternatives

e Class and field list
o Desire for improving usability
e Interface (java.io.Serializable or a new interface?)

m Can only support classes, but not individual field

m Not future-proof against implementation changes, not better than the annotation

approach
m Runtime overhead with an extra interface in the class hierarchy
e Static analysis

m May not identify all cases that are not suitable for preserving pre-initialized values

m Expensive to develop, no resources available for the required work

https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/io/Serializable.java;l=179

Proposed Annotations

® (@jdk.internal.vm.annotation.Preserve

o Aruntime visible annotation (see JVMS, §4.7.20 The RuntimeVisible TypeAnnotations

Attribute) to tag a JDK class or individual static fields for pre-initialization
® (@jdk.internal.vm.annotation.DontPreserve

o Aruntime visible annotation to tag a JDK class that should not be pre-initialized
o Optional, help prevent others from annotating a class using @Preserve without realizing
potential issues

® (@com.google.common.annotations.Preserve

o Aruntime visible annotation to tag an application class or individual static fields for

pre-initialization

https://docs.oracle.com/javase/specs/jvms/se14/html/jvms-4.html#jvms-4.7.16

Class Level @Preserve

® The previous ListN example can be simplified with this design:

@Preserve
static final class ListN<E> extends AbstractImmutablelList <E>
implements Serializable ({
static final List<?> EMPTY LIST = new ListN<>();

*

static final class ListN<E> extends AbstractImmutableList<E>
implements Serializable {
static @Stable List<?> EMPTY LIST;
static {
VM.initializeFromArchive (ListN.class);
if (EMPTY LIST == null) ({
EMPTY LIST = new ListN<>();

https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=ListN&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23c642ab34f324761f514f4279e47719afa2cd97770af67236a643edf5fb625c71
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=E&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23b2f900120bc21efc0367c501876a00ca09fb04fb134fe802ae27ddb3c2ea3e3c
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=102?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/io/Serializable.java;l=179
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/List.java;l=138
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=EMPTY_LIST&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23ff64f3ebc1256e113091548ad47ef00e021fbb52902479bf01a5b27667b07223
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=ListN&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23c642ab34f324761f514f4279e47719afa2cd97770af67236a643edf5fb625c71
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=E&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23b2f900120bc21efc0367c501876a00ca09fb04fb134fe802ae27ddb3c2ea3e3c
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=102?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/io/Serializable.java;l=179
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/vm/annotation/Stable.java;l=89
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/List.java;l=138
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=EMPTY_LIST&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23ff64f3ebc1256e113091548ad47ef00e021fbb52902479bf01a5b27667b07223
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=32
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=448
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental

Class Pre-initialization and Preserving Architecture

CDS Archive Runtime Java Heap
RO Space l
. RW Space :
Closed Archived Heap Region
(CARC)
Open Archive Heap region

C}pen Archive Heap region Loaded
s archived

Klass .

Static field value i
oL borart anitiy rode) Archived Klass [Archived Klass Info Record

. Mirror

Class Initialization Phase At Archive Dump time

e Some of the loaded classes may be implicitly initialized, as a result of
executing Java code to load classes from the classlist

e Explicitly initialize the rest of the classes annotated with @Preserve

o After loading all classes from the classlist and before copying & relocating class
metadata to archive spaces

o Call InstanceKlass::initialize ()to do class initialization

B Follows class initialization procedure described in JVM specification §5.5

Object Subgraph Checking Phase at Archive Dump time

e Check is done after the class metadata copying and relocation step
e A static field should not be archived if any of the following types of objects is

found in its subgraph

e Non-mirror java.lang.Class objects

e ClassLoader objects

e java.security.ProtectionDomain objects
e java.lang.Thread objects

e Runnable objects

e java.io.File objects

e TBD

Static Field Value Preserving Phase at Archive Dump time

e Archiving starts from a reference type static field (a root object)
o Follow references and walk all objects within the subgraph, and copy objects to
the archive heap regions
o Update pointers to the archived objects
e Support mirror objects within archived subgraphs
o If a mirror object is encountered, the VM archives the mirror but stops following
references from it

o Allow more classes for pre-initialization and caching

m E.g. java.lang.Integer, java.lang.Long, etc

Static Field Value Preserving Phase at CDS Dump time
(Continued)

e All archived static field values from a JDK class are preserved within the

class’ archived mirror object
o Include all primitive types and reference types
o Runtime does not need to store the values back to the fields

o Reachable subgraph objects become live when the mirror becomes live at

runtime
o The separate per-class record is still needed to store the dependent class list of

the current class

m The dependent classes should be initialized before the current class

What Happens at Runtime

e Three cases with different optimization levels, all avoid executing <clinit>

at runtime

o Anarchived class canbe setto fully initializedstate immediately when
loaded and restored at runtime iff following are true (most optimized case)

m All static fields are primitive types or §.1.0bject and j.1.String types (more

types may be allowed)

m Is aninterface, or the direct superclassis j.1.Class, oran archived class that can

be setto fully initialized atrestoretime

What Happens at Runtime (Continued)
e Otherwise, If a mirror contains preserved static field values (JDK classes)
o Classis setto 1inked state when it is loaded and restored

o When the class initialization is triggered
m Supertypes are initialized first
m VM retrieves the archived class info record, all dependent classes in the record are
initialized
m Thenclasscanbesetto fully initialized State

e Otherwise, all work described in above case is done, and static field values
are retrieved from archived class record and stored back into the mirror

object (application classes)

o The subgraph entry objects for static reference fields are materialized explicitly

m Objects become live and can be found by GC

Support for Application Classes

e Limiting initial pre-initializing support for application classes (loaded by the

system class loader) with only
o primitive types or String type
o static final fields
o static fields with @stable

e Static field values are stored separately from the mirrors for application

classes
o Not stored within mirrors

GC Considerations

e Runtime Java Heap regions containing mapped archived objects are

pinned
o Objects are not moved and collected

e Archived objects in open archive heap regions (OARC) are initially
dormant (not reachable) until they become reachable/live
e Alive archive heap object in OARC stays alive (does not become dormant

again) with all existing use cases in JDK

GC Considerations (Continued)

e With broader support, usages may include cases

where a live archive object may become unreachable

o Not common cases but possible

o If runtime execution adds external references

before the object becomes unreachable, the

object may contain stale references after the

externally referenced objects are collected

No issue for tools and applications in prod during
normal execution

Looks like is not an issue for some of heap
dumper or monitoring agents

However, should be addressed as a complete
solution for preserving pre-initialized classes and

static fields

Other GC regions

Closed Archive Heap Region
(CARC)

Open Archive Heap Region
(OARC)

Java Heap

|

©

|
Y

. Live object

O Dormant object
O Dead object

