
Selectively Preserving
Pre-initialized Java Classes

Preserving Initialized Static Field Values by Caching Java
Heap Object Subgraphs
Jiangli Zhou/5.15.2020

Proprietary + Confidential

Objective

● Provide a general solution for pre-initializing Java classes and

preserving the processed Java heap objects as part of the CDS (Class

Data Sharing) archive image for additional runtime savings

○ Design doc (covers pre-linking and pre-resolution in addition to

pre-initialization)

https://docs.google.com/document/d/17RV8W6iqJj9HhjGSO9k1IXfs_9lvHDNgxxr8pFoeDys/edit?usp=sharing

Proprietary + Confidential

Benefits

● Improve performance by avoiding executing Java bytecode in <clinit>

at runtime

○ Faster server startup, save CPU usages

○ May reduce GC and JIT compiler overhead

● Make it easier to do class pre-initialization for developers

Proprietary + Confidential

Goals and Non-Goals

● Provide a flexible and general solution to cache pre-initialized Java

classes loaded by the builtin class loaders

● Work with static archiving (-Xshare:dump) that is currently available in JDK

11

● Extendable for the dynamic archiving (currently available in OpenJDK 14),

but is not the current focus

● Supporting classes loaded by user defined class loaders is not a goal in

the current scope

○ Address separately

https://openjdk.java.net/jeps/350

Proprietary + Confidential

What is Class Initialization

● Java VM Specification §5.5:

○ “A class or interface has at most one class or interface initialization method

and is initialized by the Java Virtual Machine invoking that method (§5.5). A

method is a class or interface initialization method if all of the following are

true:

■ It has the special name <clinit>.

■ It is void (§4.3.3).

■ In a class file whose version number is 51.0 or above, the method has its

ACC_STATIC flag set and takes no arguments (§4.6).” §2.9.2

○ “Initialization of a class or interface consists of executing its class or

interface initialization method (§2.9.2).”

Proprietary + Confidential

Existing Selected Static Field Pre-initialization in JDK

● Caching Java Heap Subgraphs introduced in OpenJDK 12 supports

pre-initializing selected static fields and preserving the initialized values

○ Backported in JDK 11

○ All Java objects reachable from the initialized static field (reference type) are

archived at dump time

■ Copying objects to the Java heap archive regions

■ Updating pointers to copied objects

○ At runtime during the initialization of a class with archived static fields, the

archived values are retrieved and installed back to the mirror object

(j.l.Class instance of a loaded class)

https://wiki.openjdk.java.net/display/HotSpot/Caching+Java+Heap+Objects

Proprietary + Confidential

Limitations of the Existing Static Field Pre-initialization

● Does not support application class well

● Only support a small set of selected static fields in JDK classes

○ VM code maintains a list of hard-coded class and field names to indicate

which static fields for pre-initializing and archiving, e.g.:

{"java/lang/Integer$IntegerCache", "archivedCache"},

{"jdk/internal/module/ArchivedModuleGraph",

"archivedModuleGraph"},

● Archived static field values are stored separately from the mirror object

○ Runtime needs to store the values back into the static fields

Proprietary + Confidential

Limitations of the Existing Static Field Pre-initialization
(Continued)
● Final must be removed from static field declaration to avoid compiler error

● Field declarator must not include the variable initializer

● Java code needs to call

jdk.internal.misc.VM.initializeFromArchive(class) in class

static initializer (<clinit>) to retrieve archived field values at runtime
 static final class ListN<E> extends AbstractImmutableList<E>
 implements Serializable {
 static @Stable List<?> EMPTY_LIST;
 static {
 VM.initializeFromArchive(ListN.class);
 if (EMPTY_LIST == null) {
 EMPTY_LIST = new ListN<>();
 }
 }

https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=39?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=jdk.internal.misc&gs=kythe%3A%3Flang%3Djava%23cc25d6cc48f940433ae21f11b2b84df91e10517e2b27e1b47fe46167f32f4a23
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=32
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=ListN&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23c642ab34f324761f514f4279e47719afa2cd97770af67236a643edf5fb625c71
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=E&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23b2f900120bc21efc0367c501876a00ca09fb04fb134fe802ae27ddb3c2ea3e3c
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=102?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/io/Serializable.java;l=179
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/vm/annotation/Stable.java;l=89
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/List.java;l=138
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=EMPTY_LIST&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23ff64f3ebc1256e113091548ad47ef00e021fbb52902479bf01a5b27667b07223
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=32
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=448
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental

Proprietary + Confidential

Overview of the General Class Pre-initialization and
Caching Proposal/Design

● Support selectively preserving pre-initialized JDK & application classes and

individual static fields

○ Focus on class level support initially, general support for individual fields (partial

class pre-initialization) can be addresses when needed

○ Not all classes (and static fields) are suitable for caching pre-initialized values

■ Runtime context dependency (e.g. computed field value is unique to a particular

runtime environment, calling System.currentTimeMillis)

■ Static field initialization creates Thread, file descriptor, etc

■ Register native library, initialize field offsets for JNI access, etc

○ Opt-in approach with annotation (adopted in this design)

■ Easy to use and maintain; Minimal Java source modification; Minimal runtime overhead

Proprietary + Confidential

Alternatives

● Class and field list

○ Desire for improving usability

● Interface (java.io.Serializable or a new interface?)

■ Can only support classes, but not individual field

■ Not future-proof against implementation changes, not better than the annotation

approach

■ Runtime overhead with an extra interface in the class hierarchy

● Static analysis

■ May not identify all cases that are not suitable for preserving pre-initialized values

■ Expensive to develop, no resources available for the required work

https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/io/Serializable.java;l=179

Proprietary + Confidential

Proposed Annotations

● @jdk.internal.vm.annotation.Preserve
○ A runtime visible annotation (see JVMS, §4.7.20 The RuntimeVisibleTypeAnnotations

Attribute) to tag a JDK class or individual static fields for pre-initialization

● @jdk.internal.vm.annotation.DontPreserve

○ A runtime visible annotation to tag a JDK class that should not be pre-initialized

○ Optional, help prevent others from annotating a class using @Preserve without realizing

potential issues

● @com.google.common.annotations.Preserve

○ A runtime visible annotation to tag an application class or individual static fields for

pre-initialization

https://docs.oracle.com/javase/specs/jvms/se14/html/jvms-4.html#jvms-4.7.16

Proprietary + Confidential

Class Level @Preserve

● The previous ListN example can be simplified with this design:

 @Preserve
 static final class ListN<E> extends AbstractImmutableList <E>
 implements Serializable {
 static final List<?> EMPTY_LIST = new ListN<>();

static final class ListN<E> extends AbstractImmutableList<E>
 implements Serializable {
 static @Stable List<?> EMPTY_LIST;
 static {
 VM.initializeFromArchive(ListN.class);
 if (EMPTY_LIST == null) {
 EMPTY_LIST = new ListN<>();
 }
 }

https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=ListN&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23c642ab34f324761f514f4279e47719afa2cd97770af67236a643edf5fb625c71
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=E&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23b2f900120bc21efc0367c501876a00ca09fb04fb134fe802ae27ddb3c2ea3e3c
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=102?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/io/Serializable.java;l=179
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/List.java;l=138
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=EMPTY_LIST&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23ff64f3ebc1256e113091548ad47ef00e021fbb52902479bf01a5b27667b07223
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=ListN&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23c642ab34f324761f514f4279e47719afa2cd97770af67236a643edf5fb625c71
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=E&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23b2f900120bc21efc0367c501876a00ca09fb04fb134fe802ae27ddb3c2ea3e3c
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=102?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/io/Serializable.java;l=179
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/vm/annotation/Stable.java;l=89
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/List.java;l=138
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;bpv=1;bpt=1;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=EMPTY_LIST&gs=kythe%3A%2F%2Fopenjdk11%3Flang%3Djava%3Fpath%3Djava.util.ImmutableCollections.ListN%23ff64f3ebc1256e113091548ad47ef00e021fbb52902479bf01a5b27667b07223
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=32
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/jdk/internal/misc/VM.java;l=448
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=414?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/third_party/java_src/jdk/openjdk11/dev/src/src/java.base/share/classes/java/util/ImmutableCollections.java;l=410?q=f:jdk11%20initializeFromArchive&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental

Proprietary + Confidential

Class Pre-initialization and Preserving Architecture

Proprietary + Confidential

Class Initialization Phase At Archive Dump time

● Some of the loaded classes may be implicitly initialized, as a result of

executing Java code to load classes from the classlist

● Explicitly initialize the rest of the classes annotated with @Preserve

○ After loading all classes from the classlist and before copying & relocating class

metadata to archive spaces

○ Call InstanceKlass::initialize()to do class initialization

■ Follows class initialization procedure described in JVM specification §5.5

Proprietary + Confidential

Object Subgraph Checking Phase at Archive Dump time

● Check is done after the class metadata copying and relocation step

● A static field should not be archived if any of the following types of objects is

found in its subgraph
● Non-mirror java.lang.Class objects

● ClassLoader objects

● java.security.ProtectionDomain objects

● java.lang.Thread objects

● Runnable objects

● java.io.File objects

● TBD

Proprietary + Confidential

Static Field Value Preserving Phase at Archive Dump time

● Archiving starts from a reference type static field (a root object)

○ Follow references and walk all objects within the subgraph, and copy objects to

the archive heap regions

○ Update pointers to the archived objects

● Support mirror objects within archived subgraphs

○ If a mirror object is encountered, the VM archives the mirror but stops following

references from it

○ Allow more classes for pre-initialization and caching

■ E.g. java.lang.Integer , java.lang.Long , etc

Proprietary + Confidential

Static Field Value Preserving Phase at CDS Dump time
(Continued)

● All archived static field values from a JDK class are preserved within the

class’ archived mirror object

○ Include all primitive types and reference types

○ Runtime does not need to store the values back to the fields

○ Reachable subgraph objects become live when the mirror becomes live at

runtime

○ The separate per-class record is still needed to store the dependent class list of

the current class

■ The dependent classes should be initialized before the current class

Proprietary + Confidential

What Happens at Runtime

● Three cases with different optimization levels, all avoid executing <clinit>

at runtime

○ An archived class can be set to fully_initialized state immediately when

loaded and restored at runtime iff following are true (most optimized case)

■ All static fields are primitive types or j.l.Object and j.l.String types (more

types may be allowed)

■ Is an interface, or the direct superclass is j.l.Class, or an archived class that can

be set to fully_initialized at restore time

Proprietary + Confidential

What Happens at Runtime (Continued)
● Otherwise, If a mirror contains preserved static field values (JDK classes)

○ Class is set to linked state when it is loaded and restored

○ When the class initialization is triggered

■ Supertypes are initialized first

■ VM retrieves the archived class info record, all dependent classes in the record are

initialized

■ Then class can be set to fully_initialized state

● Otherwise, all work described in above case is done, and static field values

are retrieved from archived class record and stored back into the mirror

object (application classes)

○ The subgraph entry objects for static reference fields are materialized explicitly

■ Objects become live and can be found by GC

Proprietary + Confidential

Support for Application Classes

● Limiting initial pre-initializing support for application classes (loaded by the

system class loader) with only

○ primitive types or String type

○ static final fields

○ static fields with @stable

● Static field values are stored separately from the mirrors for application
classes
○ Not stored within mirrors

Proprietary + Confidential

GC Considerations
● Runtime Java Heap regions containing mapped archived objects are

pinned

○ Objects are not moved and collected

● Archived objects in open archive heap regions (OARC) are initially

dormant (not reachable) until they become reachable/live

● A live archive heap object in OARC stays alive (does not become dormant

again) with all existing use cases in JDK

Proprietary + Confidential

GC Considerations (Continued)
● With broader support, usages may include cases

where a live archive object may become unreachable

○ Not common cases but possible

○ If runtime execution adds external references

before the object becomes unreachable, the

object may contain stale references after the

externally referenced objects are collected

■ No issue for tools and applications in prod during

normal execution

■ Looks like is not an issue for some of heap

dumper or monitoring agents

■ However, should be addressed as a complete

solution for preserving pre-initialized classes and

static fields

