
Hermetic Java™ for OpenJDK
discussion
Self-contained high performance JavaTM executable images

Native Images for
Java: Existing
Approaches,
Project Leyden, …

● Graal native image compiles Java code ahead of time to

executable images (as standalone executables or shared libraries)

○ Include application classes, dependency classes, and

statically linked JDK natives

○ Include a substrate VM for runtime with memory

management, thread scheduling, etc

○ Closed-world: allows advanced optimizations

Graal Native Image

https://www.graalvm.org/22.1/reference-manual/native-image/

● Project Leyden is aimed to address some of the Java’s long-term

pain points
○ Slow startup time

○ Slow to reach runtime peak performance

○ Large footprint

● A static image derived from an application
○ Standalone program for running the application

○ Can contain class metadata, initial Java heap with populated Java objects,

compiled code, auxiliary data, etc

● A closed world
○ Only load classes from the static image

Project Leyden

https://openjdk.org/projects/leyden/

● CRaC - checkpoint and restore for Java program
○ New standard API to notify checkpoint and restore events

○ Smaller image

○ Checkpoint and restore safety

CRaC (Coordinated Restore at Checkpoint)

https://openjdk.org/projects/crac/

● Lambda SnapStart (blog)

○ Makes use of Firecracker MicroVM snapshot (github repo)

○ Bypass usual Init phase when using a cached snapshot in subsequent

invocations

AWT Lambda SnapStart

https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://aws.amazon.com/blogs/aws/new-accelerate-your-lambda-functions-with-lambda-snapstart/
https://aws.amazon.com/blogs/opensource/firecracker-open-source-secure-fast-microvm-serverless/
https://github.com/firecracker-microvm/firecracker/tree/main/docs/snapshotting

● Address Java application packaging and deployment issues

● A self-contained static image created at build time - combine launcher

executable, JDK runtime and JAR
○ Application and JDK runtime environment are packaged in the image, including

■ Application and library classes, resources, JNI natives etc

■ Launcher executable, hotspot JVM and needed JDK libraries

○ Image starts with an ELF executable (Java launcher) at the beginning - executable image

■ Can work with other executables that are not affected by appended external data

○ Currently experimented on Linux only

○ JAR content can be examined and extracted by standard jar tool

○ Self-contained image works well with closed-world assumption; Allow dynamic loading

external classes when necessary

Our Proposal - Hermetic Java

Technical Landscape
AWS Lambda SnapStart - VM Scope snapshot/caching

● Snapshot of memory and disk state for reuse

CRaC - Process Scope snapshot/caching
● Process checkpoint and restore
● New standard APIs for checkpoint/restore notification, safety, image size

reduction, etc
Project Leyden - Static image at JVM scope

● Research new static image standard for Java

Graal Native Image
● Static image with

Java code compiled
ahead of time

● Use a substrate VM
● Closed world

assumption

Hermetic Java
● Focusing on Java static

image packaging part
● Can run on OpenJDK and

Hotspot VM
● Can integrate with existing

and future
OpenJDK/Hotspot
features

Hermetic Java
Overview

https://docs.bazel.build/versions/main/hermeticity.html

Anatomy of Hermetic Java Executable Image

● No external JDK
runtime files required

● ELF section can
support other
executable formats
that allow appending
external data

● Platform independent
image format

Why Hermetic Java? - Benefits of Single Executable Image

● No need to specify required JDK version for deployment
● No need to install required JDK runtime on target platform

● The JDK being tested within the image is the one used in production
● No untested combination of application and JDK binaries

Simplify deployment of
applications in both traditional
and cloud environments

Eliminate JDK version skew
issue - ensure hermeticity

● Ahead-of-time compiled code (AOT)
● Class Data Sharing (CDS) archive

Ensure binary compatibility with
JDK runtime

Why Hermetic Java? - Unique Benefits Comparing to

Alternatives
● Execution in place
● Works in different environments

● Desktop, cloud instances, devices, etc
● Avoid headaches caused by temp file system

space issue, etc.

● G1 GC, c1/c2 compiler, etc
● Can work with JDK module system and jlink, etc

Require no explicit runtime
extraction

OpenJDK and Hotspot VM
based solution

Alternative: Package JDK as
is, extract JDK at image
download/install time or at
startup time.

● Only contain application and needed JDK
runtime

● Potential image size optimizations
allowed at image build time, e.g. jlink
produce minimum runtime

Smaller static footprint
Alternative: Process-based
or container/vm-based
snapshot/resume

How JNI Natives
Are Supported
with Hermetic
Java?

ELF Section In Hermetic Java Image

● Located at the beginning of the hermetic Java execution

image

● Contain an ELF file with standard ELF format
○ Launcher executable

○ Statically linked with all VM and JNI native code

● Image can be loaded and executed as an ELF binary

● Can be processed by readelf, objdump, etc

● Debugging works normally, e.g. with gdb, lldb

● Build on top of existing OpenJDK work - becomes a complete

solution for static linking for JDK
○ JDK-8005716: Enhance JNI specification to allow static JNI libraries

○ JDK-8136556: Add the ability to perform static builds of MacOSX x64 binaries

○ JDK-8232748: Build static versions of certain JDK libraries

● Support both dynamic and static linking with the same set of .o

files
○ Use weak symbols to detect static linking

○ Remove dynamic linking assumptions in JDK and hotspot VM code

JDK Static Linking

https://bugs.openjdk.java.net/browse/JDK-8005716
https://bugs.openjdk.java.net/browse/JDK-8136556
https://bugs.openjdk.java.net/browse/JDK-8232748

● JDK binary provides both .so and .a for JVM and JDK native code

● Application can build hermetic Java image as a post build process
○ Use pre-built statically linked standard launcher

○ Or, statically link JDK/VM .a static libraries with custom launcher

● Build hermetic Java image using singlejar
○ Enhanced with hermetic packaging support

Singlejar - Packaging Tool
Launcher executable

Statically linked with JDK natives,
hotspot code, app JNI natives

JDK runtime files
modules, JDK resource files

Application classes and
resources

singlejar

Hermetic Java executable
image

https://github.com/bazelbuild/bazel/tree/master/src/java_tools/singlejar

● Support uniquely defined

JNI_OnLoad_<lib_name>|JNI_OnUnload_<lib_name>|Agent_

OnUnload_<agent_name>|Agent_OnAttach_<agent_name> by

default
○ Non-builtin application JNI libraries can continue use

JNI_OnLoad|JNI_OnUnload|Agent_OnLoad|Agent_OnUnload|Agent_OnA

ttach

● ClassLoader and agent support are enhanced to support built-in

native/agent libraries transparently
○ Lookup using unique Agent_On(Un)Load/Attach<_agent_name> first, fallback

to conventional naming

Enhanced JDK Built-in Library/Agent Support

● Potential glibc RFE: dlopen of in-memory

ET_DYN or ET_EXEC object
○ Use file embedded DSOs

○ Proof-of-concept prototype

● Debugging symbol issues with embedded

DSOs
○ Existing tools such as perf assume ELF header

starts at the beginning of an ELF file

○ Cannot map symbol files to prebuilt DSOs that

are embedded in the executable image

Alternative Approach - What about dynamic Linking?

https://sourceware.org/bugzilla/show_bug.cgi?id=11767

Executable Image
with Embedded
JDK Runtime Files

● Located between the ELF section and JAR

section

● Contains JDK files that require page alignment

for start offset (required by mmap)
○ lib/modules

○ CDS archive

● The start position of the files in the section are

padded to be page alignmed

JDK Section In Hermetic Java Image

● JDK/Hotspot is enhanced to access file (hermetic Java executable

image) embedded modules and CDS archive

● Files in JDK section are unaffected by updating the JAR content
○ Contents cannot be read or extracted by standard Jar tool

○ Protected from unexpected modification

JDK Section (continued)

● JDK resources files are packaged as regular JAR file entries inside the

image JAR section

JAR Section and JDK Resource Files

● System.getProperty(“java.home”)

○ Traditional Java returns JDK directory path

○ Hermetic Java returns path to the execution image

● A new JavaHome class
○ Provide uniform APIs for accessing JDK resources in both conventional and hermetic

Java modes

○ Use zip file system provider for accessing hermetic Java image packaged JDK

resources

java.home

Path resource = JavaHome.getJDKResource(...)

● Hermetic JAR image name:

hermeticApp.jar

● Traditional JAR file name:

app.jar

Java Invocation

bin/java <JVM options>
-cp app.jar MainClass
<app options>

hermeticApp.jar <JVM
options> run <app
options>

● Hermetic Java provides a package solution with self-contained static

image including launcher executable, JDK runtime and Java

application
○ Packaged by singlejar

○ Image is an executable JAR file

○ Simplify deployment

● May propose via JEP process

○ Welcome any initial feedback for contributing in OpenJDK

Summary

https://github.com/bazelbuild/bazel/tree/master/src/java_tools/singlejar
http://cr.openjdk.java.net/~mr/jep/jep-2.0-02.html

