Google

Hermetic Java™ for OpenJDK
discussion

Self-contained high performance Java'™ executable images

]
Native Images for

Java: Existing
Approaches,
Project Leyden, ...

Graal Native Image

e Graal native image compiles Java code ahead of time to

executable images (as standalone executables or shared libraries)
o Include application classes, dependency classes, and
statically linked JDK natives
o Include a substrate VM for runtime with memory
management, thread scheduling, etc

o Closed-world: allows advanced optimizations

Google

https://www.graalvm.org/22.1/reference-manual/native-image/

Project Leyden

e Project Leyden is aimed to address some of the Java’s long-term

pain points
o Slow startup time
o Slow to reach runtime peak performance
o Large footprint
e A static image derived from an application

o Standalone program for running the application
o Can contain class metadata, initial Java heap with populated Java objects,

compiled code, auxiliary data, etc
e A closed world

o Only load classes from the static image Google

https://openjdk.org/projects/leyden/

CRaC (Coordinated Restore at Checkpoint)

e (CRaC - checkpoint and restore for Java program

o New standard API to notify checkpoint and restore events
o Smallerimage

o Checkpoint and restore safety

https://openjdk.org/projects/crac/

AWT Lambda SnapStart

e Lambda SnapStart (blog)

o Makes use of Firecracker MicroVM snapshot (github repo)

o Bypass usual Init phase when using a cached snapshot in subsequent

invocations

Google

https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://aws.amazon.com/blogs/aws/new-accelerate-your-lambda-functions-with-lambda-snapstart/
https://aws.amazon.com/blogs/opensource/firecracker-open-source-secure-fast-microvm-serverless/
https://github.com/firecracker-microvm/firecracker/tree/main/docs/snapshotting

Our Proposal - Hermetic Java

e Address Java application packaging and deployment issues
e A self-contained static image created at build time - combine launcher

executable, JDK runtime and JAR

o Application and JDK runtime environment are packaged in the image, including

m Application and library classes, resources, JNI natives etc

m Launcher executable, hotspot JVM and needed JDK libraries

o Image starts with an ELF executable (Java launcher) at the beginning - executable image
m Can work with other executables that are not affected by appended external data

o Currently experimented on Linux only

o JAR content can be examined and extracted by standard jar tool

o Self-contained image works well with closed-world assumption; Allow dynamic loading

external classes when necessary
Google

Technical Landscape

AWS Lambda SnapStart - VM Scope snapshot/caching
e Snapshot of memory and disk state for reuse

CRaC - Process Scope snapshot/caching
e Process checkpoint and restore

e New standard APIs for checkpoint/restore notification, safety, image size
reduction, etc

Google

¢

Hermetic Java
Overview

https://docs.bazel.build/versions/main/hermeticity.html

Anatomy of Hermetic Java Executable Image

Java Program

Hermetic Java Executable Image

ELF section

JAR section

Java Program

Hermetic Java Executable Image
ELF section
launcher statically linked with JDK/VM
natives, application JNI natives

JDK section

JDK lib/modules

Hotspot class data sharing (CDS) image

JAR section

META-INF/...

JAR entries for JDK runtime files:
conf/logging.properties
lib/security/default.policy
tzdb.dat

JAR entries for application:
classes
resources

No external JDK
runtime files required
ELF section can
support other
executable formats
that allow appending
external data
Platform independent
image format

Why Hermetic Java? - Benefits of Single Executable Image

Simplify deployment of

licati in both traditi | e No need to specify required JDK version for deployment
appiications |r) Ot traditiond e No need to install required JDK runtime on target platform
and cloud environments

Eliminate JDK version skew e The JDK being tested within the image is the one used in production
issue - ensure hermeticity e No untested combination of application and JDK binaries

Ensure binary compatibility with e Ahead-of-time compiled code (AOT)
JDK runtime e Class Data Sharing (CDS) archive

Why Hermetic Java? - Unique Benefits Comparing to

Alternatives

Require no explicit runtime

extraction

Smaller static footprint

OpenJDK and Hotspot VM
based solution

Execution in place
Works in different environments
° Desktop, cloud instances, devices, etc
Avoid headaches caused by temp file system

space issue, etc.

Only contain application and needed JDK
runtime
e Potential image size optimizations
allowed at image build time, e.g. jlink
produce minimum runtime

G1 GC, c1/c2 compiler, etc
Can work with JDK module system and jlink, etc

Google

How JNI Natives
Are Supported
with Hermetic
Java?

ELF Section In Hermetic Java Image

e Located at the beginning of the hermetic Java execution
image
e Contain an ELF file with standard ELF format

o Launcher executable Java Program

o Statically linked with all VM and JNI native code Hermetic Executable Image

e Image can be loaded and executed as an ELF binary

o Can be processed by readel f, Obj dump, etC launcher executable statically linked with

JDK/VM natives, application JNI natives

e Debugging works normally, e.g. with gdb, 11db

JDK Static Linking

e Build on top of existing OpenJDK work - becomes a complete

solution for static linking for JDK
o JDK-8005716: Enhance JNI specification to allow static JNI libraries

o JDK-8136556: Add the ability to perform static builds of MacOSX x64 binaries

o JDK-8232748: Build static versions of certain JDK libraries

e Support both dynamic and static linking with the same set of . o

files

o Use weak symbols to detect static linking

o Remove dynamic linking assumptions in JDK and hotspot VM code

Google

https://bugs.openjdk.java.net/browse/JDK-8005716
https://bugs.openjdk.java.net/browse/JDK-8136556
https://bugs.openjdk.java.net/browse/JDK-8232748

Singlejar - Packaging Tool

[Launcher executable] [JDK runtime files] [Application classes and]

Statically linked with JDK natives, .
. modules, JDK resource files resources
hotspot code, app JNI natives

e JDK binary provides both . so and . a for JVM and JDK native code

e Application can build hermetic Java image as a post build process
o Use pre-built statically linked standard launcher
o Or, statically link JDK/VM .a static libraries with custom launcher

e Build hermetic Java image using singlejar

o Enhanced with hermetic packaging support Google

https://github.com/bazelbuild/bazel/tree/master/src/java_tools/singlejar

Enhanced JDK Built-in Library/Agent Support

e Support uniquely defined
JNI OnLoad <lib name>|JNI OnUnload <lib name>|Agent

OnUnload <agent name>|Agent OnAttach <agent name> by

default

o Non-builtin application JNI libraries can continue use
JNI OnLoad|JNI OnUnload|Agent OnLoad|Agent OnUnload|Agent OnA

ttach
e ClasslLoader and agent support are enhanced to support built-in

native/agent libraries transparently

o Lookup using unique Agent On (Un) Load/Attach< agent name> first, fallback

to conventional naming

Alternative Approach - What about dynamic Linking?

Java Program

Hermetic Java Executable Image

JDK section

JDK lib/modules

CDS data

libjvm.so

libjava.so

libjli.so

libnet.so

e Potential glibc RFE: d1open of in-memory

ET DYNoOr ET EXEC object
o Use file embedded DSOs

o Proof-of-concept prototype

e Debugging symbol issues with embedded
DSOs

o Existing tools such as perf assume ELF header
starts at the beginning of an ELF file
o Cannot map symbol files to prebuilt DSOs that

are embedded in the executable image

Google

https://sourceware.org/bugzilla/show_bug.cgi?id=11767

A
Executable Image

with Embedded
JDK Runtime Files

JDK Section In Hermetic Java Image

e Located between the ELF section and JAR
section
e Contains JDK files that require page alignmer

for start offset (required by mmap)

o lib/modules

o CDS archive
e The start position of the files in the section ar

padded to be page alignmed

Java Program

Hermetic Java Executable Image

JDK Section (continued)

e JDK/Hotspot is enhanced to access file (hermetic Java executable
image) embedded modules and CDS archive

e Filesin JDK section are unaffected by updating the JAR content

o Contents cannot be read or extracted by standard Jar tool

o Protected from unexpected modification

Google

JAR Section and JDK Resource Files

e JDKresources files are packaged as regular JAR file entries inside the

image JAR section

Java Program

Hermetic Java Executable Image

ELF section

JDK section

jdk/conf/logging.properties
jdk/conf/security/default.policy
jdk/conf/security/java.security

jdk/conf/security/java.policy

jdk/lib/ct.sym

jdk/lib/security/cacerts

jdk/lib/security/public_suffix_list.dat

java.home

® System.getProperty(“java.home”)

O Traditional Java returns JDK directory path
o Hermetic Java returns path to the execution image

e Anew JavaHome class

o Provide uniform APIs for accessing JDK resources in both conventional and hermetic
Java modes
o Use zip file system provider for accessing hermetic Java image packaged JDK

resources

Path resource = JavaHome.getJDKResource(.. .)

Java Invocation

e Traditional JAR file name:

app.jar

bin/java <JVM options>
-cp app.jar MainClass
<app options>

e Hermetic JAR image name:

hermeticApp.jar

hermeticApp.jar <JVM
options> run <app
options>

Google

Summary

e Hermetic Java provides a package solution with self-contained static

image including launcher executable, JDK runtime and Java

application
o Packaged by singlejar

o Image is an executable JAR file
o Simplify deployment
e May propose via JEP process
o Welcome any initial feedback for contributing in OpenJDK

Google

https://github.com/bazelbuild/bazel/tree/master/src/java_tools/singlejar
http://cr.openjdk.java.net/~mr/jep/jep-2.0-02.html

