1 /*
   2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.misc.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Field;
  43 import java.lang.reflect.Member;
  44 import java.lang.reflect.Method;
  45 import java.lang.reflect.Modifier;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.security.AccessController;
  49 import java.security.PrivilegedAction;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.concurrent.ConcurrentHashMap;
  58 import java.util.stream.Collectors;
  59 import java.util.stream.Stream;
  60 
  61 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  62 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  63 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  64 import static java.lang.invoke.MethodType.methodType;
  65 
  66 /**
  67  * This class consists exclusively of static methods that operate on or return
  68  * method handles. They fall into several categories:
  69  * <ul>
  70  * <li>Lookup methods which help create method handles for methods and fields.
  71  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  72  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  73  * </ul>
  74  *
  75  * @author John Rose, JSR 292 EG
  76  * @since 1.7
  77  */
  78 public class MethodHandles {
  79 
  80     private MethodHandles() { }  // do not instantiate
  81 
  82     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  83 
  84     // See IMPL_LOOKUP below.
  85 
  86     //// Method handle creation from ordinary methods.
  87 
  88     /**
  89      * Returns a {@link Lookup lookup object} with
  90      * full capabilities to emulate all supported bytecode behaviors of the caller.
  91      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  92      * Factory methods on the lookup object can create
  93      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  94      * for any member that the caller has access to via bytecodes,
  95      * including protected and private fields and methods.
  96      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  97      * Do not store it in place where untrusted code can access it.
  98      * <p>
  99      * This method is caller sensitive, which means that it may return different
 100      * values to different callers.
 101      * <p>
 102      * For any given caller class {@code C}, the lookup object returned by this call
 103      * has equivalent capabilities to any lookup object
 104      * supplied by the JVM to the bootstrap method of an
 105      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
 106      * executing in the same caller class {@code C}.
 107      * @return a lookup object for the caller of this method, with private access
 108      */
 109     @CallerSensitive
 110     @ForceInline // to ensure Reflection.getCallerClass optimization
 111     public static Lookup lookup() {
 112         return new Lookup(Reflection.getCallerClass());
 113     }
 114 
 115     /**
 116      * Returns a {@link Lookup lookup object} which is trusted minimally.
 117      * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes.
 118      * It can only be used to create method handles to public members of
 119      * public classes in packages that are exported unconditionally.
 120      * <p>
 121      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
 122      * of this lookup object will be {@link java.lang.Object}.
 123      *
 124      * @apiNote The use of Object is conventional, and because the lookup modes are
 125      * limited, there is no special access provided to the internals of Object, its package
 126      * or its module. Consequently, the lookup context of this lookup object will be the
 127      * bootstrap class loader, which means it cannot find user classes.
 128      *
 129      * <p style="font-size:smaller;">
 130      * <em>Discussion:</em>
 131      * The lookup class can be changed to any other class {@code C} using an expression of the form
 132      * {@link Lookup#in publicLookup().in(C.class)}.
 133      * but may change the lookup context by virtue of changing the class loader.
 134      * A public lookup object is always subject to
 135      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 136      * Also, it cannot access
 137      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 138      * @return a lookup object which is trusted minimally
 139      *
 140      * @revised 9
 141      * @spec JPMS
 142      */
 143     public static Lookup publicLookup() {
 144         return Lookup.PUBLIC_LOOKUP;
 145     }
 146 
 147     /**
 148      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
 149      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
 150      * private access</a>, on a target class.
 151      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
 152      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
 153      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
 154      * the target class, then this check ensures that
 155      * <ul>
 156      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
 157      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
 158      *     the target class to at least {@code m1}.</li>
 159      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
 160      * </ul>
 161      * <p>
 162      * If there is a security manager, its {@code checkPermission} method is called to
 163      * check {@code ReflectPermission("suppressAccessChecks")}.
 164      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
 165      * was created by code in the caller module (or derived from a lookup object originally
 166      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
 167      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
 168      * access to the caller.
 169      * @param targetClass the target class
 170      * @param lookup the caller lookup object
 171      * @return a lookup object for the target class, with private access
 172      * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class
 173      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 174      * @throws IllegalAccessException if the access check specified above fails
 175      * @throws SecurityException if denied by the security manager
 176      * @since 9
 177      * @spec JPMS
 178      * @see Lookup#dropLookupMode
 179      */
 180     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
 181         SecurityManager sm = System.getSecurityManager();
 182         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 183         if (targetClass.isPrimitive())
 184             throw new IllegalArgumentException(targetClass + " is a primitive class");
 185         if (targetClass.isArray())
 186             throw new IllegalArgumentException(targetClass + " is an array class");
 187         Module targetModule = targetClass.getModule();
 188         Module callerModule = lookup.lookupClass().getModule();
 189         if (!callerModule.canRead(targetModule))
 190             throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 191         if (targetModule.isNamed()) {
 192             String pn = targetClass.getPackageName();
 193             assert pn.length() > 0 : "unnamed package cannot be in named module";
 194             if (!targetModule.isOpen(pn, callerModule))
 195                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 196         }
 197         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
 198             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
 199         if (!callerModule.isNamed() && targetModule.isNamed()) {
 200             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 201             if (logger != null) {
 202                 logger.logIfOpenedByBackdoor(lookup, targetClass);
 203             }
 204         }
 205         return new Lookup(targetClass);
 206     }
 207 
 208     /**
 209      * Performs an unchecked "crack" of a
 210      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 211      * The result is as if the user had obtained a lookup object capable enough
 212      * to crack the target method handle, called
 213      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 214      * on the target to obtain its symbolic reference, and then called
 215      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 216      * to resolve the symbolic reference to a member.
 217      * <p>
 218      * If there is a security manager, its {@code checkPermission} method
 219      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 220      * @param <T> the desired type of the result, either {@link Member} or a subtype
 221      * @param target a direct method handle to crack into symbolic reference components
 222      * @param expected a class object representing the desired result type {@code T}
 223      * @return a reference to the method, constructor, or field object
 224      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 225      * @exception NullPointerException if either argument is {@code null}
 226      * @exception IllegalArgumentException if the target is not a direct method handle
 227      * @exception ClassCastException if the member is not of the expected type
 228      * @since 1.8
 229      */
 230     public static <T extends Member> T
 231     reflectAs(Class<T> expected, MethodHandle target) {
 232         SecurityManager smgr = System.getSecurityManager();
 233         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 234         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 235         return lookup.revealDirect(target).reflectAs(expected, lookup);
 236     }
 237     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 238     private static final java.security.Permission ACCESS_PERMISSION =
 239         new ReflectPermission("suppressAccessChecks");
 240 
 241     /**
 242      * A <em>lookup object</em> is a factory for creating method handles,
 243      * when the creation requires access checking.
 244      * Method handles do not perform
 245      * access checks when they are called, but rather when they are created.
 246      * Therefore, method handle access
 247      * restrictions must be enforced when a method handle is created.
 248      * The caller class against which those restrictions are enforced
 249      * is known as the {@linkplain #lookupClass lookup class}.
 250      * <p>
 251      * A lookup class which needs to create method handles will call
 252      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 253      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 254      * determined, and securely stored in the {@code Lookup} object.
 255      * The lookup class (or its delegates) may then use factory methods
 256      * on the {@code Lookup} object to create method handles for access-checked members.
 257      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 258      * even private ones.
 259      *
 260      * <h1><a id="lookups"></a>Lookup Factory Methods</h1>
 261      * The factory methods on a {@code Lookup} object correspond to all major
 262      * use cases for methods, constructors, and fields.
 263      * Each method handle created by a factory method is the functional
 264      * equivalent of a particular <em>bytecode behavior</em>.
 265      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 266      * Here is a summary of the correspondence between these factory methods and
 267      * the behavior of the resulting method handles:
 268      * <table class="altrows">
 269      * <caption style="display:none">lookup method behaviors</caption>
 270      * <thead>
 271      * <tr>
 272      *     <th><a id="equiv"></a>lookup expression</th>
 273      *     <th>member</th>
 274      *     <th>bytecode behavior</th>
 275      * </tr>
 276      * </thead>
 277      * <tbody>
 278      * <tr>
 279      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
 280      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 281      * </tr>
 282      * <tr>
 283      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
 284      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 285      * </tr>
 286      * <tr>
 287      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
 288      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 289      * </tr>
 290      * <tr>
 291      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
 292      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 293      * </tr>
 294      * <tr>
 295      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
 296      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 297      * </tr>
 298      * <tr>
 299      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
 300      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 301      * </tr>
 302      * <tr>
 303      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
 304      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 305      * </tr>
 306      * <tr>
 307      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
 308      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 309      * </tr>
 310      * <tr>
 311      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
 312      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 313      * </tr>
 314      * <tr>
 315      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
 316      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 317      * </tr>
 318      * <tr>
 319      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 320      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 321      * </tr>
 322      * <tr>
 323      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
 324      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 325      * </tr>
 326      * <tr>
 327      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 328      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 329      * </tr>
 330      * <tr>
 331      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</td>
 332      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 333      * </tr>
 334      * </tbody>
 335      * </table>
 336      *
 337      * Here, the type {@code C} is the class or interface being searched for a member,
 338      * documented as a parameter named {@code refc} in the lookup methods.
 339      * The method type {@code MT} is composed from the return type {@code T}
 340      * and the sequence of argument types {@code A*}.
 341      * The constructor also has a sequence of argument types {@code A*} and
 342      * is deemed to return the newly-created object of type {@code C}.
 343      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 344      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 345      * if it is present, it is always the leading argument to the method handle invocation.
 346      * (In the case of some {@code protected} members, {@code this} may be
 347      * restricted in type to the lookup class; see below.)
 348      * The name {@code arg} stands for all the other method handle arguments.
 349      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 350      * stands for a null reference if the accessed method or field is static,
 351      * and {@code this} otherwise.
 352      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 353      * for reflective objects corresponding to the given members.
 354      * <p>
 355      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 356      * as if by {@code ldc CONSTANT_Class}.
 357      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 358      * <p>
 359      * In cases where the given member is of variable arity (i.e., a method or constructor)
 360      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 361      * In all other cases, the returned method handle will be of fixed arity.
 362      * <p style="font-size:smaller;">
 363      * <em>Discussion:</em>
 364      * The equivalence between looked-up method handles and underlying
 365      * class members and bytecode behaviors
 366      * can break down in a few ways:
 367      * <ul style="font-size:smaller;">
 368      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 369      * the lookup can still succeed, even when there is no equivalent
 370      * Java expression or bytecoded constant.
 371      * <li>Likewise, if {@code T} or {@code MT}
 372      * is not symbolically accessible from the lookup class's loader,
 373      * the lookup can still succeed.
 374      * For example, lookups for {@code MethodHandle.invokeExact} and
 375      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 376      * <li>If there is a security manager installed, it can forbid the lookup
 377      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 378      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 379      * constant is not subject to security manager checks.
 380      * <li>If the looked-up method has a
 381      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 382      * the method handle creation may fail, due to the method handle
 383      * type having too many parameters.
 384      * </ul>
 385      *
 386      * <h1><a id="access"></a>Access checking</h1>
 387      * Access checks are applied in the factory methods of {@code Lookup},
 388      * when a method handle is created.
 389      * This is a key difference from the Core Reflection API, since
 390      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 391      * performs access checking against every caller, on every call.
 392      * <p>
 393      * All access checks start from a {@code Lookup} object, which
 394      * compares its recorded lookup class against all requests to
 395      * create method handles.
 396      * A single {@code Lookup} object can be used to create any number
 397      * of access-checked method handles, all checked against a single
 398      * lookup class.
 399      * <p>
 400      * A {@code Lookup} object can be shared with other trusted code,
 401      * such as a metaobject protocol.
 402      * A shared {@code Lookup} object delegates the capability
 403      * to create method handles on private members of the lookup class.
 404      * Even if privileged code uses the {@code Lookup} object,
 405      * the access checking is confined to the privileges of the
 406      * original lookup class.
 407      * <p>
 408      * A lookup can fail, because
 409      * the containing class is not accessible to the lookup class, or
 410      * because the desired class member is missing, or because the
 411      * desired class member is not accessible to the lookup class, or
 412      * because the lookup object is not trusted enough to access the member.
 413      * In any of these cases, a {@code ReflectiveOperationException} will be
 414      * thrown from the attempted lookup.  The exact class will be one of
 415      * the following:
 416      * <ul>
 417      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 418      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 419      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 420      * </ul>
 421      * <p>
 422      * In general, the conditions under which a method handle may be
 423      * looked up for a method {@code M} are no more restrictive than the conditions
 424      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 425      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 426      * a method handle lookup will generally raise a corresponding
 427      * checked exception, such as {@code NoSuchMethodException}.
 428      * And the effect of invoking the method handle resulting from the lookup
 429      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 430      * to executing the compiled, verified, and resolved call to {@code M}.
 431      * The same point is true of fields and constructors.
 432      * <p style="font-size:smaller;">
 433      * <em>Discussion:</em>
 434      * Access checks only apply to named and reflected methods,
 435      * constructors, and fields.
 436      * Other method handle creation methods, such as
 437      * {@link MethodHandle#asType MethodHandle.asType},
 438      * do not require any access checks, and are used
 439      * independently of any {@code Lookup} object.
 440      * <p>
 441      * If the desired member is {@code protected}, the usual JVM rules apply,
 442      * including the requirement that the lookup class must be either be in the
 443      * same package as the desired member, or must inherit that member.
 444      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 445      * In addition, if the desired member is a non-static field or method
 446      * in a different package, the resulting method handle may only be applied
 447      * to objects of the lookup class or one of its subclasses.
 448      * This requirement is enforced by narrowing the type of the leading
 449      * {@code this} parameter from {@code C}
 450      * (which will necessarily be a superclass of the lookup class)
 451      * to the lookup class itself.
 452      * <p>
 453      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 454      * that the receiver argument must match both the resolved method <em>and</em>
 455      * the current class.  Again, this requirement is enforced by narrowing the
 456      * type of the leading parameter to the resulting method handle.
 457      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 458      * <p>
 459      * The JVM represents constructors and static initializer blocks as internal methods
 460      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 461      * The internal syntax of invocation instructions allows them to refer to such internal
 462      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 463      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 464      * <p>
 465      * In some cases, access between nested classes is obtained by the Java compiler by creating
 466      * an wrapper method to access a private method of another class
 467      * in the same top-level declaration.
 468      * For example, a nested class {@code C.D}
 469      * can access private members within other related classes such as
 470      * {@code C}, {@code C.D.E}, or {@code C.B},
 471      * but the Java compiler may need to generate wrapper methods in
 472      * those related classes.  In such cases, a {@code Lookup} object on
 473      * {@code C.E} would be unable to those private members.
 474      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 475      * which can transform a lookup on {@code C.E} into one on any of those other
 476      * classes, without special elevation of privilege.
 477      * <p>
 478      * The accesses permitted to a given lookup object may be limited,
 479      * according to its set of {@link #lookupModes lookupModes},
 480      * to a subset of members normally accessible to the lookup class.
 481      * For example, the {@link MethodHandles#publicLookup publicLookup}
 482      * method produces a lookup object which is only allowed to access
 483      * public members in public classes of exported packages.
 484      * The caller sensitive method {@link MethodHandles#lookup lookup}
 485      * produces a lookup object with full capabilities relative to
 486      * its caller class, to emulate all supported bytecode behaviors.
 487      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 488      * with fewer access modes than the original lookup object.
 489      *
 490      * <p style="font-size:smaller;">
 491      * <a id="privacc"></a>
 492      * <em>Discussion of private access:</em>
 493      * We say that a lookup has <em>private access</em>
 494      * if its {@linkplain #lookupModes lookup modes}
 495      * include the possibility of accessing {@code private} members.
 496      * As documented in the relevant methods elsewhere,
 497      * only lookups with private access possess the following capabilities:
 498      * <ul style="font-size:smaller;">
 499      * <li>access private fields, methods, and constructors of the lookup class
 500      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 501      *     such as {@code Class.forName}
 502      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 503      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 504      *     for classes accessible to the lookup class
 505      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 506      *     within the same package member
 507      * </ul>
 508      * <p style="font-size:smaller;">
 509      * Each of these permissions is a consequence of the fact that a lookup object
 510      * with private access can be securely traced back to an originating class,
 511      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 512      * can be reliably determined and emulated by method handles.
 513      *
 514      * <h1><a id="secmgr"></a>Security manager interactions</h1>
 515      * Although bytecode instructions can only refer to classes in
 516      * a related class loader, this API can search for methods in any
 517      * class, as long as a reference to its {@code Class} object is
 518      * available.  Such cross-loader references are also possible with the
 519      * Core Reflection API, and are impossible to bytecode instructions
 520      * such as {@code invokestatic} or {@code getfield}.
 521      * There is a {@linkplain java.lang.SecurityManager security manager API}
 522      * to allow applications to check such cross-loader references.
 523      * These checks apply to both the {@code MethodHandles.Lookup} API
 524      * and the Core Reflection API
 525      * (as found on {@link java.lang.Class Class}).
 526      * <p>
 527      * If a security manager is present, member and class lookups are subject to
 528      * additional checks.
 529      * From one to three calls are made to the security manager.
 530      * Any of these calls can refuse access by throwing a
 531      * {@link java.lang.SecurityException SecurityException}.
 532      * Define {@code smgr} as the security manager,
 533      * {@code lookc} as the lookup class of the current lookup object,
 534      * {@code refc} as the containing class in which the member
 535      * is being sought, and {@code defc} as the class in which the
 536      * member is actually defined.
 537      * (If a class or other type is being accessed,
 538      * the {@code refc} and {@code defc} values are the class itself.)
 539      * The value {@code lookc} is defined as <em>not present</em>
 540      * if the current lookup object does not have
 541      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 542      * The calls are made according to the following rules:
 543      * <ul>
 544      * <li><b>Step 1:</b>
 545      *     If {@code lookc} is not present, or if its class loader is not
 546      *     the same as or an ancestor of the class loader of {@code refc},
 547      *     then {@link SecurityManager#checkPackageAccess
 548      *     smgr.checkPackageAccess(refcPkg)} is called,
 549      *     where {@code refcPkg} is the package of {@code refc}.
 550      * <li><b>Step 2a:</b>
 551      *     If the retrieved member is not public and
 552      *     {@code lookc} is not present, then
 553      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 554      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 555      * <li><b>Step 2b:</b>
 556      *     If the retrieved class has a {@code null} class loader,
 557      *     and {@code lookc} is not present, then
 558      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 559      *     with {@code RuntimePermission("getClassLoader")} is called.
 560      * <li><b>Step 3:</b>
 561      *     If the retrieved member is not public,
 562      *     and if {@code lookc} is not present,
 563      *     and if {@code defc} and {@code refc} are different,
 564      *     then {@link SecurityManager#checkPackageAccess
 565      *     smgr.checkPackageAccess(defcPkg)} is called,
 566      *     where {@code defcPkg} is the package of {@code defc}.
 567      * </ul>
 568      * Security checks are performed after other access checks have passed.
 569      * Therefore, the above rules presuppose a member or class that is public,
 570      * or else that is being accessed from a lookup class that has
 571      * rights to access the member or class.
 572      *
 573      * <h1><a id="callsens"></a>Caller sensitive methods</h1>
 574      * A small number of Java methods have a special property called caller sensitivity.
 575      * A <em>caller-sensitive</em> method can behave differently depending on the
 576      * identity of its immediate caller.
 577      * <p>
 578      * If a method handle for a caller-sensitive method is requested,
 579      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 580      * but they take account of the lookup class in a special way.
 581      * The resulting method handle behaves as if it were called
 582      * from an instruction contained in the lookup class,
 583      * so that the caller-sensitive method detects the lookup class.
 584      * (By contrast, the invoker of the method handle is disregarded.)
 585      * Thus, in the case of caller-sensitive methods,
 586      * different lookup classes may give rise to
 587      * differently behaving method handles.
 588      * <p>
 589      * In cases where the lookup object is
 590      * {@link MethodHandles#publicLookup() publicLookup()},
 591      * or some other lookup object without
 592      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 593      * the lookup class is disregarded.
 594      * In such cases, no caller-sensitive method handle can be created,
 595      * access is forbidden, and the lookup fails with an
 596      * {@code IllegalAccessException}.
 597      * <p style="font-size:smaller;">
 598      * <em>Discussion:</em>
 599      * For example, the caller-sensitive method
 600      * {@link java.lang.Class#forName(String) Class.forName(x)}
 601      * can return varying classes or throw varying exceptions,
 602      * depending on the class loader of the class that calls it.
 603      * A public lookup of {@code Class.forName} will fail, because
 604      * there is no reasonable way to determine its bytecode behavior.
 605      * <p style="font-size:smaller;">
 606      * If an application caches method handles for broad sharing,
 607      * it should use {@code publicLookup()} to create them.
 608      * If there is a lookup of {@code Class.forName}, it will fail,
 609      * and the application must take appropriate action in that case.
 610      * It may be that a later lookup, perhaps during the invocation of a
 611      * bootstrap method, can incorporate the specific identity
 612      * of the caller, making the method accessible.
 613      * <p style="font-size:smaller;">
 614      * The function {@code MethodHandles.lookup} is caller sensitive
 615      * so that there can be a secure foundation for lookups.
 616      * Nearly all other methods in the JSR 292 API rely on lookup
 617      * objects to check access requests.
 618      *
 619      * @revised 9
 620      */
 621     public static final
 622     class Lookup {
 623         /** The class on behalf of whom the lookup is being performed. */
 624         private final Class<?> lookupClass;
 625 
 626         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 627         private final int allowedModes;
 628 
 629         /** A single-bit mask representing {@code public} access,
 630          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 631          *  The value, {@code 0x01}, happens to be the same as the value of the
 632          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 633          */
 634         public static final int PUBLIC = Modifier.PUBLIC;
 635 
 636         /** A single-bit mask representing {@code private} access,
 637          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 638          *  The value, {@code 0x02}, happens to be the same as the value of the
 639          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 640          */
 641         public static final int PRIVATE = Modifier.PRIVATE;
 642 
 643         /** A single-bit mask representing {@code protected} access,
 644          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 645          *  The value, {@code 0x04}, happens to be the same as the value of the
 646          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 647          */
 648         public static final int PROTECTED = Modifier.PROTECTED;
 649 
 650         /** A single-bit mask representing {@code package} access (default access),
 651          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 652          *  The value is {@code 0x08}, which does not correspond meaningfully to
 653          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 654          */
 655         public static final int PACKAGE = Modifier.STATIC;
 656 
 657         /** A single-bit mask representing {@code module} access (default access),
 658          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 659          *  The value is {@code 0x10}, which does not correspond meaningfully to
 660          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 661          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 662          *  with this lookup mode can access all public types in the module of the
 663          *  lookup class and public types in packages exported by other modules
 664          *  to the module of the lookup class.
 665          *  @since 9
 666          *  @spec JPMS
 667          */
 668         public static final int MODULE = PACKAGE << 1;
 669 
 670         /** A single-bit mask representing {@code unconditional} access
 671          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 672          *  The value is {@code 0x20}, which does not correspond meaningfully to
 673          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 674          *  A {@code Lookup} with this lookup mode assumes {@linkplain
 675          *  java.lang.Module#canRead(java.lang.Module) readability}.
 676          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 677          *  with this lookup mode can access all public members of public types
 678          *  of all modules where the type is in a package that is {@link
 679          *  java.lang.Module#isExported(String) exported unconditionally}.
 680          *  @since 9
 681          *  @spec JPMS
 682          *  @see #publicLookup()
 683          */
 684         public static final int UNCONDITIONAL = PACKAGE << 2;
 685 
 686         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
 687         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
 688         private static final int TRUSTED   = -1;
 689 
 690         private static int fixmods(int mods) {
 691             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
 692             return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL);
 693         }
 694 
 695         /** Tells which class is performing the lookup.  It is this class against
 696          *  which checks are performed for visibility and access permissions.
 697          *  <p>
 698          *  The class implies a maximum level of access permission,
 699          *  but the permissions may be additionally limited by the bitmask
 700          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 701          *  can be accessed.
 702          *  @return the lookup class, on behalf of which this lookup object finds members
 703          */
 704         public Class<?> lookupClass() {
 705             return lookupClass;
 706         }
 707 
 708         // This is just for calling out to MethodHandleImpl.
 709         private Class<?> lookupClassOrNull() {
 710             return (allowedModes == TRUSTED) ? null : lookupClass;
 711         }
 712 
 713         /** Tells which access-protection classes of members this lookup object can produce.
 714          *  The result is a bit-mask of the bits
 715          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 716          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 717          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 718          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 719          *  {@linkplain #MODULE MODULE (0x10)},
 720          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
 721          *  <p>
 722          *  A freshly-created lookup object
 723          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
 724          *  all possible bits set, except {@code UNCONDITIONAL}. The lookup can be used to
 725          *  access all members of the caller's class, all public types in the caller's module,
 726          *  and all public types in packages exported by other modules to the caller's module.
 727          *  A lookup object on a new lookup class
 728          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 729          *  may have some mode bits set to zero.
 730          *  Mode bits can also be
 731          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
 732          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
 733          *  The purpose of this is to restrict access via the new lookup object,
 734          *  so that it can access only names which can be reached by the original
 735          *  lookup object, and also by the new lookup class.
 736          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 737          *  @see #in
 738          *  @see #dropLookupMode
 739          *
 740          *  @revised 9
 741          *  @spec JPMS
 742          */
 743         public int lookupModes() {
 744             return allowedModes & ALL_MODES;
 745         }
 746 
 747         /** Embody the current class (the lookupClass) as a lookup class
 748          * for method handle creation.
 749          * Must be called by from a method in this package,
 750          * which in turn is called by a method not in this package.
 751          */
 752         Lookup(Class<?> lookupClass) {
 753             this(lookupClass, FULL_POWER_MODES);
 754             // make sure we haven't accidentally picked up a privileged class:
 755             checkUnprivilegedlookupClass(lookupClass, FULL_POWER_MODES);
 756         }
 757 
 758         private Lookup(Class<?> lookupClass, int allowedModes) {
 759             this.lookupClass = lookupClass;
 760             this.allowedModes = allowedModes;
 761         }
 762 
 763         /**
 764          * Creates a lookup on the specified new lookup class.
 765          * The resulting object will report the specified
 766          * class as its own {@link #lookupClass lookupClass}.
 767          * <p>
 768          * However, the resulting {@code Lookup} object is guaranteed
 769          * to have no more access capabilities than the original.
 770          * In particular, access capabilities can be lost as follows:<ul>
 771          * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and
 772          * the new lookup class is in a different module {@code M}, then no members, not
 773          * even public members in {@code M}'s exported packages, will be accessible.
 774          * The exception to this is when this lookup is {@link #publicLookup()
 775          * publicLookup}, in which case {@code PUBLIC} access is not lost.
 776          * <li>If the old lookup class is in an unnamed module, and the new lookup class
 777          * is a different module then {@link #MODULE MODULE} access is lost.
 778          * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost.
 779          * <li>If the new lookup class is in a different package
 780          * than the old one, protected and default (package) members will not be accessible.
 781          * <li>If the new lookup class is not within the same package member
 782          * as the old one, private members will not be accessible, and protected members
 783          * will not be accessible by virtue of inheritance.
 784          * (Protected members may continue to be accessible because of package sharing.)
 785          * <li>If the new lookup class is not accessible to the old lookup class,
 786          * then no members, not even public members, will be accessible.
 787          * (In all other cases, public members will continue to be accessible.)
 788          * </ul>
 789          * <p>
 790          * The resulting lookup's capabilities for loading classes
 791          * (used during {@link #findClass} invocations)
 792          * are determined by the lookup class' loader,
 793          * which may change due to this operation.
 794          *
 795          * @param requestedLookupClass the desired lookup class for the new lookup object
 796          * @return a lookup object which reports the desired lookup class, or the same object
 797          * if there is no change
 798          * @throws NullPointerException if the argument is null
 799          *
 800          * @revised 9
 801          * @spec JPMS
 802          */
 803         public Lookup in(Class<?> requestedLookupClass) {
 804             Objects.requireNonNull(requestedLookupClass);
 805             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 806                 return new Lookup(requestedLookupClass, FULL_POWER_MODES);
 807             if (requestedLookupClass == this.lookupClass)
 808                 return this;  // keep same capabilities
 809             int newModes = (allowedModes & FULL_POWER_MODES);
 810             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 811                 // Need to drop all access when teleporting from a named module to another
 812                 // module. The exception is publicLookup where PUBLIC is not lost.
 813                 if (this.lookupClass.getModule().isNamed()
 814                     && (this.allowedModes & UNCONDITIONAL) == 0)
 815                     newModes = 0;
 816                 else
 817                     newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
 818             }
 819             if ((newModes & PACKAGE) != 0
 820                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 821                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
 822             }
 823             // Allow nestmate lookups to be created without special privilege:
 824             if ((newModes & PRIVATE) != 0
 825                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 826                 newModes &= ~(PRIVATE|PROTECTED);
 827             }
 828             if ((newModes & PUBLIC) != 0
 829                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 830                 // The requested class it not accessible from the lookup class.
 831                 // No permissions.
 832                 newModes = 0;
 833             }
 834 
 835             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
 836             return new Lookup(requestedLookupClass, newModes);
 837         }
 838 
 839 
 840         /**
 841          * Creates a lookup on the same lookup class which this lookup object
 842          * finds members, but with a lookup mode that has lost the given lookup mode.
 843          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
 844          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
 845          * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always
 846          * dropped and so the resulting lookup mode will never have these access capabilities.
 847          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
 848          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
 849          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
 850          * is dropped then the resulting lookup has no access.
 851          * @param modeToDrop the lookup mode to drop
 852          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
 853          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
 854          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
 855          * @see MethodHandles#privateLookupIn
 856          * @since 9
 857          */
 858         public Lookup dropLookupMode(int modeToDrop) {
 859             int oldModes = lookupModes();
 860             int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL);
 861             switch (modeToDrop) {
 862                 case PUBLIC: newModes &= ~(ALL_MODES); break;
 863                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
 864                 case PACKAGE: newModes &= ~(PRIVATE); break;
 865                 case PROTECTED:
 866                 case PRIVATE:
 867                 case UNCONDITIONAL: break;
 868                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
 869             }
 870             if (newModes == oldModes) return this;  // return self if no change
 871             return new Lookup(lookupClass(), newModes);
 872         }
 873 
 874         /**
 875          * Defines a class to the same class loader and in the same runtime package and
 876          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
 877          * {@linkplain #lookupClass() lookup class}.
 878          *
 879          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
 880          * {@link #PACKAGE PACKAGE} access as default (package) members will be
 881          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
 882          * that the lookup object was created by a caller in the runtime package (or derived
 883          * from a lookup originally created by suitably privileged code to a target class in
 884          * the runtime package). The lookup modes cannot include {@link #PRIVATE PRIVATE}
 885          * access. A lookup with {@code PRIVATE} access can be downgraded to drop this lookup
 886          * mode with the {@linkplain #dropLookupMode(int) dropLookupMode} method. </p>
 887          *
 888          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
 889          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
 890          * same package as the lookup class. </p>
 891          *
 892          * <p> This method does not run the class initializer. The class initializer may
 893          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
 894          * Specification</em>. </p>
 895          *
 896          * <p> If there is a security manager, its {@code checkPermission} method is first called
 897          * to check {@code RuntimePermission("defineClass")}. </p>
 898          *
 899          * @param bytes the class bytes
 900          * @return the {@code Class} object for the class
 901          * @throws IllegalArgumentException the bytes are for a class in a different package
 902          * to the lookup class
 903          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
 904          * @throws UnsupportedOperationException if the lookup class has {@code PRIVATE} access
 905          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
 906          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
 907          * @throws SecurityException if denied by the security manager
 908          * @throws NullPointerException if {@code bytes} is {@code null}
 909          * @since 9
 910          * @spec JPMS
 911          * @see Lookup#privateLookupIn
 912          * @see Lookup#dropLookupMode
 913          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
 914          */
 915         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
 916             SecurityManager sm = System.getSecurityManager();
 917             if (sm != null)
 918                 sm.checkPermission(new RuntimePermission("defineClass"));
 919             if (hasPrivateAccess())
 920                 throw new UnsupportedOperationException("PRIVATE access not supported");
 921             if ((lookupModes() & PACKAGE) == 0)
 922                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
 923             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
 924 
 925             // parse class bytes to get class name (in internal form)
 926             bytes = bytes.clone();
 927             String name;
 928             try {
 929                 ClassReader reader = new ClassReader(bytes);
 930                 name = reader.getClassName();
 931             } catch (RuntimeException e) {
 932                 // ASM exceptions are poorly specified
 933                 ClassFormatError cfe = new ClassFormatError();
 934                 cfe.initCause(e);
 935                 throw cfe;
 936             }
 937 
 938             // get package and class name in binary form
 939             String cn, pn;
 940             int index = name.lastIndexOf('/');
 941             if (index == -1) {
 942                 cn = name;
 943                 pn = "";
 944             } else {
 945                 cn = name.replace('/', '.');
 946                 pn = cn.substring(0, index);
 947             }
 948             if (!pn.equals(lookupClass.getPackageName())) {
 949                 throw new IllegalArgumentException("Class not in same package as lookup class");
 950             }
 951 
 952             // invoke the class loader's defineClass method
 953             ClassLoader loader = lookupClass.getClassLoader();
 954             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
 955             String source = "__Lookup_defineClass__";
 956             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
 957             assert clazz.getClassLoader() == lookupClass.getClassLoader()
 958                     && clazz.getPackageName().equals(lookupClass.getPackageName())
 959                     && protectionDomain(clazz) == lookupClassProtectionDomain();
 960             return clazz;
 961         }
 962 
 963         private ProtectionDomain lookupClassProtectionDomain() {
 964             ProtectionDomain pd = cachedProtectionDomain;
 965             if (pd == null) {
 966                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
 967             }
 968             return pd;
 969         }
 970 
 971         private ProtectionDomain protectionDomain(Class<?> clazz) {
 972             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
 973             return AccessController.doPrivileged(pa);
 974         }
 975 
 976         // cached protection domain
 977         private volatile ProtectionDomain cachedProtectionDomain;
 978 
 979 
 980         // Make sure outer class is initialized first.
 981         static { IMPL_NAMES.getClass(); }
 982 
 983         /** Package-private version of lookup which is trusted. */
 984         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 985 
 986         /** Version of lookup which is trusted minimally.
 987          *  It can only be used to create method handles to publicly accessible
 988          *  members in packages that are exported unconditionally.
 989          */
 990         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL));
 991 
 992         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
 993             String name = lookupClass.getName();
 994             if (name.startsWith("java.lang.invoke."))
 995                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 996 
 997             // For caller-sensitive MethodHandles.lookup() disallow lookup from
 998             // restricted packages.  This a fragile and blunt approach.
 999             // TODO replace with a more formal and less fragile mechanism
1000             // that does not bluntly restrict classes under packages within
1001             // java.base from looking up MethodHandles or VarHandles.
1002             if (allowedModes == FULL_POWER_MODES && lookupClass.getClassLoader() == null) {
1003                 if ((name.startsWith("java.") &&
1004                      !name.equals("java.lang.Thread") &&
1005                      !name.startsWith("java.util.concurrent.")) ||
1006                     (name.startsWith("sun.") &&
1007                      !name.startsWith("sun.invoke."))) {
1008                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
1009                 }
1010             }
1011         }
1012 
1013         /**
1014          * Displays the name of the class from which lookups are to be made.
1015          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1016          * If there are restrictions on the access permitted to this lookup,
1017          * this is indicated by adding a suffix to the class name, consisting
1018          * of a slash and a keyword.  The keyword represents the strongest
1019          * allowed access, and is chosen as follows:
1020          * <ul>
1021          * <li>If no access is allowed, the suffix is "/noaccess".
1022          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1023          * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup".
1024          * <li>If only public and module access are allowed, the suffix is "/module".
1025          * <li>If only public, module and package access are allowed, the suffix is "/package".
1026          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
1027          * </ul>
1028          * If none of the above cases apply, it is the case that full
1029          * access (public, module, package, private, and protected) is allowed.
1030          * In this case, no suffix is added.
1031          * This is true only of an object obtained originally from
1032          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1033          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1034          * always have restricted access, and will display a suffix.
1035          * <p>
1036          * (It may seem strange that protected access should be
1037          * stronger than private access.  Viewed independently from
1038          * package access, protected access is the first to be lost,
1039          * because it requires a direct subclass relationship between
1040          * caller and callee.)
1041          * @see #in
1042          *
1043          * @revised 9
1044          * @spec JPMS
1045          */
1046         @Override
1047         public String toString() {
1048             String cname = lookupClass.getName();
1049             switch (allowedModes) {
1050             case 0:  // no privileges
1051                 return cname + "/noaccess";
1052             case PUBLIC:
1053                 return cname + "/public";
1054             case PUBLIC|UNCONDITIONAL:
1055                 return cname  + "/publicLookup";
1056             case PUBLIC|MODULE:
1057                 return cname + "/module";
1058             case PUBLIC|MODULE|PACKAGE:
1059                 return cname + "/package";
1060             case FULL_POWER_MODES & ~PROTECTED:
1061                 return cname + "/private";
1062             case FULL_POWER_MODES:
1063                 return cname;
1064             case TRUSTED:
1065                 return "/trusted";  // internal only; not exported
1066             default:  // Should not happen, but it's a bitfield...
1067                 cname = cname + "/" + Integer.toHexString(allowedModes);
1068                 assert(false) : cname;
1069                 return cname;
1070             }
1071         }
1072 
1073         /**
1074          * Produces a method handle for a static method.
1075          * The type of the method handle will be that of the method.
1076          * (Since static methods do not take receivers, there is no
1077          * additional receiver argument inserted into the method handle type,
1078          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1079          * The method and all its argument types must be accessible to the lookup object.
1080          * <p>
1081          * The returned method handle will have
1082          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1083          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1084          * <p>
1085          * If the returned method handle is invoked, the method's class will
1086          * be initialized, if it has not already been initialized.
1087          * <p><b>Example:</b>
1088          * <blockquote><pre>{@code
1089 import static java.lang.invoke.MethodHandles.*;
1090 import static java.lang.invoke.MethodType.*;
1091 ...
1092 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1093   "asList", methodType(List.class, Object[].class));
1094 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1095          * }</pre></blockquote>
1096          * @param refc the class from which the method is accessed
1097          * @param name the name of the method
1098          * @param type the type of the method
1099          * @return the desired method handle
1100          * @throws NoSuchMethodException if the method does not exist
1101          * @throws IllegalAccessException if access checking fails,
1102          *                                or if the method is not {@code static},
1103          *                                or if the method's variable arity modifier bit
1104          *                                is set and {@code asVarargsCollector} fails
1105          * @exception SecurityException if a security manager is present and it
1106          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1107          * @throws NullPointerException if any argument is null
1108          */
1109         public
1110         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1111             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1112             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1113         }
1114 
1115         /**
1116          * Produces a method handle for a virtual method.
1117          * The type of the method handle will be that of the method,
1118          * with the receiver type (usually {@code refc}) prepended.
1119          * The method and all its argument types must be accessible to the lookup object.
1120          * <p>
1121          * When called, the handle will treat the first argument as a receiver
1122          * and dispatch on the receiver's type to determine which method
1123          * implementation to enter.
1124          * (The dispatching action is identical with that performed by an
1125          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1126          * <p>
1127          * The first argument will be of type {@code refc} if the lookup
1128          * class has full privileges to access the member.  Otherwise
1129          * the member must be {@code protected} and the first argument
1130          * will be restricted in type to the lookup class.
1131          * <p>
1132          * The returned method handle will have
1133          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1134          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1135          * <p>
1136          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1137          * instructions and method handles produced by {@code findVirtual},
1138          * if the class is {@code MethodHandle} and the name string is
1139          * {@code invokeExact} or {@code invoke}, the resulting
1140          * method handle is equivalent to one produced by
1141          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1142          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1143          * with the same {@code type} argument.
1144          * <p>
1145          * If the class is {@code VarHandle} and the name string corresponds to
1146          * the name of a signature-polymorphic access mode method, the resulting
1147          * method handle is equivalent to one produced by
1148          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1149          * the access mode corresponding to the name string and with the same
1150          * {@code type} arguments.
1151          * <p>
1152          * <b>Example:</b>
1153          * <blockquote><pre>{@code
1154 import static java.lang.invoke.MethodHandles.*;
1155 import static java.lang.invoke.MethodType.*;
1156 ...
1157 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1158   "concat", methodType(String.class, String.class));
1159 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1160   "hashCode", methodType(int.class));
1161 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1162   "hashCode", methodType(int.class));
1163 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1164 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1165 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1166 // interface method:
1167 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1168   "subSequence", methodType(CharSequence.class, int.class, int.class));
1169 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1170 // constructor "internal method" must be accessed differently:
1171 MethodType MT_newString = methodType(void.class); //()V for new String()
1172 try { assertEquals("impossible", lookup()
1173         .findVirtual(String.class, "<init>", MT_newString));
1174  } catch (NoSuchMethodException ex) { } // OK
1175 MethodHandle MH_newString = publicLookup()
1176   .findConstructor(String.class, MT_newString);
1177 assertEquals("", (String) MH_newString.invokeExact());
1178          * }</pre></blockquote>
1179          *
1180          * @param refc the class or interface from which the method is accessed
1181          * @param name the name of the method
1182          * @param type the type of the method, with the receiver argument omitted
1183          * @return the desired method handle
1184          * @throws NoSuchMethodException if the method does not exist
1185          * @throws IllegalAccessException if access checking fails,
1186          *                                or if the method is {@code static},
1187          *                                or if the method is {@code private} method of interface,
1188          *                                or if the method's variable arity modifier bit
1189          *                                is set and {@code asVarargsCollector} fails
1190          * @exception SecurityException if a security manager is present and it
1191          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1192          * @throws NullPointerException if any argument is null
1193          */
1194         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1195             if (refc == MethodHandle.class) {
1196                 MethodHandle mh = findVirtualForMH(name, type);
1197                 if (mh != null)  return mh;
1198             } else if (refc == VarHandle.class) {
1199                 MethodHandle mh = findVirtualForVH(name, type);
1200                 if (mh != null)  return mh;
1201             }
1202             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1203             MemberName method = resolveOrFail(refKind, refc, name, type);
1204             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1205         }
1206         private MethodHandle findVirtualForMH(String name, MethodType type) {
1207             // these names require special lookups because of the implicit MethodType argument
1208             if ("invoke".equals(name))
1209                 return invoker(type);
1210             if ("invokeExact".equals(name))
1211                 return exactInvoker(type);
1212             assert(!MemberName.isMethodHandleInvokeName(name));
1213             return null;
1214         }
1215         private MethodHandle findVirtualForVH(String name, MethodType type) {
1216             try {
1217                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1218             } catch (IllegalArgumentException e) {
1219                 return null;
1220             }
1221         }
1222 
1223         /**
1224          * Produces a method handle which creates an object and initializes it, using
1225          * the constructor of the specified type.
1226          * The parameter types of the method handle will be those of the constructor,
1227          * while the return type will be a reference to the constructor's class.
1228          * The constructor and all its argument types must be accessible to the lookup object.
1229          * <p>
1230          * The requested type must have a return type of {@code void}.
1231          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1232          * <p>
1233          * The returned method handle will have
1234          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1235          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1236          * <p>
1237          * If the returned method handle is invoked, the constructor's class will
1238          * be initialized, if it has not already been initialized.
1239          * <p><b>Example:</b>
1240          * <blockquote><pre>{@code
1241 import static java.lang.invoke.MethodHandles.*;
1242 import static java.lang.invoke.MethodType.*;
1243 ...
1244 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1245   ArrayList.class, methodType(void.class, Collection.class));
1246 Collection orig = Arrays.asList("x", "y");
1247 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1248 assert(orig != copy);
1249 assertEquals(orig, copy);
1250 // a variable-arity constructor:
1251 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1252   ProcessBuilder.class, methodType(void.class, String[].class));
1253 ProcessBuilder pb = (ProcessBuilder)
1254   MH_newProcessBuilder.invoke("x", "y", "z");
1255 assertEquals("[x, y, z]", pb.command().toString());
1256          * }</pre></blockquote>
1257          * @param refc the class or interface from which the method is accessed
1258          * @param type the type of the method, with the receiver argument omitted, and a void return type
1259          * @return the desired method handle
1260          * @throws NoSuchMethodException if the constructor does not exist
1261          * @throws IllegalAccessException if access checking fails
1262          *                                or if the method's variable arity modifier bit
1263          *                                is set and {@code asVarargsCollector} fails
1264          * @exception SecurityException if a security manager is present and it
1265          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1266          * @throws NullPointerException if any argument is null
1267          */
1268         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1269             if (refc.isArray()) {
1270                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1271             }
1272             String name = "<init>";
1273             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1274             return getDirectConstructor(refc, ctor);
1275         }
1276 
1277         /**
1278          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1279          * initializer of the class is not run.
1280          * <p>
1281          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1282          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1283          * load the requested class, and then determines whether the class is accessible to this lookup object.
1284          *
1285          * @param targetName the fully qualified name of the class to be looked up.
1286          * @return the requested class.
1287          * @exception SecurityException if a security manager is present and it
1288          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1289          * @throws LinkageError if the linkage fails
1290          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1291          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1292          * modes.
1293          * @exception SecurityException if a security manager is present and it
1294          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1295          * @since 9
1296          */
1297         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1298             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1299             return accessClass(targetClass);
1300         }
1301 
1302         /**
1303          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1304          * static initializer of the class is not run.
1305          * <p>
1306          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1307          * {@linkplain #lookupModes() lookup modes}.
1308          *
1309          * @param targetClass the class to be access-checked
1310          *
1311          * @return the class that has been access-checked
1312          *
1313          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1314          * modes.
1315          * @exception SecurityException if a security manager is present and it
1316          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1317          * @since 9
1318          */
1319         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1320             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1321                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1322             }
1323             checkSecurityManager(targetClass, null);
1324             return targetClass;
1325         }
1326 
1327         /**
1328          * Produces an early-bound method handle for a virtual method.
1329          * It will bypass checks for overriding methods on the receiver,
1330          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1331          * instruction from within the explicitly specified {@code specialCaller}.
1332          * The type of the method handle will be that of the method,
1333          * with a suitably restricted receiver type prepended.
1334          * (The receiver type will be {@code specialCaller} or a subtype.)
1335          * The method and all its argument types must be accessible
1336          * to the lookup object.
1337          * <p>
1338          * Before method resolution,
1339          * if the explicitly specified caller class is not identical with the
1340          * lookup class, or if this lookup object does not have
1341          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1342          * privileges, the access fails.
1343          * <p>
1344          * The returned method handle will have
1345          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1346          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1347          * <p style="font-size:smaller;">
1348          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1349          * even though the {@code invokespecial} instruction can refer to them
1350          * in special circumstances.  Use {@link #findConstructor findConstructor}
1351          * to access instance initialization methods in a safe manner.)</em>
1352          * <p><b>Example:</b>
1353          * <blockquote><pre>{@code
1354 import static java.lang.invoke.MethodHandles.*;
1355 import static java.lang.invoke.MethodType.*;
1356 ...
1357 static class Listie extends ArrayList {
1358   public String toString() { return "[wee Listie]"; }
1359   static Lookup lookup() { return MethodHandles.lookup(); }
1360 }
1361 ...
1362 // no access to constructor via invokeSpecial:
1363 MethodHandle MH_newListie = Listie.lookup()
1364   .findConstructor(Listie.class, methodType(void.class));
1365 Listie l = (Listie) MH_newListie.invokeExact();
1366 try { assertEquals("impossible", Listie.lookup().findSpecial(
1367         Listie.class, "<init>", methodType(void.class), Listie.class));
1368  } catch (NoSuchMethodException ex) { } // OK
1369 // access to super and self methods via invokeSpecial:
1370 MethodHandle MH_super = Listie.lookup().findSpecial(
1371   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1372 MethodHandle MH_this = Listie.lookup().findSpecial(
1373   Listie.class, "toString" , methodType(String.class), Listie.class);
1374 MethodHandle MH_duper = Listie.lookup().findSpecial(
1375   Object.class, "toString" , methodType(String.class), Listie.class);
1376 assertEquals("[]", (String) MH_super.invokeExact(l));
1377 assertEquals(""+l, (String) MH_this.invokeExact(l));
1378 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1379 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1380         String.class, "toString", methodType(String.class), Listie.class));
1381  } catch (IllegalAccessException ex) { } // OK
1382 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1383 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1384          * }</pre></blockquote>
1385          *
1386          * @param refc the class or interface from which the method is accessed
1387          * @param name the name of the method (which must not be "&lt;init&gt;")
1388          * @param type the type of the method, with the receiver argument omitted
1389          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1390          * @return the desired method handle
1391          * @throws NoSuchMethodException if the method does not exist
1392          * @throws IllegalAccessException if access checking fails,
1393          *                                or if the method is {@code static},
1394          *                                or if the method's variable arity modifier bit
1395          *                                is set and {@code asVarargsCollector} fails
1396          * @exception SecurityException if a security manager is present and it
1397          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1398          * @throws NullPointerException if any argument is null
1399          */
1400         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1401                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1402             checkSpecialCaller(specialCaller, refc);
1403             Lookup specialLookup = this.in(specialCaller);
1404             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1405             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1406         }
1407 
1408         /**
1409          * Produces a method handle giving read access to a non-static field.
1410          * The type of the method handle will have a return type of the field's
1411          * value type.
1412          * The method handle's single argument will be the instance containing
1413          * the field.
1414          * Access checking is performed immediately on behalf of the lookup class.
1415          * @param refc the class or interface from which the method is accessed
1416          * @param name the field's name
1417          * @param type the field's type
1418          * @return a method handle which can load values from the field
1419          * @throws NoSuchFieldException if the field does not exist
1420          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1421          * @exception SecurityException if a security manager is present and it
1422          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1423          * @throws NullPointerException if any argument is null
1424          * @see #findVarHandle(Class, String, Class)
1425          */
1426         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1427             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1428             return getDirectField(REF_getField, refc, field);
1429         }
1430 
1431         /**
1432          * Produces a method handle giving write access to a non-static field.
1433          * The type of the method handle will have a void return type.
1434          * The method handle will take two arguments, the instance containing
1435          * the field, and the value to be stored.
1436          * The second argument will be of the field's value type.
1437          * Access checking is performed immediately on behalf of the lookup class.
1438          * @param refc the class or interface from which the method is accessed
1439          * @param name the field's name
1440          * @param type the field's type
1441          * @return a method handle which can store values into the field
1442          * @throws NoSuchFieldException if the field does not exist
1443          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1444          * @exception SecurityException if a security manager is present and it
1445          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1446          * @throws NullPointerException if any argument is null
1447          * @see #findVarHandle(Class, String, Class)
1448          */
1449         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1450             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1451             return getDirectField(REF_putField, refc, field);
1452         }
1453 
1454         /**
1455          * Produces a VarHandle giving access to a non-static field {@code name}
1456          * of type {@code type} declared in a class of type {@code recv}.
1457          * The VarHandle's variable type is {@code type} and it has one
1458          * coordinate type, {@code recv}.
1459          * <p>
1460          * Access checking is performed immediately on behalf of the lookup
1461          * class.
1462          * <p>
1463          * Certain access modes of the returned VarHandle are unsupported under
1464          * the following conditions:
1465          * <ul>
1466          * <li>if the field is declared {@code final}, then the write, atomic
1467          *     update, numeric atomic update, and bitwise atomic update access
1468          *     modes are unsupported.
1469          * <li>if the field type is anything other than {@code byte},
1470          *     {@code short}, {@code char}, {@code int}, {@code long},
1471          *     {@code float}, or {@code double} then numeric atomic update
1472          *     access modes are unsupported.
1473          * <li>if the field type is anything other than {@code boolean},
1474          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1475          *     {@code long} then bitwise atomic update access modes are
1476          *     unsupported.
1477          * </ul>
1478          * <p>
1479          * If the field is declared {@code volatile} then the returned VarHandle
1480          * will override access to the field (effectively ignore the
1481          * {@code volatile} declaration) in accordance to its specified
1482          * access modes.
1483          * <p>
1484          * If the field type is {@code float} or {@code double} then numeric
1485          * and atomic update access modes compare values using their bitwise
1486          * representation (see {@link Float#floatToRawIntBits} and
1487          * {@link Double#doubleToRawLongBits}, respectively).
1488          * @apiNote
1489          * Bitwise comparison of {@code float} values or {@code double} values,
1490          * as performed by the numeric and atomic update access modes, differ
1491          * from the primitive {@code ==} operator and the {@link Float#equals}
1492          * and {@link Double#equals} methods, specifically with respect to
1493          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1494          * Care should be taken when performing a compare and set or a compare
1495          * and exchange operation with such values since the operation may
1496          * unexpectedly fail.
1497          * There are many possible NaN values that are considered to be
1498          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1499          * provided by Java can distinguish between them.  Operation failure can
1500          * occur if the expected or witness value is a NaN value and it is
1501          * transformed (perhaps in a platform specific manner) into another NaN
1502          * value, and thus has a different bitwise representation (see
1503          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1504          * details).
1505          * The values {@code -0.0} and {@code +0.0} have different bitwise
1506          * representations but are considered equal when using the primitive
1507          * {@code ==} operator.  Operation failure can occur if, for example, a
1508          * numeric algorithm computes an expected value to be say {@code -0.0}
1509          * and previously computed the witness value to be say {@code +0.0}.
1510          * @param recv the receiver class, of type {@code R}, that declares the
1511          * non-static field
1512          * @param name the field's name
1513          * @param type the field's type, of type {@code T}
1514          * @return a VarHandle giving access to non-static fields.
1515          * @throws NoSuchFieldException if the field does not exist
1516          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1517          * @exception SecurityException if a security manager is present and it
1518          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1519          * @throws NullPointerException if any argument is null
1520          * @since 9
1521          */
1522         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1523             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1524             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1525             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1526         }
1527 
1528         /**
1529          * Produces a method handle giving read access to a static field.
1530          * The type of the method handle will have a return type of the field's
1531          * value type.
1532          * The method handle will take no arguments.
1533          * Access checking is performed immediately on behalf of the lookup class.
1534          * <p>
1535          * If the returned method handle is invoked, the field's class will
1536          * be initialized, if it has not already been initialized.
1537          * @param refc the class or interface from which the method is accessed
1538          * @param name the field's name
1539          * @param type the field's type
1540          * @return a method handle which can load values from the field
1541          * @throws NoSuchFieldException if the field does not exist
1542          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1543          * @exception SecurityException if a security manager is present and it
1544          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1545          * @throws NullPointerException if any argument is null
1546          */
1547         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1548             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1549             return getDirectField(REF_getStatic, refc, field);
1550         }
1551 
1552         /**
1553          * Produces a method handle giving write access to a static field.
1554          * The type of the method handle will have a void return type.
1555          * The method handle will take a single
1556          * argument, of the field's value type, the value to be stored.
1557          * Access checking is performed immediately on behalf of the lookup class.
1558          * <p>
1559          * If the returned method handle is invoked, the field's class will
1560          * be initialized, if it has not already been initialized.
1561          * @param refc the class or interface from which the method is accessed
1562          * @param name the field's name
1563          * @param type the field's type
1564          * @return a method handle which can store values into the field
1565          * @throws NoSuchFieldException if the field does not exist
1566          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1567          * @exception SecurityException if a security manager is present and it
1568          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1569          * @throws NullPointerException if any argument is null
1570          */
1571         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1572             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1573             return getDirectField(REF_putStatic, refc, field);
1574         }
1575 
1576         /**
1577          * Produces a VarHandle giving access to a static field {@code name} of
1578          * type {@code type} declared in a class of type {@code decl}.
1579          * The VarHandle's variable type is {@code type} and it has no
1580          * coordinate types.
1581          * <p>
1582          * Access checking is performed immediately on behalf of the lookup
1583          * class.
1584          * <p>
1585          * If the returned VarHandle is operated on, the declaring class will be
1586          * initialized, if it has not already been initialized.
1587          * <p>
1588          * Certain access modes of the returned VarHandle are unsupported under
1589          * the following conditions:
1590          * <ul>
1591          * <li>if the field is declared {@code final}, then the write, atomic
1592          *     update, numeric atomic update, and bitwise atomic update access
1593          *     modes are unsupported.
1594          * <li>if the field type is anything other than {@code byte},
1595          *     {@code short}, {@code char}, {@code int}, {@code long},
1596          *     {@code float}, or {@code double}, then numeric atomic update
1597          *     access modes are unsupported.
1598          * <li>if the field type is anything other than {@code boolean},
1599          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1600          *     {@code long} then bitwise atomic update access modes are
1601          *     unsupported.
1602          * </ul>
1603          * <p>
1604          * If the field is declared {@code volatile} then the returned VarHandle
1605          * will override access to the field (effectively ignore the
1606          * {@code volatile} declaration) in accordance to its specified
1607          * access modes.
1608          * <p>
1609          * If the field type is {@code float} or {@code double} then numeric
1610          * and atomic update access modes compare values using their bitwise
1611          * representation (see {@link Float#floatToRawIntBits} and
1612          * {@link Double#doubleToRawLongBits}, respectively).
1613          * @apiNote
1614          * Bitwise comparison of {@code float} values or {@code double} values,
1615          * as performed by the numeric and atomic update access modes, differ
1616          * from the primitive {@code ==} operator and the {@link Float#equals}
1617          * and {@link Double#equals} methods, specifically with respect to
1618          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1619          * Care should be taken when performing a compare and set or a compare
1620          * and exchange operation with such values since the operation may
1621          * unexpectedly fail.
1622          * There are many possible NaN values that are considered to be
1623          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1624          * provided by Java can distinguish between them.  Operation failure can
1625          * occur if the expected or witness value is a NaN value and it is
1626          * transformed (perhaps in a platform specific manner) into another NaN
1627          * value, and thus has a different bitwise representation (see
1628          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1629          * details).
1630          * The values {@code -0.0} and {@code +0.0} have different bitwise
1631          * representations but are considered equal when using the primitive
1632          * {@code ==} operator.  Operation failure can occur if, for example, a
1633          * numeric algorithm computes an expected value to be say {@code -0.0}
1634          * and previously computed the witness value to be say {@code +0.0}.
1635          * @param decl the class that declares the static field
1636          * @param name the field's name
1637          * @param type the field's type, of type {@code T}
1638          * @return a VarHandle giving access to a static field
1639          * @throws NoSuchFieldException if the field does not exist
1640          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1641          * @exception SecurityException if a security manager is present and it
1642          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1643          * @throws NullPointerException if any argument is null
1644          * @since 9
1645          */
1646         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1647             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1648             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1649             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1650         }
1651 
1652         /**
1653          * Produces an early-bound method handle for a non-static method.
1654          * The receiver must have a supertype {@code defc} in which a method
1655          * of the given name and type is accessible to the lookup class.
1656          * The method and all its argument types must be accessible to the lookup object.
1657          * The type of the method handle will be that of the method,
1658          * without any insertion of an additional receiver parameter.
1659          * The given receiver will be bound into the method handle,
1660          * so that every call to the method handle will invoke the
1661          * requested method on the given receiver.
1662          * <p>
1663          * The returned method handle will have
1664          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1665          * the method's variable arity modifier bit ({@code 0x0080}) is set
1666          * <em>and</em> the trailing array argument is not the only argument.
1667          * (If the trailing array argument is the only argument,
1668          * the given receiver value will be bound to it.)
1669          * <p>
1670          * This is equivalent to the following code:
1671          * <blockquote><pre>{@code
1672 import static java.lang.invoke.MethodHandles.*;
1673 import static java.lang.invoke.MethodType.*;
1674 ...
1675 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1676 MethodHandle mh1 = mh0.bindTo(receiver);
1677 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1678 return mh1;
1679          * }</pre></blockquote>
1680          * where {@code defc} is either {@code receiver.getClass()} or a super
1681          * type of that class, in which the requested method is accessible
1682          * to the lookup class.
1683          * (Note that {@code bindTo} does not preserve variable arity.)
1684          * @param receiver the object from which the method is accessed
1685          * @param name the name of the method
1686          * @param type the type of the method, with the receiver argument omitted
1687          * @return the desired method handle
1688          * @throws NoSuchMethodException if the method does not exist
1689          * @throws IllegalAccessException if access checking fails
1690          *                                or if the method's variable arity modifier bit
1691          *                                is set and {@code asVarargsCollector} fails
1692          * @exception SecurityException if a security manager is present and it
1693          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1694          * @throws NullPointerException if any argument is null
1695          * @see MethodHandle#bindTo
1696          * @see #findVirtual
1697          */
1698         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1699             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1700             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1701             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
1702             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
1703                 throw new IllegalAccessException("The restricted defining class " +
1704                                                  mh.type().leadingReferenceParameter().getName() +
1705                                                  " is not assignable from receiver class " +
1706                                                  receiver.getClass().getName());
1707             }
1708             return mh.bindArgumentL(0, receiver).setVarargs(method);
1709         }
1710 
1711         /**
1712          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1713          * to <i>m</i>, if the lookup class has permission.
1714          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1715          * If <i>m</i> is virtual, overriding is respected on every call.
1716          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1717          * The type of the method handle will be that of the method,
1718          * with the receiver type prepended (but only if it is non-static).
1719          * If the method's {@code accessible} flag is not set,
1720          * access checking is performed immediately on behalf of the lookup class.
1721          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1722          * <p>
1723          * The returned method handle will have
1724          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1725          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1726          * <p>
1727          * If <i>m</i> is static, and
1728          * if the returned method handle is invoked, the method's class will
1729          * be initialized, if it has not already been initialized.
1730          * @param m the reflected method
1731          * @return a method handle which can invoke the reflected method
1732          * @throws IllegalAccessException if access checking fails
1733          *                                or if the method's variable arity modifier bit
1734          *                                is set and {@code asVarargsCollector} fails
1735          * @throws NullPointerException if the argument is null
1736          */
1737         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1738             if (m.getDeclaringClass() == MethodHandle.class) {
1739                 MethodHandle mh = unreflectForMH(m);
1740                 if (mh != null)  return mh;
1741             }
1742             if (m.getDeclaringClass() == VarHandle.class) {
1743                 MethodHandle mh = unreflectForVH(m);
1744                 if (mh != null)  return mh;
1745             }
1746             MemberName method = new MemberName(m);
1747             byte refKind = method.getReferenceKind();
1748             if (refKind == REF_invokeSpecial)
1749                 refKind = REF_invokeVirtual;
1750             assert(method.isMethod());
1751             @SuppressWarnings("deprecation")
1752             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1753             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1754         }
1755         private MethodHandle unreflectForMH(Method m) {
1756             // these names require special lookups because they throw UnsupportedOperationException
1757             if (MemberName.isMethodHandleInvokeName(m.getName()))
1758                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1759             return null;
1760         }
1761         private MethodHandle unreflectForVH(Method m) {
1762             // these names require special lookups because they throw UnsupportedOperationException
1763             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1764                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1765             return null;
1766         }
1767 
1768         /**
1769          * Produces a method handle for a reflected method.
1770          * It will bypass checks for overriding methods on the receiver,
1771          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1772          * instruction from within the explicitly specified {@code specialCaller}.
1773          * The type of the method handle will be that of the method,
1774          * with a suitably restricted receiver type prepended.
1775          * (The receiver type will be {@code specialCaller} or a subtype.)
1776          * If the method's {@code accessible} flag is not set,
1777          * access checking is performed immediately on behalf of the lookup class,
1778          * as if {@code invokespecial} instruction were being linked.
1779          * <p>
1780          * Before method resolution,
1781          * if the explicitly specified caller class is not identical with the
1782          * lookup class, or if this lookup object does not have
1783          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1784          * privileges, the access fails.
1785          * <p>
1786          * The returned method handle will have
1787          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1788          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1789          * @param m the reflected method
1790          * @param specialCaller the class nominally calling the method
1791          * @return a method handle which can invoke the reflected method
1792          * @throws IllegalAccessException if access checking fails,
1793          *                                or if the method is {@code static},
1794          *                                or if the method's variable arity modifier bit
1795          *                                is set and {@code asVarargsCollector} fails
1796          * @throws NullPointerException if any argument is null
1797          */
1798         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1799             checkSpecialCaller(specialCaller, null);
1800             Lookup specialLookup = this.in(specialCaller);
1801             MemberName method = new MemberName(m, true);
1802             assert(method.isMethod());
1803             // ignore m.isAccessible:  this is a new kind of access
1804             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1805         }
1806 
1807         /**
1808          * Produces a method handle for a reflected constructor.
1809          * The type of the method handle will be that of the constructor,
1810          * with the return type changed to the declaring class.
1811          * The method handle will perform a {@code newInstance} operation,
1812          * creating a new instance of the constructor's class on the
1813          * arguments passed to the method handle.
1814          * <p>
1815          * If the constructor's {@code accessible} flag is not set,
1816          * access checking is performed immediately on behalf of the lookup class.
1817          * <p>
1818          * The returned method handle will have
1819          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1820          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1821          * <p>
1822          * If the returned method handle is invoked, the constructor's class will
1823          * be initialized, if it has not already been initialized.
1824          * @param c the reflected constructor
1825          * @return a method handle which can invoke the reflected constructor
1826          * @throws IllegalAccessException if access checking fails
1827          *                                or if the method's variable arity modifier bit
1828          *                                is set and {@code asVarargsCollector} fails
1829          * @throws NullPointerException if the argument is null
1830          */
1831         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1832             MemberName ctor = new MemberName(c);
1833             assert(ctor.isConstructor());
1834             @SuppressWarnings("deprecation")
1835             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1836             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1837         }
1838 
1839         /**
1840          * Produces a method handle giving read access to a reflected field.
1841          * The type of the method handle will have a return type of the field's
1842          * value type.
1843          * If the field is static, the method handle will take no arguments.
1844          * Otherwise, its single argument will be the instance containing
1845          * the field.
1846          * If the field's {@code accessible} flag is not set,
1847          * access checking is performed immediately on behalf of the lookup class.
1848          * <p>
1849          * If the field is static, and
1850          * if the returned method handle is invoked, the field's class will
1851          * be initialized, if it has not already been initialized.
1852          * @param f the reflected field
1853          * @return a method handle which can load values from the reflected field
1854          * @throws IllegalAccessException if access checking fails
1855          * @throws NullPointerException if the argument is null
1856          */
1857         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1858             return unreflectField(f, false);
1859         }
1860         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1861             MemberName field = new MemberName(f, isSetter);
1862             assert(isSetter
1863                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1864                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1865             @SuppressWarnings("deprecation")
1866             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1867             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1868         }
1869 
1870         /**
1871          * Produces a method handle giving write access to a reflected field.
1872          * The type of the method handle will have a void return type.
1873          * If the field is static, the method handle will take a single
1874          * argument, of the field's value type, the value to be stored.
1875          * Otherwise, the two arguments will be the instance containing
1876          * the field, and the value to be stored.
1877          * If the field's {@code accessible} flag is not set,
1878          * access checking is performed immediately on behalf of the lookup class.
1879          * <p>
1880          * If the field is static, and
1881          * if the returned method handle is invoked, the field's class will
1882          * be initialized, if it has not already been initialized.
1883          * @param f the reflected field
1884          * @return a method handle which can store values into the reflected field
1885          * @throws IllegalAccessException if access checking fails
1886          * @throws NullPointerException if the argument is null
1887          */
1888         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1889             return unreflectField(f, true);
1890         }
1891 
1892         /**
1893          * Produces a VarHandle giving access to a reflected field {@code f}
1894          * of type {@code T} declared in a class of type {@code R}.
1895          * The VarHandle's variable type is {@code T}.
1896          * If the field is non-static the VarHandle has one coordinate type,
1897          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
1898          * coordinate types.
1899          * <p>
1900          * Access checking is performed immediately on behalf of the lookup
1901          * class, regardless of the value of the field's {@code accessible}
1902          * flag.
1903          * <p>
1904          * If the field is static, and if the returned VarHandle is operated
1905          * on, the field's declaring class will be initialized, if it has not
1906          * already been initialized.
1907          * <p>
1908          * Certain access modes of the returned VarHandle are unsupported under
1909          * the following conditions:
1910          * <ul>
1911          * <li>if the field is declared {@code final}, then the write, atomic
1912          *     update, numeric atomic update, and bitwise atomic update access
1913          *     modes are unsupported.
1914          * <li>if the field type is anything other than {@code byte},
1915          *     {@code short}, {@code char}, {@code int}, {@code long},
1916          *     {@code float}, or {@code double} then numeric atomic update
1917          *     access modes are unsupported.
1918          * <li>if the field type is anything other than {@code boolean},
1919          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1920          *     {@code long} then bitwise atomic update access modes are
1921          *     unsupported.
1922          * </ul>
1923          * <p>
1924          * If the field is declared {@code volatile} then the returned VarHandle
1925          * will override access to the field (effectively ignore the
1926          * {@code volatile} declaration) in accordance to its specified
1927          * access modes.
1928          * <p>
1929          * If the field type is {@code float} or {@code double} then numeric
1930          * and atomic update access modes compare values using their bitwise
1931          * representation (see {@link Float#floatToRawIntBits} and
1932          * {@link Double#doubleToRawLongBits}, respectively).
1933          * @apiNote
1934          * Bitwise comparison of {@code float} values or {@code double} values,
1935          * as performed by the numeric and atomic update access modes, differ
1936          * from the primitive {@code ==} operator and the {@link Float#equals}
1937          * and {@link Double#equals} methods, specifically with respect to
1938          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1939          * Care should be taken when performing a compare and set or a compare
1940          * and exchange operation with such values since the operation may
1941          * unexpectedly fail.
1942          * There are many possible NaN values that are considered to be
1943          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1944          * provided by Java can distinguish between them.  Operation failure can
1945          * occur if the expected or witness value is a NaN value and it is
1946          * transformed (perhaps in a platform specific manner) into another NaN
1947          * value, and thus has a different bitwise representation (see
1948          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1949          * details).
1950          * The values {@code -0.0} and {@code +0.0} have different bitwise
1951          * representations but are considered equal when using the primitive
1952          * {@code ==} operator.  Operation failure can occur if, for example, a
1953          * numeric algorithm computes an expected value to be say {@code -0.0}
1954          * and previously computed the witness value to be say {@code +0.0}.
1955          * @param f the reflected field, with a field of type {@code T}, and
1956          * a declaring class of type {@code R}
1957          * @return a VarHandle giving access to non-static fields or a static
1958          * field
1959          * @throws IllegalAccessException if access checking fails
1960          * @throws NullPointerException if the argument is null
1961          * @since 9
1962          */
1963         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1964             MemberName getField = new MemberName(f, false);
1965             MemberName putField = new MemberName(f, true);
1966             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1967                                                       f.getDeclaringClass(), getField, putField);
1968         }
1969 
1970         /**
1971          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1972          * created by this lookup object or a similar one.
1973          * Security and access checks are performed to ensure that this lookup object
1974          * is capable of reproducing the target method handle.
1975          * This means that the cracking may fail if target is a direct method handle
1976          * but was created by an unrelated lookup object.
1977          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1978          * and was created by a lookup object for a different class.
1979          * @param target a direct method handle to crack into symbolic reference components
1980          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1981          * @exception SecurityException if a security manager is present and it
1982          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1983          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1984          * @exception NullPointerException if the target is {@code null}
1985          * @see MethodHandleInfo
1986          * @since 1.8
1987          */
1988         public MethodHandleInfo revealDirect(MethodHandle target) {
1989             MemberName member = target.internalMemberName();
1990             if (member == null || (!member.isResolved() &&
1991                                    !member.isMethodHandleInvoke() &&
1992                                    !member.isVarHandleMethodInvoke()))
1993                 throw newIllegalArgumentException("not a direct method handle");
1994             Class<?> defc = member.getDeclaringClass();
1995             byte refKind = member.getReferenceKind();
1996             assert(MethodHandleNatives.refKindIsValid(refKind));
1997             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1998                 // Devirtualized method invocation is usually formally virtual.
1999                 // To avoid creating extra MemberName objects for this common case,
2000                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2001                 refKind = REF_invokeVirtual;
2002             if (refKind == REF_invokeVirtual && defc.isInterface())
2003                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2004                 refKind = REF_invokeInterface;
2005             // Check SM permissions and member access before cracking.
2006             try {
2007                 checkAccess(refKind, defc, member);
2008                 checkSecurityManager(defc, member);
2009             } catch (IllegalAccessException ex) {
2010                 throw new IllegalArgumentException(ex);
2011             }
2012             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2013                 Class<?> callerClass = target.internalCallerClass();
2014                 if (!hasPrivateAccess() || callerClass != lookupClass())
2015                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2016             }
2017             // Produce the handle to the results.
2018             return new InfoFromMemberName(this, member, refKind);
2019         }
2020 
2021         /// Helper methods, all package-private.
2022 
2023         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2024             checkSymbolicClass(refc);  // do this before attempting to resolve
2025             Objects.requireNonNull(name);
2026             Objects.requireNonNull(type);
2027             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2028                                             NoSuchFieldException.class);
2029         }
2030 
2031         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2032             checkSymbolicClass(refc);  // do this before attempting to resolve
2033             Objects.requireNonNull(name);
2034             Objects.requireNonNull(type);
2035             checkMethodName(refKind, name);  // NPE check on name
2036             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2037                                             NoSuchMethodException.class);
2038         }
2039 
2040         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2041             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2042             Objects.requireNonNull(member.getName());
2043             Objects.requireNonNull(member.getType());
2044             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2045                                             ReflectiveOperationException.class);
2046         }
2047 
2048         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2049             Objects.requireNonNull(refc);
2050             Class<?> caller = lookupClassOrNull();
2051             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
2052                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2053         }
2054 
2055         /** Check name for an illegal leading "&lt;" character. */
2056         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2057             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2058                 throw new NoSuchMethodException("illegal method name: "+name);
2059         }
2060 
2061 
2062         /**
2063          * Find my trustable caller class if m is a caller sensitive method.
2064          * If this lookup object has private access, then the caller class is the lookupClass.
2065          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2066          */
2067         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
2068             Class<?> callerClass = null;
2069             if (MethodHandleNatives.isCallerSensitive(m)) {
2070                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2071                 if (hasPrivateAccess()) {
2072                     callerClass = lookupClass;
2073                 } else {
2074                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2075                 }
2076             }
2077             return callerClass;
2078         }
2079 
2080         /**
2081          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2082          * @return {@code true} if this lookup has {@code PRIVATE} access.
2083          * @since 9
2084          */
2085         public boolean hasPrivateAccess() {
2086             return (allowedModes & PRIVATE) != 0;
2087         }
2088 
2089         /**
2090          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2091          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2092          * If this lookup object has private access, then the caller class is the lookupClass.
2093          */
2094         void checkSecurityManager(Class<?> refc, MemberName m) {
2095             SecurityManager smgr = System.getSecurityManager();
2096             if (smgr == null)  return;
2097             if (allowedModes == TRUSTED)  return;
2098 
2099             // Step 1:
2100             boolean fullPowerLookup = hasPrivateAccess();
2101             if (!fullPowerLookup ||
2102                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2103                 ReflectUtil.checkPackageAccess(refc);
2104             }
2105 
2106             if (m == null) {  // findClass or accessClass
2107                 // Step 2b:
2108                 if (!fullPowerLookup) {
2109                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2110                 }
2111                 return;
2112             }
2113 
2114             // Step 2a:
2115             if (m.isPublic()) return;
2116             if (!fullPowerLookup) {
2117                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2118             }
2119 
2120             // Step 3:
2121             Class<?> defc = m.getDeclaringClass();
2122             if (!fullPowerLookup && defc != refc) {
2123                 ReflectUtil.checkPackageAccess(defc);
2124             }
2125         }
2126 
2127         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2128             boolean wantStatic = (refKind == REF_invokeStatic);
2129             String message;
2130             if (m.isConstructor())
2131                 message = "expected a method, not a constructor";
2132             else if (!m.isMethod())
2133                 message = "expected a method";
2134             else if (wantStatic != m.isStatic())
2135                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2136             else
2137                 { checkAccess(refKind, refc, m); return; }
2138             throw m.makeAccessException(message, this);
2139         }
2140 
2141         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2142             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2143             String message;
2144             if (wantStatic != m.isStatic())
2145                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2146             else
2147                 { checkAccess(refKind, refc, m); return; }
2148             throw m.makeAccessException(message, this);
2149         }
2150 
2151         /** Check public/protected/private bits on the symbolic reference class and its member. */
2152         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2153             assert(m.referenceKindIsConsistentWith(refKind) &&
2154                    MethodHandleNatives.refKindIsValid(refKind) &&
2155                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2156             int allowedModes = this.allowedModes;
2157             if (allowedModes == TRUSTED)  return;
2158             int mods = m.getModifiers();
2159             if (Modifier.isProtected(mods) &&
2160                     refKind == REF_invokeVirtual &&
2161                     m.getDeclaringClass() == Object.class &&
2162                     m.getName().equals("clone") &&
2163                     refc.isArray()) {
2164                 // The JVM does this hack also.
2165                 // (See ClassVerifier::verify_invoke_instructions
2166                 // and LinkResolver::check_method_accessability.)
2167                 // Because the JVM does not allow separate methods on array types,
2168                 // there is no separate method for int[].clone.
2169                 // All arrays simply inherit Object.clone.
2170                 // But for access checking logic, we make Object.clone
2171                 // (normally protected) appear to be public.
2172                 // Later on, when the DirectMethodHandle is created,
2173                 // its leading argument will be restricted to the
2174                 // requested array type.
2175                 // N.B. The return type is not adjusted, because
2176                 // that is *not* the bytecode behavior.
2177                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2178             }
2179             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2180                 // cannot "new" a protected ctor in a different package
2181                 mods ^= Modifier.PROTECTED;
2182             }
2183             if (Modifier.isFinal(mods) &&
2184                     MethodHandleNatives.refKindIsSetter(refKind))
2185                 throw m.makeAccessException("unexpected set of a final field", this);
2186             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2187             if ((requestedModes & allowedModes) != 0) {
2188                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2189                                                     mods, lookupClass(), allowedModes))
2190                     return;
2191             } else {
2192                 // Protected members can also be checked as if they were package-private.
2193                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2194                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2195                     return;
2196             }
2197             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2198         }
2199 
2200         String accessFailedMessage(Class<?> refc, MemberName m) {
2201             Class<?> defc = m.getDeclaringClass();
2202             int mods = m.getModifiers();
2203             // check the class first:
2204             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2205                                (defc == refc ||
2206                                 Modifier.isPublic(refc.getModifiers())));
2207             if (!classOK && (allowedModes & PACKAGE) != 0) {
2208                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) &&
2209                            (defc == refc ||
2210                             VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES)));
2211             }
2212             if (!classOK)
2213                 return "class is not public";
2214             if (Modifier.isPublic(mods))
2215                 return "access to public member failed";  // (how?, module not readable?)
2216             if (Modifier.isPrivate(mods))
2217                 return "member is private";
2218             if (Modifier.isProtected(mods))
2219                 return "member is protected";
2220             return "member is private to package";
2221         }
2222 
2223         private static final boolean ALLOW_NESTMATE_ACCESS = false;
2224 
2225         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2226             int allowedModes = this.allowedModes;
2227             if (allowedModes == TRUSTED)  return;
2228             if (!hasPrivateAccess()
2229                 || (specialCaller != lookupClass()
2230                        // ensure non-abstract methods in superinterfaces can be special-invoked
2231                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))
2232                     && !(ALLOW_NESTMATE_ACCESS &&
2233                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
2234                 throw new MemberName(specialCaller).
2235                     makeAccessException("no private access for invokespecial", this);
2236         }
2237 
2238         private boolean restrictProtectedReceiver(MemberName method) {
2239             // The accessing class only has the right to use a protected member
2240             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2241             if (!method.isProtected() || method.isStatic()
2242                 || allowedModes == TRUSTED
2243                 || method.getDeclaringClass() == lookupClass()
2244                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
2245                 || (ALLOW_NESTMATE_ACCESS &&
2246                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
2247                 return false;
2248             return true;
2249         }
2250         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2251             assert(!method.isStatic());
2252             // receiver type of mh is too wide; narrow to caller
2253             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2254                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2255             }
2256             MethodType rawType = mh.type();
2257             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2258             MethodType narrowType = rawType.changeParameterType(0, caller);
2259             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2260             assert(mh.viewAsTypeChecks(narrowType, true));
2261             return mh.copyWith(narrowType, mh.form);
2262         }
2263 
2264         /** Check access and get the requested method. */
2265         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2266             final boolean doRestrict    = true;
2267             final boolean checkSecurity = true;
2268             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2269         }
2270         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
2271         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2272             final boolean doRestrict    = false;
2273             final boolean checkSecurity = true;
2274             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerClass);
2275         }
2276         /** Check access and get the requested method, eliding security manager checks. */
2277         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2278             final boolean doRestrict    = true;
2279             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2280             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2281         }
2282         /** Common code for all methods; do not call directly except from immediately above. */
2283         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2284                                                    boolean checkSecurity,
2285                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
2286             checkMethod(refKind, refc, method);
2287             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2288             if (checkSecurity)
2289                 checkSecurityManager(refc, method);
2290             assert(!method.isMethodHandleInvoke());
2291 
2292             if (refKind == REF_invokeSpecial &&
2293                 refc != lookupClass() &&
2294                 !refc.isInterface() &&
2295                 refc != lookupClass().getSuperclass() &&
2296                 refc.isAssignableFrom(lookupClass())) {
2297                 assert(!method.getName().equals("<init>"));  // not this code path
2298                 // Per JVMS 6.5, desc. of invokespecial instruction:
2299                 // If the method is in a superclass of the LC,
2300                 // and if our original search was above LC.super,
2301                 // repeat the search (symbolic lookup) from LC.super
2302                 // and continue with the direct superclass of that class,
2303                 // and so forth, until a match is found or no further superclasses exist.
2304                 // FIXME: MemberName.resolve should handle this instead.
2305                 Class<?> refcAsSuper = lookupClass();
2306                 MemberName m2;
2307                 do {
2308                     refcAsSuper = refcAsSuper.getSuperclass();
2309                     m2 = new MemberName(refcAsSuper,
2310                                         method.getName(),
2311                                         method.getMethodType(),
2312                                         REF_invokeSpecial);
2313                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2314                 } while (m2 == null &&         // no method is found yet
2315                          refc != refcAsSuper); // search up to refc
2316                 if (m2 == null)  throw new InternalError(method.toString());
2317                 method = m2;
2318                 refc = refcAsSuper;
2319                 // redo basic checks
2320                 checkMethod(refKind, refc, method);
2321             }
2322 
2323             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method);
2324             MethodHandle mh = dmh;
2325             // Optionally narrow the receiver argument to refc using restrictReceiver.
2326             if ((doRestrict && refKind == REF_invokeSpecial) ||
2327                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
2328                 mh = restrictReceiver(method, dmh, lookupClass());
2329             }
2330             mh = maybeBindCaller(method, mh, callerClass);
2331             mh = mh.setVarargs(method);
2332             return mh;
2333         }
2334         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
2335                                              Class<?> callerClass)
2336                                              throws IllegalAccessException {
2337             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2338                 return mh;
2339             Class<?> hostClass = lookupClass;
2340             if (!hasPrivateAccess())  // caller must have private access
2341                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
2342             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
2343             // Note: caller will apply varargs after this step happens.
2344             return cbmh;
2345         }
2346         /** Check access and get the requested field. */
2347         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2348             final boolean checkSecurity = true;
2349             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2350         }
2351         /** Check access and get the requested field, eliding security manager checks. */
2352         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2353             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2354             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2355         }
2356         /** Common code for all fields; do not call directly except from immediately above. */
2357         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2358                                                   boolean checkSecurity) throws IllegalAccessException {
2359             checkField(refKind, refc, field);
2360             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2361             if (checkSecurity)
2362                 checkSecurityManager(refc, field);
2363             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2364             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2365                                     restrictProtectedReceiver(field));
2366             if (doRestrict)
2367                 return restrictReceiver(field, dmh, lookupClass());
2368             return dmh;
2369         }
2370         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2371                                             Class<?> refc, MemberName getField, MemberName putField)
2372                 throws IllegalAccessException {
2373             final boolean checkSecurity = true;
2374             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2375         }
2376         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2377                                                              Class<?> refc, MemberName getField, MemberName putField)
2378                 throws IllegalAccessException {
2379             final boolean checkSecurity = false;
2380             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2381         }
2382         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2383                                                   Class<?> refc, MemberName getField, MemberName putField,
2384                                                   boolean checkSecurity) throws IllegalAccessException {
2385             assert getField.isStatic() == putField.isStatic();
2386             assert getField.isGetter() && putField.isSetter();
2387             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2388             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2389 
2390             checkField(getRefKind, refc, getField);
2391             if (checkSecurity)
2392                 checkSecurityManager(refc, getField);
2393 
2394             if (!putField.isFinal()) {
2395                 // A VarHandle does not support updates to final fields, any
2396                 // such VarHandle to a final field will be read-only and
2397                 // therefore the following write-based accessibility checks are
2398                 // only required for non-final fields
2399                 checkField(putRefKind, refc, putField);
2400                 if (checkSecurity)
2401                     checkSecurityManager(refc, putField);
2402             }
2403 
2404             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2405                                   restrictProtectedReceiver(getField));
2406             if (doRestrict) {
2407                 assert !getField.isStatic();
2408                 // receiver type of VarHandle is too wide; narrow to caller
2409                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2410                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2411                 }
2412                 refc = lookupClass();
2413             }
2414             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2415         }
2416         /** Check access and get the requested constructor. */
2417         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2418             final boolean checkSecurity = true;
2419             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2420         }
2421         /** Check access and get the requested constructor, eliding security manager checks. */
2422         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2423             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2424             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2425         }
2426         /** Common code for all constructors; do not call directly except from immediately above. */
2427         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2428                                                   boolean checkSecurity) throws IllegalAccessException {
2429             assert(ctor.isConstructor());
2430             checkAccess(REF_newInvokeSpecial, refc, ctor);
2431             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2432             if (checkSecurity)
2433                 checkSecurityManager(refc, ctor);
2434             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2435             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2436         }
2437 
2438         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2439          */
2440         /*non-public*/
2441         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2442             if (!(type instanceof Class || type instanceof MethodType))
2443                 throw new InternalError("unresolved MemberName");
2444             MemberName member = new MemberName(refKind, defc, name, type);
2445             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2446             if (mh != null) {
2447                 checkSymbolicClass(defc);
2448                 return mh;
2449             }
2450             // Treat MethodHandle.invoke and invokeExact specially.
2451             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2452                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2453                 if (mh != null) {
2454                     return mh;
2455                 }
2456             }
2457             MemberName resolved = resolveOrFail(refKind, member);
2458             mh = getDirectMethodForConstant(refKind, defc, resolved);
2459             if (mh instanceof DirectMethodHandle
2460                     && canBeCached(refKind, defc, resolved)) {
2461                 MemberName key = mh.internalMemberName();
2462                 if (key != null) {
2463                     key = key.asNormalOriginal();
2464                 }
2465                 if (member.equals(key)) {  // better safe than sorry
2466                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2467                 }
2468             }
2469             return mh;
2470         }
2471         private
2472         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2473             if (refKind == REF_invokeSpecial) {
2474                 return false;
2475             }
2476             if (!Modifier.isPublic(defc.getModifiers()) ||
2477                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2478                     !member.isPublic() ||
2479                     member.isCallerSensitive()) {
2480                 return false;
2481             }
2482             ClassLoader loader = defc.getClassLoader();
2483             if (!jdk.internal.misc.VM.isSystemDomainLoader(loader)) {
2484                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2485                 boolean found = false;
2486                 while (sysl != null) {
2487                     if (loader == sysl) { found = true; break; }
2488                     sysl = sysl.getParent();
2489                 }
2490                 if (!found) {
2491                     return false;
2492                 }
2493             }
2494             try {
2495                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
2496                     new MemberName(refKind, defc, member.getName(), member.getType()));
2497                 checkSecurityManager(defc, resolved2);
2498             } catch (ReflectiveOperationException | SecurityException ex) {
2499                 return false;
2500             }
2501             return true;
2502         }
2503         private
2504         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2505                 throws ReflectiveOperationException {
2506             if (MethodHandleNatives.refKindIsField(refKind)) {
2507                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2508             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2509                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2510             } else if (refKind == REF_newInvokeSpecial) {
2511                 return getDirectConstructorNoSecurityManager(defc, member);
2512             }
2513             // oops
2514             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2515         }
2516 
2517         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2518     }
2519 
2520     /**
2521      * Produces a method handle constructing arrays of a desired type.
2522      * The return type of the method handle will be the array type.
2523      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2524      * @param arrayClass an array type
2525      * @return a method handle which can create arrays of the given type
2526      * @throws NullPointerException if the argument is {@code null}
2527      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2528      * @see java.lang.reflect.Array#newInstance(Class, int)
2529      * @since 9
2530      */
2531     public static
2532     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2533         if (!arrayClass.isArray()) {
2534             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2535         }
2536         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2537                 bindTo(arrayClass.getComponentType());
2538         return ani.asType(ani.type().changeReturnType(arrayClass));
2539     }
2540 
2541     /**
2542      * Produces a method handle returning the length of an array.
2543      * The type of the method handle will have {@code int} as return type,
2544      * and its sole argument will be the array type.
2545      * @param arrayClass an array type
2546      * @return a method handle which can retrieve the length of an array of the given array type
2547      * @throws NullPointerException if the argument is {@code null}
2548      * @throws IllegalArgumentException if arrayClass is not an array type
2549      * @since 9
2550      */
2551     public static
2552     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2553         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2554     }
2555 
2556     /**
2557      * Produces a method handle giving read access to elements of an array.
2558      * The type of the method handle will have a return type of the array's
2559      * element type.  Its first argument will be the array type,
2560      * and the second will be {@code int}.
2561      * @param arrayClass an array type
2562      * @return a method handle which can load values from the given array type
2563      * @throws NullPointerException if the argument is null
2564      * @throws  IllegalArgumentException if arrayClass is not an array type
2565      */
2566     public static
2567     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2568         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2569     }
2570 
2571     /**
2572      * Produces a method handle giving write access to elements of an array.
2573      * The type of the method handle will have a void return type.
2574      * Its last argument will be the array's element type.
2575      * The first and second arguments will be the array type and int.
2576      * @param arrayClass the class of an array
2577      * @return a method handle which can store values into the array type
2578      * @throws NullPointerException if the argument is null
2579      * @throws IllegalArgumentException if arrayClass is not an array type
2580      */
2581     public static
2582     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2583         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2584     }
2585 
2586     /**
2587      * Produces a VarHandle giving access to elements of an array of type
2588      * {@code arrayClass}.  The VarHandle's variable type is the component type
2589      * of {@code arrayClass} and the list of coordinate types is
2590      * {@code (arrayClass, int)}, where the {@code int} coordinate type
2591      * corresponds to an argument that is an index into an array.
2592      * <p>
2593      * Certain access modes of the returned VarHandle are unsupported under
2594      * the following conditions:
2595      * <ul>
2596      * <li>if the component type is anything other than {@code byte},
2597      *     {@code short}, {@code char}, {@code int}, {@code long},
2598      *     {@code float}, or {@code double} then numeric atomic update access
2599      *     modes are unsupported.
2600      * <li>if the field type is anything other than {@code boolean},
2601      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2602      *     {@code long} then bitwise atomic update access modes are
2603      *     unsupported.
2604      * </ul>
2605      * <p>
2606      * If the component type is {@code float} or {@code double} then numeric
2607      * and atomic update access modes compare values using their bitwise
2608      * representation (see {@link Float#floatToRawIntBits} and
2609      * {@link Double#doubleToRawLongBits}, respectively).
2610      * @apiNote
2611      * Bitwise comparison of {@code float} values or {@code double} values,
2612      * as performed by the numeric and atomic update access modes, differ
2613      * from the primitive {@code ==} operator and the {@link Float#equals}
2614      * and {@link Double#equals} methods, specifically with respect to
2615      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2616      * Care should be taken when performing a compare and set or a compare
2617      * and exchange operation with such values since the operation may
2618      * unexpectedly fail.
2619      * There are many possible NaN values that are considered to be
2620      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2621      * provided by Java can distinguish between them.  Operation failure can
2622      * occur if the expected or witness value is a NaN value and it is
2623      * transformed (perhaps in a platform specific manner) into another NaN
2624      * value, and thus has a different bitwise representation (see
2625      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2626      * details).
2627      * The values {@code -0.0} and {@code +0.0} have different bitwise
2628      * representations but are considered equal when using the primitive
2629      * {@code ==} operator.  Operation failure can occur if, for example, a
2630      * numeric algorithm computes an expected value to be say {@code -0.0}
2631      * and previously computed the witness value to be say {@code +0.0}.
2632      * @param arrayClass the class of an array, of type {@code T[]}
2633      * @return a VarHandle giving access to elements of an array
2634      * @throws NullPointerException if the arrayClass is null
2635      * @throws IllegalArgumentException if arrayClass is not an array type
2636      * @since 9
2637      */
2638     public static
2639     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2640         return VarHandles.makeArrayElementHandle(arrayClass);
2641     }
2642 
2643     /**
2644      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2645      * viewed as if it were a different primitive array type, such as
2646      * {@code int[]} or {@code long[]}.
2647      * The VarHandle's variable type is the component type of
2648      * {@code viewArrayClass} and the list of coordinate types is
2649      * {@code (byte[], int)}, where the {@code int} coordinate type
2650      * corresponds to an argument that is an index into a {@code byte[]} array.
2651      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
2652      * array, composing bytes to or from a value of the component type of
2653      * {@code viewArrayClass} according to the given endianness.
2654      * <p>
2655      * The supported component types (variables types) are {@code short},
2656      * {@code char}, {@code int}, {@code long}, {@code float} and
2657      * {@code double}.
2658      * <p>
2659      * Access of bytes at a given index will result in an
2660      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2661      * or greater than the {@code byte[]} array length minus the size (in bytes)
2662      * of {@code T}.
2663      * <p>
2664      * Access of bytes at an index may be aligned or misaligned for {@code T},
2665      * with respect to the underlying memory address, {@code A} say, associated
2666      * with the array and index.
2667      * If access is misaligned then access for anything other than the
2668      * {@code get} and {@code set} access modes will result in an
2669      * {@code IllegalStateException}.  In such cases atomic access is only
2670      * guaranteed with respect to the largest power of two that divides the GCD
2671      * of {@code A} and the size (in bytes) of {@code T}.
2672      * If access is aligned then following access modes are supported and are
2673      * guaranteed to support atomic access:
2674      * <ul>
2675      * <li>read write access modes for all {@code T}, with the exception of
2676      *     access modes {@code get} and {@code set} for {@code long} and
2677      *     {@code double} on 32-bit platforms.
2678      * <li>atomic update access modes for {@code int}, {@code long},
2679      *     {@code float} or {@code double}.
2680      *     (Future major platform releases of the JDK may support additional
2681      *     types for certain currently unsupported access modes.)
2682      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2683      *     (Future major platform releases of the JDK may support additional
2684      *     numeric types for certain currently unsupported access modes.)
2685      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2686      *     (Future major platform releases of the JDK may support additional
2687      *     numeric types for certain currently unsupported access modes.)
2688      * </ul>
2689      * <p>
2690      * Misaligned access, and therefore atomicity guarantees, may be determined
2691      * for {@code byte[]} arrays without operating on a specific array.  Given
2692      * an {@code index}, {@code T} and it's corresponding boxed type,
2693      * {@code T_BOX}, misalignment may be determined as follows:
2694      * <pre>{@code
2695      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2696      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2697      *     alignmentOffset(0, sizeOfT);
2698      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2699      * boolean isMisaligned = misalignedAtIndex != 0;
2700      * }</pre>
2701      * <p>
2702      * If the variable type is {@code float} or {@code double} then atomic
2703      * update access modes compare values using their bitwise representation
2704      * (see {@link Float#floatToRawIntBits} and
2705      * {@link Double#doubleToRawLongBits}, respectively).
2706      * @param viewArrayClass the view array class, with a component type of
2707      * type {@code T}
2708      * @param byteOrder the endianness of the view array elements, as
2709      * stored in the underlying {@code byte} array
2710      * @return a VarHandle giving access to elements of a {@code byte[]} array
2711      * viewed as if elements corresponding to the components type of the view
2712      * array class
2713      * @throws NullPointerException if viewArrayClass or byteOrder is null
2714      * @throws IllegalArgumentException if viewArrayClass is not an array type
2715      * @throws UnsupportedOperationException if the component type of
2716      * viewArrayClass is not supported as a variable type
2717      * @since 9
2718      */
2719     public static
2720     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2721                                      ByteOrder byteOrder) throws IllegalArgumentException {
2722         Objects.requireNonNull(byteOrder);
2723         return VarHandles.byteArrayViewHandle(viewArrayClass,
2724                                               byteOrder == ByteOrder.BIG_ENDIAN);
2725     }
2726 
2727     /**
2728      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2729      * viewed as if it were an array of elements of a different primitive
2730      * component type to that of {@code byte}, such as {@code int[]} or
2731      * {@code long[]}.
2732      * The VarHandle's variable type is the component type of
2733      * {@code viewArrayClass} and the list of coordinate types is
2734      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
2735      * corresponds to an argument that is an index into a {@code byte[]} array.
2736      * The returned VarHandle accesses bytes at an index in a
2737      * {@code ByteBuffer}, composing bytes to or from a value of the component
2738      * type of {@code viewArrayClass} according to the given endianness.
2739      * <p>
2740      * The supported component types (variables types) are {@code short},
2741      * {@code char}, {@code int}, {@code long}, {@code float} and
2742      * {@code double}.
2743      * <p>
2744      * Access will result in a {@code ReadOnlyBufferException} for anything
2745      * other than the read access modes if the {@code ByteBuffer} is read-only.
2746      * <p>
2747      * Access of bytes at a given index will result in an
2748      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2749      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2750      * {@code T}.
2751      * <p>
2752      * Access of bytes at an index may be aligned or misaligned for {@code T},
2753      * with respect to the underlying memory address, {@code A} say, associated
2754      * with the {@code ByteBuffer} and index.
2755      * If access is misaligned then access for anything other than the
2756      * {@code get} and {@code set} access modes will result in an
2757      * {@code IllegalStateException}.  In such cases atomic access is only
2758      * guaranteed with respect to the largest power of two that divides the GCD
2759      * of {@code A} and the size (in bytes) of {@code T}.
2760      * If access is aligned then following access modes are supported and are
2761      * guaranteed to support atomic access:
2762      * <ul>
2763      * <li>read write access modes for all {@code T}, with the exception of
2764      *     access modes {@code get} and {@code set} for {@code long} and
2765      *     {@code double} on 32-bit platforms.
2766      * <li>atomic update access modes for {@code int}, {@code long},
2767      *     {@code float} or {@code double}.
2768      *     (Future major platform releases of the JDK may support additional
2769      *     types for certain currently unsupported access modes.)
2770      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2771      *     (Future major platform releases of the JDK may support additional
2772      *     numeric types for certain currently unsupported access modes.)
2773      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2774      *     (Future major platform releases of the JDK may support additional
2775      *     numeric types for certain currently unsupported access modes.)
2776      * </ul>
2777      * <p>
2778      * Misaligned access, and therefore atomicity guarantees, may be determined
2779      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2780      * {@code index}, {@code T} and it's corresponding boxed type,
2781      * {@code T_BOX}, as follows:
2782      * <pre>{@code
2783      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2784      * ByteBuffer bb = ...
2785      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2786      * boolean isMisaligned = misalignedAtIndex != 0;
2787      * }</pre>
2788      * <p>
2789      * If the variable type is {@code float} or {@code double} then atomic
2790      * update access modes compare values using their bitwise representation
2791      * (see {@link Float#floatToRawIntBits} and
2792      * {@link Double#doubleToRawLongBits}, respectively).
2793      * @param viewArrayClass the view array class, with a component type of
2794      * type {@code T}
2795      * @param byteOrder the endianness of the view array elements, as
2796      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2797      * endianness of a {@code ByteBuffer})
2798      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2799      * viewed as if elements corresponding to the components type of the view
2800      * array class
2801      * @throws NullPointerException if viewArrayClass or byteOrder is null
2802      * @throws IllegalArgumentException if viewArrayClass is not an array type
2803      * @throws UnsupportedOperationException if the component type of
2804      * viewArrayClass is not supported as a variable type
2805      * @since 9
2806      */
2807     public static
2808     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2809                                       ByteOrder byteOrder) throws IllegalArgumentException {
2810         Objects.requireNonNull(byteOrder);
2811         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
2812                                                    byteOrder == ByteOrder.BIG_ENDIAN);
2813     }
2814 
2815 
2816     /// method handle invocation (reflective style)
2817 
2818     /**
2819      * Produces a method handle which will invoke any method handle of the
2820      * given {@code type}, with a given number of trailing arguments replaced by
2821      * a single trailing {@code Object[]} array.
2822      * The resulting invoker will be a method handle with the following
2823      * arguments:
2824      * <ul>
2825      * <li>a single {@code MethodHandle} target
2826      * <li>zero or more leading values (counted by {@code leadingArgCount})
2827      * <li>an {@code Object[]} array containing trailing arguments
2828      * </ul>
2829      * <p>
2830      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2831      * the indicated {@code type}.
2832      * That is, if the target is exactly of the given {@code type}, it will behave
2833      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2834      * is used to convert the target to the required {@code type}.
2835      * <p>
2836      * The type of the returned invoker will not be the given {@code type}, but rather
2837      * will have all parameters except the first {@code leadingArgCount}
2838      * replaced by a single array of type {@code Object[]}, which will be
2839      * the final parameter.
2840      * <p>
2841      * Before invoking its target, the invoker will spread the final array, apply
2842      * reference casts as necessary, and unbox and widen primitive arguments.
2843      * If, when the invoker is called, the supplied array argument does
2844      * not have the correct number of elements, the invoker will throw
2845      * an {@link IllegalArgumentException} instead of invoking the target.
2846      * <p>
2847      * This method is equivalent to the following code (though it may be more efficient):
2848      * <blockquote><pre>{@code
2849 MethodHandle invoker = MethodHandles.invoker(type);
2850 int spreadArgCount = type.parameterCount() - leadingArgCount;
2851 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2852 return invoker;
2853      * }</pre></blockquote>
2854      * This method throws no reflective or security exceptions.
2855      * @param type the desired target type
2856      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2857      * @return a method handle suitable for invoking any method handle of the given type
2858      * @throws NullPointerException if {@code type} is null
2859      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2860      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2861      *                  or if the resulting method handle's type would have
2862      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2863      */
2864     public static
2865     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2866         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2867             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2868         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2869         return type.invokers().spreadInvoker(leadingArgCount);
2870     }
2871 
2872     /**
2873      * Produces a special <em>invoker method handle</em> which can be used to
2874      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2875      * The resulting invoker will have a type which is
2876      * exactly equal to the desired type, except that it will accept
2877      * an additional leading argument of type {@code MethodHandle}.
2878      * <p>
2879      * This method is equivalent to the following code (though it may be more efficient):
2880      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2881      *
2882      * <p style="font-size:smaller;">
2883      * <em>Discussion:</em>
2884      * Invoker method handles can be useful when working with variable method handles
2885      * of unknown types.
2886      * For example, to emulate an {@code invokeExact} call to a variable method
2887      * handle {@code M}, extract its type {@code T},
2888      * look up the invoker method {@code X} for {@code T},
2889      * and call the invoker method, as {@code X.invoke(T, A...)}.
2890      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2891      * is unknown.)
2892      * If spreading, collecting, or other argument transformations are required,
2893      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2894      * method handle values, as long as they are compatible with the type of {@code X}.
2895      * <p style="font-size:smaller;">
2896      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2897      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2898      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2899      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2900      * <p>
2901      * This method throws no reflective or security exceptions.
2902      * @param type the desired target type
2903      * @return a method handle suitable for invoking any method handle of the given type
2904      * @throws IllegalArgumentException if the resulting method handle's type would have
2905      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2906      */
2907     public static
2908     MethodHandle exactInvoker(MethodType type) {
2909         return type.invokers().exactInvoker();
2910     }
2911 
2912     /**
2913      * Produces a special <em>invoker method handle</em> which can be used to
2914      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2915      * The resulting invoker will have a type which is
2916      * exactly equal to the desired type, except that it will accept
2917      * an additional leading argument of type {@code MethodHandle}.
2918      * <p>
2919      * Before invoking its target, if the target differs from the expected type,
2920      * the invoker will apply reference casts as
2921      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2922      * Similarly, the return value will be converted as necessary.
2923      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2924      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2925      * <p>
2926      * This method is equivalent to the following code (though it may be more efficient):
2927      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2928      * <p style="font-size:smaller;">
2929      * <em>Discussion:</em>
2930      * A {@linkplain MethodType#genericMethodType general method type} is one which
2931      * mentions only {@code Object} arguments and return values.
2932      * An invoker for such a type is capable of calling any method handle
2933      * of the same arity as the general type.
2934      * <p style="font-size:smaller;">
2935      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2936      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2937      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2938      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2939      * <p>
2940      * This method throws no reflective or security exceptions.
2941      * @param type the desired target type
2942      * @return a method handle suitable for invoking any method handle convertible to the given type
2943      * @throws IllegalArgumentException if the resulting method handle's type would have
2944      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2945      */
2946     public static
2947     MethodHandle invoker(MethodType type) {
2948         return type.invokers().genericInvoker();
2949     }
2950 
2951     /**
2952      * Produces a special <em>invoker method handle</em> which can be used to
2953      * invoke a signature-polymorphic access mode method on any VarHandle whose
2954      * associated access mode type is compatible with the given type.
2955      * The resulting invoker will have a type which is exactly equal to the
2956      * desired given type, except that it will accept an additional leading
2957      * argument of type {@code VarHandle}.
2958      *
2959      * @param accessMode the VarHandle access mode
2960      * @param type the desired target type
2961      * @return a method handle suitable for invoking an access mode method of
2962      *         any VarHandle whose access mode type is of the given type.
2963      * @since 9
2964      */
2965     static public
2966     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2967         return type.invokers().varHandleMethodExactInvoker(accessMode);
2968     }
2969 
2970     /**
2971      * Produces a special <em>invoker method handle</em> which can be used to
2972      * invoke a signature-polymorphic access mode method on any VarHandle whose
2973      * associated access mode type is compatible with the given type.
2974      * The resulting invoker will have a type which is exactly equal to the
2975      * desired given type, except that it will accept an additional leading
2976      * argument of type {@code VarHandle}.
2977      * <p>
2978      * Before invoking its target, if the access mode type differs from the
2979      * desired given type, the invoker will apply reference casts as necessary
2980      * and box, unbox, or widen primitive values, as if by
2981      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
2982      * converted as necessary.
2983      * <p>
2984      * This method is equivalent to the following code (though it may be more
2985      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
2986      *
2987      * @param accessMode the VarHandle access mode
2988      * @param type the desired target type
2989      * @return a method handle suitable for invoking an access mode method of
2990      *         any VarHandle whose access mode type is convertible to the given
2991      *         type.
2992      * @since 9
2993      */
2994     static public
2995     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2996         return type.invokers().varHandleMethodInvoker(accessMode);
2997     }
2998 
2999     static /*non-public*/
3000     MethodHandle basicInvoker(MethodType type) {
3001         return type.invokers().basicInvoker();
3002     }
3003 
3004      /// method handle modification (creation from other method handles)
3005 
3006     /**
3007      * Produces a method handle which adapts the type of the
3008      * given method handle to a new type by pairwise argument and return type conversion.
3009      * The original type and new type must have the same number of arguments.
3010      * The resulting method handle is guaranteed to report a type
3011      * which is equal to the desired new type.
3012      * <p>
3013      * If the original type and new type are equal, returns target.
3014      * <p>
3015      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3016      * and some additional conversions are also applied if those conversions fail.
3017      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3018      * if possible, before or instead of any conversions done by {@code asType}:
3019      * <ul>
3020      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3021      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3022      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3023      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3024      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3025      *     (This treatment follows the usage of the bytecode verifier.)
3026      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3027      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3028      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3029      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3030      *     then a Java casting conversion (JLS 5.5) is applied.
3031      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3032      *     widening and/or narrowing.)
3033      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3034      *     conversion will be applied at runtime, possibly followed
3035      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3036      *     possibly followed by a conversion from byte to boolean by testing
3037      *     the low-order bit.
3038      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3039      *     and if the reference is null at runtime, a zero value is introduced.
3040      * </ul>
3041      * @param target the method handle to invoke after arguments are retyped
3042      * @param newType the expected type of the new method handle
3043      * @return a method handle which delegates to the target after performing
3044      *           any necessary argument conversions, and arranges for any
3045      *           necessary return value conversions
3046      * @throws NullPointerException if either argument is null
3047      * @throws WrongMethodTypeException if the conversion cannot be made
3048      * @see MethodHandle#asType
3049      */
3050     public static
3051     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3052         explicitCastArgumentsChecks(target, newType);
3053         // use the asTypeCache when possible:
3054         MethodType oldType = target.type();
3055         if (oldType == newType)  return target;
3056         if (oldType.explicitCastEquivalentToAsType(newType)) {
3057             return target.asFixedArity().asType(newType);
3058         }
3059         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3060     }
3061 
3062     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3063         if (target.type().parameterCount() != newType.parameterCount()) {
3064             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3065         }
3066     }
3067 
3068     /**
3069      * Produces a method handle which adapts the calling sequence of the
3070      * given method handle to a new type, by reordering the arguments.
3071      * The resulting method handle is guaranteed to report a type
3072      * which is equal to the desired new type.
3073      * <p>
3074      * The given array controls the reordering.
3075      * Call {@code #I} the number of incoming parameters (the value
3076      * {@code newType.parameterCount()}, and call {@code #O} the number
3077      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3078      * Then the length of the reordering array must be {@code #O},
3079      * and each element must be a non-negative number less than {@code #I}.
3080      * For every {@code N} less than {@code #O}, the {@code N}-th
3081      * outgoing argument will be taken from the {@code I}-th incoming
3082      * argument, where {@code I} is {@code reorder[N]}.
3083      * <p>
3084      * No argument or return value conversions are applied.
3085      * The type of each incoming argument, as determined by {@code newType},
3086      * must be identical to the type of the corresponding outgoing parameter
3087      * or parameters in the target method handle.
3088      * The return type of {@code newType} must be identical to the return
3089      * type of the original target.
3090      * <p>
3091      * The reordering array need not specify an actual permutation.
3092      * An incoming argument will be duplicated if its index appears
3093      * more than once in the array, and an incoming argument will be dropped
3094      * if its index does not appear in the array.
3095      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3096      * incoming arguments which are not mentioned in the reordering array
3097      * may be of any type, as determined only by {@code newType}.
3098      * <blockquote><pre>{@code
3099 import static java.lang.invoke.MethodHandles.*;
3100 import static java.lang.invoke.MethodType.*;
3101 ...
3102 MethodType intfn1 = methodType(int.class, int.class);
3103 MethodType intfn2 = methodType(int.class, int.class, int.class);
3104 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3105 assert(sub.type().equals(intfn2));
3106 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3107 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3108 assert((int)rsub.invokeExact(1, 100) == 99);
3109 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3110 assert(add.type().equals(intfn2));
3111 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3112 assert(twice.type().equals(intfn1));
3113 assert((int)twice.invokeExact(21) == 42);
3114      * }</pre></blockquote>
3115      * <p>
3116      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3117      * variable-arity method handle}, even if the original target method handle was.
3118      * @param target the method handle to invoke after arguments are reordered
3119      * @param newType the expected type of the new method handle
3120      * @param reorder an index array which controls the reordering
3121      * @return a method handle which delegates to the target after it
3122      *           drops unused arguments and moves and/or duplicates the other arguments
3123      * @throws NullPointerException if any argument is null
3124      * @throws IllegalArgumentException if the index array length is not equal to
3125      *                  the arity of the target, or if any index array element
3126      *                  not a valid index for a parameter of {@code newType},
3127      *                  or if two corresponding parameter types in
3128      *                  {@code target.type()} and {@code newType} are not identical,
3129      */
3130     public static
3131     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3132         reorder = reorder.clone();  // get a private copy
3133         MethodType oldType = target.type();
3134         permuteArgumentChecks(reorder, newType, oldType);
3135         // first detect dropped arguments and handle them separately
3136         int[] originalReorder = reorder;
3137         BoundMethodHandle result = target.rebind();
3138         LambdaForm form = result.form;
3139         int newArity = newType.parameterCount();
3140         // Normalize the reordering into a real permutation,
3141         // by removing duplicates and adding dropped elements.
3142         // This somewhat improves lambda form caching, as well
3143         // as simplifying the transform by breaking it up into steps.
3144         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3145             if (ddIdx > 0) {
3146                 // We found a duplicated entry at reorder[ddIdx].
3147                 // Example:  (x,y,z)->asList(x,y,z)
3148                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3149                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3150                 // The starred element corresponds to the argument
3151                 // deleted by the dupArgumentForm transform.
3152                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3153                 boolean killFirst = false;
3154                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3155                     // Set killFirst if the dup is larger than an intervening position.
3156                     // This will remove at least one inversion from the permutation.
3157                     if (dupVal > val) killFirst = true;
3158                 }
3159                 if (!killFirst) {
3160                     srcPos = dstPos;
3161                     dstPos = ddIdx;
3162                 }
3163                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3164                 assert (reorder[srcPos] == reorder[dstPos]);
3165                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3166                 // contract the reordering by removing the element at dstPos
3167                 int tailPos = dstPos + 1;
3168                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3169                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3170             } else {
3171                 int dropVal = ~ddIdx, insPos = 0;
3172                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3173                     // Find first element of reorder larger than dropVal.
3174                     // This is where we will insert the dropVal.
3175                     insPos += 1;
3176                 }
3177                 Class<?> ptype = newType.parameterType(dropVal);
3178                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3179                 oldType = oldType.insertParameterTypes(insPos, ptype);
3180                 // expand the reordering by inserting an element at insPos
3181                 int tailPos = insPos + 1;
3182                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3183                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3184                 reorder[insPos] = dropVal;
3185             }
3186             assert (permuteArgumentChecks(reorder, newType, oldType));
3187         }
3188         assert (reorder.length == newArity);  // a perfect permutation
3189         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3190         form = form.editor().permuteArgumentsForm(1, reorder);
3191         if (newType == result.type() && form == result.internalForm())
3192             return result;
3193         return result.copyWith(newType, form);
3194     }
3195 
3196     /**
3197      * Return an indication of any duplicate or omission in reorder.
3198      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3199      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3200      * Otherwise, return zero.
3201      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3202      */
3203     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3204         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3205         if (newArity < BIT_LIMIT) {
3206             long mask = 0;
3207             for (int i = 0; i < reorder.length; i++) {
3208                 int arg = reorder[i];
3209                 if (arg >= newArity) {
3210                     return reorder.length;
3211                 }
3212                 long bit = 1L << arg;
3213                 if ((mask & bit) != 0) {
3214                     return i;  // >0 indicates a dup
3215                 }
3216                 mask |= bit;
3217             }
3218             if (mask == (1L << newArity) - 1) {
3219                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3220                 return 0;
3221             }
3222             // find first zero
3223             long zeroBit = Long.lowestOneBit(~mask);
3224             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3225             assert(zeroPos <= newArity);
3226             if (zeroPos == newArity) {
3227                 return 0;
3228             }
3229             return ~zeroPos;
3230         } else {
3231             // same algorithm, different bit set
3232             BitSet mask = new BitSet(newArity);
3233             for (int i = 0; i < reorder.length; i++) {
3234                 int arg = reorder[i];
3235                 if (arg >= newArity) {
3236                     return reorder.length;
3237                 }
3238                 if (mask.get(arg)) {
3239                     return i;  // >0 indicates a dup
3240                 }
3241                 mask.set(arg);
3242             }
3243             int zeroPos = mask.nextClearBit(0);
3244             assert(zeroPos <= newArity);
3245             if (zeroPos == newArity) {
3246                 return 0;
3247             }
3248             return ~zeroPos;
3249         }
3250     }
3251 
3252     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3253         if (newType.returnType() != oldType.returnType())
3254             throw newIllegalArgumentException("return types do not match",
3255                     oldType, newType);
3256         if (reorder.length == oldType.parameterCount()) {
3257             int limit = newType.parameterCount();
3258             boolean bad = false;
3259             for (int j = 0; j < reorder.length; j++) {
3260                 int i = reorder[j];
3261                 if (i < 0 || i >= limit) {
3262                     bad = true; break;
3263                 }
3264                 Class<?> src = newType.parameterType(i);
3265                 Class<?> dst = oldType.parameterType(j);
3266                 if (src != dst)
3267                     throw newIllegalArgumentException("parameter types do not match after reorder",
3268                             oldType, newType);
3269             }
3270             if (!bad)  return true;
3271         }
3272         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3273     }
3274 
3275     /**
3276      * Produces a method handle of the requested return type which returns the given
3277      * constant value every time it is invoked.
3278      * <p>
3279      * Before the method handle is returned, the passed-in value is converted to the requested type.
3280      * If the requested type is primitive, widening primitive conversions are attempted,
3281      * else reference conversions are attempted.
3282      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3283      * @param type the return type of the desired method handle
3284      * @param value the value to return
3285      * @return a method handle of the given return type and no arguments, which always returns the given value
3286      * @throws NullPointerException if the {@code type} argument is null
3287      * @throws ClassCastException if the value cannot be converted to the required return type
3288      * @throws IllegalArgumentException if the given type is {@code void.class}
3289      */
3290     public static
3291     MethodHandle constant(Class<?> type, Object value) {
3292         if (type.isPrimitive()) {
3293             if (type == void.class)
3294                 throw newIllegalArgumentException("void type");
3295             Wrapper w = Wrapper.forPrimitiveType(type);
3296             value = w.convert(value, type);
3297             if (w.zero().equals(value))
3298                 return zero(w, type);
3299             return insertArguments(identity(type), 0, value);
3300         } else {
3301             if (value == null)
3302                 return zero(Wrapper.OBJECT, type);
3303             return identity(type).bindTo(value);
3304         }
3305     }
3306 
3307     /**
3308      * Produces a method handle which returns its sole argument when invoked.
3309      * @param type the type of the sole parameter and return value of the desired method handle
3310      * @return a unary method handle which accepts and returns the given type
3311      * @throws NullPointerException if the argument is null
3312      * @throws IllegalArgumentException if the given type is {@code void.class}
3313      */
3314     public static
3315     MethodHandle identity(Class<?> type) {
3316         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3317         int pos = btw.ordinal();
3318         MethodHandle ident = IDENTITY_MHS[pos];
3319         if (ident == null) {
3320             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3321         }
3322         if (ident.type().returnType() == type)
3323             return ident;
3324         // something like identity(Foo.class); do not bother to intern these
3325         assert (btw == Wrapper.OBJECT);
3326         return makeIdentity(type);
3327     }
3328 
3329     /**
3330      * Produces a constant method handle of the requested return type which
3331      * returns the default value for that type every time it is invoked.
3332      * The resulting constant method handle will have no side effects.
3333      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3334      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3335      * since {@code explicitCastArguments} converts {@code null} to default values.
3336      * @param type the expected return type of the desired method handle
3337      * @return a constant method handle that takes no arguments
3338      *         and returns the default value of the given type (or void, if the type is void)
3339      * @throws NullPointerException if the argument is null
3340      * @see MethodHandles#constant
3341      * @see MethodHandles#empty
3342      * @see MethodHandles#explicitCastArguments
3343      * @since 9
3344      */
3345     public static MethodHandle zero(Class<?> type) {
3346         Objects.requireNonNull(type);
3347         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
3348     }
3349 
3350     private static MethodHandle identityOrVoid(Class<?> type) {
3351         return type == void.class ? zero(type) : identity(type);
3352     }
3353 
3354     /**
3355      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3356      * and returns a suitable default depending on the return type.
3357      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3358      * <p>The returned method handle is equivalent to
3359      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3360      * <p>
3361      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3362      * {@code guardWithTest(pred, target, empty(target.type())}.
3363      * @param type the type of the desired method handle
3364      * @return a constant method handle of the given type, which returns a default value of the given return type
3365      * @throws NullPointerException if the argument is null
3366      * @see MethodHandles#zero
3367      * @see MethodHandles#constant
3368      * @since 9
3369      */
3370     public static  MethodHandle empty(MethodType type) {
3371         Objects.requireNonNull(type);
3372         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3373     }
3374 
3375     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
3376     private static MethodHandle makeIdentity(Class<?> ptype) {
3377         MethodType mtype = methodType(ptype, ptype);
3378         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3379         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3380     }
3381 
3382     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3383         int pos = btw.ordinal();
3384         MethodHandle zero = ZERO_MHS[pos];
3385         if (zero == null) {
3386             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3387         }
3388         if (zero.type().returnType() == rtype)
3389             return zero;
3390         assert(btw == Wrapper.OBJECT);
3391         return makeZero(rtype);
3392     }
3393     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
3394     private static MethodHandle makeZero(Class<?> rtype) {
3395         MethodType mtype = methodType(rtype);
3396         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3397         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3398     }
3399 
3400     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3401         // Simulate a CAS, to avoid racy duplication of results.
3402         MethodHandle prev = cache[pos];
3403         if (prev != null) return prev;
3404         return cache[pos] = value;
3405     }
3406 
3407     /**
3408      * Provides a target method handle with one or more <em>bound arguments</em>
3409      * in advance of the method handle's invocation.
3410      * The formal parameters to the target corresponding to the bound
3411      * arguments are called <em>bound parameters</em>.
3412      * Returns a new method handle which saves away the bound arguments.
3413      * When it is invoked, it receives arguments for any non-bound parameters,
3414      * binds the saved arguments to their corresponding parameters,
3415      * and calls the original target.
3416      * <p>
3417      * The type of the new method handle will drop the types for the bound
3418      * parameters from the original target type, since the new method handle
3419      * will no longer require those arguments to be supplied by its callers.
3420      * <p>
3421      * Each given argument object must match the corresponding bound parameter type.
3422      * If a bound parameter type is a primitive, the argument object
3423      * must be a wrapper, and will be unboxed to produce the primitive value.
3424      * <p>
3425      * The {@code pos} argument selects which parameters are to be bound.
3426      * It may range between zero and <i>N-L</i> (inclusively),
3427      * where <i>N</i> is the arity of the target method handle
3428      * and <i>L</i> is the length of the values array.
3429      * <p>
3430      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3431      * variable-arity method handle}, even if the original target method handle was.
3432      * @param target the method handle to invoke after the argument is inserted
3433      * @param pos where to insert the argument (zero for the first)
3434      * @param values the series of arguments to insert
3435      * @return a method handle which inserts an additional argument,
3436      *         before calling the original method handle
3437      * @throws NullPointerException if the target or the {@code values} array is null
3438      * @see MethodHandle#bindTo
3439      */
3440     public static
3441     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3442         int insCount = values.length;
3443         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3444         if (insCount == 0)  return target;
3445         BoundMethodHandle result = target.rebind();
3446         for (int i = 0; i < insCount; i++) {
3447             Object value = values[i];
3448             Class<?> ptype = ptypes[pos+i];
3449             if (ptype.isPrimitive()) {
3450                 result = insertArgumentPrimitive(result, pos, ptype, value);
3451             } else {
3452                 value = ptype.cast(value);  // throw CCE if needed
3453                 result = result.bindArgumentL(pos, value);
3454             }
3455         }
3456         return result;
3457     }
3458 
3459     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3460                                                              Class<?> ptype, Object value) {
3461         Wrapper w = Wrapper.forPrimitiveType(ptype);
3462         // perform unboxing and/or primitive conversion
3463         value = w.convert(value, ptype);
3464         switch (w) {
3465         case INT:     return result.bindArgumentI(pos, (int)value);
3466         case LONG:    return result.bindArgumentJ(pos, (long)value);
3467         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3468         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3469         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3470         }
3471     }
3472 
3473     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3474         MethodType oldType = target.type();
3475         int outargs = oldType.parameterCount();
3476         int inargs  = outargs - insCount;
3477         if (inargs < 0)
3478             throw newIllegalArgumentException("too many values to insert");
3479         if (pos < 0 || pos > inargs)
3480             throw newIllegalArgumentException("no argument type to append");
3481         return oldType.ptypes();
3482     }
3483 
3484     /**
3485      * Produces a method handle which will discard some dummy arguments
3486      * before calling some other specified <i>target</i> method handle.
3487      * The type of the new method handle will be the same as the target's type,
3488      * except it will also include the dummy argument types,
3489      * at some given position.
3490      * <p>
3491      * The {@code pos} argument may range between zero and <i>N</i>,
3492      * where <i>N</i> is the arity of the target.
3493      * If {@code pos} is zero, the dummy arguments will precede
3494      * the target's real arguments; if {@code pos} is <i>N</i>
3495      * they will come after.
3496      * <p>
3497      * <b>Example:</b>
3498      * <blockquote><pre>{@code
3499 import static java.lang.invoke.MethodHandles.*;
3500 import static java.lang.invoke.MethodType.*;
3501 ...
3502 MethodHandle cat = lookup().findVirtual(String.class,
3503   "concat", methodType(String.class, String.class));
3504 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3505 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3506 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3507 assertEquals(bigType, d0.type());
3508 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3509      * }</pre></blockquote>
3510      * <p>
3511      * This method is also equivalent to the following code:
3512      * <blockquote><pre>
3513      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3514      * </pre></blockquote>
3515      * @param target the method handle to invoke after the arguments are dropped
3516      * @param valueTypes the type(s) of the argument(s) to drop
3517      * @param pos position of first argument to drop (zero for the leftmost)
3518      * @return a method handle which drops arguments of the given types,
3519      *         before calling the original method handle
3520      * @throws NullPointerException if the target is null,
3521      *                              or if the {@code valueTypes} list or any of its elements is null
3522      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3523      *                  or if {@code pos} is negative or greater than the arity of the target,
3524      *                  or if the new method handle's type would have too many parameters
3525      */
3526     public static
3527     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3528         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3529     }
3530 
3531     private static List<Class<?>> copyTypes(Object[] array) {
3532         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3533     }
3534 
3535     private static
3536     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3537         MethodType oldType = target.type();  // get NPE
3538         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3539         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3540         if (dropped == 0)  return target;
3541         BoundMethodHandle result = target.rebind();
3542         LambdaForm lform = result.form;
3543         int insertFormArg = 1 + pos;
3544         for (Class<?> ptype : valueTypes) {
3545             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3546         }
3547         result = result.copyWith(newType, lform);
3548         return result;
3549     }
3550 
3551     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3552         int dropped = valueTypes.size();
3553         MethodType.checkSlotCount(dropped);
3554         int outargs = oldType.parameterCount();
3555         int inargs  = outargs + dropped;
3556         if (pos < 0 || pos > outargs)
3557             throw newIllegalArgumentException("no argument type to remove"
3558                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3559                     );
3560         return dropped;
3561     }
3562 
3563     /**
3564      * Produces a method handle which will discard some dummy arguments
3565      * before calling some other specified <i>target</i> method handle.
3566      * The type of the new method handle will be the same as the target's type,
3567      * except it will also include the dummy argument types,
3568      * at some given position.
3569      * <p>
3570      * The {@code pos} argument may range between zero and <i>N</i>,
3571      * where <i>N</i> is the arity of the target.
3572      * If {@code pos} is zero, the dummy arguments will precede
3573      * the target's real arguments; if {@code pos} is <i>N</i>
3574      * they will come after.
3575      * @apiNote
3576      * <blockquote><pre>{@code
3577 import static java.lang.invoke.MethodHandles.*;
3578 import static java.lang.invoke.MethodType.*;
3579 ...
3580 MethodHandle cat = lookup().findVirtual(String.class,
3581   "concat", methodType(String.class, String.class));
3582 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3583 MethodHandle d0 = dropArguments(cat, 0, String.class);
3584 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3585 MethodHandle d1 = dropArguments(cat, 1, String.class);
3586 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3587 MethodHandle d2 = dropArguments(cat, 2, String.class);
3588 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3589 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3590 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3591      * }</pre></blockquote>
3592      * <p>
3593      * This method is also equivalent to the following code:
3594      * <blockquote><pre>
3595      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3596      * </pre></blockquote>
3597      * @param target the method handle to invoke after the arguments are dropped
3598      * @param valueTypes the type(s) of the argument(s) to drop
3599      * @param pos position of first argument to drop (zero for the leftmost)
3600      * @return a method handle which drops arguments of the given types,
3601      *         before calling the original method handle
3602      * @throws NullPointerException if the target is null,
3603      *                              or if the {@code valueTypes} array or any of its elements is null
3604      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3605      *                  or if {@code pos} is negative or greater than the arity of the target,
3606      *                  or if the new method handle's type would have
3607      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3608      */
3609     public static
3610     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3611         return dropArguments0(target, pos, copyTypes(valueTypes));
3612     }
3613 
3614     // private version which allows caller some freedom with error handling
3615     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3616                                       boolean nullOnFailure) {
3617         newTypes = copyTypes(newTypes.toArray());
3618         List<Class<?>> oldTypes = target.type().parameterList();
3619         int match = oldTypes.size();
3620         if (skip != 0) {
3621             if (skip < 0 || skip > match) {
3622                 throw newIllegalArgumentException("illegal skip", skip, target);
3623             }
3624             oldTypes = oldTypes.subList(skip, match);
3625             match -= skip;
3626         }
3627         List<Class<?>> addTypes = newTypes;
3628         int add = addTypes.size();
3629         if (pos != 0) {
3630             if (pos < 0 || pos > add) {
3631                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3632             }
3633             addTypes = addTypes.subList(pos, add);
3634             add -= pos;
3635             assert(addTypes.size() == add);
3636         }
3637         // Do not add types which already match the existing arguments.
3638         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3639             if (nullOnFailure) {
3640                 return null;
3641             }
3642             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3643         }
3644         addTypes = addTypes.subList(match, add);
3645         add -= match;
3646         assert(addTypes.size() == add);
3647         // newTypes:     (   P*[pos], M*[match], A*[add] )
3648         // target: ( S*[skip],        M*[match]  )
3649         MethodHandle adapter = target;
3650         if (add > 0) {
3651             adapter = dropArguments0(adapter, skip+ match, addTypes);
3652         }
3653         // adapter: (S*[skip],        M*[match], A*[add] )
3654         if (pos > 0) {
3655             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3656         }
3657         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3658         return adapter;
3659     }
3660 
3661     /**
3662      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
3663      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3664      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3665      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3666      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3667      * {@link #dropArguments(MethodHandle, int, Class[])}.
3668      * <p>
3669      * The resulting handle will have the same return type as the target handle.
3670      * <p>
3671      * In more formal terms, assume these two type lists:<ul>
3672      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3673      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3674      * {@code newTypes}.
3675      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3676      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3677      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3678      * sub-list.
3679      * </ul>
3680      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3681      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3682      * {@link #dropArguments(MethodHandle, int, Class[])}.
3683      * <p>
3684      * @apiNote
3685      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3686      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3687      * <blockquote><pre>{@code
3688 import static java.lang.invoke.MethodHandles.*;
3689 import static java.lang.invoke.MethodType.*;
3690 ...
3691 ...
3692 MethodHandle h0 = constant(boolean.class, true);
3693 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3694 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3695 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3696 if (h1.type().parameterCount() < h2.type().parameterCount())
3697     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3698 else
3699     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3700 MethodHandle h3 = guardWithTest(h0, h1, h2);
3701 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3702      * }</pre></blockquote>
3703      * @param target the method handle to adapt
3704      * @param skip number of targets parameters to disregard (they will be unchanged)
3705      * @param newTypes the list of types to match {@code target}'s parameter type list to
3706      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3707      * @return a possibly adapted method handle
3708      * @throws NullPointerException if either argument is null
3709      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3710      *         or if {@code skip} is negative or greater than the arity of the target,
3711      *         or if {@code pos} is negative or greater than the newTypes list size,
3712      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3713      *         {@code pos}.
3714      * @since 9
3715      */
3716     public static
3717     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3718         Objects.requireNonNull(target);
3719         Objects.requireNonNull(newTypes);
3720         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3721     }
3722 
3723     /**
3724      * Adapts a target method handle by pre-processing
3725      * one or more of its arguments, each with its own unary filter function,
3726      * and then calling the target with each pre-processed argument
3727      * replaced by the result of its corresponding filter function.
3728      * <p>
3729      * The pre-processing is performed by one or more method handles,
3730      * specified in the elements of the {@code filters} array.
3731      * The first element of the filter array corresponds to the {@code pos}
3732      * argument of the target, and so on in sequence.
3733      * <p>
3734      * Null arguments in the array are treated as identity functions,
3735      * and the corresponding arguments left unchanged.
3736      * (If there are no non-null elements in the array, the original target is returned.)
3737      * Each filter is applied to the corresponding argument of the adapter.
3738      * <p>
3739      * If a filter {@code F} applies to the {@code N}th argument of
3740      * the target, then {@code F} must be a method handle which
3741      * takes exactly one argument.  The type of {@code F}'s sole argument
3742      * replaces the corresponding argument type of the target
3743      * in the resulting adapted method handle.
3744      * The return type of {@code F} must be identical to the corresponding
3745      * parameter type of the target.
3746      * <p>
3747      * It is an error if there are elements of {@code filters}
3748      * (null or not)
3749      * which do not correspond to argument positions in the target.
3750      * <p><b>Example:</b>
3751      * <blockquote><pre>{@code
3752 import static java.lang.invoke.MethodHandles.*;
3753 import static java.lang.invoke.MethodType.*;
3754 ...
3755 MethodHandle cat = lookup().findVirtual(String.class,
3756   "concat", methodType(String.class, String.class));
3757 MethodHandle upcase = lookup().findVirtual(String.class,
3758   "toUpperCase", methodType(String.class));
3759 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3760 MethodHandle f0 = filterArguments(cat, 0, upcase);
3761 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3762 MethodHandle f1 = filterArguments(cat, 1, upcase);
3763 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3764 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3765 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3766      * }</pre></blockquote>
3767      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3768      * denotes the return type of both the {@code target} and resulting adapter.
3769      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3770      * of the parameters and arguments that precede and follow the filter position
3771      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3772      * values of the filtered parameters and arguments; they also represent the
3773      * return types of the {@code filter[i]} handles. The latter accept arguments
3774      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3775      * the resulting adapter.
3776      * <blockquote><pre>{@code
3777      * T target(P... p, A[i]... a[i], B... b);
3778      * A[i] filter[i](V[i]);
3779      * T adapter(P... p, V[i]... v[i], B... b) {
3780      *   return target(p..., filter[i](v[i])..., b...);
3781      * }
3782      * }</pre></blockquote>
3783      * <p>
3784      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3785      * variable-arity method handle}, even if the original target method handle was.
3786      *
3787      * @param target the method handle to invoke after arguments are filtered
3788      * @param pos the position of the first argument to filter
3789      * @param filters method handles to call initially on filtered arguments
3790      * @return method handle which incorporates the specified argument filtering logic
3791      * @throws NullPointerException if the target is null
3792      *                              or if the {@code filters} array is null
3793      * @throws IllegalArgumentException if a non-null element of {@code filters}
3794      *          does not match a corresponding argument type of target as described above,
3795      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3796      *          or if the resulting method handle's type would have
3797      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3798      */
3799     public static
3800     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3801         filterArgumentsCheckArity(target, pos, filters);
3802         MethodHandle adapter = target;
3803         int curPos = pos-1;  // pre-incremented
3804         for (MethodHandle filter : filters) {
3805             curPos += 1;
3806             if (filter == null)  continue;  // ignore null elements of filters
3807             adapter = filterArgument(adapter, curPos, filter);
3808         }
3809         return adapter;
3810     }
3811 
3812     /*non-public*/ static
3813     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3814         filterArgumentChecks(target, pos, filter);
3815         MethodType targetType = target.type();
3816         MethodType filterType = filter.type();
3817         BoundMethodHandle result = target.rebind();
3818         Class<?> newParamType = filterType.parameterType(0);
3819         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3820         MethodType newType = targetType.changeParameterType(pos, newParamType);
3821         result = result.copyWithExtendL(newType, lform, filter);
3822         return result;
3823     }
3824 
3825     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3826         MethodType targetType = target.type();
3827         int maxPos = targetType.parameterCount();
3828         if (pos + filters.length > maxPos)
3829             throw newIllegalArgumentException("too many filters");
3830     }
3831 
3832     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3833         MethodType targetType = target.type();
3834         MethodType filterType = filter.type();
3835         if (filterType.parameterCount() != 1
3836             || filterType.returnType() != targetType.parameterType(pos))
3837             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3838     }
3839 
3840     /**
3841      * Adapts a target method handle by pre-processing
3842      * a sub-sequence of its arguments with a filter (another method handle).
3843      * The pre-processed arguments are replaced by the result (if any) of the
3844      * filter function.
3845      * The target is then called on the modified (usually shortened) argument list.
3846      * <p>
3847      * If the filter returns a value, the target must accept that value as
3848      * its argument in position {@code pos}, preceded and/or followed by
3849      * any arguments not passed to the filter.
3850      * If the filter returns void, the target must accept all arguments
3851      * not passed to the filter.
3852      * No arguments are reordered, and a result returned from the filter
3853      * replaces (in order) the whole subsequence of arguments originally
3854      * passed to the adapter.
3855      * <p>
3856      * The argument types (if any) of the filter
3857      * replace zero or one argument types of the target, at position {@code pos},
3858      * in the resulting adapted method handle.
3859      * The return type of the filter (if any) must be identical to the
3860      * argument type of the target at position {@code pos}, and that target argument
3861      * is supplied by the return value of the filter.
3862      * <p>
3863      * In all cases, {@code pos} must be greater than or equal to zero, and
3864      * {@code pos} must also be less than or equal to the target's arity.
3865      * <p><b>Example:</b>
3866      * <blockquote><pre>{@code
3867 import static java.lang.invoke.MethodHandles.*;
3868 import static java.lang.invoke.MethodType.*;
3869 ...
3870 MethodHandle deepToString = publicLookup()
3871   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3872 
3873 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3874 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3875 
3876 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3877 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3878 
3879 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3880 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3881 assertEquals("[top, [up, down], strange]",
3882              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3883 
3884 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3885 assertEquals("[top, [up, down], [strange]]",
3886              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3887 
3888 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3889 assertEquals("[top, [[up, down, strange], charm], bottom]",
3890              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3891      * }</pre></blockquote>
3892      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3893      * represents the return type of the {@code target} and resulting adapter.
3894      * {@code V}/{@code v} stand for the return type and value of the
3895      * {@code filter}, which are also found in the signature and arguments of
3896      * the {@code target}, respectively, unless {@code V} is {@code void}.
3897      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3898      * and values preceding and following the collection position, {@code pos},
3899      * in the {@code target}'s signature. They also turn up in the resulting
3900      * adapter's signature and arguments, where they surround
3901      * {@code B}/{@code b}, which represent the parameter types and arguments
3902      * to the {@code filter} (if any).
3903      * <blockquote><pre>{@code
3904      * T target(A...,V,C...);
3905      * V filter(B...);
3906      * T adapter(A... a,B... b,C... c) {
3907      *   V v = filter(b...);
3908      *   return target(a...,v,c...);
3909      * }
3910      * // and if the filter has no arguments:
3911      * T target2(A...,V,C...);
3912      * V filter2();
3913      * T adapter2(A... a,C... c) {
3914      *   V v = filter2();
3915      *   return target2(a...,v,c...);
3916      * }
3917      * // and if the filter has a void return:
3918      * T target3(A...,C...);
3919      * void filter3(B...);
3920      * T adapter3(A... a,B... b,C... c) {
3921      *   filter3(b...);
3922      *   return target3(a...,c...);
3923      * }
3924      * }</pre></blockquote>
3925      * <p>
3926      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3927      * one which first "folds" the affected arguments, and then drops them, in separate
3928      * steps as follows:
3929      * <blockquote><pre>{@code
3930      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3931      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3932      * }</pre></blockquote>
3933      * If the target method handle consumes no arguments besides than the result
3934      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3935      * is equivalent to {@code filterReturnValue(coll, mh)}.
3936      * If the filter method handle {@code coll} consumes one argument and produces
3937      * a non-void result, then {@code collectArguments(mh, N, coll)}
3938      * is equivalent to {@code filterArguments(mh, N, coll)}.
3939      * Other equivalences are possible but would require argument permutation.
3940      * <p>
3941      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3942      * variable-arity method handle}, even if the original target method handle was.
3943      *
3944      * @param target the method handle to invoke after filtering the subsequence of arguments
3945      * @param pos the position of the first adapter argument to pass to the filter,
3946      *            and/or the target argument which receives the result of the filter
3947      * @param filter method handle to call on the subsequence of arguments
3948      * @return method handle which incorporates the specified argument subsequence filtering logic
3949      * @throws NullPointerException if either argument is null
3950      * @throws IllegalArgumentException if the return type of {@code filter}
3951      *          is non-void and is not the same as the {@code pos} argument of the target,
3952      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
3953      *          or if the resulting method handle's type would have
3954      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3955      * @see MethodHandles#foldArguments
3956      * @see MethodHandles#filterArguments
3957      * @see MethodHandles#filterReturnValue
3958      */
3959     public static
3960     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
3961         MethodType newType = collectArgumentsChecks(target, pos, filter);
3962         MethodType collectorType = filter.type();
3963         BoundMethodHandle result = target.rebind();
3964         LambdaForm lform;
3965         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
3966             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
3967             if (lform != null) {
3968                 return result.copyWith(newType, lform);
3969             }
3970         }
3971         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
3972         return result.copyWithExtendL(newType, lform, filter);
3973     }
3974 
3975     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3976         MethodType targetType = target.type();
3977         MethodType filterType = filter.type();
3978         Class<?> rtype = filterType.returnType();
3979         List<Class<?>> filterArgs = filterType.parameterList();
3980         if (rtype == void.class) {
3981             return targetType.insertParameterTypes(pos, filterArgs);
3982         }
3983         if (rtype != targetType.parameterType(pos)) {
3984             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3985         }
3986         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
3987     }
3988 
3989     /**
3990      * Adapts a target method handle by post-processing
3991      * its return value (if any) with a filter (another method handle).
3992      * The result of the filter is returned from the adapter.
3993      * <p>
3994      * If the target returns a value, the filter must accept that value as
3995      * its only argument.
3996      * If the target returns void, the filter must accept no arguments.
3997      * <p>
3998      * The return type of the filter
3999      * replaces the return type of the target
4000      * in the resulting adapted method handle.
4001      * The argument type of the filter (if any) must be identical to the
4002      * return type of the target.
4003      * <p><b>Example:</b>
4004      * <blockquote><pre>{@code
4005 import static java.lang.invoke.MethodHandles.*;
4006 import static java.lang.invoke.MethodType.*;
4007 ...
4008 MethodHandle cat = lookup().findVirtual(String.class,
4009   "concat", methodType(String.class, String.class));
4010 MethodHandle length = lookup().findVirtual(String.class,
4011   "length", methodType(int.class));
4012 System.out.println((String) cat.invokeExact("x", "y")); // xy
4013 MethodHandle f0 = filterReturnValue(cat, length);
4014 System.out.println((int) f0.invokeExact("x", "y")); // 2
4015      * }</pre></blockquote>
4016      * <p>Here is pseudocode for the resulting adapter. In the code,
4017      * {@code T}/{@code t} represent the result type and value of the
4018      * {@code target}; {@code V}, the result type of the {@code filter}; and
4019      * {@code A}/{@code a}, the types and values of the parameters and arguments
4020      * of the {@code target} as well as the resulting adapter.
4021      * <blockquote><pre>{@code
4022      * T target(A...);
4023      * V filter(T);
4024      * V adapter(A... a) {
4025      *   T t = target(a...);
4026      *   return filter(t);
4027      * }
4028      * // and if the target has a void return:
4029      * void target2(A...);
4030      * V filter2();
4031      * V adapter2(A... a) {
4032      *   target2(a...);
4033      *   return filter2();
4034      * }
4035      * // and if the filter has a void return:
4036      * T target3(A...);
4037      * void filter3(V);
4038      * void adapter3(A... a) {
4039      *   T t = target3(a...);
4040      *   filter3(t);
4041      * }
4042      * }</pre></blockquote>
4043      * <p>
4044      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4045      * variable-arity method handle}, even if the original target method handle was.
4046      * @param target the method handle to invoke before filtering the return value
4047      * @param filter method handle to call on the return value
4048      * @return method handle which incorporates the specified return value filtering logic
4049      * @throws NullPointerException if either argument is null
4050      * @throws IllegalArgumentException if the argument list of {@code filter}
4051      *          does not match the return type of target as described above
4052      */
4053     public static
4054     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4055         MethodType targetType = target.type();
4056         MethodType filterType = filter.type();
4057         filterReturnValueChecks(targetType, filterType);
4058         BoundMethodHandle result = target.rebind();
4059         BasicType rtype = BasicType.basicType(filterType.returnType());
4060         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4061         MethodType newType = targetType.changeReturnType(filterType.returnType());
4062         result = result.copyWithExtendL(newType, lform, filter);
4063         return result;
4064     }
4065 
4066     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4067         Class<?> rtype = targetType.returnType();
4068         int filterValues = filterType.parameterCount();
4069         if (filterValues == 0
4070                 ? (rtype != void.class)
4071                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4072             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4073     }
4074 
4075     /**
4076      * Adapts a target method handle by pre-processing
4077      * some of its arguments, and then calling the target with
4078      * the result of the pre-processing, inserted into the original
4079      * sequence of arguments.
4080      * <p>
4081      * The pre-processing is performed by {@code combiner}, a second method handle.
4082      * Of the arguments passed to the adapter, the first {@code N} arguments
4083      * are copied to the combiner, which is then called.
4084      * (Here, {@code N} is defined as the parameter count of the combiner.)
4085      * After this, control passes to the target, with any result
4086      * from the combiner inserted before the original {@code N} incoming
4087      * arguments.
4088      * <p>
4089      * If the combiner returns a value, the first parameter type of the target
4090      * must be identical with the return type of the combiner, and the next
4091      * {@code N} parameter types of the target must exactly match the parameters
4092      * of the combiner.
4093      * <p>
4094      * If the combiner has a void return, no result will be inserted,
4095      * and the first {@code N} parameter types of the target
4096      * must exactly match the parameters of the combiner.
4097      * <p>
4098      * The resulting adapter is the same type as the target, except that the
4099      * first parameter type is dropped,
4100      * if it corresponds to the result of the combiner.
4101      * <p>
4102      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4103      * that either the combiner or the target does not wish to receive.
4104      * If some of the incoming arguments are destined only for the combiner,
4105      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4106      * arguments will not need to be live on the stack on entry to the
4107      * target.)
4108      * <p><b>Example:</b>
4109      * <blockquote><pre>{@code
4110 import static java.lang.invoke.MethodHandles.*;
4111 import static java.lang.invoke.MethodType.*;
4112 ...
4113 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4114   "println", methodType(void.class, String.class))
4115     .bindTo(System.out);
4116 MethodHandle cat = lookup().findVirtual(String.class,
4117   "concat", methodType(String.class, String.class));
4118 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4119 MethodHandle catTrace = foldArguments(cat, trace);
4120 // also prints "boo":
4121 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4122      * }</pre></blockquote>
4123      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4124      * represents the result type of the {@code target} and resulting adapter.
4125      * {@code V}/{@code v} represent the type and value of the parameter and argument
4126      * of {@code target} that precedes the folding position; {@code V} also is
4127      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4128      * types and values of the {@code N} parameters and arguments at the folding
4129      * position. {@code B}/{@code b} represent the types and values of the
4130      * {@code target} parameters and arguments that follow the folded parameters
4131      * and arguments.
4132      * <blockquote><pre>{@code
4133      * // there are N arguments in A...
4134      * T target(V, A[N]..., B...);
4135      * V combiner(A...);
4136      * T adapter(A... a, B... b) {
4137      *   V v = combiner(a...);
4138      *   return target(v, a..., b...);
4139      * }
4140      * // and if the combiner has a void return:
4141      * T target2(A[N]..., B...);
4142      * void combiner2(A...);
4143      * T adapter2(A... a, B... b) {
4144      *   combiner2(a...);
4145      *   return target2(a..., b...);
4146      * }
4147      * }</pre></blockquote>
4148      * <p>
4149      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4150      * variable-arity method handle}, even if the original target method handle was.
4151      * @param target the method handle to invoke after arguments are combined
4152      * @param combiner method handle to call initially on the incoming arguments
4153      * @return method handle which incorporates the specified argument folding logic
4154      * @throws NullPointerException if either argument is null
4155      * @throws IllegalArgumentException if {@code combiner}'s return type
4156      *          is non-void and not the same as the first argument type of
4157      *          the target, or if the initial {@code N} argument types
4158      *          of the target
4159      *          (skipping one matching the {@code combiner}'s return type)
4160      *          are not identical with the argument types of {@code combiner}
4161      */
4162     public static
4163     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4164         return foldArguments(target, 0, combiner);
4165     }
4166 
4167     /**
4168      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4169      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4170      * before the folded arguments.
4171      * <p>
4172      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4173      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4174      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4175      * 0.
4176      * <p>
4177      * @apiNote Example:
4178      * <blockquote><pre>{@code
4179     import static java.lang.invoke.MethodHandles.*;
4180     import static java.lang.invoke.MethodType.*;
4181     ...
4182     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4183     "println", methodType(void.class, String.class))
4184     .bindTo(System.out);
4185     MethodHandle cat = lookup().findVirtual(String.class,
4186     "concat", methodType(String.class, String.class));
4187     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4188     MethodHandle catTrace = foldArguments(cat, 1, trace);
4189     // also prints "jum":
4190     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4191      * }</pre></blockquote>
4192      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4193      * represents the result type of the {@code target} and resulting adapter.
4194      * {@code V}/{@code v} represent the type and value of the parameter and argument
4195      * of {@code target} that precedes the folding position; {@code V} also is
4196      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4197      * types and values of the {@code N} parameters and arguments at the folding
4198      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4199      * and values of the {@code target} parameters and arguments that precede and
4200      * follow the folded parameters and arguments starting at {@code pos},
4201      * respectively.
4202      * <blockquote><pre>{@code
4203      * // there are N arguments in A...
4204      * T target(Z..., V, A[N]..., B...);
4205      * V combiner(A...);
4206      * T adapter(Z... z, A... a, B... b) {
4207      *   V v = combiner(a...);
4208      *   return target(z..., v, a..., b...);
4209      * }
4210      * // and if the combiner has a void return:
4211      * T target2(Z..., A[N]..., B...);
4212      * void combiner2(A...);
4213      * T adapter2(Z... z, A... a, B... b) {
4214      *   combiner2(a...);
4215      *   return target2(z..., a..., b...);
4216      * }
4217      * }</pre></blockquote>
4218      * <p>
4219      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4220      * variable-arity method handle}, even if the original target method handle was.
4221      *
4222      * @param target the method handle to invoke after arguments are combined
4223      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4224      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4225      * @param combiner method handle to call initially on the incoming arguments
4226      * @return method handle which incorporates the specified argument folding logic
4227      * @throws NullPointerException if either argument is null
4228      * @throws IllegalArgumentException if either of the following two conditions holds:
4229      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4230      *              {@code pos} of the target signature;
4231      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4232      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4233      *
4234      * @see #foldArguments(MethodHandle, MethodHandle)
4235      * @since 9
4236      */
4237     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4238         MethodType targetType = target.type();
4239         MethodType combinerType = combiner.type();
4240         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4241         BoundMethodHandle result = target.rebind();
4242         boolean dropResult = rtype == void.class;
4243         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4244         MethodType newType = targetType;
4245         if (!dropResult) {
4246             newType = newType.dropParameterTypes(pos, pos + 1);
4247         }
4248         result = result.copyWithExtendL(newType, lform, combiner);
4249         return result;
4250     }
4251 
4252     /**
4253      * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the
4254      * added capability of selecting the arguments from the targets parameters
4255      * to call the combiner with. This allows us to avoid some simple cases of
4256      * permutations and padding the combiner with dropArguments to select the
4257      * right argument, which may ultimately produce fewer intermediaries.
4258      */
4259     static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) {
4260         MethodType targetType = target.type();
4261         MethodType combinerType = combiner.type();
4262         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions);
4263         BoundMethodHandle result = target.rebind();
4264         boolean dropResult = rtype == void.class;
4265         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions);
4266         MethodType newType = targetType;
4267         if (!dropResult) {
4268             newType = newType.dropParameterTypes(pos, pos + 1);
4269         }
4270         result = result.copyWithExtendL(newType, lform, combiner);
4271         return result;
4272     }
4273 
4274     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4275         int foldArgs   = combinerType.parameterCount();
4276         Class<?> rtype = combinerType.returnType();
4277         int foldVals = rtype == void.class ? 0 : 1;
4278         int afterInsertPos = foldPos + foldVals;
4279         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4280         if (ok) {
4281             for (int i = 0; i < foldArgs; i++) {
4282                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4283                     ok = false;
4284                     break;
4285                 }
4286             }
4287         }
4288         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4289             ok = false;
4290         if (!ok)
4291             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4292         return rtype;
4293     }
4294 
4295     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) {
4296         int foldArgs = combinerType.parameterCount();
4297         if (argPos.length != foldArgs) {
4298             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4299         }
4300         Class<?> rtype = combinerType.returnType();
4301         int foldVals = rtype == void.class ? 0 : 1;
4302         boolean ok = true;
4303         for (int i = 0; i < foldArgs; i++) {
4304             int arg = argPos[i];
4305             if (arg < 0 || arg > targetType.parameterCount()) {
4306                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4307             }
4308             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4309                 throw newIllegalArgumentException("target argument type at position " + arg
4310                         + " must match combiner argument type at index " + i + ": " + targetType
4311                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4312             }
4313         }
4314         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) {
4315             ok = false;
4316         }
4317         if (!ok)
4318             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4319         return rtype;
4320     }
4321 
4322     /**
4323      * Makes a method handle which adapts a target method handle,
4324      * by guarding it with a test, a boolean-valued method handle.
4325      * If the guard fails, a fallback handle is called instead.
4326      * All three method handles must have the same corresponding
4327      * argument and return types, except that the return type
4328      * of the test must be boolean, and the test is allowed
4329      * to have fewer arguments than the other two method handles.
4330      * <p>
4331      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4332      * represents the uniform result type of the three involved handles;
4333      * {@code A}/{@code a}, the types and values of the {@code target}
4334      * parameters and arguments that are consumed by the {@code test}; and
4335      * {@code B}/{@code b}, those types and values of the {@code target}
4336      * parameters and arguments that are not consumed by the {@code test}.
4337      * <blockquote><pre>{@code
4338      * boolean test(A...);
4339      * T target(A...,B...);
4340      * T fallback(A...,B...);
4341      * T adapter(A... a,B... b) {
4342      *   if (test(a...))
4343      *     return target(a..., b...);
4344      *   else
4345      *     return fallback(a..., b...);
4346      * }
4347      * }</pre></blockquote>
4348      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4349      * be modified by execution of the test, and so are passed unchanged
4350      * from the caller to the target or fallback as appropriate.
4351      * @param test method handle used for test, must return boolean
4352      * @param target method handle to call if test passes
4353      * @param fallback method handle to call if test fails
4354      * @return method handle which incorporates the specified if/then/else logic
4355      * @throws NullPointerException if any argument is null
4356      * @throws IllegalArgumentException if {@code test} does not return boolean,
4357      *          or if all three method types do not match (with the return
4358      *          type of {@code test} changed to match that of the target).
4359      */
4360     public static
4361     MethodHandle guardWithTest(MethodHandle test,
4362                                MethodHandle target,
4363                                MethodHandle fallback) {
4364         MethodType gtype = test.type();
4365         MethodType ttype = target.type();
4366         MethodType ftype = fallback.type();
4367         if (!ttype.equals(ftype))
4368             throw misMatchedTypes("target and fallback types", ttype, ftype);
4369         if (gtype.returnType() != boolean.class)
4370             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4371         List<Class<?>> targs = ttype.parameterList();
4372         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4373         if (test == null) {
4374             throw misMatchedTypes("target and test types", ttype, gtype);
4375         }
4376         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4377     }
4378 
4379     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4380         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4381     }
4382 
4383     /**
4384      * Makes a method handle which adapts a target method handle,
4385      * by running it inside an exception handler.
4386      * If the target returns normally, the adapter returns that value.
4387      * If an exception matching the specified type is thrown, the fallback
4388      * handle is called instead on the exception, plus the original arguments.
4389      * <p>
4390      * The target and handler must have the same corresponding
4391      * argument and return types, except that handler may omit trailing arguments
4392      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4393      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4394      * <p>
4395      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4396      * represents the return type of the {@code target} and {@code handler},
4397      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4398      * the types and values of arguments to the resulting handle consumed by
4399      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4400      * resulting handle discarded by {@code handler}.
4401      * <blockquote><pre>{@code
4402      * T target(A..., B...);
4403      * T handler(ExType, A...);
4404      * T adapter(A... a, B... b) {
4405      *   try {
4406      *     return target(a..., b...);
4407      *   } catch (ExType ex) {
4408      *     return handler(ex, a...);
4409      *   }
4410      * }
4411      * }</pre></blockquote>
4412      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4413      * be modified by execution of the target, and so are passed unchanged
4414      * from the caller to the handler, if the handler is invoked.
4415      * <p>
4416      * The target and handler must return the same type, even if the handler
4417      * always throws.  (This might happen, for instance, because the handler
4418      * is simulating a {@code finally} clause).
4419      * To create such a throwing handler, compose the handler creation logic
4420      * with {@link #throwException throwException},
4421      * in order to create a method handle of the correct return type.
4422      * @param target method handle to call
4423      * @param exType the type of exception which the handler will catch
4424      * @param handler method handle to call if a matching exception is thrown
4425      * @return method handle which incorporates the specified try/catch logic
4426      * @throws NullPointerException if any argument is null
4427      * @throws IllegalArgumentException if {@code handler} does not accept
4428      *          the given exception type, or if the method handle types do
4429      *          not match in their return types and their
4430      *          corresponding parameters
4431      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4432      */
4433     public static
4434     MethodHandle catchException(MethodHandle target,
4435                                 Class<? extends Throwable> exType,
4436                                 MethodHandle handler) {
4437         MethodType ttype = target.type();
4438         MethodType htype = handler.type();
4439         if (!Throwable.class.isAssignableFrom(exType))
4440             throw new ClassCastException(exType.getName());
4441         if (htype.parameterCount() < 1 ||
4442             !htype.parameterType(0).isAssignableFrom(exType))
4443             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4444         if (htype.returnType() != ttype.returnType())
4445             throw misMatchedTypes("target and handler return types", ttype, htype);
4446         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4447         if (handler == null) {
4448             throw misMatchedTypes("target and handler types", ttype, htype);
4449         }
4450         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4451     }
4452 
4453     /**
4454      * Produces a method handle which will throw exceptions of the given {@code exType}.
4455      * The method handle will accept a single argument of {@code exType},
4456      * and immediately throw it as an exception.
4457      * The method type will nominally specify a return of {@code returnType}.
4458      * The return type may be anything convenient:  It doesn't matter to the
4459      * method handle's behavior, since it will never return normally.
4460      * @param returnType the return type of the desired method handle
4461      * @param exType the parameter type of the desired method handle
4462      * @return method handle which can throw the given exceptions
4463      * @throws NullPointerException if either argument is null
4464      */
4465     public static
4466     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4467         if (!Throwable.class.isAssignableFrom(exType))
4468             throw new ClassCastException(exType.getName());
4469         return MethodHandleImpl.throwException(methodType(returnType, exType));
4470     }
4471 
4472     /**
4473      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4474      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4475      * delivers the loop's result, which is the return value of the resulting handle.
4476      * <p>
4477      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4478      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4479      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4480      * terms of method handles, each clause will specify up to four independent actions:<ul>
4481      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4482      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4483      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4484      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4485      * </ul>
4486      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4487      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4488      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4489      * <p>
4490      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4491      * this case. See below for a detailed description.
4492      * <p>
4493      * <em>Parameters optional everywhere:</em>
4494      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4495      * As an exception, the init functions cannot take any {@code v} parameters,
4496      * because those values are not yet computed when the init functions are executed.
4497      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4498      * In fact, any clause function may take no arguments at all.
4499      * <p>
4500      * <em>Loop parameters:</em>
4501      * A clause function may take all the iteration variable values it is entitled to, in which case
4502      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4503      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4504      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4505      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4506      * init function is automatically a loop parameter {@code a}.)
4507      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4508      * These loop parameters act as loop-invariant values visible across the whole loop.
4509      * <p>
4510      * <em>Parameters visible everywhere:</em>
4511      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4512      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4513      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4514      * Most clause functions will not need all of this information, but they will be formally connected to it
4515      * as if by {@link #dropArguments}.
4516      * <a id="astar"></a>
4517      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4518      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4519      * In that notation, the general form of an init function parameter list
4520      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4521      * <p>
4522      * <em>Checking clause structure:</em>
4523      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4524      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4525      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4526      * met by the inputs to the loop combinator.
4527      * <p>
4528      * <em>Effectively identical sequences:</em>
4529      * <a id="effid"></a>
4530      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4531      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4532      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4533      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4534      * that longest list.
4535      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4536      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4537      * <p>
4538      * <em>Step 0: Determine clause structure.</em><ol type="a">
4539      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4540      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4541      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4542      * four. Padding takes place by appending elements to the array.
4543      * <li>Clauses with all {@code null}s are disregarded.
4544      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4545      * </ol>
4546      * <p>
4547      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4548      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4549      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4550      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4551      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4552      * iteration variable type.
4553      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4554      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4555      * </ol>
4556      * <p>
4557      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4558      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4559      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4560      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4561      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4562      * (These types will checked in step 2, along with all the clause function types.)
4563      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4564      * <li>All of the collected parameter lists must be effectively identical.
4565      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4566      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4567      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4568      * the "internal parameter list".
4569      * </ul>
4570      * <p>
4571      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4572      * <li>Examine fini function return types, disregarding omitted fini functions.
4573      * <li>If there are no fini functions, the loop return type is {@code void}.
4574      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4575      * type.
4576      * </ol>
4577      * <p>
4578      * <em>Step 1D: Check other types.</em><ol type="a">
4579      * <li>There must be at least one non-omitted pred function.
4580      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4581      * </ol>
4582      * <p>
4583      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4584      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4585      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4586      * (Note that their parameter lists are already effectively identical to this list.)
4587      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4588      * effectively identical to the internal parameter list {@code (V... A...)}.
4589      * </ol>
4590      * <p>
4591      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4592      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4593      * type.
4594      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4595      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4596      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4597      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4598      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4599      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4600      * loop return type.
4601      * </ol>
4602      * <p>
4603      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4604      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4605      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4606      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4607      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4608      * pad out the end of the list.
4609      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch dropping unused trailing arguments}.
4610      * </ol>
4611      * <p>
4612      * <em>Final observations.</em><ol type="a">
4613      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4614      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4615      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4616      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4617      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4618      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4619      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4620      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4621      * </ol>
4622      * <p>
4623      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4624      * <ul>
4625      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4626      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4627      * (Only one {@code Pn} has to be non-{@code null}.)
4628      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4629      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4630      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4631      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4632      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4633      * the resulting loop handle's parameter types {@code (A...)}.
4634      * </ul>
4635      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4636      * which is natural if most of the loop computation happens in the steps.  For some loops,
4637      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4638      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4639      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4640      * where the init functions will need the extra parameters.  For such reasons, the rules for
4641      * determining these parameters are as symmetric as possible, across all clause parts.
4642      * In general, the loop parameters function as common invariant values across the whole
4643      * loop, while the iteration variables function as common variant values, or (if there is
4644      * no step function) as internal loop invariant temporaries.
4645      * <p>
4646      * <em>Loop execution.</em><ol type="a">
4647      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4648      * every clause function. These locals are loop invariant.
4649      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4650      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4651      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4652      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4653      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4654      * (in argument order).
4655      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4656      * returns {@code false}.
4657      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4658      * sequence {@code (v...)} of loop variables.
4659      * The updated value is immediately visible to all subsequent function calls.
4660      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4661      * (of type {@code R}) is returned from the loop as a whole.
4662      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4663      * except by throwing an exception.
4664      * </ol>
4665      * <p>
4666      * <em>Usage tips.</em>
4667      * <ul>
4668      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4669      * sometimes a step function only needs to observe the current value of its own variable.
4670      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4671      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4672      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4673      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4674      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4675      * <li>If some of the clause functions are virtual methods on an instance, the instance
4676      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4677      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4678      * will be the first iteration variable value, and it will be easy to use virtual
4679      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4680      * </ul>
4681      * <p>
4682      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4683      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4684      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4685      * <blockquote><pre>{@code
4686      * V... init...(A...);
4687      * boolean pred...(V..., A...);
4688      * V... step...(V..., A...);
4689      * R fini...(V..., A...);
4690      * R loop(A... a) {
4691      *   V... v... = init...(a...);
4692      *   for (;;) {
4693      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4694      *       v = s(v..., a...);
4695      *       if (!p(v..., a...)) {
4696      *         return f(v..., a...);
4697      *       }
4698      *     }
4699      *   }
4700      * }
4701      * }</pre></blockquote>
4702      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4703      * to their full length, even though individual clause functions may neglect to take them all.
4704      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch}.
4705      * <p>
4706      * @apiNote Example:
4707      * <blockquote><pre>{@code
4708      * // iterative implementation of the factorial function as a loop handle
4709      * static int one(int k) { return 1; }
4710      * static int inc(int i, int acc, int k) { return i + 1; }
4711      * static int mult(int i, int acc, int k) { return i * acc; }
4712      * static boolean pred(int i, int acc, int k) { return i < k; }
4713      * static int fin(int i, int acc, int k) { return acc; }
4714      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4715      * // null initializer for counter, should initialize to 0
4716      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4717      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4718      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4719      * assertEquals(120, loop.invoke(5));
4720      * }</pre></blockquote>
4721      * The same example, dropping arguments and using combinators:
4722      * <blockquote><pre>{@code
4723      * // simplified implementation of the factorial function as a loop handle
4724      * static int inc(int i) { return i + 1; } // drop acc, k
4725      * static int mult(int i, int acc) { return i * acc; } //drop k
4726      * static boolean cmp(int i, int k) { return i < k; }
4727      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4728      * // null initializer for counter, should initialize to 0
4729      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4730      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4731      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4732      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4733      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4734      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4735      * assertEquals(720, loop.invoke(6));
4736      * }</pre></blockquote>
4737      * A similar example, using a helper object to hold a loop parameter:
4738      * <blockquote><pre>{@code
4739      * // instance-based implementation of the factorial function as a loop handle
4740      * static class FacLoop {
4741      *   final int k;
4742      *   FacLoop(int k) { this.k = k; }
4743      *   int inc(int i) { return i + 1; }
4744      *   int mult(int i, int acc) { return i * acc; }
4745      *   boolean pred(int i) { return i < k; }
4746      *   int fin(int i, int acc) { return acc; }
4747      * }
4748      * // assume MH_FacLoop is a handle to the constructor
4749      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4750      * // null initializer for counter, should initialize to 0
4751      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4752      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4753      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4754      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4755      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4756      * assertEquals(5040, loop.invoke(7));
4757      * }</pre></blockquote>
4758      *
4759      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4760      *
4761      * @return a method handle embodying the looping behavior as defined by the arguments.
4762      *
4763      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4764      *
4765      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4766      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4767      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4768      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4769      * @since 9
4770      */
4771     public static MethodHandle loop(MethodHandle[]... clauses) {
4772         // Step 0: determine clause structure.
4773         loopChecks0(clauses);
4774 
4775         List<MethodHandle> init = new ArrayList<>();
4776         List<MethodHandle> step = new ArrayList<>();
4777         List<MethodHandle> pred = new ArrayList<>();
4778         List<MethodHandle> fini = new ArrayList<>();
4779 
4780         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4781             init.add(clause[0]); // all clauses have at least length 1
4782             step.add(clause.length <= 1 ? null : clause[1]);
4783             pred.add(clause.length <= 2 ? null : clause[2]);
4784             fini.add(clause.length <= 3 ? null : clause[3]);
4785         });
4786 
4787         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4788         final int nclauses = init.size();
4789 
4790         // Step 1A: determine iteration variables (V...).
4791         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4792         for (int i = 0; i < nclauses; ++i) {
4793             MethodHandle in = init.get(i);
4794             MethodHandle st = step.get(i);
4795             if (in == null && st == null) {
4796                 iterationVariableTypes.add(void.class);
4797             } else if (in != null && st != null) {
4798                 loopChecks1a(i, in, st);
4799                 iterationVariableTypes.add(in.type().returnType());
4800             } else {
4801                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4802             }
4803         }
4804         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4805                 collect(Collectors.toList());
4806 
4807         // Step 1B: determine loop parameters (A...).
4808         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4809         loopChecks1b(init, commonSuffix);
4810 
4811         // Step 1C: determine loop return type.
4812         // Step 1D: check other types.
4813         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
4814                 map(MethodType::returnType).findFirst().orElse(void.class);
4815         loopChecks1cd(pred, fini, loopReturnType);
4816 
4817         // Step 2: determine parameter lists.
4818         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4819         commonParameterSequence.addAll(commonSuffix);
4820         loopChecks2(step, pred, fini, commonParameterSequence);
4821 
4822         // Step 3: fill in omitted functions.
4823         for (int i = 0; i < nclauses; ++i) {
4824             Class<?> t = iterationVariableTypes.get(i);
4825             if (init.get(i) == null) {
4826                 init.set(i, empty(methodType(t, commonSuffix)));
4827             }
4828             if (step.get(i) == null) {
4829                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4830             }
4831             if (pred.get(i) == null) {
4832                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4833             }
4834             if (fini.get(i) == null) {
4835                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4836             }
4837         }
4838 
4839         // Step 4: fill in missing parameter types.
4840         // Also convert all handles to fixed-arity handles.
4841         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4842         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4843         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4844         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4845 
4846         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4847                 allMatch(pl -> pl.equals(commonSuffix));
4848         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4849                 allMatch(pl -> pl.equals(commonParameterSequence));
4850 
4851         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4852     }
4853 
4854     private static void loopChecks0(MethodHandle[][] clauses) {
4855         if (clauses == null || clauses.length == 0) {
4856             throw newIllegalArgumentException("null or no clauses passed");
4857         }
4858         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4859             throw newIllegalArgumentException("null clauses are not allowed");
4860         }
4861         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4862             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4863         }
4864     }
4865 
4866     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4867         if (in.type().returnType() != st.type().returnType()) {
4868             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4869                     st.type().returnType());
4870         }
4871     }
4872 
4873     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4874         final List<Class<?>> empty = List.of();
4875         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4876                 // take only those that can contribute to a common suffix because they are longer than the prefix
4877                         map(MethodHandle::type).
4878                         filter(t -> t.parameterCount() > skipSize).
4879                         map(MethodType::parameterList).
4880                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4881         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4882     }
4883 
4884     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4885         final List<Class<?>> empty = List.of();
4886         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4887     }
4888 
4889     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4890         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4891         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4892         return longestParameterList(Arrays.asList(longest1, longest2));
4893     }
4894 
4895     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4896         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4897                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4898             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4899                     " (common suffix: " + commonSuffix + ")");
4900         }
4901     }
4902 
4903     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4904         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4905                 anyMatch(t -> t != loopReturnType)) {
4906             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4907                     loopReturnType + ")");
4908         }
4909 
4910         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4911             throw newIllegalArgumentException("no predicate found", pred);
4912         }
4913         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4914                 anyMatch(t -> t != boolean.class)) {
4915             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4916         }
4917     }
4918 
4919     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4920         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4921                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4922             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4923                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4924         }
4925     }
4926 
4927     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4928         return hs.stream().map(h -> {
4929             int pc = h.type().parameterCount();
4930             int tpsize = targetParams.size();
4931             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4932         }).collect(Collectors.toList());
4933     }
4934 
4935     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
4936         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
4937     }
4938 
4939     /**
4940      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
4941      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4942      * <p>
4943      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4944      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
4945      * evaluates to {@code true}).
4946      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
4947      * <p>
4948      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4949      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4950      * and updated with the value returned from its invocation. The result of loop execution will be
4951      * the final value of the additional loop-local variable (if present).
4952      * <p>
4953      * The following rules hold for these argument handles:<ul>
4954      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4955      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4956      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4957      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4958      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4959      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4960      * It will constrain the parameter lists of the other loop parts.
4961      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4962      * list {@code (A...)} is called the <em>external parameter list</em>.
4963      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4964      * additional state variable of the loop.
4965      * The body must both accept and return a value of this type {@code V}.
4966      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4967      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4968      * <a href="MethodHandles.html#effid">effectively identical</a>
4969      * to the external parameter list {@code (A...)}.
4970      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4971      * {@linkplain #empty default value}.
4972      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4973      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4974      * effectively identical to the internal parameter list.
4975      * </ul>
4976      * <p>
4977      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4978      * <li>The loop handle's result type is the result type {@code V} of the body.
4979      * <li>The loop handle's parameter types are the types {@code (A...)},
4980      * from the external parameter list.
4981      * </ul>
4982      * <p>
4983      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4984      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4985      * passed to the loop.
4986      * <blockquote><pre>{@code
4987      * V init(A...);
4988      * boolean pred(V, A...);
4989      * V body(V, A...);
4990      * V whileLoop(A... a...) {
4991      *   V v = init(a...);
4992      *   while (pred(v, a...)) {
4993      *     v = body(v, a...);
4994      *   }
4995      *   return v;
4996      * }
4997      * }</pre></blockquote>
4998      * <p>
4999      * @apiNote Example:
5000      * <blockquote><pre>{@code
5001      * // implement the zip function for lists as a loop handle
5002      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5003      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5004      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5005      *   zip.add(a.next());
5006      *   zip.add(b.next());
5007      *   return zip;
5008      * }
5009      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5010      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5011      * List<String> a = Arrays.asList("a", "b", "c", "d");
5012      * List<String> b = Arrays.asList("e", "f", "g", "h");
5013      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5014      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5015      * }</pre></blockquote>
5016      *
5017      * <p>
5018      * @apiNote The implementation of this method can be expressed as follows:
5019      * <blockquote><pre>{@code
5020      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5021      *     MethodHandle fini = (body.type().returnType() == void.class
5022      *                         ? null : identity(body.type().returnType()));
5023      *     MethodHandle[]
5024      *         checkExit = { null, null, pred, fini },
5025      *         varBody   = { init, body };
5026      *     return loop(checkExit, varBody);
5027      * }
5028      * }</pre></blockquote>
5029      *
5030      * @param init optional initializer, providing the initial value of the loop variable.
5031      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5032      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5033      *             above for other constraints.
5034      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5035      *             See above for other constraints.
5036      *
5037      * @return a method handle implementing the {@code while} loop as described by the arguments.
5038      * @throws IllegalArgumentException if the rules for the arguments are violated.
5039      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5040      *
5041      * @see #loop(MethodHandle[][])
5042      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5043      * @since 9
5044      */
5045     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5046         whileLoopChecks(init, pred, body);
5047         MethodHandle fini = identityOrVoid(body.type().returnType());
5048         MethodHandle[] checkExit = { null, null, pred, fini };
5049         MethodHandle[] varBody = { init, body };
5050         return loop(checkExit, varBody);
5051     }
5052 
5053     /**
5054      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5055      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5056      * <p>
5057      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5058      * method will, in each iteration, first execute its body and then evaluate the predicate.
5059      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5060      * <p>
5061      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5062      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5063      * and updated with the value returned from its invocation. The result of loop execution will be
5064      * the final value of the additional loop-local variable (if present).
5065      * <p>
5066      * The following rules hold for these argument handles:<ul>
5067      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5068      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5069      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5070      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5071      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5072      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5073      * It will constrain the parameter lists of the other loop parts.
5074      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5075      * list {@code (A...)} is called the <em>external parameter list</em>.
5076      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5077      * additional state variable of the loop.
5078      * The body must both accept and return a value of this type {@code V}.
5079      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5080      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5081      * <a href="MethodHandles.html#effid">effectively identical</a>
5082      * to the external parameter list {@code (A...)}.
5083      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5084      * {@linkplain #empty default value}.
5085      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5086      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5087      * effectively identical to the internal parameter list.
5088      * </ul>
5089      * <p>
5090      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5091      * <li>The loop handle's result type is the result type {@code V} of the body.
5092      * <li>The loop handle's parameter types are the types {@code (A...)},
5093      * from the external parameter list.
5094      * </ul>
5095      * <p>
5096      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5097      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5098      * passed to the loop.
5099      * <blockquote><pre>{@code
5100      * V init(A...);
5101      * boolean pred(V, A...);
5102      * V body(V, A...);
5103      * V doWhileLoop(A... a...) {
5104      *   V v = init(a...);
5105      *   do {
5106      *     v = body(v, a...);
5107      *   } while (pred(v, a...));
5108      *   return v;
5109      * }
5110      * }</pre></blockquote>
5111      * <p>
5112      * @apiNote Example:
5113      * <blockquote><pre>{@code
5114      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5115      * static int zero(int limit) { return 0; }
5116      * static int step(int i, int limit) { return i + 1; }
5117      * static boolean pred(int i, int limit) { return i < limit; }
5118      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
5119      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
5120      * assertEquals(23, loop.invoke(23));
5121      * }</pre></blockquote>
5122      *
5123      * <p>
5124      * @apiNote The implementation of this method can be expressed as follows:
5125      * <blockquote><pre>{@code
5126      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5127      *     MethodHandle fini = (body.type().returnType() == void.class
5128      *                         ? null : identity(body.type().returnType()));
5129      *     MethodHandle[] clause = { init, body, pred, fini };
5130      *     return loop(clause);
5131      * }
5132      * }</pre></blockquote>
5133      *
5134      * @param init optional initializer, providing the initial value of the loop variable.
5135      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5136      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5137      *             See above for other constraints.
5138      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5139      *             above for other constraints.
5140      *
5141      * @return a method handle implementing the {@code while} loop as described by the arguments.
5142      * @throws IllegalArgumentException if the rules for the arguments are violated.
5143      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5144      *
5145      * @see #loop(MethodHandle[][])
5146      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5147      * @since 9
5148      */
5149     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5150         whileLoopChecks(init, pred, body);
5151         MethodHandle fini = identityOrVoid(body.type().returnType());
5152         MethodHandle[] clause = {init, body, pred, fini };
5153         return loop(clause);
5154     }
5155 
5156     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5157         Objects.requireNonNull(pred);
5158         Objects.requireNonNull(body);
5159         MethodType bodyType = body.type();
5160         Class<?> returnType = bodyType.returnType();
5161         List<Class<?>> innerList = bodyType.parameterList();
5162         List<Class<?>> outerList = innerList;
5163         if (returnType == void.class) {
5164             // OK
5165         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5166             // leading V argument missing => error
5167             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5168             throw misMatchedTypes("body function", bodyType, expected);
5169         } else {
5170             outerList = innerList.subList(1, innerList.size());
5171         }
5172         MethodType predType = pred.type();
5173         if (predType.returnType() != boolean.class ||
5174                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5175             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5176         }
5177         if (init != null) {
5178             MethodType initType = init.type();
5179             if (initType.returnType() != returnType ||
5180                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5181                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5182             }
5183         }
5184     }
5185 
5186     /**
5187      * Constructs a loop that runs a given number of iterations.
5188      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5189      * <p>
5190      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5191      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5192      * It will be initialized to 0 and incremented by 1 in each iteration.
5193      * <p>
5194      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5195      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5196      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5197      * <p>
5198      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5199      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5200      * iteration variable.
5201      * The result of the loop handle execution will be the final {@code V} value of that variable
5202      * (or {@code void} if there is no {@code V} variable).
5203      * <p>
5204      * The following rules hold for the argument handles:<ul>
5205      * <li>The {@code iterations} handle must not be {@code null}, and must return
5206      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5207      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5208      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5209      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5210      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5211      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5212      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5213      * of types called the <em>internal parameter list</em>.
5214      * It will constrain the parameter lists of the other loop parts.
5215      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5216      * with no additional {@code A} types, then the internal parameter list is extended by
5217      * the argument types {@code A...} of the {@code iterations} handle.
5218      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5219      * list {@code (A...)} is called the <em>external parameter list</em>.
5220      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5221      * additional state variable of the loop.
5222      * The body must both accept a leading parameter and return a value of this type {@code V}.
5223      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5224      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5225      * <a href="MethodHandles.html#effid">effectively identical</a>
5226      * to the external parameter list {@code (A...)}.
5227      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5228      * {@linkplain #empty default value}.
5229      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5230      * effectively identical to the external parameter list {@code (A...)}.
5231      * </ul>
5232      * <p>
5233      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5234      * <li>The loop handle's result type is the result type {@code V} of the body.
5235      * <li>The loop handle's parameter types are the types {@code (A...)},
5236      * from the external parameter list.
5237      * </ul>
5238      * <p>
5239      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5240      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5241      * arguments passed to the loop.
5242      * <blockquote><pre>{@code
5243      * int iterations(A...);
5244      * V init(A...);
5245      * V body(V, int, A...);
5246      * V countedLoop(A... a...) {
5247      *   int end = iterations(a...);
5248      *   V v = init(a...);
5249      *   for (int i = 0; i < end; ++i) {
5250      *     v = body(v, i, a...);
5251      *   }
5252      *   return v;
5253      * }
5254      * }</pre></blockquote>
5255      * <p>
5256      * @apiNote Example with a fully conformant body method:
5257      * <blockquote><pre>{@code
5258      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5259      * // => a variation on a well known theme
5260      * static String step(String v, int counter, String init) { return "na " + v; }
5261      * // assume MH_step is a handle to the method above
5262      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5263      * MethodHandle start = MethodHandles.identity(String.class);
5264      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5265      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5266      * }</pre></blockquote>
5267      * <p>
5268      * @apiNote Example with the simplest possible body method type,
5269      * and passing the number of iterations to the loop invocation:
5270      * <blockquote><pre>{@code
5271      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5272      * // => a variation on a well known theme
5273      * static String step(String v, int counter ) { return "na " + v; }
5274      * // assume MH_step is a handle to the method above
5275      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5276      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5277      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5278      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5279      * }</pre></blockquote>
5280      * <p>
5281      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5282      * as loop parameters:
5283      * <blockquote><pre>{@code
5284      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5285      * // => a variation on a well known theme
5286      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5287      * // assume MH_step is a handle to the method above
5288      * MethodHandle count = MethodHandles.identity(int.class);
5289      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5290      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5291      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5292      * }</pre></blockquote>
5293      * <p>
5294      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5295      * to enforce a loop type:
5296      * <blockquote><pre>{@code
5297      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5298      * // => a variation on a well known theme
5299      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5300      * // assume MH_step is a handle to the method above
5301      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5302      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5303      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5304      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5305      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5306      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5307      * }</pre></blockquote>
5308      * <p>
5309      * @apiNote The implementation of this method can be expressed as follows:
5310      * <blockquote><pre>{@code
5311      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5312      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5313      * }
5314      * }</pre></blockquote>
5315      *
5316      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5317      *                   result type must be {@code int}. See above for other constraints.
5318      * @param init optional initializer, providing the initial value of the loop variable.
5319      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5320      * @param body body of the loop, which may not be {@code null}.
5321      *             It controls the loop parameters and result type in the standard case (see above for details).
5322      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5323      *             and may accept any number of additional types.
5324      *             See above for other constraints.
5325      *
5326      * @return a method handle representing the loop.
5327      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5328      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5329      *
5330      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5331      * @since 9
5332      */
5333     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5334         return countedLoop(empty(iterations.type()), iterations, init, body);
5335     }
5336 
5337     /**
5338      * Constructs a loop that counts over a range of numbers.
5339      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5340      * <p>
5341      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5342      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5343      * values of the loop counter.
5344      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5345      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5346      * <p>
5347      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5348      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5349      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5350      * <p>
5351      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5352      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5353      * iteration variable.
5354      * The result of the loop handle execution will be the final {@code V} value of that variable
5355      * (or {@code void} if there is no {@code V} variable).
5356      * <p>
5357      * The following rules hold for the argument handles:<ul>
5358      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5359      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5360      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5361      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5362      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5363      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5364      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5365      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5366      * of types called the <em>internal parameter list</em>.
5367      * It will constrain the parameter lists of the other loop parts.
5368      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5369      * with no additional {@code A} types, then the internal parameter list is extended by
5370      * the argument types {@code A...} of the {@code end} handle.
5371      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5372      * list {@code (A...)} is called the <em>external parameter list</em>.
5373      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5374      * additional state variable of the loop.
5375      * The body must both accept a leading parameter and return a value of this type {@code V}.
5376      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5377      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5378      * <a href="MethodHandles.html#effid">effectively identical</a>
5379      * to the external parameter list {@code (A...)}.
5380      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5381      * {@linkplain #empty default value}.
5382      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5383      * effectively identical to the external parameter list {@code (A...)}.
5384      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5385      * to the external parameter list.
5386      * </ul>
5387      * <p>
5388      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5389      * <li>The loop handle's result type is the result type {@code V} of the body.
5390      * <li>The loop handle's parameter types are the types {@code (A...)},
5391      * from the external parameter list.
5392      * </ul>
5393      * <p>
5394      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5395      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5396      * arguments passed to the loop.
5397      * <blockquote><pre>{@code
5398      * int start(A...);
5399      * int end(A...);
5400      * V init(A...);
5401      * V body(V, int, A...);
5402      * V countedLoop(A... a...) {
5403      *   int e = end(a...);
5404      *   int s = start(a...);
5405      *   V v = init(a...);
5406      *   for (int i = s; i < e; ++i) {
5407      *     v = body(v, i, a...);
5408      *   }
5409      *   return v;
5410      * }
5411      * }</pre></blockquote>
5412      *
5413      * <p>
5414      * @apiNote The implementation of this method can be expressed as follows:
5415      * <blockquote><pre>{@code
5416      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5417      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5418      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5419      *     // the following semantics:
5420      *     // MH_increment: (int limit, int counter) -> counter + 1
5421      *     // MH_predicate: (int limit, int counter) -> counter < limit
5422      *     Class<?> counterType = start.type().returnType();  // int
5423      *     Class<?> returnType = body.type().returnType();
5424      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5425      *     if (returnType != void.class) {  // ignore the V variable
5426      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5427      *         pred = dropArguments(pred, 1, returnType);  // ditto
5428      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5429      *     }
5430      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5431      *     MethodHandle[]
5432      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5433      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5434      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5435      *     return loop(loopLimit, bodyClause, indexVar);
5436      * }
5437      * }</pre></blockquote>
5438      *
5439      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5440      *              See above for other constraints.
5441      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5442      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5443      * @param init optional initializer, providing the initial value of the loop variable.
5444      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5445      * @param body body of the loop, which may not be {@code null}.
5446      *             It controls the loop parameters and result type in the standard case (see above for details).
5447      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5448      *             and may accept any number of additional types.
5449      *             See above for other constraints.
5450      *
5451      * @return a method handle representing the loop.
5452      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5453      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5454      *
5455      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5456      * @since 9
5457      */
5458     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5459         countedLoopChecks(start, end, init, body);
5460         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5461         Class<?> limitType   = end.type().returnType();    // yes, int again
5462         Class<?> returnType  = body.type().returnType();
5463         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5464         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5465         MethodHandle retv = null;
5466         if (returnType != void.class) {
5467             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5468             pred = dropArguments(pred, 1, returnType);  // ditto
5469             retv = dropArguments(identity(returnType), 0, counterType);
5470         }
5471         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5472         MethodHandle[]
5473             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5474             bodyClause = { init, body },            // v = init(); v = body(v, i)
5475             indexVar   = { start, incr };           // i = start(); i = i + 1
5476         return loop(loopLimit, bodyClause, indexVar);
5477     }
5478 
5479     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5480         Objects.requireNonNull(start);
5481         Objects.requireNonNull(end);
5482         Objects.requireNonNull(body);
5483         Class<?> counterType = start.type().returnType();
5484         if (counterType != int.class) {
5485             MethodType expected = start.type().changeReturnType(int.class);
5486             throw misMatchedTypes("start function", start.type(), expected);
5487         } else if (end.type().returnType() != counterType) {
5488             MethodType expected = end.type().changeReturnType(counterType);
5489             throw misMatchedTypes("end function", end.type(), expected);
5490         }
5491         MethodType bodyType = body.type();
5492         Class<?> returnType = bodyType.returnType();
5493         List<Class<?>> innerList = bodyType.parameterList();
5494         // strip leading V value if present
5495         int vsize = (returnType == void.class ? 0 : 1);
5496         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5497             // argument list has no "V" => error
5498             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5499             throw misMatchedTypes("body function", bodyType, expected);
5500         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5501             // missing I type => error
5502             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5503             throw misMatchedTypes("body function", bodyType, expected);
5504         }
5505         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5506         if (outerList.isEmpty()) {
5507             // special case; take lists from end handle
5508             outerList = end.type().parameterList();
5509             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5510         }
5511         MethodType expected = methodType(counterType, outerList);
5512         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5513             throw misMatchedTypes("start parameter types", start.type(), expected);
5514         }
5515         if (end.type() != start.type() &&
5516             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5517             throw misMatchedTypes("end parameter types", end.type(), expected);
5518         }
5519         if (init != null) {
5520             MethodType initType = init.type();
5521             if (initType.returnType() != returnType ||
5522                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5523                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5524             }
5525         }
5526     }
5527 
5528     /**
5529      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5530      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5531      * <p>
5532      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5533      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5534      * <p>
5535      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5536      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5537      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5538      * <p>
5539      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5540      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5541      * iteration variable.
5542      * The result of the loop handle execution will be the final {@code V} value of that variable
5543      * (or {@code void} if there is no {@code V} variable).
5544      * <p>
5545      * The following rules hold for the argument handles:<ul>
5546      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5547      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5548      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5549      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5550      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5551      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5552      * of types called the <em>internal parameter list</em>.
5553      * It will constrain the parameter lists of the other loop parts.
5554      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5555      * with no additional {@code A} types, then the internal parameter list is extended by
5556      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5557      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5558      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5559      * list {@code (A...)} is called the <em>external parameter list</em>.
5560      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5561      * additional state variable of the loop.
5562      * The body must both accept a leading parameter and return a value of this type {@code V}.
5563      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5564      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5565      * <a href="MethodHandles.html#effid">effectively identical</a>
5566      * to the external parameter list {@code (A...)}.
5567      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5568      * {@linkplain #empty default value}.
5569      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5570      * type {@code java.util.Iterator} or a subtype thereof.
5571      * The iterator it produces when the loop is executed will be assumed
5572      * to yield values which can be converted to type {@code T}.
5573      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5574      * effectively identical to the external parameter list {@code (A...)}.
5575      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5576      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5577      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5578      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5579      * the {@link MethodHandle#asType asType} conversion method.
5580      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5581      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5582      * </ul>
5583      * <p>
5584      * The type {@code T} may be either a primitive or reference.
5585      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5586      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5587      * as if by the {@link MethodHandle#asType asType} conversion method.
5588      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5589      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5590      * <p>
5591      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5592      * <li>The loop handle's result type is the result type {@code V} of the body.
5593      * <li>The loop handle's parameter types are the types {@code (A...)},
5594      * from the external parameter list.
5595      * </ul>
5596      * <p>
5597      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5598      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5599      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5600      * <blockquote><pre>{@code
5601      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5602      * V init(A...);
5603      * V body(V,T,A...);
5604      * V iteratedLoop(A... a...) {
5605      *   Iterator<T> it = iterator(a...);
5606      *   V v = init(a...);
5607      *   while (it.hasNext()) {
5608      *     T t = it.next();
5609      *     v = body(v, t, a...);
5610      *   }
5611      *   return v;
5612      * }
5613      * }</pre></blockquote>
5614      * <p>
5615      * @apiNote Example:
5616      * <blockquote><pre>{@code
5617      * // get an iterator from a list
5618      * static List<String> reverseStep(List<String> r, String e) {
5619      *   r.add(0, e);
5620      *   return r;
5621      * }
5622      * static List<String> newArrayList() { return new ArrayList<>(); }
5623      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5624      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5625      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5626      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5627      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5628      * }</pre></blockquote>
5629      * <p>
5630      * @apiNote The implementation of this method can be expressed approximately as follows:
5631      * <blockquote><pre>{@code
5632      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5633      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5634      *     Class<?> returnType = body.type().returnType();
5635      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5636      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5637      *     MethodHandle retv = null, step = body, startIter = iterator;
5638      *     if (returnType != void.class) {
5639      *         // the simple thing first:  in (I V A...), drop the I to get V
5640      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5641      *         // body type signature (V T A...), internal loop types (I V A...)
5642      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5643      *     }
5644      *     if (startIter == null)  startIter = MH_getIter;
5645      *     MethodHandle[]
5646      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5647      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5648      *     return loop(iterVar, bodyClause);
5649      * }
5650      * }</pre></blockquote>
5651      *
5652      * @param iterator an optional handle to return the iterator to start the loop.
5653      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5654      *                 See above for other constraints.
5655      * @param init optional initializer, providing the initial value of the loop variable.
5656      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5657      * @param body body of the loop, which may not be {@code null}.
5658      *             It controls the loop parameters and result type in the standard case (see above for details).
5659      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5660      *             and may accept any number of additional types.
5661      *             See above for other constraints.
5662      *
5663      * @return a method handle embodying the iteration loop functionality.
5664      * @throws NullPointerException if the {@code body} handle is {@code null}.
5665      * @throws IllegalArgumentException if any argument violates the above requirements.
5666      *
5667      * @since 9
5668      */
5669     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5670         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5671         Class<?> returnType = body.type().returnType();
5672         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5673         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5674         MethodHandle startIter;
5675         MethodHandle nextVal;
5676         {
5677             MethodType iteratorType;
5678             if (iterator == null) {
5679                 // derive argument type from body, if available, else use Iterable
5680                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5681                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5682             } else {
5683                 // force return type to the internal iterator class
5684                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5685                 startIter = iterator;
5686             }
5687             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5688             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5689 
5690             // perform the asType transforms under an exception transformer, as per spec.:
5691             try {
5692                 startIter = startIter.asType(iteratorType);
5693                 nextVal = nextRaw.asType(nextValType);
5694             } catch (WrongMethodTypeException ex) {
5695                 throw new IllegalArgumentException(ex);
5696             }
5697         }
5698 
5699         MethodHandle retv = null, step = body;
5700         if (returnType != void.class) {
5701             // the simple thing first:  in (I V A...), drop the I to get V
5702             retv = dropArguments(identity(returnType), 0, Iterator.class);
5703             // body type signature (V T A...), internal loop types (I V A...)
5704             step = swapArguments(body, 0, 1);  // swap V <-> T
5705         }
5706 
5707         MethodHandle[]
5708             iterVar    = { startIter, null, hasNext, retv },
5709             bodyClause = { init, filterArgument(step, 0, nextVal) };
5710         return loop(iterVar, bodyClause);
5711     }
5712 
5713     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5714         Objects.requireNonNull(body);
5715         MethodType bodyType = body.type();
5716         Class<?> returnType = bodyType.returnType();
5717         List<Class<?>> internalParamList = bodyType.parameterList();
5718         // strip leading V value if present
5719         int vsize = (returnType == void.class ? 0 : 1);
5720         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5721             // argument list has no "V" => error
5722             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5723             throw misMatchedTypes("body function", bodyType, expected);
5724         } else if (internalParamList.size() <= vsize) {
5725             // missing T type => error
5726             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5727             throw misMatchedTypes("body function", bodyType, expected);
5728         }
5729         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5730         Class<?> iterableType = null;
5731         if (iterator != null) {
5732             // special case; if the body handle only declares V and T then
5733             // the external parameter list is obtained from iterator handle
5734             if (externalParamList.isEmpty()) {
5735                 externalParamList = iterator.type().parameterList();
5736             }
5737             MethodType itype = iterator.type();
5738             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5739                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5740             }
5741             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5742                 MethodType expected = methodType(itype.returnType(), externalParamList);
5743                 throw misMatchedTypes("iterator parameters", itype, expected);
5744             }
5745         } else {
5746             if (externalParamList.isEmpty()) {
5747                 // special case; if the iterator handle is null and the body handle
5748                 // only declares V and T then the external parameter list consists
5749                 // of Iterable
5750                 externalParamList = Arrays.asList(Iterable.class);
5751                 iterableType = Iterable.class;
5752             } else {
5753                 // special case; if the iterator handle is null and the external
5754                 // parameter list is not empty then the first parameter must be
5755                 // assignable to Iterable
5756                 iterableType = externalParamList.get(0);
5757                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5758                     throw newIllegalArgumentException(
5759                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5760                 }
5761             }
5762         }
5763         if (init != null) {
5764             MethodType initType = init.type();
5765             if (initType.returnType() != returnType ||
5766                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5767                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5768             }
5769         }
5770         return iterableType;  // help the caller a bit
5771     }
5772 
5773     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5774         // there should be a better way to uncross my wires
5775         int arity = mh.type().parameterCount();
5776         int[] order = new int[arity];
5777         for (int k = 0; k < arity; k++)  order[k] = k;
5778         order[i] = j; order[j] = i;
5779         Class<?>[] types = mh.type().parameterArray();
5780         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5781         MethodType swapType = methodType(mh.type().returnType(), types);
5782         return permuteArguments(mh, swapType, order);
5783     }
5784 
5785     /**
5786      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5787      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5788      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5789      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5790      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5791      * {@code try-finally} handle.
5792      * <p>
5793      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5794      * The first is the exception thrown during the
5795      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5796      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5797      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5798      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5799      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5800      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5801      * <p>
5802      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5803      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5804      * two extra leading parameters:<ul>
5805      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5806      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5807      * the result from the execution of the {@code target} handle.
5808      * This parameter is not present if the {@code target} returns {@code void}.
5809      * </ul>
5810      * <p>
5811      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5812      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5813      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5814      * the cleanup.
5815      * <blockquote><pre>{@code
5816      * V target(A..., B...);
5817      * V cleanup(Throwable, V, A...);
5818      * V adapter(A... a, B... b) {
5819      *   V result = (zero value for V);
5820      *   Throwable throwable = null;
5821      *   try {
5822      *     result = target(a..., b...);
5823      *   } catch (Throwable t) {
5824      *     throwable = t;
5825      *     throw t;
5826      *   } finally {
5827      *     result = cleanup(throwable, result, a...);
5828      *   }
5829      *   return result;
5830      * }
5831      * }</pre></blockquote>
5832      * <p>
5833      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5834      * be modified by execution of the target, and so are passed unchanged
5835      * from the caller to the cleanup, if it is invoked.
5836      * <p>
5837      * The target and cleanup must return the same type, even if the cleanup
5838      * always throws.
5839      * To create such a throwing cleanup, compose the cleanup logic
5840      * with {@link #throwException throwException},
5841      * in order to create a method handle of the correct return type.
5842      * <p>
5843      * Note that {@code tryFinally} never converts exceptions into normal returns.
5844      * In rare cases where exceptions must be converted in that way, first wrap
5845      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5846      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5847      *
5848      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5849      * @param cleanup the handle that is invoked in the finally block.
5850      *
5851      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5852      * @throws NullPointerException if any argument is null
5853      * @throws IllegalArgumentException if {@code cleanup} does not accept
5854      *          the required leading arguments, or if the method handle types do
5855      *          not match in their return types and their
5856      *          corresponding trailing parameters
5857      *
5858      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5859      * @since 9
5860      */
5861     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5862         List<Class<?>> targetParamTypes = target.type().parameterList();
5863         List<Class<?>> cleanupParamTypes = cleanup.type().parameterList();
5864         Class<?> rtype = target.type().returnType();
5865 
5866         tryFinallyChecks(target, cleanup);
5867 
5868         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5869         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5870         // target parameter list.
5871         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5872 
5873         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5874         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5875     }
5876 
5877     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5878         Class<?> rtype = target.type().returnType();
5879         if (rtype != cleanup.type().returnType()) {
5880             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5881         }
5882         MethodType cleanupType = cleanup.type();
5883         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5884             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5885         }
5886         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5887             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5888         }
5889         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5890         // target parameter list.
5891         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5892         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5893             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5894                     cleanup.type(), target.type());
5895         }
5896     }
5897 
5898 }