1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.BufferedWriter;
  29 import java.io.Closeable;
  30 import java.io.IOException;
  31 import java.io.File;
  32 import java.io.FileOutputStream;
  33 import java.io.FileNotFoundException;
  34 import java.io.Flushable;
  35 import java.io.OutputStream;
  36 import java.io.OutputStreamWriter;
  37 import java.io.PrintStream;
  38 import java.io.UnsupportedEncodingException;
  39 import java.math.BigDecimal;
  40 import java.math.BigInteger;
  41 import java.math.MathContext;
  42 import java.math.RoundingMode;
  43 import java.nio.charset.Charset;
  44 import java.nio.charset.IllegalCharsetNameException;
  45 import java.nio.charset.UnsupportedCharsetException;
  46 import java.text.DateFormatSymbols;
  47 import java.text.DecimalFormat;
  48 import java.text.DecimalFormatSymbols;
  49 import java.text.NumberFormat;
  50 import java.util.regex.Matcher;
  51 import java.util.regex.Pattern;
  52 import java.util.Objects;
  53 
  54 import java.time.DateTimeException;
  55 import java.time.Instant;
  56 import java.time.ZoneId;
  57 import java.time.ZoneOffset;
  58 import java.time.temporal.ChronoField;
  59 import java.time.temporal.TemporalAccessor;
  60 import java.time.temporal.TemporalQueries;
  61 import java.time.temporal.UnsupportedTemporalTypeException;
  62 
  63 import jdk.internal.math.DoubleConsts;
  64 import jdk.internal.math.FormattedFloatingDecimal;
  65 
  66 /**
  67  * An interpreter for printf-style format strings.  This class provides support
  68  * for layout justification and alignment, common formats for numeric, string,
  69  * and date/time data, and locale-specific output.  Common Java types such as
  70  * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
  71  * are supported.  Limited formatting customization for arbitrary user types is
  72  * provided through the {@link Formattable} interface.
  73  *
  74  * <p> Formatters are not necessarily safe for multithreaded access.  Thread
  75  * safety is optional and is the responsibility of users of methods in this
  76  * class.
  77  *
  78  * <p> Formatted printing for the Java language is heavily inspired by C's
  79  * {@code printf}.  Although the format strings are similar to C, some
  80  * customizations have been made to accommodate the Java language and exploit
  81  * some of its features.  Also, Java formatting is more strict than C's; for
  82  * example, if a conversion is incompatible with a flag, an exception will be
  83  * thrown.  In C inapplicable flags are silently ignored.  The format strings
  84  * are thus intended to be recognizable to C programmers but not necessarily
  85  * completely compatible with those in C.
  86  *
  87  * <p> Examples of expected usage:
  88  *
  89  * <blockquote><pre>
  90  *   StringBuilder sb = new StringBuilder();
  91  *   // Send all output to the Appendable object sb
  92  *   Formatter formatter = new Formatter(sb, Locale.US);
  93  *
  94  *   // Explicit argument indices may be used to re-order output.
  95  *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
  96  *   // -&gt; " d  c  b  a"
  97  *
  98  *   // Optional locale as the first argument can be used to get
  99  *   // locale-specific formatting of numbers.  The precision and width can be
 100  *   // given to round and align the value.
 101  *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
 102  *   // -&gt; "e =    +2,7183"
 103  *
 104  *   // The '(' numeric flag may be used to format negative numbers with
 105  *   // parentheses rather than a minus sign.  Group separators are
 106  *   // automatically inserted.
 107  *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
 108  *                    balanceDelta);
 109  *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
 110  * </pre></blockquote>
 111  *
 112  * <p> Convenience methods for common formatting requests exist as illustrated
 113  * by the following invocations:
 114  *
 115  * <blockquote><pre>
 116  *   // Writes a formatted string to System.out.
 117  *   System.out.format("Local time: %tT", Calendar.getInstance());
 118  *   // -&gt; "Local time: 13:34:18"
 119  *
 120  *   // Writes formatted output to System.err.
 121  *   System.err.printf("Unable to open file '%1$s': %2$s",
 122  *                     fileName, exception.getMessage());
 123  *   // -&gt; "Unable to open file 'food': No such file or directory"
 124  * </pre></blockquote>
 125  *
 126  * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
 127  * method {@link String#format(String,Object...) String.format}:
 128  *
 129  * <blockquote><pre>
 130  *   // Format a string containing a date.
 131  *   import java.util.Calendar;
 132  *   import java.util.GregorianCalendar;
 133  *   import static java.util.Calendar.*;
 134  *
 135  *   Calendar c = new GregorianCalendar(1995, MAY, 23);
 136  *   String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
 137  *   // -&gt; s == "Duke's Birthday: May 23, 1995"
 138  * </pre></blockquote>
 139  *
 140  * <h3><a id="org">Organization</a></h3>
 141  *
 142  * <p> This specification is divided into two sections.  The first section, <a
 143  * href="#summary">Summary</a>, covers the basic formatting concepts.  This
 144  * section is intended for users who want to get started quickly and are
 145  * familiar with formatted printing in other programming languages.  The second
 146  * section, <a href="#detail">Details</a>, covers the specific implementation
 147  * details.  It is intended for users who want more precise specification of
 148  * formatting behavior.
 149  *
 150  * <h3><a id="summary">Summary</a></h3>
 151  *
 152  * <p> This section is intended to provide a brief overview of formatting
 153  * concepts.  For precise behavioral details, refer to the <a
 154  * href="#detail">Details</a> section.
 155  *
 156  * <h4><a id="syntax">Format String Syntax</a></h4>
 157  *
 158  * <p> Every method which produces formatted output requires a <i>format
 159  * string</i> and an <i>argument list</i>.  The format string is a {@link
 160  * String} which may contain fixed text and one or more embedded <i>format
 161  * specifiers</i>.  Consider the following example:
 162  *
 163  * <blockquote><pre>
 164  *   Calendar c = ...;
 165  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 166  * </pre></blockquote>
 167  *
 168  * This format string is the first argument to the {@code format} method.  It
 169  * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
 170  * "{@code %1$tY}" which indicate how the arguments should be processed and
 171  * where they should be inserted in the text.  The remaining portions of the
 172  * format string are fixed text including {@code "Dukes Birthday: "} and any
 173  * other spaces or punctuation.
 174  *
 175  * The argument list consists of all arguments passed to the method after the
 176  * format string.  In the above example, the argument list is of size one and
 177  * consists of the {@link java.util.Calendar Calendar} object {@code c}.
 178  *
 179  * <ul>
 180  *
 181  * <li> The format specifiers for general, character, and numeric types have
 182  * the following syntax:
 183  *
 184  * <blockquote><pre>
 185  *   %[argument_index$][flags][width][.precision]conversion
 186  * </pre></blockquote>
 187  *
 188  * <p> The optional <i>argument_index</i> is a decimal integer indicating the
 189  * position of the argument in the argument list.  The first argument is
 190  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
 191  *
 192  * <p> The optional <i>flags</i> is a set of characters that modify the output
 193  * format.  The set of valid flags depends on the conversion.
 194  *
 195  * <p> The optional <i>width</i> is a positive decimal integer indicating
 196  * the minimum number of characters to be written to the output.
 197  *
 198  * <p> The optional <i>precision</i> is a non-negative decimal integer usually
 199  * used to restrict the number of characters.  The specific behavior depends on
 200  * the conversion.
 201  *
 202  * <p> The required <i>conversion</i> is a character indicating how the
 203  * argument should be formatted.  The set of valid conversions for a given
 204  * argument depends on the argument's data type.
 205  *
 206  * <li> The format specifiers for types which are used to represents dates and
 207  * times have the following syntax:
 208  *
 209  * <blockquote><pre>
 210  *   %[argument_index$][flags][width]conversion
 211  * </pre></blockquote>
 212  *
 213  * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
 214  * defined as above.
 215  *
 216  * <p> The required <i>conversion</i> is a two character sequence.  The first
 217  * character is {@code 't'} or {@code 'T'}.  The second character indicates
 218  * the format to be used.  These characters are similar to but not completely
 219  * identical to those defined by GNU {@code date} and POSIX
 220  * {@code strftime(3c)}.
 221  *
 222  * <li> The format specifiers which do not correspond to arguments have the
 223  * following syntax:
 224  *
 225  * <blockquote><pre>
 226  *   %[flags][width]conversion
 227  * </pre></blockquote>
 228  *
 229  * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
 230  *
 231  * <p> The required <i>conversion</i> is a character indicating content to be
 232  * inserted in the output.
 233  *
 234  * </ul>
 235  *
 236  * <h4> Conversions </h4>
 237  *
 238  * <p> Conversions are divided into the following categories:
 239  *
 240  * <ol>
 241  *
 242  * <li> <b>General</b> - may be applied to any argument
 243  * type
 244  *
 245  * <li> <b>Character</b> - may be applied to basic types which represent
 246  * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
 247  * Byte}, {@code short}, and {@link Short}. This conversion may also be
 248  * applied to the types {@code int} and {@link Integer} when {@link
 249  * Character#isValidCodePoint} returns {@code true}
 250  *
 251  * <li> <b>Numeric</b>
 252  *
 253  * <ol>
 254  *
 255  * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
 256  * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
 257  * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
 258  * BigInteger} (but not {@code char} or {@link Character})
 259  *
 260  * <li><b>Floating Point</b> - may be applied to Java floating-point types:
 261  * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
 262  * java.math.BigDecimal BigDecimal}
 263  *
 264  * </ol>
 265  *
 266  * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
 267  * encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
 268  * {@link Date} and {@link TemporalAccessor TemporalAccessor}
 269  *
 270  * <li> <b>Percent</b> - produces a literal {@code '%'}
 271  * (<code>'\u0025'</code>)
 272  *
 273  * <li> <b>Line Separator</b> - produces the platform-specific line separator
 274  *
 275  * </ol>
 276  *
 277  * <p> For category <i>General</i>, <i>Character</i>, <i>Numberic</i>,
 278  * <i>Integral</i> and <i>Date/Time</i> conversion, unless otherwise specified,
 279  * if the argument <i>arg</i> is {@code null}, then the result is "{@code null}".
 280  *
 281  * <p> The following table summarizes the supported conversions.  Conversions
 282  * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
 283  * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
 284  * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
 285  * lower-case conversion characters except that the result is converted to
 286  * upper case according to the rules of the prevailing {@link java.util.Locale
 287  * Locale}.  The result is equivalent to the following invocation of {@link
 288  * String#toUpperCase(Locale)}
 289  *
 290  * <pre>
 291  *    out.toUpperCase(Locale.getDefault(Locale.Category.FORMAT)) </pre>
 292  *
 293  * <table class="altrows">
 294  * <caption style="display:none">genConv</caption>
 295  * <thead>
 296  * <tr><th style="vertical-align:bottom"> Conversion
 297  *     <th style="vertical-align:bottom"> Argument Category
 298  *     <th style="vertical-align:bottom"> Description
 299  * </thead>
 300  * <tbody>
 301  * <tr><td style="vertical-align:top"> {@code 'b'}, {@code 'B'}
 302  *     <td style="vertical-align:top"> general
 303  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 304  *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
 305  *     Boolean}, then the result is the string returned by {@link
 306  *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
 307  *     "true".
 308  *
 309  * <tr><td style="vertical-align:top"> {@code 'h'}, {@code 'H'}
 310  *     <td style="vertical-align:top"> general
 311  *     <td> The result is obtained by invoking
 312  *     {@code Integer.toHexString(arg.hashCode())}.
 313  *
 314  * <tr><td style="vertical-align:top"> {@code 's'}, {@code 'S'}
 315  *     <td style="vertical-align:top"> general
 316  *     <td> If <i>arg</i> implements {@link Formattable}, then
 317  *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
 318  *     result is obtained by invoking {@code arg.toString()}.
 319  *
 320  * <tr><td style="vertical-align:top">{@code 'c'}, {@code 'C'}
 321  *     <td style="vertical-align:top"> character
 322  *     <td> The result is a Unicode character
 323  *
 324  * <tr><td style="vertical-align:top">{@code 'd'}
 325  *     <td style="vertical-align:top"> integral
 326  *     <td> The result is formatted as a decimal integer
 327  *
 328  * <tr><td style="vertical-align:top">{@code 'o'}
 329  *     <td style="vertical-align:top"> integral
 330  *     <td> The result is formatted as an octal integer
 331  *
 332  * <tr><td style="vertical-align:top">{@code 'x'}, {@code 'X'}
 333  *     <td style="vertical-align:top"> integral
 334  *     <td> The result is formatted as a hexadecimal integer
 335  *
 336  * <tr><td style="vertical-align:top">{@code 'e'}, {@code 'E'}
 337  *     <td style="vertical-align:top"> floating point
 338  *     <td> The result is formatted as a decimal number in computerized
 339  *     scientific notation
 340  *
 341  * <tr><td style="vertical-align:top">{@code 'f'}
 342  *     <td style="vertical-align:top"> floating point
 343  *     <td> The result is formatted as a decimal number
 344  *
 345  * <tr><td style="vertical-align:top">{@code 'g'}, {@code 'G'}
 346  *     <td style="vertical-align:top"> floating point
 347  *     <td> The result is formatted using computerized scientific notation or
 348  *     decimal format, depending on the precision and the value after rounding.
 349  *
 350  * <tr><td style="vertical-align:top">{@code 'a'}, {@code 'A'}
 351  *     <td style="vertical-align:top"> floating point
 352  *     <td> The result is formatted as a hexadecimal floating-point number with
 353  *     a significand and an exponent. This conversion is <b>not</b> supported
 354  *     for the {@code BigDecimal} type despite the latter's being in the
 355  *     <i>floating point</i> argument category.
 356  *
 357  * <tr><td style="vertical-align:top">{@code 't'}, {@code 'T'}
 358  *     <td style="vertical-align:top"> date/time
 359  *     <td> Prefix for date and time conversion characters.  See <a
 360  *     href="#dt">Date/Time Conversions</a>.
 361  *
 362  * <tr><td style="vertical-align:top">{@code '%'}
 363  *     <td style="vertical-align:top"> percent
 364  *     <td> The result is a literal {@code '%'} (<code>'\u0025'</code>)
 365  *
 366  * <tr><td style="vertical-align:top">{@code 'n'}
 367  *     <td style="vertical-align:top"> line separator
 368  *     <td> The result is the platform-specific line separator
 369  *
 370  * </tbody>
 371  * </table>
 372  *
 373  * <p> Any characters not explicitly defined as conversions are illegal and are
 374  * reserved for future extensions.
 375  *
 376  * <h4><a id="dt">Date/Time Conversions</a></h4>
 377  *
 378  * <p> The following date and time conversion suffix characters are defined for
 379  * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
 380  * not completely identical to those defined by GNU {@code date} and POSIX
 381  * {@code strftime(3c)}.  Additional conversion types are provided to access
 382  * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
 383  * second).
 384  *
 385  * <p> The following conversion characters are used for formatting times:
 386  *
 387  * <table class="altrows">
 388  * <caption style="display:none">time</caption>
 389  * <tbody>
 390  * <tr><td style="vertical-align:top"> {@code 'H'}
 391  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
 392  *     a leading zero as necessary i.e. {@code 00 - 23}.
 393  *
 394  * <tr><td style="vertical-align:top">{@code 'I'}
 395  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
 396  *     zero as necessary, i.e.  {@code 01 - 12}.
 397  *
 398  * <tr><td style="vertical-align:top">{@code 'k'}
 399  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
 400  *
 401  * <tr><td style="vertical-align:top">{@code 'l'}
 402  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
 403  *
 404  * <tr><td style="vertical-align:top">{@code 'M'}
 405  *     <td> Minute within the hour formatted as two digits with a leading zero
 406  *     as necessary, i.e.  {@code 00 - 59}.
 407  *
 408  * <tr><td style="vertical-align:top">{@code 'S'}
 409  *     <td> Seconds within the minute, formatted as two digits with a leading
 410  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
 411  *     value required to support leap seconds).
 412  *
 413  * <tr><td style="vertical-align:top">{@code 'L'}
 414  *     <td> Millisecond within the second formatted as three digits with
 415  *     leading zeros as necessary, i.e. {@code 000 - 999}.
 416  *
 417  * <tr><td style="vertical-align:top">{@code 'N'}
 418  *     <td> Nanosecond within the second, formatted as nine digits with leading
 419  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
 420  *
 421  * <tr><td style="vertical-align:top">{@code 'p'}
 422  *     <td> Locale-specific {@linkplain
 423  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
 424  *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
 425  *     prefix {@code 'T'} forces this output to upper case.
 426  *
 427  * <tr><td style="vertical-align:top">{@code 'z'}
 428  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
 429  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
 430  *     value will be adjusted as necessary for Daylight Saving Time.  For
 431  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
 432  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 433  *     instance of the Java virtual machine.
 434  *
 435  * <tr><td style="vertical-align:top">{@code 'Z'}
 436  *     <td> A string representing the abbreviation for the time zone.  This
 437  *     value will be adjusted as necessary for Daylight Saving Time.  For
 438  *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
 439  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 440  *     instance of the Java virtual machine.  The Formatter's locale will
 441  *     supersede the locale of the argument (if any).
 442  *
 443  * <tr><td style="vertical-align:top">{@code 's'}
 444  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
 445  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
 446  *     {@code Long.MAX_VALUE/1000}.
 447  *
 448  * <tr><td style="vertical-align:top">{@code 'Q'}
 449  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
 450  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
 451  *     {@code Long.MAX_VALUE}.
 452  *
 453  * </tbody>
 454  * </table>
 455  *
 456  * <p> The following conversion characters are used for formatting dates:
 457  *
 458  * <table class="altrows">
 459  * <caption style="display:none">date</caption>
 460  * <tbody>
 461  *
 462  * <tr><td style="vertical-align:top">{@code 'B'}
 463  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
 464  *     full month name}, e.g. {@code "January"}, {@code "February"}.
 465  *
 466  * <tr><td style="vertical-align:top">{@code 'b'}
 467  *     <td> Locale-specific {@linkplain
 468  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
 469  *     e.g. {@code "Jan"}, {@code "Feb"}.
 470  *
 471  * <tr><td style="vertical-align:top">{@code 'h'}
 472  *     <td> Same as {@code 'b'}.
 473  *
 474  * <tr><td style="vertical-align:top">{@code 'A'}
 475  *     <td> Locale-specific full name of the {@linkplain
 476  *     java.text.DateFormatSymbols#getWeekdays day of the week},
 477  *     e.g. {@code "Sunday"}, {@code "Monday"}
 478  *
 479  * <tr><td style="vertical-align:top">{@code 'a'}
 480  *     <td> Locale-specific short name of the {@linkplain
 481  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
 482  *     e.g. {@code "Sun"}, {@code "Mon"}
 483  *
 484  * <tr><td style="vertical-align:top">{@code 'C'}
 485  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
 486  *     with leading zero as necessary, i.e. {@code 00 - 99}
 487  *
 488  * <tr><td style="vertical-align:top">{@code 'Y'}
 489  *     <td> Year, formatted as at least four digits with leading zeros as
 490  *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
 491  *     calendar.
 492  *
 493  * <tr><td style="vertical-align:top">{@code 'y'}
 494  *     <td> Last two digits of the year, formatted with leading zeros as
 495  *     necessary, i.e. {@code 00 - 99}.
 496  *
 497  * <tr><td style="vertical-align:top">{@code 'j'}
 498  *     <td> Day of year, formatted as three digits with leading zeros as
 499  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
 500  *
 501  * <tr><td style="vertical-align:top">{@code 'm'}
 502  *     <td> Month, formatted as two digits with leading zeros as necessary,
 503  *     i.e. {@code 01 - 13}.
 504  *
 505  * <tr><td style="vertical-align:top">{@code 'd'}
 506  *     <td> Day of month, formatted as two digits with leading zeros as
 507  *     necessary, i.e. {@code 01 - 31}
 508  *
 509  * <tr><td style="vertical-align:top">{@code 'e'}
 510  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
 511  *
 512  * </tbody>
 513  * </table>
 514  *
 515  * <p> The following conversion characters are used for formatting common
 516  * date/time compositions.
 517  *
 518  * <table class="altrows">
 519  * <caption style="display:none">composites</caption>
 520  * <tbody>
 521  *
 522  * <tr><td style="vertical-align:top">{@code 'R'}
 523  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
 524  *
 525  * <tr><td style="vertical-align:top">{@code 'T'}
 526  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
 527  *
 528  * <tr><td style="vertical-align:top">{@code 'r'}
 529  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
 530  *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
 531  *     locale-dependent.
 532  *
 533  * <tr><td style="vertical-align:top">{@code 'D'}
 534  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
 535  *
 536  * <tr><td style="vertical-align:top">{@code 'F'}
 537  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
 538  *     complete date formatted as {@code "%tY-%tm-%td"}.
 539  *
 540  * <tr><td style="vertical-align:top">{@code 'c'}
 541  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
 542  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
 543  * 
 544  * </tbody>
 545  * </table>
 546  *
 547  * <p> Any characters not explicitly defined as date/time conversion suffixes
 548  * are illegal and are reserved for future extensions.
 549  *
 550  * <h4> Flags </h4>
 551  *
 552  * <p> The following table summarizes the supported flags.  <i>y</i> means the
 553  * flag is supported for the indicated argument types.
 554  *
 555  * <table class="altrows">
 556  * <caption style="display:none">genConv</caption>
 557  * <thead>
 558  * <tr><th style="vertical-align:bottom"> Flag <th style="vertical-align:bottom"> General
 559  *     <th style="vertical-align:bottom"> Character <th style="vertical-align:bottom"> Integral
 560  *     <th style="vertical-align:bottom"> Floating Point
 561  *     <th style="vertical-align:bottom"> Date/Time
 562  *     <th style="vertical-align:bottom"> Description
 563  * </thead>
 564  * <tbody>
 565  * <tr><td> '-' <td style="text-align:center; vertical-align:top"> y
 566  *     <td style="text-align:center; vertical-align:top"> y
 567  *     <td style="text-align:center; vertical-align:top"> y
 568  *     <td style="text-align:center; vertical-align:top"> y
 569  *     <td style="text-align:center; vertical-align:top"> y
 570  *     <td> The result will be left-justified.
 571  *
 572  * <tr><td> '#' <td style="text-align:center; vertical-align:top"> y<sup>1</sup>
 573  *     <td style="text-align:center; vertical-align:top"> -
 574  *     <td style="text-align:center; vertical-align:top"> y<sup>3</sup>
 575  *     <td style="text-align:center; vertical-align:top"> y
 576  *     <td style="text-align:center; vertical-align:top"> -
 577  *     <td> The result should use a conversion-dependent alternate form
 578  *
 579  * <tr><td> '+' <td style="text-align:center; vertical-align:top"> -
 580  *     <td style="text-align:center; vertical-align:top"> -
 581  *     <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
 582  *     <td style="text-align:center; vertical-align:top"> y
 583  *     <td style="text-align:center; vertical-align:top"> -
 584  *     <td> The result will always include a sign
 585  *
 586  * <tr><td> '&nbsp;&nbsp;' <td style="text-align:center; vertical-align:top"> -
 587  *     <td style="text-align:center; vertical-align:top"> -
 588  *     <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
 589  *     <td style="text-align:center; vertical-align:top"> y
 590  *     <td style="text-align:center; vertical-align:top"> -
 591  *     <td> The result will include a leading space for positive values
 592  *
 593  * <tr><td> '0' <td style="text-align:center; vertical-align:top"> -
 594  *     <td style="text-align:center; vertical-align:top"> -
 595  *     <td style="text-align:center; vertical-align:top"> y
 596  *     <td style="text-align:center; vertical-align:top"> y
 597  *     <td style="text-align:center; vertical-align:top"> -
 598  *     <td> The result will be zero-padded
 599  *
 600  * <tr><td> ',' <td style="text-align:center; vertical-align:top"> -
 601  *     <td style="text-align:center; vertical-align:top"> -
 602  *     <td style="text-align:center; vertical-align:top"> y<sup>2</sup>
 603  *     <td style="text-align:center; vertical-align:top"> y<sup>5</sup>
 604  *     <td style="text-align:center; vertical-align:top"> -
 605  *     <td> The result will include locale-specific {@linkplain
 606  *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
 607  *
 608  * <tr><td> '(' <td style="text-align:center; vertical-align:top"> -
 609  *     <td style="text-align:center; vertical-align:top"> -
 610  *     <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
 611  *     <td style="text-align:center; vertical-align:top"> y<sup>5</sup>
 612  *     <td style="text-align:center"> -
 613  *     <td> The result will enclose negative numbers in parentheses
 614  *
 615  * </tbody>
 616  * </table>
 617  *
 618  * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
 619  *
 620  * <p> <sup>2</sup> For {@code 'd'} conversion only.
 621  *
 622  * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
 623  * conversions only.
 624  *
 625  * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
 626  * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
 627  * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
 628  * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
 629  *
 630  * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
 631  * {@code 'g'}, and {@code 'G'} conversions only.
 632  *
 633  * <p> Any characters not explicitly defined as flags are illegal and are
 634  * reserved for future extensions.
 635  *
 636  * <h4> Width </h4>
 637  *
 638  * <p> The width is the minimum number of characters to be written to the
 639  * output.  For the line separator conversion, width is not applicable; if it
 640  * is provided, an exception will be thrown.
 641  *
 642  * <h4> Precision </h4>
 643  *
 644  * <p> For general argument types, the precision is the maximum number of
 645  * characters to be written to the output.
 646  *
 647  * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
 648  * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
 649  * radix point.  If the conversion is {@code 'g'} or {@code 'G'}, then the
 650  * precision is the total number of digits in the resulting magnitude after
 651  * rounding.
 652  *
 653  * <p> For character, integral, and date/time argument types and the percent
 654  * and line separator conversions, the precision is not applicable; if a
 655  * precision is provided, an exception will be thrown.
 656  *
 657  * <h4> Argument Index </h4>
 658  *
 659  * <p> The argument index is a decimal integer indicating the position of the
 660  * argument in the argument list.  The first argument is referenced by
 661  * "{@code 1$}", the second by "{@code 2$}", etc.
 662  *
 663  * <p> Another way to reference arguments by position is to use the
 664  * {@code '<'} (<code>'\u003c'</code>) flag, which causes the argument for
 665  * the previous format specifier to be re-used.  For example, the following two
 666  * statements would produce identical strings:
 667  *
 668  * <blockquote><pre>
 669  *   Calendar c = ...;
 670  *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 671  *
 672  *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
 673  * </pre></blockquote>
 674  *
 675  * <hr>
 676  * <h3><a id="detail">Details</a></h3>
 677  *
 678  * <p> This section is intended to provide behavioral details for formatting,
 679  * including conditions and exceptions, supported data types, localization, and
 680  * interactions between flags, conversions, and data types.  For an overview of
 681  * formatting concepts, refer to the <a href="#summary">Summary</a>
 682  *
 683  * <p> Any characters not explicitly defined as conversions, date/time
 684  * conversion suffixes, or flags are illegal and are reserved for
 685  * future extensions.  Use of such a character in a format string will
 686  * cause an {@link UnknownFormatConversionException} or {@link
 687  * UnknownFormatFlagsException} to be thrown.
 688  *
 689  * <p> If the format specifier contains a width or precision with an invalid
 690  * value or which is otherwise unsupported, then a {@link
 691  * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
 692  * respectively will be thrown.
 693  *
 694  * <p> If a format specifier contains a conversion character that is not
 695  * applicable to the corresponding argument, then an {@link
 696  * IllegalFormatConversionException} will be thrown.
 697  *
 698  * <p> All specified exceptions may be thrown by any of the {@code format}
 699  * methods of {@code Formatter} as well as by any {@code format} convenience
 700  * methods such as {@link String#format(String,Object...) String.format} and
 701  * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
 702  *
 703  * <p> For category <i>General</i>, <i>Character</i>, <i>Numberic</i>,
 704  * <i>Integral</i> and <i>Date/Time</i> conversion, unless otherwise specified,
 705  * if the argument <i>arg</i> is {@code null}, then the result is "{@code null}".
 706  *
 707  * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
 708  * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
 709  * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
 710  * corresponding lower-case conversion characters except that the result is
 711  * converted to upper case according to the rules of the prevailing {@link
 712  * java.util.Locale Locale}.  The result is equivalent to the following
 713  * invocation of {@link String#toUpperCase(Locale)}
 714  *
 715  * <pre>
 716  *    out.toUpperCase(Locale.getDefault(Locale.Category.FORMAT)) </pre>
 717  *
 718  * <h4><a id="dgen">General</a></h4>
 719  *
 720  * <p> The following general conversions may be applied to any argument type:
 721  *
 722  * <table class="altrows">
 723  * <caption style="display:none">dgConv</caption>
 724  * <tbody>
 725  *
 726  * <tr><td style="vertical-align:top"> {@code 'b'}
 727  *     <td style="vertical-align:top"> <code>'\u0062'</code>
 728  *     <td> Produces either "{@code true}" or "{@code false}" as returned by
 729  *     {@link Boolean#toString(boolean)}.
 730  *
 731  *     <p> If the argument is {@code null}, then the result is
 732  *     "{@code false}".  If the argument is a {@code boolean} or {@link
 733  *     Boolean}, then the result is the string returned by {@link
 734  *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
 735  *     "{@code true}".
 736  *
 737  *     <p> If the {@code '#'} flag is given, then a {@link
 738  *     FormatFlagsConversionMismatchException} will be thrown.
 739  *
 740  * <tr><td style="vertical-align:top"> {@code 'B'}
 741  *     <td style="vertical-align:top"> <code>'\u0042'</code>
 742  *     <td> The upper-case variant of {@code 'b'}.
 743  *
 744  * <tr><td style="vertical-align:top"> {@code 'h'}
 745  *     <td style="vertical-align:top"> <code>'\u0068'</code>
 746  *     <td> Produces a string representing the hash code value of the object.
 747  *
 748  *     <p> The result is obtained by invoking
 749  *     {@code Integer.toHexString(arg.hashCode())}.
 750  *
 751  *     <p> If the {@code '#'} flag is given, then a {@link
 752  *     FormatFlagsConversionMismatchException} will be thrown.
 753  *
 754  * <tr><td style="vertical-align:top"> {@code 'H'}
 755  *     <td style="vertical-align:top"> <code>'\u0048'</code>
 756  *     <td> The upper-case variant of {@code 'h'}.
 757  *
 758  * <tr><td style="vertical-align:top"> {@code 's'}
 759  *     <td style="vertical-align:top"> <code>'\u0073'</code>
 760  *     <td> Produces a string.
 761  *
 762  *     <p> If the argument implements {@link Formattable}, then
 763  *     its {@link Formattable#formatTo formatTo} method is invoked.
 764  *     Otherwise, the result is obtained by invoking the argument's
 765  *     {@code toString()} method.
 766  *
 767  *     <p> If the {@code '#'} flag is given and the argument is not a {@link
 768  *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
 769  *     will be thrown.
 770  *
 771  * <tr><td style="vertical-align:top"> {@code 'S'}
 772  *     <td style="vertical-align:top"> <code>'\u0053'</code>
 773  *     <td> The upper-case variant of {@code 's'}.
 774  *
 775  * </tbody>
 776  * </table>
 777  *
 778  * <p> The following <a id="dFlags">flags</a> apply to general conversions:
 779  *
 780  * <table class="altrows">
 781  * <caption style="display:none">dFlags</caption>
 782  * <tbody>
 783  *
 784  * <tr><td style="vertical-align:top"> {@code '-'}
 785  *     <td style="vertical-align:top"> <code>'\u002d'</code>
 786  *     <td> Left justifies the output.  Spaces (<code>'\u0020'</code>) will be
 787  *     added at the end of the converted value as required to fill the minimum
 788  *     width of the field.  If the width is not provided, then a {@link
 789  *     MissingFormatWidthException} will be thrown.  If this flag is not given
 790  *     then the output will be right-justified.
 791  *
 792  * <tr><td style="vertical-align:top"> {@code '#'}
 793  *     <td style="vertical-align:top"> <code>'\u0023'</code>
 794  *     <td> Requires the output use an alternate form.  The definition of the
 795  *     form is specified by the conversion.
 796  *
 797  * </tbody>
 798  * </table>
 799  *
 800  * <p> The <a id="genWidth">width</a> is the minimum number of characters to
 801  * be written to the
 802  * output.  If the length of the converted value is less than the width then
 803  * the output will be padded by <code>'&nbsp;&nbsp;'</code> (<code>'\u0020'</code>)
 804  * until the total number of characters equals the width.  The padding is on
 805  * the left by default.  If the {@code '-'} flag is given, then the padding
 806  * will be on the right.  If the width is not specified then there is no
 807  * minimum.
 808  *
 809  * <p> The precision is the maximum number of characters to be written to the
 810  * output.  The precision is applied before the width, thus the output will be
 811  * truncated to {@code precision} characters even if the width is greater than
 812  * the precision.  If the precision is not specified then there is no explicit
 813  * limit on the number of characters.
 814  *
 815  * <h4><a id="dchar">Character</a></h4>
 816  *
 817  * This conversion may be applied to {@code char} and {@link Character}.  It
 818  * may also be applied to the types {@code byte}, {@link Byte},
 819  * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
 820  * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
 821  * {@code false} then an {@link IllegalFormatCodePointException} will be
 822  * thrown.
 823  *
 824  * <table class="altrows">
 825  * <caption style="display:none">charConv</caption>
 826  * <tbody>
 827  *
 828  * <tr><td style="vertical-align:top"> {@code 'c'}
 829  *     <td style="vertical-align:top"> <code>'\u0063'</code>
 830  *     <td> Formats the argument as a Unicode character as described in <a
 831  *     href="../lang/Character.html#unicode">Unicode Character
 832  *     Representation</a>.  This may be more than one 16-bit {@code char} in
 833  *     the case where the argument represents a supplementary character.
 834  *
 835  *     <p> If the {@code '#'} flag is given, then a {@link
 836  *     FormatFlagsConversionMismatchException} will be thrown.
 837  *
 838  * <tr><td style="vertical-align:top"> {@code 'C'}
 839  *     <td style="vertical-align:top"> <code>'\u0043'</code>
 840  *     <td> The upper-case variant of {@code 'c'}.
 841  *
 842  * </tbody>
 843  * </table>
 844  *
 845  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
 846  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
 847  * FormatFlagsConversionMismatchException} will be thrown.
 848  *
 849  * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
 850  *
 851  * <p> The precision is not applicable.  If the precision is specified then an
 852  * {@link IllegalFormatPrecisionException} will be thrown.
 853  *
 854  * <h4><a id="dnum">Numeric</a></h4>
 855  *
 856  * <p> Numeric conversions are divided into the following categories:
 857  *
 858  * <ol>
 859  *
 860  * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
 861  *
 862  * <li> <a href="#dnbint"><b>BigInteger</b></a>
 863  *
 864  * <li> <a href="#dndec"><b>Float and Double</b></a>
 865  *
 866  * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
 867  *
 868  * </ol>
 869  *
 870  * <p> Numeric types will be formatted according to the following algorithm:
 871  *
 872  * <p><b><a id="L10nAlgorithm"> Number Localization Algorithm</a></b>
 873  *
 874  * <p> After digits are obtained for the integer part, fractional part, and
 875  * exponent (as appropriate for the data type), the following transformation
 876  * is applied:
 877  *
 878  * <ol>
 879  *
 880  * <li> Each digit character <i>d</i> in the string is replaced by a
 881  * locale-specific digit computed relative to the current locale's
 882  * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
 883  * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
 884  * <i>&nbsp;+&nbsp;z</i>.
 885  *
 886  * <li> If a decimal separator is present, a locale-specific {@linkplain
 887  * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
 888  * substituted.
 889  *
 890  * <li> If the {@code ','} (<code>'\u002c'</code>)
 891  * <a id="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
 892  * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
 893  * inserted by scanning the integer part of the string from least significant
 894  * to most significant digits and inserting a separator at intervals defined by
 895  * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
 896  * size}.
 897  *
 898  * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
 899  * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
 900  * after the sign character, if any, and before the first non-zero digit, until
 901  * the length of the string is equal to the requested field width.
 902  *
 903  * <li> If the value is negative and the {@code '('} flag is given, then a
 904  * {@code '('} (<code>'\u0028'</code>) is prepended and a {@code ')'}
 905  * (<code>'\u0029'</code>) is appended.
 906  *
 907  * <li> If the value is negative (or floating-point negative zero) and
 908  * {@code '('} flag is not given, then a {@code '-'} (<code>'\u002d'</code>)
 909  * is prepended.
 910  *
 911  * <li> If the {@code '+'} flag is given and the value is positive or zero (or
 912  * floating-point positive zero), then a {@code '+'} (<code>'\u002b'</code>)
 913  * will be prepended.
 914  *
 915  * </ol>
 916  *
 917  * <p> If the value is NaN or positive infinity the literal strings "NaN" or
 918  * "Infinity" respectively, will be output.  If the value is negative infinity,
 919  * then the output will be "(Infinity)" if the {@code '('} flag is given
 920  * otherwise the output will be "-Infinity".  These values are not localized.
 921  *
 922  * <p><a id="dnint"><b> Byte, Short, Integer, and Long </b></a>
 923  *
 924  * <p> The following conversions may be applied to {@code byte}, {@link Byte},
 925  * {@code short}, {@link Short}, {@code int} and {@link Integer},
 926  * {@code long}, and {@link Long}.
 927  *
 928  * <table class="altrows">
 929  * <caption style="display:none">IntConv</caption>
 930  * <tbody>
 931  *
 932  * <tr><td style="vertical-align:top"> {@code 'd'}
 933  *     <td style="vertical-align:top"> <code>'\u0064'</code>
 934  *     <td> Formats the argument as a decimal integer. The <a
 935  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
 936  *
 937  *     <p> If the {@code '0'} flag is given and the value is negative, then
 938  *     the zero padding will occur after the sign.
 939  *
 940  *     <p> If the {@code '#'} flag is given then a {@link
 941  *     FormatFlagsConversionMismatchException} will be thrown.
 942  *
 943  * <tr><td style="vertical-align:top"> {@code 'o'}
 944  *     <td style="vertical-align:top"> <code>'\u006f'</code>
 945  *     <td> Formats the argument as an integer in base eight.  No localization
 946  *     is applied.
 947  *
 948  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 949  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 950  *     number of bits in the type as returned by the static {@code SIZE} field
 951  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 952  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 953  *     classes as appropriate.
 954  *
 955  *     <p> If the {@code '#'} flag is given then the output will always begin
 956  *     with the radix indicator {@code '0'}.
 957  *
 958  *     <p> If the {@code '0'} flag is given then the output will be padded
 959  *     with leading zeros to the field width following any indication of sign.
 960  *
 961  *     <p> If {@code '('}, {@code '+'}, '&nbsp;&nbsp;', or {@code ','} flags
 962  *     are given then a {@link FormatFlagsConversionMismatchException} will be
 963  *     thrown.
 964  *
 965  * <tr><td style="vertical-align:top"> {@code 'x'}
 966  *     <td style="vertical-align:top"> <code>'\u0078'</code>
 967  *     <td> Formats the argument as an integer in base sixteen. No
 968  *     localization is applied.
 969  *
 970  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 971  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 972  *     number of bits in the type as returned by the static {@code SIZE} field
 973  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 974  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 975  *     classes as appropriate.
 976  *
 977  *     <p> If the {@code '#'} flag is given then the output will always begin
 978  *     with the radix indicator {@code "0x"}.
 979  *
 980  *     <p> If the {@code '0'} flag is given then the output will be padded to
 981  *     the field width with leading zeros after the radix indicator or sign (if
 982  *     present).
 983  *
 984  *     <p> If {@code '('}, <code>'&nbsp;&nbsp;'</code>, {@code '+'}, or
 985  *     {@code ','} flags are given then a {@link
 986  *     FormatFlagsConversionMismatchException} will be thrown.
 987  *
 988  * <tr><td style="vertical-align:top"> {@code 'X'}
 989  *     <td style="vertical-align:top"> <code>'\u0058'</code>
 990  *     <td> The upper-case variant of {@code 'x'}.  The entire string
 991  *     representing the number will be converted to {@linkplain
 992  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
 993  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
 994  *     (<code>'\u0061'</code> -  <code>'\u0066'</code>).
 995  *
 996  * </tbody>
 997  * </table>
 998  *
 999  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1000  * both the {@code '#'} and the {@code '0'} flags are given, then result will
1001  * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
1002  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1003  * and the value.
1004  *
1005  * <p> If the {@code '-'} flag is not given, then the space padding will occur
1006  * before the sign.
1007  *
1008  * <p> The following <a id="intFlags">flags</a> apply to numeric integral
1009  * conversions:
1010  *
1011  * <table class="altrows">
1012  * <caption style="display:none">intFlags</caption>
1013  * <tbody>
1014  *
1015  * <tr><td style="vertical-align:top"> {@code '+'}
1016  *     <td style="vertical-align:top"> <code>'\u002b'</code>
1017  *     <td> Requires the output to include a positive sign for all positive
1018  *     numbers.  If this flag is not given then only negative values will
1019  *     include a sign.
1020  *
1021  *     <p> If both the {@code '+'} and <code>'&nbsp;&nbsp;'</code> flags are given
1022  *     then an {@link IllegalFormatFlagsException} will be thrown.
1023  *
1024  * <tr><td style="vertical-align:top"> <code>'&nbsp;&nbsp;'</code>
1025  *     <td style="vertical-align:top"> <code>'\u0020'</code>
1026  *     <td> Requires the output to include a single extra space
1027  *     (<code>'\u0020'</code>) for non-negative values.
1028  *
1029  *     <p> If both the {@code '+'} and <code>'&nbsp;&nbsp;'</code> flags are given
1030  *     then an {@link IllegalFormatFlagsException} will be thrown.
1031  *
1032  * <tr><td style="vertical-align:top"> {@code '0'}
1033  *     <td style="vertical-align:top"> <code>'\u0030'</code>
1034  *     <td> Requires the output to be padded with leading {@linkplain
1035  *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1036  *     width following any sign or radix indicator except when converting NaN
1037  *     or infinity.  If the width is not provided, then a {@link
1038  *     MissingFormatWidthException} will be thrown.
1039  *
1040  *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
1041  *     {@link IllegalFormatFlagsException} will be thrown.
1042  *
1043  * <tr><td style="vertical-align:top"> {@code ','}
1044  *     <td style="vertical-align:top"> <code>'\u002c'</code>
1045  *     <td> Requires the output to include the locale-specific {@linkplain
1046  *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1047  *     described in the <a href="#L10nGroup">"group" section</a> of the
1048  *     localization algorithm.
1049  *
1050  * <tr><td style="vertical-align:top"> {@code '('}
1051  *     <td style="vertical-align:top"> <code>'\u0028'</code>
1052  *     <td> Requires the output to prepend a {@code '('}
1053  *     (<code>'\u0028'</code>) and append a {@code ')'}
1054  *     (<code>'\u0029'</code>) to negative values.
1055  *
1056  * </tbody>
1057  * </table>
1058  *
1059  * <p> If no <a id="intdFlags">flags</a> are given the default formatting is
1060  * as follows:
1061  *
1062  * <ul>
1063  *
1064  * <li> The output is right-justified within the {@code width}
1065  *
1066  * <li> Negative numbers begin with a {@code '-'} (<code>'\u002d'</code>)
1067  *
1068  * <li> Positive numbers and zero do not include a sign or extra leading
1069  * space
1070  *
1071  * <li> No grouping separators are included
1072  *
1073  * </ul>
1074  *
1075  * <p> The <a id="intWidth">width</a> is the minimum number of characters to
1076  * be written to the output.  This includes any signs, digits, grouping
1077  * separators, radix indicator, and parentheses.  If the length of the
1078  * converted value is less than the width then the output will be padded by
1079  * spaces (<code>'\u0020'</code>) until the total number of characters equals
1080  * width.  The padding is on the left by default.  If {@code '-'} flag is
1081  * given then the padding will be on the right.  If width is not specified then
1082  * there is no minimum.
1083  *
1084  * <p> The precision is not applicable.  If precision is specified then an
1085  * {@link IllegalFormatPrecisionException} will be thrown.
1086  *
1087  * <p><a id="dnbint"><b> BigInteger </b></a>
1088  *
1089  * <p> The following conversions may be applied to {@link
1090  * java.math.BigInteger}.
1091  *
1092  * <table class="altrows">
1093  * <caption style="display:none">bIntConv</caption>
1094  * <tbody>
1095  *
1096  * <tr><td style="vertical-align:top"> {@code 'd'}
1097  *     <td style="vertical-align:top"> <code>'\u0064'</code>
1098  *     <td> Requires the output to be formatted as a decimal integer. The <a
1099  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1100  *
1101  *     <p> If the {@code '#'} flag is given {@link
1102  *     FormatFlagsConversionMismatchException} will be thrown.
1103  *
1104  * <tr><td style="vertical-align:top"> {@code 'o'}
1105  *     <td style="vertical-align:top"> <code>'\u006f'</code>
1106  *     <td> Requires the output to be formatted as an integer in base eight.
1107  *     No localization is applied.
1108  *
1109  *     <p> If <i>x</i> is negative then the result will be a signed value
1110  *     beginning with {@code '-'} (<code>'\u002d'</code>).  Signed output is
1111  *     allowed for this type because unlike the primitive types it is not
1112  *     possible to create an unsigned equivalent without assuming an explicit
1113  *     data-type size.
1114  *
1115  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1116  *     then the result will begin with {@code '+'} (<code>'\u002b'</code>).
1117  *
1118  *     <p> If the {@code '#'} flag is given then the output will always begin
1119  *     with {@code '0'} prefix.
1120  *
1121  *     <p> If the {@code '0'} flag is given then the output will be padded
1122  *     with leading zeros to the field width following any indication of sign.
1123  *
1124  *     <p> If the {@code ','} flag is given then a {@link
1125  *     FormatFlagsConversionMismatchException} will be thrown.
1126  *
1127  * <tr><td style="vertical-align:top"> {@code 'x'}
1128  *     <td style="vertical-align:top"> <code>'\u0078'</code>
1129  *     <td> Requires the output to be formatted as an integer in base
1130  *     sixteen.  No localization is applied.
1131  *
1132  *     <p> If <i>x</i> is negative then the result will be a signed value
1133  *     beginning with {@code '-'} (<code>'\u002d'</code>).  Signed output is
1134  *     allowed for this type because unlike the primitive types it is not
1135  *     possible to create an unsigned equivalent without assuming an explicit
1136  *     data-type size.
1137  *
1138  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1139  *     then the result will begin with {@code '+'} (<code>'\u002b'</code>).
1140  *
1141  *     <p> If the {@code '#'} flag is given then the output will always begin
1142  *     with the radix indicator {@code "0x"}.
1143  *
1144  *     <p> If the {@code '0'} flag is given then the output will be padded to
1145  *     the field width with leading zeros after the radix indicator or sign (if
1146  *     present).
1147  *
1148  *     <p> If the {@code ','} flag is given then a {@link
1149  *     FormatFlagsConversionMismatchException} will be thrown.
1150  *
1151  * <tr><td style="vertical-align:top"> {@code 'X'}
1152  *     <td style="vertical-align:top"> <code>'\u0058'</code>
1153  *     <td> The upper-case variant of {@code 'x'}.  The entire string
1154  *     representing the number will be converted to {@linkplain
1155  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1156  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1157  *     (<code>'\u0061'</code> - <code>'\u0066'</code>).
1158  *
1159  * </tbody>
1160  * </table>
1161  *
1162  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1163  * both the {@code '#'} and the {@code '0'} flags are given, then result will
1164  * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1165  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1166  * and the value.
1167  *
1168  * <p> If the {@code '0'} flag is given and the value is negative, then the
1169  * zero padding will occur after the sign.
1170  *
1171  * <p> If the {@code '-'} flag is not given, then the space padding will occur
1172  * before the sign.
1173  *
1174  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1175  * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1176  * given is the same as for Byte, Short, Integer, and Long.
1177  *
1178  * <p> The specification of <a href="#intWidth">width</a> is the same as
1179  * defined for Byte, Short, Integer, and Long.
1180  *
1181  * <p> The precision is not applicable.  If precision is specified then an
1182  * {@link IllegalFormatPrecisionException} will be thrown.
1183  *
1184  * <p><a id="dndec"><b> Float and Double</b></a>
1185  *
1186  * <p> The following conversions may be applied to {@code float}, {@link
1187  * Float}, {@code double} and {@link Double}.
1188  *
1189  * <table class="altrows">
1190  * <caption style="display:none">floatConv</caption>
1191  * <tbody>
1192  *
1193  * <tr><td style="vertical-align:top"> {@code 'e'}
1194  *     <td style="vertical-align:top"> <code>'\u0065'</code>
1195  *     <td> Requires the output to be formatted using <a
1196  *     id="scientific">computerized scientific notation</a>.  The <a
1197  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1198  *
1199  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1200  *
1201  *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1202  *     "Infinity", respectively, will be output.  These values are not
1203  *     localized.
1204  *
1205  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1206  *     will be {@code "+00"}.
1207  *
1208  *     <p> Otherwise, the result is a string that represents the sign and
1209  *     magnitude (absolute value) of the argument.  The formatting of the sign
1210  *     is described in the <a href="#L10nAlgorithm">localization
1211  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1212  *     value.
1213  *
1214  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1215  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1216  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1217  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1218  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1219  *     decimal separator followed by decimal digits representing the fractional
1220  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1221  *     (<code>'\u0065'</code>), followed by the sign of the exponent, followed
1222  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1223  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1224  *     least two digits.
1225  *
1226  *     <p> The number of digits in the result for the fractional part of
1227  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1228  *     specified then the default value is {@code 6}. If the precision is less
1229  *     than the number of digits which would appear after the decimal point in
1230  *     the string returned by {@link Float#toString(float)} or {@link
1231  *     Double#toString(double)} respectively, then the value will be rounded
1232  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1233  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1234  *     For a canonical representation of the value, use {@link
1235  *     Float#toString(float)} or {@link Double#toString(double)} as
1236  *     appropriate.
1237  *
1238  *     <p>If the {@code ','} flag is given, then an {@link
1239  *     FormatFlagsConversionMismatchException} will be thrown.
1240  *
1241  * <tr><td style="vertical-align:top"> {@code 'E'}
1242  *     <td style="vertical-align:top"> <code>'\u0045'</code>
1243  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1244  *     will be {@code 'E'} (<code>'\u0045'</code>).
1245  *
1246  * <tr><td style="vertical-align:top"> {@code 'g'}
1247  *     <td style="vertical-align:top"> <code>'\u0067'</code>
1248  *     <td> Requires the output to be formatted in general scientific notation
1249  *     as described below. The <a href="#L10nAlgorithm">localization
1250  *     algorithm</a> is applied.
1251  *
1252  *     <p> After rounding for the precision, the formatting of the resulting
1253  *     magnitude <i>m</i> depends on its value.
1254  *
1255  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1256  *     than 10<sup>precision</sup> then it is represented in <i><a
1257  *     href="#decimal">decimal format</a></i>.
1258  *
1259  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1260  *     10<sup>precision</sup>, then it is represented in <i><a
1261  *     href="#scientific">computerized scientific notation</a></i>.
1262  *
1263  *     <p> The total number of significant digits in <i>m</i> is equal to the
1264  *     precision.  If the precision is not specified, then the default value is
1265  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1266  *     {@code 1}.
1267  *
1268  *     <p> If the {@code '#'} flag is given then an {@link
1269  *     FormatFlagsConversionMismatchException} will be thrown.
1270  *
1271  * <tr><td style="vertical-align:top"> {@code 'G'}
1272  *     <td style="vertical-align:top"> <code>'\u0047'</code>
1273  *     <td> The upper-case variant of {@code 'g'}.
1274  *
1275  * <tr><td style="vertical-align:top"> {@code 'f'}
1276  *     <td style="vertical-align:top"> <code>'\u0066'</code>
1277  *     <td> Requires the output to be formatted using <a id="decimal">decimal
1278  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1279  *     applied.
1280  *
1281  *     <p> The result is a string that represents the sign and magnitude
1282  *     (absolute value) of the argument.  The formatting of the sign is
1283  *     described in the <a href="#L10nAlgorithm">localization
1284  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1285  *     value.
1286  *
1287  *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1288  *     "Infinity", respectively, will be output.  These values are not
1289  *     localized.
1290  *
1291  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1292  *     leading zeroes, followed by the decimal separator followed by one or
1293  *     more decimal digits representing the fractional part of <i>m</i>.
1294  *
1295  *     <p> The number of digits in the result for the fractional part of
1296  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1297  *     specified then the default value is {@code 6}. If the precision is less
1298  *     than the number of digits which would appear after the decimal point in
1299  *     the string returned by {@link Float#toString(float)} or {@link
1300  *     Double#toString(double)} respectively, then the value will be rounded
1301  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1302  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1303  *     For a canonical representation of the value, use {@link
1304  *     Float#toString(float)} or {@link Double#toString(double)} as
1305  *     appropriate.
1306  *
1307  * <tr><td style="vertical-align:top"> {@code 'a'}
1308  *     <td style="vertical-align:top"> <code>'\u0061'</code>
1309  *     <td> Requires the output to be formatted in hexadecimal exponential
1310  *     form.  No localization is applied.
1311  *
1312  *     <p> The result is a string that represents the sign and magnitude
1313  *     (absolute value) of the argument <i>x</i>.
1314  *
1315  *     <p> If <i>x</i> is negative or a negative-zero value then the result
1316  *     will begin with {@code '-'} (<code>'\u002d'</code>).
1317  *
1318  *     <p> If <i>x</i> is positive or a positive-zero value and the
1319  *     {@code '+'} flag is given then the result will begin with {@code '+'}
1320  *     (<code>'\u002b'</code>).
1321  *
1322  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1323  *
1324  *     <ul>
1325  *
1326  *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1327  *     "Infinity", respectively, will be output.
1328  *
1329  *     <li> If <i>m</i> is zero then it is represented by the string
1330  *     {@code "0x0.0p0"}.
1331  *
1332  *     <li> If <i>m</i> is a {@code double} value with a normalized
1333  *     representation then substrings are used to represent the significand and
1334  *     exponent fields.  The significand is represented by the characters
1335  *     {@code "0x1."} followed by the hexadecimal representation of the rest
1336  *     of the significand as a fraction.  The exponent is represented by
1337  *     {@code 'p'} (<code>'\u0070'</code>) followed by a decimal string of the
1338  *     unbiased exponent as if produced by invoking {@link
1339  *     Integer#toString(int) Integer.toString} on the exponent value.  If the
1340  *     precision is specified, the value is rounded to the given number of
1341  *     hexadecimal digits.
1342  *
1343  *     <li> If <i>m</i> is a {@code double} value with a subnormal
1344  *     representation then, unless the precision is specified to be in the range
1345  *     1 through 12, inclusive, the significand is represented by the characters
1346  *     {@code '0x0.'} followed by the hexadecimal representation of the rest of
1347  *     the significand as a fraction, and the exponent represented by
1348  *     {@code 'p-1022'}.  If the precision is in the interval
1349  *     [1,&nbsp;12], the subnormal value is normalized such that it
1350  *     begins with the characters {@code '0x1.'}, rounded to the number of
1351  *     hexadecimal digits of precision, and the exponent adjusted
1352  *     accordingly.  Note that there must be at least one nonzero digit in a
1353  *     subnormal significand.
1354  *
1355  *     </ul>
1356  *
1357  *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1358  *     FormatFlagsConversionMismatchException} will be thrown.
1359  *
1360  * <tr><td style="vertical-align:top"> {@code 'A'}
1361  *     <td style="vertical-align:top"> <code>'\u0041'</code>
1362  *     <td> The upper-case variant of {@code 'a'}.  The entire string
1363  *     representing the number will be converted to upper case including the
1364  *     {@code 'x'} (<code>'\u0078'</code>) and {@code 'p'}
1365  *     (<code>'\u0070'</code> and all hexadecimal digits {@code 'a'} -
1366  *     {@code 'f'} (<code>'\u0061'</code> - <code>'\u0066'</code>).
1367  *
1368  * </tbody>
1369  * </table>
1370  *
1371  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1372  * Long apply.
1373  *
1374  * <p> If the {@code '#'} flag is given, then the decimal separator will
1375  * always be present.
1376  *
1377  * <p> If no <a id="floatdFlags">flags</a> are given the default formatting
1378  * is as follows:
1379  *
1380  * <ul>
1381  *
1382  * <li> The output is right-justified within the {@code width}
1383  *
1384  * <li> Negative numbers begin with a {@code '-'}
1385  *
1386  * <li> Positive numbers and positive zero do not include a sign or extra
1387  * leading space
1388  *
1389  * <li> No grouping separators are included
1390  *
1391  * <li> The decimal separator will only appear if a digit follows it
1392  *
1393  * </ul>
1394  *
1395  * <p> The <a id="floatDWidth">width</a> is the minimum number of characters
1396  * to be written to the output.  This includes any signs, digits, grouping
1397  * separators, decimal separators, exponential symbol, radix indicator,
1398  * parentheses, and strings representing infinity and NaN as applicable.  If
1399  * the length of the converted value is less than the width then the output
1400  * will be padded by spaces (<code>'\u0020'</code>) until the total number of
1401  * characters equals width.  The padding is on the left by default.  If the
1402  * {@code '-'} flag is given then the padding will be on the right.  If width
1403  * is not specified then there is no minimum.
1404  *
1405  * <p> If the <a id="floatDPrec">conversion</a> is {@code 'e'},
1406  * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1407  * after the decimal separator.  If the precision is not specified, then it is
1408  * assumed to be {@code 6}.
1409  *
1410  * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1411  * the total number of significant digits in the resulting magnitude after
1412  * rounding.  If the precision is not specified, then the default value is
1413  * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1414  * {@code 1}.
1415  *
1416  * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1417  * is the number of hexadecimal digits after the radix point.  If the
1418  * precision is not provided, then all of the digits as returned by {@link
1419  * Double#toHexString(double)} will be output.
1420  *
1421  * <p><a id="dnbdec"><b> BigDecimal </b></a>
1422  *
1423  * <p> The following conversions may be applied {@link java.math.BigDecimal
1424  * BigDecimal}.
1425  *
1426  * <table class="altrows">
1427  * <caption style="display:none">floatConv</caption>
1428  * <tbody>
1429  *
1430  * <tr><td style="vertical-align:top"> {@code 'e'}
1431  *     <td style="vertical-align:top"> <code>'\u0065'</code>
1432  *     <td> Requires the output to be formatted using <a
1433  *     id="bscientific">computerized scientific notation</a>.  The <a
1434  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1435  *
1436  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1437  *
1438  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1439  *     will be {@code "+00"}.
1440  *
1441  *     <p> Otherwise, the result is a string that represents the sign and
1442  *     magnitude (absolute value) of the argument.  The formatting of the sign
1443  *     is described in the <a href="#L10nAlgorithm">localization
1444  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1445  *     value.
1446  *
1447  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1448  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1449  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1450  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1451  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1452  *     decimal separator followed by decimal digits representing the fractional
1453  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1454  *     (<code>'\u0065'</code>), followed by the sign of the exponent, followed
1455  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1456  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1457  *     least two digits.
1458  *
1459  *     <p> The number of digits in the result for the fractional part of
1460  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1461  *     specified then the default value is {@code 6}.  If the precision is
1462  *     less than the number of digits to the right of the decimal point then
1463  *     the value will be rounded using the
1464  *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1465  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1466  *     For a canonical representation of the value, use {@link
1467  *     BigDecimal#toString()}.
1468  *
1469  *     <p> If the {@code ','} flag is given, then an {@link
1470  *     FormatFlagsConversionMismatchException} will be thrown.
1471  *
1472  * <tr><td style="vertical-align:top"> {@code 'E'}
1473  *     <td style="vertical-align:top"> <code>'\u0045'</code>
1474  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1475  *     will be {@code 'E'} (<code>'\u0045'</code>).
1476  *
1477  * <tr><td style="vertical-align:top"> {@code 'g'}
1478  *     <td style="vertical-align:top"> <code>'\u0067'</code>
1479  *     <td> Requires the output to be formatted in general scientific notation
1480  *     as described below. The <a href="#L10nAlgorithm">localization
1481  *     algorithm</a> is applied.
1482  *
1483  *     <p> After rounding for the precision, the formatting of the resulting
1484  *     magnitude <i>m</i> depends on its value.
1485  *
1486  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1487  *     than 10<sup>precision</sup> then it is represented in <i><a
1488  *     href="#bdecimal">decimal format</a></i>.
1489  *
1490  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1491  *     10<sup>precision</sup>, then it is represented in <i><a
1492  *     href="#bscientific">computerized scientific notation</a></i>.
1493  *
1494  *     <p> The total number of significant digits in <i>m</i> is equal to the
1495  *     precision.  If the precision is not specified, then the default value is
1496  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1497  *     {@code 1}.
1498  *
1499  *     <p> If the {@code '#'} flag is given then an {@link
1500  *     FormatFlagsConversionMismatchException} will be thrown.
1501  *
1502  * <tr><td style="vertical-align:top"> {@code 'G'}
1503  *     <td style="vertical-align:top"> <code>'\u0047'</code>
1504  *     <td> The upper-case variant of {@code 'g'}.
1505  *
1506  * <tr><td style="vertical-align:top"> {@code 'f'}
1507  *     <td style="vertical-align:top"> <code>'\u0066'</code>
1508  *     <td> Requires the output to be formatted using <a id="bdecimal">decimal
1509  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1510  *     applied.
1511  *
1512  *     <p> The result is a string that represents the sign and magnitude
1513  *     (absolute value) of the argument.  The formatting of the sign is
1514  *     described in the <a href="#L10nAlgorithm">localization
1515  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1516  *     value.
1517  *
1518  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1519  *     leading zeroes, followed by the decimal separator followed by one or
1520  *     more decimal digits representing the fractional part of <i>m</i>.
1521  *
1522  *     <p> The number of digits in the result for the fractional part of
1523  *     <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1524  *     specified then the default value is {@code 6}.  If the precision is
1525  *     less than the number of digits to the right of the decimal point
1526  *     then the value will be rounded using the
1527  *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1528  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1529  *     For a canonical representation of the value, use {@link
1530  *     BigDecimal#toString()}.
1531  *
1532  * </tbody>
1533  * </table>
1534  *
1535  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1536  * Long apply.
1537  *
1538  * <p> If the {@code '#'} flag is given, then the decimal separator will
1539  * always be present.
1540  *
1541  * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1542  * given is the same as for Float and Double.
1543  *
1544  * <p> The specification of <a href="#floatDWidth">width</a> and <a
1545  * href="#floatDPrec">precision</a> is the same as defined for Float and
1546  * Double.
1547  *
1548  * <h4><a id="ddt">Date/Time</a></h4>
1549  *
1550  * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1551  * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1552  *
1553  * <table class="altrows">
1554  * <caption style="display:none">DTConv</caption>
1555  * <tbody>
1556  *
1557  * <tr><td style="vertical-align:top"> {@code 't'}
1558  *     <td style="vertical-align:top"> <code>'\u0074'</code>
1559  *     <td> Prefix for date and time conversion characters.
1560  * <tr><td style="vertical-align:top"> {@code 'T'}
1561  *     <td style="vertical-align:top"> <code>'\u0054'</code>
1562  *     <td> The upper-case variant of {@code 't'}.
1563  *
1564  * </tbody>
1565  * </table>
1566  *
1567  * <p> The following date and time conversion character suffixes are defined
1568  * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1569  * but not completely identical to those defined by GNU {@code date} and
1570  * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1571  * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1572  * within the second).
1573  *
1574  * <p> The following conversion characters are used for formatting times:
1575  *
1576  * <table class="altrows">
1577  * <caption style="display:none">time</caption>
1578  * <tbody>
1579  *
1580  * <tr><td style="vertical-align:top"> {@code 'H'}
1581  *     <td style="vertical-align:top"> <code>'\u0048'</code>
1582  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1583  *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1584  *     corresponds to midnight.
1585  *
1586  * <tr><td style="vertical-align:top">{@code 'I'}
1587  *     <td style="vertical-align:top"> <code>'\u0049'</code>
1588  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1589  *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1590  *     one o'clock (either morning or afternoon).
1591  *
1592  * <tr><td style="vertical-align:top">{@code 'k'}
1593  *     <td style="vertical-align:top"> <code>'\u006b'</code>
1594  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1595  *     {@code 0} corresponds to midnight.
1596  *
1597  * <tr><td style="vertical-align:top">{@code 'l'}
1598  *     <td style="vertical-align:top"> <code>'\u006c'</code>
1599  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1600  *     corresponds to one o'clock (either morning or afternoon).
1601  *
1602  * <tr><td style="vertical-align:top">{@code 'M'}
1603  *     <td style="vertical-align:top"> <code>'\u004d'</code>
1604  *     <td> Minute within the hour formatted as two digits with a leading zero
1605  *     as necessary, i.e.  {@code 00 - 59}.
1606  *
1607  * <tr><td style="vertical-align:top">{@code 'S'}
1608  *     <td style="vertical-align:top"> <code>'\u0053'</code>
1609  *     <td> Seconds within the minute, formatted as two digits with a leading
1610  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1611  *     value required to support leap seconds).
1612  *
1613  * <tr><td style="vertical-align:top">{@code 'L'}
1614  *     <td style="vertical-align:top"> <code>'\u004c'</code>
1615  *     <td> Millisecond within the second formatted as three digits with
1616  *     leading zeros as necessary, i.e. {@code 000 - 999}.
1617  *
1618  * <tr><td style="vertical-align:top">{@code 'N'}
1619  *     <td style="vertical-align:top"> <code>'\u004e'</code>
1620  *     <td> Nanosecond within the second, formatted as nine digits with leading
1621  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1622  *     of this value is limited by the resolution of the underlying operating
1623  *     system or hardware.
1624  *
1625  * <tr><td style="vertical-align:top">{@code 'p'}
1626  *     <td style="vertical-align:top"> <code>'\u0070'</code>
1627  *     <td> Locale-specific {@linkplain
1628  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1629  *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1630  *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1631  *     that {@code 'p'} produces lower-case output.  This is different from
1632  *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1633  *     upper-case output.)
1634  *
1635  * <tr><td style="vertical-align:top">{@code 'z'}
1636  *     <td style="vertical-align:top"> <code>'\u007a'</code>
1637  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1638  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1639  *     value will be adjusted as necessary for Daylight Saving Time.  For
1640  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1641  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1642  *     instance of the Java virtual machine.
1643  *
1644  * <tr><td style="vertical-align:top">{@code 'Z'}
1645  *     <td style="vertical-align:top"> <code>'\u005a'</code>
1646  *     <td> A string representing the abbreviation for the time zone.  This
1647  *     value will be adjusted as necessary for Daylight Saving Time.  For
1648  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1649  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1650  *     instance of the Java virtual machine.  The Formatter's locale will
1651  *     supersede the locale of the argument (if any).
1652  *
1653  * <tr><td style="vertical-align:top">{@code 's'}
1654  *     <td style="vertical-align:top"> <code>'\u0073'</code>
1655  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1656  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1657  *     {@code Long.MAX_VALUE/1000}.
1658  *
1659  * <tr><td style="vertical-align:top">{@code 'Q'}
1660  *     <td style="vertical-align:top"> <code>'\u004f'</code>
1661  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1662  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1663  *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1664  *     the resolution of the underlying operating system or hardware.
1665  *
1666  * </tbody>
1667  * </table>
1668  *
1669  * <p> The following conversion characters are used for formatting dates:
1670  *
1671  * <table class="altrows">
1672  * <caption style="display:none">date</caption>
1673  * <tbody>
1674  *
1675  * <tr><td style="vertical-align:top">{@code 'B'}
1676  *     <td style="vertical-align:top"> <code>'\u0042'</code>
1677  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1678  *     full month name}, e.g. {@code "January"}, {@code "February"}.
1679  *
1680  * <tr><td style="vertical-align:top">{@code 'b'}
1681  *     <td style="vertical-align:top"> <code>'\u0062'</code>
1682  *     <td> Locale-specific {@linkplain
1683  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1684  *     e.g. {@code "Jan"}, {@code "Feb"}.
1685  *
1686  * <tr><td style="vertical-align:top">{@code 'h'}
1687  *     <td style="vertical-align:top"> <code>'\u0068'</code>
1688  *     <td> Same as {@code 'b'}.
1689  *
1690  * <tr><td style="vertical-align:top">{@code 'A'}
1691  *     <td style="vertical-align:top"> <code>'\u0041'</code>
1692  *     <td> Locale-specific full name of the {@linkplain
1693  *     java.text.DateFormatSymbols#getWeekdays day of the week},
1694  *     e.g. {@code "Sunday"}, {@code "Monday"}
1695  *
1696  * <tr><td style="vertical-align:top">{@code 'a'}
1697  *     <td style="vertical-align:top"> <code>'\u0061'</code>
1698  *     <td> Locale-specific short name of the {@linkplain
1699  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1700  *     e.g. {@code "Sun"}, {@code "Mon"}
1701  *
1702  * <tr><td style="vertical-align:top">{@code 'C'}
1703  *     <td style="vertical-align:top"> <code>'\u0043'</code>
1704  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1705  *     with leading zero as necessary, i.e. {@code 00 - 99}
1706  *
1707  * <tr><td style="vertical-align:top">{@code 'Y'}
1708  *     <td style="vertical-align:top"> <code>'\u0059'</code> <td> Year, formatted to at least
1709  *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1710  *     {@code 92} CE for the Gregorian calendar.
1711  *
1712  * <tr><td style="vertical-align:top">{@code 'y'}
1713  *     <td style="vertical-align:top"> <code>'\u0079'</code>
1714  *     <td> Last two digits of the year, formatted with leading zeros as
1715  *     necessary, i.e. {@code 00 - 99}.
1716  *
1717  * <tr><td style="vertical-align:top">{@code 'j'}
1718  *     <td style="vertical-align:top"> <code>'\u006a'</code>
1719  *     <td> Day of year, formatted as three digits with leading zeros as
1720  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1721  *     {@code 001} corresponds to the first day of the year.
1722  *
1723  * <tr><td style="vertical-align:top">{@code 'm'}
1724  *     <td style="vertical-align:top"> <code>'\u006d'</code>
1725  *     <td> Month, formatted as two digits with leading zeros as necessary,
1726  *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1727  *     year and ("{@code 13}" is a special value required to support lunar
1728  *     calendars).
1729  *
1730  * <tr><td style="vertical-align:top">{@code 'd'}
1731  *     <td style="vertical-align:top"> <code>'\u0064'</code>
1732  *     <td> Day of month, formatted as two digits with leading zeros as
1733  *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1734  *     of the month.
1735  *
1736  * <tr><td style="vertical-align:top">{@code 'e'}
1737  *     <td style="vertical-align:top"> <code>'\u0065'</code>
1738  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1739  *     "{@code 1}" is the first day of the month.
1740  *
1741  * </tbody>
1742  * </table>
1743  *
1744  * <p> The following conversion characters are used for formatting common
1745  * date/time compositions.
1746  *
1747  * <table class="altrows">
1748  * <caption style="display:none">composites</caption>
1749  * <tbody>
1750  *
1751  * <tr><td style="vertical-align:top">{@code 'R'}
1752  *     <td style="vertical-align:top"> <code>'\u0052'</code>
1753  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1754  *
1755  * <tr><td style="vertical-align:top">{@code 'T'}
1756  *     <td style="vertical-align:top"> <code>'\u0054'</code>
1757  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1758  *
1759  * <tr><td style="vertical-align:top">{@code 'r'}
1760  *     <td style="vertical-align:top"> <code>'\u0072'</code>
1761  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1762  *     %Tp"}.  The location of the morning or afternoon marker
1763  *     ({@code '%Tp'}) may be locale-dependent.
1764  *
1765  * <tr><td style="vertical-align:top">{@code 'D'}
1766  *     <td style="vertical-align:top"> <code>'\u0044'</code>
1767  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1768  *
1769  * <tr><td style="vertical-align:top">{@code 'F'}
1770  *     <td style="vertical-align:top"> <code>'\u0046'</code>
1771  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1772  *     complete date formatted as {@code "%tY-%tm-%td"}.
1773  *
1774  * <tr><td style="vertical-align:top">{@code 'c'}
1775  *     <td style="vertical-align:top"> <code>'\u0063'</code>
1776  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1777  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1778  *
1779  * </tbody>
1780  * </table>
1781  *
1782  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1783  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1784  * FormatFlagsConversionMismatchException} will be thrown.
1785  *
1786  * <p> The width is the minimum number of characters to
1787  * be written to the output.  If the length of the converted value is less than
1788  * the {@code width} then the output will be padded by spaces
1789  * (<code>'\u0020'</code>) until the total number of characters equals width.
1790  * The padding is on the left by default.  If the {@code '-'} flag is given
1791  * then the padding will be on the right.  If width is not specified then there
1792  * is no minimum.
1793  *
1794  * <p> The precision is not applicable.  If the precision is specified then an
1795  * {@link IllegalFormatPrecisionException} will be thrown.
1796  *
1797  * <h4><a id="dper">Percent</a></h4>
1798  *
1799  * <p> The conversion does not correspond to any argument.
1800  *
1801  * <table class="altrows">
1802  * <caption style="display:none">DTConv</caption>
1803  * <tbody>
1804  *
1805  * <tr><td style="vertical-align:top">{@code '%'}
1806  *     <td> The result is a literal {@code '%'} (<code>'\u0025'</code>)
1807  *
1808  * <p> The width is the minimum number of characters to
1809  * be written to the output including the {@code '%'}.  If the length of the
1810  * converted value is less than the {@code width} then the output will be
1811  * padded by spaces (<code>'\u0020'</code>) until the total number of
1812  * characters equals width.  The padding is on the left.  If width is not
1813  * specified then just the {@code '%'} is output.
1814  *
1815  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1816  * conversions</a> applies.  If any other flags are provided, then a
1817  * {@link FormatFlagsConversionMismatchException} will be thrown.
1818  *
1819  * <p> The precision is not applicable.  If the precision is specified an
1820  * {@link IllegalFormatPrecisionException} will be thrown.
1821  *
1822  * </tbody>
1823  * </table>
1824  *
1825  * <h4><a id="dls">Line Separator</a></h4>
1826  *
1827  * <p> The conversion does not correspond to any argument.
1828  *
1829  * <table class="altrows">
1830  * <caption style="display:none">DTConv</caption>
1831  * <tbody>
1832  *
1833  * <tr><td style="vertical-align:top">{@code 'n'}
1834  *     <td> the platform-specific line separator as returned by {@link
1835  *     System#lineSeparator()}.
1836  *
1837  * </tbody>
1838  * </table>
1839  *
1840  * <p> Flags, width, and precision are not applicable.  If any are provided an
1841  * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1842  * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1843  *
1844  * <h4><a id="dpos">Argument Index</a></h4>
1845  *
1846  * <p> Format specifiers can reference arguments in three ways:
1847  *
1848  * <ul>
1849  *
1850  * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1851  * argument index.  The argument index is a decimal integer indicating the
1852  * position of the argument in the argument list.  The first argument is
1853  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1854  * may be referenced more than once.
1855  *
1856  * <p> For example:
1857  *
1858  * <blockquote><pre>
1859  *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1860  *                    "a", "b", "c", "d")
1861  *   // -&gt; "d c b a d c b a"
1862  * </pre></blockquote>
1863  *
1864  * <li> <i>Relative indexing</i> is used when the format specifier contains a
1865  * {@code '<'} (<code>'\u003c'</code>) flag which causes the argument for
1866  * the previous format specifier to be re-used.  If there is no previous
1867  * argument, then a {@link MissingFormatArgumentException} is thrown.
1868  *
1869  * <blockquote><pre>
1870  *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1871  *    // -&gt; "a b b b"
1872  *    // "c" and "d" are ignored because they are not referenced
1873  * </pre></blockquote>
1874  *
1875  * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1876  * neither an argument index nor a {@code '<'} flag.  Each format specifier
1877  * which uses ordinary indexing is assigned a sequential implicit index into
1878  * argument list which is independent of the indices used by explicit or
1879  * relative indexing.
1880  *
1881  * <blockquote><pre>
1882  *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1883  *   // -&gt; "a b c d"
1884  * </pre></blockquote>
1885  *
1886  * </ul>
1887  *
1888  * <p> It is possible to have a format string which uses all forms of indexing,
1889  * for example:
1890  *
1891  * <blockquote><pre>
1892  *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1893  *   // -&gt; "b a a b"
1894  *   // "c" and "d" are ignored because they are not referenced
1895  * </pre></blockquote>
1896  *
1897  * <p> The maximum number of arguments is limited by the maximum dimension of a
1898  * Java array as defined by
1899  * <cite>The Java&trade; Virtual Machine Specification</cite>.
1900  * If the argument index does not correspond to an
1901  * available argument, then a {@link MissingFormatArgumentException} is thrown.
1902  *
1903  * <p> If there are more arguments than format specifiers, the extra arguments
1904  * are ignored.
1905  *
1906  * <p> Unless otherwise specified, passing a {@code null} argument to any
1907  * method or constructor in this class will cause a {@link
1908  * NullPointerException} to be thrown.
1909  *
1910  * @author  Iris Clark
1911  * @since 1.5
1912  */
1913 public final class Formatter implements Closeable, Flushable {
1914     private Appendable a;
1915     private final Locale l;
1916 
1917     private IOException lastException;
1918 
1919     private final char zero;
1920     private static double scaleUp;
1921 
1922     // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1923     // + 3 (max # exp digits) + 4 (error) = 30
1924     private static final int MAX_FD_CHARS = 30;
1925 
1926     /**
1927      * Returns a charset object for the given charset name.
1928      * @throws NullPointerException          is csn is null
1929      * @throws UnsupportedEncodingException  if the charset is not supported
1930      */
1931     private static Charset toCharset(String csn)
1932         throws UnsupportedEncodingException
1933     {
1934         Objects.requireNonNull(csn, "charsetName");
1935         try {
1936             return Charset.forName(csn);
1937         } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1938             // UnsupportedEncodingException should be thrown
1939             throw new UnsupportedEncodingException(csn);
1940         }
1941     }
1942 
1943     private static final Appendable nonNullAppendable(Appendable a) {
1944         if (a == null)
1945             return new StringBuilder();
1946 
1947         return a;
1948     }
1949 
1950     /* Private constructors */
1951     private Formatter(Locale l, Appendable a) {
1952         this.a = a;
1953         this.l = l;
1954         this.zero = getZero(l);
1955     }
1956 
1957     private Formatter(Charset charset, Locale l, File file)
1958         throws FileNotFoundException
1959     {
1960         this(l,
1961              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1962     }
1963 
1964     /**
1965      * Constructs a new formatter.
1966      *
1967      * <p> The destination of the formatted output is a {@link StringBuilder}
1968      * which may be retrieved by invoking {@link #out out()} and whose
1969      * current content may be converted into a string by invoking {@link
1970      * #toString toString()}.  The locale used is the {@linkplain
1971      * Locale#getDefault(Locale.Category) default locale} for
1972      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1973      * virtual machine.
1974      */
1975     public Formatter() {
1976         this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1977     }
1978 
1979     /**
1980      * Constructs a new formatter with the specified destination.
1981      *
1982      * <p> The locale used is the {@linkplain
1983      * Locale#getDefault(Locale.Category) default locale} for
1984      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1985      * virtual machine.
1986      *
1987      * @param  a
1988      *         Destination for the formatted output.  If {@code a} is
1989      *         {@code null} then a {@link StringBuilder} will be created.
1990      */
1991     public Formatter(Appendable a) {
1992         this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1993     }
1994 
1995     /**
1996      * Constructs a new formatter with the specified locale.
1997      *
1998      * <p> The destination of the formatted output is a {@link StringBuilder}
1999      * which may be retrieved by invoking {@link #out out()} and whose current
2000      * content may be converted into a string by invoking {@link #toString
2001      * toString()}.
2002      *
2003      * @param  l
2004      *         The {@linkplain java.util.Locale locale} to apply during
2005      *         formatting.  If {@code l} is {@code null} then no localization
2006      *         is applied.
2007      */
2008     public Formatter(Locale l) {
2009         this(l, new StringBuilder());
2010     }
2011 
2012     /**
2013      * Constructs a new formatter with the specified destination and locale.
2014      *
2015      * @param  a
2016      *         Destination for the formatted output.  If {@code a} is
2017      *         {@code null} then a {@link StringBuilder} will be created.
2018      *
2019      * @param  l
2020      *         The {@linkplain java.util.Locale locale} to apply during
2021      *         formatting.  If {@code l} is {@code null} then no localization
2022      *         is applied.
2023      */
2024     public Formatter(Appendable a, Locale l) {
2025         this(l, nonNullAppendable(a));
2026     }
2027 
2028     /**
2029      * Constructs a new formatter with the specified file name.
2030      *
2031      * <p> The charset used is the {@linkplain
2032      * java.nio.charset.Charset#defaultCharset() default charset} for this
2033      * instance of the Java virtual machine.
2034      *
2035      * <p> The locale used is the {@linkplain
2036      * Locale#getDefault(Locale.Category) default locale} for
2037      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2038      * virtual machine.
2039      *
2040      * @param  fileName
2041      *         The name of the file to use as the destination of this
2042      *         formatter.  If the file exists then it will be truncated to
2043      *         zero size; otherwise, a new file will be created.  The output
2044      *         will be written to the file and is buffered.
2045      *
2046      * @throws  SecurityException
2047      *          If a security manager is present and {@link
2048      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2049      *          access to the file
2050      *
2051      * @throws  FileNotFoundException
2052      *          If the given file name does not denote an existing, writable
2053      *          regular file and a new regular file of that name cannot be
2054      *          created, or if some other error occurs while opening or
2055      *          creating the file
2056      */
2057     public Formatter(String fileName) throws FileNotFoundException {
2058         this(Locale.getDefault(Locale.Category.FORMAT),
2059              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
2060     }
2061 
2062     /**
2063      * Constructs a new formatter with the specified file name and charset.
2064      *
2065      * <p> The locale used is the {@linkplain
2066      * Locale#getDefault(Locale.Category) default locale} for
2067      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2068      * virtual machine.
2069      *
2070      * @param  fileName
2071      *         The name of the file to use as the destination of this
2072      *         formatter.  If the file exists then it will be truncated to
2073      *         zero size; otherwise, a new file will be created.  The output
2074      *         will be written to the file and is buffered.
2075      *
2076      * @param  csn
2077      *         The name of a supported {@linkplain java.nio.charset.Charset
2078      *         charset}
2079      *
2080      * @throws  FileNotFoundException
2081      *          If the given file name does not denote an existing, writable
2082      *          regular file and a new regular file of that name cannot be
2083      *          created, or if some other error occurs while opening or
2084      *          creating the file
2085      *
2086      * @throws  SecurityException
2087      *          If a security manager is present and {@link
2088      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2089      *          access to the file
2090      *
2091      * @throws  UnsupportedEncodingException
2092      *          If the named charset is not supported
2093      */
2094     public Formatter(String fileName, String csn)
2095         throws FileNotFoundException, UnsupportedEncodingException
2096     {
2097         this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2098     }
2099 
2100     /**
2101      * Constructs a new formatter with the specified file name, charset, and
2102      * locale.
2103      *
2104      * @param  fileName
2105      *         The name of the file to use as the destination of this
2106      *         formatter.  If the file exists then it will be truncated to
2107      *         zero size; otherwise, a new file will be created.  The output
2108      *         will be written to the file and is buffered.
2109      *
2110      * @param  csn
2111      *         The name of a supported {@linkplain java.nio.charset.Charset
2112      *         charset}
2113      *
2114      * @param  l
2115      *         The {@linkplain java.util.Locale locale} to apply during
2116      *         formatting.  If {@code l} is {@code null} then no localization
2117      *         is applied.
2118      *
2119      * @throws  FileNotFoundException
2120      *          If the given file name does not denote an existing, writable
2121      *          regular file and a new regular file of that name cannot be
2122      *          created, or if some other error occurs while opening or
2123      *          creating the file
2124      *
2125      * @throws  SecurityException
2126      *          If a security manager is present and {@link
2127      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2128      *          access to the file
2129      *
2130      * @throws  UnsupportedEncodingException
2131      *          If the named charset is not supported
2132      */
2133     public Formatter(String fileName, String csn, Locale l)
2134         throws FileNotFoundException, UnsupportedEncodingException
2135     {
2136         this(toCharset(csn), l, new File(fileName));
2137     }
2138 
2139     /**
2140      * Constructs a new formatter with the specified file.
2141      *
2142      * <p> The charset used is the {@linkplain
2143      * java.nio.charset.Charset#defaultCharset() default charset} for this
2144      * instance of the Java virtual machine.
2145      *
2146      * <p> The locale used is the {@linkplain
2147      * Locale#getDefault(Locale.Category) default locale} for
2148      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2149      * virtual machine.
2150      *
2151      * @param  file
2152      *         The file to use as the destination of this formatter.  If the
2153      *         file exists then it will be truncated to zero size; otherwise,
2154      *         a new file will be created.  The output will be written to the
2155      *         file and is buffered.
2156      *
2157      * @throws  SecurityException
2158      *          If a security manager is present and {@link
2159      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2160      *          write access to the file
2161      *
2162      * @throws  FileNotFoundException
2163      *          If the given file object does not denote an existing, writable
2164      *          regular file and a new regular file of that name cannot be
2165      *          created, or if some other error occurs while opening or
2166      *          creating the file
2167      */
2168     public Formatter(File file) throws FileNotFoundException {
2169         this(Locale.getDefault(Locale.Category.FORMAT),
2170              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2171     }
2172 
2173     /**
2174      * Constructs a new formatter with the specified file and charset.
2175      *
2176      * <p> The locale used is the {@linkplain
2177      * Locale#getDefault(Locale.Category) default locale} for
2178      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2179      * virtual machine.
2180      *
2181      * @param  file
2182      *         The file to use as the destination of this formatter.  If the
2183      *         file exists then it will be truncated to zero size; otherwise,
2184      *         a new file will be created.  The output will be written to the
2185      *         file and is buffered.
2186      *
2187      * @param  csn
2188      *         The name of a supported {@linkplain java.nio.charset.Charset
2189      *         charset}
2190      *
2191      * @throws  FileNotFoundException
2192      *          If the given file object does not denote an existing, writable
2193      *          regular file and a new regular file of that name cannot be
2194      *          created, or if some other error occurs while opening or
2195      *          creating the file
2196      *
2197      * @throws  SecurityException
2198      *          If a security manager is present and {@link
2199      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2200      *          write access to the file
2201      *
2202      * @throws  UnsupportedEncodingException
2203      *          If the named charset is not supported
2204      */
2205     public Formatter(File file, String csn)
2206         throws FileNotFoundException, UnsupportedEncodingException
2207     {
2208         this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2209     }
2210 
2211     /**
2212      * Constructs a new formatter with the specified file, charset, and
2213      * locale.
2214      *
2215      * @param  file
2216      *         The file to use as the destination of this formatter.  If the
2217      *         file exists then it will be truncated to zero size; otherwise,
2218      *         a new file will be created.  The output will be written to the
2219      *         file and is buffered.
2220      *
2221      * @param  csn
2222      *         The name of a supported {@linkplain java.nio.charset.Charset
2223      *         charset}
2224      *
2225      * @param  l
2226      *         The {@linkplain java.util.Locale locale} to apply during
2227      *         formatting.  If {@code l} is {@code null} then no localization
2228      *         is applied.
2229      *
2230      * @throws  FileNotFoundException
2231      *          If the given file object does not denote an existing, writable
2232      *          regular file and a new regular file of that name cannot be
2233      *          created, or if some other error occurs while opening or
2234      *          creating the file
2235      *
2236      * @throws  SecurityException
2237      *          If a security manager is present and {@link
2238      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2239      *          write access to the file
2240      *
2241      * @throws  UnsupportedEncodingException
2242      *          If the named charset is not supported
2243      */
2244     public Formatter(File file, String csn, Locale l)
2245         throws FileNotFoundException, UnsupportedEncodingException
2246     {
2247         this(toCharset(csn), l, file);
2248     }
2249 
2250     /**
2251      * Constructs a new formatter with the specified print stream.
2252      *
2253      * <p> The locale used is the {@linkplain
2254      * Locale#getDefault(Locale.Category) default locale} for
2255      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2256      * virtual machine.
2257      *
2258      * <p> Characters are written to the given {@link java.io.PrintStream
2259      * PrintStream} object and are therefore encoded using that object's
2260      * charset.
2261      *
2262      * @param  ps
2263      *         The stream to use as the destination of this formatter.
2264      */
2265     public Formatter(PrintStream ps) {
2266         this(Locale.getDefault(Locale.Category.FORMAT),
2267              (Appendable)Objects.requireNonNull(ps));
2268     }
2269 
2270     /**
2271      * Constructs a new formatter with the specified output stream.
2272      *
2273      * <p> The charset used is the {@linkplain
2274      * java.nio.charset.Charset#defaultCharset() default charset} for this
2275      * instance of the Java virtual machine.
2276      *
2277      * <p> The locale used is the {@linkplain
2278      * Locale#getDefault(Locale.Category) default locale} for
2279      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2280      * virtual machine.
2281      *
2282      * @param  os
2283      *         The output stream to use as the destination of this formatter.
2284      *         The output will be buffered.
2285      */
2286     public Formatter(OutputStream os) {
2287         this(Locale.getDefault(Locale.Category.FORMAT),
2288              new BufferedWriter(new OutputStreamWriter(os)));
2289     }
2290 
2291     /**
2292      * Constructs a new formatter with the specified output stream and
2293      * charset.
2294      *
2295      * <p> The locale used is the {@linkplain
2296      * Locale#getDefault(Locale.Category) default locale} for
2297      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2298      * virtual machine.
2299      *
2300      * @param  os
2301      *         The output stream to use as the destination of this formatter.
2302      *         The output will be buffered.
2303      *
2304      * @param  csn
2305      *         The name of a supported {@linkplain java.nio.charset.Charset
2306      *         charset}
2307      *
2308      * @throws  UnsupportedEncodingException
2309      *          If the named charset is not supported
2310      */
2311     public Formatter(OutputStream os, String csn)
2312         throws UnsupportedEncodingException
2313     {
2314         this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2315     }
2316 
2317     /**
2318      * Constructs a new formatter with the specified output stream, charset,
2319      * and locale.
2320      *
2321      * @param  os
2322      *         The output stream to use as the destination of this formatter.
2323      *         The output will be buffered.
2324      *
2325      * @param  csn
2326      *         The name of a supported {@linkplain java.nio.charset.Charset
2327      *         charset}
2328      *
2329      * @param  l
2330      *         The {@linkplain java.util.Locale locale} to apply during
2331      *         formatting.  If {@code l} is {@code null} then no localization
2332      *         is applied.
2333      *
2334      * @throws  UnsupportedEncodingException
2335      *          If the named charset is not supported
2336      */
2337     public Formatter(OutputStream os, String csn, Locale l)
2338         throws UnsupportedEncodingException
2339     {
2340         this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2341     }
2342 
2343     private static char getZero(Locale l) {
2344         if ((l != null) && !l.equals(Locale.US)) {
2345             DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2346             return dfs.getZeroDigit();
2347         } else {
2348             return '0';
2349         }
2350     }
2351 
2352     /**
2353      * Returns the locale set by the construction of this formatter.
2354      *
2355      * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2356      * for this object which has a locale argument does not change this value.
2357      *
2358      * @return  {@code null} if no localization is applied, otherwise a
2359      *          locale
2360      *
2361      * @throws  FormatterClosedException
2362      *          If this formatter has been closed by invoking its {@link
2363      *          #close()} method
2364      */
2365     public Locale locale() {
2366         ensureOpen();
2367         return l;
2368     }
2369 
2370     /**
2371      * Returns the destination for the output.
2372      *
2373      * @return  The destination for the output
2374      *
2375      * @throws  FormatterClosedException
2376      *          If this formatter has been closed by invoking its {@link
2377      *          #close()} method
2378      */
2379     public Appendable out() {
2380         ensureOpen();
2381         return a;
2382     }
2383 
2384     /**
2385      * Returns the result of invoking {@code toString()} on the destination
2386      * for the output.  For example, the following code formats text into a
2387      * {@link StringBuilder} then retrieves the resultant string:
2388      *
2389      * <blockquote><pre>
2390      *   Formatter f = new Formatter();
2391      *   f.format("Last reboot at %tc", lastRebootDate);
2392      *   String s = f.toString();
2393      *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2394      * </pre></blockquote>
2395      *
2396      * <p> An invocation of this method behaves in exactly the same way as the
2397      * invocation
2398      *
2399      * <pre>
2400      *     out().toString() </pre>
2401      *
2402      * <p> Depending on the specification of {@code toString} for the {@link
2403      * Appendable}, the returned string may or may not contain the characters
2404      * written to the destination.  For instance, buffers typically return
2405      * their contents in {@code toString()}, but streams cannot since the
2406      * data is discarded.
2407      *
2408      * @return  The result of invoking {@code toString()} on the destination
2409      *          for the output
2410      *
2411      * @throws  FormatterClosedException
2412      *          If this formatter has been closed by invoking its {@link
2413      *          #close()} method
2414      */
2415     public String toString() {
2416         ensureOpen();
2417         return a.toString();
2418     }
2419 
2420     /**
2421      * Flushes this formatter.  If the destination implements the {@link
2422      * java.io.Flushable} interface, its {@code flush} method will be invoked.
2423      *
2424      * <p> Flushing a formatter writes any buffered output in the destination
2425      * to the underlying stream.
2426      *
2427      * @throws  FormatterClosedException
2428      *          If this formatter has been closed by invoking its {@link
2429      *          #close()} method
2430      */
2431     public void flush() {
2432         ensureOpen();
2433         if (a instanceof Flushable) {
2434             try {
2435                 ((Flushable)a).flush();
2436             } catch (IOException ioe) {
2437                 lastException = ioe;
2438             }
2439         }
2440     }
2441 
2442     /**
2443      * Closes this formatter.  If the destination implements the {@link
2444      * java.io.Closeable} interface, its {@code close} method will be invoked.
2445      *
2446      * <p> Closing a formatter allows it to release resources it may be holding
2447      * (such as open files).  If the formatter is already closed, then invoking
2448      * this method has no effect.
2449      *
2450      * <p> Attempting to invoke any methods except {@link #ioException()} in
2451      * this formatter after it has been closed will result in a {@link
2452      * FormatterClosedException}.
2453      */
2454     public void close() {
2455         if (a == null)
2456             return;
2457         try {
2458             if (a instanceof Closeable)
2459                 ((Closeable)a).close();
2460         } catch (IOException ioe) {
2461             lastException = ioe;
2462         } finally {
2463             a = null;
2464         }
2465     }
2466 
2467     private void ensureOpen() {
2468         if (a == null)
2469             throw new FormatterClosedException();
2470     }
2471 
2472     /**
2473      * Returns the {@code IOException} last thrown by this formatter's {@link
2474      * Appendable}.
2475      *
2476      * <p> If the destination's {@code append()} method never throws
2477      * {@code IOException}, then this method will always return {@code null}.
2478      *
2479      * @return  The last exception thrown by the Appendable or {@code null} if
2480      *          no such exception exists.
2481      */
2482     public IOException ioException() {
2483         return lastException;
2484     }
2485 
2486     /**
2487      * Writes a formatted string to this object's destination using the
2488      * specified format string and arguments.  The locale used is the one
2489      * defined during the construction of this formatter.
2490      *
2491      * @param  format
2492      *         A format string as described in <a href="#syntax">Format string
2493      *         syntax</a>.
2494      *
2495      * @param  args
2496      *         Arguments referenced by the format specifiers in the format
2497      *         string.  If there are more arguments than format specifiers, the
2498      *         extra arguments are ignored.  The maximum number of arguments is
2499      *         limited by the maximum dimension of a Java array as defined by
2500      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2501      *
2502      * @throws  IllegalFormatException
2503      *          If a format string contains an illegal syntax, a format
2504      *          specifier that is incompatible with the given arguments,
2505      *          insufficient arguments given the format string, or other
2506      *          illegal conditions.  For specification of all possible
2507      *          formatting errors, see the <a href="#detail">Details</a>
2508      *          section of the formatter class specification.
2509      *
2510      * @throws  FormatterClosedException
2511      *          If this formatter has been closed by invoking its {@link
2512      *          #close()} method
2513      *
2514      * @return  This formatter
2515      */
2516     public Formatter format(String format, Object ... args) {
2517         return format(l, format, args);
2518     }
2519 
2520     /**
2521      * Writes a formatted string to this object's destination using the
2522      * specified locale, format string, and arguments.
2523      *
2524      * @param  l
2525      *         The {@linkplain java.util.Locale locale} to apply during
2526      *         formatting.  If {@code l} is {@code null} then no localization
2527      *         is applied.  This does not change this object's locale that was
2528      *         set during construction.
2529      *
2530      * @param  format
2531      *         A format string as described in <a href="#syntax">Format string
2532      *         syntax</a>
2533      *
2534      * @param  args
2535      *         Arguments referenced by the format specifiers in the format
2536      *         string.  If there are more arguments than format specifiers, the
2537      *         extra arguments are ignored.  The maximum number of arguments is
2538      *         limited by the maximum dimension of a Java array as defined by
2539      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2540      *
2541      * @throws  IllegalFormatException
2542      *          If a format string contains an illegal syntax, a format
2543      *          specifier that is incompatible with the given arguments,
2544      *          insufficient arguments given the format string, or other
2545      *          illegal conditions.  For specification of all possible
2546      *          formatting errors, see the <a href="#detail">Details</a>
2547      *          section of the formatter class specification.
2548      *
2549      * @throws  FormatterClosedException
2550      *          If this formatter has been closed by invoking its {@link
2551      *          #close()} method
2552      *
2553      * @return  This formatter
2554      */
2555     public Formatter format(Locale l, String format, Object ... args) {
2556         ensureOpen();
2557 
2558         // index of last argument referenced
2559         int last = -1;
2560         // last ordinary index
2561         int lasto = -1;
2562 
2563         List<FormatString> fsa = parse(format);
2564         for (FormatString fs : fsa) {
2565             int index = fs.index();
2566             try {
2567                 switch (index) {
2568                 case -2:  // fixed string, "%n", or "%%"
2569                     fs.print(null, l);
2570                     break;
2571                 case -1:  // relative index
2572                     if (last < 0 || (args != null && last > args.length - 1))
2573                         throw new MissingFormatArgumentException(fs.toString());
2574                     fs.print((args == null ? null : args[last]), l);
2575                     break;
2576                 case 0:  // ordinary index
2577                     lasto++;
2578                     last = lasto;
2579                     if (args != null && lasto > args.length - 1)
2580                         throw new MissingFormatArgumentException(fs.toString());
2581                     fs.print((args == null ? null : args[lasto]), l);
2582                     break;
2583                 default:  // explicit index
2584                     last = index - 1;
2585                     if (args != null && last > args.length - 1)
2586                         throw new MissingFormatArgumentException(fs.toString());
2587                     fs.print((args == null ? null : args[last]), l);
2588                     break;
2589                 }
2590             } catch (IOException x) {
2591                 lastException = x;
2592             }
2593         }
2594         return this;
2595     }
2596 
2597     // %[argument_index$][flags][width][.precision][t]conversion
2598     private static final String formatSpecifier
2599         = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2600 
2601     private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2602 
2603     /**
2604      * Finds format specifiers in the format string.
2605      */
2606     private List<FormatString> parse(String s) {
2607         ArrayList<FormatString> al = new ArrayList<>();
2608         Matcher m = fsPattern.matcher(s);
2609         for (int i = 0, len = s.length(); i < len; ) {
2610             if (m.find(i)) {
2611                 // Anything between the start of the string and the beginning
2612                 // of the format specifier is either fixed text or contains
2613                 // an invalid format string.
2614                 if (m.start() != i) {
2615                     // Make sure we didn't miss any invalid format specifiers
2616                     checkText(s, i, m.start());
2617                     // Assume previous characters were fixed text
2618                     al.add(new FixedString(s, i, m.start()));
2619                 }
2620 
2621                 al.add(new FormatSpecifier(s, m));
2622                 i = m.end();
2623             } else {
2624                 // No more valid format specifiers.  Check for possible invalid
2625                 // format specifiers.
2626                 checkText(s, i, len);
2627                 // The rest of the string is fixed text
2628                 al.add(new FixedString(s, i, s.length()));
2629                 break;
2630             }
2631         }
2632         return al;
2633     }
2634 
2635     private static void checkText(String s, int start, int end) {
2636         for (int i = start; i < end; i++) {
2637             // Any '%' found in the region starts an invalid format specifier.
2638             if (s.charAt(i) == '%') {
2639                 char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2640                 throw new UnknownFormatConversionException(String.valueOf(c));
2641             }
2642         }
2643     }
2644 
2645     private interface FormatString {
2646         int index();
2647         void print(Object arg, Locale l) throws IOException;
2648         String toString();
2649     }
2650 
2651     private class FixedString implements FormatString {
2652         private String s;
2653         private int start;
2654         private int end;
2655         FixedString(String s, int start, int end) {
2656             this.s = s;
2657             this.start = start;
2658             this.end = end;
2659         }
2660         public int index() { return -2; }
2661         public void print(Object arg, Locale l)
2662             throws IOException { a.append(s, start, end); }
2663         public String toString() { return s.substring(start, end); }
2664     }
2665 
2666     /**
2667      * Enum for {@code BigDecimal} formatting.
2668      */
2669     public enum BigDecimalLayoutForm {
2670         /**
2671          * Format the {@code BigDecimal} in computerized scientific notation.
2672          */
2673         SCIENTIFIC,
2674 
2675         /**
2676          * Format the {@code BigDecimal} as a decimal number.
2677          */
2678         DECIMAL_FLOAT
2679     };
2680 
2681     private class FormatSpecifier implements FormatString {
2682         private int index = -1;
2683         private Flags f = Flags.NONE;
2684         private int width;
2685         private int precision;
2686         private boolean dt = false;
2687         private char c;
2688 
2689         private int index(String s, int start, int end) {
2690             if (start >= 0) {
2691                 try {
2692                     // skip the trailing '$'
2693                     index = Integer.parseInt(s, start, end - 1, 10);
2694                 } catch (NumberFormatException x) {
2695                     assert(false);
2696                 }
2697             } else {
2698                 index = 0;
2699             }
2700             return index;
2701         }
2702 
2703         public int index() {
2704             return index;
2705         }
2706 
2707         private Flags flags(String s, int start, int end) {
2708             f = Flags.parse(s, start, end);
2709             if (f.contains(Flags.PREVIOUS))
2710                 index = -1;
2711             return f;
2712         }
2713 
2714         private int width(String s, int start, int end) {
2715             width = -1;
2716             if (start >= 0) {
2717                 try {
2718                     width = Integer.parseInt(s, start, end, 10);
2719                     if (width < 0)
2720                         throw new IllegalFormatWidthException(width);
2721                 } catch (NumberFormatException x) {
2722                     assert(false);
2723                 }
2724             }
2725             return width;
2726         }
2727 
2728         private int precision(String s, int start, int end) {
2729             precision = -1;
2730             if (start >= 0) {
2731                 try {
2732                     // skip the leading '.'
2733                     precision = Integer.parseInt(s, start + 1, end, 10);
2734                     if (precision < 0)
2735                         throw new IllegalFormatPrecisionException(precision);
2736                 } catch (NumberFormatException x) {
2737                     assert(false);
2738                 }
2739             }
2740             return precision;
2741         }
2742 
2743         private char conversion(char conv) {
2744             c = conv;
2745             if (!dt) {
2746                 if (!Conversion.isValid(c)) {
2747                     throw new UnknownFormatConversionException(String.valueOf(c));
2748                 }
2749                 if (Character.isUpperCase(c)) {
2750                     f.add(Flags.UPPERCASE);
2751                     c = Character.toLowerCase(c);
2752                 }
2753                 if (Conversion.isText(c)) {
2754                     index = -2;
2755                 }
2756             }
2757             return c;
2758         }
2759 
2760         FormatSpecifier(String s, Matcher m) {
2761             index(s, m.start(1), m.end(1));
2762             flags(s, m.start(2), m.end(2));
2763             width(s, m.start(3), m.end(3));
2764             precision(s, m.start(4), m.end(4));
2765 
2766             int tTStart = m.start(5);
2767             if (tTStart >= 0) {
2768                 dt = true;
2769                 if (s.charAt(tTStart) == 'T') {
2770                     f.add(Flags.UPPERCASE);
2771                 }
2772             }
2773             conversion(s.charAt(m.start(6)));
2774 
2775             if (dt)
2776                 checkDateTime();
2777             else if (Conversion.isGeneral(c))
2778                 checkGeneral();
2779             else if (Conversion.isCharacter(c))
2780                 checkCharacter();
2781             else if (Conversion.isInteger(c))
2782                 checkInteger();
2783             else if (Conversion.isFloat(c))
2784                 checkFloat();
2785             else if (Conversion.isText(c))
2786                 checkText();
2787             else
2788                 throw new UnknownFormatConversionException(String.valueOf(c));
2789         }
2790 
2791         public void print(Object arg, Locale l) throws IOException {
2792             if (dt) {
2793                 printDateTime(arg, l);
2794                 return;
2795             }
2796             switch(c) {
2797             case Conversion.DECIMAL_INTEGER:
2798             case Conversion.OCTAL_INTEGER:
2799             case Conversion.HEXADECIMAL_INTEGER:
2800                 printInteger(arg, l);
2801                 break;
2802             case Conversion.SCIENTIFIC:
2803             case Conversion.GENERAL:
2804             case Conversion.DECIMAL_FLOAT:
2805             case Conversion.HEXADECIMAL_FLOAT:
2806                 printFloat(arg, l);
2807                 break;
2808             case Conversion.CHARACTER:
2809             case Conversion.CHARACTER_UPPER:
2810                 printCharacter(arg);
2811                 break;
2812             case Conversion.BOOLEAN:
2813                 printBoolean(arg);
2814                 break;
2815             case Conversion.STRING:
2816                 printString(arg, l);
2817                 break;
2818             case Conversion.HASHCODE:
2819                 printHashCode(arg);
2820                 break;
2821             case Conversion.LINE_SEPARATOR:
2822                 a.append(System.lineSeparator());
2823                 break;
2824             case Conversion.PERCENT_SIGN:
2825                 a.append('%');
2826                 break;
2827             default:
2828                 assert false;
2829             }
2830         }
2831 
2832         private void printInteger(Object arg, Locale l) throws IOException {
2833             if (arg == null)
2834                 print("null");
2835             else if (arg instanceof Byte)
2836                 print(((Byte)arg).byteValue(), l);
2837             else if (arg instanceof Short)
2838                 print(((Short)arg).shortValue(), l);
2839             else if (arg instanceof Integer)
2840                 print(((Integer)arg).intValue(), l);
2841             else if (arg instanceof Long)
2842                 print(((Long)arg).longValue(), l);
2843             else if (arg instanceof BigInteger)
2844                 print(((BigInteger)arg), l);
2845             else
2846                 failConversion(c, arg);
2847         }
2848 
2849         private void printFloat(Object arg, Locale l) throws IOException {
2850             if (arg == null)
2851                 print("null");
2852             else if (arg instanceof Float)
2853                 print(((Float)arg).floatValue(), l);
2854             else if (arg instanceof Double)
2855                 print(((Double)arg).doubleValue(), l);
2856             else if (arg instanceof BigDecimal)
2857                 print(((BigDecimal)arg), l);
2858             else
2859                 failConversion(c, arg);
2860         }
2861 
2862         private void printDateTime(Object arg, Locale l) throws IOException {
2863             if (arg == null) {
2864                 print("null");
2865                 return;
2866             }
2867             Calendar cal = null;
2868 
2869             // Instead of Calendar.setLenient(true), perhaps we should
2870             // wrap the IllegalArgumentException that might be thrown?
2871             if (arg instanceof Long) {
2872                 // Note that the following method uses an instance of the
2873                 // default time zone (TimeZone.getDefaultRef().
2874                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2875                 cal.setTimeInMillis((Long)arg);
2876             } else if (arg instanceof Date) {
2877                 // Note that the following method uses an instance of the
2878                 // default time zone (TimeZone.getDefaultRef().
2879                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2880                 cal.setTime((Date)arg);
2881             } else if (arg instanceof Calendar) {
2882                 cal = (Calendar) ((Calendar) arg).clone();
2883                 cal.setLenient(true);
2884             } else if (arg instanceof TemporalAccessor) {
2885                 print((TemporalAccessor) arg, c, l);
2886                 return;
2887             } else {
2888                 failConversion(c, arg);
2889             }
2890             // Use the provided locale so that invocations of
2891             // localizedMagnitude() use optimizations for null.
2892             print(cal, c, l);
2893         }
2894 
2895         private void printCharacter(Object arg) throws IOException {
2896             if (arg == null) {
2897                 print("null");
2898                 return;
2899             }
2900             String s = null;
2901             if (arg instanceof Character) {
2902                 s = ((Character)arg).toString();
2903             } else if (arg instanceof Byte) {
2904                 byte i = ((Byte)arg).byteValue();
2905                 if (Character.isValidCodePoint(i))
2906                     s = new String(Character.toChars(i));
2907                 else
2908                     throw new IllegalFormatCodePointException(i);
2909             } else if (arg instanceof Short) {
2910                 short i = ((Short)arg).shortValue();
2911                 if (Character.isValidCodePoint(i))
2912                     s = new String(Character.toChars(i));
2913                 else
2914                     throw new IllegalFormatCodePointException(i);
2915             } else if (arg instanceof Integer) {
2916                 int i = ((Integer)arg).intValue();
2917                 if (Character.isValidCodePoint(i))
2918                     s = new String(Character.toChars(i));
2919                 else
2920                     throw new IllegalFormatCodePointException(i);
2921             } else {
2922                 failConversion(c, arg);
2923             }
2924             print(s);
2925         }
2926 
2927         private void printString(Object arg, Locale l) throws IOException {
2928             if (arg instanceof Formattable) {
2929                 Formatter fmt = Formatter.this;
2930                 if (fmt.locale() != l)
2931                     fmt = new Formatter(fmt.out(), l);
2932                 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2933             } else {
2934                 if (f.contains(Flags.ALTERNATE))
2935                     failMismatch(Flags.ALTERNATE, 's');
2936                 if (arg == null)
2937                     print("null");
2938                 else
2939                     print(arg.toString());
2940             }
2941         }
2942 
2943         private void printBoolean(Object arg) throws IOException {
2944             String s;
2945             if (arg != null)
2946                 s = ((arg instanceof Boolean)
2947                      ? ((Boolean)arg).toString()
2948                      : Boolean.toString(true));
2949             else
2950                 s = Boolean.toString(false);
2951             print(s);
2952         }
2953 
2954         private void printHashCode(Object arg) throws IOException {
2955             String s = (arg == null
2956                         ? "null"
2957                         : Integer.toHexString(arg.hashCode()));
2958             print(s);
2959         }
2960 
2961         private void print(String s) throws IOException {
2962             if (precision != -1 && precision < s.length())
2963                 s = s.substring(0, precision);
2964             if (f.contains(Flags.UPPERCASE))
2965                 s = s.toUpperCase(Locale.getDefault(Locale.Category.FORMAT));
2966             appendJustified(a, s);
2967         }
2968 
2969         private Appendable appendJustified(Appendable a, CharSequence cs) throws IOException {
2970              if (width == -1) {
2971                  return a.append(cs);
2972              }
2973              boolean padRight = f.contains(Flags.LEFT_JUSTIFY);
2974              int sp = width - cs.length();
2975              if (padRight) {
2976                  a.append(cs);
2977              }
2978              for (int i = 0; i < sp; i++) {
2979                  a.append(' ');
2980              }
2981              if (!padRight) {
2982                  a.append(cs);
2983              }
2984              return a;
2985         }
2986 
2987         public String toString() {
2988             StringBuilder sb = new StringBuilder("%");
2989             // Flags.UPPERCASE is set internally for legal conversions.
2990             Flags dupf = f.dup().remove(Flags.UPPERCASE);
2991             sb.append(dupf.toString());
2992             if (index > 0)
2993                 sb.append(index).append('$');
2994             if (width != -1)
2995                 sb.append(width);
2996             if (precision != -1)
2997                 sb.append('.').append(precision);
2998             if (dt)
2999                 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
3000             sb.append(f.contains(Flags.UPPERCASE)
3001                       ? Character.toUpperCase(c) : c);
3002             return sb.toString();
3003         }
3004 
3005         private void checkGeneral() {
3006             if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
3007                 && f.contains(Flags.ALTERNATE))
3008                 failMismatch(Flags.ALTERNATE, c);
3009             // '-' requires a width
3010             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3011                 throw new MissingFormatWidthException(toString());
3012             checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
3013                           Flags.GROUP, Flags.PARENTHESES);
3014         }
3015 
3016         private void checkDateTime() {
3017             if (precision != -1)
3018                 throw new IllegalFormatPrecisionException(precision);
3019             if (!DateTime.isValid(c))
3020                 throw new UnknownFormatConversionException("t" + c);
3021             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3022                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3023             // '-' requires a width
3024             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3025                 throw new MissingFormatWidthException(toString());
3026         }
3027 
3028         private void checkCharacter() {
3029             if (precision != -1)
3030                 throw new IllegalFormatPrecisionException(precision);
3031             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3032                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3033             // '-' requires a width
3034             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3035                 throw new MissingFormatWidthException(toString());
3036         }
3037 
3038         private void checkInteger() {
3039             checkNumeric();
3040             if (precision != -1)
3041                 throw new IllegalFormatPrecisionException(precision);
3042 
3043             if (c == Conversion.DECIMAL_INTEGER)
3044                 checkBadFlags(Flags.ALTERNATE);
3045             else if (c == Conversion.OCTAL_INTEGER)
3046                 checkBadFlags(Flags.GROUP);
3047             else
3048                 checkBadFlags(Flags.GROUP);
3049         }
3050 
3051         private void checkBadFlags(Flags ... badFlags) {
3052             for (Flags badFlag : badFlags)
3053                 if (f.contains(badFlag))
3054                     failMismatch(badFlag, c);
3055         }
3056 
3057         private void checkFloat() {
3058             checkNumeric();
3059             if (c == Conversion.DECIMAL_FLOAT) {
3060             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3061                 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3062             } else if (c == Conversion.SCIENTIFIC) {
3063                 checkBadFlags(Flags.GROUP);
3064             } else if (c == Conversion.GENERAL) {
3065                 checkBadFlags(Flags.ALTERNATE);
3066             }
3067         }
3068 
3069         private void checkNumeric() {
3070             if (width != -1 && width < 0)
3071                 throw new IllegalFormatWidthException(width);
3072 
3073             if (precision != -1 && precision < 0)
3074                 throw new IllegalFormatPrecisionException(precision);
3075 
3076             // '-' and '0' require a width
3077             if (width == -1
3078                 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3079                 throw new MissingFormatWidthException(toString());
3080 
3081             // bad combination
3082             if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3083                 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3084                 throw new IllegalFormatFlagsException(f.toString());
3085         }
3086 
3087         private void checkText() {
3088             if (precision != -1)
3089                 throw new IllegalFormatPrecisionException(precision);
3090             switch (c) {
3091             case Conversion.PERCENT_SIGN:
3092                 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3093                     && f.valueOf() != Flags.NONE.valueOf())
3094                     throw new IllegalFormatFlagsException(f.toString());
3095                 // '-' requires a width
3096                 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3097                     throw new MissingFormatWidthException(toString());
3098                 break;
3099             case Conversion.LINE_SEPARATOR:
3100                 if (width != -1)
3101                     throw new IllegalFormatWidthException(width);
3102                 if (f.valueOf() != Flags.NONE.valueOf())
3103                     throw new IllegalFormatFlagsException(f.toString());
3104                 break;
3105             default:
3106                 assert false;
3107             }
3108         }
3109 
3110         private void print(byte value, Locale l) throws IOException {
3111             long v = value;
3112             if (value < 0
3113                 && (c == Conversion.OCTAL_INTEGER
3114                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3115                 v += (1L << 8);
3116                 assert v >= 0 : v;
3117             }
3118             print(v, l);
3119         }
3120 
3121         private void print(short value, Locale l) throws IOException {
3122             long v = value;
3123             if (value < 0
3124                 && (c == Conversion.OCTAL_INTEGER
3125                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3126                 v += (1L << 16);
3127                 assert v >= 0 : v;
3128             }
3129             print(v, l);
3130         }
3131 
3132         private void print(int value, Locale l) throws IOException {
3133             long v = value;
3134             if (value < 0
3135                 && (c == Conversion.OCTAL_INTEGER
3136                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3137                 v += (1L << 32);
3138                 assert v >= 0 : v;
3139             }
3140             print(v, l);
3141         }
3142 
3143         private void print(long value, Locale l) throws IOException {
3144 
3145             StringBuilder sb = new StringBuilder();
3146 
3147             if (c == Conversion.DECIMAL_INTEGER) {
3148                 boolean neg = value < 0;
3149                 String valueStr = Long.toString(value, 10);
3150 
3151                 // leading sign indicator
3152                 leadingSign(sb, neg);
3153 
3154                 // the value
3155                 localizedMagnitude(sb, valueStr, neg ? 1 : 0, f, adjustWidth(width, f, neg), l);
3156 
3157                 // trailing sign indicator
3158                 trailingSign(sb, neg);
3159             } else if (c == Conversion.OCTAL_INTEGER) {
3160                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3161                               Flags.PLUS);
3162                 String s = Long.toOctalString(value);
3163                 int len = (f.contains(Flags.ALTERNATE)
3164                            ? s.length() + 1
3165                            : s.length());
3166 
3167                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3168                 if (f.contains(Flags.ALTERNATE))
3169                     sb.append('0');
3170                 if (f.contains(Flags.ZERO_PAD)) {
3171                     trailingZeros(sb, width - len);
3172                 }
3173                 sb.append(s);
3174             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3175                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3176                               Flags.PLUS);
3177                 String s = Long.toHexString(value);
3178                 int len = (f.contains(Flags.ALTERNATE)
3179                            ? s.length() + 2
3180                            : s.length());
3181 
3182                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3183                 if (f.contains(Flags.ALTERNATE))
3184                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3185                 if (f.contains(Flags.ZERO_PAD)) {
3186                     trailingZeros(sb, width - len);
3187                 }
3188                 if (f.contains(Flags.UPPERCASE))
3189                     s = s.toUpperCase(Locale.getDefault(Locale.Category.FORMAT));
3190                 sb.append(s);
3191             }
3192 
3193             // justify based on width
3194             appendJustified(a, sb);
3195         }
3196 
3197         // neg := val < 0
3198         private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3199             if (!neg) {
3200                 if (f.contains(Flags.PLUS)) {
3201                     sb.append('+');
3202                 } else if (f.contains(Flags.LEADING_SPACE)) {
3203                     sb.append(' ');
3204                 }
3205             } else {
3206                 if (f.contains(Flags.PARENTHESES))
3207                     sb.append('(');
3208                 else
3209                     sb.append('-');
3210             }
3211             return sb;
3212         }
3213 
3214         // neg := val < 0
3215         private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3216             if (neg && f.contains(Flags.PARENTHESES))
3217                 sb.append(')');
3218             return sb;
3219         }
3220 
3221         private void print(BigInteger value, Locale l) throws IOException {
3222             StringBuilder sb = new StringBuilder();
3223             boolean neg = value.signum() == -1;
3224             BigInteger v = value.abs();
3225 
3226             // leading sign indicator
3227             leadingSign(sb, neg);
3228 
3229             // the value
3230             if (c == Conversion.DECIMAL_INTEGER) {
3231                 localizedMagnitude(sb, v.toString(), 0, f, adjustWidth(width, f, neg), l);
3232             } else if (c == Conversion.OCTAL_INTEGER) {
3233                 String s = v.toString(8);
3234 
3235                 int len = s.length() + sb.length();
3236                 if (neg && f.contains(Flags.PARENTHESES))
3237                     len++;
3238 
3239                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3240                 if (f.contains(Flags.ALTERNATE)) {
3241                     len++;
3242                     sb.append('0');
3243                 }
3244                 if (f.contains(Flags.ZERO_PAD)) {
3245                     trailingZeros(sb, width - len);
3246                 }
3247                 sb.append(s);
3248             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3249                 String s = v.toString(16);
3250 
3251                 int len = s.length() + sb.length();
3252                 if (neg && f.contains(Flags.PARENTHESES))
3253                     len++;
3254 
3255                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3256                 if (f.contains(Flags.ALTERNATE)) {
3257                     len += 2;
3258                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3259                 }
3260                 if (f.contains(Flags.ZERO_PAD)) {
3261                     trailingZeros(sb, width - len);
3262                 }
3263                 if (f.contains(Flags.UPPERCASE))
3264                     s = s.toUpperCase(Locale.getDefault(Locale.Category.FORMAT));
3265                 sb.append(s);
3266             }
3267 
3268             // trailing sign indicator
3269             trailingSign(sb, (value.signum() == -1));
3270 
3271             // justify based on width
3272             appendJustified(a, sb);
3273         }
3274 
3275         private void print(float value, Locale l) throws IOException {
3276             print((double) value, l);
3277         }
3278 
3279         private void print(double value, Locale l) throws IOException {
3280             StringBuilder sb = new StringBuilder();
3281             boolean neg = Double.compare(value, 0.0) == -1;
3282 
3283             if (!Double.isNaN(value)) {
3284                 double v = Math.abs(value);
3285 
3286                 // leading sign indicator
3287                 leadingSign(sb, neg);
3288 
3289                 // the value
3290                 if (!Double.isInfinite(v))
3291                     print(sb, v, l, f, c, precision, neg);
3292                 else
3293                     sb.append(f.contains(Flags.UPPERCASE)
3294                               ? "INFINITY" : "Infinity");
3295 
3296                 // trailing sign indicator
3297                 trailingSign(sb, neg);
3298             } else {
3299                 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3300             }
3301 
3302             // justify based on width
3303             appendJustified(a, sb);
3304         }
3305 
3306         // !Double.isInfinite(value) && !Double.isNaN(value)
3307         private void print(StringBuilder sb, double value, Locale l,
3308                            Flags f, char c, int precision, boolean neg)
3309             throws IOException
3310         {
3311             if (c == Conversion.SCIENTIFIC) {
3312                 // Create a new FormattedFloatingDecimal with the desired
3313                 // precision.
3314                 int prec = (precision == -1 ? 6 : precision);
3315 
3316                 FormattedFloatingDecimal fd
3317                         = FormattedFloatingDecimal.valueOf(value, prec,
3318                           FormattedFloatingDecimal.Form.SCIENTIFIC);
3319 
3320                 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3321                 addZeros(mant, prec);
3322 
3323                 // If the precision is zero and the '#' flag is set, add the
3324                 // requested decimal point.
3325                 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3326                     mant.append('.');
3327                 }
3328 
3329                 char[] exp = (value == 0.0)
3330                     ? new char[] {'+','0','0'} : fd.getExponent();
3331 
3332                 int newW = width;
3333                 if (width != -1) {
3334                     newW = adjustWidth(width - exp.length - 1, f, neg);
3335                 }
3336                 localizedMagnitude(sb, mant, 0, f, newW, l);
3337 
3338                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3339 
3340                 char sign = exp[0];
3341                 assert(sign == '+' || sign == '-');
3342                 sb.append(sign);
3343 
3344                 localizedMagnitudeExp(sb, exp, 1, l);
3345             } else if (c == Conversion.DECIMAL_FLOAT) {
3346                 // Create a new FormattedFloatingDecimal with the desired
3347                 // precision.
3348                 int prec = (precision == -1 ? 6 : precision);
3349 
3350                 FormattedFloatingDecimal fd
3351                         = FormattedFloatingDecimal.valueOf(value, prec,
3352                           FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3353 
3354                 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3355                 addZeros(mant, prec);
3356 
3357                 // If the precision is zero and the '#' flag is set, add the
3358                 // requested decimal point.
3359                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3360                     mant.append('.');
3361 
3362                 int newW = width;
3363                 if (width != -1)
3364                     newW = adjustWidth(width, f, neg);
3365                 localizedMagnitude(sb, mant, 0, f, newW, l);
3366             } else if (c == Conversion.GENERAL) {
3367                 int prec = precision;
3368                 if (precision == -1)
3369                     prec = 6;
3370                 else if (precision == 0)
3371                     prec = 1;
3372 
3373                 char[] exp;
3374                 StringBuilder mant = new StringBuilder();
3375                 int expRounded;
3376                 if (value == 0.0) {
3377                     exp = null;
3378                     mant.append('0');
3379                     expRounded = 0;
3380                 } else {
3381                     FormattedFloatingDecimal fd
3382                         = FormattedFloatingDecimal.valueOf(value, prec,
3383                           FormattedFloatingDecimal.Form.GENERAL);
3384                     exp = fd.getExponent();
3385                     mant.append(fd.getMantissa());
3386                     expRounded = fd.getExponentRounded();
3387                 }
3388 
3389                 if (exp != null) {
3390                     prec -= 1;
3391                 } else {
3392                     prec -= expRounded + 1;
3393                 }
3394 
3395                 addZeros(mant, prec);
3396                 // If the precision is zero and the '#' flag is set, add the
3397                 // requested decimal point.
3398                 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3399                     mant.append('.');
3400                 }
3401 
3402                 int newW = width;
3403                 if (width != -1) {
3404                     if (exp != null)
3405                         newW = adjustWidth(width - exp.length - 1, f, neg);
3406                     else
3407                         newW = adjustWidth(width, f, neg);
3408                 }
3409                 localizedMagnitude(sb, mant, 0, f, newW, l);
3410 
3411                 if (exp != null) {
3412                     sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3413 
3414                     char sign = exp[0];
3415                     assert(sign == '+' || sign == '-');
3416                     sb.append(sign);
3417 
3418                     localizedMagnitudeExp(sb, exp, 1, l);
3419                 }
3420             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3421                 int prec = precision;
3422                 if (precision == -1)
3423                     // assume that we want all of the digits
3424                     prec = 0;
3425                 else if (precision == 0)
3426                     prec = 1;
3427 
3428                 String s = hexDouble(value, prec);
3429 
3430                 StringBuilder va = new StringBuilder();
3431                 boolean upper = f.contains(Flags.UPPERCASE);
3432                 sb.append(upper ? "0X" : "0x");
3433 
3434                 if (f.contains(Flags.ZERO_PAD)) {
3435                     trailingZeros(sb, width - s.length() - 2);
3436                 }
3437 
3438                 int idx = s.indexOf('p');
3439                 if (upper) {
3440                     String tmp = s.substring(0, idx);
3441                     // don't localize hex
3442                     tmp = tmp.toUpperCase(Locale.ROOT);
3443                     va.append(tmp);
3444                 } else {
3445                     va.append(s, 0, idx);
3446                 }
3447                 if (prec != 0) {
3448                     addZeros(va, prec);
3449                 }
3450                 sb.append(va);
3451                 sb.append(upper ? 'P' : 'p');
3452                 sb.append(s, idx+1, s.length());
3453             }
3454         }
3455 
3456         // Add zeros to the requested precision.
3457         private void addZeros(StringBuilder sb, int prec) {
3458             // Look for the dot.  If we don't find one, the we'll need to add
3459             // it before we add the zeros.
3460             int len = sb.length();
3461             int i;
3462             for (i = 0; i < len; i++) {
3463                 if (sb.charAt(i) == '.') {
3464                     break;
3465                 }
3466             }
3467             boolean needDot = false;
3468             if (i == len) {
3469                 needDot = true;
3470             }
3471 
3472             // Determine existing precision.
3473             int outPrec = len - i - (needDot ? 0 : 1);
3474             assert (outPrec <= prec);
3475             if (outPrec == prec) {
3476                 return;
3477             }
3478 
3479             // Add dot if previously determined to be necessary.
3480             if (needDot) {
3481                 sb.append('.');
3482             }
3483 
3484             // Add zeros.
3485             trailingZeros(sb, prec - outPrec);
3486         }
3487 
3488         // Method assumes that d > 0.
3489         private String hexDouble(double d, int prec) {
3490             // Let Double.toHexString handle simple cases
3491             if (!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) {
3492                 // remove "0x"
3493                 return Double.toHexString(d).substring(2);
3494             } else {
3495                 assert(prec >= 1 && prec <= 12);
3496 
3497                 int exponent  = Math.getExponent(d);
3498                 boolean subnormal
3499                     = (exponent == Double.MIN_EXPONENT - 1);
3500 
3501                 // If this is subnormal input so normalize (could be faster to
3502                 // do as integer operation).
3503                 if (subnormal) {
3504                     scaleUp = Math.scalb(1.0, 54);
3505                     d *= scaleUp;
3506                     // Calculate the exponent.  This is not just exponent + 54
3507                     // since the former is not the normalized exponent.
3508                     exponent = Math.getExponent(d);
3509                     assert exponent >= Double.MIN_EXPONENT &&
3510                         exponent <= Double.MAX_EXPONENT: exponent;
3511                 }
3512 
3513                 int precision = 1 + prec*4;
3514                 int shiftDistance
3515                     =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3516                 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3517 
3518                 long doppel = Double.doubleToLongBits(d);
3519                 // Deterime the number of bits to keep.
3520                 long newSignif
3521                     = (doppel & (DoubleConsts.EXP_BIT_MASK
3522                                  | DoubleConsts.SIGNIF_BIT_MASK))
3523                                      >> shiftDistance;
3524                 // Bits to round away.
3525                 long roundingBits = doppel & ~(~0L << shiftDistance);
3526 
3527                 // To decide how to round, look at the low-order bit of the
3528                 // working significand, the highest order discarded bit (the
3529                 // round bit) and whether any of the lower order discarded bits
3530                 // are nonzero (the sticky bit).
3531 
3532                 boolean leastZero = (newSignif & 0x1L) == 0L;
3533                 boolean round
3534                     = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3535                 boolean sticky  = shiftDistance > 1 &&
3536                     (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3537                 if((leastZero && round && sticky) || (!leastZero && round)) {
3538                     newSignif++;
3539                 }
3540 
3541                 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3542                 newSignif = signBit | (newSignif << shiftDistance);
3543                 double result = Double.longBitsToDouble(newSignif);
3544 
3545                 if (Double.isInfinite(result) ) {
3546                     // Infinite result generated by rounding
3547                     return "1.0p1024";
3548                 } else {
3549                     String res = Double.toHexString(result).substring(2);
3550                     if (!subnormal)
3551                         return res;
3552                     else {
3553                         // Create a normalized subnormal string.
3554                         int idx = res.indexOf('p');
3555                         if (idx == -1) {
3556                             // No 'p' character in hex string.
3557                             assert false;
3558                             return null;
3559                         } else {
3560                             // Get exponent and append at the end.
3561                             String exp = res.substring(idx + 1);
3562                             int iexp = Integer.parseInt(exp) -54;
3563                             return res.substring(0, idx) + "p"
3564                                 + Integer.toString(iexp);
3565                         }
3566                     }
3567                 }
3568             }
3569         }
3570 
3571         private void print(BigDecimal value, Locale l) throws IOException {
3572             if (c == Conversion.HEXADECIMAL_FLOAT)
3573                 failConversion(c, value);
3574             StringBuilder sb = new StringBuilder();
3575             boolean neg = value.signum() == -1;
3576             BigDecimal v = value.abs();
3577             // leading sign indicator
3578             leadingSign(sb, neg);
3579 
3580             // the value
3581             print(sb, v, l, f, c, precision, neg);
3582 
3583             // trailing sign indicator
3584             trailingSign(sb, neg);
3585 
3586             // justify based on width
3587             appendJustified(a, sb);
3588         }
3589 
3590         // value > 0
3591         private void print(StringBuilder sb, BigDecimal value, Locale l,
3592                            Flags f, char c, int precision, boolean neg)
3593             throws IOException
3594         {
3595             if (c == Conversion.SCIENTIFIC) {
3596                 // Create a new BigDecimal with the desired precision.
3597                 int prec = (precision == -1 ? 6 : precision);
3598                 int scale = value.scale();
3599                 int origPrec = value.precision();
3600                 int nzeros = 0;
3601                 int compPrec;
3602 
3603                 if (prec > origPrec - 1) {
3604                     compPrec = origPrec;
3605                     nzeros = prec - (origPrec - 1);
3606                 } else {
3607                     compPrec = prec + 1;
3608                 }
3609 
3610                 MathContext mc = new MathContext(compPrec);
3611                 BigDecimal v
3612                     = new BigDecimal(value.unscaledValue(), scale, mc);
3613 
3614                 BigDecimalLayout bdl
3615                     = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3616                                            BigDecimalLayoutForm.SCIENTIFIC);
3617 
3618                 StringBuilder mant = bdl.mantissa();
3619 
3620                 // Add a decimal point if necessary.  The mantissa may not
3621                 // contain a decimal point if the scale is zero (the internal
3622                 // representation has no fractional part) or the original
3623                 // precision is one. Append a decimal point if '#' is set or if
3624                 // we require zero padding to get to the requested precision.
3625                 if ((origPrec == 1 || !bdl.hasDot())
3626                         && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) {
3627                     mant.append('.');
3628                 }
3629 
3630                 // Add trailing zeros in the case precision is greater than
3631                 // the number of available digits after the decimal separator.
3632                 trailingZeros(mant, nzeros);
3633 
3634                 StringBuilder exp = bdl.exponent();
3635                 int newW = width;
3636                 if (width != -1) {
3637                     newW = adjustWidth(width - exp.length() - 1, f, neg);
3638                 }
3639                 localizedMagnitude(sb, mant, 0, f, newW, l);
3640 
3641                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3642 
3643                 Flags flags = f.dup().remove(Flags.GROUP);
3644                 char sign = exp.charAt(0);
3645                 assert(sign == '+' || sign == '-');
3646                 sb.append(sign);
3647 
3648                 sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
3649             } else if (c == Conversion.DECIMAL_FLOAT) {
3650                 // Create a new BigDecimal with the desired precision.
3651                 int prec = (precision == -1 ? 6 : precision);
3652                 int scale = value.scale();
3653 
3654                 if (scale > prec) {
3655                     // more "scale" digits than the requested "precision"
3656                     int compPrec = value.precision();
3657                     if (compPrec <= scale) {
3658                         // case of 0.xxxxxx
3659                         value = value.setScale(prec, RoundingMode.HALF_UP);
3660                     } else {
3661                         compPrec -= (scale - prec);
3662                         value = new BigDecimal(value.unscaledValue(),
3663                                                scale,
3664                                                new MathContext(compPrec));
3665                     }
3666                 }
3667                 BigDecimalLayout bdl = new BigDecimalLayout(
3668                                            value.unscaledValue(),
3669                                            value.scale(),
3670                                            BigDecimalLayoutForm.DECIMAL_FLOAT);
3671 
3672                 StringBuilder mant = bdl.mantissa();
3673                 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3674 
3675                 // Add a decimal point if necessary.  The mantissa may not
3676                 // contain a decimal point if the scale is zero (the internal
3677                 // representation has no fractional part).  Append a decimal
3678                 // point if '#' is set or we require zero padding to get to the
3679                 // requested precision.
3680                 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE)
3681                         || nzeros > 0)) {
3682                     mant.append('.');
3683                 }
3684 
3685                 // Add trailing zeros if the precision is greater than the
3686                 // number of available digits after the decimal separator.
3687                 trailingZeros(mant, nzeros);
3688 
3689                 localizedMagnitude(sb, mant, 0, f, adjustWidth(width, f, neg), l);
3690             } else if (c == Conversion.GENERAL) {
3691                 int prec = precision;
3692                 if (precision == -1)
3693                     prec = 6;
3694                 else if (precision == 0)
3695                     prec = 1;
3696 
3697                 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3698                 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3699                 if ((value.equals(BigDecimal.ZERO))
3700                     || ((value.compareTo(tenToTheNegFour) != -1)
3701                         && (value.compareTo(tenToThePrec) == -1))) {
3702 
3703                     int e = - value.scale()
3704                         + (value.unscaledValue().toString().length() - 1);
3705 
3706                     // xxx.yyy
3707                     //   g precision (# sig digits) = #x + #y
3708                     //   f precision = #y
3709                     //   exponent = #x - 1
3710                     // => f precision = g precision - exponent - 1
3711                     // 0.000zzz
3712                     //   g precision (# sig digits) = #z
3713                     //   f precision = #0 (after '.') + #z
3714                     //   exponent = - #0 (after '.') - 1
3715                     // => f precision = g precision - exponent - 1
3716                     prec = prec - e - 1;
3717 
3718                     print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3719                           neg);
3720                 } else {
3721                     print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3722                 }
3723             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3724                 // This conversion isn't supported.  The error should be
3725                 // reported earlier.
3726                 assert false;
3727             }
3728         }
3729 
3730         private class BigDecimalLayout {
3731             private StringBuilder mant;
3732             private StringBuilder exp;
3733             private boolean dot = false;
3734             private int scale;
3735 
3736             public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3737                 layout(intVal, scale, form);
3738             }
3739 
3740             public boolean hasDot() {
3741                 return dot;
3742             }
3743 
3744             public int scale() {
3745                 return scale;
3746             }
3747 
3748             public StringBuilder mantissa() {
3749                 return mant;
3750             }
3751 
3752             // The exponent will be formatted as a sign ('+' or '-') followed
3753             // by the exponent zero-padded to include at least two digits.
3754             public StringBuilder exponent() {
3755                 return exp;
3756             }
3757 
3758             private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3759                 String coeff = intVal.toString();
3760                 this.scale = scale;
3761 
3762                 // Construct a buffer, with sufficient capacity for all cases.
3763                 // If E-notation is needed, length will be: +1 if negative, +1
3764                 // if '.' needed, +2 for "E+", + up to 10 for adjusted
3765                 // exponent.  Otherwise it could have +1 if negative, plus
3766                 // leading "0.00000"
3767                 int len = coeff.length();
3768                 mant = new StringBuilder(len + 14);
3769 
3770                 if (scale == 0) {
3771                     if (len > 1) {
3772                         mant.append(coeff.charAt(0));
3773                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3774                             mant.append('.');
3775                             dot = true;
3776                             mant.append(coeff, 1, len);
3777                             exp = new StringBuilder("+");
3778                             if (len < 10) {
3779                                 exp.append('0').append(len - 1);
3780                             } else {
3781                                 exp.append(len - 1);
3782                             }
3783                         } else {
3784                             mant.append(coeff, 1, len);
3785                         }
3786                     } else {
3787                         mant.append(coeff);
3788                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3789                             exp = new StringBuilder("+00");
3790                         }
3791                     }
3792                 } else if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3793                     // count of padding zeros
3794 
3795                     if (scale >= len) {
3796                         // 0.xxx form
3797                         mant.append("0.");
3798                         dot = true;
3799                         trailingZeros(mant, scale - len);
3800                         mant.append(coeff);
3801                     } else {
3802                         if (scale > 0) {
3803                             // xx.xx form
3804                             int pad = len - scale;
3805                             mant.append(coeff, 0, pad);
3806                             mant.append('.');
3807                             dot = true;
3808                             mant.append(coeff, pad, len);
3809                         } else { // scale < 0
3810                             // xx form
3811                             mant.append(coeff, 0, len);
3812                             if (intVal.signum() != 0) {
3813                                 trailingZeros(mant, -scale);
3814                             }
3815                             this.scale = 0;
3816                         }
3817                     }
3818                 } else {
3819                     // x.xxx form
3820                     mant.append(coeff.charAt(0));
3821                     if (len > 1) {
3822                         mant.append('.');
3823                         dot = true;
3824                         mant.append(coeff, 1, len);
3825                     }
3826                     exp = new StringBuilder();
3827                     long adjusted = -(long) scale + (len - 1);
3828                     if (adjusted != 0) {
3829                         long abs = Math.abs(adjusted);
3830                         // require sign
3831                         exp.append(adjusted < 0 ? '-' : '+');
3832                         if (abs < 10) {
3833                             exp.append('0');
3834                         }
3835                         exp.append(abs);
3836                     } else {
3837                         exp.append("+00");
3838                     }
3839                 }
3840             }
3841         }
3842 
3843         private int adjustWidth(int width, Flags f, boolean neg) {
3844             int newW = width;
3845             if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3846                 newW--;
3847             return newW;
3848         }
3849 
3850         // Add trailing zeros
3851         private void trailingZeros(StringBuilder sb, int nzeros) {
3852             for (int i = 0; i < nzeros; i++) {
3853                 sb.append('0');
3854             }
3855         }
3856 
3857         private void print(Calendar t, char c, Locale l)  throws IOException {
3858             StringBuilder sb = new StringBuilder();
3859             print(sb, t, c, l);
3860 
3861             // justify based on width
3862             if (f.contains(Flags.UPPERCASE)) {
3863                 appendJustified(a, sb.toString().toUpperCase(Locale.getDefault(Locale.Category.FORMAT)));
3864             } else {
3865                 appendJustified(a, sb);
3866             }
3867         }
3868 
3869         private Appendable print(StringBuilder sb, Calendar t, char c, Locale l)
3870                 throws IOException {
3871             if (sb == null)
3872                 sb = new StringBuilder();
3873             switch (c) {
3874             case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3875             case DateTime.HOUR_0:        // 'I' (01 - 12)
3876             case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3877             case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3878                 int i = t.get(Calendar.HOUR_OF_DAY);
3879                 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3880                     i = (i == 0 || i == 12 ? 12 : i % 12);
3881                 Flags flags = (c == DateTime.HOUR_OF_DAY_0
3882                                || c == DateTime.HOUR_0
3883                                ? Flags.ZERO_PAD
3884                                : Flags.NONE);
3885                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3886                 break;
3887             }
3888             case DateTime.MINUTE:      { // 'M' (00 - 59)
3889                 int i = t.get(Calendar.MINUTE);
3890                 Flags flags = Flags.ZERO_PAD;
3891                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3892                 break;
3893             }
3894             case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3895                 int i = t.get(Calendar.MILLISECOND) * 1000000;
3896                 Flags flags = Flags.ZERO_PAD;
3897                 sb.append(localizedMagnitude(null, i, flags, 9, l));
3898                 break;
3899             }
3900             case DateTime.MILLISECOND: { // 'L' (000 - 999)
3901                 int i = t.get(Calendar.MILLISECOND);
3902                 Flags flags = Flags.ZERO_PAD;
3903                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3904                 break;
3905             }
3906             case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3907                 long i = t.getTimeInMillis();
3908                 Flags flags = Flags.NONE;
3909                 sb.append(localizedMagnitude(null, i, flags, width, l));
3910                 break;
3911             }
3912             case DateTime.AM_PM:       { // 'p' (am or pm)
3913                 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3914                 String[] ampm = { "AM", "PM" };
3915                 if (l != null && l != Locale.US) {
3916                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3917                     ampm = dfs.getAmPmStrings();
3918                 }
3919                 String s = ampm[t.get(Calendar.AM_PM)];
3920                 sb.append(s.toLowerCase(Objects.requireNonNullElse(l,
3921                             Locale.getDefault(Locale.Category.FORMAT))));
3922                 break;
3923             }
3924             case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3925                 long i = t.getTimeInMillis() / 1000;
3926                 Flags flags = Flags.NONE;
3927                 sb.append(localizedMagnitude(null, i, flags, width, l));
3928                 break;
3929             }
3930             case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
3931                 int i = t.get(Calendar.SECOND);
3932                 Flags flags = Flags.ZERO_PAD;
3933                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3934                 break;
3935             }
3936             case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3937                 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3938                 boolean neg = i < 0;
3939                 sb.append(neg ? '-' : '+');
3940                 if (neg)
3941                     i = -i;
3942                 int min = i / 60000;
3943                 // combine minute and hour into a single integer
3944                 int offset = (min / 60) * 100 + (min % 60);
3945                 Flags flags = Flags.ZERO_PAD;
3946 
3947                 sb.append(localizedMagnitude(null, offset, flags, 4, l));
3948                 break;
3949             }
3950             case DateTime.ZONE:        { // 'Z' (symbol)
3951                 TimeZone tz = t.getTimeZone();
3952                 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3953                                            TimeZone.SHORT,
3954                                            Objects.requireNonNullElse(l, Locale.US)));
3955                 break;
3956             }
3957 
3958             // Date
3959             case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
3960             case DateTime.NAME_OF_DAY:          { // 'A'
3961                 int i = t.get(Calendar.DAY_OF_WEEK);
3962                 Locale lt = Objects.requireNonNullElse(l, Locale.US);
3963                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3964                 if (c == DateTime.NAME_OF_DAY)
3965                     sb.append(dfs.getWeekdays()[i]);
3966                 else
3967                     sb.append(dfs.getShortWeekdays()[i]);
3968                 break;
3969             }
3970             case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
3971             case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
3972             case DateTime.NAME_OF_MONTH:        { // 'B'
3973                 int i = t.get(Calendar.MONTH);
3974                 Locale lt = Objects.requireNonNullElse(l, Locale.US);
3975                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3976                 if (c == DateTime.NAME_OF_MONTH)
3977                     sb.append(dfs.getMonths()[i]);
3978                 else
3979                     sb.append(dfs.getShortMonths()[i]);
3980                 break;
3981             }
3982             case DateTime.CENTURY:                // 'C' (00 - 99)
3983             case DateTime.YEAR_2:                 // 'y' (00 - 99)
3984             case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
3985                 int i = t.get(Calendar.YEAR);
3986                 int size = 2;
3987                 switch (c) {
3988                 case DateTime.CENTURY:
3989                     i /= 100;
3990                     break;
3991                 case DateTime.YEAR_2:
3992                     i %= 100;
3993                     break;
3994                 case DateTime.YEAR_4:
3995                     size = 4;
3996                     break;
3997                 }
3998                 Flags flags = Flags.ZERO_PAD;
3999                 sb.append(localizedMagnitude(null, i, flags, size, l));
4000                 break;
4001             }
4002             case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4003             case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4004                 int i = t.get(Calendar.DATE);
4005                 Flags flags = (c == DateTime.DAY_OF_MONTH_0
4006                                ? Flags.ZERO_PAD
4007                                : Flags.NONE);
4008                 sb.append(localizedMagnitude(null, i, flags, 2, l));
4009                 break;
4010             }
4011             case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4012                 int i = t.get(Calendar.DAY_OF_YEAR);
4013                 Flags flags = Flags.ZERO_PAD;
4014                 sb.append(localizedMagnitude(null, i, flags, 3, l));
4015                 break;
4016             }
4017             case DateTime.MONTH:                { // 'm' (01 - 12)
4018                 int i = t.get(Calendar.MONTH) + 1;
4019                 Flags flags = Flags.ZERO_PAD;
4020                 sb.append(localizedMagnitude(null, i, flags, 2, l));
4021                 break;
4022             }
4023 
4024             // Composites
4025             case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4026             case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4027                 char sep = ':';
4028                 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4029                 print(sb, t, DateTime.MINUTE, l);
4030                 if (c == DateTime.TIME) {
4031                     sb.append(sep);
4032                     print(sb, t, DateTime.SECOND, l);
4033                 }
4034                 break;
4035             }
4036             case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4037                 char sep = ':';
4038                 print(sb, t, DateTime.HOUR_0, l).append(sep);
4039                 print(sb, t, DateTime.MINUTE, l).append(sep);
4040                 print(sb, t, DateTime.SECOND, l).append(' ');
4041                 // this may be in wrong place for some locales
4042                 StringBuilder tsb = new StringBuilder();
4043                 print(tsb, t, DateTime.AM_PM, l);
4044 
4045                 sb.append(tsb.toString().toUpperCase(Objects.requireNonNullElse(l,
4046                                                Locale.getDefault(Locale.Category.FORMAT))));
4047                 break;
4048             }
4049             case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4050                 char sep = ' ';
4051                 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4052                 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4053                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4054                 print(sb, t, DateTime.TIME, l).append(sep);
4055                 print(sb, t, DateTime.ZONE, l).append(sep);
4056                 print(sb, t, DateTime.YEAR_4, l);
4057                 break;
4058             }
4059             case DateTime.DATE:            { // 'D' (mm/dd/yy)
4060                 char sep = '/';
4061                 print(sb, t, DateTime.MONTH, l).append(sep);
4062                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4063                 print(sb, t, DateTime.YEAR_2, l);
4064                 break;
4065             }
4066             case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4067                 char sep = '-';
4068                 print(sb, t, DateTime.YEAR_4, l).append(sep);
4069                 print(sb, t, DateTime.MONTH, l).append(sep);
4070                 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4071                 break;
4072             }
4073             default:
4074                 assert false;
4075             }
4076             return sb;
4077         }
4078 
4079         private void print(TemporalAccessor t, char c, Locale l)  throws IOException {
4080             StringBuilder sb = new StringBuilder();
4081             print(sb, t, c, l);
4082             // justify based on width
4083             if (f.contains(Flags.UPPERCASE)) {
4084                 appendJustified(a, sb.toString().toUpperCase(Locale.getDefault(Locale.Category.FORMAT)));
4085             } else {
4086                 appendJustified(a, sb);
4087             }
4088         }
4089 
4090         private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4091                                  Locale l) throws IOException {
4092             if (sb == null)
4093                 sb = new StringBuilder();
4094             try {
4095                 switch (c) {
4096                 case DateTime.HOUR_OF_DAY_0: {  // 'H' (00 - 23)
4097                     int i = t.get(ChronoField.HOUR_OF_DAY);
4098                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4099                     break;
4100                 }
4101                 case DateTime.HOUR_OF_DAY: {   // 'k' (0 - 23) -- like H
4102                     int i = t.get(ChronoField.HOUR_OF_DAY);
4103                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4104                     break;
4105                 }
4106                 case DateTime.HOUR_0:      {  // 'I' (01 - 12)
4107                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4108                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4109                     break;
4110                 }
4111                 case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
4112                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4113                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4114                     break;
4115                 }
4116                 case DateTime.MINUTE:      { // 'M' (00 - 59)
4117                     int i = t.get(ChronoField.MINUTE_OF_HOUR);
4118                     Flags flags = Flags.ZERO_PAD;
4119                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4120                     break;
4121                 }
4122                 case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
4123                     int i;
4124                     try {
4125                         i = t.get(ChronoField.NANO_OF_SECOND);
4126                     } catch (UnsupportedTemporalTypeException u) {
4127                         i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4128                     }
4129                     Flags flags = Flags.ZERO_PAD;
4130                     sb.append(localizedMagnitude(null, i, flags, 9, l));
4131                     break;
4132                 }
4133                 case DateTime.MILLISECOND: { // 'L' (000 - 999)
4134                     int i = t.get(ChronoField.MILLI_OF_SECOND);
4135                     Flags flags = Flags.ZERO_PAD;
4136                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4137                     break;
4138                 }
4139                 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4140                     long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4141                              t.getLong(ChronoField.MILLI_OF_SECOND);
4142                     Flags flags = Flags.NONE;
4143                     sb.append(localizedMagnitude(null, i, flags, width, l));
4144                     break;
4145                 }
4146                 case DateTime.AM_PM:       { // 'p' (am or pm)
4147                     // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4148                     String[] ampm = { "AM", "PM" };
4149                     if (l != null && l != Locale.US) {
4150                         DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4151                         ampm = dfs.getAmPmStrings();
4152                     }
4153                     String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4154                     sb.append(s.toLowerCase(Objects.requireNonNullElse(l,
4155                             Locale.getDefault(Locale.Category.FORMAT))));
4156                     break;
4157                 }
4158                 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4159                     long i = t.getLong(ChronoField.INSTANT_SECONDS);
4160                     Flags flags = Flags.NONE;
4161                     sb.append(localizedMagnitude(null, i, flags, width, l));
4162                     break;
4163                 }
4164                 case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
4165                     int i = t.get(ChronoField.SECOND_OF_MINUTE);
4166                     Flags flags = Flags.ZERO_PAD;
4167                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4168                     break;
4169                 }
4170                 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4171                     int i = t.get(ChronoField.OFFSET_SECONDS);
4172                     boolean neg = i < 0;
4173                     sb.append(neg ? '-' : '+');
4174                     if (neg)
4175                         i = -i;
4176                     int min = i / 60;
4177                     // combine minute and hour into a single integer
4178                     int offset = (min / 60) * 100 + (min % 60);
4179                     Flags flags = Flags.ZERO_PAD;
4180                     sb.append(localizedMagnitude(null, offset, flags, 4, l));
4181                     break;
4182                 }
4183                 case DateTime.ZONE:        { // 'Z' (symbol)
4184                     ZoneId zid = t.query(TemporalQueries.zone());
4185                     if (zid == null) {
4186                         throw new IllegalFormatConversionException(c, t.getClass());
4187                     }
4188                     if (!(zid instanceof ZoneOffset) &&
4189                         t.isSupported(ChronoField.INSTANT_SECONDS)) {
4190                         Instant instant = Instant.from(t);
4191                         sb.append(TimeZone.getTimeZone(zid.getId())
4192                                           .getDisplayName(zid.getRules().isDaylightSavings(instant),
4193                                                           TimeZone.SHORT,
4194                                                           Objects.requireNonNullElse(l, Locale.US)));
4195                         break;
4196                     }
4197                     sb.append(zid.getId());
4198                     break;
4199                 }
4200                 // Date
4201                 case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
4202                 case DateTime.NAME_OF_DAY:          { // 'A'
4203                     int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4204                     Locale lt = Objects.requireNonNullElse(l, Locale.US);
4205                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4206                     if (c == DateTime.NAME_OF_DAY)
4207                         sb.append(dfs.getWeekdays()[i]);
4208                     else
4209                         sb.append(dfs.getShortWeekdays()[i]);
4210                     break;
4211                 }
4212                 case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4213                 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4214                 case DateTime.NAME_OF_MONTH:        { // 'B'
4215                     int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4216                     Locale lt = Objects.requireNonNullElse(l, Locale.US);
4217                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4218                     if (c == DateTime.NAME_OF_MONTH)
4219                         sb.append(dfs.getMonths()[i]);
4220                     else
4221                         sb.append(dfs.getShortMonths()[i]);
4222                     break;
4223                 }
4224                 case DateTime.CENTURY:                // 'C' (00 - 99)
4225                 case DateTime.YEAR_2:                 // 'y' (00 - 99)
4226                 case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4227                     int i = t.get(ChronoField.YEAR_OF_ERA);
4228                     int size = 2;
4229                     switch (c) {
4230                     case DateTime.CENTURY:
4231                         i /= 100;
4232                         break;
4233                     case DateTime.YEAR_2:
4234                         i %= 100;
4235                         break;
4236                     case DateTime.YEAR_4:
4237                         size = 4;
4238                         break;
4239                     }
4240                     Flags flags = Flags.ZERO_PAD;
4241                     sb.append(localizedMagnitude(null, i, flags, size, l));
4242                     break;
4243                 }
4244                 case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4245                 case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4246                     int i = t.get(ChronoField.DAY_OF_MONTH);
4247                     Flags flags = (c == DateTime.DAY_OF_MONTH_0
4248                                    ? Flags.ZERO_PAD
4249                                    : Flags.NONE);
4250                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4251                     break;
4252                 }
4253                 case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4254                     int i = t.get(ChronoField.DAY_OF_YEAR);
4255                     Flags flags = Flags.ZERO_PAD;
4256                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4257                     break;
4258                 }
4259                 case DateTime.MONTH:                { // 'm' (01 - 12)
4260                     int i = t.get(ChronoField.MONTH_OF_YEAR);
4261                     Flags flags = Flags.ZERO_PAD;
4262                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4263                     break;
4264                 }
4265 
4266                 // Composites
4267                 case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4268                 case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4269                     char sep = ':';
4270                     print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4271                     print(sb, t, DateTime.MINUTE, l);
4272                     if (c == DateTime.TIME) {
4273                         sb.append(sep);
4274                         print(sb, t, DateTime.SECOND, l);
4275                     }
4276                     break;
4277                 }
4278                 case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4279                     char sep = ':';
4280                     print(sb, t, DateTime.HOUR_0, l).append(sep);
4281                     print(sb, t, DateTime.MINUTE, l).append(sep);
4282                     print(sb, t, DateTime.SECOND, l).append(' ');
4283                     // this may be in wrong place for some locales
4284                     StringBuilder tsb = new StringBuilder();
4285                     print(tsb, t, DateTime.AM_PM, l);
4286                     sb.append(tsb.toString().toUpperCase(Objects.requireNonNullElse(l,
4287                                         Locale.getDefault(Locale.Category.FORMAT))));
4288                     break;
4289                 }
4290                 case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4291                     char sep = ' ';
4292                     print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4293                     print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4294                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4295                     print(sb, t, DateTime.TIME, l).append(sep);
4296                     print(sb, t, DateTime.ZONE, l).append(sep);
4297                     print(sb, t, DateTime.YEAR_4, l);
4298                     break;
4299                 }
4300                 case DateTime.DATE:            { // 'D' (mm/dd/yy)
4301                     char sep = '/';
4302                     print(sb, t, DateTime.MONTH, l).append(sep);
4303                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4304                     print(sb, t, DateTime.YEAR_2, l);
4305                     break;
4306                 }
4307                 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4308                     char sep = '-';
4309                     print(sb, t, DateTime.YEAR_4, l).append(sep);
4310                     print(sb, t, DateTime.MONTH, l).append(sep);
4311                     print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4312                     break;
4313                 }
4314                 default:
4315                     assert false;
4316                 }
4317             } catch (DateTimeException x) {
4318                 throw new IllegalFormatConversionException(c, t.getClass());
4319             }
4320             return sb;
4321         }
4322 
4323         // -- Methods to support throwing exceptions --
4324 
4325         private void failMismatch(Flags f, char c) {
4326             String fs = f.toString();
4327             throw new FormatFlagsConversionMismatchException(fs, c);
4328         }
4329 
4330         private void failConversion(char c, Object arg) {
4331             throw new IllegalFormatConversionException(c, arg.getClass());
4332         }
4333 
4334         private char getZero(Locale l) {
4335             if ((l != null) &&  !l.equals(locale())) {
4336                 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4337                 return dfs.getZeroDigit();
4338             }
4339             return zero;
4340         }
4341 
4342         private StringBuilder localizedMagnitude(StringBuilder sb,
4343                 long value, Flags f, int width, Locale l) {
4344             return localizedMagnitude(sb, Long.toString(value, 10), 0, f, width, l);
4345         }
4346 
4347         private StringBuilder localizedMagnitude(StringBuilder sb,
4348                 CharSequence value, final int offset, Flags f, int width,
4349                 Locale l) {
4350             if (sb == null) {
4351                 sb = new StringBuilder();
4352             }
4353             int begin = sb.length();
4354 
4355             char zero = getZero(l);
4356 
4357             // determine localized grouping separator and size
4358             char grpSep = '\0';
4359             int  grpSize = -1;
4360             char decSep = '\0';
4361 
4362             int len = value.length();
4363             int dot = len;
4364             for (int j = offset; j < len; j++) {
4365                 if (value.charAt(j) == '.') {
4366                     dot = j;
4367                     break;
4368                 }
4369             }
4370 
4371             if (dot < len) {
4372                 if (l == null || l.equals(Locale.US)) {
4373                     decSep  = '.';
4374                 } else {
4375                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4376                     decSep  = dfs.getDecimalSeparator();
4377                 }
4378             }
4379 
4380             if (f.contains(Flags.GROUP)) {
4381                 if (l == null || l.equals(Locale.US)) {
4382                     grpSep = ',';
4383                     grpSize = 3;
4384                 } else {
4385                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4386                     grpSep = dfs.getGroupingSeparator();
4387                     DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4388                     grpSize = df.getGroupingSize();
4389                 }
4390             }
4391 
4392             // localize the digits inserting group separators as necessary
4393             for (int j = offset; j < len; j++) {
4394                 if (j == dot) {
4395                     sb.append(decSep);
4396                     // no more group separators after the decimal separator
4397                     grpSep = '\0';
4398                     continue;
4399                 }
4400 
4401                 char c = value.charAt(j);
4402                 sb.append((char) ((c - '0') + zero));
4403                 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) {
4404                     sb.append(grpSep);
4405                 }
4406             }
4407 
4408             // apply zero padding
4409             if (width != -1 && f.contains(Flags.ZERO_PAD)) {
4410                 for (int k = sb.length(); k < width; k++) {
4411                     sb.insert(begin, zero);
4412                 }
4413             }
4414 
4415             return sb;
4416         }
4417 
4418         // Specialized localization of exponents, where the source value can only
4419         // contain characters '0' through '9', starting at index offset, and no
4420         // group separators is added for any locale.
4421         private void localizedMagnitudeExp(StringBuilder sb, char[] value,
4422                 final int offset, Locale l) {
4423             char zero = getZero(l);
4424 
4425             int len = value.length;
4426             for (int j = offset; j < len; j++) {
4427                 char c = value[j];
4428                 sb.append((char) ((c - '0') + zero));
4429             }
4430         }
4431     }
4432 
4433     private static class Flags {
4434         private int flags;
4435 
4436         static final Flags NONE          = new Flags(0);      // ''
4437 
4438         // duplicate declarations from Formattable.java
4439         static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4440         static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4441         static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4442 
4443         // numerics
4444         static final Flags PLUS          = new Flags(1<<3);   // '+'
4445         static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4446         static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4447         static final Flags GROUP         = new Flags(1<<6);   // ','
4448         static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4449 
4450         // indexing
4451         static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4452 
4453         private Flags(int f) {
4454             flags = f;
4455         }
4456 
4457         public int valueOf() {
4458             return flags;
4459         }
4460 
4461         public boolean contains(Flags f) {
4462             return (flags & f.valueOf()) == f.valueOf();
4463         }
4464 
4465         public Flags dup() {
4466             return new Flags(flags);
4467         }
4468 
4469         private Flags add(Flags f) {
4470             flags |= f.valueOf();
4471             return this;
4472         }
4473 
4474         public Flags remove(Flags f) {
4475             flags &= ~f.valueOf();
4476             return this;
4477         }
4478 
4479         public static Flags parse(String s, int start, int end) {
4480             Flags f = new Flags(0);
4481             for (int i = start; i < end; i++) {
4482                 char c = s.charAt(i);
4483                 Flags v = parse(c);
4484                 if (f.contains(v))
4485                     throw new DuplicateFormatFlagsException(v.toString());
4486                 f.add(v);
4487             }
4488             return f;
4489         }
4490 
4491         // parse those flags which may be provided by users
4492         private static Flags parse(char c) {
4493             switch (c) {
4494             case '-': return LEFT_JUSTIFY;
4495             case '#': return ALTERNATE;
4496             case '+': return PLUS;
4497             case ' ': return LEADING_SPACE;
4498             case '0': return ZERO_PAD;
4499             case ',': return GROUP;
4500             case '(': return PARENTHESES;
4501             case '<': return PREVIOUS;
4502             default:
4503                 throw new UnknownFormatFlagsException(String.valueOf(c));
4504             }
4505         }
4506 
4507         // Returns a string representation of the current {@code Flags}.
4508         public static String toString(Flags f) {
4509             return f.toString();
4510         }
4511 
4512         public String toString() {
4513             StringBuilder sb = new StringBuilder();
4514             if (contains(LEFT_JUSTIFY))  sb.append('-');
4515             if (contains(UPPERCASE))     sb.append('^');
4516             if (contains(ALTERNATE))     sb.append('#');
4517             if (contains(PLUS))          sb.append('+');
4518             if (contains(LEADING_SPACE)) sb.append(' ');
4519             if (contains(ZERO_PAD))      sb.append('0');
4520             if (contains(GROUP))         sb.append(',');
4521             if (contains(PARENTHESES))   sb.append('(');
4522             if (contains(PREVIOUS))      sb.append('<');
4523             return sb.toString();
4524         }
4525     }
4526 
4527     private static class Conversion {
4528         // Byte, Short, Integer, Long, BigInteger
4529         // (and associated primitives due to autoboxing)
4530         static final char DECIMAL_INTEGER     = 'd';
4531         static final char OCTAL_INTEGER       = 'o';
4532         static final char HEXADECIMAL_INTEGER = 'x';
4533         static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4534 
4535         // Float, Double, BigDecimal
4536         // (and associated primitives due to autoboxing)
4537         static final char SCIENTIFIC          = 'e';
4538         static final char SCIENTIFIC_UPPER    = 'E';
4539         static final char GENERAL             = 'g';
4540         static final char GENERAL_UPPER       = 'G';
4541         static final char DECIMAL_FLOAT       = 'f';
4542         static final char HEXADECIMAL_FLOAT   = 'a';
4543         static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4544 
4545         // Character, Byte, Short, Integer
4546         // (and associated primitives due to autoboxing)
4547         static final char CHARACTER           = 'c';
4548         static final char CHARACTER_UPPER     = 'C';
4549 
4550         // java.util.Date, java.util.Calendar, long
4551         static final char DATE_TIME           = 't';
4552         static final char DATE_TIME_UPPER     = 'T';
4553 
4554         // if (arg.TYPE != boolean) return boolean
4555         // if (arg != null) return true; else return false;
4556         static final char BOOLEAN             = 'b';
4557         static final char BOOLEAN_UPPER       = 'B';
4558         // if (arg instanceof Formattable) arg.formatTo()
4559         // else arg.toString();
4560         static final char STRING              = 's';
4561         static final char STRING_UPPER        = 'S';
4562         // arg.hashCode()
4563         static final char HASHCODE            = 'h';
4564         static final char HASHCODE_UPPER      = 'H';
4565 
4566         static final char LINE_SEPARATOR      = 'n';
4567         static final char PERCENT_SIGN        = '%';
4568 
4569         static boolean isValid(char c) {
4570             return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4571                     || c == 't' || isCharacter(c));
4572         }
4573 
4574         // Returns true iff the Conversion is applicable to all objects.
4575         static boolean isGeneral(char c) {
4576             switch (c) {
4577             case BOOLEAN:
4578             case BOOLEAN_UPPER:
4579             case STRING:
4580             case STRING_UPPER:
4581             case HASHCODE:
4582             case HASHCODE_UPPER:
4583                 return true;
4584             default:
4585                 return false;
4586             }
4587         }
4588 
4589         // Returns true iff the Conversion is applicable to character.
4590         static boolean isCharacter(char c) {
4591             switch (c) {
4592             case CHARACTER:
4593             case CHARACTER_UPPER:
4594                 return true;
4595             default:
4596                 return false;
4597             }
4598         }
4599 
4600         // Returns true iff the Conversion is an integer type.
4601         static boolean isInteger(char c) {
4602             switch (c) {
4603             case DECIMAL_INTEGER:
4604             case OCTAL_INTEGER:
4605             case HEXADECIMAL_INTEGER:
4606             case HEXADECIMAL_INTEGER_UPPER:
4607                 return true;
4608             default:
4609                 return false;
4610             }
4611         }
4612 
4613         // Returns true iff the Conversion is a floating-point type.
4614         static boolean isFloat(char c) {
4615             switch (c) {
4616             case SCIENTIFIC:
4617             case SCIENTIFIC_UPPER:
4618             case GENERAL:
4619             case GENERAL_UPPER:
4620             case DECIMAL_FLOAT:
4621             case HEXADECIMAL_FLOAT:
4622             case HEXADECIMAL_FLOAT_UPPER:
4623                 return true;
4624             default:
4625                 return false;
4626             }
4627         }
4628 
4629         // Returns true iff the Conversion does not require an argument
4630         static boolean isText(char c) {
4631             switch (c) {
4632             case LINE_SEPARATOR:
4633             case PERCENT_SIGN:
4634                 return true;
4635             default:
4636                 return false;
4637             }
4638         }
4639     }
4640 
4641     private static class DateTime {
4642         static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4643         static final char HOUR_0        = 'I'; // (01 - 12)
4644         static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4645         static final char HOUR          = 'l'; // (1 - 12) -- like I
4646         static final char MINUTE        = 'M'; // (00 - 59)
4647         static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4648         static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4649         static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4650         static final char AM_PM         = 'p'; // (am or pm)
4651         static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4652         static final char SECOND        = 'S'; // (00 - 60 - leap second)
4653         static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4654         static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4655         static final char ZONE          = 'Z'; // (symbol)
4656 
4657         // Date
4658         static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4659         static final char NAME_OF_DAY           = 'A'; // 'A'
4660         static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4661         static final char NAME_OF_MONTH         = 'B'; // 'B'
4662         static final char CENTURY               = 'C'; // (00 - 99)
4663         static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4664         static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4665 // *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4666 // *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4667         static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4668         static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4669         static final char MONTH                 = 'm'; // (01 - 12)
4670 // *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4671 // *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4672 // *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4673 // *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4674 // *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4675         static final char YEAR_2                = 'y'; // (00 - 99)
4676         static final char YEAR_4                = 'Y'; // (0000 - 9999)
4677 
4678         // Composites
4679         static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4680         static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4681 // *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4682         static final char DATE_TIME             = 'c';
4683                                             // (Sat Nov 04 12:02:33 EST 1999)
4684         static final char DATE                  = 'D'; // (mm/dd/yy)
4685         static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4686 // *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4687 
4688         static boolean isValid(char c) {
4689             switch (c) {
4690             case HOUR_OF_DAY_0:
4691             case HOUR_0:
4692             case HOUR_OF_DAY:
4693             case HOUR:
4694             case MINUTE:
4695             case NANOSECOND:
4696             case MILLISECOND:
4697             case MILLISECOND_SINCE_EPOCH:
4698             case AM_PM:
4699             case SECONDS_SINCE_EPOCH:
4700             case SECOND:
4701             case TIME:
4702             case ZONE_NUMERIC:
4703             case ZONE:
4704 
4705             // Date
4706             case NAME_OF_DAY_ABBREV:
4707             case NAME_OF_DAY:
4708             case NAME_OF_MONTH_ABBREV:
4709             case NAME_OF_MONTH:
4710             case CENTURY:
4711             case DAY_OF_MONTH_0:
4712             case DAY_OF_MONTH:
4713 // *        case ISO_WEEK_OF_YEAR_2:
4714 // *        case ISO_WEEK_OF_YEAR_4:
4715             case NAME_OF_MONTH_ABBREV_X:
4716             case DAY_OF_YEAR:
4717             case MONTH:
4718 // *        case DAY_OF_WEEK_1:
4719 // *        case WEEK_OF_YEAR_SUNDAY:
4720 // *        case WEEK_OF_YEAR_MONDAY_01:
4721 // *        case DAY_OF_WEEK_0:
4722 // *        case WEEK_OF_YEAR_MONDAY:
4723             case YEAR_2:
4724             case YEAR_4:
4725 
4726             // Composites
4727             case TIME_12_HOUR:
4728             case TIME_24_HOUR:
4729 // *        case LOCALE_TIME:
4730             case DATE_TIME:
4731             case DATE:
4732             case ISO_STANDARD_DATE:
4733 // *        case LOCALE_DATE:
4734                 return true;
4735             default:
4736                 return false;
4737             }
4738         }
4739     }
4740 }