1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util.regex;
  27 
  28 import java.text.Normalizer;
  29 import java.text.Normalizer.Form;
  30 import java.util.Locale;
  31 import java.util.Iterator;
  32 import java.util.Map;
  33 import java.util.ArrayList;
  34 import java.util.HashMap;
  35 import java.util.LinkedHashSet;
  36 import java.util.List;
  37 import java.util.Set;
  38 import java.util.Arrays;
  39 import java.util.NoSuchElementException;
  40 import java.util.Spliterator;
  41 import java.util.Spliterators;
  42 import java.util.function.Predicate;
  43 import java.util.stream.Stream;
  44 import java.util.stream.StreamSupport;
  45 
  46 
  47 /**
  48  * A compiled representation of a regular expression.
  49  *
  50  * <p> A regular expression, specified as a string, must first be compiled into
  51  * an instance of this class.  The resulting pattern can then be used to create
  52  * a {@link Matcher} object that can match arbitrary {@linkplain
  53  * java.lang.CharSequence character sequences} against the regular
  54  * expression.  All of the state involved in performing a match resides in the
  55  * matcher, so many matchers can share the same pattern.
  56  *
  57  * <p> A typical invocation sequence is thus
  58  *
  59  * <blockquote><pre>
  60  * Pattern p = Pattern.{@link #compile compile}("a*b");
  61  * Matcher m = p.{@link #matcher matcher}("aaaaab");
  62  * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
  63  *
  64  * <p> A {@link #matches matches} method is defined by this class as a
  65  * convenience for when a regular expression is used just once.  This method
  66  * compiles an expression and matches an input sequence against it in a single
  67  * invocation.  The statement
  68  *
  69  * <blockquote><pre>
  70  * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
  71  *
  72  * is equivalent to the three statements above, though for repeated matches it
  73  * is less efficient since it does not allow the compiled pattern to be reused.
  74  *
  75  * <p> Instances of this class are immutable and are safe for use by multiple
  76  * concurrent threads.  Instances of the {@link Matcher} class are not safe for
  77  * such use.
  78  *
  79  *
  80  * <h3><a id="sum">Summary of regular-expression constructs</a></h3>
  81  *
  82  * <table>
  83  * <caption style="display:none">Regular expression constructs, and what they match</caption>
  84  * <thead>
  85  * <tr style="text-align:left">
  86  * <th style="text-align:left" id="construct">Construct</th>
  87  * <th style="text-align:left" id="matches">Matches</th>
  88  * </tr>
  89  * </thead>
  90  * <tbody>
  91  *
  92  * <tr><th>&nbsp;</th></tr>
  93  * <tr style="text-align:left"><th colspan="2" id="characters">Characters</th></tr>
  94  *
  95  * <tr><td style="vertical-align:top" headers="construct characters"><i>x</i></td>
  96  *     <td headers="matches">The character <i>x</i></td></tr>
  97  * <tr><td style="vertical-align:top" headers="construct characters">{@code \\}</td>
  98  *     <td headers="matches">The backslash character</td></tr>
  99  * <tr><td style="vertical-align:top" headers="construct characters">{@code \0}<i>n</i></td>
 100  *     <td headers="matches">The character with octal value {@code 0}<i>n</i>
 101  *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 102  * <tr><td style="vertical-align:top" headers="construct characters">{@code \0}<i>nn</i></td>
 103  *     <td headers="matches">The character with octal value {@code 0}<i>nn</i>
 104  *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 105  * <tr><td style="vertical-align:top" headers="construct characters">{@code \0}<i>mnn</i></td>
 106  *     <td headers="matches">The character with octal value {@code 0}<i>mnn</i>
 107  *         (0&nbsp;{@code <=}&nbsp;<i>m</i>&nbsp;{@code <=}&nbsp;3,
 108  *         0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 109  * <tr><td style="vertical-align:top" headers="construct characters">{@code \x}<i>hh</i></td>
 110  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>hh</i></td></tr>
 111  * <tr><td style="vertical-align:top" headers="construct characters"><code>\u</code><i>hhhh</i></td>
 112  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>hhhh</i></td></tr>
 113  * <tr><td style="vertical-align:top" headers="construct characters"><code>\x</code><i>{h...h}</i></td>
 114  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>h...h</i>
 115  *         ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
 116  *         &nbsp;&lt;=&nbsp;{@code 0x}<i>h...h</i>&nbsp;&lt;=&nbsp;
 117  *          {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
 118  * <tr><td style="vertical-align:top" headers="construct characters"><code>\N{</code><i>name</i><code>}</code></td>
 119  *     <td headers="matches">The character with Unicode character name <i>'name'</i></td></tr>
 120  * <tr><td style="vertical-align:top" headers="matches">{@code \t}</td>
 121  *     <td headers="matches">The tab character (<code>'\u0009'</code>)</td></tr>
 122  * <tr><td style="vertical-align:top" headers="construct characters">{@code \n}</td>
 123  *     <td headers="matches">The newline (line feed) character (<code>'\u000A'</code>)</td></tr>
 124  * <tr><td style="vertical-align:top" headers="construct characters">{@code \r}</td>
 125  *     <td headers="matches">The carriage-return character (<code>'\u000D'</code>)</td></tr>
 126  * <tr><td style="vertical-align:top" headers="construct characters">{@code \f}</td>
 127  *     <td headers="matches">The form-feed character (<code>'\u000C'</code>)</td></tr>
 128  * <tr><td style="vertical-align:top" headers="construct characters">{@code \a}</td>
 129  *     <td headers="matches">The alert (bell) character (<code>'\u0007'</code>)</td></tr>
 130  * <tr><td style="vertical-align:top" headers="construct characters">{@code \e}</td>
 131  *     <td headers="matches">The escape character (<code>'\u001B'</code>)</td></tr>
 132  * <tr><td style="vertical-align:top" headers="construct characters">{@code \c}<i>x</i></td>
 133  *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
 134  *
 135  * <tr><th>&nbsp;</th></tr>
 136  * <tr style="text-align:left"><th colspan="2" id="classes">Character classes</th></tr>
 137  *
 138  * <tr><td style="vertical-align:top" headers="construct classes">{@code [abc]}</td>
 139  *     <td headers="matches">{@code a}, {@code b}, or {@code c} (simple class)</td></tr>
 140  * <tr><td style="vertical-align:top" headers="construct classes">{@code [^abc]}</td>
 141  *     <td headers="matches">Any character except {@code a}, {@code b}, or {@code c} (negation)</td></tr>
 142  * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-zA-Z]}</td>
 143  *     <td headers="matches">{@code a} through {@code z}
 144  *         or {@code A} through {@code Z}, inclusive (range)</td></tr>
 145  * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-d[m-p]]}</td>
 146  *     <td headers="matches">{@code a} through {@code d},
 147  *      or {@code m} through {@code p}: {@code [a-dm-p]} (union)</td></tr>
 148  * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-z&&[def]]}</td>
 149  *     <td headers="matches">{@code d}, {@code e}, or {@code f} (intersection)</tr>
 150  * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-z&&[^bc]]}</td>
 151  *     <td headers="matches">{@code a} through {@code z},
 152  *         except for {@code b} and {@code c}: {@code [ad-z]} (subtraction)</td></tr>
 153  * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-z&&[^m-p]]}</td>
 154  *     <td headers="matches">{@code a} through {@code z},
 155  *          and not {@code m} through {@code p}: {@code [a-lq-z]}(subtraction)</td></tr>
 156  * <tr><th>&nbsp;</th></tr>
 157  *
 158  * <tr style="text-align:left"><th colspan="2" id="predef">Predefined character classes</th></tr>
 159  *
 160  * <tr><td style="vertical-align:top" headers="construct predef">{@code .}</td>
 161  *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
 162  * <tr><td style="vertical-align:top" headers="construct predef">{@code \d}</td>
 163  *     <td headers="matches">A digit: {@code [0-9]}</td></tr>
 164  * <tr><td style="vertical-align:top" headers="construct predef">{@code \D}</td>
 165  *     <td headers="matches">A non-digit: {@code [^0-9]}</td></tr>
 166  * <tr><td style="vertical-align:top" headers="construct predef">{@code \h}</td>
 167  *     <td headers="matches">A horizontal whitespace character:
 168  *     <code>[ \t\xA0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]</code></td></tr>
 169  * <tr><td style="vertical-align:top" headers="construct predef">{@code \H}</td>
 170  *     <td headers="matches">A non-horizontal whitespace character: {@code [^\h]}</td></tr>
 171  * <tr><td style="vertical-align:top" headers="construct predef">{@code \s}</td>
 172  *     <td headers="matches">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
 173  * <tr><td style="vertical-align:top" headers="construct predef">{@code \S}</td>
 174  *     <td headers="matches">A non-whitespace character: {@code [^\s]}</td></tr>
 175  * <tr><td style="vertical-align:top" headers="construct predef">{@code \v}</td>
 176  *     <td headers="matches">A vertical whitespace character: <code>[\n\x0B\f\r\x85\u2028\u2029]</code>
 177  *     </td></tr>
 178  * <tr><td style="vertical-align:top" headers="construct predef">{@code \V}</td>
 179  *     <td headers="matches">A non-vertical whitespace character: {@code [^\v]}</td></tr>
 180  * <tr><td style="vertical-align:top" headers="construct predef">{@code \w}</td>
 181  *     <td headers="matches">A word character: {@code [a-zA-Z_0-9]}</td></tr>
 182  * <tr><td style="vertical-align:top" headers="construct predef">{@code \W}</td>
 183  *     <td headers="matches">A non-word character: {@code [^\w]}</td></tr>
 184  * <tr><th>&nbsp;</th></tr>
 185  * <tr style="text-align:left"><th colspan="2" id="posix"><b>POSIX character classes (US-ASCII only)</b></th></tr>
 186  *
 187  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Lower}}</td>
 188  *     <td headers="matches">A lower-case alphabetic character: {@code [a-z]}</td></tr>
 189  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Upper}}</td>
 190  *     <td headers="matches">An upper-case alphabetic character:{@code [A-Z]}</td></tr>
 191  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{ASCII}}</td>
 192  *     <td headers="matches">All ASCII:{@code [\x00-\x7F]}</td></tr>
 193  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Alpha}}</td>
 194  *     <td headers="matches">An alphabetic character:{@code [\p{Lower}\p{Upper}]}</td></tr>
 195  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Digit}}</td>
 196  *     <td headers="matches">A decimal digit: {@code [0-9]}</td></tr>
 197  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Alnum}}</td>
 198  *     <td headers="matches">An alphanumeric character:{@code [\p{Alpha}\p{Digit}]}</td></tr>
 199  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Punct}}</td>
 200  *     <td headers="matches">Punctuation: One of {@code !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~}</td></tr>
 201  *     <!-- {@code [\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]}
 202  *          {@code [\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]} -->
 203  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Graph}}</td>
 204  *     <td headers="matches">A visible character: {@code [\p{Alnum}\p{Punct}]}</td></tr>
 205  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Print}}</td>
 206  *     <td headers="matches">A printable character: {@code [\p{Graph}\x20]}</td></tr>
 207  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Blank}}</td>
 208  *     <td headers="matches">A space or a tab: {@code [ \t]}</td></tr>
 209  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Cntrl}}</td>
 210  *     <td headers="matches">A control character: {@code [\x00-\x1F\x7F]}</td></tr>
 211  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{XDigit}}</td>
 212  *     <td headers="matches">A hexadecimal digit: {@code [0-9a-fA-F]}</td></tr>
 213  * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Space}}</td>
 214  *     <td headers="matches">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
 215  *
 216  * <tr><th>&nbsp;</th></tr>
 217  * <tr style="text-align:left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
 218  *
 219  * <tr><td style="vertical-align:top">{@code \p{javaLowerCase}}</td>
 220  *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
 221  * <tr><td style="vertical-align:top">{@code \p{javaUpperCase}}</td>
 222  *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
 223  * <tr><td style="vertical-align:top">{@code \p{javaWhitespace}}</td>
 224  *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
 225  * <tr><td style="vertical-align:top">{@code \p{javaMirrored}}</td>
 226  *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
 227  *
 228  * <tr><th>&nbsp;</th></tr>
 229  * <tr style="text-align:left"><th colspan="2" id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
 230  * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{IsLatin}}</td>
 231  *     <td headers="matches">A Latin&nbsp;script character (<a href="#usc">script</a>)</td></tr>
 232  * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{InGreek}}</td>
 233  *     <td headers="matches">A character in the Greek&nbsp;block (<a href="#ubc">block</a>)</td></tr>
 234  * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{Lu}}</td>
 235  *     <td headers="matches">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
 236  * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{IsAlphabetic}}</td>
 237  *     <td headers="matches">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
 238  * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{Sc}}</td>
 239  *     <td headers="matches">A currency symbol</td></tr>
 240  * <tr><td style="vertical-align:top" headers="construct unicode">{@code \P{InGreek}}</td>
 241  *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
 242  * <tr><td style="vertical-align:top" headers="construct unicode">{@code [\p{L}&&[^\p{Lu}]]}</td>
 243  *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
 244  *
 245  * <tr><th>&nbsp;</th></tr>
 246  * <tr style="text-align:left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
 247  *
 248  * <tr><td style="vertical-align:top" headers="construct bounds">{@code ^}</td>
 249  *     <td headers="matches">The beginning of a line</td></tr>
 250  * <tr><td style="vertical-align:top" headers="construct bounds">{@code $}</td>
 251  *     <td headers="matches">The end of a line</td></tr>
 252  * <tr><td style="vertical-align:top" headers="construct bounds">{@code \b}</td>
 253  *     <td headers="matches">A word boundary</td></tr>
 254  * <tr><td style="vertical-align:top" headers="construct bounds">{@code \b{g}}</td>
 255  *     <td headers="matches">A Unicode extended grapheme cluster boundary</td></tr>
 256  * <tr><td style="vertical-align:top" headers="construct bounds">{@code \B}</td>
 257  *     <td headers="matches">A non-word boundary</td></tr>
 258  * <tr><td style="vertical-align:top" headers="construct bounds">{@code \A}</td>
 259  *     <td headers="matches">The beginning of the input</td></tr>
 260  * <tr><td style="vertical-align:top" headers="construct bounds">{@code \G}</td>
 261  *     <td headers="matches">The end of the previous match</td></tr>
 262  * <tr><td style="vertical-align:top" headers="construct bounds">{@code \Z}</td>
 263  *     <td headers="matches">The end of the input but for the final
 264  *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
 265  * <tr><td style="vertical-align:top" headers="construct bounds">{@code \z}</td>
 266  *     <td headers="matches">The end of the input</td></tr>
 267  *
 268  * <tr><th>&nbsp;</th></tr>
 269  * <tr style="text-align:left"><th colspan="2" id="lineending">Linebreak matcher</th></tr>
 270  * <tr><td style="vertical-align:top" headers="construct lineending">{@code \R}</td>
 271  *     <td headers="matches">Any Unicode linebreak sequence, is equivalent to
 272  *     <code>\u000D\u000A|[\u000A\u000B\u000C\u000D\u0085\u2028\u2029]
 273  *     </code></td></tr>
 274  *
 275  * <tr><th>&nbsp;</th></tr>
 276  * <tr style="text-align:left"><th colspan="2" id="grapheme">Unicode Extended Grapheme matcher</th></tr>
 277  * <tr><td style="vertical-align:top" headers="construct grapheme">{@code \X}</td>
 278  *     <td headers="matches">Any Unicode extended grapheme cluster</td></tr>
 279  *
 280  * <tr><th>&nbsp;</th></tr>
 281  * <tr style="text-align:left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
 282  *
 283  * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i>{@code ?}</td>
 284  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 285  * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i>{@code *}</td>
 286  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 287  * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i>{@code +}</td>
 288  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 289  * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i><code>{</code><i>n</i><code>}</code></td>
 290  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 291  * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i><code>{</code><i>n</i>{@code ,}}</td>
 292  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 293  * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}</code></td>
 294  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 295  *
 296  * <tr><th>&nbsp;</th></tr>
 297  * <tr style="text-align:left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
 298  *
 299  * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i>{@code ??}</td>
 300  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 301  * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i>{@code *?}</td>
 302  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 303  * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i>{@code +?}</td>
 304  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 305  * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i><code>{</code><i>n</i><code>}?</code></td>
 306  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 307  * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i><code>{</code><i>n</i><code>,}?</code></td>
 308  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 309  * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}?</code></td>
 310  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 311  *
 312  * <tr><th>&nbsp;</th></tr>
 313  * <tr style="text-align:left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
 314  *
 315  * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i>{@code ?+}</td>
 316  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 317  * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i>{@code *+}</td>
 318  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 319  * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i>{@code ++}</td>
 320  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 321  * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i><code>{</code><i>n</i><code>}+</code></td>
 322  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 323  * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i><code>{</code><i>n</i><code>,}+</code></td>
 324  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 325  * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}+</code></td>
 326  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 327  *
 328  * <tr><th>&nbsp;</th></tr>
 329  * <tr style="text-align:left"><th colspan="2" id="logical">Logical operators</th></tr>
 330  *
 331  * <tr><td style="vertical-align:top" headers="construct logical"><i>XY</i></td>
 332  *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
 333  * <tr><td style="vertical-align:top" headers="construct logical"><i>X</i>{@code |}<i>Y</i></td>
 334  *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
 335  * <tr><td style="vertical-align:top" headers="construct logical">{@code (}<i>X</i>{@code )}</td>
 336  *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
 337  *
 338  * <tr><th>&nbsp;</th></tr>
 339  * <tr style="text-align:left"><th colspan="2" id="backref">Back references</th></tr>
 340  *
 341  * <tr><td style="vertical-align:bottom" headers="construct backref">{@code \}<i>n</i></td>
 342  *     <td style="vertical-align:bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
 343  *     <a href="#cg">capturing group</a> matched</td></tr>
 344  *
 345  * <tr><td style="vertical-align:bottom" headers="construct backref">{@code \}<i>k</i>&lt;<i>name</i>&gt;</td>
 346  *     <td style="vertical-align:bottom" headers="matches">Whatever the
 347  *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
 348  *
 349  * <tr><th>&nbsp;</th></tr>
 350  * <tr style="text-align:left"><th colspan="2" id="quot">Quotation</th></tr>
 351  *
 352  * <tr><td style="vertical-align:top" headers="construct quot">{@code \}</td>
 353  *     <td headers="matches">Nothing, but quotes the following character</td></tr>
 354  * <tr><td style="vertical-align:top" headers="construct quot">{@code \Q}</td>
 355  *     <td headers="matches">Nothing, but quotes all characters until {@code \E}</td></tr>
 356  * <tr><td style="vertical-align:top" headers="construct quot">{@code \E}</td>
 357  *     <td headers="matches">Nothing, but ends quoting started by {@code \Q}</td></tr>
 358  *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
 359  *
 360  * <tr><th>&nbsp;</th></tr>
 361  * <tr style="text-align:left"><th colspan="2" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
 362  *
 363  * <tr><td style="vertical-align:top" headers="construct special"><code>(?&lt;<a href="#groupname">name</a>&gt;</code><i>X</i>{@code )}</td>
 364  *     <td headers="matches"><i>X</i>, as a named-capturing group</td></tr>
 365  * <tr><td style="vertical-align:top" headers="construct special">{@code (?:}<i>X</i>{@code )}</td>
 366  *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
 367  * <tr><td style="vertical-align:top" headers="construct special"><code>(?idmsuxU-idmsuxU)&nbsp;</code></td>
 368  *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
 369  * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
 370  * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
 371  * on - off</td></tr>
 372  * <tr><td style="vertical-align:top" headers="construct special"><code>(?idmsux-idmsux:</code><i>X</i>{@code )}&nbsp;&nbsp;</td>
 373  *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
 374  *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
 375  * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
 376  * <a href="#COMMENTS">x</a> on - off</td></tr>
 377  * <tr><td style="vertical-align:top" headers="construct special">{@code (?=}<i>X</i>{@code )}</td>
 378  *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
 379  * <tr><td style="vertical-align:top" headers="construct special">{@code (?!}<i>X</i>{@code )}</td>
 380  *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
 381  * <tr><td style="vertical-align:top" headers="construct special">{@code (?<=}<i>X</i>{@code )}</td>
 382  *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
 383  * <tr><td style="vertical-align:top" headers="construct special">{@code (?<!}<i>X</i>{@code )}</td>
 384  *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
 385  * <tr><td style="vertical-align:top" headers="construct special">{@code (?>}<i>X</i>{@code )}</td>
 386  *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
 387  *
 388  * </tbody>
 389  * </table>
 390  *
 391  * <hr>
 392  *
 393  *
 394  * <h3><a id="bs">Backslashes, escapes, and quoting</a></h3>
 395  *
 396  * <p> The backslash character ({@code '\'}) serves to introduce escaped
 397  * constructs, as defined in the table above, as well as to quote characters
 398  * that otherwise would be interpreted as unescaped constructs.  Thus the
 399  * expression {@code \\} matches a single backslash and <code>\{</code> matches a
 400  * left brace.
 401  *
 402  * <p> It is an error to use a backslash prior to any alphabetic character that
 403  * does not denote an escaped construct; these are reserved for future
 404  * extensions to the regular-expression language.  A backslash may be used
 405  * prior to a non-alphabetic character regardless of whether that character is
 406  * part of an unescaped construct.
 407  *
 408  * <p> Backslashes within string literals in Java source code are interpreted
 409  * as required by
 410  * <cite>The Java&trade; Language Specification</cite>
 411  * as either Unicode escapes (section 3.3) or other character escapes (section 3.10.6)
 412  * It is therefore necessary to double backslashes in string
 413  * literals that represent regular expressions to protect them from
 414  * interpretation by the Java bytecode compiler.  The string literal
 415  * <code>"\b"</code>, for example, matches a single backspace character when
 416  * interpreted as a regular expression, while {@code "\\b"} matches a
 417  * word boundary.  The string literal {@code "\(hello\)"} is illegal
 418  * and leads to a compile-time error; in order to match the string
 419  * {@code (hello)} the string literal {@code "\\(hello\\)"}
 420  * must be used.
 421  *
 422  * <h3><a id="cc">Character Classes</a></h3>
 423  *
 424  *    <p> Character classes may appear within other character classes, and
 425  *    may be composed by the union operator (implicit) and the intersection
 426  *    operator ({@code &&}).
 427  *    The union operator denotes a class that contains every character that is
 428  *    in at least one of its operand classes.  The intersection operator
 429  *    denotes a class that contains every character that is in both of its
 430  *    operand classes.
 431  *
 432  *    <p> The precedence of character-class operators is as follows, from
 433  *    highest to lowest:
 434  *
 435  *    <blockquote><table>
 436  *      <caption style="display:none">Precedence of character class operators.</caption>
 437  *      <tbody>
 438  *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 439  *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
 440  *        <td>{@code \x}</td></tr>
 441  *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 442  *        <td>Grouping</td>
 443  *        <td>{@code [...]}</td></tr>
 444  *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 445  *        <td>Range</td>
 446  *        <td>{@code a-z}</td></tr>
 447  *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 448  *        <td>Union</td>
 449  *        <td>{@code [a-e][i-u]}</td></tr>
 450  *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
 451  *        <td>Intersection</td>
 452  *        <td>{@code [a-z&&[aeiou]]}</td></tr>
 453  *      </tbody>
 454  *    </table></blockquote>
 455  *
 456  *    <p> Note that a different set of metacharacters are in effect inside
 457  *    a character class than outside a character class. For instance, the
 458  *    regular expression {@code .} loses its special meaning inside a
 459  *    character class, while the expression {@code -} becomes a range
 460  *    forming metacharacter.
 461  *
 462  * <h3><a id="lt">Line terminators</a></h3>
 463  *
 464  * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
 465  * the end of a line of the input character sequence.  The following are
 466  * recognized as line terminators:
 467  *
 468  * <ul>
 469  *
 470  *   <li> A newline (line feed) character&nbsp;({@code '\n'}),
 471  *
 472  *   <li> A carriage-return character followed immediately by a newline
 473  *   character&nbsp;({@code "\r\n"}),
 474  *
 475  *   <li> A standalone carriage-return character&nbsp;({@code '\r'}),
 476  *
 477  *   <li> A next-line character&nbsp;(<code>'\u0085'</code>),
 478  *
 479  *   <li> A line-separator character&nbsp;(<code>'\u2028'</code>), or
 480  *
 481  *   <li> A paragraph-separator character&nbsp;(<code>'\u2029'</code>).
 482  *
 483  * </ul>
 484  * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
 485  * recognized are newline characters.
 486  *
 487  * <p> The regular expression {@code .} matches any character except a line
 488  * terminator unless the {@link #DOTALL} flag is specified.
 489  *
 490  * <p> By default, the regular expressions {@code ^} and {@code $} ignore
 491  * line terminators and only match at the beginning and the end, respectively,
 492  * of the entire input sequence. If {@link #MULTILINE} mode is activated then
 493  * {@code ^} matches at the beginning of input and after any line terminator
 494  * except at the end of input. When in {@link #MULTILINE} mode {@code $}
 495  * matches just before a line terminator or the end of the input sequence.
 496  *
 497  * <h3><a id="cg">Groups and capturing</a></h3>
 498  *
 499  * <h4><a id="gnumber">Group number</a></h4>
 500  * <p> Capturing groups are numbered by counting their opening parentheses from
 501  * left to right.  In the expression {@code ((A)(B(C)))}, for example, there
 502  * are four such groups: </p>
 503  *
 504  * <blockquote><table>
 505  * <caption style="display:none">Capturing group numberings</caption>
 506  * <tbody>
 507  * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 508  *     <td>{@code ((A)(B(C)))}</td></tr>
 509  * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 510  *     <td>{@code (A)}</td></tr>
 511  * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 512  *     <td>{@code (B(C))}</td></tr>
 513  * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 514  *     <td>{@code (C)}</td></tr>
 515  * </tbody>
 516  * </table></blockquote>
 517  *
 518  * <p> Group zero always stands for the entire expression.
 519  *
 520  * <p> Capturing groups are so named because, during a match, each subsequence
 521  * of the input sequence that matches such a group is saved.  The captured
 522  * subsequence may be used later in the expression, via a back reference, and
 523  * may also be retrieved from the matcher once the match operation is complete.
 524  *
 525  * <h4><a id="groupname">Group name</a></h4>
 526  * <p>A capturing group can also be assigned a "name", a {@code named-capturing group},
 527  * and then be back-referenced later by the "name". Group names are composed of
 528  * the following characters. The first character must be a {@code letter}.
 529  *
 530  * <ul>
 531  *   <li> The uppercase letters {@code 'A'} through {@code 'Z'}
 532  *        (<code>'\u0041'</code>&nbsp;through&nbsp;<code>'\u005a'</code>),
 533  *   <li> The lowercase letters {@code 'a'} through {@code 'z'}
 534  *        (<code>'\u0061'</code>&nbsp;through&nbsp;<code>'\u007a'</code>),
 535  *   <li> The digits {@code '0'} through {@code '9'}
 536  *        (<code>'\u0030'</code>&nbsp;through&nbsp;<code>'\u0039'</code>),
 537  * </ul>
 538  *
 539  * <p> A {@code named-capturing group} is still numbered as described in
 540  * <a href="#gnumber">Group number</a>.
 541  *
 542  * <p> The captured input associated with a group is always the subsequence
 543  * that the group most recently matched.  If a group is evaluated a second time
 544  * because of quantification then its previously-captured value, if any, will
 545  * be retained if the second evaluation fails.  Matching the string
 546  * {@code "aba"} against the expression {@code (a(b)?)+}, for example, leaves
 547  * group two set to {@code "b"}.  All captured input is discarded at the
 548  * beginning of each match.
 549  *
 550  * <p> Groups beginning with {@code (?} are either pure, <i>non-capturing</i> groups
 551  * that do not capture text and do not count towards the group total, or
 552  * <i>named-capturing</i> group.
 553  *
 554  * <h3> Unicode support </h3>
 555  *
 556  * <p> This class is in conformance with Level 1 of <a
 557  * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 558  * Standard #18: Unicode Regular Expression</i></a>, plus RL2.1
 559  * Canonical Equivalents.
 560  * <p>
 561  * <b>Unicode escape sequences</b> such as <code>\u2014</code> in Java source code
 562  * are processed as described in section 3.3 of
 563  * <cite>The Java&trade; Language Specification</cite>.
 564  * Such escape sequences are also implemented directly by the regular-expression
 565  * parser so that Unicode escapes can be used in expressions that are read from
 566  * files or from the keyboard.  Thus the strings <code>"\u2014"</code> and
 567  * {@code "\\u2014"}, while not equal, compile into the same pattern, which
 568  * matches the character with hexadecimal value {@code 0x2014}.
 569  * <p>
 570  * A Unicode character can also be represented by using its <b>Hex notation</b>
 571  * (hexadecimal code point value) directly as described in construct
 572  * <code>\x{...}</code>, for example a supplementary character U+2011F can be
 573  * specified as <code>\x{2011F}</code>, instead of two consecutive Unicode escape
 574  * sequences of the surrogate pair <code>\uD840</code><code>\uDD1F</code>.
 575  * <p>
 576  * <b>Unicode character names</b> are supported by the named character construct
 577  * <code>\N{</code>...<code>}</code>, for example, <code>\N{WHITE SMILING FACE}</code>
 578  * specifies character <code>\u263A</code>. The character names supported
 579  * by this class are the valid Unicode character names matched by
 580  * {@link java.lang.Character#codePointOf(String) Character.codePointOf(name)}.
 581  * <p>
 582  * <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
 583  * <b>Unicode extended grapheme clusters</b></a> are supported by the grapheme
 584  * cluster matcher {@code \X} and the corresponding boundary matcher {@code \b{g}}.
 585  * <p>
 586  * Unicode scripts, blocks, categories and binary properties are written with
 587  * the {@code \p} and {@code \P} constructs as in Perl.
 588  * <code>\p{</code><i>prop</i><code>}</code> matches if
 589  * the input has the property <i>prop</i>, while <code>\P{</code><i>prop</i><code>}</code>
 590  * does not match if the input has that property.
 591  * <p>
 592  * Scripts, blocks, categories and binary properties can be used both inside
 593  * and outside of a character class.
 594  *
 595  * <p>
 596  * <b><a id="usc">Scripts</a></b> are specified either with the prefix {@code Is}, as in
 597  * {@code IsHiragana}, or by using  the {@code script} keyword (or its short
 598  * form {@code sc}) as in {@code script=Hiragana} or {@code sc=Hiragana}.
 599  * <p>
 600  * The script names supported by {@code Pattern} are the valid script names
 601  * accepted and defined by
 602  * {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
 603  *
 604  * <p>
 605  * <b><a id="ubc">Blocks</a></b> are specified with the prefix {@code In}, as in
 606  * {@code InMongolian}, or by using the keyword {@code block} (or its short
 607  * form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
 608  * <p>
 609  * The block names supported by {@code Pattern} are the valid block names
 610  * accepted and defined by
 611  * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
 612  * <p>
 613  *
 614  * <b><a id="ucc">Categories</a></b> may be specified with the optional prefix {@code Is}:
 615  * Both {@code \p{L}} and {@code \p{IsL}} denote the category of Unicode
 616  * letters. Same as scripts and blocks, categories can also be specified
 617  * by using the keyword {@code general_category} (or its short form
 618  * {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
 619  * <p>
 620  * The supported categories are those of
 621  * <a href="http://www.unicode.org/unicode/standard/standard.html">
 622  * <i>The Unicode Standard</i></a> in the version specified by the
 623  * {@link java.lang.Character Character} class. The category names are those
 624  * defined in the Standard, both normative and informative.
 625  * <p>
 626  *
 627  * <b><a id="ubpc">Binary properties</a></b> are specified with the prefix {@code Is}, as in
 628  * {@code IsAlphabetic}. The supported binary properties by {@code Pattern}
 629  * are
 630  * <ul>
 631  *   <li> Alphabetic
 632  *   <li> Ideographic
 633  *   <li> Letter
 634  *   <li> Lowercase
 635  *   <li> Uppercase
 636  *   <li> Titlecase
 637  *   <li> Punctuation
 638  *   <Li> Control
 639  *   <li> White_Space
 640  *   <li> Digit
 641  *   <li> Hex_Digit
 642  *   <li> Join_Control
 643  *   <li> Noncharacter_Code_Point
 644  *   <li> Assigned
 645  * </ul>
 646  * <p>
 647  * The following <b>Predefined Character classes</b> and <b>POSIX character classes</b>
 648  * are in conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
 649  * of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Regular Expression
 650  * </i></a>, when {@link #UNICODE_CHARACTER_CLASS} flag is specified.
 651  *
 652  * <table>
 653  * <caption style="display:none">predefined and posix character classes in Unicode mode</caption>
 654  * <thead>
 655  * <tr style="text-align:left">
 656  * <th style="text-align:left" id="predef_classes">Classes</th>
 657  * <th style="text-align:left" id="predef_matches">Matches</th>
 658  * </tr>
 659  * </thead>
 660  * <tbody>
 661  * <tr><td>{@code \p{Lower}}</td>
 662  *     <td>A lowercase character:{@code \p{IsLowercase}}</td></tr>
 663  * <tr><td>{@code \p{Upper}}</td>
 664  *     <td>An uppercase character:{@code \p{IsUppercase}}</td></tr>
 665  * <tr><td>{@code \p{ASCII}}</td>
 666  *     <td>All ASCII:{@code [\x00-\x7F]}</td></tr>
 667  * <tr><td>{@code \p{Alpha}}</td>
 668  *     <td>An alphabetic character:{@code \p{IsAlphabetic}}</td></tr>
 669  * <tr><td>{@code \p{Digit}}</td>
 670  *     <td>A decimal digit character:{@code p{IsDigit}}</td></tr>
 671  * <tr><td>{@code \p{Alnum}}</td>
 672  *     <td>An alphanumeric character:{@code [\p{IsAlphabetic}\p{IsDigit}]}</td></tr>
 673  * <tr><td>{@code \p{Punct}}</td>
 674  *     <td>A punctuation character:{@code p{IsPunctuation}}</td></tr>
 675  * <tr><td>{@code \p{Graph}}</td>
 676  *     <td>A visible character: {@code [^\p{IsWhite_Space}\p{gc=Cc}\p{gc=Cs}\p{gc=Cn}]}</td></tr>
 677  * <tr><td>{@code \p{Print}}</td>
 678  *     <td>A printable character: {@code [\p{Graph}\p{Blank}&&[^\p{Cntrl}]]}</td></tr>
 679  * <tr><td>{@code \p{Blank}}</td>
 680  *     <td>A space or a tab: {@code [\p{IsWhite_Space}&&[^\p{gc=Zl}\p{gc=Zp}\x0a\x0b\x0c\x0d\x85]]}</td></tr>
 681  * <tr><td>{@code \p{Cntrl}}</td>
 682  *     <td>A control character: {@code \p{gc=Cc}}</td></tr>
 683  * <tr><td>{@code \p{XDigit}}</td>
 684  *     <td>A hexadecimal digit: {@code [\p{gc=Nd}\p{IsHex_Digit}]}</td></tr>
 685  * <tr><td>{@code \p{Space}}</td>
 686  *     <td>A whitespace character:{@code \p{IsWhite_Space}}</td></tr>
 687  * <tr><td>{@code \d}</td>
 688  *     <td>A digit: {@code \p{IsDigit}}</td></tr>
 689  * <tr><td>{@code \D}</td>
 690  *     <td>A non-digit: {@code [^\d]}</td></tr>
 691  * <tr><td>{@code \s}</td>
 692  *     <td>A whitespace character: {@code \p{IsWhite_Space}}</td></tr>
 693  * <tr><td>{@code \S}</td>
 694  *     <td>A non-whitespace character: {@code [^\s]}</td></tr>
 695  * <tr><td>{@code \w}</td>
 696  *     <td>A word character: {@code [\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}\p{IsJoin_Control}]}</td></tr>
 697  * <tr><td>{@code \W}</td>
 698  *     <td>A non-word character: {@code [^\w]}</td></tr>
 699  * </tbody>
 700  * </table>
 701  * <p>
 702  * <a id="jcc">
 703  * Categories that behave like the java.lang.Character
 704  * boolean is<i>methodname</i> methods (except for the deprecated ones) are
 705  * available through the same <code>\p{</code><i>prop</i><code>}</code> syntax where
 706  * the specified property has the name <code>java<i>methodname</i></code></a>.
 707  *
 708  * <h3> Comparison to Perl 5 </h3>
 709  *
 710  * <p>The {@code Pattern} engine performs traditional NFA-based matching
 711  * with ordered alternation as occurs in Perl 5.
 712  *
 713  * <p> Perl constructs not supported by this class: </p>
 714  *
 715  * <ul>
 716  *    <li><p> The backreference constructs, <code>\g{</code><i>n</i><code>}</code> for
 717  *    the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
 718  *    <code>\g{</code><i>name</i><code>}</code> for
 719  *    <a href="#groupname">named-capturing group</a>.
 720  *    </p></li>
 721  *
 722  *    <li><p> The conditional constructs
 723  *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code )} and
 724  *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code |}<i>Y</i>{@code )},
 725  *    </p></li>
 726  *
 727  *    <li><p> The embedded code constructs <code>(?{</code><i>code</i><code>})</code>
 728  *    and <code>(??{</code><i>code</i><code>})</code>,</p></li>
 729  *
 730  *    <li><p> The embedded comment syntax {@code (?#comment)}, and </p></li>
 731  *
 732  *    <li><p> The preprocessing operations {@code \l} <code>\u</code>,
 733  *    {@code \L}, and {@code \U}.  </p></li>
 734  *
 735  * </ul>
 736  *
 737  * <p> Constructs supported by this class but not by Perl: </p>
 738  *
 739  * <ul>
 740  *
 741  *    <li><p> Character-class union and intersection as described
 742  *    <a href="#cc">above</a>.</p></li>
 743  *
 744  * </ul>
 745  *
 746  * <p> Notable differences from Perl: </p>
 747  *
 748  * <ul>
 749  *
 750  *    <li><p> In Perl, {@code \1} through {@code \9} are always interpreted
 751  *    as back references; a backslash-escaped number greater than {@code 9} is
 752  *    treated as a back reference if at least that many subexpressions exist,
 753  *    otherwise it is interpreted, if possible, as an octal escape.  In this
 754  *    class octal escapes must always begin with a zero. In this class,
 755  *    {@code \1} through {@code \9} are always interpreted as back
 756  *    references, and a larger number is accepted as a back reference if at
 757  *    least that many subexpressions exist at that point in the regular
 758  *    expression, otherwise the parser will drop digits until the number is
 759  *    smaller or equal to the existing number of groups or it is one digit.
 760  *    </p></li>
 761  *
 762  *    <li><p> Perl uses the {@code g} flag to request a match that resumes
 763  *    where the last match left off.  This functionality is provided implicitly
 764  *    by the {@link Matcher} class: Repeated invocations of the {@link
 765  *    Matcher#find find} method will resume where the last match left off,
 766  *    unless the matcher is reset.  </p></li>
 767  *
 768  *    <li><p> In Perl, embedded flags at the top level of an expression affect
 769  *    the whole expression.  In this class, embedded flags always take effect
 770  *    at the point at which they appear, whether they are at the top level or
 771  *    within a group; in the latter case, flags are restored at the end of the
 772  *    group just as in Perl.  </p></li>
 773  *
 774  * </ul>
 775  *
 776  *
 777  * <p> For a more precise description of the behavior of regular expression
 778  * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
 779  * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
 780  * O'Reilly and Associates, 2006.</a>
 781  * </p>
 782  *
 783  * @see java.lang.String#split(String, int)
 784  * @see java.lang.String#split(String)
 785  *
 786  * @author      Mike McCloskey
 787  * @author      Mark Reinhold
 788  * @author      JSR-51 Expert Group
 789  * @since       1.4
 790  * @spec        JSR-51
 791  */
 792 
 793 public final class Pattern
 794     implements java.io.Serializable
 795 {
 796 
 797     /**
 798      * Regular expression modifier values.  Instead of being passed as
 799      * arguments, they can also be passed as inline modifiers.
 800      * For example, the following statements have the same effect.
 801      * <pre>
 802      * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
 803      * RegExp r2 = RegExp.compile("(?im)abc", 0);
 804      * </pre>
 805      *
 806      * The flags are duplicated so that the familiar Perl match flag
 807      * names are available.
 808      */
 809 
 810     /**
 811      * Enables Unix lines mode.
 812      *
 813      * <p> In this mode, only the {@code '\n'} line terminator is recognized
 814      * in the behavior of {@code .}, {@code ^}, and {@code $}.
 815      *
 816      * <p> Unix lines mode can also be enabled via the embedded flag
 817      * expression&nbsp;{@code (?d)}.
 818      */
 819     public static final int UNIX_LINES = 0x01;
 820 
 821     /**
 822      * Enables case-insensitive matching.
 823      *
 824      * <p> By default, case-insensitive matching assumes that only characters
 825      * in the US-ASCII charset are being matched.  Unicode-aware
 826      * case-insensitive matching can be enabled by specifying the {@link
 827      * #UNICODE_CASE} flag in conjunction with this flag.
 828      *
 829      * <p> Case-insensitive matching can also be enabled via the embedded flag
 830      * expression&nbsp;{@code (?i)}.
 831      *
 832      * <p> Specifying this flag may impose a slight performance penalty.  </p>
 833      */
 834     public static final int CASE_INSENSITIVE = 0x02;
 835 
 836     /**
 837      * Permits whitespace and comments in pattern.
 838      *
 839      * <p> In this mode, whitespace is ignored, and embedded comments starting
 840      * with {@code #} are ignored until the end of a line.
 841      *
 842      * <p> Comments mode can also be enabled via the embedded flag
 843      * expression&nbsp;{@code (?x)}.
 844      */
 845     public static final int COMMENTS = 0x04;
 846 
 847     /**
 848      * Enables multiline mode.
 849      *
 850      * <p> In multiline mode the expressions {@code ^} and {@code $} match
 851      * just after or just before, respectively, a line terminator or the end of
 852      * the input sequence.  By default these expressions only match at the
 853      * beginning and the end of the entire input sequence.
 854      *
 855      * <p> Multiline mode can also be enabled via the embedded flag
 856      * expression&nbsp;{@code (?m)}.  </p>
 857      */
 858     public static final int MULTILINE = 0x08;
 859 
 860     /**
 861      * Enables literal parsing of the pattern.
 862      *
 863      * <p> When this flag is specified then the input string that specifies
 864      * the pattern is treated as a sequence of literal characters.
 865      * Metacharacters or escape sequences in the input sequence will be
 866      * given no special meaning.
 867      *
 868      * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
 869      * matching when used in conjunction with this flag. The other flags
 870      * become superfluous.
 871      *
 872      * <p> There is no embedded flag character for enabling literal parsing.
 873      * @since 1.5
 874      */
 875     public static final int LITERAL = 0x10;
 876 
 877     /**
 878      * Enables dotall mode.
 879      *
 880      * <p> In dotall mode, the expression {@code .} matches any character,
 881      * including a line terminator.  By default this expression does not match
 882      * line terminators.
 883      *
 884      * <p> Dotall mode can also be enabled via the embedded flag
 885      * expression&nbsp;{@code (?s)}.  (The {@code s} is a mnemonic for
 886      * "single-line" mode, which is what this is called in Perl.)  </p>
 887      */
 888     public static final int DOTALL = 0x20;
 889 
 890     /**
 891      * Enables Unicode-aware case folding.
 892      *
 893      * <p> When this flag is specified then case-insensitive matching, when
 894      * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
 895      * consistent with the Unicode Standard.  By default, case-insensitive
 896      * matching assumes that only characters in the US-ASCII charset are being
 897      * matched.
 898      *
 899      * <p> Unicode-aware case folding can also be enabled via the embedded flag
 900      * expression&nbsp;{@code (?u)}.
 901      *
 902      * <p> Specifying this flag may impose a performance penalty.  </p>
 903      */
 904     public static final int UNICODE_CASE = 0x40;
 905 
 906     /**
 907      * Enables canonical equivalence.
 908      *
 909      * <p> When this flag is specified then two characters will be considered
 910      * to match if, and only if, their full canonical decompositions match.
 911      * The expression <code>"a\u030A"</code>, for example, will match the
 912      * string <code>"\u00E5"</code> when this flag is specified.  By default,
 913      * matching does not take canonical equivalence into account.
 914      *
 915      * <p> There is no embedded flag character for enabling canonical
 916      * equivalence.
 917      *
 918      * <p> Specifying this flag may impose a performance penalty.  </p>
 919      */
 920     public static final int CANON_EQ = 0x80;
 921 
 922     /**
 923      * Enables the Unicode version of <i>Predefined character classes</i> and
 924      * <i>POSIX character classes</i>.
 925      *
 926      * <p> When this flag is specified then the (US-ASCII only)
 927      * <i>Predefined character classes</i> and <i>POSIX character classes</i>
 928      * are in conformance with
 929      * <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 930      * Standard #18: Unicode Regular Expression</i></a>
 931      * <i>Annex C: Compatibility Properties</i>.
 932      * <p>
 933      * The UNICODE_CHARACTER_CLASS mode can also be enabled via the embedded
 934      * flag expression&nbsp;{@code (?U)}.
 935      * <p>
 936      * The flag implies UNICODE_CASE, that is, it enables Unicode-aware case
 937      * folding.
 938      * <p>
 939      * Specifying this flag may impose a performance penalty.  </p>
 940      * @since 1.7
 941      */
 942     public static final int UNICODE_CHARACTER_CLASS = 0x100;
 943 
 944     /**
 945      * Contains all possible flags for compile(regex, flags).
 946      */
 947     private static final int ALL_FLAGS = CASE_INSENSITIVE | MULTILINE |
 948             DOTALL | UNICODE_CASE | CANON_EQ | UNIX_LINES | LITERAL |
 949             UNICODE_CHARACTER_CLASS | COMMENTS;
 950 
 951     /* Pattern has only two serialized components: The pattern string
 952      * and the flags, which are all that is needed to recompile the pattern
 953      * when it is deserialized.
 954      */
 955 
 956     /** use serialVersionUID from Merlin b59 for interoperability */
 957     private static final long serialVersionUID = 5073258162644648461L;
 958 
 959     /**
 960      * The original regular-expression pattern string.
 961      *
 962      * @serial
 963      */
 964     private String pattern;
 965 
 966     /**
 967      * The original pattern flags.
 968      *
 969      * @serial
 970      */
 971     private int flags;
 972 
 973     /**
 974      * Boolean indicating this Pattern is compiled; this is necessary in order
 975      * to lazily compile deserialized Patterns.
 976      */
 977     private transient volatile boolean compiled;
 978 
 979     /**
 980      * The normalized pattern string.
 981      */
 982     private transient String normalizedPattern;
 983 
 984     /**
 985      * The starting point of state machine for the find operation.  This allows
 986      * a match to start anywhere in the input.
 987      */
 988     transient Node root;
 989 
 990     /**
 991      * The root of object tree for a match operation.  The pattern is matched
 992      * at the beginning.  This may include a find that uses BnM or a First
 993      * node.
 994      */
 995     transient Node matchRoot;
 996 
 997     /**
 998      * Temporary storage used by parsing pattern slice.
 999      */
1000     transient int[] buffer;
1001 
1002     /**
1003      * A temporary storage used for predicate for double return.
1004      */
1005     transient CharPredicate predicate;
1006 
1007     /**
1008      * Map the "name" of the "named capturing group" to its group id
1009      * node.
1010      */
1011     transient volatile Map<String, Integer> namedGroups;
1012 
1013     /**
1014      * Temporary storage used while parsing group references.
1015      */
1016     transient GroupHead[] groupNodes;
1017 
1018     /**
1019      * Temporary storage used to store the top level closure nodes.
1020      */
1021     transient List<Node> topClosureNodes;
1022 
1023     /**
1024      * The number of top greedy closure nodes in this Pattern. Used by
1025      * matchers to allocate storage needed for a IntHashSet to keep the
1026      * beginning pos {@code i} of all failed match.
1027      */
1028     transient int localTCNCount;
1029 
1030     /*
1031      * Turn off the stop-exponential-backtracking optimization if there
1032      * is a group ref in the pattern.
1033      */
1034     transient boolean hasGroupRef;
1035 
1036     /**
1037      * Temporary null terminated code point array used by pattern compiling.
1038      */
1039     private transient int[] temp;
1040 
1041     /**
1042      * The number of capturing groups in this Pattern. Used by matchers to
1043      * allocate storage needed to perform a match.
1044      */
1045     transient int capturingGroupCount;
1046 
1047     /**
1048      * The local variable count used by parsing tree. Used by matchers to
1049      * allocate storage needed to perform a match.
1050      */
1051     transient int localCount;
1052 
1053     /**
1054      * Index into the pattern string that keeps track of how much has been
1055      * parsed.
1056      */
1057     private transient int cursor;
1058 
1059     /**
1060      * Holds the length of the pattern string.
1061      */
1062     private transient int patternLength;
1063 
1064     /**
1065      * If the Start node might possibly match supplementary characters.
1066      * It is set to true during compiling if
1067      * (1) There is supplementary char in pattern, or
1068      * (2) There is complement node of a "family" CharProperty
1069      */
1070     private transient boolean hasSupplementary;
1071 
1072     /**
1073      * Compiles the given regular expression into a pattern.
1074      *
1075      * @param  regex
1076      *         The expression to be compiled
1077      * @return the given regular expression compiled into a pattern
1078      * @throws  PatternSyntaxException
1079      *          If the expression's syntax is invalid
1080      */
1081     public static Pattern compile(String regex) {
1082         return new Pattern(regex, 0);
1083     }
1084 
1085     /**
1086      * Compiles the given regular expression into a pattern with the given
1087      * flags.
1088      *
1089      * @param  regex
1090      *         The expression to be compiled
1091      *
1092      * @param  flags
1093      *         Match flags, a bit mask that may include
1094      *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
1095      *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
1096      *         {@link #LITERAL}, {@link #UNICODE_CHARACTER_CLASS}
1097      *         and {@link #COMMENTS}
1098      *
1099      * @return the given regular expression compiled into a pattern with the given flags
1100      * @throws  IllegalArgumentException
1101      *          If bit values other than those corresponding to the defined
1102      *          match flags are set in {@code flags}
1103      *
1104      * @throws  PatternSyntaxException
1105      *          If the expression's syntax is invalid
1106      */
1107     public static Pattern compile(String regex, int flags) {
1108         return new Pattern(regex, flags);
1109     }
1110 
1111     /**
1112      * Returns the regular expression from which this pattern was compiled.
1113      *
1114      * @return  The source of this pattern
1115      */
1116     public String pattern() {
1117         return pattern;
1118     }
1119 
1120     /**
1121      * <p>Returns the string representation of this pattern. This
1122      * is the regular expression from which this pattern was
1123      * compiled.</p>
1124      *
1125      * @return  The string representation of this pattern
1126      * @since 1.5
1127      */
1128     public String toString() {
1129         return pattern;
1130     }
1131 
1132     /**
1133      * Creates a matcher that will match the given input against this pattern.
1134      *
1135      * @param  input
1136      *         The character sequence to be matched
1137      *
1138      * @return  A new matcher for this pattern
1139      */
1140     public Matcher matcher(CharSequence input) {
1141         if (!compiled) {
1142             synchronized(this) {
1143                 if (!compiled)
1144                     compile();
1145             }
1146         }
1147         Matcher m = new Matcher(this, input);
1148         return m;
1149     }
1150 
1151     /**
1152      * Returns this pattern's match flags.
1153      *
1154      * @return  The match flags specified when this pattern was compiled
1155      */
1156     public int flags() {
1157         return flags;
1158     }
1159 
1160     /**
1161      * Compiles the given regular expression and attempts to match the given
1162      * input against it.
1163      *
1164      * <p> An invocation of this convenience method of the form
1165      *
1166      * <blockquote><pre>
1167      * Pattern.matches(regex, input);</pre></blockquote>
1168      *
1169      * behaves in exactly the same way as the expression
1170      *
1171      * <blockquote><pre>
1172      * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
1173      *
1174      * <p> If a pattern is to be used multiple times, compiling it once and reusing
1175      * it will be more efficient than invoking this method each time.  </p>
1176      *
1177      * @param  regex
1178      *         The expression to be compiled
1179      *
1180      * @param  input
1181      *         The character sequence to be matched
1182      * @return whether or not the regular expression matches on the input
1183      * @throws  PatternSyntaxException
1184      *          If the expression's syntax is invalid
1185      */
1186     public static boolean matches(String regex, CharSequence input) {
1187         Pattern p = Pattern.compile(regex);
1188         Matcher m = p.matcher(input);
1189         return m.matches();
1190     }
1191 
1192     /**
1193      * Splits the given input sequence around matches of this pattern.
1194      *
1195      * <p> The array returned by this method contains each substring of the
1196      * input sequence that is terminated by another subsequence that matches
1197      * this pattern or is terminated by the end of the input sequence.  The
1198      * substrings in the array are in the order in which they occur in the
1199      * input. If this pattern does not match any subsequence of the input then
1200      * the resulting array has just one element, namely the input sequence in
1201      * string form.
1202      *
1203      * <p> When there is a positive-width match at the beginning of the input
1204      * sequence then an empty leading substring is included at the beginning
1205      * of the resulting array. A zero-width match at the beginning however
1206      * never produces such empty leading substring.
1207      *
1208      * <p> The {@code limit} parameter controls the number of times the
1209      * pattern is applied and therefore affects the length of the resulting
1210      * array.  If the limit <i>n</i> is greater than zero then the pattern
1211      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
1212      * length will be no greater than <i>n</i>, and the array's last entry
1213      * will contain all input beyond the last matched delimiter.  If <i>n</i>
1214      * is non-positive then the pattern will be applied as many times as
1215      * possible and the array can have any length.  If <i>n</i> is zero then
1216      * the pattern will be applied as many times as possible, the array can
1217      * have any length, and trailing empty strings will be discarded.
1218      *
1219      * <p> The input {@code "boo:and:foo"}, for example, yields the following
1220      * results with these parameters:
1221      *
1222      * <blockquote><table>
1223      * <caption>Split examples showing regex, limit, and result</caption>
1224      * <thead>
1225      * <tr><th style="text-align:left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1226      *     <th style="text-align:left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1227      *     <th style="text-align:left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
1228      * </thead>
1229      * <tbody>
1230      * <tr><td style="text-align:center">:</td>
1231      *     <td style="text-align:center">2</td>
1232      *     <td>{@code { "boo", "and:foo" }}</td></tr>
1233      * <tr><td style="text-align:center">:</td>
1234      *     <td style="text-align:center">5</td>
1235      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1236      * <tr><td style="text-align:center">:</td>
1237      *     <td style="text-align:center">-2</td>
1238      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1239      * <tr><td style="text-align:center">o</td>
1240      *     <td style="text-align:center">5</td>
1241      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1242      * <tr><td style="text-align:center">o</td>
1243      *     <td style="text-align:center">-2</td>
1244      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1245      * <tr><td style="text-align:center">o</td>
1246      *     <td style="text-align:center">0</td>
1247      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1248      * </tbody>
1249      * </table></blockquote>
1250      *
1251      * @param  input
1252      *         The character sequence to be split
1253      *
1254      * @param  limit
1255      *         The result threshold, as described above
1256      *
1257      * @return  The array of strings computed by splitting the input
1258      *          around matches of this pattern
1259      */
1260     public String[] split(CharSequence input, int limit) {
1261         int index = 0;
1262         boolean matchLimited = limit > 0;
1263         ArrayList<String> matchList = new ArrayList<>();
1264         Matcher m = matcher(input);
1265 
1266         // Add segments before each match found
1267         while(m.find()) {
1268             if (!matchLimited || matchList.size() < limit - 1) {
1269                 if (index == 0 && index == m.start() && m.start() == m.end()) {
1270                     // no empty leading substring included for zero-width match
1271                     // at the beginning of the input char sequence.
1272                     continue;
1273                 }
1274                 String match = input.subSequence(index, m.start()).toString();
1275                 matchList.add(match);
1276                 index = m.end();
1277             } else if (matchList.size() == limit - 1) { // last one
1278                 String match = input.subSequence(index,
1279                                                  input.length()).toString();
1280                 matchList.add(match);
1281                 index = m.end();
1282             }
1283         }
1284 
1285         // If no match was found, return this
1286         if (index == 0)
1287             return new String[] {input.toString()};
1288 
1289         // Add remaining segment
1290         if (!matchLimited || matchList.size() < limit)
1291             matchList.add(input.subSequence(index, input.length()).toString());
1292 
1293         // Construct result
1294         int resultSize = matchList.size();
1295         if (limit == 0)
1296             while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
1297                 resultSize--;
1298         String[] result = new String[resultSize];
1299         return matchList.subList(0, resultSize).toArray(result);
1300     }
1301 
1302     /**
1303      * Splits the given input sequence around matches of this pattern.
1304      *
1305      * <p> This method works as if by invoking the two-argument {@link
1306      * #split(java.lang.CharSequence, int) split} method with the given input
1307      * sequence and a limit argument of zero.  Trailing empty strings are
1308      * therefore not included in the resulting array. </p>
1309      *
1310      * <p> The input {@code "boo:and:foo"}, for example, yields the following
1311      * results with these expressions:
1312      *
1313      * <blockquote><table>
1314      * <caption style="display:none">Split examples showing regex and result</caption>
1315      * <thead>
1316      * <tr><th style="text-align:left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1317      *     <th style="text-align:left"><i>Result</i></th></tr>
1318      * </thead>
1319      * <tbody>
1320      * <tr><td style="text-align:center">:</td>
1321      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1322      * <tr><td style="text-align:center">o</td>
1323      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1324      * </tbody>
1325      * </table></blockquote>
1326      *
1327      *
1328      * @param  input
1329      *         The character sequence to be split
1330      *
1331      * @return  The array of strings computed by splitting the input
1332      *          around matches of this pattern
1333      */
1334     public String[] split(CharSequence input) {
1335         return split(input, 0);
1336     }
1337 
1338     /**
1339      * Returns a literal pattern {@code String} for the specified
1340      * {@code String}.
1341      *
1342      * <p>This method produces a {@code String} that can be used to
1343      * create a {@code Pattern} that would match the string
1344      * {@code s} as if it were a literal pattern.</p> Metacharacters
1345      * or escape sequences in the input sequence will be given no special
1346      * meaning.
1347      *
1348      * @param  s The string to be literalized
1349      * @return  A literal string replacement
1350      * @since 1.5
1351      */
1352     public static String quote(String s) {
1353         int slashEIndex = s.indexOf("\\E");
1354         if (slashEIndex == -1)
1355             return "\\Q" + s + "\\E";
1356 
1357         int lenHint = s.length();
1358         lenHint = (lenHint < Integer.MAX_VALUE - 8 - lenHint) ?
1359                 (lenHint << 1) : (Integer.MAX_VALUE - 8);
1360 
1361         StringBuilder sb = new StringBuilder(lenHint);
1362         sb.append("\\Q");
1363         int current = 0;
1364         do {
1365             sb.append(s, current, slashEIndex)
1366                     .append("\\E\\\\E\\Q");
1367             current = slashEIndex + 2;
1368         } while ((slashEIndex = s.indexOf("\\E", current)) != -1);
1369 
1370         return sb.append(s, current, s.length())
1371                 .append("\\E")
1372                 .toString();
1373     }
1374 
1375     /**
1376      * Recompile the Pattern instance from a stream.  The original pattern
1377      * string is read in and the object tree is recompiled from it.
1378      */
1379     private void readObject(java.io.ObjectInputStream s)
1380         throws java.io.IOException, ClassNotFoundException {
1381 
1382         // Read in all fields
1383         s.defaultReadObject();
1384 
1385         // Initialize counts
1386         capturingGroupCount = 1;
1387         localCount = 0;
1388         localTCNCount = 0;
1389 
1390         // if length > 0, the Pattern is lazily compiled
1391         if (pattern.length() == 0) {
1392             root = new Start(lastAccept);
1393             matchRoot = lastAccept;
1394             compiled = true;
1395         }
1396     }
1397 
1398     /**
1399      * This private constructor is used to create all Patterns. The pattern
1400      * string and match flags are all that is needed to completely describe
1401      * a Pattern. An empty pattern string results in an object tree with
1402      * only a Start node and a LastNode node.
1403      */
1404     private Pattern(String p, int f) {
1405         if ((f & ~ALL_FLAGS) != 0) {
1406             throw new IllegalArgumentException("Unknown flag 0x"
1407                                                + Integer.toHexString(f));
1408         }
1409         pattern = p;
1410         flags = f;
1411 
1412         // to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
1413         if ((flags & UNICODE_CHARACTER_CLASS) != 0)
1414             flags |= UNICODE_CASE;
1415 
1416         // Reset group index count
1417         capturingGroupCount = 1;
1418         localCount = 0;
1419         localTCNCount = 0;
1420 
1421         if (pattern.length() > 0) {
1422             compile();
1423         } else {
1424             root = new Start(lastAccept);
1425             matchRoot = lastAccept;
1426         }
1427     }
1428 
1429     /**
1430      * The pattern is converted to normalized form ({@link
1431      * java.text.Normalizer.Form.NFC NFC}, canonical decomposition,
1432      * followed by canonical composition for the character class
1433      * part, and {@link java.text.Normalizer.Form.NFD NFD},
1434      * canonical decomposition) for the rest), and then a pure
1435      * group is constructed to match canonical equivalences of the
1436      * characters.
1437      */
1438     private static String normalize(String pattern) {
1439         int plen = pattern.length();
1440         StringBuilder pbuf = new StringBuilder(plen);
1441         char last = 0;
1442         int lastStart = 0;
1443         char cc = 0;
1444         for (int i = 0; i < plen;) {
1445             char c = pattern.charAt(i);
1446             if (cc == 0 &&    // top level
1447                 c == '\\' && i + 1 < plen && pattern.charAt(i + 1) == '\\') {
1448                 i += 2; last = 0;
1449                 continue;
1450             }
1451             if (c == '[' && last != '\\') {
1452                 if (cc == 0) {
1453                     if (lastStart < i)
1454                         normalizeSlice(pattern, lastStart, i, pbuf);
1455                     lastStart = i;
1456                 }
1457                 cc++;
1458             } else if (c == ']' && last != '\\') {
1459                 cc--;
1460                 if (cc == 0) {
1461                     normalizeClazz(pattern, lastStart, i + 1, pbuf);
1462                     lastStart = i + 1;
1463                 }
1464             }
1465             last = c;
1466             i++;
1467         }
1468         assert (cc == 0);
1469         if (lastStart < plen)
1470             normalizeSlice(pattern, lastStart, plen, pbuf);
1471         return pbuf.toString();
1472     }
1473 
1474     private static void normalizeSlice(String src, int off, int limit,
1475                                        StringBuilder dst)
1476     {
1477         int len = src.length();
1478         int off0 = off;
1479         while (off < limit && ASCII.isAscii(src.charAt(off))) {
1480             off++;
1481         }
1482         if (off == limit) {
1483             dst.append(src, off0, limit);
1484             return;
1485         }
1486         off--;
1487         if (off < off0)
1488             off = off0;
1489         else
1490             dst.append(src, off0, off);
1491         while (off < limit) {
1492             int ch0 = src.codePointAt(off);
1493             if (".$|()[]{}^?*+\\".indexOf(ch0) != -1) {
1494                 dst.append((char)ch0);
1495                 off++;
1496                 continue;
1497             }
1498             int j = off + Character.charCount(ch0);
1499             int ch1;
1500             while (j < limit) {
1501                 ch1 = src.codePointAt(j);
1502                 if (Grapheme.isBoundary(ch0, ch1))
1503                     break;
1504                 ch0 = ch1;
1505                 j += Character.charCount(ch1);
1506             }
1507             String seq = src.substring(off, j);
1508             String nfd = Normalizer.normalize(seq, Normalizer.Form.NFD);
1509             off = j;
1510             if (nfd.length() > 1) {
1511                 ch0 = nfd.codePointAt(0);
1512                 ch1 = nfd.codePointAt(Character.charCount(ch0));
1513                 if (Character.getType(ch1) == Character.NON_SPACING_MARK) {
1514                     Set<String> altns = new LinkedHashSet<>();
1515                     altns.add(seq);
1516                     produceEquivalentAlternation(nfd, altns);
1517                     dst.append("(?:");
1518                     altns.forEach( s -> dst.append(s).append('|'));
1519                     dst.delete(dst.length() - 1, dst.length());
1520                     dst.append(")");
1521                     continue;
1522                 }
1523             }
1524             String nfc = Normalizer.normalize(seq, Normalizer.Form.NFC);
1525             if (!seq.equals(nfc) && !nfd.equals(nfc))
1526                 dst.append("(?:" + seq + "|" + nfd  + "|" + nfc + ")");
1527             else if (!seq.equals(nfd))
1528                 dst.append("(?:" + seq + "|" + nfd + ")");
1529             else
1530                 dst.append(seq);
1531         }
1532     }
1533 
1534     private static void normalizeClazz(String src, int off, int limit,
1535                                        StringBuilder dst)
1536     {
1537         dst.append(Normalizer.normalize(src.substring(off, limit), Form.NFC));
1538     }
1539 
1540     /**
1541      * Given a specific sequence composed of a regular character and
1542      * combining marks that follow it, produce the alternation that will
1543      * match all canonical equivalences of that sequence.
1544      */
1545     private static void produceEquivalentAlternation(String src,
1546                                                      Set<String> dst)
1547     {
1548         int len = countChars(src, 0, 1);
1549         if (src.length() == len) {
1550             dst.add(src);  // source has one character.
1551             return;
1552         }
1553         String base = src.substring(0,len);
1554         String combiningMarks = src.substring(len);
1555         String[] perms = producePermutations(combiningMarks);
1556         // Add combined permutations
1557         for(int x = 0; x < perms.length; x++) {
1558             String next = base + perms[x];
1559             dst.add(next);
1560             next = composeOneStep(next);
1561             if (next != null) {
1562                 produceEquivalentAlternation(next, dst);
1563             }
1564         }
1565     }
1566 
1567     /**
1568      * Returns an array of strings that have all the possible
1569      * permutations of the characters in the input string.
1570      * This is used to get a list of all possible orderings
1571      * of a set of combining marks. Note that some of the permutations
1572      * are invalid because of combining class collisions, and these
1573      * possibilities must be removed because they are not canonically
1574      * equivalent.
1575      */
1576     private static String[] producePermutations(String input) {
1577         if (input.length() == countChars(input, 0, 1))
1578             return new String[] {input};
1579 
1580         if (input.length() == countChars(input, 0, 2)) {
1581             int c0 = Character.codePointAt(input, 0);
1582             int c1 = Character.codePointAt(input, Character.charCount(c0));
1583             if (getClass(c1) == getClass(c0)) {
1584                 return new String[] {input};
1585             }
1586             String[] result = new String[2];
1587             result[0] = input;
1588             StringBuilder sb = new StringBuilder(2);
1589             sb.appendCodePoint(c1);
1590             sb.appendCodePoint(c0);
1591             result[1] = sb.toString();
1592             return result;
1593         }
1594 
1595         int length = 1;
1596         int nCodePoints = countCodePoints(input);
1597         for(int x=1; x<nCodePoints; x++)
1598             length = length * (x+1);
1599 
1600         String[] temp = new String[length];
1601 
1602         int combClass[] = new int[nCodePoints];
1603         for(int x=0, i=0; x<nCodePoints; x++) {
1604             int c = Character.codePointAt(input, i);
1605             combClass[x] = getClass(c);
1606             i +=  Character.charCount(c);
1607         }
1608 
1609         // For each char, take it out and add the permutations
1610         // of the remaining chars
1611         int index = 0;
1612         int len;
1613         // offset maintains the index in code units.
1614 loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1615             len = countChars(input, offset, 1);
1616             for(int y=x-1; y>=0; y--) {
1617                 if (combClass[y] == combClass[x]) {
1618                     continue loop;
1619                 }
1620             }
1621             StringBuilder sb = new StringBuilder(input);
1622             String otherChars = sb.delete(offset, offset+len).toString();
1623             String[] subResult = producePermutations(otherChars);
1624 
1625             String prefix = input.substring(offset, offset+len);
1626             for (String sre : subResult)
1627                 temp[index++] = prefix + sre;
1628         }
1629         String[] result = new String[index];
1630         System.arraycopy(temp, 0, result, 0, index);
1631         return result;
1632     }
1633 
1634     private static int getClass(int c) {
1635         return sun.text.Normalizer.getCombiningClass(c);
1636     }
1637 
1638     /**
1639      * Attempts to compose input by combining the first character
1640      * with the first combining mark following it. Returns a String
1641      * that is the composition of the leading character with its first
1642      * combining mark followed by the remaining combining marks. Returns
1643      * null if the first two characters cannot be further composed.
1644      */
1645     private static String composeOneStep(String input) {
1646         int len = countChars(input, 0, 2);
1647         String firstTwoCharacters = input.substring(0, len);
1648         String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1649         if (result.equals(firstTwoCharacters))
1650             return null;
1651         else {
1652             String remainder = input.substring(len);
1653             return result + remainder;
1654         }
1655     }
1656 
1657     /**
1658      * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1659      * See the description of `quotemeta' in perlfunc(1).
1660      */
1661     private void RemoveQEQuoting() {
1662         final int pLen = patternLength;
1663         int i = 0;
1664         while (i < pLen-1) {
1665             if (temp[i] != '\\')
1666                 i += 1;
1667             else if (temp[i + 1] != 'Q')
1668                 i += 2;
1669             else
1670                 break;
1671         }
1672         if (i >= pLen - 1)    // No \Q sequence found
1673             return;
1674         int j = i;
1675         i += 2;
1676         int[] newtemp = new int[j + 3*(pLen-i) + 2];
1677         System.arraycopy(temp, 0, newtemp, 0, j);
1678 
1679         boolean inQuote = true;
1680         boolean beginQuote = true;
1681         while (i < pLen) {
1682             int c = temp[i++];
1683             if (!ASCII.isAscii(c) || ASCII.isAlpha(c)) {
1684                 newtemp[j++] = c;
1685             } else if (ASCII.isDigit(c)) {
1686                 if (beginQuote) {
1687                     /*
1688                      * A unicode escape \[0xu] could be before this quote,
1689                      * and we don't want this numeric char to processed as
1690                      * part of the escape.
1691                      */
1692                     newtemp[j++] = '\\';
1693                     newtemp[j++] = 'x';
1694                     newtemp[j++] = '3';
1695                 }
1696                 newtemp[j++] = c;
1697             } else if (c != '\\') {
1698                 if (inQuote) newtemp[j++] = '\\';
1699                 newtemp[j++] = c;
1700             } else if (inQuote) {
1701                 if (temp[i] == 'E') {
1702                     i++;
1703                     inQuote = false;
1704                 } else {
1705                     newtemp[j++] = '\\';
1706                     newtemp[j++] = '\\';
1707                 }
1708             } else {
1709                 if (temp[i] == 'Q') {
1710                     i++;
1711                     inQuote = true;
1712                     beginQuote = true;
1713                     continue;
1714                 } else {
1715                     newtemp[j++] = c;
1716                     if (i != pLen)
1717                         newtemp[j++] = temp[i++];
1718                 }
1719             }
1720 
1721             beginQuote = false;
1722         }
1723 
1724         patternLength = j;
1725         temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1726     }
1727 
1728     /**
1729      * Copies regular expression to an int array and invokes the parsing
1730      * of the expression which will create the object tree.
1731      */
1732     private void compile() {
1733         // Handle canonical equivalences
1734         if (has(CANON_EQ) && !has(LITERAL)) {
1735             normalizedPattern = normalize(pattern);
1736         } else {
1737             normalizedPattern = pattern;
1738         }
1739         patternLength = normalizedPattern.length();
1740 
1741         // Copy pattern to int array for convenience
1742         // Use double zero to terminate pattern
1743         temp = new int[patternLength + 2];
1744 
1745         hasSupplementary = false;
1746         int c, count = 0;
1747         // Convert all chars into code points
1748         for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1749             c = normalizedPattern.codePointAt(x);
1750             if (isSupplementary(c)) {
1751                 hasSupplementary = true;
1752             }
1753             temp[count++] = c;
1754         }
1755 
1756         patternLength = count;   // patternLength now in code points
1757 
1758         if (! has(LITERAL))
1759             RemoveQEQuoting();
1760 
1761         // Allocate all temporary objects here.
1762         buffer = new int[32];
1763         groupNodes = new GroupHead[10];
1764         namedGroups = null;
1765         topClosureNodes = new ArrayList<>(10);
1766 
1767         if (has(LITERAL)) {
1768             // Literal pattern handling
1769             matchRoot = newSlice(temp, patternLength, hasSupplementary);
1770             matchRoot.next = lastAccept;
1771         } else {
1772             // Start recursive descent parsing
1773             matchRoot = expr(lastAccept);
1774             // Check extra pattern characters
1775             if (patternLength != cursor) {
1776                 if (peek() == ')') {
1777                     throw error("Unmatched closing ')'");
1778                 } else {
1779                     throw error("Unexpected internal error");
1780                 }
1781             }
1782         }
1783 
1784         // Peephole optimization
1785         if (matchRoot instanceof Slice) {
1786             root = BnM.optimize(matchRoot);
1787             if (root == matchRoot) {
1788                 root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1789             }
1790         } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1791             root = matchRoot;
1792         } else {
1793             root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1794         }
1795 
1796         // Optimize the greedy Loop to prevent exponential backtracking, IF there
1797         // is no group ref in this pattern. With a non-negative localTCNCount value,
1798         // the greedy type Loop, Curly will skip the backtracking for any starting
1799         // position "i" that failed in the past.
1800         if (!hasGroupRef) {
1801             for (Node node : topClosureNodes) {
1802                 if (node instanceof Loop) {
1803                     // non-deterministic-greedy-group
1804                     ((Loop)node).posIndex = localTCNCount++;
1805                 }
1806             }
1807         }
1808 
1809         // Release temporary storage
1810         temp = null;
1811         buffer = null;
1812         groupNodes = null;
1813         patternLength = 0;
1814         compiled = true;
1815         topClosureNodes = null;
1816     }
1817 
1818     Map<String, Integer> namedGroups() {
1819         Map<String, Integer> groups = namedGroups;
1820         if (groups == null) {
1821             namedGroups = groups = new HashMap<>(2);
1822         }
1823         return groups;
1824     }
1825 
1826     /**
1827      * Used to accumulate information about a subtree of the object graph
1828      * so that optimizations can be applied to the subtree.
1829      */
1830     static final class TreeInfo {
1831         int minLength;
1832         int maxLength;
1833         boolean maxValid;
1834         boolean deterministic;
1835 
1836         TreeInfo() {
1837             reset();
1838         }
1839         void reset() {
1840             minLength = 0;
1841             maxLength = 0;
1842             maxValid = true;
1843             deterministic = true;
1844         }
1845     }
1846 
1847     /*
1848      * The following private methods are mainly used to improve the
1849      * readability of the code. In order to let the Java compiler easily
1850      * inline them, we should not put many assertions or error checks in them.
1851      */
1852 
1853     /**
1854      * Indicates whether a particular flag is set or not.
1855      */
1856     private boolean has(int f) {
1857         return (flags & f) != 0;
1858     }
1859 
1860     /**
1861      * Match next character, signal error if failed.
1862      */
1863     private void accept(int ch, String s) {
1864         int testChar = temp[cursor++];
1865         if (has(COMMENTS))
1866             testChar = parsePastWhitespace(testChar);
1867         if (ch != testChar) {
1868             throw error(s);
1869         }
1870     }
1871 
1872     /**
1873      * Mark the end of pattern with a specific character.
1874      */
1875     private void mark(int c) {
1876         temp[patternLength] = c;
1877     }
1878 
1879     /**
1880      * Peek the next character, and do not advance the cursor.
1881      */
1882     private int peek() {
1883         int ch = temp[cursor];
1884         if (has(COMMENTS))
1885             ch = peekPastWhitespace(ch);
1886         return ch;
1887     }
1888 
1889     /**
1890      * Read the next character, and advance the cursor by one.
1891      */
1892     private int read() {
1893         int ch = temp[cursor++];
1894         if (has(COMMENTS))
1895             ch = parsePastWhitespace(ch);
1896         return ch;
1897     }
1898 
1899     /**
1900      * Read the next character, and advance the cursor by one,
1901      * ignoring the COMMENTS setting
1902      */
1903     private int readEscaped() {
1904         int ch = temp[cursor++];
1905         return ch;
1906     }
1907 
1908     /**
1909      * Advance the cursor by one, and peek the next character.
1910      */
1911     private int next() {
1912         int ch = temp[++cursor];
1913         if (has(COMMENTS))
1914             ch = peekPastWhitespace(ch);
1915         return ch;
1916     }
1917 
1918     /**
1919      * Advance the cursor by one, and peek the next character,
1920      * ignoring the COMMENTS setting
1921      */
1922     private int nextEscaped() {
1923         int ch = temp[++cursor];
1924         return ch;
1925     }
1926 
1927     /**
1928      * If in xmode peek past whitespace and comments.
1929      */
1930     private int peekPastWhitespace(int ch) {
1931         while (ASCII.isSpace(ch) || ch == '#') {
1932             while (ASCII.isSpace(ch))
1933                 ch = temp[++cursor];
1934             if (ch == '#') {
1935                 ch = peekPastLine();
1936             }
1937         }
1938         return ch;
1939     }
1940 
1941     /**
1942      * If in xmode parse past whitespace and comments.
1943      */
1944     private int parsePastWhitespace(int ch) {
1945         while (ASCII.isSpace(ch) || ch == '#') {
1946             while (ASCII.isSpace(ch))
1947                 ch = temp[cursor++];
1948             if (ch == '#')
1949                 ch = parsePastLine();
1950         }
1951         return ch;
1952     }
1953 
1954     /**
1955      * xmode parse past comment to end of line.
1956      */
1957     private int parsePastLine() {
1958         int ch = temp[cursor++];
1959         while (ch != 0 && !isLineSeparator(ch))
1960             ch = temp[cursor++];
1961         return ch;
1962     }
1963 
1964     /**
1965      * xmode peek past comment to end of line.
1966      */
1967     private int peekPastLine() {
1968         int ch = temp[++cursor];
1969         while (ch != 0 && !isLineSeparator(ch))
1970             ch = temp[++cursor];
1971         return ch;
1972     }
1973 
1974     /**
1975      * Determines if character is a line separator in the current mode
1976      */
1977     private boolean isLineSeparator(int ch) {
1978         if (has(UNIX_LINES)) {
1979             return ch == '\n';
1980         } else {
1981             return (ch == '\n' ||
1982                     ch == '\r' ||
1983                     (ch|1) == '\u2029' ||
1984                     ch == '\u0085');
1985         }
1986     }
1987 
1988     /**
1989      * Read the character after the next one, and advance the cursor by two.
1990      */
1991     private int skip() {
1992         int i = cursor;
1993         int ch = temp[i+1];
1994         cursor = i + 2;
1995         return ch;
1996     }
1997 
1998     /**
1999      * Unread one next character, and retreat cursor by one.
2000      */
2001     private void unread() {
2002         cursor--;
2003     }
2004 
2005     /**
2006      * Internal method used for handling all syntax errors. The pattern is
2007      * displayed with a pointer to aid in locating the syntax error.
2008      */
2009     private PatternSyntaxException error(String s) {
2010         return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
2011     }
2012 
2013     /**
2014      * Determines if there is any supplementary character or unpaired
2015      * surrogate in the specified range.
2016      */
2017     private boolean findSupplementary(int start, int end) {
2018         for (int i = start; i < end; i++) {
2019             if (isSupplementary(temp[i]))
2020                 return true;
2021         }
2022         return false;
2023     }
2024 
2025     /**
2026      * Determines if the specified code point is a supplementary
2027      * character or unpaired surrogate.
2028      */
2029     private static final boolean isSupplementary(int ch) {
2030         return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
2031                Character.isSurrogate((char)ch);
2032     }
2033 
2034     /**
2035      *  The following methods handle the main parsing. They are sorted
2036      *  according to their precedence order, the lowest one first.
2037      */
2038 
2039     /**
2040      * The expression is parsed with branch nodes added for alternations.
2041      * This may be called recursively to parse sub expressions that may
2042      * contain alternations.
2043      */
2044     private Node expr(Node end) {
2045         Node prev = null;
2046         Node firstTail = null;
2047         Branch branch = null;
2048         Node branchConn = null;
2049 
2050         for (;;) {
2051             Node node = sequence(end);
2052             Node nodeTail = root;      //double return
2053             if (prev == null) {
2054                 prev = node;
2055                 firstTail = nodeTail;
2056             } else {
2057                 // Branch
2058                 if (branchConn == null) {
2059                     branchConn = new BranchConn();
2060                     branchConn.next = end;
2061                 }
2062                 if (node == end) {
2063                     // if the node returned from sequence() is "end"
2064                     // we have an empty expr, set a null atom into
2065                     // the branch to indicate to go "next" directly.
2066                     node = null;
2067                 } else {
2068                     // the "tail.next" of each atom goes to branchConn
2069                     nodeTail.next = branchConn;
2070                 }
2071                 if (prev == branch) {
2072                     branch.add(node);
2073                 } else {
2074                     if (prev == end) {
2075                         prev = null;
2076                     } else {
2077                         // replace the "end" with "branchConn" at its tail.next
2078                         // when put the "prev" into the branch as the first atom.
2079                         firstTail.next = branchConn;
2080                     }
2081                     prev = branch = new Branch(prev, node, branchConn);
2082                 }
2083             }
2084             if (peek() != '|') {
2085                 return prev;
2086             }
2087             next();
2088         }
2089     }
2090 
2091     @SuppressWarnings("fallthrough")
2092     /**
2093      * Parsing of sequences between alternations.
2094      */
2095     private Node sequence(Node end) {
2096         Node head = null;
2097         Node tail = null;
2098         Node node = null;
2099     LOOP:
2100         for (;;) {
2101             int ch = peek();
2102             switch (ch) {
2103             case '(':
2104                 // Because group handles its own closure,
2105                 // we need to treat it differently
2106                 node = group0();
2107                 // Check for comment or flag group
2108                 if (node == null)
2109                     continue;
2110                 if (head == null)
2111                     head = node;
2112                 else
2113                     tail.next = node;
2114                 // Double return: Tail was returned in root
2115                 tail = root;
2116                 continue;
2117             case '[':
2118                 if (has(CANON_EQ) && !has(LITERAL))
2119                     node = new NFCCharProperty(clazz(true));
2120                 else
2121                     node = newCharProperty(clazz(true));
2122                 break;
2123             case '\\':
2124                 ch = nextEscaped();
2125                 if (ch == 'p' || ch == 'P') {
2126                     boolean oneLetter = true;
2127                     boolean comp = (ch == 'P');
2128                     ch = next(); // Consume { if present
2129                     if (ch != '{') {
2130                         unread();
2131                     } else {
2132                         oneLetter = false;
2133                     }
2134                     // node = newCharProperty(family(oneLetter, comp));
2135                     if (has(CANON_EQ) && !has(LITERAL))
2136                         node = new NFCCharProperty(family(oneLetter, comp));
2137                     else
2138                         node = newCharProperty(family(oneLetter, comp));
2139                 } else {
2140                     unread();
2141                     node = atom();
2142                 }
2143                 break;
2144             case '^':
2145                 next();
2146                 if (has(MULTILINE)) {
2147                     if (has(UNIX_LINES))
2148                         node = new UnixCaret();
2149                     else
2150                         node = new Caret();
2151                 } else {
2152                     node = new Begin();
2153                 }
2154                 break;
2155             case '$':
2156                 next();
2157                 if (has(UNIX_LINES))
2158                     node = new UnixDollar(has(MULTILINE));
2159                 else
2160                     node = new Dollar(has(MULTILINE));
2161                 break;
2162             case '.':
2163                 next();
2164                 if (has(DOTALL)) {
2165                     node = new CharProperty(ALL());
2166                 } else {
2167                     if (has(UNIX_LINES)) {
2168                         node = new CharProperty(UNIXDOT());
2169                     } else {
2170                         node = new CharProperty(DOT());
2171                     }
2172                 }
2173                 break;
2174             case '|':
2175             case ')':
2176                 break LOOP;
2177             case ']': // Now interpreting dangling ] and } as literals
2178             case '}':
2179                 node = atom();
2180                 break;
2181             case '?':
2182             case '*':
2183             case '+':
2184                 next();
2185                 throw error("Dangling meta character '" + ((char)ch) + "'");
2186             case 0:
2187                 if (cursor >= patternLength) {
2188                     break LOOP;
2189                 }
2190                 // Fall through
2191             default:
2192                 node = atom();
2193                 break;
2194             }
2195 
2196             node = closure(node);
2197             /* save the top dot-greedy nodes (.*, .+) as well
2198             if (node instanceof GreedyCharProperty &&
2199                 ((GreedyCharProperty)node).cp instanceof Dot) {
2200                 topClosureNodes.add(node);
2201             }
2202             */
2203             if (head == null) {
2204                 head = tail = node;
2205             } else {
2206                 tail.next = node;
2207                 tail = node;
2208             }
2209         }
2210         if (head == null) {
2211             return end;
2212         }
2213         tail.next = end;
2214         root = tail;      //double return
2215         return head;
2216     }
2217 
2218     @SuppressWarnings("fallthrough")
2219     /**
2220      * Parse and add a new Single or Slice.
2221      */
2222     private Node atom() {
2223         int first = 0;
2224         int prev = -1;
2225         boolean hasSupplementary = false;
2226         int ch = peek();
2227         for (;;) {
2228             switch (ch) {
2229             case '*':
2230             case '+':
2231             case '?':
2232             case '{':
2233                 if (first > 1) {
2234                     cursor = prev;    // Unwind one character
2235                     first--;
2236                 }
2237                 break;
2238             case '$':
2239             case '.':
2240             case '^':
2241             case '(':
2242             case '[':
2243             case '|':
2244             case ')':
2245                 break;
2246             case '\\':
2247                 ch = nextEscaped();
2248                 if (ch == 'p' || ch == 'P') { // Property
2249                     if (first > 0) { // Slice is waiting; handle it first
2250                         unread();
2251                         break;
2252                     } else { // No slice; just return the family node
2253                         boolean comp = (ch == 'P');
2254                         boolean oneLetter = true;
2255                         ch = next(); // Consume { if present
2256                         if (ch != '{')
2257                             unread();
2258                         else
2259                             oneLetter = false;
2260                         if (has(CANON_EQ) && !has(LITERAL))
2261                             return new NFCCharProperty(family(oneLetter, comp));
2262                         else
2263                             return newCharProperty(family(oneLetter, comp));
2264                     }
2265                 }
2266                 unread();
2267                 prev = cursor;
2268                 ch = escape(false, first == 0, false);
2269                 if (ch >= 0) {
2270                     append(ch, first);
2271                     first++;
2272                     if (isSupplementary(ch)) {
2273                         hasSupplementary = true;
2274                     }
2275                     ch = peek();
2276                     continue;
2277                 } else if (first == 0) {
2278                     return root;
2279                 }
2280                 // Unwind meta escape sequence
2281                 cursor = prev;
2282                 break;
2283             case 0:
2284                 if (cursor >= patternLength) {
2285                     break;
2286                 }
2287                 // Fall through
2288             default:
2289                 prev = cursor;
2290                 append(ch, first);
2291                 first++;
2292                 if (isSupplementary(ch)) {
2293                     hasSupplementary = true;
2294                 }
2295                 ch = next();
2296                 continue;
2297             }
2298             break;
2299         }
2300         if (first == 1) {
2301             return newCharProperty(single(buffer[0]));
2302         } else {
2303             return newSlice(buffer, first, hasSupplementary);
2304         }
2305     }
2306 
2307     private void append(int ch, int len) {
2308         if (len >= buffer.length) {
2309             int[] tmp = new int[len+len];
2310             System.arraycopy(buffer, 0, tmp, 0, len);
2311             buffer = tmp;
2312         }
2313         buffer[len] = ch;
2314     }
2315 
2316     /**
2317      * Parses a backref greedily, taking as many numbers as it
2318      * can. The first digit is always treated as a backref, but
2319      * multi digit numbers are only treated as a backref if at
2320      * least that many backrefs exist at this point in the regex.
2321      */
2322     private Node ref(int refNum) {
2323         boolean done = false;
2324         while(!done) {
2325             int ch = peek();
2326             switch(ch) {
2327             case '0':
2328             case '1':
2329             case '2':
2330             case '3':
2331             case '4':
2332             case '5':
2333             case '6':
2334             case '7':
2335             case '8':
2336             case '9':
2337                 int newRefNum = (refNum * 10) + (ch - '0');
2338                 // Add another number if it doesn't make a group
2339                 // that doesn't exist
2340                 if (capturingGroupCount - 1 < newRefNum) {
2341                     done = true;
2342                     break;
2343                 }
2344                 refNum = newRefNum;
2345                 read();
2346                 break;
2347             default:
2348                 done = true;
2349                 break;
2350             }
2351         }
2352         hasGroupRef = true;
2353         if (has(CASE_INSENSITIVE))
2354             return new CIBackRef(refNum, has(UNICODE_CASE));
2355         else
2356             return new BackRef(refNum);
2357     }
2358 
2359     /**
2360      * Parses an escape sequence to determine the actual value that needs
2361      * to be matched.
2362      * If -1 is returned and create was true a new object was added to the tree
2363      * to handle the escape sequence.
2364      * If the returned value is greater than zero, it is the value that
2365      * matches the escape sequence.
2366      */
2367     private int escape(boolean inclass, boolean create, boolean isrange) {
2368         int ch = skip();
2369         switch (ch) {
2370         case '0':
2371             return o();
2372         case '1':
2373         case '2':
2374         case '3':
2375         case '4':
2376         case '5':
2377         case '6':
2378         case '7':
2379         case '8':
2380         case '9':
2381             if (inclass) break;
2382             if (create) {
2383                 root = ref((ch - '0'));
2384             }
2385             return -1;
2386         case 'A':
2387             if (inclass) break;
2388             if (create) root = new Begin();
2389             return -1;
2390         case 'B':
2391             if (inclass) break;
2392             if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
2393             return -1;
2394         case 'C':
2395             break;
2396         case 'D':
2397             if (create) {
2398                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2399                             CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2400                 predicate = predicate.negate();
2401                 if (!inclass)
2402                     root = newCharProperty(predicate);
2403             }
2404             return -1;
2405         case 'E':
2406         case 'F':
2407             break;
2408         case 'G':
2409             if (inclass) break;
2410             if (create) root = new LastMatch();
2411             return -1;
2412         case 'H':
2413             if (create) {
2414                 predicate = HorizWS().negate();
2415                 if (!inclass)
2416                     root = newCharProperty(predicate);
2417             }
2418             return -1;
2419         case 'I':
2420         case 'J':
2421         case 'K':
2422         case 'L':
2423         case 'M':
2424             break;
2425         case 'N':
2426             return N();
2427         case 'O':
2428         case 'P':
2429         case 'Q':
2430             break;
2431         case 'R':
2432             if (inclass) break;
2433             if (create) root = new LineEnding();
2434             return -1;
2435         case 'S':
2436             if (create) {
2437                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2438                             CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2439                 predicate = predicate.negate();
2440                 if (!inclass)
2441                     root = newCharProperty(predicate);
2442             }
2443             return -1;
2444         case 'T':
2445         case 'U':
2446             break;
2447         case 'V':
2448             if (create) {
2449                 predicate = VertWS().negate();
2450                 if (!inclass)
2451                     root = newCharProperty(predicate);
2452             }
2453             return -1;
2454         case 'W':
2455             if (create) {
2456                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2457                             CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2458                 predicate = predicate.negate();
2459                 if (!inclass)
2460                     root = newCharProperty(predicate);
2461             }
2462             return -1;
2463         case 'X':
2464             if (inclass) break;
2465             if (create) {
2466                 root = new XGrapheme();
2467             }
2468             return -1;
2469         case 'Y':
2470             break;
2471         case 'Z':
2472             if (inclass) break;
2473             if (create) {
2474                 if (has(UNIX_LINES))
2475                     root = new UnixDollar(false);
2476                 else
2477                     root = new Dollar(false);
2478             }
2479             return -1;
2480         case 'a':
2481             return '\007';
2482         case 'b':
2483             if (inclass) break;
2484             if (create) {
2485                 if (peek() == '{') {
2486                     if (skip() == 'g') {
2487                         if (read() == '}') {
2488                             root = new GraphemeBound();
2489                             return -1;
2490                         }
2491                         break;  // error missing trailing }
2492                     }
2493                     unread(); unread();
2494                 }
2495                 root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
2496             }
2497             return -1;
2498         case 'c':
2499             return c();
2500         case 'd':
2501             if (create) {
2502                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2503                             CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2504                 if (!inclass)
2505                     root = newCharProperty(predicate);
2506             }
2507             return -1;
2508         case 'e':
2509             return '\033';
2510         case 'f':
2511             return '\f';
2512         case 'g':
2513             break;
2514         case 'h':
2515             if (create) {
2516                 predicate = HorizWS();
2517                 if (!inclass)
2518                     root = newCharProperty(predicate);
2519             }
2520             return -1;
2521         case 'i':
2522         case 'j':
2523             break;
2524         case 'k':
2525             if (inclass)
2526                 break;
2527             if (read() != '<')
2528                 throw error("\\k is not followed by '<' for named capturing group");
2529             String name = groupname(read());
2530             if (!namedGroups().containsKey(name))
2531                 throw error("(named capturing group <"+ name+"> does not exit");
2532             if (create) {
2533                 hasGroupRef = true;
2534                 if (has(CASE_INSENSITIVE))
2535                     root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
2536                 else
2537                     root = new BackRef(namedGroups().get(name));
2538             }
2539             return -1;
2540         case 'l':
2541         case 'm':
2542             break;
2543         case 'n':
2544             return '\n';
2545         case 'o':
2546         case 'p':
2547         case 'q':
2548             break;
2549         case 'r':
2550             return '\r';
2551         case 's':
2552             if (create) {
2553                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2554                             CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2555                 if (!inclass)
2556                     root = newCharProperty(predicate);
2557             }
2558             return -1;
2559         case 't':
2560             return '\t';
2561         case 'u':
2562             return u();
2563         case 'v':
2564             // '\v' was implemented as VT/0x0B in releases < 1.8 (though
2565             // undocumented). In JDK8 '\v' is specified as a predefined
2566             // character class for all vertical whitespace characters.
2567             // So [-1, root=VertWS node] pair is returned (instead of a
2568             // single 0x0B). This breaks the range if '\v' is used as
2569             // the start or end value, such as [\v-...] or [...-\v], in
2570             // which a single definite value (0x0B) is expected. For
2571             // compatibility concern '\013'/0x0B is returned if isrange.
2572             if (isrange)
2573                 return '\013';
2574             if (create) {
2575                 predicate = VertWS();
2576                 if (!inclass)
2577                     root = newCharProperty(predicate);
2578             }
2579             return -1;
2580         case 'w':
2581             if (create) {
2582                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2583                             CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2584                 if (!inclass)
2585                     root = newCharProperty(predicate);
2586             }
2587             return -1;
2588         case 'x':
2589             return x();
2590         case 'y':
2591             break;
2592         case 'z':
2593             if (inclass) break;
2594             if (create) root = new End();
2595             return -1;
2596         default:
2597             return ch;
2598         }
2599         throw error("Illegal/unsupported escape sequence");
2600     }
2601 
2602     /**
2603      * Parse a character class, and return the node that matches it.
2604      *
2605      * Consumes a ] on the way out if consume is true. Usually consume
2606      * is true except for the case of [abc&&def] where def is a separate
2607      * right hand node with "understood" brackets.
2608      */
2609     private CharPredicate clazz(boolean consume) {
2610         CharPredicate prev = null;
2611         CharPredicate curr = null;
2612         BitClass bits = new BitClass();
2613         BmpCharPredicate bitsP = ch -> ch < 256 && bits.bits[ch];
2614 
2615         boolean isNeg = false;
2616         boolean hasBits = false;
2617         int ch = next();
2618 
2619         // Negates if first char in a class, otherwise literal
2620         if (ch == '^' && temp[cursor-1] == '[') {
2621             ch = next();
2622             isNeg = true;
2623         }
2624         for (;;) {
2625             switch (ch) {
2626                 case '[':
2627                     curr = clazz(true);
2628                     if (prev == null)
2629                         prev = curr;
2630                     else
2631                         prev = prev.union(curr);
2632                     ch = peek();
2633                     continue;
2634                 case '&':
2635                     ch = next();
2636                     if (ch == '&') {
2637                         ch = next();
2638                         CharPredicate right = null;
2639                         while (ch != ']' && ch != '&') {
2640                             if (ch == '[') {
2641                                 if (right == null)
2642                                     right = clazz(true);
2643                                 else
2644                                     right = right.union(clazz(true));
2645                             } else { // abc&&def
2646                                 unread();
2647                                 right = clazz(false);
2648                             }
2649                             ch = peek();
2650                         }
2651                         if (hasBits) {
2652                             // bits used, union has high precedence
2653                             if (prev == null) {
2654                                 prev = curr = bitsP;
2655                             } else {
2656                                 prev = prev.union(bitsP);
2657                             }
2658                             hasBits = false;
2659                         }
2660                         if (right != null)
2661                             curr = right;
2662                         if (prev == null) {
2663                             if (right == null)
2664                                 throw error("Bad class syntax");
2665                             else
2666                                 prev = right;
2667                         } else {
2668                             prev = prev.and(curr);
2669                         }
2670                     } else {
2671                         // treat as a literal &
2672                         unread();
2673                         break;
2674                     }
2675                     continue;
2676                 case 0:
2677                     if (cursor >= patternLength)
2678                         throw error("Unclosed character class");
2679                     break;
2680                 case ']':
2681                     if (prev != null || hasBits) {
2682                         if (consume)
2683                             next();
2684                         if (prev == null)
2685                             prev = bitsP;
2686                         else if (hasBits)
2687                             prev = prev.union(bitsP);
2688                         if (isNeg)
2689                             return prev.negate();
2690                         return prev;
2691                     }
2692                     break;
2693                 default:
2694                     break;
2695             }
2696             curr = range(bits);
2697             if (curr == null) {    // the bits used
2698                 hasBits = true;
2699             } else {
2700                 if (prev == null)
2701                     prev = curr;
2702                 else if (prev != curr)
2703                     prev = prev.union(curr);
2704             }
2705             ch = peek();
2706         }
2707     }
2708 
2709     private CharPredicate bitsOrSingle(BitClass bits, int ch) {
2710         /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2711            Use "single" node instead of bits when dealing with unicode
2712            case folding for codepoints listed below.
2713            (1)Uppercase out of range: u+00ff, u+00b5
2714               toUpperCase(u+00ff) -> u+0178
2715               toUpperCase(u+00b5) -> u+039c
2716            (2)LatinSmallLetterLongS u+17f
2717               toUpperCase(u+017f) -> u+0053
2718            (3)LatinSmallLetterDotlessI u+131
2719               toUpperCase(u+0131) -> u+0049
2720            (4)LatinCapitalLetterIWithDotAbove u+0130
2721               toLowerCase(u+0130) -> u+0069
2722            (5)KelvinSign u+212a
2723               toLowerCase(u+212a) ==> u+006B
2724            (6)AngstromSign u+212b
2725               toLowerCase(u+212b) ==> u+00e5
2726         */
2727         if (ch < 256 &&
2728             !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2729               (ch == 0xff || ch == 0xb5 ||
2730                ch == 0x49 || ch == 0x69 ||    //I and i
2731                ch == 0x53 || ch == 0x73 ||    //S and s
2732                ch == 0x4b || ch == 0x6b ||    //K and k
2733                ch == 0xc5 || ch == 0xe5))) {  //A+ring
2734             bits.add(ch, flags());
2735             return null;
2736         }
2737         return single(ch);
2738     }
2739 
2740     /**
2741      *  Returns a suitably optimized, single character predicate
2742      */
2743     private CharPredicate single(final int ch) {
2744         if (has(CASE_INSENSITIVE)) {
2745             int lower, upper;
2746             if (has(UNICODE_CASE)) {
2747                 upper = Character.toUpperCase(ch);
2748                 lower = Character.toLowerCase(upper);
2749                 // Unicode case insensitive matches
2750                 if (upper != lower)
2751                     return SingleU(lower);
2752             } else if (ASCII.isAscii(ch)) {
2753                 lower = ASCII.toLower(ch);
2754                 upper = ASCII.toUpper(ch);
2755                 // Case insensitive matches a given BMP character
2756                 if (lower != upper)
2757                     return SingleI(lower, upper);
2758             }
2759         }
2760         if (isSupplementary(ch))
2761             return SingleS(ch);
2762         return Single(ch);  // Match a given BMP character
2763     }
2764 
2765     /**
2766      * Parse a single character or a character range in a character class
2767      * and return its representative node.
2768      */
2769     private CharPredicate range(BitClass bits) {
2770         int ch = peek();
2771         if (ch == '\\') {
2772             ch = nextEscaped();
2773             if (ch == 'p' || ch == 'P') { // A property
2774                 boolean comp = (ch == 'P');
2775                 boolean oneLetter = true;
2776                 // Consume { if present
2777                 ch = next();
2778                 if (ch != '{')
2779                     unread();
2780                 else
2781                     oneLetter = false;
2782                 return family(oneLetter, comp);
2783             } else { // ordinary escape
2784                 boolean isrange = temp[cursor+1] == '-';
2785                 unread();
2786                 ch = escape(true, true, isrange);
2787                 if (ch == -1)
2788                     return predicate;
2789             }
2790         } else {
2791             next();
2792         }
2793         if (ch >= 0) {
2794             if (peek() == '-') {
2795                 int endRange = temp[cursor+1];
2796                 if (endRange == '[') {
2797                     return bitsOrSingle(bits, ch);
2798                 }
2799                 if (endRange != ']') {
2800                     next();
2801                     int m = peek();
2802                     if (m == '\\') {
2803                         m = escape(true, false, true);
2804                     } else {
2805                         next();
2806                     }
2807                     if (m < ch) {
2808                         throw error("Illegal character range");
2809                     }
2810                     if (has(CASE_INSENSITIVE)) {
2811                         if (has(UNICODE_CASE))
2812                             return CIRangeU(ch, m);
2813                         return CIRange(ch, m);
2814                     } else {
2815                         return Range(ch, m);
2816                     }
2817                 }
2818             }
2819             return bitsOrSingle(bits, ch);
2820         }
2821         throw error("Unexpected character '"+((char)ch)+"'");
2822     }
2823 
2824     /**
2825      * Parses a Unicode character family and returns its representative node.
2826      */
2827     private CharPredicate family(boolean singleLetter, boolean isComplement) {
2828         next();
2829         String name;
2830         CharPredicate p = null;
2831 
2832         if (singleLetter) {
2833             int c = temp[cursor];
2834             if (!Character.isSupplementaryCodePoint(c)) {
2835                 name = String.valueOf((char)c);
2836             } else {
2837                 name = new String(temp, cursor, 1);
2838             }
2839             read();
2840         } else {
2841             int i = cursor;
2842             mark('}');
2843             while(read() != '}') {
2844             }
2845             mark('\000');
2846             int j = cursor;
2847             if (j > patternLength)
2848                 throw error("Unclosed character family");
2849             if (i + 1 >= j)
2850                 throw error("Empty character family");
2851             name = new String(temp, i, j-i-1);
2852         }
2853 
2854         int i = name.indexOf('=');
2855         if (i != -1) {
2856             // property construct \p{name=value}
2857             String value = name.substring(i + 1);
2858             name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
2859             switch (name) {
2860                 case "sc":
2861                 case "script":
2862                     p = CharPredicates.forUnicodeScript(value);
2863                     break;
2864                 case "blk":
2865                 case "block":
2866                     p = CharPredicates.forUnicodeBlock(value);
2867                     break;
2868                 case "gc":
2869                 case "general_category":
2870                     p = CharPredicates.forProperty(value);
2871                     break;
2872                 default:
2873                     break;
2874             }
2875             if (p == null)
2876                 throw error("Unknown Unicode property {name=<" + name + ">, "
2877                              + "value=<" + value + ">}");
2878 
2879         } else {
2880             if (name.startsWith("In")) {
2881                 // \p{InBlockName}
2882                 p = CharPredicates.forUnicodeBlock(name.substring(2));
2883             } else if (name.startsWith("Is")) {
2884                 // \p{IsGeneralCategory} and \p{IsScriptName}
2885                 name = name.substring(2);
2886                 p = CharPredicates.forUnicodeProperty(name);
2887                 if (p == null)
2888                     p = CharPredicates.forProperty(name);
2889                 if (p == null)
2890                     p = CharPredicates.forUnicodeScript(name);
2891             } else {
2892                 if (has(UNICODE_CHARACTER_CLASS)) {
2893                     p = CharPredicates.forPOSIXName(name);
2894                 }
2895                 if (p == null)
2896                     p = CharPredicates.forProperty(name);
2897             }
2898             if (p == null)
2899                 throw error("Unknown character property name {In/Is" + name + "}");
2900         }
2901         if (isComplement) {
2902             // it might be too expensive to detect if a complement of
2903             // CharProperty can match "certain" supplementary. So just
2904             // go with StartS.
2905             hasSupplementary = true;
2906             p = p.negate();
2907         }
2908         return p;
2909     }
2910 
2911     private CharProperty newCharProperty(CharPredicate p) {
2912         if (p == null)
2913             return null;
2914         if (p instanceof BmpCharPredicate)
2915             return new BmpCharProperty((BmpCharPredicate)p);
2916         else
2917             return new CharProperty(p);
2918     }
2919 
2920     /**
2921      * Parses and returns the name of a "named capturing group", the trailing
2922      * ">" is consumed after parsing.
2923      */
2924     private String groupname(int ch) {
2925         StringBuilder sb = new StringBuilder();
2926         sb.append(Character.toChars(ch));
2927         while (ASCII.isLower(ch=read()) || ASCII.isUpper(ch) ||
2928                ASCII.isDigit(ch)) {
2929             sb.append(Character.toChars(ch));
2930         }
2931         if (sb.length() == 0)
2932             throw error("named capturing group has 0 length name");
2933         if (ch != '>')
2934             throw error("named capturing group is missing trailing '>'");
2935         return sb.toString();
2936     }
2937 
2938     /**
2939      * Parses a group and returns the head node of a set of nodes that process
2940      * the group. Sometimes a double return system is used where the tail is
2941      * returned in root.
2942      */
2943     private Node group0() {
2944         boolean capturingGroup = false;
2945         Node head = null;
2946         Node tail = null;
2947         int save = flags;
2948         int saveTCNCount = topClosureNodes.size();
2949         root = null;
2950         int ch = next();
2951         if (ch == '?') {
2952             ch = skip();
2953             switch (ch) {
2954             case ':':   //  (?:xxx) pure group
2955                 head = createGroup(true);
2956                 tail = root;
2957                 head.next = expr(tail);
2958                 break;
2959             case '=':   // (?=xxx) and (?!xxx) lookahead
2960             case '!':
2961                 head = createGroup(true);
2962                 tail = root;
2963                 head.next = expr(tail);
2964                 if (ch == '=') {
2965                     head = tail = new Pos(head);
2966                 } else {
2967                     head = tail = new Neg(head);
2968                 }
2969                 break;
2970             case '>':   // (?>xxx)  independent group
2971                 head = createGroup(true);
2972                 tail = root;
2973                 head.next = expr(tail);
2974                 head = tail = new Ques(head, Qtype.INDEPENDENT);
2975                 break;
2976             case '<':   // (?<xxx)  look behind
2977                 ch = read();
2978                 if (ASCII.isLower(ch) || ASCII.isUpper(ch)) {
2979                     // named captured group
2980                     String name = groupname(ch);
2981                     if (namedGroups().containsKey(name))
2982                         throw error("Named capturing group <" + name
2983                                     + "> is already defined");
2984                     capturingGroup = true;
2985                     head = createGroup(false);
2986                     tail = root;
2987                     namedGroups().put(name, capturingGroupCount-1);
2988                     head.next = expr(tail);
2989                     break;
2990                 }
2991                 int start = cursor;
2992                 head = createGroup(true);
2993                 tail = root;
2994                 head.next = expr(tail);
2995                 tail.next = lookbehindEnd;
2996                 TreeInfo info = new TreeInfo();
2997                 head.study(info);
2998                 if (info.maxValid == false) {
2999                     throw error("Look-behind group does not have "
3000                                 + "an obvious maximum length");
3001                 }
3002                 boolean hasSupplementary = findSupplementary(start, patternLength);
3003                 if (ch == '=') {
3004                     head = tail = (hasSupplementary ?
3005                                    new BehindS(head, info.maxLength,
3006                                                info.minLength) :
3007                                    new Behind(head, info.maxLength,
3008                                               info.minLength));
3009                 } else if (ch == '!') {
3010                     head = tail = (hasSupplementary ?
3011                                    new NotBehindS(head, info.maxLength,
3012                                                   info.minLength) :
3013                                    new NotBehind(head, info.maxLength,
3014                                                  info.minLength));
3015                 } else {
3016                     throw error("Unknown look-behind group");
3017                 }
3018                 // clear all top-closure-nodes inside lookbehind
3019                 if (saveTCNCount < topClosureNodes.size())
3020                     topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3021                 break;
3022             case '$':
3023             case '@':
3024                 throw error("Unknown group type");
3025             default:    // (?xxx:) inlined match flags
3026                 unread();
3027                 addFlag();
3028                 ch = read();
3029                 if (ch == ')') {
3030                     return null;    // Inline modifier only
3031                 }
3032                 if (ch != ':') {
3033                     throw error("Unknown inline modifier");
3034                 }
3035                 head = createGroup(true);
3036                 tail = root;
3037                 head.next = expr(tail);
3038                 break;
3039             }
3040         } else { // (xxx) a regular group
3041             capturingGroup = true;
3042             head = createGroup(false);
3043             tail = root;
3044             head.next = expr(tail);
3045         }
3046 
3047         accept(')', "Unclosed group");
3048         flags = save;
3049 
3050         // Check for quantifiers
3051         Node node = closure(head);
3052         if (node == head) { // No closure
3053             root = tail;
3054             return node;    // Dual return
3055         }
3056         if (head == tail) { // Zero length assertion
3057             root = node;
3058             return node;    // Dual return
3059         }
3060 
3061         // have group closure, clear all inner closure nodes from the
3062         // top list (no backtracking stopper optimization for inner
3063         if (saveTCNCount < topClosureNodes.size())
3064             topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3065 
3066         if (node instanceof Ques) {
3067             Ques ques = (Ques) node;
3068             if (ques.type == Qtype.POSSESSIVE) {
3069                 root = node;
3070                 return node;
3071             }
3072             tail.next = new BranchConn();
3073             tail = tail.next;
3074             if (ques.type == Qtype.GREEDY) {
3075                 head = new Branch(head, null, tail);
3076             } else { // Reluctant quantifier
3077                 head = new Branch(null, head, tail);
3078             }
3079             root = tail;
3080             return head;
3081         } else if (node instanceof Curly) {
3082             Curly curly = (Curly) node;
3083             if (curly.type == Qtype.POSSESSIVE) {
3084                 root = node;
3085                 return node;
3086             }
3087             // Discover if the group is deterministic
3088             TreeInfo info = new TreeInfo();
3089             if (head.study(info)) { // Deterministic
3090                 GroupTail temp = (GroupTail) tail;
3091                 head = root = new GroupCurly(head.next, curly.cmin,
3092                                    curly.cmax, curly.type,
3093                                    ((GroupTail)tail).localIndex,
3094                                    ((GroupTail)tail).groupIndex,
3095                                              capturingGroup);
3096                 return head;
3097             } else { // Non-deterministic
3098                 int temp = ((GroupHead) head).localIndex;
3099                 Loop loop;
3100                 if (curly.type == Qtype.GREEDY) {
3101                     loop = new Loop(this.localCount, temp);
3102                     // add the max_reps greedy to the top-closure-node list
3103                     if (curly.cmax == MAX_REPS)
3104                         topClosureNodes.add(loop);
3105                 } else {  // Reluctant Curly
3106                     loop = new LazyLoop(this.localCount, temp);
3107                 }
3108                 Prolog prolog = new Prolog(loop);
3109                 this.localCount += 1;
3110                 loop.cmin = curly.cmin;
3111                 loop.cmax = curly.cmax;
3112                 loop.body = head;
3113                 tail.next = loop;
3114                 root = loop;
3115                 return prolog; // Dual return
3116             }
3117         }
3118         throw error("Internal logic error");
3119     }
3120 
3121     /**
3122      * Create group head and tail nodes using double return. If the group is
3123      * created with anonymous true then it is a pure group and should not
3124      * affect group counting.
3125      */
3126     private Node createGroup(boolean anonymous) {
3127         int localIndex = localCount++;
3128         int groupIndex = 0;
3129         if (!anonymous)
3130             groupIndex = capturingGroupCount++;
3131         GroupHead head = new GroupHead(localIndex);
3132         root = new GroupTail(localIndex, groupIndex);
3133 
3134         // for debug/print only, head.match does NOT need the "tail" info
3135         head.tail = (GroupTail)root;
3136 
3137         if (!anonymous && groupIndex < 10)
3138             groupNodes[groupIndex] = head;
3139         return head;
3140     }
3141 
3142     @SuppressWarnings("fallthrough")
3143     /**
3144      * Parses inlined match flags and set them appropriately.
3145      */
3146     private void addFlag() {
3147         int ch = peek();
3148         for (;;) {
3149             switch (ch) {
3150             case 'i':
3151                 flags |= CASE_INSENSITIVE;
3152                 break;
3153             case 'm':
3154                 flags |= MULTILINE;
3155                 break;
3156             case 's':
3157                 flags |= DOTALL;
3158                 break;
3159             case 'd':
3160                 flags |= UNIX_LINES;
3161                 break;
3162             case 'u':
3163                 flags |= UNICODE_CASE;
3164                 break;
3165             case 'c':
3166                 flags |= CANON_EQ;
3167                 break;
3168             case 'x':
3169                 flags |= COMMENTS;
3170                 break;
3171             case 'U':
3172                 flags |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3173                 break;
3174             case '-': // subFlag then fall through
3175                 ch = next();
3176                 subFlag();
3177             default:
3178                 return;
3179             }
3180             ch = next();
3181         }
3182     }
3183 
3184     @SuppressWarnings("fallthrough")
3185     /**
3186      * Parses the second part of inlined match flags and turns off
3187      * flags appropriately.
3188      */
3189     private void subFlag() {
3190         int ch = peek();
3191         for (;;) {
3192             switch (ch) {
3193             case 'i':
3194                 flags &= ~CASE_INSENSITIVE;
3195                 break;
3196             case 'm':
3197                 flags &= ~MULTILINE;
3198                 break;
3199             case 's':
3200                 flags &= ~DOTALL;
3201                 break;
3202             case 'd':
3203                 flags &= ~UNIX_LINES;
3204                 break;
3205             case 'u':
3206                 flags &= ~UNICODE_CASE;
3207                 break;
3208             case 'c':
3209                 flags &= ~CANON_EQ;
3210                 break;
3211             case 'x':
3212                 flags &= ~COMMENTS;
3213                 break;
3214             case 'U':
3215                 flags &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3216                 break;
3217             default:
3218                 return;
3219             }
3220             ch = next();
3221         }
3222     }
3223 
3224     static final int MAX_REPS   = 0x7FFFFFFF;
3225 
3226     static enum Qtype {
3227         GREEDY, LAZY, POSSESSIVE, INDEPENDENT
3228     }
3229 
3230     private Node curly(Node prev, int cmin) {
3231         int ch = next();
3232         if (ch == '?') {
3233             next();
3234             return new Curly(prev, cmin, MAX_REPS, Qtype.LAZY);
3235         } else if (ch == '+') {
3236             next();
3237             return new Curly(prev, cmin, MAX_REPS, Qtype.POSSESSIVE);
3238         }
3239         if (prev instanceof BmpCharProperty) {
3240             return new BmpCharPropertyGreedy((BmpCharProperty)prev, cmin);
3241         } else if (prev instanceof CharProperty) {
3242             return new CharPropertyGreedy((CharProperty)prev, cmin);
3243         }
3244         return new Curly(prev, cmin, MAX_REPS, Qtype.GREEDY);
3245     }
3246 
3247     /**
3248      * Processes repetition. If the next character peeked is a quantifier
3249      * then new nodes must be appended to handle the repetition.
3250      * Prev could be a single or a group, so it could be a chain of nodes.
3251      */
3252     private Node closure(Node prev) {
3253         Node atom;
3254         int ch = peek();
3255         switch (ch) {
3256         case '?':
3257             ch = next();
3258             if (ch == '?') {
3259                 next();
3260                 return new Ques(prev, Qtype.LAZY);
3261             } else if (ch == '+') {
3262                 next();
3263                 return new Ques(prev, Qtype.POSSESSIVE);
3264             }
3265             return new Ques(prev, Qtype.GREEDY);
3266         case '*':
3267             return curly(prev, 0);
3268         case '+':
3269             return curly(prev, 1);
3270         case '{':
3271             ch = temp[cursor+1];
3272             if (ASCII.isDigit(ch)) {
3273                 skip();
3274                 int cmin = 0;
3275                 do {
3276                     cmin = cmin * 10 + (ch - '0');
3277                 } while (ASCII.isDigit(ch = read()));
3278                 int cmax = cmin;
3279                 if (ch == ',') {
3280                     ch = read();
3281                     cmax = MAX_REPS;
3282                     if (ch != '}') {
3283                         cmax = 0;
3284                         while (ASCII.isDigit(ch)) {
3285                             cmax = cmax * 10 + (ch - '0');
3286                             ch = read();
3287                         }
3288                     }
3289                 }
3290                 if (ch != '}')
3291                     throw error("Unclosed counted closure");
3292                 if (((cmin) | (cmax) | (cmax - cmin)) < 0)
3293                     throw error("Illegal repetition range");
3294                 Curly curly;
3295                 ch = peek();
3296                 if (ch == '?') {
3297                     next();
3298                     curly = new Curly(prev, cmin, cmax, Qtype.LAZY);
3299                 } else if (ch == '+') {
3300                     next();
3301                     curly = new Curly(prev, cmin, cmax, Qtype.POSSESSIVE);
3302                 } else {
3303                     curly = new Curly(prev, cmin, cmax, Qtype.GREEDY);
3304                 }
3305                 return curly;
3306             } else {
3307                 throw error("Illegal repetition");
3308             }
3309         default:
3310             return prev;
3311         }
3312     }
3313 
3314     /**
3315      *  Utility method for parsing control escape sequences.
3316      */
3317     private int c() {
3318         if (cursor < patternLength) {
3319             return read() ^ 64;
3320         }
3321         throw error("Illegal control escape sequence");
3322     }
3323 
3324     /**
3325      *  Utility method for parsing octal escape sequences.
3326      */
3327     private int o() {
3328         int n = read();
3329         if (((n-'0')|('7'-n)) >= 0) {
3330             int m = read();
3331             if (((m-'0')|('7'-m)) >= 0) {
3332                 int o = read();
3333                 if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
3334                     return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
3335                 }
3336                 unread();
3337                 return (n - '0') * 8 + (m - '0');
3338             }
3339             unread();
3340             return (n - '0');
3341         }
3342         throw error("Illegal octal escape sequence");
3343     }
3344 
3345     /**
3346      *  Utility method for parsing hexadecimal escape sequences.
3347      */
3348     private int x() {
3349         int n = read();
3350         if (ASCII.isHexDigit(n)) {
3351             int m = read();
3352             if (ASCII.isHexDigit(m)) {
3353                 return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
3354             }
3355         } else if (n == '{' && ASCII.isHexDigit(peek())) {
3356             int ch = 0;
3357             while (ASCII.isHexDigit(n = read())) {
3358                 ch = (ch << 4) + ASCII.toDigit(n);
3359                 if (ch > Character.MAX_CODE_POINT)
3360                     throw error("Hexadecimal codepoint is too big");
3361             }
3362             if (n != '}')
3363                 throw error("Unclosed hexadecimal escape sequence");
3364             return ch;
3365         }
3366         throw error("Illegal hexadecimal escape sequence");
3367     }
3368 
3369     /**
3370      *  Utility method for parsing unicode escape sequences.
3371      */
3372     private int cursor() {
3373         return cursor;
3374     }
3375 
3376     private void setcursor(int pos) {
3377         cursor = pos;
3378     }
3379 
3380     private int uxxxx() {
3381         int n = 0;
3382         for (int i = 0; i < 4; i++) {
3383             int ch = read();
3384             if (!ASCII.isHexDigit(ch)) {
3385                 throw error("Illegal Unicode escape sequence");
3386             }
3387             n = n * 16 + ASCII.toDigit(ch);
3388         }
3389         return n;
3390     }
3391 
3392     private int u() {
3393         int n = uxxxx();
3394         if (Character.isHighSurrogate((char)n)) {
3395             int cur = cursor();
3396             if (read() == '\\' && read() == 'u') {
3397                 int n2 = uxxxx();
3398                 if (Character.isLowSurrogate((char)n2))
3399                     return Character.toCodePoint((char)n, (char)n2);
3400             }
3401             setcursor(cur);
3402         }
3403         return n;
3404     }
3405 
3406     private int N() {
3407         if (read() == '{') {
3408             int i = cursor;
3409             while (cursor < patternLength && read() != '}') {}
3410             if (cursor > patternLength)
3411                 throw error("Unclosed character name escape sequence");
3412             String name = new String(temp, i, cursor - i - 1);
3413             try {
3414                 return Character.codePointOf(name);
3415             } catch (IllegalArgumentException x) {
3416                 throw error("Unknown character name [" + name + "]");
3417             }
3418         }
3419         throw error("Illegal character name escape sequence");
3420     }
3421 
3422     //
3423     // Utility methods for code point support
3424     //
3425     private static final int countChars(CharSequence seq, int index,
3426                                         int lengthInCodePoints) {
3427         // optimization
3428         if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
3429             assert (index >= 0 && index < seq.length());
3430             return 1;
3431         }
3432         int length = seq.length();
3433         int x = index;
3434         if (lengthInCodePoints >= 0) {
3435             assert (index >= 0 && index < length);
3436             for (int i = 0; x < length && i < lengthInCodePoints; i++) {
3437                 if (Character.isHighSurrogate(seq.charAt(x++))) {
3438                     if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
3439                         x++;
3440                     }
3441                 }
3442             }
3443             return x - index;
3444         }
3445 
3446         assert (index >= 0 && index <= length);
3447         if (index == 0) {
3448             return 0;
3449         }
3450         int len = -lengthInCodePoints;
3451         for (int i = 0; x > 0 && i < len; i++) {
3452             if (Character.isLowSurrogate(seq.charAt(--x))) {
3453                 if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
3454                     x--;
3455                 }
3456             }
3457         }
3458         return index - x;
3459     }
3460 
3461     private static final int countCodePoints(CharSequence seq) {
3462         int length = seq.length();
3463         int n = 0;
3464         for (int i = 0; i < length; ) {
3465             n++;
3466             if (Character.isHighSurrogate(seq.charAt(i++))) {
3467                 if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
3468                     i++;
3469                 }
3470             }
3471         }
3472         return n;
3473     }
3474 
3475     /**
3476      *  Creates a bit vector for matching Latin-1 values. A normal BitClass
3477      *  never matches values above Latin-1, and a complemented BitClass always
3478      *  matches values above Latin-1.
3479      */
3480     static final class BitClass extends BmpCharProperty {
3481         final boolean[] bits;
3482         BitClass() {
3483             this(new boolean[256]);
3484         }
3485         private BitClass(boolean[] bits) {
3486             super( ch -> ch < 256 && bits[ch]);
3487             this.bits = bits;
3488         }
3489         BitClass add(int c, int flags) {
3490             assert c >= 0 && c <= 255;
3491             if ((flags & CASE_INSENSITIVE) != 0) {
3492                 if (ASCII.isAscii(c)) {
3493                     bits[ASCII.toUpper(c)] = true;
3494                     bits[ASCII.toLower(c)] = true;
3495                 } else if ((flags & UNICODE_CASE) != 0) {
3496                     bits[Character.toLowerCase(c)] = true;
3497                     bits[Character.toUpperCase(c)] = true;
3498                 }
3499             }
3500             bits[c] = true;
3501             return this;
3502         }
3503     }
3504 
3505     /**
3506      *  Utility method for creating a string slice matcher.
3507      */
3508     private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
3509         int[] tmp = new int[count];
3510         if (has(CASE_INSENSITIVE)) {
3511             if (has(UNICODE_CASE)) {
3512                 for (int i = 0; i < count; i++) {
3513                     tmp[i] = Character.toLowerCase(
3514                                  Character.toUpperCase(buf[i]));
3515                 }
3516                 return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3517             }
3518             for (int i = 0; i < count; i++) {
3519                 tmp[i] = ASCII.toLower(buf[i]);
3520             }
3521             return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3522         }
3523         for (int i = 0; i < count; i++) {
3524             tmp[i] = buf[i];
3525         }
3526         return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3527     }
3528 
3529     /**
3530      * The following classes are the building components of the object
3531      * tree that represents a compiled regular expression. The object tree
3532      * is made of individual elements that handle constructs in the Pattern.
3533      * Each type of object knows how to match its equivalent construct with
3534      * the match() method.
3535      */
3536 
3537     /**
3538      * Base class for all node classes. Subclasses should override the match()
3539      * method as appropriate. This class is an accepting node, so its match()
3540      * always returns true.
3541      */
3542     static class Node extends Object {
3543         Node next;
3544         Node() {
3545             next = Pattern.accept;
3546         }
3547         /**
3548          * This method implements the classic accept node.
3549          */
3550         boolean match(Matcher matcher, int i, CharSequence seq) {
3551             matcher.last = i;
3552             matcher.groups[0] = matcher.first;
3553             matcher.groups[1] = matcher.last;
3554             return true;
3555         }
3556         /**
3557          * This method is good for all zero length assertions.
3558          */
3559         boolean study(TreeInfo info) {
3560             if (next != null) {
3561                 return next.study(info);
3562             } else {
3563                 return info.deterministic;
3564             }
3565         }
3566     }
3567 
3568     static class LastNode extends Node {
3569         /**
3570          * This method implements the classic accept node with
3571          * the addition of a check to see if the match occurred
3572          * using all of the input.
3573          */
3574         boolean match(Matcher matcher, int i, CharSequence seq) {
3575             if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3576                 return false;
3577             matcher.last = i;
3578             matcher.groups[0] = matcher.first;
3579             matcher.groups[1] = matcher.last;
3580             return true;
3581         }
3582     }
3583 
3584     /**
3585      * Used for REs that can start anywhere within the input string.
3586      * This basically tries to match repeatedly at each spot in the
3587      * input string, moving forward after each try. An anchored search
3588      * or a BnM will bypass this node completely.
3589      */
3590     static class Start extends Node {
3591         int minLength;
3592         Start(Node node) {
3593             this.next = node;
3594             TreeInfo info = new TreeInfo();
3595             next.study(info);
3596             minLength = info.minLength;
3597         }
3598         boolean match(Matcher matcher, int i, CharSequence seq) {
3599             if (i > matcher.to - minLength) {
3600                 matcher.hitEnd = true;
3601                 return false;
3602             }
3603             int guard = matcher.to - minLength;
3604             for (; i <= guard; i++) {
3605                 if (next.match(matcher, i, seq)) {
3606                     matcher.first = i;
3607                     matcher.groups[0] = matcher.first;
3608                     matcher.groups[1] = matcher.last;
3609                     return true;
3610                 }
3611             }
3612             matcher.hitEnd = true;
3613             return false;
3614         }
3615         boolean study(TreeInfo info) {
3616             next.study(info);
3617             info.maxValid = false;
3618             info.deterministic = false;
3619             return false;
3620         }
3621     }
3622 
3623     /*
3624      * StartS supports supplementary characters, including unpaired surrogates.
3625      */
3626     static final class StartS extends Start {
3627         StartS(Node node) {
3628             super(node);
3629         }
3630         boolean match(Matcher matcher, int i, CharSequence seq) {
3631             if (i > matcher.to - minLength) {
3632                 matcher.hitEnd = true;
3633                 return false;
3634             }
3635             int guard = matcher.to - minLength;
3636             while (i <= guard) {
3637                 //if ((ret = next.match(matcher, i, seq)) || i == guard)
3638                 if (next.match(matcher, i, seq)) {
3639                     matcher.first = i;
3640                     matcher.groups[0] = matcher.first;
3641                     matcher.groups[1] = matcher.last;
3642                     return true;
3643                 }
3644                 if (i == guard)
3645                     break;
3646                 // Optimization to move to the next character. This is
3647                 // faster than countChars(seq, i, 1).
3648                 if (Character.isHighSurrogate(seq.charAt(i++))) {
3649                     if (i < seq.length() &&
3650                         Character.isLowSurrogate(seq.charAt(i))) {
3651                         i++;
3652                     }
3653                 }
3654             }
3655             matcher.hitEnd = true;
3656             return false;
3657         }
3658     }
3659 
3660     /**
3661      * Node to anchor at the beginning of input. This object implements the
3662      * match for a \A sequence, and the caret anchor will use this if not in
3663      * multiline mode.
3664      */
3665     static final class Begin extends Node {
3666         boolean match(Matcher matcher, int i, CharSequence seq) {
3667             int fromIndex = (matcher.anchoringBounds) ?
3668                 matcher.from : 0;
3669             if (i == fromIndex && next.match(matcher, i, seq)) {
3670                 matcher.first = i;
3671                 matcher.groups[0] = i;
3672                 matcher.groups[1] = matcher.last;
3673                 return true;
3674             } else {
3675                 return false;
3676             }
3677         }
3678     }
3679 
3680     /**
3681      * Node to anchor at the end of input. This is the absolute end, so this
3682      * should not match at the last newline before the end as $ will.
3683      */
3684     static final class End extends Node {
3685         boolean match(Matcher matcher, int i, CharSequence seq) {
3686             int endIndex = (matcher.anchoringBounds) ?
3687                 matcher.to : matcher.getTextLength();
3688             if (i == endIndex) {
3689                 matcher.hitEnd = true;
3690                 return next.match(matcher, i, seq);
3691             }
3692             return false;
3693         }
3694     }
3695 
3696     /**
3697      * Node to anchor at the beginning of a line. This is essentially the
3698      * object to match for the multiline ^.
3699      */
3700     static final class Caret extends Node {
3701         boolean match(Matcher matcher, int i, CharSequence seq) {
3702             int startIndex = matcher.from;
3703             int endIndex = matcher.to;
3704             if (!matcher.anchoringBounds) {
3705                 startIndex = 0;
3706                 endIndex = matcher.getTextLength();
3707             }
3708             // Perl does not match ^ at end of input even after newline
3709             if (i == endIndex) {
3710                 matcher.hitEnd = true;
3711                 return false;
3712             }
3713             if (i > startIndex) {
3714                 char ch = seq.charAt(i-1);
3715                 if (ch != '\n' && ch != '\r'
3716                     && (ch|1) != '\u2029'
3717                     && ch != '\u0085' ) {
3718                     return false;
3719                 }
3720                 // Should treat /r/n as one newline
3721                 if (ch == '\r' && seq.charAt(i) == '\n')
3722                     return false;
3723             }
3724             return next.match(matcher, i, seq);
3725         }
3726     }
3727 
3728     /**
3729      * Node to anchor at the beginning of a line when in unixdot mode.
3730      */
3731     static final class UnixCaret extends Node {
3732         boolean match(Matcher matcher, int i, CharSequence seq) {
3733             int startIndex = matcher.from;
3734             int endIndex = matcher.to;
3735             if (!matcher.anchoringBounds) {
3736                 startIndex = 0;
3737                 endIndex = matcher.getTextLength();
3738             }
3739             // Perl does not match ^ at end of input even after newline
3740             if (i == endIndex) {
3741                 matcher.hitEnd = true;
3742                 return false;
3743             }
3744             if (i > startIndex) {
3745                 char ch = seq.charAt(i-1);
3746                 if (ch != '\n') {
3747                     return false;
3748                 }
3749             }
3750             return next.match(matcher, i, seq);
3751         }
3752     }
3753 
3754     /**
3755      * Node to match the location where the last match ended.
3756      * This is used for the \G construct.
3757      */
3758     static final class LastMatch extends Node {
3759         boolean match(Matcher matcher, int i, CharSequence seq) {
3760             if (i != matcher.oldLast)
3761                 return false;
3762             return next.match(matcher, i, seq);
3763         }
3764     }
3765 
3766     /**
3767      * Node to anchor at the end of a line or the end of input based on the
3768      * multiline mode.
3769      *
3770      * When not in multiline mode, the $ can only match at the very end
3771      * of the input, unless the input ends in a line terminator in which
3772      * it matches right before the last line terminator.
3773      *
3774      * Note that \r\n is considered an atomic line terminator.
3775      *
3776      * Like ^ the $ operator matches at a position, it does not match the
3777      * line terminators themselves.
3778      */
3779     static final class Dollar extends Node {
3780         boolean multiline;
3781         Dollar(boolean mul) {
3782             multiline = mul;
3783         }
3784         boolean match(Matcher matcher, int i, CharSequence seq) {
3785             int endIndex = (matcher.anchoringBounds) ?
3786                 matcher.to : matcher.getTextLength();
3787             if (!multiline) {
3788                 if (i < endIndex - 2)
3789                     return false;
3790                 if (i == endIndex - 2) {
3791                     char ch = seq.charAt(i);
3792                     if (ch != '\r')
3793                         return false;
3794                     ch = seq.charAt(i + 1);
3795                     if (ch != '\n')
3796                         return false;
3797                 }
3798             }
3799             // Matches before any line terminator; also matches at the
3800             // end of input
3801             // Before line terminator:
3802             // If multiline, we match here no matter what
3803             // If not multiline, fall through so that the end
3804             // is marked as hit; this must be a /r/n or a /n
3805             // at the very end so the end was hit; more input
3806             // could make this not match here
3807             if (i < endIndex) {
3808                 char ch = seq.charAt(i);
3809                  if (ch == '\n') {
3810                      // No match between \r\n
3811                      if (i > 0 && seq.charAt(i-1) == '\r')
3812                          return false;
3813                      if (multiline)
3814                          return next.match(matcher, i, seq);
3815                  } else if (ch == '\r' || ch == '\u0085' ||
3816                             (ch|1) == '\u2029') {
3817                      if (multiline)
3818                          return next.match(matcher, i, seq);
3819                  } else { // No line terminator, no match
3820                      return false;
3821                  }
3822             }
3823             // Matched at current end so hit end
3824             matcher.hitEnd = true;
3825             // If a $ matches because of end of input, then more input
3826             // could cause it to fail!
3827             matcher.requireEnd = true;
3828             return next.match(matcher, i, seq);
3829         }
3830         boolean study(TreeInfo info) {
3831             next.study(info);
3832             return info.deterministic;
3833         }
3834     }
3835 
3836     /**
3837      * Node to anchor at the end of a line or the end of input based on the
3838      * multiline mode when in unix lines mode.
3839      */
3840     static final class UnixDollar extends Node {
3841         boolean multiline;
3842         UnixDollar(boolean mul) {
3843             multiline = mul;
3844         }
3845         boolean match(Matcher matcher, int i, CharSequence seq) {
3846             int endIndex = (matcher.anchoringBounds) ?
3847                 matcher.to : matcher.getTextLength();
3848             if (i < endIndex) {
3849                 char ch = seq.charAt(i);
3850                 if (ch == '\n') {
3851                     // If not multiline, then only possible to
3852                     // match at very end or one before end
3853                     if (multiline == false && i != endIndex - 1)
3854                         return false;
3855                     // If multiline return next.match without setting
3856                     // matcher.hitEnd
3857                     if (multiline)
3858                         return next.match(matcher, i, seq);
3859                 } else {
3860                     return false;
3861                 }
3862             }
3863             // Matching because at the end or 1 before the end;
3864             // more input could change this so set hitEnd
3865             matcher.hitEnd = true;
3866             // If a $ matches because of end of input, then more input
3867             // could cause it to fail!
3868             matcher.requireEnd = true;
3869             return next.match(matcher, i, seq);
3870         }
3871         boolean study(TreeInfo info) {
3872             next.study(info);
3873             return info.deterministic;
3874         }
3875     }
3876 
3877     /**
3878      * Node class that matches a Unicode line ending '\R'
3879      */
3880     static final class LineEnding extends Node {
3881         boolean match(Matcher matcher, int i, CharSequence seq) {
3882             // (u+000Du+000A|[u+000Au+000Bu+000Cu+000Du+0085u+2028u+2029])
3883             if (i < matcher.to) {
3884                 int ch = seq.charAt(i);
3885                 if (ch == 0x0A || ch == 0x0B || ch == 0x0C ||
3886                     ch == 0x85 || ch == 0x2028 || ch == 0x2029)
3887                     return next.match(matcher, i + 1, seq);
3888                 if (ch == 0x0D) {
3889                     i++;
3890                     if (i < matcher.to && seq.charAt(i) == 0x0A &&
3891                         next.match(matcher, i + 1, seq)) {
3892                         return true;
3893                     }
3894                     return next.match(matcher, i, seq);
3895                 }
3896             } else {
3897                 matcher.hitEnd = true;
3898             }
3899             return false;
3900         }
3901         boolean study(TreeInfo info) {
3902             info.minLength++;
3903             info.maxLength += 2;
3904             return next.study(info);
3905         }
3906     }
3907 
3908     /**
3909      * Abstract node class to match one character satisfying some
3910      * boolean property.
3911      */
3912     static class CharProperty extends Node {
3913         CharPredicate predicate;
3914 
3915         CharProperty (CharPredicate predicate) {
3916             this.predicate = predicate;
3917         }
3918         boolean match(Matcher matcher, int i, CharSequence seq) {
3919             if (i < matcher.to) {
3920                 int ch = Character.codePointAt(seq, i);
3921                 return predicate.is(ch) &&
3922                        next.match(matcher, i + Character.charCount(ch), seq);
3923             } else {
3924                 matcher.hitEnd = true;
3925                 return false;
3926             }
3927         }
3928         boolean study(TreeInfo info) {
3929             info.minLength++;
3930             info.maxLength++;
3931             return next.study(info);
3932         }
3933     }
3934 
3935     /**
3936      * Optimized version of CharProperty that works only for
3937      * properties never satisfied by Supplementary characters.
3938      */
3939     private static class BmpCharProperty extends CharProperty {
3940         BmpCharProperty (BmpCharPredicate predicate) {
3941             super(predicate);
3942         }
3943         boolean match(Matcher matcher, int i, CharSequence seq) {
3944             if (i < matcher.to) {
3945                 return predicate.is(seq.charAt(i)) &&
3946                        next.match(matcher, i + 1, seq);
3947             } else {
3948                 matcher.hitEnd = true;
3949                 return false;
3950             }
3951         }
3952     }
3953 
3954     private static class NFCCharProperty extends Node {
3955         CharPredicate predicate;
3956         NFCCharProperty (CharPredicate predicate) {
3957             this.predicate = predicate;
3958         }
3959 
3960         boolean match(Matcher matcher, int i, CharSequence seq) {
3961             if (i < matcher.to) {
3962                 int ch0 = Character.codePointAt(seq, i);
3963                 int n = Character.charCount(ch0);
3964                 int j = i + n;
3965                 while (j < matcher.to) {
3966                     int ch1 = Character.codePointAt(seq, j);
3967                     if (Grapheme.isBoundary(ch0, ch1))
3968                         break;
3969                     ch0 = ch1;
3970                     j += Character.charCount(ch1);
3971                 }
3972                 if (i + n == j) {    // single, assume nfc cp
3973                     if (predicate.is(ch0))
3974                         return next.match(matcher, j, seq);
3975                 } else {
3976                     while (i + n < j) {
3977                         String nfc = Normalizer.normalize(
3978                             seq.toString().substring(i, j), Normalizer.Form.NFC);
3979                         if (nfc.codePointCount(0, nfc.length()) == 1) {
3980                             if (predicate.is(nfc.codePointAt(0)) &&
3981                                 next.match(matcher, j, seq)) {
3982                                 return true;
3983                             }
3984                         }
3985 
3986                         ch0 = Character.codePointBefore(seq, j);
3987                         j -= Character.charCount(ch0);
3988                     }
3989                 }
3990                 if (j < matcher.to)
3991                     return false;
3992             }
3993             matcher.hitEnd = true;
3994             return false;
3995         }
3996 
3997         boolean study(TreeInfo info) {
3998             info.minLength++;
3999             info.deterministic = false;
4000             return next.study(info);
4001         }
4002     }
4003 
4004     /**
4005      * Node class that matches an unicode extended grapheme cluster
4006      */
4007     static class XGrapheme extends Node {
4008         boolean match(Matcher matcher, int i, CharSequence seq) {
4009             if (i < matcher.to) {
4010                 int ch0 = Character.codePointAt(seq, i);
4011                     i += Character.charCount(ch0);
4012                 while (i < matcher.to) {
4013                     int ch1 = Character.codePointAt(seq, i);
4014                     if (Grapheme.isBoundary(ch0, ch1))
4015                         break;
4016                     ch0 = ch1;
4017                     i += Character.charCount(ch1);
4018                 }
4019                 return next.match(matcher, i, seq);
4020             }
4021             matcher.hitEnd = true;
4022             return false;
4023         }
4024 
4025         boolean study(TreeInfo info) {
4026             info.minLength++;
4027             info.deterministic = false;
4028             return next.study(info);
4029         }
4030     }
4031 
4032     /**
4033      * Node class that handles grapheme boundaries
4034      */
4035     static class GraphemeBound extends Node {
4036         boolean match(Matcher matcher, int i, CharSequence seq) {
4037             int startIndex = matcher.from;
4038             int endIndex = matcher.to;
4039             if (matcher.transparentBounds) {
4040                 startIndex = 0;
4041                 endIndex = matcher.getTextLength();
4042             }
4043             if (i == startIndex) {
4044                 return next.match(matcher, i, seq);
4045             }
4046             if (i < endIndex) {
4047                 if (Character.isSurrogatePair(seq.charAt(i-1), seq.charAt(i)) ||
4048                     !Grapheme.isBoundary(Character.codePointBefore(seq, i),
4049                                          Character.codePointAt(seq, i))) {
4050                     return false;
4051                 }
4052             } else {
4053                 matcher.hitEnd = true;
4054                 matcher.requireEnd = true;
4055             }
4056             return next.match(matcher, i, seq);
4057         }
4058     }
4059 
4060     /**
4061      * Base class for all Slice nodes
4062      */
4063     static class SliceNode extends Node {
4064         int[] buffer;
4065         SliceNode(int[] buf) {
4066             buffer = buf;
4067         }
4068         boolean study(TreeInfo info) {
4069             info.minLength += buffer.length;
4070             info.maxLength += buffer.length;
4071             return next.study(info);
4072         }
4073     }
4074 
4075     /**
4076      * Node class for a case sensitive/BMP-only sequence of literal
4077      * characters.
4078      */
4079     static class Slice extends SliceNode {
4080         Slice(int[] buf) {
4081             super(buf);
4082         }
4083         boolean match(Matcher matcher, int i, CharSequence seq) {
4084             int[] buf = buffer;
4085             int len = buf.length;
4086             for (int j=0; j<len; j++) {
4087                 if ((i+j) >= matcher.to) {
4088                     matcher.hitEnd = true;
4089                     return false;
4090                 }
4091                 if (buf[j] != seq.charAt(i+j))
4092                     return false;
4093             }
4094             return next.match(matcher, i+len, seq);
4095         }
4096     }
4097 
4098     /**
4099      * Node class for a case_insensitive/BMP-only sequence of literal
4100      * characters.
4101      */
4102     static class SliceI extends SliceNode {
4103         SliceI(int[] buf) {
4104             super(buf);
4105         }
4106         boolean match(Matcher matcher, int i, CharSequence seq) {
4107             int[] buf = buffer;
4108             int len = buf.length;
4109             for (int j=0; j<len; j++) {
4110                 if ((i+j) >= matcher.to) {
4111                     matcher.hitEnd = true;
4112                     return false;
4113                 }
4114                 int c = seq.charAt(i+j);
4115                 if (buf[j] != c &&
4116                     buf[j] != ASCII.toLower(c))
4117                     return false;
4118             }
4119             return next.match(matcher, i+len, seq);
4120         }
4121     }
4122 
4123     /**
4124      * Node class for a unicode_case_insensitive/BMP-only sequence of
4125      * literal characters. Uses unicode case folding.
4126      */
4127     static final class SliceU extends SliceNode {
4128         SliceU(int[] buf) {
4129             super(buf);
4130         }
4131         boolean match(Matcher matcher, int i, CharSequence seq) {
4132             int[] buf = buffer;
4133             int len = buf.length;
4134             for (int j=0; j<len; j++) {
4135                 if ((i+j) >= matcher.to) {
4136                     matcher.hitEnd = true;
4137                     return false;
4138                 }
4139                 int c = seq.charAt(i+j);
4140                 if (buf[j] != c &&
4141                     buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
4142                     return false;
4143             }
4144             return next.match(matcher, i+len, seq);
4145         }
4146     }
4147 
4148     /**
4149      * Node class for a case sensitive sequence of literal characters
4150      * including supplementary characters.
4151      */
4152     static final class SliceS extends Slice {
4153         SliceS(int[] buf) {
4154             super(buf);
4155         }
4156         boolean match(Matcher matcher, int i, CharSequence seq) {
4157             int[] buf = buffer;
4158             int x = i;
4159             for (int j = 0; j < buf.length; j++) {
4160                 if (x >= matcher.to) {
4161                     matcher.hitEnd = true;
4162                     return false;
4163                 }
4164                 int c = Character.codePointAt(seq, x);
4165                 if (buf[j] != c)
4166                     return false;
4167                 x += Character.charCount(c);
4168                 if (x > matcher.to) {
4169                     matcher.hitEnd = true;
4170                     return false;
4171                 }
4172             }
4173             return next.match(matcher, x, seq);
4174         }
4175     }
4176 
4177     /**
4178      * Node class for a case insensitive sequence of literal characters
4179      * including supplementary characters.
4180      */
4181     static class SliceIS extends SliceNode {
4182         SliceIS(int[] buf) {
4183             super(buf);
4184         }
4185         int toLower(int c) {
4186             return ASCII.toLower(c);
4187         }
4188         boolean match(Matcher matcher, int i, CharSequence seq) {
4189             int[] buf = buffer;
4190             int x = i;
4191             for (int j = 0; j < buf.length; j++) {
4192                 if (x >= matcher.to) {
4193                     matcher.hitEnd = true;
4194                     return false;
4195                 }
4196                 int c = Character.codePointAt(seq, x);
4197                 if (buf[j] != c && buf[j] != toLower(c))
4198                     return false;
4199                 x += Character.charCount(c);
4200                 if (x > matcher.to) {
4201                     matcher.hitEnd = true;
4202                     return false;
4203                 }
4204             }
4205             return next.match(matcher, x, seq);
4206         }
4207     }
4208 
4209     /**
4210      * Node class for a case insensitive sequence of literal characters.
4211      * Uses unicode case folding.
4212      */
4213     static final class SliceUS extends SliceIS {
4214         SliceUS(int[] buf) {
4215             super(buf);
4216         }
4217         int toLower(int c) {
4218             return Character.toLowerCase(Character.toUpperCase(c));
4219         }
4220     }
4221 
4222     /**
4223      * The 0 or 1 quantifier. This one class implements all three types.
4224      */
4225     static final class Ques extends Node {
4226         Node atom;
4227         Qtype type;
4228         Ques(Node node, Qtype type) {
4229             this.atom = node;
4230             this.type = type;
4231         }
4232         boolean match(Matcher matcher, int i, CharSequence seq) {
4233             switch (type) {
4234             case GREEDY:
4235                 return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
4236                     || next.match(matcher, i, seq);
4237             case LAZY:
4238                 return next.match(matcher, i, seq)
4239                     || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
4240             case POSSESSIVE:
4241                 if (atom.match(matcher, i, seq)) i = matcher.last;
4242                 return next.match(matcher, i, seq);
4243             default:
4244                 return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
4245             }
4246         }
4247         boolean study(TreeInfo info) {
4248             if (type != Qtype.INDEPENDENT) {
4249                 int minL = info.minLength;
4250                 atom.study(info);
4251                 info.minLength = minL;
4252                 info.deterministic = false;
4253                 return next.study(info);
4254             } else {
4255                 atom.study(info);
4256                 return next.study(info);
4257             }
4258         }
4259     }
4260 
4261     /**
4262      * Handles the greedy style repetition with the minimum either be
4263      * 0 or 1 and the maximum be MAX_REPS, for * and + quantifier.
4264      */
4265     static class CharPropertyGreedy extends Node {
4266         final CharPredicate predicate;
4267         final int cmin;
4268 
4269         CharPropertyGreedy(CharProperty cp, int cmin) {
4270             this.predicate = cp.predicate;
4271             this.cmin = cmin;
4272         }
4273         boolean match(Matcher matcher, int i,  CharSequence seq) {
4274             int n = 0;
4275             int to = matcher.to;
4276             // greedy, all the way down
4277             while (i < to) {
4278                 int ch = Character.codePointAt(seq, i);
4279                 if (!predicate.is(ch))
4280                    break;
4281                 i += Character.charCount(ch);
4282                 n++;
4283             }
4284             if (i >= to) {
4285                 matcher.hitEnd = true;
4286             }
4287             while (n >= cmin) {
4288                 if (next.match(matcher, i, seq))
4289                     return true;
4290                 if (n == cmin)
4291                     return false;
4292                  // backing off if match fails
4293                 int ch = Character.codePointBefore(seq, i);
4294                 i -= Character.charCount(ch);
4295                 n--;
4296             }
4297             return false;
4298         }
4299 
4300         boolean study(TreeInfo info) {
4301             info.minLength += cmin;
4302             if (info.maxValid) {
4303                 info.maxLength += MAX_REPS;
4304             }
4305             info.deterministic = false;
4306             return next.study(info);
4307         }
4308     }
4309 
4310     static final class BmpCharPropertyGreedy extends CharPropertyGreedy {
4311 
4312         BmpCharPropertyGreedy(BmpCharProperty bcp, int cmin) {
4313             super(bcp, cmin);
4314         }
4315 
4316         boolean match(Matcher matcher, int i,  CharSequence seq) {
4317             int n = 0;
4318             int to = matcher.to;
4319             while (i < to && predicate.is(seq.charAt(i))) {
4320                 i++; n++;
4321             }
4322             if (i >= to) {
4323                 matcher.hitEnd = true;
4324             }
4325             while (n >= cmin) {
4326                 if (next.match(matcher, i, seq))
4327                     return true;
4328                 i--; n--;  // backing off if match fails
4329             }
4330             return false;
4331         }
4332     }
4333 
4334     /**
4335      * Handles the curly-brace style repetition with a specified minimum and
4336      * maximum occurrences. The * quantifier is handled as a special case.
4337      * This class handles the three types.
4338      */
4339     static final class Curly extends Node {
4340         Node atom;
4341         Qtype type;
4342         int cmin;
4343         int cmax;
4344 
4345         Curly(Node node, int cmin, int cmax, Qtype type) {
4346             this.atom = node;
4347             this.type = type;
4348             this.cmin = cmin;
4349             this.cmax = cmax;
4350         }
4351         boolean match(Matcher matcher, int i, CharSequence seq) {
4352             int j;
4353             for (j = 0; j < cmin; j++) {
4354                 if (atom.match(matcher, i, seq)) {
4355                     i = matcher.last;
4356                     continue;
4357                 }
4358                 return false;
4359             }
4360             if (type == Qtype.GREEDY)
4361                 return match0(matcher, i, j, seq);
4362             else if (type == Qtype.LAZY)
4363                 return match1(matcher, i, j, seq);
4364             else
4365                 return match2(matcher, i, j, seq);
4366         }
4367         // Greedy match.
4368         // i is the index to start matching at
4369         // j is the number of atoms that have matched
4370         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4371             if (j >= cmax) {
4372                 // We have matched the maximum... continue with the rest of
4373                 // the regular expression
4374                 return next.match(matcher, i, seq);
4375             }
4376             int backLimit = j;
4377             while (atom.match(matcher, i, seq)) {
4378                 // k is the length of this match
4379                 int k = matcher.last - i;
4380                 if (k == 0) // Zero length match
4381                     break;
4382                 // Move up index and number matched
4383                 i = matcher.last;
4384                 j++;
4385                 // We are greedy so match as many as we can
4386                 while (j < cmax) {
4387                     if (!atom.match(matcher, i, seq))
4388                         break;
4389                     if (i + k != matcher.last) {
4390                         if (match0(matcher, matcher.last, j+1, seq))
4391                             return true;
4392                         break;
4393                     }
4394                     i += k;
4395                     j++;
4396                 }
4397                 // Handle backing off if match fails
4398                 while (j >= backLimit) {
4399                    if (next.match(matcher, i, seq))
4400                         return true;
4401                     i -= k;
4402                     j--;
4403                 }
4404                 return false;
4405             }
4406             return next.match(matcher, i, seq);
4407         }
4408         // Reluctant match. At this point, the minimum has been satisfied.
4409         // i is the index to start matching at
4410         // j is the number of atoms that have matched
4411         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4412             for (;;) {
4413                 // Try finishing match without consuming any more
4414                 if (next.match(matcher, i, seq))
4415                     return true;
4416                 // At the maximum, no match found
4417                 if (j >= cmax)
4418                     return false;
4419                 // Okay, must try one more atom
4420                 if (!atom.match(matcher, i, seq))
4421                     return false;
4422                 // If we haven't moved forward then must break out
4423                 if (i == matcher.last)
4424                     return false;
4425                 // Move up index and number matched
4426                 i = matcher.last;
4427                 j++;
4428             }
4429         }
4430         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4431             for (; j < cmax; j++) {
4432                 if (!atom.match(matcher, i, seq))
4433                     break;
4434                 if (i == matcher.last)
4435                     break;
4436                 i = matcher.last;
4437             }
4438             return next.match(matcher, i, seq);
4439         }
4440         boolean study(TreeInfo info) {
4441             // Save original info
4442             int minL = info.minLength;
4443             int maxL = info.maxLength;
4444             boolean maxV = info.maxValid;
4445             boolean detm = info.deterministic;
4446             info.reset();
4447 
4448             atom.study(info);
4449 
4450             int temp = info.minLength * cmin + minL;
4451             if (temp < minL) {
4452                 temp = 0xFFFFFFF; // arbitrary large number
4453             }
4454             info.minLength = temp;
4455 
4456             if (maxV & info.maxValid) {
4457                 temp = info.maxLength * cmax + maxL;
4458                 info.maxLength = temp;
4459                 if (temp < maxL) {
4460                     info.maxValid = false;
4461                 }
4462             } else {
4463                 info.maxValid = false;
4464             }
4465 
4466             if (info.deterministic && cmin == cmax)
4467                 info.deterministic = detm;
4468             else
4469                 info.deterministic = false;
4470             return next.study(info);
4471         }
4472     }
4473 
4474     /**
4475      * Handles the curly-brace style repetition with a specified minimum and
4476      * maximum occurrences in deterministic cases. This is an iterative
4477      * optimization over the Prolog and Loop system which would handle this
4478      * in a recursive way. The * quantifier is handled as a special case.
4479      * If capture is true then this class saves group settings and ensures
4480      * that groups are unset when backing off of a group match.
4481      */
4482     static final class GroupCurly extends Node {
4483         Node atom;
4484         Qtype type;
4485         int cmin;
4486         int cmax;
4487         int localIndex;
4488         int groupIndex;
4489         boolean capture;
4490 
4491         GroupCurly(Node node, int cmin, int cmax, Qtype type, int local,
4492                    int group, boolean capture) {
4493             this.atom = node;
4494             this.type = type;
4495             this.cmin = cmin;
4496             this.cmax = cmax;
4497             this.localIndex = local;
4498             this.groupIndex = group;
4499             this.capture = capture;
4500         }
4501         boolean match(Matcher matcher, int i, CharSequence seq) {
4502             int[] groups = matcher.groups;
4503             int[] locals = matcher.locals;
4504             int save0 = locals[localIndex];
4505             int save1 = 0;
4506             int save2 = 0;
4507 
4508             if (capture) {
4509                 save1 = groups[groupIndex];
4510                 save2 = groups[groupIndex+1];
4511             }
4512 
4513             // Notify GroupTail there is no need to setup group info
4514             // because it will be set here
4515             locals[localIndex] = -1;
4516 
4517             boolean ret = true;
4518             for (int j = 0; j < cmin; j++) {
4519                 if (atom.match(matcher, i, seq)) {
4520                     if (capture) {
4521                         groups[groupIndex] = i;
4522                         groups[groupIndex+1] = matcher.last;
4523                     }
4524                     i = matcher.last;
4525                 } else {
4526                     ret = false;
4527                     break;
4528                 }
4529             }
4530             if (ret) {
4531                 if (type == Qtype.GREEDY) {
4532                     ret = match0(matcher, i, cmin, seq);
4533                 } else if (type == Qtype.LAZY) {
4534                     ret = match1(matcher, i, cmin, seq);
4535                 } else {
4536                     ret = match2(matcher, i, cmin, seq);
4537                 }
4538             }
4539             if (!ret) {
4540                 locals[localIndex] = save0;
4541                 if (capture) {
4542                     groups[groupIndex] = save1;
4543                     groups[groupIndex+1] = save2;
4544                 }
4545             }
4546             return ret;
4547         }
4548         // Aggressive group match
4549         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4550             // don't back off passing the starting "j"
4551             int min = j;
4552             int[] groups = matcher.groups;
4553             int save0 = 0;
4554             int save1 = 0;
4555             if (capture) {
4556                 save0 = groups[groupIndex];
4557                 save1 = groups[groupIndex+1];
4558             }
4559             for (;;) {
4560                 if (j >= cmax)
4561                     break;
4562                 if (!atom.match(matcher, i, seq))
4563                     break;
4564                 int k = matcher.last - i;
4565                 if (k <= 0) {
4566                     if (capture) {
4567                         groups[groupIndex] = i;
4568                         groups[groupIndex+1] = i + k;
4569                     }
4570                     i = i + k;
4571                     break;
4572                 }
4573                 for (;;) {
4574                     if (capture) {
4575                         groups[groupIndex] = i;
4576                         groups[groupIndex+1] = i + k;
4577                     }
4578                     i = i + k;
4579                     if (++j >= cmax)
4580                         break;
4581                     if (!atom.match(matcher, i, seq))
4582                         break;
4583                     if (i + k != matcher.last) {
4584                         if (match0(matcher, i, j, seq))
4585                             return true;
4586                         break;
4587                     }
4588                 }
4589                 while (j > min) {
4590                     if (next.match(matcher, i, seq)) {
4591                         if (capture) {
4592                             groups[groupIndex+1] = i;
4593                             groups[groupIndex] = i - k;
4594                         }
4595                         return true;
4596                     }
4597                     // backing off
4598                     i = i - k;
4599                     if (capture) {
4600                         groups[groupIndex+1] = i;
4601                         groups[groupIndex] = i - k;
4602                     }
4603                     j--;
4604 
4605                 }
4606                 break;
4607             }
4608             if (capture) {
4609                 groups[groupIndex] = save0;
4610                 groups[groupIndex+1] = save1;
4611             }
4612             return next.match(matcher, i, seq);
4613         }
4614         // Reluctant matching
4615         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4616             for (;;) {
4617                 if (next.match(matcher, i, seq))
4618                     return true;
4619                 if (j >= cmax)
4620                     return false;
4621                 if (!atom.match(matcher, i, seq))
4622                     return false;
4623                 if (i == matcher.last)
4624                     return false;
4625                 if (capture) {
4626                     matcher.groups[groupIndex] = i;
4627                     matcher.groups[groupIndex+1] = matcher.last;
4628                 }
4629                 i = matcher.last;
4630                 j++;
4631             }
4632         }
4633         // Possessive matching
4634         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4635             for (; j < cmax; j++) {
4636                 if (!atom.match(matcher, i, seq)) {
4637                     break;
4638                 }
4639                 if (capture) {
4640                     matcher.groups[groupIndex] = i;
4641                     matcher.groups[groupIndex+1] = matcher.last;
4642                 }
4643                 if (i == matcher.last) {
4644                     break;
4645                 }
4646                 i = matcher.last;
4647             }
4648             return next.match(matcher, i, seq);
4649         }
4650         boolean study(TreeInfo info) {
4651             // Save original info
4652             int minL = info.minLength;
4653             int maxL = info.maxLength;
4654             boolean maxV = info.maxValid;
4655             boolean detm = info.deterministic;
4656             info.reset();
4657 
4658             atom.study(info);
4659 
4660             int temp = info.minLength * cmin + minL;
4661             if (temp < minL) {
4662                 temp = 0xFFFFFFF; // Arbitrary large number
4663             }
4664             info.minLength = temp;
4665 
4666             if (maxV & info.maxValid) {
4667                 temp = info.maxLength * cmax + maxL;
4668                 info.maxLength = temp;
4669                 if (temp < maxL) {
4670                     info.maxValid = false;
4671                 }
4672             } else {
4673                 info.maxValid = false;
4674             }
4675 
4676             if (info.deterministic && cmin == cmax) {
4677                 info.deterministic = detm;
4678             } else {
4679                 info.deterministic = false;
4680             }
4681             return next.study(info);
4682         }
4683     }
4684 
4685     /**
4686      * A Guard node at the end of each atom node in a Branch. It
4687      * serves the purpose of chaining the "match" operation to
4688      * "next" but not the "study", so we can collect the TreeInfo
4689      * of each atom node without including the TreeInfo of the
4690      * "next".
4691      */
4692     static final class BranchConn extends Node {
4693         BranchConn() {};
4694         boolean match(Matcher matcher, int i, CharSequence seq) {
4695             return next.match(matcher, i, seq);
4696         }
4697         boolean study(TreeInfo info) {
4698             return info.deterministic;
4699         }
4700     }
4701 
4702     /**
4703      * Handles the branching of alternations. Note this is also used for
4704      * the ? quantifier to branch between the case where it matches once
4705      * and where it does not occur.
4706      */
4707     static final class Branch extends Node {
4708         Node[] atoms = new Node[2];
4709         int size = 2;
4710         Node conn;
4711         Branch(Node first, Node second, Node branchConn) {
4712             conn = branchConn;
4713             atoms[0] = first;
4714             atoms[1] = second;
4715         }
4716 
4717         void add(Node node) {
4718             if (size >= atoms.length) {
4719                 Node[] tmp = new Node[atoms.length*2];
4720                 System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4721                 atoms = tmp;
4722             }
4723             atoms[size++] = node;
4724         }
4725 
4726         boolean match(Matcher matcher, int i, CharSequence seq) {
4727             for (int n = 0; n < size; n++) {
4728                 if (atoms[n] == null) {
4729                     if (conn.next.match(matcher, i, seq))
4730                         return true;
4731                 } else if (atoms[n].match(matcher, i, seq)) {
4732                     return true;
4733                 }
4734             }
4735             return false;
4736         }
4737 
4738         boolean study(TreeInfo info) {
4739             int minL = info.minLength;
4740             int maxL = info.maxLength;
4741             boolean maxV = info.maxValid;
4742 
4743             int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4744             int maxL2 = -1;
4745             for (int n = 0; n < size; n++) {
4746                 info.reset();
4747                 if (atoms[n] != null)
4748                     atoms[n].study(info);
4749                 minL2 = Math.min(minL2, info.minLength);
4750                 maxL2 = Math.max(maxL2, info.maxLength);
4751                 maxV = (maxV & info.maxValid);
4752             }
4753 
4754             minL += minL2;
4755             maxL += maxL2;
4756 
4757             info.reset();
4758             conn.next.study(info);
4759 
4760             info.minLength += minL;
4761             info.maxLength += maxL;
4762             info.maxValid &= maxV;
4763             info.deterministic = false;
4764             return false;
4765         }
4766     }
4767 
4768     /**
4769      * The GroupHead saves the location where the group begins in the locals
4770      * and restores them when the match is done.
4771      *
4772      * The matchRef is used when a reference to this group is accessed later
4773      * in the expression. The locals will have a negative value in them to
4774      * indicate that we do not want to unset the group if the reference
4775      * doesn't match.
4776      */
4777     static final class GroupHead extends Node {
4778         int localIndex;
4779         GroupTail tail;    // for debug/print only, match does not need to know
4780         GroupHead(int localCount) {
4781             localIndex = localCount;
4782         }
4783         boolean match(Matcher matcher, int i, CharSequence seq) {
4784             int save = matcher.locals[localIndex];
4785             matcher.locals[localIndex] = i;
4786             boolean ret = next.match(matcher, i, seq);
4787             matcher.locals[localIndex] = save;
4788             return ret;
4789         }
4790         boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4791             int save = matcher.locals[localIndex];
4792             matcher.locals[localIndex] = ~i; // HACK
4793             boolean ret = next.match(matcher, i, seq);
4794             matcher.locals[localIndex] = save;
4795             return ret;
4796         }
4797     }
4798 
4799     /**
4800      * Recursive reference to a group in the regular expression. It calls
4801      * matchRef because if the reference fails to match we would not unset
4802      * the group.
4803      */
4804     static final class GroupRef extends Node {
4805         GroupHead head;
4806         GroupRef(GroupHead head) {
4807             this.head = head;
4808         }
4809         boolean match(Matcher matcher, int i, CharSequence seq) {
4810             return head.matchRef(matcher, i, seq)
4811                 && next.match(matcher, matcher.last, seq);
4812         }
4813         boolean study(TreeInfo info) {
4814             info.maxValid = false;
4815             info.deterministic = false;
4816             return next.study(info);
4817         }
4818     }
4819 
4820     /**
4821      * The GroupTail handles the setting of group beginning and ending
4822      * locations when groups are successfully matched. It must also be able to
4823      * unset groups that have to be backed off of.
4824      *
4825      * The GroupTail node is also used when a previous group is referenced,
4826      * and in that case no group information needs to be set.
4827      */
4828     static final class GroupTail extends Node {
4829         int localIndex;
4830         int groupIndex;
4831         GroupTail(int localCount, int groupCount) {
4832             localIndex = localCount;
4833             groupIndex = groupCount + groupCount;
4834         }
4835         boolean match(Matcher matcher, int i, CharSequence seq) {
4836             int tmp = matcher.locals[localIndex];
4837             if (tmp >= 0) { // This is the normal group case.
4838                 // Save the group so we can unset it if it
4839                 // backs off of a match.
4840                 int groupStart = matcher.groups[groupIndex];
4841                 int groupEnd = matcher.groups[groupIndex+1];
4842 
4843                 matcher.groups[groupIndex] = tmp;
4844                 matcher.groups[groupIndex+1] = i;
4845                 if (next.match(matcher, i, seq)) {
4846                     return true;
4847                 }
4848                 matcher.groups[groupIndex] = groupStart;
4849                 matcher.groups[groupIndex+1] = groupEnd;
4850                 return false;
4851             } else {
4852                 // This is a group reference case. We don't need to save any
4853                 // group info because it isn't really a group.
4854                 matcher.last = i;
4855                 return true;
4856             }
4857         }
4858     }
4859 
4860     /**
4861      * This sets up a loop to handle a recursive quantifier structure.
4862      */
4863     static final class Prolog extends Node {
4864         Loop loop;
4865         Prolog(Loop loop) {
4866             this.loop = loop;
4867         }
4868         boolean match(Matcher matcher, int i, CharSequence seq) {
4869             return loop.matchInit(matcher, i, seq);
4870         }
4871         boolean study(TreeInfo info) {
4872             return loop.study(info);
4873         }
4874     }
4875 
4876     /**
4877      * Handles the repetition count for a greedy Curly. The matchInit
4878      * is called from the Prolog to save the index of where the group
4879      * beginning is stored. A zero length group check occurs in the
4880      * normal match but is skipped in the matchInit.
4881      */
4882     static class Loop extends Node {
4883         Node body;
4884         int countIndex; // local count index in matcher locals
4885         int beginIndex; // group beginning index
4886         int cmin, cmax;
4887         int posIndex;
4888         Loop(int countIndex, int beginIndex) {
4889             this.countIndex = countIndex;
4890             this.beginIndex = beginIndex;
4891             this.posIndex = -1;
4892         }
4893         boolean match(Matcher matcher, int i, CharSequence seq) {
4894             // Avoid infinite loop in zero-length case.
4895             if (i > matcher.locals[beginIndex]) {
4896                 int count = matcher.locals[countIndex];
4897 
4898                 // This block is for before we reach the minimum
4899                 // iterations required for the loop to match
4900                 if (count < cmin) {
4901                     matcher.locals[countIndex] = count + 1;
4902                     boolean b = body.match(matcher, i, seq);
4903                     // If match failed we must backtrack, so
4904                     // the loop count should NOT be incremented
4905                     if (!b)
4906                         matcher.locals[countIndex] = count;
4907                     // Return success or failure since we are under
4908                     // minimum
4909                     return b;
4910                 }
4911                 // This block is for after we have the minimum
4912                 // iterations required for the loop to match
4913                 if (count < cmax) {
4914                     // Let's check if we have already tried and failed
4915                     // at this starting position "i" in the past.
4916                     // If yes, then just return false wihtout trying
4917                     // again, to stop the exponential backtracking.
4918                     if (posIndex != -1 &&
4919                         matcher.localsPos[posIndex].contains(i)) {
4920                         return next.match(matcher, i, seq);
4921                     }
4922                     matcher.locals[countIndex] = count + 1;
4923                     boolean b = body.match(matcher, i, seq);
4924                     // If match failed we must backtrack, so
4925                     // the loop count should NOT be incremented
4926                     if (b)
4927                         return true;
4928                     matcher.locals[countIndex] = count;
4929                     // save the failed position
4930                     if (posIndex != -1) {
4931                         matcher.localsPos[posIndex].add(i);
4932                     }
4933                 }
4934             }
4935             return next.match(matcher, i, seq);
4936         }
4937         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4938             int save = matcher.locals[countIndex];
4939             boolean ret = false;
4940             if (posIndex != -1 && matcher.localsPos[posIndex] == null) {
4941                 matcher.localsPos[posIndex] = new IntHashSet();
4942             }
4943             if (0 < cmin) {
4944                 matcher.locals[countIndex] = 1;
4945                 ret = body.match(matcher, i, seq);
4946             } else if (0 < cmax) {
4947                 matcher.locals[countIndex] = 1;
4948                 ret = body.match(matcher, i, seq);
4949                 if (ret == false)
4950                     ret = next.match(matcher, i, seq);
4951             } else {
4952                 ret = next.match(matcher, i, seq);
4953             }
4954             matcher.locals[countIndex] = save;
4955             return ret;
4956         }
4957         boolean study(TreeInfo info) {
4958             info.maxValid = false;
4959             info.deterministic = false;
4960             return false;
4961         }
4962     }
4963 
4964     /**
4965      * Handles the repetition count for a reluctant Curly. The matchInit
4966      * is called from the Prolog to save the index of where the group
4967      * beginning is stored. A zero length group check occurs in the
4968      * normal match but is skipped in the matchInit.
4969      */
4970     static final class LazyLoop extends Loop {
4971         LazyLoop(int countIndex, int beginIndex) {
4972             super(countIndex, beginIndex);
4973         }
4974         boolean match(Matcher matcher, int i, CharSequence seq) {
4975             // Check for zero length group
4976             if (i > matcher.locals[beginIndex]) {
4977                 int count = matcher.locals[countIndex];
4978                 if (count < cmin) {
4979                     matcher.locals[countIndex] = count + 1;
4980                     boolean result = body.match(matcher, i, seq);
4981                     // If match failed we must backtrack, so
4982                     // the loop count should NOT be incremented
4983                     if (!result)
4984                         matcher.locals[countIndex] = count;
4985                     return result;
4986                 }
4987                 if (next.match(matcher, i, seq))
4988                     return true;
4989                 if (count < cmax) {
4990                     matcher.locals[countIndex] = count + 1;
4991                     boolean result = body.match(matcher, i, seq);
4992                     // If match failed we must backtrack, so
4993                     // the loop count should NOT be incremented
4994                     if (!result)
4995                         matcher.locals[countIndex] = count;
4996                     return result;
4997                 }
4998                 return false;
4999             }
5000             return next.match(matcher, i, seq);
5001         }
5002         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
5003             int save = matcher.locals[countIndex];
5004             boolean ret = false;
5005             if (0 < cmin) {
5006                 matcher.locals[countIndex] = 1;
5007                 ret = body.match(matcher, i, seq);
5008             } else if (next.match(matcher, i, seq)) {
5009                 ret = true;
5010             } else if (0 < cmax) {
5011                 matcher.locals[countIndex] = 1;
5012                 ret = body.match(matcher, i, seq);
5013             }
5014             matcher.locals[countIndex] = save;
5015             return ret;
5016         }
5017         boolean study(TreeInfo info) {
5018             info.maxValid = false;
5019             info.deterministic = false;
5020             return false;
5021         }
5022     }
5023 
5024     /**
5025      * Refers to a group in the regular expression. Attempts to match
5026      * whatever the group referred to last matched.
5027      */
5028     static class BackRef extends Node {
5029         int groupIndex;
5030         BackRef(int groupCount) {
5031             super();
5032             groupIndex = groupCount + groupCount;
5033         }
5034         boolean match(Matcher matcher, int i, CharSequence seq) {
5035             int j = matcher.groups[groupIndex];
5036             int k = matcher.groups[groupIndex+1];
5037 
5038             int groupSize = k - j;
5039             // If the referenced group didn't match, neither can this
5040             if (j < 0)
5041                 return false;
5042 
5043             // If there isn't enough input left no match
5044             if (i + groupSize > matcher.to) {
5045                 matcher.hitEnd = true;
5046                 return false;
5047             }
5048             // Check each new char to make sure it matches what the group
5049             // referenced matched last time around
5050             for (int index=0; index<groupSize; index++)
5051                 if (seq.charAt(i+index) != seq.charAt(j+index))
5052                     return false;
5053 
5054             return next.match(matcher, i+groupSize, seq);
5055         }
5056         boolean study(TreeInfo info) {
5057             info.maxValid = false;
5058             return next.study(info);
5059         }
5060     }
5061 
5062     static class CIBackRef extends Node {
5063         int groupIndex;
5064         boolean doUnicodeCase;
5065         CIBackRef(int groupCount, boolean doUnicodeCase) {
5066             super();
5067             groupIndex = groupCount + groupCount;
5068             this.doUnicodeCase = doUnicodeCase;
5069         }
5070         boolean match(Matcher matcher, int i, CharSequence seq) {
5071             int j = matcher.groups[groupIndex];
5072             int k = matcher.groups[groupIndex+1];
5073 
5074             int groupSize = k - j;
5075 
5076             // If the referenced group didn't match, neither can this
5077             if (j < 0)
5078                 return false;
5079 
5080             // If there isn't enough input left no match
5081             if (i + groupSize > matcher.to) {
5082                 matcher.hitEnd = true;
5083                 return false;
5084             }
5085 
5086             // Check each new char to make sure it matches what the group
5087             // referenced matched last time around
5088             int x = i;
5089             for (int index=0; index<groupSize; index++) {
5090                 int c1 = Character.codePointAt(seq, x);
5091                 int c2 = Character.codePointAt(seq, j);
5092                 if (c1 != c2) {
5093                     if (doUnicodeCase) {
5094                         int cc1 = Character.toUpperCase(c1);
5095                         int cc2 = Character.toUpperCase(c2);
5096                         if (cc1 != cc2 &&
5097                             Character.toLowerCase(cc1) !=
5098                             Character.toLowerCase(cc2))
5099                             return false;
5100                     } else {
5101                         if (ASCII.toLower(c1) != ASCII.toLower(c2))
5102                             return false;
5103                     }
5104                 }
5105                 x += Character.charCount(c1);
5106                 j += Character.charCount(c2);
5107             }
5108 
5109             return next.match(matcher, i+groupSize, seq);
5110         }
5111         boolean study(TreeInfo info) {
5112             info.maxValid = false;
5113             return next.study(info);
5114         }
5115     }
5116 
5117     /**
5118      * Searches until the next instance of its atom. This is useful for
5119      * finding the atom efficiently without passing an instance of it
5120      * (greedy problem) and without a lot of wasted search time (reluctant
5121      * problem).
5122      */
5123     static final class First extends Node {
5124         Node atom;
5125         First(Node node) {
5126             this.atom = BnM.optimize(node);
5127         }
5128         boolean match(Matcher matcher, int i, CharSequence seq) {
5129             if (atom instanceof BnM) {
5130                 return atom.match(matcher, i, seq)
5131                     && next.match(matcher, matcher.last, seq);
5132             }
5133             for (;;) {
5134                 if (i > matcher.to) {
5135                     matcher.hitEnd = true;
5136                     return false;
5137                 }
5138                 if (atom.match(matcher, i, seq)) {
5139                     return next.match(matcher, matcher.last, seq);
5140                 }
5141                 i += countChars(seq, i, 1);
5142                 matcher.first++;
5143             }
5144         }
5145         boolean study(TreeInfo info) {
5146             atom.study(info);
5147             info.maxValid = false;
5148             info.deterministic = false;
5149             return next.study(info);
5150         }
5151     }
5152 
5153     static final class Conditional extends Node {
5154         Node cond, yes, not;
5155         Conditional(Node cond, Node yes, Node not) {
5156             this.cond = cond;
5157             this.yes = yes;
5158             this.not = not;
5159         }
5160         boolean match(Matcher matcher, int i, CharSequence seq) {
5161             if (cond.match(matcher, i, seq)) {
5162                 return yes.match(matcher, i, seq);
5163             } else {
5164                 return not.match(matcher, i, seq);
5165             }
5166         }
5167         boolean study(TreeInfo info) {
5168             int minL = info.minLength;
5169             int maxL = info.maxLength;
5170             boolean maxV = info.maxValid;
5171             info.reset();
5172             yes.study(info);
5173 
5174             int minL2 = info.minLength;
5175             int maxL2 = info.maxLength;
5176             boolean maxV2 = info.maxValid;
5177             info.reset();
5178             not.study(info);
5179 
5180             info.minLength = minL + Math.min(minL2, info.minLength);
5181             info.maxLength = maxL + Math.max(maxL2, info.maxLength);
5182             info.maxValid = (maxV & maxV2 & info.maxValid);
5183             info.deterministic = false;
5184             return next.study(info);
5185         }
5186     }
5187 
5188     /**
5189      * Zero width positive lookahead.
5190      */
5191     static final class Pos extends Node {
5192         Node cond;
5193         Pos(Node cond) {
5194             this.cond = cond;
5195         }
5196         boolean match(Matcher matcher, int i, CharSequence seq) {
5197             int savedTo = matcher.to;
5198             boolean conditionMatched = false;
5199 
5200             // Relax transparent region boundaries for lookahead
5201             if (matcher.transparentBounds)
5202                 matcher.to = matcher.getTextLength();
5203             try {
5204                 conditionMatched = cond.match(matcher, i, seq);
5205             } finally {
5206                 // Reinstate region boundaries
5207                 matcher.to = savedTo;
5208             }
5209             return conditionMatched && next.match(matcher, i, seq);
5210         }
5211     }
5212 
5213     /**
5214      * Zero width negative lookahead.
5215      */
5216     static final class Neg extends Node {
5217         Node cond;
5218         Neg(Node cond) {
5219             this.cond = cond;
5220         }
5221         boolean match(Matcher matcher, int i, CharSequence seq) {
5222             int savedTo = matcher.to;
5223             boolean conditionMatched = false;
5224 
5225             // Relax transparent region boundaries for lookahead
5226             if (matcher.transparentBounds)
5227                 matcher.to = matcher.getTextLength();
5228             try {
5229                 if (i < matcher.to) {
5230                     conditionMatched = !cond.match(matcher, i, seq);
5231                 } else {
5232                     // If a negative lookahead succeeds then more input
5233                     // could cause it to fail!
5234                     matcher.requireEnd = true;
5235                     conditionMatched = !cond.match(matcher, i, seq);
5236                 }
5237             } finally {
5238                 // Reinstate region boundaries
5239                 matcher.to = savedTo;
5240             }
5241             return conditionMatched && next.match(matcher, i, seq);
5242         }
5243     }
5244 
5245     /**
5246      * For use with lookbehinds; matches the position where the lookbehind
5247      * was encountered.
5248      */
5249     static Node lookbehindEnd = new Node() {
5250         boolean match(Matcher matcher, int i, CharSequence seq) {
5251             return i == matcher.lookbehindTo;
5252         }
5253     };
5254 
5255     /**
5256      * Zero width positive lookbehind.
5257      */
5258     static class Behind extends Node {
5259         Node cond;
5260         int rmax, rmin;
5261         Behind(Node cond, int rmax, int rmin) {
5262             this.cond = cond;
5263             this.rmax = rmax;
5264             this.rmin = rmin;
5265         }
5266 
5267         boolean match(Matcher matcher, int i, CharSequence seq) {
5268             int savedFrom = matcher.from;
5269             boolean conditionMatched = false;
5270             int startIndex = (!matcher.transparentBounds) ?
5271                              matcher.from : 0;
5272             int from = Math.max(i - rmax, startIndex);
5273             // Set end boundary
5274             int savedLBT = matcher.lookbehindTo;
5275             matcher.lookbehindTo = i;
5276             // Relax transparent region boundaries for lookbehind
5277             if (matcher.transparentBounds)
5278                 matcher.from = 0;
5279             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5280                 conditionMatched = cond.match(matcher, j, seq);
5281             }
5282             matcher.from = savedFrom;
5283             matcher.lookbehindTo = savedLBT;
5284             return conditionMatched && next.match(matcher, i, seq);
5285         }
5286     }
5287 
5288     /**
5289      * Zero width positive lookbehind, including supplementary
5290      * characters or unpaired surrogates.
5291      */
5292     static final class BehindS extends Behind {
5293         BehindS(Node cond, int rmax, int rmin) {
5294             super(cond, rmax, rmin);
5295         }
5296         boolean match(Matcher matcher, int i, CharSequence seq) {
5297             int rmaxChars = countChars(seq, i, -rmax);
5298             int rminChars = countChars(seq, i, -rmin);
5299             int savedFrom = matcher.from;
5300             int startIndex = (!matcher.transparentBounds) ?
5301                              matcher.from : 0;
5302             boolean conditionMatched = false;
5303             int from = Math.max(i - rmaxChars, startIndex);
5304             // Set end boundary
5305             int savedLBT = matcher.lookbehindTo;
5306             matcher.lookbehindTo = i;
5307             // Relax transparent region boundaries for lookbehind
5308             if (matcher.transparentBounds)
5309                 matcher.from = 0;
5310 
5311             for (int j = i - rminChars;
5312                  !conditionMatched && j >= from;
5313                  j -= j>from ? countChars(seq, j, -1) : 1) {
5314                 conditionMatched = cond.match(matcher, j, seq);
5315             }
5316             matcher.from = savedFrom;
5317             matcher.lookbehindTo = savedLBT;
5318             return conditionMatched && next.match(matcher, i, seq);
5319         }
5320     }
5321 
5322     /**
5323      * Zero width negative lookbehind.
5324      */
5325     static class NotBehind extends Node {
5326         Node cond;
5327         int rmax, rmin;
5328         NotBehind(Node cond, int rmax, int rmin) {
5329             this.cond = cond;
5330             this.rmax = rmax;
5331             this.rmin = rmin;
5332         }
5333 
5334         boolean match(Matcher matcher, int i, CharSequence seq) {
5335             int savedLBT = matcher.lookbehindTo;
5336             int savedFrom = matcher.from;
5337             boolean conditionMatched = false;
5338             int startIndex = (!matcher.transparentBounds) ?
5339                              matcher.from : 0;
5340             int from = Math.max(i - rmax, startIndex);
5341             matcher.lookbehindTo = i;
5342             // Relax transparent region boundaries for lookbehind
5343             if (matcher.transparentBounds)
5344                 matcher.from = 0;
5345             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5346                 conditionMatched = cond.match(matcher, j, seq);
5347             }
5348             // Reinstate region boundaries
5349             matcher.from = savedFrom;
5350             matcher.lookbehindTo = savedLBT;
5351             return !conditionMatched && next.match(matcher, i, seq);
5352         }
5353     }
5354 
5355     /**
5356      * Zero width negative lookbehind, including supplementary
5357      * characters or unpaired surrogates.
5358      */
5359     static final class NotBehindS extends NotBehind {
5360         NotBehindS(Node cond, int rmax, int rmin) {
5361             super(cond, rmax, rmin);
5362         }
5363         boolean match(Matcher matcher, int i, CharSequence seq) {
5364             int rmaxChars = countChars(seq, i, -rmax);
5365             int rminChars = countChars(seq, i, -rmin);
5366             int savedFrom = matcher.from;
5367             int savedLBT = matcher.lookbehindTo;
5368             boolean conditionMatched = false;
5369             int startIndex = (!matcher.transparentBounds) ?
5370                              matcher.from : 0;
5371             int from = Math.max(i - rmaxChars, startIndex);
5372             matcher.lookbehindTo = i;
5373             // Relax transparent region boundaries for lookbehind
5374             if (matcher.transparentBounds)
5375                 matcher.from = 0;
5376             for (int j = i - rminChars;
5377                  !conditionMatched && j >= from;
5378                  j -= j>from ? countChars(seq, j, -1) : 1) {
5379                 conditionMatched = cond.match(matcher, j, seq);
5380             }
5381             //Reinstate region boundaries
5382             matcher.from = savedFrom;
5383             matcher.lookbehindTo = savedLBT;
5384             return !conditionMatched && next.match(matcher, i, seq);
5385         }
5386     }
5387 
5388     /**
5389      * Handles word boundaries. Includes a field to allow this one class to
5390      * deal with the different types of word boundaries we can match. The word
5391      * characters include underscores, letters, and digits. Non spacing marks
5392      * can are also part of a word if they have a base character, otherwise
5393      * they are ignored for purposes of finding word boundaries.
5394      */
5395     static final class Bound extends Node {
5396         static int LEFT = 0x1;
5397         static int RIGHT= 0x2;
5398         static int BOTH = 0x3;
5399         static int NONE = 0x4;
5400         int type;
5401         boolean useUWORD;
5402         Bound(int n, boolean useUWORD) {
5403             type = n;
5404             this.useUWORD = useUWORD;
5405         }
5406 
5407         boolean isWord(int ch) {
5408             return useUWORD ? CharPredicates.WORD().is(ch)
5409                             : (ch == '_' || Character.isLetterOrDigit(ch));
5410         }
5411 
5412         int check(Matcher matcher, int i, CharSequence seq) {
5413             int ch;
5414             boolean left = false;
5415             int startIndex = matcher.from;
5416             int endIndex = matcher.to;
5417             if (matcher.transparentBounds) {
5418                 startIndex = 0;
5419                 endIndex = matcher.getTextLength();
5420             }
5421             if (i > startIndex) {
5422                 ch = Character.codePointBefore(seq, i);
5423                 left = (isWord(ch) ||
5424                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5425                      && hasBaseCharacter(matcher, i-1, seq)));
5426             }
5427             boolean right = false;
5428             if (i < endIndex) {
5429                 ch = Character.codePointAt(seq, i);
5430                 right = (isWord(ch) ||
5431                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5432                      && hasBaseCharacter(matcher, i, seq)));
5433             } else {
5434                 // Tried to access char past the end
5435                 matcher.hitEnd = true;
5436                 // The addition of another char could wreck a boundary
5437                 matcher.requireEnd = true;
5438             }
5439             return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
5440         }
5441         boolean match(Matcher matcher, int i, CharSequence seq) {
5442             return (check(matcher, i, seq) & type) > 0
5443                 && next.match(matcher, i, seq);
5444         }
5445     }
5446 
5447     /**
5448      * Non spacing marks only count as word characters in bounds calculations
5449      * if they have a base character.
5450      */
5451     private static boolean hasBaseCharacter(Matcher matcher, int i,
5452                                             CharSequence seq)
5453     {
5454         int start = (!matcher.transparentBounds) ?
5455             matcher.from : 0;
5456         for (int x=i; x >= start; x--) {
5457             int ch = Character.codePointAt(seq, x);
5458             if (Character.isLetterOrDigit(ch))
5459                 return true;
5460             if (Character.getType(ch) == Character.NON_SPACING_MARK)
5461                 continue;
5462             return false;
5463         }
5464         return false;
5465     }
5466 
5467     /**
5468      * Attempts to match a slice in the input using the Boyer-Moore string
5469      * matching algorithm. The algorithm is based on the idea that the
5470      * pattern can be shifted farther ahead in the search text if it is
5471      * matched right to left.
5472      * <p>
5473      * The pattern is compared to the input one character at a time, from
5474      * the rightmost character in the pattern to the left. If the characters
5475      * all match the pattern has been found. If a character does not match,
5476      * the pattern is shifted right a distance that is the maximum of two
5477      * functions, the bad character shift and the good suffix shift. This
5478      * shift moves the attempted match position through the input more
5479      * quickly than a naive one position at a time check.
5480      * <p>
5481      * The bad character shift is based on the character from the text that
5482      * did not match. If the character does not appear in the pattern, the
5483      * pattern can be shifted completely beyond the bad character. If the
5484      * character does occur in the pattern, the pattern can be shifted to
5485      * line the pattern up with the next occurrence of that character.
5486      * <p>
5487      * The good suffix shift is based on the idea that some subset on the right
5488      * side of the pattern has matched. When a bad character is found, the
5489      * pattern can be shifted right by the pattern length if the subset does
5490      * not occur again in pattern, or by the amount of distance to the
5491      * next occurrence of the subset in the pattern.
5492      *
5493      * Boyer-Moore search methods adapted from code by Amy Yu.
5494      */
5495     static class BnM extends Node {
5496         int[] buffer;
5497         int[] lastOcc;
5498         int[] optoSft;
5499 
5500         /**
5501          * Pre calculates arrays needed to generate the bad character
5502          * shift and the good suffix shift. Only the last seven bits
5503          * are used to see if chars match; This keeps the tables small
5504          * and covers the heavily used ASCII range, but occasionally
5505          * results in an aliased match for the bad character shift.
5506          */
5507         static Node optimize(Node node) {
5508             if (!(node instanceof Slice)) {
5509                 return node;
5510             }
5511 
5512             int[] src = ((Slice) node).buffer;
5513             int patternLength = src.length;
5514             // The BM algorithm requires a bit of overhead;
5515             // If the pattern is short don't use it, since
5516             // a shift larger than the pattern length cannot
5517             // be used anyway.
5518             if (patternLength < 4) {
5519                 return node;
5520             }
5521             int i, j, k;
5522             int[] lastOcc = new int[128];
5523             int[] optoSft = new int[patternLength];
5524             // Precalculate part of the bad character shift
5525             // It is a table for where in the pattern each
5526             // lower 7-bit value occurs
5527             for (i = 0; i < patternLength; i++) {
5528                 lastOcc[src[i]&0x7F] = i + 1;
5529             }
5530             // Precalculate the good suffix shift
5531             // i is the shift amount being considered
5532 NEXT:       for (i = patternLength; i > 0; i--) {
5533                 // j is the beginning index of suffix being considered
5534                 for (j = patternLength - 1; j >= i; j--) {
5535                     // Testing for good suffix
5536                     if (src[j] == src[j-i]) {
5537                         // src[j..len] is a good suffix
5538                         optoSft[j-1] = i;
5539                     } else {
5540                         // No match. The array has already been
5541                         // filled up with correct values before.
5542                         continue NEXT;
5543                     }
5544                 }
5545                 // This fills up the remaining of optoSft
5546                 // any suffix can not have larger shift amount
5547                 // then its sub-suffix. Why???
5548                 while (j > 0) {
5549                     optoSft[--j] = i;
5550                 }
5551             }
5552             // Set the guard value because of unicode compression
5553             optoSft[patternLength-1] = 1;
5554             if (node instanceof SliceS)
5555                 return new BnMS(src, lastOcc, optoSft, node.next);
5556             return new BnM(src, lastOcc, optoSft, node.next);
5557         }
5558         BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5559             this.buffer = src;
5560             this.lastOcc = lastOcc;
5561             this.optoSft = optoSft;
5562             this.next = next;
5563         }
5564         boolean match(Matcher matcher, int i, CharSequence seq) {
5565             int[] src = buffer;
5566             int patternLength = src.length;
5567             int last = matcher.to - patternLength;
5568 
5569             // Loop over all possible match positions in text
5570 NEXT:       while (i <= last) {
5571                 // Loop over pattern from right to left
5572                 for (int j = patternLength - 1; j >= 0; j--) {
5573                     int ch = seq.charAt(i+j);
5574                     if (ch != src[j]) {
5575                         // Shift search to the right by the maximum of the
5576                         // bad character shift and the good suffix shift
5577                         i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5578                         continue NEXT;
5579                     }
5580                 }
5581                 // Entire pattern matched starting at i
5582                 matcher.first = i;
5583                 boolean ret = next.match(matcher, i + patternLength, seq);
5584                 if (ret) {
5585                     matcher.first = i;
5586                     matcher.groups[0] = matcher.first;
5587                     matcher.groups[1] = matcher.last;
5588                     return true;
5589                 }
5590                 i++;
5591             }
5592             // BnM is only used as the leading node in the unanchored case,
5593             // and it replaced its Start() which always searches to the end
5594             // if it doesn't find what it's looking for, so hitEnd is true.
5595             matcher.hitEnd = true;
5596             return false;
5597         }
5598         boolean study(TreeInfo info) {
5599             info.minLength += buffer.length;
5600             info.maxValid = false;
5601             return next.study(info);
5602         }
5603     }
5604 
5605     /**
5606      * Supplementary support version of BnM(). Unpaired surrogates are
5607      * also handled by this class.
5608      */
5609     static final class BnMS extends BnM {
5610         int lengthInChars;
5611 
5612         BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5613             super(src, lastOcc, optoSft, next);
5614             for (int cp : buffer) {
5615                 lengthInChars += Character.charCount(cp);
5616             }
5617         }
5618         boolean match(Matcher matcher, int i, CharSequence seq) {
5619             int[] src = buffer;
5620             int patternLength = src.length;
5621             int last = matcher.to - lengthInChars;
5622 
5623             // Loop over all possible match positions in text
5624 NEXT:       while (i <= last) {
5625                 // Loop over pattern from right to left
5626                 int ch;
5627                 for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5628                      j > 0; j -= Character.charCount(ch), x--) {
5629                     ch = Character.codePointBefore(seq, i+j);
5630                     if (ch != src[x]) {
5631                         // Shift search to the right by the maximum of the
5632                         // bad character shift and the good suffix shift
5633                         int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5634                         i += countChars(seq, i, n);
5635                         continue NEXT;
5636                     }
5637                 }
5638                 // Entire pattern matched starting at i
5639                 matcher.first = i;
5640                 boolean ret = next.match(matcher, i + lengthInChars, seq);
5641                 if (ret) {
5642                     matcher.first = i;
5643                     matcher.groups[0] = matcher.first;
5644                     matcher.groups[1] = matcher.last;
5645                     return true;
5646                 }
5647                 i += countChars(seq, i, 1);
5648             }
5649             matcher.hitEnd = true;
5650             return false;
5651         }
5652     }
5653 
5654     @FunctionalInterface
5655     static interface CharPredicate {
5656         boolean is(int ch);
5657 
5658         default CharPredicate and(CharPredicate p) {
5659             return ch -> is(ch) && p.is(ch);
5660         }
5661         default CharPredicate union(CharPredicate p) {
5662             return ch -> is(ch) || p.is(ch);
5663         }
5664         default CharPredicate union(CharPredicate p1,
5665                                     CharPredicate p2 ) {
5666             return ch -> is(ch) || p1.is(ch) || p2.is(ch);
5667         }
5668         default CharPredicate negate() {
5669             return ch -> !is(ch);
5670         }
5671     }
5672 
5673     static interface BmpCharPredicate extends CharPredicate {
5674 
5675         default CharPredicate and(CharPredicate p) {
5676             if(p instanceof BmpCharPredicate)
5677                 return (BmpCharPredicate)(ch -> is(ch) && p.is(ch));
5678             return ch -> is(ch) && p.is(ch);
5679         }
5680         default CharPredicate union(CharPredicate p) {
5681             if (p instanceof BmpCharPredicate)
5682                 return (BmpCharPredicate)(ch -> is(ch) || p.is(ch));
5683             return ch -> is(ch) || p.is(ch);
5684         }
5685         static CharPredicate union(CharPredicate... predicates) {
5686             CharPredicate cp = ch -> {
5687                 for (CharPredicate p : predicates) {
5688                     if (!p.is(ch))
5689                         return false;
5690                 }
5691                 return true;
5692             };
5693             for (CharPredicate p : predicates) {
5694                 if (! (p instanceof BmpCharPredicate))
5695                     return cp;
5696             }
5697             return (BmpCharPredicate)cp;
5698         }
5699     }
5700 
5701     /**
5702      * matches a Perl vertical whitespace
5703      */
5704     static BmpCharPredicate VertWS() {
5705         return cp -> (cp >= 0x0A && cp <= 0x0D) ||
5706             cp == 0x85 || cp == 0x2028 || cp == 0x2029;
5707     }
5708 
5709     /**
5710      * matches a Perl horizontal whitespace
5711      */
5712     static BmpCharPredicate HorizWS() {
5713         return cp ->
5714             cp == 0x09 || cp == 0x20 || cp == 0xa0 || cp == 0x1680 ||
5715             cp == 0x180e || cp >= 0x2000 && cp <= 0x200a ||  cp == 0x202f ||
5716             cp == 0x205f || cp == 0x3000;
5717     }
5718 
5719     /**
5720      *  for the Unicode category ALL and the dot metacharacter when
5721      *  in dotall mode.
5722      */
5723     static CharPredicate ALL() {
5724         return ch -> true;
5725     }
5726 
5727     /**
5728      * for the dot metacharacter when dotall is not enabled.
5729      */
5730     static CharPredicate DOT() {
5731         return ch ->
5732             (ch != '\n' && ch != '\r'
5733             && (ch|1) != '\u2029'
5734             && ch != '\u0085');
5735     }
5736 
5737     /**
5738      *  the dot metacharacter when dotall is not enabled but UNIX_LINES is enabled.
5739      */
5740     static CharPredicate UNIXDOT() {
5741         return ch ->  ch != '\n';
5742     }
5743 
5744     /**
5745      * Indicate that matches a Supplementary Unicode character
5746      */
5747     static CharPredicate SingleS(int c) {
5748         return ch -> ch == c;
5749     }
5750 
5751     /**
5752      * A bmp/optimized predicate of single
5753      */
5754     static BmpCharPredicate Single(int c) {
5755         return ch -> ch == c;
5756     }
5757 
5758     /**
5759      * Case insensitive matches a given BMP character
5760      */
5761     static BmpCharPredicate SingleI(int lower, int upper) {
5762         return ch -> ch == lower || ch == upper;
5763     }
5764 
5765     /**
5766      * Unicode case insensitive matches a given Unicode character
5767      */
5768     static CharPredicate SingleU(int lower) {
5769         return ch -> lower == ch ||
5770                      lower == Character.toLowerCase(Character.toUpperCase(ch));
5771     }
5772 
5773     private static boolean inRange(int lower, int ch, int upper) {
5774         return lower <= ch && ch <= upper;
5775     }
5776 
5777     /**
5778      * Charactrs within a explicit value range
5779      */
5780     static CharPredicate Range(int lower, int upper) {
5781         if (upper < Character.MIN_HIGH_SURROGATE ||
5782             lower > Character.MAX_HIGH_SURROGATE &&
5783             upper < Character.MIN_SUPPLEMENTARY_CODE_POINT)
5784             return (BmpCharPredicate)(ch -> inRange(lower, ch, upper));
5785         return ch -> inRange(lower, ch, upper);
5786     }
5787 
5788    /**
5789     * Charactrs within a explicit value range in a case insensitive manner.
5790     */
5791     static CharPredicate CIRange(int lower, int upper) {
5792         return ch -> inRange(lower, ch, upper) ||
5793                      ASCII.isAscii(ch) &&
5794                      (inRange(lower, ASCII.toUpper(ch), upper) ||
5795                       inRange(lower, ASCII.toLower(ch), upper));
5796     }
5797 
5798     static CharPredicate CIRangeU(int lower, int upper) {
5799         return ch -> {
5800             if (inRange(lower, ch, upper))
5801                 return true;
5802             int up = Character.toUpperCase(ch);
5803             return inRange(lower, up, upper) ||
5804                    inRange(lower, Character.toLowerCase(up), upper);
5805         };
5806     }
5807 
5808     /**
5809      *  This must be the very first initializer.
5810      */
5811     static final Node accept = new Node();
5812 
5813     static final Node lastAccept = new LastNode();
5814 
5815     /**
5816      * Creates a predicate which can be used to match a string.
5817      *
5818      * @return  The predicate which can be used for matching on a string
5819      * @since   1.8
5820      */
5821     public Predicate<String> asPredicate() {
5822         return s -> matcher(s).find();
5823     }
5824 
5825     /**
5826      * Creates a stream from the given input sequence around matches of this
5827      * pattern.
5828      *
5829      * <p> The stream returned by this method contains each substring of the
5830      * input sequence that is terminated by another subsequence that matches
5831      * this pattern or is terminated by the end of the input sequence.  The
5832      * substrings in the stream are in the order in which they occur in the
5833      * input. Trailing empty strings will be discarded and not encountered in
5834      * the stream.
5835      *
5836      * <p> If this pattern does not match any subsequence of the input then
5837      * the resulting stream has just one element, namely the input sequence in
5838      * string form.
5839      *
5840      * <p> When there is a positive-width match at the beginning of the input
5841      * sequence then an empty leading substring is included at the beginning
5842      * of the stream. A zero-width match at the beginning however never produces
5843      * such empty leading substring.
5844      *
5845      * <p> If the input sequence is mutable, it must remain constant during the
5846      * execution of the terminal stream operation.  Otherwise, the result of the
5847      * terminal stream operation is undefined.
5848      *
5849      * @param   input
5850      *          The character sequence to be split
5851      *
5852      * @return  The stream of strings computed by splitting the input
5853      *          around matches of this pattern
5854      * @see     #split(CharSequence)
5855      * @since   1.8
5856      */
5857     public Stream<String> splitAsStream(final CharSequence input) {
5858         class MatcherIterator implements Iterator<String> {
5859             private Matcher matcher;
5860             // The start position of the next sub-sequence of input
5861             // when current == input.length there are no more elements
5862             private int current;
5863             // null if the next element, if any, needs to obtained
5864             private String nextElement;
5865             // > 0 if there are N next empty elements
5866             private int emptyElementCount;
5867 
5868             public String next() {
5869                 if (!hasNext())
5870                     throw new NoSuchElementException();
5871 
5872                 if (emptyElementCount == 0) {
5873                     String n = nextElement;
5874                     nextElement = null;
5875                     return n;
5876                 } else {
5877                     emptyElementCount--;
5878                     return "";
5879                 }
5880             }
5881 
5882             public boolean hasNext() {
5883                 if (matcher == null) {
5884                     matcher = matcher(input);
5885                     // If the input is an empty string then the result can only be a
5886                     // stream of the input.  Induce that by setting the empty
5887                     // element count to 1
5888                     emptyElementCount = input.length() == 0 ? 1 : 0;
5889                 }
5890                 if (nextElement != null || emptyElementCount > 0)
5891                     return true;
5892 
5893                 if (current == input.length())
5894                     return false;
5895 
5896                 // Consume the next matching element
5897                 // Count sequence of matching empty elements
5898                 while (matcher.find()) {
5899                     nextElement = input.subSequence(current, matcher.start()).toString();
5900                     current = matcher.end();
5901                     if (!nextElement.isEmpty()) {
5902                         return true;
5903                     } else if (current > 0) { // no empty leading substring for zero-width
5904                                               // match at the beginning of the input
5905                         emptyElementCount++;
5906                     }
5907                 }
5908 
5909                 // Consume last matching element
5910                 nextElement = input.subSequence(current, input.length()).toString();
5911                 current = input.length();
5912                 if (!nextElement.isEmpty()) {
5913                     return true;
5914                 } else {
5915                     // Ignore a terminal sequence of matching empty elements
5916                     emptyElementCount = 0;
5917                     nextElement = null;
5918                     return false;
5919                 }
5920             }
5921         }
5922         return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
5923                 new MatcherIterator(), Spliterator.ORDERED | Spliterator.NONNULL), false);
5924     }
5925 }