1 /*
   2  * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.lang.annotation.Native;
  31 import java.nio.charset.Charset;
  32 import java.util.ArrayList;
  33 import java.util.Arrays;
  34 import java.util.Comparator;
  35 import java.util.Formatter;
  36 import java.util.Locale;
  37 import java.util.Objects;
  38 import java.util.Spliterator;
  39 import java.util.StringJoiner;
  40 import java.util.regex.Matcher;
  41 import java.util.regex.Pattern;
  42 import java.util.regex.PatternSyntaxException;
  43 import java.util.stream.IntStream;
  44 import java.util.stream.StreamSupport;
  45 import jdk.internal.HotSpotIntrinsicCandidate;
  46 import jdk.internal.vm.annotation.Stable;
  47 
  48 /**
  49  * The {@code String} class represents character strings. All
  50  * string literals in Java programs, such as {@code "abc"}, are
  51  * implemented as instances of this class.
  52  * <p>
  53  * Strings are constant; their values cannot be changed after they
  54  * are created. String buffers support mutable strings.
  55  * Because String objects are immutable they can be shared. For example:
  56  * <blockquote><pre>
  57  *     String str = "abc";
  58  * </pre></blockquote><p>
  59  * is equivalent to:
  60  * <blockquote><pre>
  61  *     char data[] = {'a', 'b', 'c'};
  62  *     String str = new String(data);
  63  * </pre></blockquote><p>
  64  * Here are some more examples of how strings can be used:
  65  * <blockquote><pre>
  66  *     System.out.println("abc");
  67  *     String cde = "cde";
  68  *     System.out.println("abc" + cde);
  69  *     String c = "abc".substring(2,3);
  70  *     String d = cde.substring(1, 2);
  71  * </pre></blockquote>
  72  * <p>
  73  * The class {@code String} includes methods for examining
  74  * individual characters of the sequence, for comparing strings, for
  75  * searching strings, for extracting substrings, and for creating a
  76  * copy of a string with all characters translated to uppercase or to
  77  * lowercase. Case mapping is based on the Unicode Standard version
  78  * specified by the {@link java.lang.Character Character} class.
  79  * <p>
  80  * The Java language provides special support for the string
  81  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  82  * other objects to strings. For additional information on string
  83  * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
  84  *
  85  * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
  86  * or method in this class will cause a {@link NullPointerException} to be
  87  * thrown.
  88  *
  89  * <p>A {@code String} represents a string in the UTF-16 format
  90  * in which <em>supplementary characters</em> are represented by <em>surrogate
  91  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  92  * Character Representations</a> in the {@code Character} class for
  93  * more information).
  94  * Index values refer to {@code char} code units, so a supplementary
  95  * character uses two positions in a {@code String}.
  96  * <p>The {@code String} class provides methods for dealing with
  97  * Unicode code points (i.e., characters), in addition to those for
  98  * dealing with Unicode code units (i.e., {@code char} values).
  99  *
 100  * <p>Unless otherwise noted, methods for comparing Strings do not take locale
 101  * into account.  The {@link java.text.Collator} class provides methods for
 102  * finer-grain, locale-sensitive String comparison.
 103  *
 104  * @implNote The implementation of the string concatenation operator is left to
 105  * the discretion of a Java compiler, as long as the compiler ultimately conforms
 106  * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
 107  * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
 108  * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
 109  * implementation of string conversion is typically through the method {@code toString},
 110  * defined by {@code Object} and inherited by all classes in Java.
 111  *
 112  * @author  Lee Boynton
 113  * @author  Arthur van Hoff
 114  * @author  Martin Buchholz
 115  * @author  Ulf Zibis
 116  * @see     java.lang.Object#toString()
 117  * @see     java.lang.StringBuffer
 118  * @see     java.lang.StringBuilder
 119  * @see     java.nio.charset.Charset
 120  * @since   1.0
 121  * @jls     15.18.1 String Concatenation Operator +
 122  */
 123 
 124 public final class String
 125     implements java.io.Serializable, Comparable<String>, CharSequence {
 126 
 127     /**
 128      * The value is used for character storage.
 129      *
 130      * @implNote This field is trusted by the VM, and is a subject to
 131      * constant folding if String instance is constant. Overwriting this
 132      * field after construction will cause problems.
 133      *
 134      * Additionally, it is marked with {@link Stable} to trust the contents
 135      * of the array. No other facility in JDK provides this functionality (yet).
 136      * {@link Stable} is safe here, because value is never null.
 137      */
 138     @Stable
 139     private final byte[] value;
 140 
 141     /**
 142      * The identifier of the encoding used to encode the bytes in
 143      * {@code value}. The supported values in this implementation are
 144      *
 145      * LATIN1
 146      * UTF16
 147      *
 148      * @implNote This field is trusted by the VM, and is a subject to
 149      * constant folding if String instance is constant. Overwriting this
 150      * field after construction will cause problems.
 151      */
 152     private final byte coder;
 153 
 154     /** Cache the hash code for the string */
 155     private int hash; // Default to 0
 156 
 157     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 158     private static final long serialVersionUID = -6849794470754667710L;
 159 
 160     /**
 161      * If String compaction is disabled, the bytes in {@code value} are
 162      * always encoded in UTF16.
 163      *
 164      * For methods with several possible implementation paths, when String
 165      * compaction is disabled, only one code path is taken.
 166      *
 167      * The instance field value is generally opaque to optimizing JIT
 168      * compilers. Therefore, in performance-sensitive place, an explicit
 169      * check of the static boolean {@code COMPACT_STRINGS} is done first
 170      * before checking the {@code coder} field since the static boolean
 171      * {@code COMPACT_STRINGS} would be constant folded away by an
 172      * optimizing JIT compiler. The idioms for these cases are as follows.
 173      *
 174      * For code such as:
 175      *
 176      *    if (coder == LATIN1) { ... }
 177      *
 178      * can be written more optimally as
 179      *
 180      *    if (coder() == LATIN1) { ... }
 181      *
 182      * or:
 183      *
 184      *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
 185      *
 186      * An optimizing JIT compiler can fold the above conditional as:
 187      *
 188      *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
 189      *    COMPACT_STRINGS == false => if (false)           { ... }
 190      *
 191      * @implNote
 192      * The actual value for this field is injected by JVM. The static
 193      * initialization block is used to set the value here to communicate
 194      * that this static final field is not statically foldable, and to
 195      * avoid any possible circular dependency during vm initialization.
 196      */
 197     static final boolean COMPACT_STRINGS;
 198 
 199     static {
 200         COMPACT_STRINGS = true;
 201     }
 202 
 203     /**
 204      * Class String is special cased within the Serialization Stream Protocol.
 205      *
 206      * A String instance is written into an ObjectOutputStream according to
 207      * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
 208      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
 209      */
 210     private static final ObjectStreamField[] serialPersistentFields =
 211         new ObjectStreamField[0];
 212 
 213     /**
 214      * Initializes a newly created {@code String} object so that it represents
 215      * an empty character sequence.  Note that use of this constructor is
 216      * unnecessary since Strings are immutable.
 217      */
 218     public String() {
 219         this.value = "".value;
 220         this.coder = "".coder;
 221     }
 222 
 223     /**
 224      * Initializes a newly created {@code String} object so that it represents
 225      * the same sequence of characters as the argument; in other words, the
 226      * newly created string is a copy of the argument string. Unless an
 227      * explicit copy of {@code original} is needed, use of this constructor is
 228      * unnecessary since Strings are immutable.
 229      *
 230      * @param  original
 231      *         A {@code String}
 232      */
 233     @HotSpotIntrinsicCandidate
 234     public String(String original) {
 235         this.value = original.value;
 236         this.coder = original.coder;
 237         this.hash = original.hash;
 238     }
 239 
 240     /**
 241      * Allocates a new {@code String} so that it represents the sequence of
 242      * characters currently contained in the character array argument. The
 243      * contents of the character array are copied; subsequent modification of
 244      * the character array does not affect the newly created string.
 245      *
 246      * @param  value
 247      *         The initial value of the string
 248      */
 249     public String(char value[]) {
 250         this(value, 0, value.length, null);
 251     }
 252 
 253     /**
 254      * Allocates a new {@code String} that contains characters from a subarray
 255      * of the character array argument. The {@code offset} argument is the
 256      * index of the first character of the subarray and the {@code count}
 257      * argument specifies the length of the subarray. The contents of the
 258      * subarray are copied; subsequent modification of the character array does
 259      * not affect the newly created string.
 260      *
 261      * @param  value
 262      *         Array that is the source of characters
 263      *
 264      * @param  offset
 265      *         The initial offset
 266      *
 267      * @param  count
 268      *         The length
 269      *
 270      * @throws  IndexOutOfBoundsException
 271      *          If {@code offset} is negative, {@code count} is negative, or
 272      *          {@code offset} is greater than {@code value.length - count}
 273      */
 274     public String(char value[], int offset, int count) {
 275         this(value, offset, count, rangeCheck(value, offset, count));
 276     }
 277 
 278     private static Void rangeCheck(char[] value, int offset, int count) {
 279         checkBoundsOffCount(offset, count, value.length);
 280         return null;
 281     }
 282 
 283     /**
 284      * Allocates a new {@code String} that contains characters from a subarray
 285      * of the <a href="Character.html#unicode">Unicode code point</a> array
 286      * argument.  The {@code offset} argument is the index of the first code
 287      * point of the subarray and the {@code count} argument specifies the
 288      * length of the subarray.  The contents of the subarray are converted to
 289      * {@code char}s; subsequent modification of the {@code int} array does not
 290      * affect the newly created string.
 291      *
 292      * @param  codePoints
 293      *         Array that is the source of Unicode code points
 294      *
 295      * @param  offset
 296      *         The initial offset
 297      *
 298      * @param  count
 299      *         The length
 300      *
 301      * @throws  IllegalArgumentException
 302      *          If any invalid Unicode code point is found in {@code
 303      *          codePoints}
 304      *
 305      * @throws  IndexOutOfBoundsException
 306      *          If {@code offset} is negative, {@code count} is negative, or
 307      *          {@code offset} is greater than {@code codePoints.length - count}
 308      *
 309      * @since  1.5
 310      */
 311     public String(int[] codePoints, int offset, int count) {
 312         checkBoundsOffCount(offset, count, codePoints.length);
 313         if (count == 0) {
 314             this.value = "".value;
 315             this.coder = "".coder;
 316             return;
 317         }
 318         if (COMPACT_STRINGS) {
 319             byte[] val = StringLatin1.toBytes(codePoints, offset, count);
 320             if (val != null) {
 321                 this.coder = LATIN1;
 322                 this.value = val;
 323                 return;
 324             }
 325         }
 326         this.coder = UTF16;
 327         this.value = StringUTF16.toBytes(codePoints, offset, count);
 328     }
 329 
 330     /**
 331      * Allocates a new {@code String} constructed from a subarray of an array
 332      * of 8-bit integer values.
 333      *
 334      * <p> The {@code offset} argument is the index of the first byte of the
 335      * subarray, and the {@code count} argument specifies the length of the
 336      * subarray.
 337      *
 338      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 339      * specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
 340      *
 341      * @deprecated This method does not properly convert bytes into characters.
 342      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 343      * {@code String} constructors that take a {@link
 344      * java.nio.charset.Charset}, charset name, or that use the platform's
 345      * default charset.
 346      *
 347      * @param  ascii
 348      *         The bytes to be converted to characters
 349      *
 350      * @param  hibyte
 351      *         The top 8 bits of each 16-bit Unicode code unit
 352      *
 353      * @param  offset
 354      *         The initial offset
 355      * @param  count
 356      *         The length
 357      *
 358      * @throws  IndexOutOfBoundsException
 359      *          If {@code offset} is negative, {@code count} is negative, or
 360      *          {@code offset} is greater than {@code ascii.length - count}
 361      *
 362      * @see  #String(byte[], int)
 363      * @see  #String(byte[], int, int, java.lang.String)
 364      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 365      * @see  #String(byte[], int, int)
 366      * @see  #String(byte[], java.lang.String)
 367      * @see  #String(byte[], java.nio.charset.Charset)
 368      * @see  #String(byte[])
 369      */
 370     @Deprecated(since="1.1")
 371     public String(byte ascii[], int hibyte, int offset, int count) {
 372         checkBoundsOffCount(offset, count, ascii.length);
 373         if (count == 0) {
 374             this.value = "".value;
 375             this.coder = "".coder;
 376             return;
 377         }
 378         if (COMPACT_STRINGS && (byte)hibyte == 0) {
 379             this.value = Arrays.copyOfRange(ascii, offset, offset + count);
 380             this.coder = LATIN1;
 381         } else {
 382             hibyte <<= 8;
 383             byte[] val = StringUTF16.newBytesFor(count);
 384             for (int i = 0; i < count; i++) {
 385                 StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
 386             }
 387             this.value = val;
 388             this.coder = UTF16;
 389         }
 390     }
 391 
 392     /**
 393      * Allocates a new {@code String} containing characters constructed from
 394      * an array of 8-bit integer values. Each character <i>c</i> in the
 395      * resulting string is constructed from the corresponding component
 396      * <i>b</i> in the byte array such that:
 397      *
 398      * <blockquote><pre>
 399      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 400      *                         | (<b><i>b</i></b> &amp; 0xff))
 401      * </pre></blockquote>
 402      *
 403      * @deprecated  This method does not properly convert bytes into
 404      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 405      * {@code String} constructors that take a {@link
 406      * java.nio.charset.Charset}, charset name, or that use the platform's
 407      * default charset.
 408      *
 409      * @param  ascii
 410      *         The bytes to be converted to characters
 411      *
 412      * @param  hibyte
 413      *         The top 8 bits of each 16-bit Unicode code unit
 414      *
 415      * @see  #String(byte[], int, int, java.lang.String)
 416      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 417      * @see  #String(byte[], int, int)
 418      * @see  #String(byte[], java.lang.String)
 419      * @see  #String(byte[], java.nio.charset.Charset)
 420      * @see  #String(byte[])
 421      */
 422     @Deprecated(since="1.1")
 423     public String(byte ascii[], int hibyte) {
 424         this(ascii, hibyte, 0, ascii.length);
 425     }
 426 
 427     /**
 428      * Constructs a new {@code String} by decoding the specified subarray of
 429      * bytes using the specified charset.  The length of the new {@code String}
 430      * is a function of the charset, and hence may not be equal to the length
 431      * of the subarray.
 432      *
 433      * <p> The behavior of this constructor when the given bytes are not valid
 434      * in the given charset is unspecified.  The {@link
 435      * java.nio.charset.CharsetDecoder} class should be used when more control
 436      * over the decoding process is required.
 437      *
 438      * @param  bytes
 439      *         The bytes to be decoded into characters
 440      *
 441      * @param  offset
 442      *         The index of the first byte to decode
 443      *
 444      * @param  length
 445      *         The number of bytes to decode
 446 
 447      * @param  charsetName
 448      *         The name of a supported {@linkplain java.nio.charset.Charset
 449      *         charset}
 450      *
 451      * @throws  UnsupportedEncodingException
 452      *          If the named charset is not supported
 453      *
 454      * @throws  IndexOutOfBoundsException
 455      *          If {@code offset} is negative, {@code length} is negative, or
 456      *          {@code offset} is greater than {@code bytes.length - length}
 457      *
 458      * @since  1.1
 459      */
 460     public String(byte bytes[], int offset, int length, String charsetName)
 461             throws UnsupportedEncodingException {
 462         if (charsetName == null)
 463             throw new NullPointerException("charsetName");
 464         checkBoundsOffCount(offset, length, bytes.length);
 465         StringCoding.Result ret =
 466             StringCoding.decode(charsetName, bytes, offset, length);
 467         this.value = ret.value;
 468         this.coder = ret.coder;
 469     }
 470 
 471     /**
 472      * Constructs a new {@code String} by decoding the specified subarray of
 473      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 474      * The length of the new {@code String} is a function of the charset, and
 475      * hence may not be equal to the length of the subarray.
 476      *
 477      * <p> This method always replaces malformed-input and unmappable-character
 478      * sequences with this charset's default replacement string.  The {@link
 479      * java.nio.charset.CharsetDecoder} class should be used when more control
 480      * over the decoding process is required.
 481      *
 482      * @param  bytes
 483      *         The bytes to be decoded into characters
 484      *
 485      * @param  offset
 486      *         The index of the first byte to decode
 487      *
 488      * @param  length
 489      *         The number of bytes to decode
 490      *
 491      * @param  charset
 492      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 493      *         decode the {@code bytes}
 494      *
 495      * @throws  IndexOutOfBoundsException
 496      *          If {@code offset} is negative, {@code length} is negative, or
 497      *          {@code offset} is greater than {@code bytes.length - length}
 498      *
 499      * @since  1.6
 500      */
 501     public String(byte bytes[], int offset, int length, Charset charset) {
 502         if (charset == null)
 503             throw new NullPointerException("charset");
 504         checkBoundsOffCount(offset, length, bytes.length);
 505         StringCoding.Result ret =
 506             StringCoding.decode(charset, bytes, offset, length);
 507         this.value = ret.value;
 508         this.coder = ret.coder;
 509     }
 510 
 511     /**
 512      * Constructs a new {@code String} by decoding the specified array of bytes
 513      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 514      * length of the new {@code String} is a function of the charset, and hence
 515      * may not be equal to the length of the byte array.
 516      *
 517      * <p> The behavior of this constructor when the given bytes are not valid
 518      * in the given charset is unspecified.  The {@link
 519      * java.nio.charset.CharsetDecoder} class should be used when more control
 520      * over the decoding process is required.
 521      *
 522      * @param  bytes
 523      *         The bytes to be decoded into characters
 524      *
 525      * @param  charsetName
 526      *         The name of a supported {@linkplain java.nio.charset.Charset
 527      *         charset}
 528      *
 529      * @throws  UnsupportedEncodingException
 530      *          If the named charset is not supported
 531      *
 532      * @since  1.1
 533      */
 534     public String(byte bytes[], String charsetName)
 535             throws UnsupportedEncodingException {
 536         this(bytes, 0, bytes.length, charsetName);
 537     }
 538 
 539     /**
 540      * Constructs a new {@code String} by decoding the specified array of
 541      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 542      * The length of the new {@code String} is a function of the charset, and
 543      * hence may not be equal to the length of the byte array.
 544      *
 545      * <p> This method always replaces malformed-input and unmappable-character
 546      * sequences with this charset's default replacement string.  The {@link
 547      * java.nio.charset.CharsetDecoder} class should be used when more control
 548      * over the decoding process is required.
 549      *
 550      * @param  bytes
 551      *         The bytes to be decoded into characters
 552      *
 553      * @param  charset
 554      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 555      *         decode the {@code bytes}
 556      *
 557      * @since  1.6
 558      */
 559     public String(byte bytes[], Charset charset) {
 560         this(bytes, 0, bytes.length, charset);
 561     }
 562 
 563     /**
 564      * Constructs a new {@code String} by decoding the specified subarray of
 565      * bytes using the platform's default charset.  The length of the new
 566      * {@code String} is a function of the charset, and hence may not be equal
 567      * to the length of the subarray.
 568      *
 569      * <p> The behavior of this constructor when the given bytes are not valid
 570      * in the default charset is unspecified.  The {@link
 571      * java.nio.charset.CharsetDecoder} class should be used when more control
 572      * over the decoding process is required.
 573      *
 574      * @param  bytes
 575      *         The bytes to be decoded into characters
 576      *
 577      * @param  offset
 578      *         The index of the first byte to decode
 579      *
 580      * @param  length
 581      *         The number of bytes to decode
 582      *
 583      * @throws  IndexOutOfBoundsException
 584      *          If {@code offset} is negative, {@code length} is negative, or
 585      *          {@code offset} is greater than {@code bytes.length - length}
 586      *
 587      * @since  1.1
 588      */
 589     public String(byte bytes[], int offset, int length) {
 590         checkBoundsOffCount(offset, length, bytes.length);
 591         StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
 592         this.value = ret.value;
 593         this.coder = ret.coder;
 594     }
 595 
 596     /**
 597      * Constructs a new {@code String} by decoding the specified array of bytes
 598      * using the platform's default charset.  The length of the new {@code
 599      * String} is a function of the charset, and hence may not be equal to the
 600      * length of the byte array.
 601      *
 602      * <p> The behavior of this constructor when the given bytes are not valid
 603      * in the default charset is unspecified.  The {@link
 604      * java.nio.charset.CharsetDecoder} class should be used when more control
 605      * over the decoding process is required.
 606      *
 607      * @param  bytes
 608      *         The bytes to be decoded into characters
 609      *
 610      * @since  1.1
 611      */
 612     public String(byte[] bytes) {
 613         this(bytes, 0, bytes.length);
 614     }
 615 
 616     /**
 617      * Allocates a new string that contains the sequence of characters
 618      * currently contained in the string buffer argument. The contents of the
 619      * string buffer are copied; subsequent modification of the string buffer
 620      * does not affect the newly created string.
 621      *
 622      * @param  buffer
 623      *         A {@code StringBuffer}
 624      */
 625     public String(StringBuffer buffer) {
 626         this(buffer.toString());
 627     }
 628 
 629     /**
 630      * Allocates a new string that contains the sequence of characters
 631      * currently contained in the string builder argument. The contents of the
 632      * string builder are copied; subsequent modification of the string builder
 633      * does not affect the newly created string.
 634      *
 635      * <p> This constructor is provided to ease migration to {@code
 636      * StringBuilder}. Obtaining a string from a string builder via the {@code
 637      * toString} method is likely to run faster and is generally preferred.
 638      *
 639      * @param   builder
 640      *          A {@code StringBuilder}
 641      *
 642      * @since  1.5
 643      */
 644     public String(StringBuilder builder) {
 645         this(builder, null);
 646     }
 647 
 648    /*
 649     * Package private constructor which shares value array for speed.
 650     * this constructor is always expected to be called with share==true.
 651     * a separate constructor is needed because we already have a public
 652     * String(char[]) constructor that makes a copy of the given char[].
 653     */
 654     // TBD: this is kept for package internal use (Thread/System),
 655     // should be removed if they all have a byte[] version
 656     String(char[] val, boolean share) {
 657         // assert share : "unshared not supported";
 658         this(val, 0, val.length, null);
 659     }
 660 
 661     /**
 662      * Returns the length of this string.
 663      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 664      * code units</a> in the string.
 665      *
 666      * @return  the length of the sequence of characters represented by this
 667      *          object.
 668      */
 669     public int length() {
 670         return value.length >> coder();
 671     }
 672 
 673     /**
 674      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 675      *
 676      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 677      * {@code false}
 678      *
 679      * @since 1.6
 680      */
 681     public boolean isEmpty() {
 682         return value.length == 0;
 683     }
 684 
 685     /**
 686      * Returns the {@code char} value at the
 687      * specified index. An index ranges from {@code 0} to
 688      * {@code length() - 1}. The first {@code char} value of the sequence
 689      * is at index {@code 0}, the next at index {@code 1},
 690      * and so on, as for array indexing.
 691      *
 692      * <p>If the {@code char} value specified by the index is a
 693      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 694      * value is returned.
 695      *
 696      * @param      index   the index of the {@code char} value.
 697      * @return     the {@code char} value at the specified index of this string.
 698      *             The first {@code char} value is at index {@code 0}.
 699      * @exception  IndexOutOfBoundsException  if the {@code index}
 700      *             argument is negative or not less than the length of this
 701      *             string.
 702      */
 703     public char charAt(int index) {
 704         if (isLatin1()) {
 705             return StringLatin1.charAt(value, index);
 706         } else {
 707             return StringUTF16.charAt(value, index);
 708         }
 709     }
 710 
 711     /**
 712      * Returns the character (Unicode code point) at the specified
 713      * index. The index refers to {@code char} values
 714      * (Unicode code units) and ranges from {@code 0} to
 715      * {@link #length()}{@code  - 1}.
 716      *
 717      * <p> If the {@code char} value specified at the given index
 718      * is in the high-surrogate range, the following index is less
 719      * than the length of this {@code String}, and the
 720      * {@code char} value at the following index is in the
 721      * low-surrogate range, then the supplementary code point
 722      * corresponding to this surrogate pair is returned. Otherwise,
 723      * the {@code char} value at the given index is returned.
 724      *
 725      * @param      index the index to the {@code char} values
 726      * @return     the code point value of the character at the
 727      *             {@code index}
 728      * @exception  IndexOutOfBoundsException  if the {@code index}
 729      *             argument is negative or not less than the length of this
 730      *             string.
 731      * @since      1.5
 732      */
 733     public int codePointAt(int index) {
 734         if (isLatin1()) {
 735             checkIndex(index, value.length);
 736             return value[index] & 0xff;
 737         }
 738         int length = value.length >> 1;
 739         checkIndex(index, length);
 740         return StringUTF16.codePointAt(value, index, length);
 741     }
 742 
 743     /**
 744      * Returns the character (Unicode code point) before the specified
 745      * index. The index refers to {@code char} values
 746      * (Unicode code units) and ranges from {@code 1} to {@link
 747      * CharSequence#length() length}.
 748      *
 749      * <p> If the {@code char} value at {@code (index - 1)}
 750      * is in the low-surrogate range, {@code (index - 2)} is not
 751      * negative, and the {@code char} value at {@code (index -
 752      * 2)} is in the high-surrogate range, then the
 753      * supplementary code point value of the surrogate pair is
 754      * returned. If the {@code char} value at {@code index -
 755      * 1} is an unpaired low-surrogate or a high-surrogate, the
 756      * surrogate value is returned.
 757      *
 758      * @param     index the index following the code point that should be returned
 759      * @return    the Unicode code point value before the given index.
 760      * @exception IndexOutOfBoundsException if the {@code index}
 761      *            argument is less than 1 or greater than the length
 762      *            of this string.
 763      * @since     1.5
 764      */
 765     public int codePointBefore(int index) {
 766         int i = index - 1;
 767         if (i < 0 || i >= length()) {
 768             throw new StringIndexOutOfBoundsException(index);
 769         }
 770         if (isLatin1()) {
 771             return (value[i] & 0xff);
 772         }
 773         return StringUTF16.codePointBefore(value, index);
 774     }
 775 
 776     /**
 777      * Returns the number of Unicode code points in the specified text
 778      * range of this {@code String}. The text range begins at the
 779      * specified {@code beginIndex} and extends to the
 780      * {@code char} at index {@code endIndex - 1}. Thus the
 781      * length (in {@code char}s) of the text range is
 782      * {@code endIndex-beginIndex}. Unpaired surrogates within
 783      * the text range count as one code point each.
 784      *
 785      * @param beginIndex the index to the first {@code char} of
 786      * the text range.
 787      * @param endIndex the index after the last {@code char} of
 788      * the text range.
 789      * @return the number of Unicode code points in the specified text
 790      * range
 791      * @exception IndexOutOfBoundsException if the
 792      * {@code beginIndex} is negative, or {@code endIndex}
 793      * is larger than the length of this {@code String}, or
 794      * {@code beginIndex} is larger than {@code endIndex}.
 795      * @since  1.5
 796      */
 797     public int codePointCount(int beginIndex, int endIndex) {
 798         if (beginIndex < 0 || beginIndex > endIndex ||
 799             endIndex > length()) {
 800             throw new IndexOutOfBoundsException();
 801         }
 802         if (isLatin1()) {
 803             return endIndex - beginIndex;
 804         }
 805         return StringUTF16.codePointCount(value, beginIndex, endIndex);
 806     }
 807 
 808     /**
 809      * Returns the index within this {@code String} that is
 810      * offset from the given {@code index} by
 811      * {@code codePointOffset} code points. Unpaired surrogates
 812      * within the text range given by {@code index} and
 813      * {@code codePointOffset} count as one code point each.
 814      *
 815      * @param index the index to be offset
 816      * @param codePointOffset the offset in code points
 817      * @return the index within this {@code String}
 818      * @exception IndexOutOfBoundsException if {@code index}
 819      *   is negative or larger then the length of this
 820      *   {@code String}, or if {@code codePointOffset} is positive
 821      *   and the substring starting with {@code index} has fewer
 822      *   than {@code codePointOffset} code points,
 823      *   or if {@code codePointOffset} is negative and the substring
 824      *   before {@code index} has fewer than the absolute value
 825      *   of {@code codePointOffset} code points.
 826      * @since 1.5
 827      */
 828     public int offsetByCodePoints(int index, int codePointOffset) {
 829         if (index < 0 || index > length()) {
 830             throw new IndexOutOfBoundsException();
 831         }
 832         return Character.offsetByCodePoints(this, index, codePointOffset);
 833     }
 834 
 835     /**
 836      * Copies characters from this string into the destination character
 837      * array.
 838      * <p>
 839      * The first character to be copied is at index {@code srcBegin};
 840      * the last character to be copied is at index {@code srcEnd-1}
 841      * (thus the total number of characters to be copied is
 842      * {@code srcEnd-srcBegin}). The characters are copied into the
 843      * subarray of {@code dst} starting at index {@code dstBegin}
 844      * and ending at index:
 845      * <blockquote><pre>
 846      *     dstBegin + (srcEnd-srcBegin) - 1
 847      * </pre></blockquote>
 848      *
 849      * @param      srcBegin   index of the first character in the string
 850      *                        to copy.
 851      * @param      srcEnd     index after the last character in the string
 852      *                        to copy.
 853      * @param      dst        the destination array.
 854      * @param      dstBegin   the start offset in the destination array.
 855      * @exception IndexOutOfBoundsException If any of the following
 856      *            is true:
 857      *            <ul><li>{@code srcBegin} is negative.
 858      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 859      *            <li>{@code srcEnd} is greater than the length of this
 860      *                string
 861      *            <li>{@code dstBegin} is negative
 862      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 863      *                {@code dst.length}</ul>
 864      */
 865     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 866         checkBoundsBeginEnd(srcBegin, srcEnd, length());
 867         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
 868         if (isLatin1()) {
 869             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 870         } else {
 871             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 872         }
 873     }
 874 
 875     /**
 876      * Copies characters from this string into the destination byte array. Each
 877      * byte receives the 8 low-order bits of the corresponding character. The
 878      * eight high-order bits of each character are not copied and do not
 879      * participate in the transfer in any way.
 880      *
 881      * <p> The first character to be copied is at index {@code srcBegin}; the
 882      * last character to be copied is at index {@code srcEnd-1}.  The total
 883      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 884      * characters, converted to bytes, are copied into the subarray of {@code
 885      * dst} starting at index {@code dstBegin} and ending at index:
 886      *
 887      * <blockquote><pre>
 888      *     dstBegin + (srcEnd-srcBegin) - 1
 889      * </pre></blockquote>
 890      *
 891      * @deprecated  This method does not properly convert characters into
 892      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 893      * {@link #getBytes()} method, which uses the platform's default charset.
 894      *
 895      * @param  srcBegin
 896      *         Index of the first character in the string to copy
 897      *
 898      * @param  srcEnd
 899      *         Index after the last character in the string to copy
 900      *
 901      * @param  dst
 902      *         The destination array
 903      *
 904      * @param  dstBegin
 905      *         The start offset in the destination array
 906      *
 907      * @throws  IndexOutOfBoundsException
 908      *          If any of the following is true:
 909      *          <ul>
 910      *            <li> {@code srcBegin} is negative
 911      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 912      *            <li> {@code srcEnd} is greater than the length of this String
 913      *            <li> {@code dstBegin} is negative
 914      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 915      *                 dst.length}
 916      *          </ul>
 917      */
 918     @Deprecated(since="1.1")
 919     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 920         checkBoundsBeginEnd(srcBegin, srcEnd, length());
 921         Objects.requireNonNull(dst);
 922         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
 923         if (isLatin1()) {
 924             StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
 925         } else {
 926             StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
 927         }
 928     }
 929 
 930     /**
 931      * Encodes this {@code String} into a sequence of bytes using the named
 932      * charset, storing the result into a new byte array.
 933      *
 934      * <p> The behavior of this method when this string cannot be encoded in
 935      * the given charset is unspecified.  The {@link
 936      * java.nio.charset.CharsetEncoder} class should be used when more control
 937      * over the encoding process is required.
 938      *
 939      * @param  charsetName
 940      *         The name of a supported {@linkplain java.nio.charset.Charset
 941      *         charset}
 942      *
 943      * @return  The resultant byte array
 944      *
 945      * @throws  UnsupportedEncodingException
 946      *          If the named charset is not supported
 947      *
 948      * @since  1.1
 949      */
 950     public byte[] getBytes(String charsetName)
 951             throws UnsupportedEncodingException {
 952         if (charsetName == null) throw new NullPointerException();
 953         return StringCoding.encode(charsetName, coder(), value);
 954     }
 955 
 956     /**
 957      * Encodes this {@code String} into a sequence of bytes using the given
 958      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 959      * new byte array.
 960      *
 961      * <p> This method always replaces malformed-input and unmappable-character
 962      * sequences with this charset's default replacement byte array.  The
 963      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 964      * control over the encoding process is required.
 965      *
 966      * @param  charset
 967      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 968      *         the {@code String}
 969      *
 970      * @return  The resultant byte array
 971      *
 972      * @since  1.6
 973      */
 974     public byte[] getBytes(Charset charset) {
 975         if (charset == null) throw new NullPointerException();
 976         return StringCoding.encode(charset, coder(), value);
 977      }
 978 
 979     /**
 980      * Encodes this {@code String} into a sequence of bytes using the
 981      * platform's default charset, storing the result into a new byte array.
 982      *
 983      * <p> The behavior of this method when this string cannot be encoded in
 984      * the default charset is unspecified.  The {@link
 985      * java.nio.charset.CharsetEncoder} class should be used when more control
 986      * over the encoding process is required.
 987      *
 988      * @return  The resultant byte array
 989      *
 990      * @since      1.1
 991      */
 992     public byte[] getBytes() {
 993         return StringCoding.encode(coder(), value);
 994     }
 995 
 996     /**
 997      * Compares this string to the specified object.  The result is {@code
 998      * true} if and only if the argument is not {@code null} and is a {@code
 999      * String} object that represents the same sequence of characters as this
1000      * object.
1001      *
1002      * <p>For finer-grained String comparison, refer to
1003      * {@link java.text.Collator}.
1004      *
1005      * @param  anObject
1006      *         The object to compare this {@code String} against
1007      *
1008      * @return  {@code true} if the given object represents a {@code String}
1009      *          equivalent to this string, {@code false} otherwise
1010      *
1011      * @see  #compareTo(String)
1012      * @see  #equalsIgnoreCase(String)
1013      */
1014     public boolean equals(Object anObject) {
1015         if (this == anObject) {
1016             return true;
1017         }
1018         if (anObject instanceof String) {
1019             String aString = (String)anObject;
1020             if (coder() == aString.coder()) {
1021                 return isLatin1() ? StringLatin1.equals(value, aString.value)
1022                                   : StringUTF16.equals(value, aString.value);
1023             }
1024         }
1025         return false;
1026     }
1027 
1028     /**
1029      * Compares this string to the specified {@code StringBuffer}.  The result
1030      * is {@code true} if and only if this {@code String} represents the same
1031      * sequence of characters as the specified {@code StringBuffer}. This method
1032      * synchronizes on the {@code StringBuffer}.
1033      *
1034      * <p>For finer-grained String comparison, refer to
1035      * {@link java.text.Collator}.
1036      *
1037      * @param  sb
1038      *         The {@code StringBuffer} to compare this {@code String} against
1039      *
1040      * @return  {@code true} if this {@code String} represents the same
1041      *          sequence of characters as the specified {@code StringBuffer},
1042      *          {@code false} otherwise
1043      *
1044      * @since  1.4
1045      */
1046     public boolean contentEquals(StringBuffer sb) {
1047         return contentEquals((CharSequence)sb);
1048     }
1049 
1050     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1051         int len = length();
1052         if (len != sb.length()) {
1053             return false;
1054         }
1055         byte v1[] = value;
1056         byte v2[] = sb.getValue();
1057         if (coder() == sb.getCoder()) {
1058             int n = v1.length;
1059             for (int i = 0; i < n; i++) {
1060                 if (v1[i] != v2[i]) {
1061                     return false;
1062                 }
1063             }
1064         } else {
1065             if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1066                 return false;
1067             }
1068             return StringUTF16.contentEquals(v1, v2, len);
1069         }
1070         return true;
1071     }
1072 
1073     /**
1074      * Compares this string to the specified {@code CharSequence}.  The
1075      * result is {@code true} if and only if this {@code String} represents the
1076      * same sequence of char values as the specified sequence. Note that if the
1077      * {@code CharSequence} is a {@code StringBuffer} then the method
1078      * synchronizes on it.
1079      *
1080      * <p>For finer-grained String comparison, refer to
1081      * {@link java.text.Collator}.
1082      *
1083      * @param  cs
1084      *         The sequence to compare this {@code String} against
1085      *
1086      * @return  {@code true} if this {@code String} represents the same
1087      *          sequence of char values as the specified sequence, {@code
1088      *          false} otherwise
1089      *
1090      * @since  1.5
1091      */
1092     public boolean contentEquals(CharSequence cs) {
1093         // Argument is a StringBuffer, StringBuilder
1094         if (cs instanceof AbstractStringBuilder) {
1095             if (cs instanceof StringBuffer) {
1096                 synchronized(cs) {
1097                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1098                 }
1099             } else {
1100                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1101             }
1102         }
1103         // Argument is a String
1104         if (cs instanceof String) {
1105             return equals(cs);
1106         }
1107         // Argument is a generic CharSequence
1108         int n = cs.length();
1109         if (n != length()) {
1110             return false;
1111         }
1112         byte[] val = this.value;
1113         if (isLatin1()) {
1114             for (int i = 0; i < n; i++) {
1115                 if ((val[i] & 0xff) != cs.charAt(i)) {
1116                     return false;
1117                 }
1118             }
1119         } else {
1120             if (!StringUTF16.contentEquals(val, cs, n)) {
1121                 return false;
1122             }
1123         }
1124         return true;
1125     }
1126 
1127     /**
1128      * Compares this {@code String} to another {@code String}, ignoring case
1129      * considerations.  Two strings are considered equal ignoring case if they
1130      * are of the same length and corresponding characters in the two strings
1131      * are equal ignoring case.
1132      *
1133      * <p> Two characters {@code c1} and {@code c2} are considered the same
1134      * ignoring case if at least one of the following is true:
1135      * <ul>
1136      *   <li> The two characters are the same (as compared by the
1137      *        {@code ==} operator)
1138      *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1139      *        on each character produces the same result
1140      * </ul>
1141      *
1142      * <p>Note that this method does <em>not</em> take locale into account, and
1143      * will result in unsatisfactory results for certain locales.  The
1144      * {@link java.text.Collator} class provides locale-sensitive comparison.
1145      *
1146      * @param  anotherString
1147      *         The {@code String} to compare this {@code String} against
1148      *
1149      * @return  {@code true} if the argument is not {@code null} and it
1150      *          represents an equivalent {@code String} ignoring case; {@code
1151      *          false} otherwise
1152      *
1153      * @see  #equals(Object)
1154      */
1155     public boolean equalsIgnoreCase(String anotherString) {
1156         return (this == anotherString) ? true
1157                 : (anotherString != null)
1158                 && (anotherString.length() == length())
1159                 && regionMatches(true, 0, anotherString, 0, length());
1160     }
1161 
1162     /**
1163      * Compares two strings lexicographically.
1164      * The comparison is based on the Unicode value of each character in
1165      * the strings. The character sequence represented by this
1166      * {@code String} object is compared lexicographically to the
1167      * character sequence represented by the argument string. The result is
1168      * a negative integer if this {@code String} object
1169      * lexicographically precedes the argument string. The result is a
1170      * positive integer if this {@code String} object lexicographically
1171      * follows the argument string. The result is zero if the strings
1172      * are equal; {@code compareTo} returns {@code 0} exactly when
1173      * the {@link #equals(Object)} method would return {@code true}.
1174      * <p>
1175      * This is the definition of lexicographic ordering. If two strings are
1176      * different, then either they have different characters at some index
1177      * that is a valid index for both strings, or their lengths are different,
1178      * or both. If they have different characters at one or more index
1179      * positions, let <i>k</i> be the smallest such index; then the string
1180      * whose character at position <i>k</i> has the smaller value, as
1181      * determined by using the {@code <} operator, lexicographically precedes the
1182      * other string. In this case, {@code compareTo} returns the
1183      * difference of the two character values at position {@code k} in
1184      * the two string -- that is, the value:
1185      * <blockquote><pre>
1186      * this.charAt(k)-anotherString.charAt(k)
1187      * </pre></blockquote>
1188      * If there is no index position at which they differ, then the shorter
1189      * string lexicographically precedes the longer string. In this case,
1190      * {@code compareTo} returns the difference of the lengths of the
1191      * strings -- that is, the value:
1192      * <blockquote><pre>
1193      * this.length()-anotherString.length()
1194      * </pre></blockquote>
1195      *
1196      * <p>For finer-grained String comparison, refer to
1197      * {@link java.text.Collator}.
1198      *
1199      * @param   anotherString   the {@code String} to be compared.
1200      * @return  the value {@code 0} if the argument string is equal to
1201      *          this string; a value less than {@code 0} if this string
1202      *          is lexicographically less than the string argument; and a
1203      *          value greater than {@code 0} if this string is
1204      *          lexicographically greater than the string argument.
1205      */
1206     public int compareTo(String anotherString) {
1207         byte v1[] = value;
1208         byte v2[] = anotherString.value;
1209         if (coder() == anotherString.coder()) {
1210             return isLatin1() ? StringLatin1.compareTo(v1, v2)
1211                               : StringUTF16.compareTo(v1, v2);
1212         }
1213         return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1214                           : StringUTF16.compareToLatin1(v1, v2);
1215      }
1216 
1217     /**
1218      * A Comparator that orders {@code String} objects as by
1219      * {@code compareToIgnoreCase}. This comparator is serializable.
1220      * <p>
1221      * Note that this Comparator does <em>not</em> take locale into account,
1222      * and will result in an unsatisfactory ordering for certain locales.
1223      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1224      *
1225      * @see     java.text.Collator
1226      * @since   1.2
1227      */
1228     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1229                                          = new CaseInsensitiveComparator();
1230     private static class CaseInsensitiveComparator
1231             implements Comparator<String>, java.io.Serializable {
1232         // use serialVersionUID from JDK 1.2.2 for interoperability
1233         private static final long serialVersionUID = 8575799808933029326L;
1234 
1235         public int compare(String s1, String s2) {
1236             byte v1[] = s1.value;
1237             byte v2[] = s2.value;
1238             if (s1.coder() == s2.coder()) {
1239                 return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1240                                      : StringUTF16.compareToCI(v1, v2);
1241             }
1242             return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1243                                  : StringUTF16.compareToCI_Latin1(v1, v2);
1244         }
1245 
1246         /** Replaces the de-serialized object. */
1247         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1248     }
1249 
1250     /**
1251      * Compares two strings lexicographically, ignoring case
1252      * differences. This method returns an integer whose sign is that of
1253      * calling {@code compareTo} with normalized versions of the strings
1254      * where case differences have been eliminated by calling
1255      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1256      * each character.
1257      * <p>
1258      * Note that this method does <em>not</em> take locale into account,
1259      * and will result in an unsatisfactory ordering for certain locales.
1260      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1261      *
1262      * @param   str   the {@code String} to be compared.
1263      * @return  a negative integer, zero, or a positive integer as the
1264      *          specified String is greater than, equal to, or less
1265      *          than this String, ignoring case considerations.
1266      * @see     java.text.Collator
1267      * @since   1.2
1268      */
1269     public int compareToIgnoreCase(String str) {
1270         return CASE_INSENSITIVE_ORDER.compare(this, str);
1271     }
1272 
1273     /**
1274      * Tests if two string regions are equal.
1275      * <p>
1276      * A substring of this {@code String} object is compared to a substring
1277      * of the argument other. The result is true if these substrings
1278      * represent identical character sequences. The substring of this
1279      * {@code String} object to be compared begins at index {@code toffset}
1280      * and has length {@code len}. The substring of other to be compared
1281      * begins at index {@code ooffset} and has length {@code len}. The
1282      * result is {@code false} if and only if at least one of the following
1283      * is true:
1284      * <ul><li>{@code toffset} is negative.
1285      * <li>{@code ooffset} is negative.
1286      * <li>{@code toffset+len} is greater than the length of this
1287      * {@code String} object.
1288      * <li>{@code ooffset+len} is greater than the length of the other
1289      * argument.
1290      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1291      * such that:
1292      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1293      * <i>k</i>{@code )}
1294      * </ul>
1295      *
1296      * <p>Note that this method does <em>not</em> take locale into account.  The
1297      * {@link java.text.Collator} class provides locale-sensitive comparison.
1298      *
1299      * @param   toffset   the starting offset of the subregion in this string.
1300      * @param   other     the string argument.
1301      * @param   ooffset   the starting offset of the subregion in the string
1302      *                    argument.
1303      * @param   len       the number of characters to compare.
1304      * @return  {@code true} if the specified subregion of this string
1305      *          exactly matches the specified subregion of the string argument;
1306      *          {@code false} otherwise.
1307      */
1308     public boolean regionMatches(int toffset, String other, int ooffset, int len) {
1309         byte tv[] = value;
1310         byte ov[] = other.value;
1311         // Note: toffset, ooffset, or len might be near -1>>>1.
1312         if ((ooffset < 0) || (toffset < 0) ||
1313              (toffset > (long)length() - len) ||
1314              (ooffset > (long)other.length() - len)) {
1315             return false;
1316         }
1317         if (coder() == other.coder()) {
1318             if (!isLatin1() && (len > 0)) {
1319                 toffset = toffset << 1;
1320                 ooffset = ooffset << 1;
1321                 len = len << 1;
1322             }
1323             while (len-- > 0) {
1324                 if (tv[toffset++] != ov[ooffset++]) {
1325                     return false;
1326                 }
1327             }
1328         } else {
1329             if (coder() == LATIN1) {
1330                 while (len-- > 0) {
1331                     if (StringLatin1.getChar(tv, toffset++) !=
1332                         StringUTF16.getChar(ov, ooffset++)) {
1333                         return false;
1334                     }
1335                 }
1336             } else {
1337                 while (len-- > 0) {
1338                     if (StringUTF16.getChar(tv, toffset++) !=
1339                         StringLatin1.getChar(ov, ooffset++)) {
1340                         return false;
1341                     }
1342                 }
1343             }
1344         }
1345         return true;
1346     }
1347 
1348     /**
1349      * Tests if two string regions are equal.
1350      * <p>
1351      * A substring of this {@code String} object is compared to a substring
1352      * of the argument {@code other}. The result is {@code true} if these
1353      * substrings represent character sequences that are the same, ignoring
1354      * case if and only if {@code ignoreCase} is true. The substring of
1355      * this {@code String} object to be compared begins at index
1356      * {@code toffset} and has length {@code len}. The substring of
1357      * {@code other} to be compared begins at index {@code ooffset} and
1358      * has length {@code len}. The result is {@code false} if and only if
1359      * at least one of the following is true:
1360      * <ul><li>{@code toffset} is negative.
1361      * <li>{@code ooffset} is negative.
1362      * <li>{@code toffset+len} is greater than the length of this
1363      * {@code String} object.
1364      * <li>{@code ooffset+len} is greater than the length of the other
1365      * argument.
1366      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1367      * integer <i>k</i> less than {@code len} such that:
1368      * <blockquote><pre>
1369      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1370      * </pre></blockquote>
1371      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1372      * integer <i>k</i> less than {@code len} such that:
1373      * <blockquote><pre>
1374      * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1375      Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1376      * </pre></blockquote>
1377      * </ul>
1378      *
1379      * <p>Note that this method does <em>not</em> take locale into account,
1380      * and will result in unsatisfactory results for certain locales when
1381      * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1382      * provides locale-sensitive comparison.
1383      *
1384      * @param   ignoreCase   if {@code true}, ignore case when comparing
1385      *                       characters.
1386      * @param   toffset      the starting offset of the subregion in this
1387      *                       string.
1388      * @param   other        the string argument.
1389      * @param   ooffset      the starting offset of the subregion in the string
1390      *                       argument.
1391      * @param   len          the number of characters to compare.
1392      * @return  {@code true} if the specified subregion of this string
1393      *          matches the specified subregion of the string argument;
1394      *          {@code false} otherwise. Whether the matching is exact
1395      *          or case insensitive depends on the {@code ignoreCase}
1396      *          argument.
1397      */
1398     public boolean regionMatches(boolean ignoreCase, int toffset,
1399             String other, int ooffset, int len) {
1400         if (!ignoreCase) {
1401             return regionMatches(toffset, other, ooffset, len);
1402         }
1403         // Note: toffset, ooffset, or len might be near -1>>>1.
1404         if ((ooffset < 0) || (toffset < 0)
1405                 || (toffset > (long)length() - len)
1406                 || (ooffset > (long)other.length() - len)) {
1407             return false;
1408         }
1409         byte tv[] = value;
1410         byte ov[] = other.value;
1411         if (coder() == other.coder()) {
1412             return isLatin1()
1413               ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1414               : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1415         }
1416         return isLatin1()
1417               ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1418               : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1419     }
1420 
1421     /**
1422      * Tests if the substring of this string beginning at the
1423      * specified index starts with the specified prefix.
1424      *
1425      * @param   prefix    the prefix.
1426      * @param   toffset   where to begin looking in this string.
1427      * @return  {@code true} if the character sequence represented by the
1428      *          argument is a prefix of the substring of this object starting
1429      *          at index {@code toffset}; {@code false} otherwise.
1430      *          The result is {@code false} if {@code toffset} is
1431      *          negative or greater than the length of this
1432      *          {@code String} object; otherwise the result is the same
1433      *          as the result of the expression
1434      *          <pre>
1435      *          this.substring(toffset).startsWith(prefix)
1436      *          </pre>
1437      */
1438     public boolean startsWith(String prefix, int toffset) {
1439         // Note: toffset might be near -1>>>1.
1440         if (toffset < 0 || toffset > length() - prefix.length()) {
1441             return false;
1442         }
1443         byte ta[] = value;
1444         byte pa[] = prefix.value;
1445         int po = 0;
1446         int pc = pa.length;
1447         if (coder() == prefix.coder()) {
1448             int to = isLatin1() ? toffset : toffset << 1;
1449             while (po < pc) {
1450                 if (ta[to++] != pa[po++]) {
1451                     return false;
1452                 }
1453             }
1454         } else {
1455             if (isLatin1()) {  // && pcoder == UTF16
1456                 return false;
1457             }
1458             // coder == UTF16 && pcoder == LATIN1)
1459             while (po < pc) {
1460                 if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1461                     return false;
1462                }
1463             }
1464         }
1465         return true;
1466     }
1467 
1468     /**
1469      * Tests if this string starts with the specified prefix.
1470      *
1471      * @param   prefix   the prefix.
1472      * @return  {@code true} if the character sequence represented by the
1473      *          argument is a prefix of the character sequence represented by
1474      *          this string; {@code false} otherwise.
1475      *          Note also that {@code true} will be returned if the
1476      *          argument is an empty string or is equal to this
1477      *          {@code String} object as determined by the
1478      *          {@link #equals(Object)} method.
1479      * @since   1.0
1480      */
1481     public boolean startsWith(String prefix) {
1482         return startsWith(prefix, 0);
1483     }
1484 
1485     /**
1486      * Tests if this string ends with the specified suffix.
1487      *
1488      * @param   suffix   the suffix.
1489      * @return  {@code true} if the character sequence represented by the
1490      *          argument is a suffix of the character sequence represented by
1491      *          this object; {@code false} otherwise. Note that the
1492      *          result will be {@code true} if the argument is the
1493      *          empty string or is equal to this {@code String} object
1494      *          as determined by the {@link #equals(Object)} method.
1495      */
1496     public boolean endsWith(String suffix) {
1497         return startsWith(suffix, length() - suffix.length());
1498     }
1499 
1500     /**
1501      * Returns a hash code for this string. The hash code for a
1502      * {@code String} object is computed as
1503      * <blockquote><pre>
1504      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1505      * </pre></blockquote>
1506      * using {@code int} arithmetic, where {@code s[i]} is the
1507      * <i>i</i>th character of the string, {@code n} is the length of
1508      * the string, and {@code ^} indicates exponentiation.
1509      * (The hash value of the empty string is zero.)
1510      *
1511      * @return  a hash code value for this object.
1512      */
1513     public int hashCode() {
1514         int h = hash;
1515         if (h == 0 && value.length > 0) {
1516             hash = h = isLatin1() ? StringLatin1.hashCode(value)
1517                                   : StringUTF16.hashCode(value);
1518         }
1519         return h;
1520     }
1521 
1522     /**
1523      * Returns the index within this string of the first occurrence of
1524      * the specified character. If a character with value
1525      * {@code ch} occurs in the character sequence represented by
1526      * this {@code String} object, then the index (in Unicode
1527      * code units) of the first such occurrence is returned. For
1528      * values of {@code ch} in the range from 0 to 0xFFFF
1529      * (inclusive), this is the smallest value <i>k</i> such that:
1530      * <blockquote><pre>
1531      * this.charAt(<i>k</i>) == ch
1532      * </pre></blockquote>
1533      * is true. For other values of {@code ch}, it is the
1534      * smallest value <i>k</i> such that:
1535      * <blockquote><pre>
1536      * this.codePointAt(<i>k</i>) == ch
1537      * </pre></blockquote>
1538      * is true. In either case, if no such character occurs in this
1539      * string, then {@code -1} is returned.
1540      *
1541      * @param   ch   a character (Unicode code point).
1542      * @return  the index of the first occurrence of the character in the
1543      *          character sequence represented by this object, or
1544      *          {@code -1} if the character does not occur.
1545      */
1546     public int indexOf(int ch) {
1547         return indexOf(ch, 0);
1548     }
1549 
1550     /**
1551      * Returns the index within this string of the first occurrence of the
1552      * specified character, starting the search at the specified index.
1553      * <p>
1554      * If a character with value {@code ch} occurs in the
1555      * character sequence represented by this {@code String}
1556      * object at an index no smaller than {@code fromIndex}, then
1557      * the index of the first such occurrence is returned. For values
1558      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1559      * this is the smallest value <i>k</i> such that:
1560      * <blockquote><pre>
1561      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1562      * </pre></blockquote>
1563      * is true. For other values of {@code ch}, it is the
1564      * smallest value <i>k</i> such that:
1565      * <blockquote><pre>
1566      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1567      * </pre></blockquote>
1568      * is true. In either case, if no such character occurs in this
1569      * string at or after position {@code fromIndex}, then
1570      * {@code -1} is returned.
1571      *
1572      * <p>
1573      * There is no restriction on the value of {@code fromIndex}. If it
1574      * is negative, it has the same effect as if it were zero: this entire
1575      * string may be searched. If it is greater than the length of this
1576      * string, it has the same effect as if it were equal to the length of
1577      * this string: {@code -1} is returned.
1578      *
1579      * <p>All indices are specified in {@code char} values
1580      * (Unicode code units).
1581      *
1582      * @param   ch          a character (Unicode code point).
1583      * @param   fromIndex   the index to start the search from.
1584      * @return  the index of the first occurrence of the character in the
1585      *          character sequence represented by this object that is greater
1586      *          than or equal to {@code fromIndex}, or {@code -1}
1587      *          if the character does not occur.
1588      */
1589     public int indexOf(int ch, int fromIndex) {
1590         return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1591                           : StringUTF16.indexOf(value, ch, fromIndex);
1592     }
1593 
1594     /**
1595      * Returns the index within this string of the last occurrence of
1596      * the specified character. For values of {@code ch} in the
1597      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1598      * units) returned is the largest value <i>k</i> such that:
1599      * <blockquote><pre>
1600      * this.charAt(<i>k</i>) == ch
1601      * </pre></blockquote>
1602      * is true. For other values of {@code ch}, it is the
1603      * largest value <i>k</i> such that:
1604      * <blockquote><pre>
1605      * this.codePointAt(<i>k</i>) == ch
1606      * </pre></blockquote>
1607      * is true.  In either case, if no such character occurs in this
1608      * string, then {@code -1} is returned.  The
1609      * {@code String} is searched backwards starting at the last
1610      * character.
1611      *
1612      * @param   ch   a character (Unicode code point).
1613      * @return  the index of the last occurrence of the character in the
1614      *          character sequence represented by this object, or
1615      *          {@code -1} if the character does not occur.
1616      */
1617     public int lastIndexOf(int ch) {
1618         return lastIndexOf(ch, length() - 1);
1619     }
1620 
1621     /**
1622      * Returns the index within this string of the last occurrence of
1623      * the specified character, searching backward starting at the
1624      * specified index. For values of {@code ch} in the range
1625      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1626      * value <i>k</i> such that:
1627      * <blockquote><pre>
1628      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1629      * </pre></blockquote>
1630      * is true. For other values of {@code ch}, it is the
1631      * largest value <i>k</i> such that:
1632      * <blockquote><pre>
1633      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1634      * </pre></blockquote>
1635      * is true. In either case, if no such character occurs in this
1636      * string at or before position {@code fromIndex}, then
1637      * {@code -1} is returned.
1638      *
1639      * <p>All indices are specified in {@code char} values
1640      * (Unicode code units).
1641      *
1642      * @param   ch          a character (Unicode code point).
1643      * @param   fromIndex   the index to start the search from. There is no
1644      *          restriction on the value of {@code fromIndex}. If it is
1645      *          greater than or equal to the length of this string, it has
1646      *          the same effect as if it were equal to one less than the
1647      *          length of this string: this entire string may be searched.
1648      *          If it is negative, it has the same effect as if it were -1:
1649      *          -1 is returned.
1650      * @return  the index of the last occurrence of the character in the
1651      *          character sequence represented by this object that is less
1652      *          than or equal to {@code fromIndex}, or {@code -1}
1653      *          if the character does not occur before that point.
1654      */
1655     public int lastIndexOf(int ch, int fromIndex) {
1656         return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
1657                           : StringUTF16.lastIndexOf(value, ch, fromIndex);
1658     }
1659 
1660     /**
1661      * Returns the index within this string of the first occurrence of the
1662      * specified substring.
1663      *
1664      * <p>The returned index is the smallest value {@code k} for which:
1665      * <pre>{@code
1666      * this.startsWith(str, k)
1667      * }</pre>
1668      * If no such value of {@code k} exists, then {@code -1} is returned.
1669      *
1670      * @param   str   the substring to search for.
1671      * @return  the index of the first occurrence of the specified substring,
1672      *          or {@code -1} if there is no such occurrence.
1673      */
1674     public int indexOf(String str) {
1675         if (coder() == str.coder()) {
1676             return isLatin1() ? StringLatin1.indexOf(value, str.value)
1677                               : StringUTF16.indexOf(value, str.value);
1678         }
1679         if (coder() == LATIN1) {  // str.coder == UTF16
1680             return -1;
1681         }
1682         return StringUTF16.indexOfLatin1(value, str.value);
1683     }
1684 
1685     /**
1686      * Returns the index within this string of the first occurrence of the
1687      * specified substring, starting at the specified index.
1688      *
1689      * <p>The returned index is the smallest value {@code k} for which:
1690      * <pre>{@code
1691      *     k >= Math.min(fromIndex, this.length()) &&
1692      *                   this.startsWith(str, k)
1693      * }</pre>
1694      * If no such value of {@code k} exists, then {@code -1} is returned.
1695      *
1696      * @param   str         the substring to search for.
1697      * @param   fromIndex   the index from which to start the search.
1698      * @return  the index of the first occurrence of the specified substring,
1699      *          starting at the specified index,
1700      *          or {@code -1} if there is no such occurrence.
1701      */
1702     public int indexOf(String str, int fromIndex) {
1703         return indexOf(value, coder(), length(), str, fromIndex);
1704     }
1705 
1706     /**
1707      * Code shared by String and AbstractStringBuilder to do searches. The
1708      * source is the character array being searched, and the target
1709      * is the string being searched for.
1710      *
1711      * @param   src       the characters being searched.
1712      * @param   srcCoder  the coder of the source string.
1713      * @param   srcCount  length of the source string.
1714      * @param   tgtStr    the characters being searched for.
1715      * @param   fromIndex the index to begin searching from.
1716      */
1717     static int indexOf(byte[] src, byte srcCoder, int srcCount,
1718                        String tgtStr, int fromIndex) {
1719         byte[] tgt    = tgtStr.value;
1720         byte tgtCoder = tgtStr.coder();
1721         int tgtCount  = tgtStr.length();
1722 
1723         if (fromIndex >= srcCount) {
1724             return (tgtCount == 0 ? srcCount : -1);
1725         }
1726         if (fromIndex < 0) {
1727             fromIndex = 0;
1728         }
1729         if (tgtCount == 0) {
1730             return fromIndex;
1731         }
1732         if (tgtCount > srcCount) {
1733             return -1;
1734         }
1735         if (srcCoder == tgtCoder) {
1736             return srcCoder == LATIN1
1737                 ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
1738                 : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
1739         }
1740         if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
1741             return -1;
1742         }
1743         // srcCoder == UTF16 && tgtCoder == LATIN1) {
1744         return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1745     }
1746 
1747     /**
1748      * Returns the index within this string of the last occurrence of the
1749      * specified substring.  The last occurrence of the empty string ""
1750      * is considered to occur at the index value {@code this.length()}.
1751      *
1752      * <p>The returned index is the largest value {@code k} for which:
1753      * <pre>{@code
1754      * this.startsWith(str, k)
1755      * }</pre>
1756      * If no such value of {@code k} exists, then {@code -1} is returned.
1757      *
1758      * @param   str   the substring to search for.
1759      * @return  the index of the last occurrence of the specified substring,
1760      *          or {@code -1} if there is no such occurrence.
1761      */
1762     public int lastIndexOf(String str) {
1763         return lastIndexOf(str, length());
1764     }
1765 
1766     /**
1767      * Returns the index within this string of the last occurrence of the
1768      * specified substring, searching backward starting at the specified index.
1769      *
1770      * <p>The returned index is the largest value {@code k} for which:
1771      * <pre>{@code
1772      *     k <= Math.min(fromIndex, this.length()) &&
1773      *                   this.startsWith(str, k)
1774      * }</pre>
1775      * If no such value of {@code k} exists, then {@code -1} is returned.
1776      *
1777      * @param   str         the substring to search for.
1778      * @param   fromIndex   the index to start the search from.
1779      * @return  the index of the last occurrence of the specified substring,
1780      *          searching backward from the specified index,
1781      *          or {@code -1} if there is no such occurrence.
1782      */
1783     public int lastIndexOf(String str, int fromIndex) {
1784         return lastIndexOf(value, coder(), length(), str, fromIndex);
1785     }
1786 
1787     /**
1788      * Code shared by String and AbstractStringBuilder to do searches. The
1789      * source is the character array being searched, and the target
1790      * is the string being searched for.
1791      *
1792      * @param   src         the characters being searched.
1793      * @param   srcCoder    coder handles the mapping between bytes/chars
1794      * @param   srcCount    count of the source string.
1795      * @param   tgt         the characters being searched for.
1796      * @param   fromIndex   the index to begin searching from.
1797      */
1798     static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
1799                            String tgtStr, int fromIndex) {
1800         byte[] tgt = tgtStr.value;
1801         byte tgtCoder = tgtStr.coder();
1802         int tgtCount = tgtStr.length();
1803         /*
1804          * Check arguments; return immediately where possible. For
1805          * consistency, don't check for null str.
1806          */
1807         int rightIndex = srcCount - tgtCount;
1808         if (fromIndex > rightIndex) {
1809             fromIndex = rightIndex;
1810         }
1811         if (fromIndex < 0) {
1812             return -1;
1813         }
1814         /* Empty string always matches. */
1815         if (tgtCount == 0) {
1816             return fromIndex;
1817         }
1818         if (srcCoder == tgtCoder) {
1819             return srcCoder == LATIN1
1820                 ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
1821                 : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
1822         }
1823         if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
1824             return -1;
1825         }
1826         // srcCoder == UTF16 && tgtCoder == LATIN1
1827         return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1828     }
1829 
1830     /**
1831      * Returns a string that is a substring of this string. The
1832      * substring begins with the character at the specified index and
1833      * extends to the end of this string. <p>
1834      * Examples:
1835      * <blockquote><pre>
1836      * "unhappy".substring(2) returns "happy"
1837      * "Harbison".substring(3) returns "bison"
1838      * "emptiness".substring(9) returns "" (an empty string)
1839      * </pre></blockquote>
1840      *
1841      * @param      beginIndex   the beginning index, inclusive.
1842      * @return     the specified substring.
1843      * @exception  IndexOutOfBoundsException  if
1844      *             {@code beginIndex} is negative or larger than the
1845      *             length of this {@code String} object.
1846      */
1847     public String substring(int beginIndex) {
1848         if (beginIndex < 0) {
1849             throw new StringIndexOutOfBoundsException(beginIndex);
1850         }
1851         int subLen = length() - beginIndex;
1852         if (subLen < 0) {
1853             throw new StringIndexOutOfBoundsException(subLen);
1854         }
1855         if (beginIndex == 0) {
1856             return this;
1857         }
1858         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1859                           : StringUTF16.newString(value, beginIndex, subLen);
1860     }
1861 
1862     /**
1863      * Returns a string that is a substring of this string. The
1864      * substring begins at the specified {@code beginIndex} and
1865      * extends to the character at index {@code endIndex - 1}.
1866      * Thus the length of the substring is {@code endIndex-beginIndex}.
1867      * <p>
1868      * Examples:
1869      * <blockquote><pre>
1870      * "hamburger".substring(4, 8) returns "urge"
1871      * "smiles".substring(1, 5) returns "mile"
1872      * </pre></blockquote>
1873      *
1874      * @param      beginIndex   the beginning index, inclusive.
1875      * @param      endIndex     the ending index, exclusive.
1876      * @return     the specified substring.
1877      * @exception  IndexOutOfBoundsException  if the
1878      *             {@code beginIndex} is negative, or
1879      *             {@code endIndex} is larger than the length of
1880      *             this {@code String} object, or
1881      *             {@code beginIndex} is larger than
1882      *             {@code endIndex}.
1883      */
1884     public String substring(int beginIndex, int endIndex) {
1885         int length = length();
1886         checkBoundsBeginEnd(beginIndex, endIndex, length);
1887         int subLen = endIndex - beginIndex;
1888         if (beginIndex == 0 && endIndex == length) {
1889             return this;
1890         }
1891         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1892                           : StringUTF16.newString(value, beginIndex, subLen);
1893     }
1894 
1895     /**
1896      * Returns a character sequence that is a subsequence of this sequence.
1897      *
1898      * <p> An invocation of this method of the form
1899      *
1900      * <blockquote><pre>
1901      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1902      *
1903      * behaves in exactly the same way as the invocation
1904      *
1905      * <blockquote><pre>
1906      * str.substring(begin,&nbsp;end)</pre></blockquote>
1907      *
1908      * @apiNote
1909      * This method is defined so that the {@code String} class can implement
1910      * the {@link CharSequence} interface.
1911      *
1912      * @param   beginIndex   the begin index, inclusive.
1913      * @param   endIndex     the end index, exclusive.
1914      * @return  the specified subsequence.
1915      *
1916      * @throws  IndexOutOfBoundsException
1917      *          if {@code beginIndex} or {@code endIndex} is negative,
1918      *          if {@code endIndex} is greater than {@code length()},
1919      *          or if {@code beginIndex} is greater than {@code endIndex}
1920      *
1921      * @since 1.4
1922      * @spec JSR-51
1923      */
1924     public CharSequence subSequence(int beginIndex, int endIndex) {
1925         return this.substring(beginIndex, endIndex);
1926     }
1927 
1928     /**
1929      * Concatenates the specified string to the end of this string.
1930      * <p>
1931      * If the length of the argument string is {@code 0}, then this
1932      * {@code String} object is returned. Otherwise, a
1933      * {@code String} object is returned that represents a character
1934      * sequence that is the concatenation of the character sequence
1935      * represented by this {@code String} object and the character
1936      * sequence represented by the argument string.<p>
1937      * Examples:
1938      * <blockquote><pre>
1939      * "cares".concat("s") returns "caress"
1940      * "to".concat("get").concat("her") returns "together"
1941      * </pre></blockquote>
1942      *
1943      * @param   str   the {@code String} that is concatenated to the end
1944      *                of this {@code String}.
1945      * @return  a string that represents the concatenation of this object's
1946      *          characters followed by the string argument's characters.
1947      */
1948     public String concat(String str) {
1949         int olen = str.length();
1950         if (olen == 0) {
1951             return this;
1952         }
1953         if (coder() == str.coder()) {
1954             byte[] val = this.value;
1955             byte[] oval = str.value;
1956             int len = val.length + oval.length;
1957             byte[] buf = Arrays.copyOf(val, len);
1958             System.arraycopy(oval, 0, buf, val.length, oval.length);
1959             return new String(buf, coder);
1960         }
1961         int len = length();
1962         byte[] buf = StringUTF16.newBytesFor(len + olen);
1963         getBytes(buf, 0, UTF16);
1964         str.getBytes(buf, len, UTF16);
1965         return new String(buf, UTF16);
1966     }
1967 
1968     /**
1969      * Returns a string resulting from replacing all occurrences of
1970      * {@code oldChar} in this string with {@code newChar}.
1971      * <p>
1972      * If the character {@code oldChar} does not occur in the
1973      * character sequence represented by this {@code String} object,
1974      * then a reference to this {@code String} object is returned.
1975      * Otherwise, a {@code String} object is returned that
1976      * represents a character sequence identical to the character sequence
1977      * represented by this {@code String} object, except that every
1978      * occurrence of {@code oldChar} is replaced by an occurrence
1979      * of {@code newChar}.
1980      * <p>
1981      * Examples:
1982      * <blockquote><pre>
1983      * "mesquite in your cellar".replace('e', 'o')
1984      *         returns "mosquito in your collar"
1985      * "the war of baronets".replace('r', 'y')
1986      *         returns "the way of bayonets"
1987      * "sparring with a purple porpoise".replace('p', 't')
1988      *         returns "starring with a turtle tortoise"
1989      * "JonL".replace('q', 'x') returns "JonL" (no change)
1990      * </pre></blockquote>
1991      *
1992      * @param   oldChar   the old character.
1993      * @param   newChar   the new character.
1994      * @return  a string derived from this string by replacing every
1995      *          occurrence of {@code oldChar} with {@code newChar}.
1996      */
1997     public String replace(char oldChar, char newChar) {
1998         if (oldChar != newChar) {
1999             String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
2000                                     : StringUTF16.replace(value, oldChar, newChar);
2001             if (ret != null) {
2002                 return ret;
2003             }
2004         }
2005         return this;
2006     }
2007 
2008     /**
2009      * Tells whether or not this string matches the given <a
2010      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2011      *
2012      * <p> An invocation of this method of the form
2013      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2014      * same result as the expression
2015      *
2016      * <blockquote>
2017      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2018      * matches(<i>regex</i>, <i>str</i>)}
2019      * </blockquote>
2020      *
2021      * @param   regex
2022      *          the regular expression to which this string is to be matched
2023      *
2024      * @return  {@code true} if, and only if, this string matches the
2025      *          given regular expression
2026      *
2027      * @throws  PatternSyntaxException
2028      *          if the regular expression's syntax is invalid
2029      *
2030      * @see java.util.regex.Pattern
2031      *
2032      * @since 1.4
2033      * @spec JSR-51
2034      */
2035     public boolean matches(String regex) {
2036         return Pattern.matches(regex, this);
2037     }
2038 
2039     /**
2040      * Returns true if and only if this string contains the specified
2041      * sequence of char values.
2042      *
2043      * @param s the sequence to search for
2044      * @return true if this string contains {@code s}, false otherwise
2045      * @since 1.5
2046      */
2047     public boolean contains(CharSequence s) {
2048         return indexOf(s.toString()) >= 0;
2049     }
2050 
2051     /**
2052      * Replaces the first substring of this string that matches the given <a
2053      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2054      * given replacement.
2055      *
2056      * <p> An invocation of this method of the form
2057      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2058      * yields exactly the same result as the expression
2059      *
2060      * <blockquote>
2061      * <code>
2062      * {@link java.util.regex.Pattern}.{@link
2063      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2064      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2065      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2066      * </code>
2067      * </blockquote>
2068      *
2069      *<p>
2070      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2071      * replacement string may cause the results to be different than if it were
2072      * being treated as a literal replacement string; see
2073      * {@link java.util.regex.Matcher#replaceFirst}.
2074      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2075      * meaning of these characters, if desired.
2076      *
2077      * @param   regex
2078      *          the regular expression to which this string is to be matched
2079      * @param   replacement
2080      *          the string to be substituted for the first match
2081      *
2082      * @return  The resulting {@code String}
2083      *
2084      * @throws  PatternSyntaxException
2085      *          if the regular expression's syntax is invalid
2086      *
2087      * @see java.util.regex.Pattern
2088      *
2089      * @since 1.4
2090      * @spec JSR-51
2091      */
2092     public String replaceFirst(String regex, String replacement) {
2093         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2094     }
2095 
2096     /**
2097      * Replaces each substring of this string that matches the given <a
2098      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2099      * given replacement.
2100      *
2101      * <p> An invocation of this method of the form
2102      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2103      * yields exactly the same result as the expression
2104      *
2105      * <blockquote>
2106      * <code>
2107      * {@link java.util.regex.Pattern}.{@link
2108      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2109      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2110      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2111      * </code>
2112      * </blockquote>
2113      *
2114      *<p>
2115      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2116      * replacement string may cause the results to be different than if it were
2117      * being treated as a literal replacement string; see
2118      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2119      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2120      * meaning of these characters, if desired.
2121      *
2122      * @param   regex
2123      *          the regular expression to which this string is to be matched
2124      * @param   replacement
2125      *          the string to be substituted for each match
2126      *
2127      * @return  The resulting {@code String}
2128      *
2129      * @throws  PatternSyntaxException
2130      *          if the regular expression's syntax is invalid
2131      *
2132      * @see java.util.regex.Pattern
2133      *
2134      * @since 1.4
2135      * @spec JSR-51
2136      */
2137     public String replaceAll(String regex, String replacement) {
2138         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2139     }
2140 
2141     /**
2142      * Replaces each substring of this string that matches the literal target
2143      * sequence with the specified literal replacement sequence. The
2144      * replacement proceeds from the beginning of the string to the end, for
2145      * example, replacing "aa" with "b" in the string "aaa" will result in
2146      * "ba" rather than "ab".
2147      *
2148      * @param  target The sequence of char values to be replaced
2149      * @param  replacement The replacement sequence of char values
2150      * @return  The resulting string
2151      * @since 1.5
2152      */
2153     public String replace(CharSequence target, CharSequence replacement) {
2154         String tgtStr = target.toString();
2155         String replStr = replacement.toString();
2156         int j = indexOf(tgtStr);
2157         if (j < 0) {
2158             return this;
2159         }
2160         int tgtLen = tgtStr.length();
2161         int tgtLen1 = Math.max(tgtLen, 1);
2162         int thisLen = length();
2163 
2164         int newLenHint = thisLen - tgtLen + replStr.length();
2165         if (newLenHint < 0) {
2166             throw new OutOfMemoryError();
2167         }
2168         StringBuilder sb = new StringBuilder(newLenHint);
2169         int i = 0;
2170         do {
2171             sb.append(this, i, j).append(replStr);
2172             i = j + tgtLen;
2173         } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2174         return sb.append(this, i, thisLen).toString();
2175     }
2176 
2177     /**
2178      * Splits this string around matches of the given
2179      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2180      *
2181      * <p> The array returned by this method contains each substring of this
2182      * string that is terminated by another substring that matches the given
2183      * expression or is terminated by the end of the string.  The substrings in
2184      * the array are in the order in which they occur in this string.  If the
2185      * expression does not match any part of the input then the resulting array
2186      * has just one element, namely this string.
2187      *
2188      * <p> When there is a positive-width match at the beginning of this
2189      * string then an empty leading substring is included at the beginning
2190      * of the resulting array. A zero-width match at the beginning however
2191      * never produces such empty leading substring.
2192      *
2193      * <p> The {@code limit} parameter controls the number of times the
2194      * pattern is applied and therefore affects the length of the resulting
2195      * array.  If the limit <i>n</i> is greater than zero then the pattern
2196      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2197      * length will be no greater than <i>n</i>, and the array's last entry
2198      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2199      * is non-positive then the pattern will be applied as many times as
2200      * possible and the array can have any length.  If <i>n</i> is zero then
2201      * the pattern will be applied as many times as possible, the array can
2202      * have any length, and trailing empty strings will be discarded.
2203      *
2204      * <p> The string {@code "boo:and:foo"}, for example, yields the
2205      * following results with these parameters:
2206      *
2207      * <blockquote><table class="plain">
2208      * <caption style="display:none">Split example showing regex, limit, and result</caption>
2209      * <thead>
2210      * <tr>
2211      *     <th scope="col">Regex</th>
2212      *     <th scope="col">Limit</th>
2213      *     <th scope="col">Result</th>
2214      * </tr>
2215      * </thead>
2216      * <tbody>
2217      * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
2218      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
2219      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2220      * <tr><!-- : -->
2221      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2222      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2223      * <tr><!-- : -->
2224      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2225      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2226      * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
2227      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2228      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2229      * <tr><!-- o -->
2230      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2231      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2232      * <tr><!-- o -->
2233      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
2234      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2235      * </tbody>
2236      * </table></blockquote>
2237      *
2238      * <p> An invocation of this method of the form
2239      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2240      * yields the same result as the expression
2241      *
2242      * <blockquote>
2243      * <code>
2244      * {@link java.util.regex.Pattern}.{@link
2245      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2246      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2247      * </code>
2248      * </blockquote>
2249      *
2250      *
2251      * @param  regex
2252      *         the delimiting regular expression
2253      *
2254      * @param  limit
2255      *         the result threshold, as described above
2256      *
2257      * @return  the array of strings computed by splitting this string
2258      *          around matches of the given regular expression
2259      *
2260      * @throws  PatternSyntaxException
2261      *          if the regular expression's syntax is invalid
2262      *
2263      * @see java.util.regex.Pattern
2264      *
2265      * @since 1.4
2266      * @spec JSR-51
2267      */
2268     public String[] split(String regex, int limit) {
2269         /* fastpath if the regex is a
2270          (1)one-char String and this character is not one of the
2271             RegEx's meta characters ".$|()[{^?*+\\", or
2272          (2)two-char String and the first char is the backslash and
2273             the second is not the ascii digit or ascii letter.
2274          */
2275         char ch = 0;
2276         if (((regex.length() == 1 &&
2277              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2278              (regex.length() == 2 &&
2279               regex.charAt(0) == '\\' &&
2280               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2281               ((ch-'a')|('z'-ch)) < 0 &&
2282               ((ch-'A')|('Z'-ch)) < 0)) &&
2283             (ch < Character.MIN_HIGH_SURROGATE ||
2284              ch > Character.MAX_LOW_SURROGATE))
2285         {
2286             int off = 0;
2287             int next = 0;
2288             boolean limited = limit > 0;
2289             ArrayList<String> list = new ArrayList<>();
2290             while ((next = indexOf(ch, off)) != -1) {
2291                 if (!limited || list.size() < limit - 1) {
2292                     list.add(substring(off, next));
2293                     off = next + 1;
2294                 } else {    // last one
2295                     //assert (list.size() == limit - 1);
2296                     int last = length();
2297                     list.add(substring(off, last));
2298                     off = last;
2299                     break;
2300                 }
2301             }
2302             // If no match was found, return this
2303             if (off == 0)
2304                 return new String[]{this};
2305 
2306             // Add remaining segment
2307             if (!limited || list.size() < limit)
2308                 list.add(substring(off, length()));
2309 
2310             // Construct result
2311             int resultSize = list.size();
2312             if (limit == 0) {
2313                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2314                     resultSize--;
2315                 }
2316             }
2317             String[] result = new String[resultSize];
2318             return list.subList(0, resultSize).toArray(result);
2319         }
2320         return Pattern.compile(regex).split(this, limit);
2321     }
2322 
2323     /**
2324      * Splits this string around matches of the given <a
2325      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2326      *
2327      * <p> This method works as if by invoking the two-argument {@link
2328      * #split(String, int) split} method with the given expression and a limit
2329      * argument of zero.  Trailing empty strings are therefore not included in
2330      * the resulting array.
2331      *
2332      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2333      * results with these expressions:
2334      *
2335      * <blockquote><table class="plain">
2336      * <caption style="display:none">Split examples showing regex and result</caption>
2337      * <thead>
2338      * <tr>
2339      *  <th scope="col">Regex</th>
2340      *  <th scope="col">Result</th>
2341      * </tr>
2342      * </thead>
2343      * <tbody>
2344      * <tr><th scope="row" style="text-weight:normal">:</th>
2345      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2346      * <tr><th scope="row" style="text-weight:normal">o</th>
2347      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2348      * </tbody>
2349      * </table></blockquote>
2350      *
2351      *
2352      * @param  regex
2353      *         the delimiting regular expression
2354      *
2355      * @return  the array of strings computed by splitting this string
2356      *          around matches of the given regular expression
2357      *
2358      * @throws  PatternSyntaxException
2359      *          if the regular expression's syntax is invalid
2360      *
2361      * @see java.util.regex.Pattern
2362      *
2363      * @since 1.4
2364      * @spec JSR-51
2365      */
2366     public String[] split(String regex) {
2367         return split(regex, 0);
2368     }
2369 
2370     /**
2371      * Returns a new String composed of copies of the
2372      * {@code CharSequence elements} joined together with a copy of
2373      * the specified {@code delimiter}.
2374      *
2375      * <blockquote>For example,
2376      * <pre>{@code
2377      *     String message = String.join("-", "Java", "is", "cool");
2378      *     // message returned is: "Java-is-cool"
2379      * }</pre></blockquote>
2380      *
2381      * Note that if an element is null, then {@code "null"} is added.
2382      *
2383      * @param  delimiter the delimiter that separates each element
2384      * @param  elements the elements to join together.
2385      *
2386      * @return a new {@code String} that is composed of the {@code elements}
2387      *         separated by the {@code delimiter}
2388      *
2389      * @throws NullPointerException If {@code delimiter} or {@code elements}
2390      *         is {@code null}
2391      *
2392      * @see java.util.StringJoiner
2393      * @since 1.8
2394      */
2395     public static String join(CharSequence delimiter, CharSequence... elements) {
2396         Objects.requireNonNull(delimiter);
2397         Objects.requireNonNull(elements);
2398         // Number of elements not likely worth Arrays.stream overhead.
2399         StringJoiner joiner = new StringJoiner(delimiter);
2400         for (CharSequence cs: elements) {
2401             joiner.add(cs);
2402         }
2403         return joiner.toString();
2404     }
2405 
2406     /**
2407      * Returns a new {@code String} composed of copies of the
2408      * {@code CharSequence elements} joined together with a copy of the
2409      * specified {@code delimiter}.
2410      *
2411      * <blockquote>For example,
2412      * <pre>{@code
2413      *     List<String> strings = List.of("Java", "is", "cool");
2414      *     String message = String.join(" ", strings);
2415      *     //message returned is: "Java is cool"
2416      *
2417      *     Set<String> strings =
2418      *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
2419      *     String message = String.join("-", strings);
2420      *     //message returned is: "Java-is-very-cool"
2421      * }</pre></blockquote>
2422      *
2423      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2424      *
2425      * @param  delimiter a sequence of characters that is used to separate each
2426      *         of the {@code elements} in the resulting {@code String}
2427      * @param  elements an {@code Iterable} that will have its {@code elements}
2428      *         joined together.
2429      *
2430      * @return a new {@code String} that is composed from the {@code elements}
2431      *         argument
2432      *
2433      * @throws NullPointerException If {@code delimiter} or {@code elements}
2434      *         is {@code null}
2435      *
2436      * @see    #join(CharSequence,CharSequence...)
2437      * @see    java.util.StringJoiner
2438      * @since 1.8
2439      */
2440     public static String join(CharSequence delimiter,
2441             Iterable<? extends CharSequence> elements) {
2442         Objects.requireNonNull(delimiter);
2443         Objects.requireNonNull(elements);
2444         StringJoiner joiner = new StringJoiner(delimiter);
2445         for (CharSequence cs: elements) {
2446             joiner.add(cs);
2447         }
2448         return joiner.toString();
2449     }
2450 
2451     /**
2452      * Converts all of the characters in this {@code String} to lower
2453      * case using the rules of the given {@code Locale}.  Case mapping is based
2454      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2455      * class. Since case mappings are not always 1:1 char mappings, the resulting
2456      * {@code String} may be a different length than the original {@code String}.
2457      * <p>
2458      * Examples of lowercase  mappings are in the following table:
2459      * <table class="plain">
2460      * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption>
2461      * <thead>
2462      * <tr>
2463      *   <th scope="col">Language Code of Locale</th>
2464      *   <th scope="col">Upper Case</th>
2465      *   <th scope="col">Lower Case</th>
2466      *   <th scope="col">Description</th>
2467      * </tr>
2468      * </thead>
2469      * <tbody>
2470      * <tr>
2471      *   <td>tr (Turkish)</td>
2472      *   <th scope="row" style="font-weight:normal; text-align:left">\u0130</th>
2473      *   <td>\u0069</td>
2474      *   <td>capital letter I with dot above -&gt; small letter i</td>
2475      * </tr>
2476      * <tr>
2477      *   <td>tr (Turkish)</td>
2478      *   <th scope="row" style="font-weight:normal; text-align:left">\u0049</th>
2479      *   <td>\u0131</td>
2480      *   <td>capital letter I -&gt; small letter dotless i </td>
2481      * </tr>
2482      * <tr>
2483      *   <td>(all)</td>
2484      *   <th scope="row" style="font-weight:normal; text-align:left">French Fries</th>
2485      *   <td>french fries</td>
2486      *   <td>lowercased all chars in String</td>
2487      * </tr>
2488      * <tr>
2489      *   <td>(all)</td>
2490      *   <th scope="row" style="font-weight:normal; text-align:left">
2491      *       &Iota;&Chi;&Theta;&Upsilon;&Sigma;</th>
2492      *   <td>&iota;&chi;&theta;&upsilon;&sigma;</td>
2493      *   <td>lowercased all chars in String</td>
2494      * </tr>
2495      * </tbody>
2496      * </table>
2497      *
2498      * @param locale use the case transformation rules for this locale
2499      * @return the {@code String}, converted to lowercase.
2500      * @see     java.lang.String#toLowerCase()
2501      * @see     java.lang.String#toUpperCase()
2502      * @see     java.lang.String#toUpperCase(Locale)
2503      * @since   1.1
2504      */
2505     public String toLowerCase(Locale locale) {
2506         return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
2507                           : StringUTF16.toLowerCase(this, value, locale);
2508     }
2509 
2510     /**
2511      * Converts all of the characters in this {@code String} to lower
2512      * case using the rules of the default locale. This is equivalent to calling
2513      * {@code toLowerCase(Locale.getDefault())}.
2514      * <p>
2515      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2516      * results if used for strings that are intended to be interpreted locale
2517      * independently.
2518      * Examples are programming language identifiers, protocol keys, and HTML
2519      * tags.
2520      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2521      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2522      * LATIN SMALL LETTER DOTLESS I character.
2523      * To obtain correct results for locale insensitive strings, use
2524      * {@code toLowerCase(Locale.ROOT)}.
2525      *
2526      * @return  the {@code String}, converted to lowercase.
2527      * @see     java.lang.String#toLowerCase(Locale)
2528      */
2529     public String toLowerCase() {
2530         return toLowerCase(Locale.getDefault());
2531     }
2532 
2533     /**
2534      * Converts all of the characters in this {@code String} to upper
2535      * case using the rules of the given {@code Locale}. Case mapping is based
2536      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2537      * class. Since case mappings are not always 1:1 char mappings, the resulting
2538      * {@code String} may be a different length than the original {@code String}.
2539      * <p>
2540      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2541      *
2542      * <table class="plain">
2543      * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption>
2544      * <thead>
2545      * <tr>
2546      *   <th scope="col">Language Code of Locale</th>
2547      *   <th scope="col">Lower Case</th>
2548      *   <th scope="col">Upper Case</th>
2549      *   <th scope="col">Description</th>
2550      * </tr>
2551      * </thead>
2552      * <tbody>
2553      * <tr>
2554      *   <td>tr (Turkish)</td>
2555      *   <th scope="row" style="font-weight:normal; text-align:left">\u0069</th>
2556      *   <td>\u0130</td>
2557      *   <td>small letter i -&gt; capital letter I with dot above</td>
2558      * </tr>
2559      * <tr>
2560      *   <td>tr (Turkish)</td>
2561      *   <th scope="row" style="font-weight:normal; text-align:left">\u0131</th>
2562      *   <td>\u0049</td>
2563      *   <td>small letter dotless i -&gt; capital letter I</td>
2564      * </tr>
2565      * <tr>
2566      *   <td>(all)</td>
2567      *   <th scope="row" style="font-weight:normal; text-align:left">\u00df</th>
2568      *   <td>\u0053 \u0053</td>
2569      *   <td>small letter sharp s -&gt; two letters: SS</td>
2570      * </tr>
2571      * <tr>
2572      *   <td>(all)</td>
2573      *   <th scope="row" style="font-weight:normal; text-align:left">Fahrvergn&uuml;gen</th>
2574      *   <td>FAHRVERGN&Uuml;GEN</td>
2575      *   <td></td>
2576      * </tr>
2577      * </tbody>
2578      * </table>
2579      * @param locale use the case transformation rules for this locale
2580      * @return the {@code String}, converted to uppercase.
2581      * @see     java.lang.String#toUpperCase()
2582      * @see     java.lang.String#toLowerCase()
2583      * @see     java.lang.String#toLowerCase(Locale)
2584      * @since   1.1
2585      */
2586     public String toUpperCase(Locale locale) {
2587         return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
2588                           : StringUTF16.toUpperCase(this, value, locale);
2589     }
2590 
2591     /**
2592      * Converts all of the characters in this {@code String} to upper
2593      * case using the rules of the default locale. This method is equivalent to
2594      * {@code toUpperCase(Locale.getDefault())}.
2595      * <p>
2596      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2597      * results if used for strings that are intended to be interpreted locale
2598      * independently.
2599      * Examples are programming language identifiers, protocol keys, and HTML
2600      * tags.
2601      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2602      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2603      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2604      * To obtain correct results for locale insensitive strings, use
2605      * {@code toUpperCase(Locale.ROOT)}.
2606      *
2607      * @return  the {@code String}, converted to uppercase.
2608      * @see     java.lang.String#toUpperCase(Locale)
2609      */
2610     public String toUpperCase() {
2611         return toUpperCase(Locale.getDefault());
2612     }
2613 
2614     /**
2615      * Returns a string whose value is this string, with any leading and trailing
2616      * whitespace removed.
2617      * <p>
2618      * If this {@code String} object represents an empty character
2619      * sequence, or the first and last characters of character sequence
2620      * represented by this {@code String} object both have codes
2621      * greater than {@code '\u005Cu0020'} (the space character), then a
2622      * reference to this {@code String} object is returned.
2623      * <p>
2624      * Otherwise, if there is no character with a code greater than
2625      * {@code '\u005Cu0020'} in the string, then a
2626      * {@code String} object representing an empty string is
2627      * returned.
2628      * <p>
2629      * Otherwise, let <i>k</i> be the index of the first character in the
2630      * string whose code is greater than {@code '\u005Cu0020'}, and let
2631      * <i>m</i> be the index of the last character in the string whose code
2632      * is greater than {@code '\u005Cu0020'}. A {@code String}
2633      * object is returned, representing the substring of this string that
2634      * begins with the character at index <i>k</i> and ends with the
2635      * character at index <i>m</i>-that is, the result of
2636      * {@code this.substring(k, m + 1)}.
2637      * <p>
2638      * This method may be used to trim whitespace (as defined above) from
2639      * the beginning and end of a string.
2640      *
2641      * @return  A string whose value is this string, with any leading and trailing white
2642      *          space removed, or this string if it has no leading or
2643      *          trailing white space.
2644      */
2645     public String trim() {
2646         String ret = isLatin1() ? StringLatin1.trim(value)
2647                                 : StringUTF16.trim(value);
2648         return ret == null ? this : ret;
2649     }
2650 
2651     /**
2652      * This object (which is already a string!) is itself returned.
2653      *
2654      * @return  the string itself.
2655      */
2656     public String toString() {
2657         return this;
2658     }
2659 
2660     /**
2661      * Returns a stream of {@code int} zero-extending the {@code char} values
2662      * from this sequence.  Any char which maps to a <a
2663      * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
2664      * point</a> is passed through uninterpreted.
2665      *
2666      * @return an IntStream of char values from this sequence
2667      */
2668     @Override
2669     public IntStream chars() {
2670         return StreamSupport.intStream(
2671             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2672                        : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
2673             false);
2674     }
2675 
2676 
2677     /**
2678      * Returns a stream of code point values from this sequence.  Any surrogate
2679      * pairs encountered in the sequence are combined as if by {@linkplain
2680      * Character#toCodePoint Character.toCodePoint} and the result is passed
2681      * to the stream. Any other code units, including ordinary BMP characters,
2682      * unpaired surrogates, and undefined code units, are zero-extended to
2683      * {@code int} values which are then passed to the stream.
2684      *
2685      * @return an IntStream of Unicode code points from this sequence
2686      */
2687     @Override
2688     public IntStream codePoints() {
2689         return StreamSupport.intStream(
2690             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2691                        : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
2692             false);
2693     }
2694 
2695     /**
2696      * Converts this string to a new character array.
2697      *
2698      * @return  a newly allocated character array whose length is the length
2699      *          of this string and whose contents are initialized to contain
2700      *          the character sequence represented by this string.
2701      */
2702     public char[] toCharArray() {
2703         return isLatin1() ? StringLatin1.toChars(value)
2704                           : StringUTF16.toChars(value);
2705     }
2706 
2707     /**
2708      * Returns a formatted string using the specified format string and
2709      * arguments.
2710      *
2711      * <p> The locale always used is the one returned by {@link
2712      * java.util.Locale#getDefault(java.util.Locale.Category)
2713      * Locale.getDefault(Locale.Category)} with
2714      * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
2715      *
2716      * @param  format
2717      *         A <a href="../util/Formatter.html#syntax">format string</a>
2718      *
2719      * @param  args
2720      *         Arguments referenced by the format specifiers in the format
2721      *         string.  If there are more arguments than format specifiers, the
2722      *         extra arguments are ignored.  The number of arguments is
2723      *         variable and may be zero.  The maximum number of arguments is
2724      *         limited by the maximum dimension of a Java array as defined by
2725      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2726      *         The behaviour on a
2727      *         {@code null} argument depends on the <a
2728      *         href="../util/Formatter.html#syntax">conversion</a>.
2729      *
2730      * @throws  java.util.IllegalFormatException
2731      *          If a format string contains an illegal syntax, a format
2732      *          specifier that is incompatible with the given arguments,
2733      *          insufficient arguments given the format string, or other
2734      *          illegal conditions.  For specification of all possible
2735      *          formatting errors, see the <a
2736      *          href="../util/Formatter.html#detail">Details</a> section of the
2737      *          formatter class specification.
2738      *
2739      * @return  A formatted string
2740      *
2741      * @see  java.util.Formatter
2742      * @since  1.5
2743      */
2744     public static String format(String format, Object... args) {
2745         return new Formatter().format(format, args).toString();
2746     }
2747 
2748     /**
2749      * Returns a formatted string using the specified locale, format string,
2750      * and arguments.
2751      *
2752      * @param  l
2753      *         The {@linkplain java.util.Locale locale} to apply during
2754      *         formatting.  If {@code l} is {@code null} then no localization
2755      *         is applied.
2756      *
2757      * @param  format
2758      *         A <a href="../util/Formatter.html#syntax">format string</a>
2759      *
2760      * @param  args
2761      *         Arguments referenced by the format specifiers in the format
2762      *         string.  If there are more arguments than format specifiers, the
2763      *         extra arguments are ignored.  The number of arguments is
2764      *         variable and may be zero.  The maximum number of arguments is
2765      *         limited by the maximum dimension of a Java array as defined by
2766      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2767      *         The behaviour on a
2768      *         {@code null} argument depends on the
2769      *         <a href="../util/Formatter.html#syntax">conversion</a>.
2770      *
2771      * @throws  java.util.IllegalFormatException
2772      *          If a format string contains an illegal syntax, a format
2773      *          specifier that is incompatible with the given arguments,
2774      *          insufficient arguments given the format string, or other
2775      *          illegal conditions.  For specification of all possible
2776      *          formatting errors, see the <a
2777      *          href="../util/Formatter.html#detail">Details</a> section of the
2778      *          formatter class specification
2779      *
2780      * @return  A formatted string
2781      *
2782      * @see  java.util.Formatter
2783      * @since  1.5
2784      */
2785     public static String format(Locale l, String format, Object... args) {
2786         return new Formatter(l).format(format, args).toString();
2787     }
2788 
2789     /**
2790      * Returns the string representation of the {@code Object} argument.
2791      *
2792      * @param   obj   an {@code Object}.
2793      * @return  if the argument is {@code null}, then a string equal to
2794      *          {@code "null"}; otherwise, the value of
2795      *          {@code obj.toString()} is returned.
2796      * @see     java.lang.Object#toString()
2797      */
2798     public static String valueOf(Object obj) {
2799         return (obj == null) ? "null" : obj.toString();
2800     }
2801 
2802     /**
2803      * Returns the string representation of the {@code char} array
2804      * argument. The contents of the character array are copied; subsequent
2805      * modification of the character array does not affect the returned
2806      * string.
2807      *
2808      * @param   data     the character array.
2809      * @return  a {@code String} that contains the characters of the
2810      *          character array.
2811      */
2812     public static String valueOf(char data[]) {
2813         return new String(data);
2814     }
2815 
2816     /**
2817      * Returns the string representation of a specific subarray of the
2818      * {@code char} array argument.
2819      * <p>
2820      * The {@code offset} argument is the index of the first
2821      * character of the subarray. The {@code count} argument
2822      * specifies the length of the subarray. The contents of the subarray
2823      * are copied; subsequent modification of the character array does not
2824      * affect the returned string.
2825      *
2826      * @param   data     the character array.
2827      * @param   offset   initial offset of the subarray.
2828      * @param   count    length of the subarray.
2829      * @return  a {@code String} that contains the characters of the
2830      *          specified subarray of the character array.
2831      * @exception IndexOutOfBoundsException if {@code offset} is
2832      *          negative, or {@code count} is negative, or
2833      *          {@code offset+count} is larger than
2834      *          {@code data.length}.
2835      */
2836     public static String valueOf(char data[], int offset, int count) {
2837         return new String(data, offset, count);
2838     }
2839 
2840     /**
2841      * Equivalent to {@link #valueOf(char[], int, int)}.
2842      *
2843      * @param   data     the character array.
2844      * @param   offset   initial offset of the subarray.
2845      * @param   count    length of the subarray.
2846      * @return  a {@code String} that contains the characters of the
2847      *          specified subarray of the character array.
2848      * @exception IndexOutOfBoundsException if {@code offset} is
2849      *          negative, or {@code count} is negative, or
2850      *          {@code offset+count} is larger than
2851      *          {@code data.length}.
2852      */
2853     public static String copyValueOf(char data[], int offset, int count) {
2854         return new String(data, offset, count);
2855     }
2856 
2857     /**
2858      * Equivalent to {@link #valueOf(char[])}.
2859      *
2860      * @param   data   the character array.
2861      * @return  a {@code String} that contains the characters of the
2862      *          character array.
2863      */
2864     public static String copyValueOf(char data[]) {
2865         return new String(data);
2866     }
2867 
2868     /**
2869      * Returns the string representation of the {@code boolean} argument.
2870      *
2871      * @param   b   a {@code boolean}.
2872      * @return  if the argument is {@code true}, a string equal to
2873      *          {@code "true"} is returned; otherwise, a string equal to
2874      *          {@code "false"} is returned.
2875      */
2876     public static String valueOf(boolean b) {
2877         return b ? "true" : "false";
2878     }
2879 
2880     /**
2881      * Returns the string representation of the {@code char}
2882      * argument.
2883      *
2884      * @param   c   a {@code char}.
2885      * @return  a string of length {@code 1} containing
2886      *          as its single character the argument {@code c}.
2887      */
2888     public static String valueOf(char c) {
2889         if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
2890             return new String(StringLatin1.toBytes(c), LATIN1);
2891         }
2892         return new String(StringUTF16.toBytes(c), UTF16);
2893     }
2894 
2895     /**
2896      * Returns the string representation of the {@code int} argument.
2897      * <p>
2898      * The representation is exactly the one returned by the
2899      * {@code Integer.toString} method of one argument.
2900      *
2901      * @param   i   an {@code int}.
2902      * @return  a string representation of the {@code int} argument.
2903      * @see     java.lang.Integer#toString(int, int)
2904      */
2905     public static String valueOf(int i) {
2906         return Integer.toString(i);
2907     }
2908 
2909     /**
2910      * Returns the string representation of the {@code long} argument.
2911      * <p>
2912      * The representation is exactly the one returned by the
2913      * {@code Long.toString} method of one argument.
2914      *
2915      * @param   l   a {@code long}.
2916      * @return  a string representation of the {@code long} argument.
2917      * @see     java.lang.Long#toString(long)
2918      */
2919     public static String valueOf(long l) {
2920         return Long.toString(l);
2921     }
2922 
2923     /**
2924      * Returns the string representation of the {@code float} argument.
2925      * <p>
2926      * The representation is exactly the one returned by the
2927      * {@code Float.toString} method of one argument.
2928      *
2929      * @param   f   a {@code float}.
2930      * @return  a string representation of the {@code float} argument.
2931      * @see     java.lang.Float#toString(float)
2932      */
2933     public static String valueOf(float f) {
2934         return Float.toString(f);
2935     }
2936 
2937     /**
2938      * Returns the string representation of the {@code double} argument.
2939      * <p>
2940      * The representation is exactly the one returned by the
2941      * {@code Double.toString} method of one argument.
2942      *
2943      * @param   d   a {@code double}.
2944      * @return  a  string representation of the {@code double} argument.
2945      * @see     java.lang.Double#toString(double)
2946      */
2947     public static String valueOf(double d) {
2948         return Double.toString(d);
2949     }
2950 
2951     /**
2952      * Returns a canonical representation for the string object.
2953      * <p>
2954      * A pool of strings, initially empty, is maintained privately by the
2955      * class {@code String}.
2956      * <p>
2957      * When the intern method is invoked, if the pool already contains a
2958      * string equal to this {@code String} object as determined by
2959      * the {@link #equals(Object)} method, then the string from the pool is
2960      * returned. Otherwise, this {@code String} object is added to the
2961      * pool and a reference to this {@code String} object is returned.
2962      * <p>
2963      * It follows that for any two strings {@code s} and {@code t},
2964      * {@code s.intern() == t.intern()} is {@code true}
2965      * if and only if {@code s.equals(t)} is {@code true}.
2966      * <p>
2967      * All literal strings and string-valued constant expressions are
2968      * interned. String literals are defined in section 3.10.5 of the
2969      * <cite>The Java&trade; Language Specification</cite>.
2970      *
2971      * @return  a string that has the same contents as this string, but is
2972      *          guaranteed to be from a pool of unique strings.
2973      * @jls 3.10.5 String Literals
2974      */
2975     public native String intern();
2976 
2977     ////////////////////////////////////////////////////////////////
2978 
2979     /**
2980      * Copy character bytes from this string into dst starting at dstBegin.
2981      * This method doesn't perform any range checking.
2982      *
2983      * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
2984      * coders are different, and dst is big enough (range check)
2985      *
2986      * @param dstBegin  the char index, not offset of byte[]
2987      * @param coder     the coder of dst[]
2988      */
2989     void getBytes(byte dst[], int dstBegin, byte coder) {
2990         if (coder() == coder) {
2991             System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
2992         } else {    // this.coder == LATIN && coder == UTF16
2993             StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
2994         }
2995     }
2996 
2997     /*
2998      * Package private constructor. Trailing Void argument is there for
2999      * disambiguating it against other (public) constructors.
3000      *
3001      * Stores the char[] value into a byte[] that each byte represents
3002      * the8 low-order bits of the corresponding character, if the char[]
3003      * contains only latin1 character. Or a byte[] that stores all
3004      * characters in their byte sequences defined by the {@code StringUTF16}.
3005      */
3006     String(char[] value, int off, int len, Void sig) {
3007         if (len == 0) {
3008             this.value = "".value;
3009             this.coder = "".coder;
3010             return;
3011         }
3012         if (COMPACT_STRINGS) {
3013             byte[] val = StringUTF16.compress(value, off, len);
3014             if (val != null) {
3015                 this.value = val;
3016                 this.coder = LATIN1;
3017                 return;
3018             }
3019         }
3020         this.coder = UTF16;
3021         this.value = StringUTF16.toBytes(value, off, len);
3022     }
3023 
3024     /*
3025      * Package private constructor. Trailing Void argument is there for
3026      * disambiguating it against other (public) constructors.
3027      */
3028     String(AbstractStringBuilder asb, Void sig) {
3029         byte[] val = asb.getValue();
3030         int length = asb.length();
3031         if (asb.isLatin1()) {
3032             this.coder = LATIN1;
3033             this.value = Arrays.copyOfRange(val, 0, length);
3034         } else {
3035             if (COMPACT_STRINGS) {
3036                 byte[] buf = StringUTF16.compress(val, 0, length);
3037                 if (buf != null) {
3038                     this.coder = LATIN1;
3039                     this.value = buf;
3040                     return;
3041                 }
3042             }
3043             this.coder = UTF16;
3044             this.value = Arrays.copyOfRange(val, 0, length << 1);
3045         }
3046     }
3047 
3048    /*
3049     * Package private constructor which shares value array for speed.
3050     */
3051     String(byte[] value, byte coder) {
3052         this.value = value;
3053         this.coder = coder;
3054     }
3055 
3056     byte coder() {
3057         return COMPACT_STRINGS ? coder : UTF16;
3058     }
3059 
3060     private boolean isLatin1() {
3061         return COMPACT_STRINGS && coder == LATIN1;
3062     }
3063 
3064     @Native static final byte LATIN1 = 0;
3065     @Native static final byte UTF16  = 1;
3066 
3067     /*
3068      * StringIndexOutOfBoundsException  if {@code index} is
3069      * negative or greater than or equal to {@code length}.
3070      */
3071     static void checkIndex(int index, int length) {
3072         if (index < 0 || index >= length) {
3073             throw new StringIndexOutOfBoundsException("index " + index +
3074                                                       ",length " + length);
3075         }
3076     }
3077 
3078     /*
3079      * StringIndexOutOfBoundsException  if {@code offset}
3080      * is negative or greater than {@code length}.
3081      */
3082     static void checkOffset(int offset, int length) {
3083         if (offset < 0 || offset > length) {
3084             throw new StringIndexOutOfBoundsException("offset " + offset +
3085                                                       ",length " + length);
3086         }
3087     }
3088 
3089     /*
3090      * Check {@code offset}, {@code count} against {@code 0} and {@code length}
3091      * bounds.
3092      *
3093      * @throws  StringIndexOutOfBoundsException
3094      *          If {@code offset} is negative, {@code count} is negative,
3095      *          or {@code offset} is greater than {@code length - count}
3096      */
3097     static void checkBoundsOffCount(int offset, int count, int length) {
3098         if (offset < 0 || count < 0 || offset > length - count) {
3099             throw new StringIndexOutOfBoundsException(
3100                 "offset " + offset + ", count " + count + ", length " + length);
3101         }
3102     }
3103 
3104     /*
3105      * Check {@code begin}, {@code end} against {@code 0} and {@code length}
3106      * bounds.
3107      *
3108      * @throws  StringIndexOutOfBoundsException
3109      *          If {@code begin} is negative, {@code begin} is greater than
3110      *          {@code end}, or {@code end} is greater than {@code length}.
3111      */
3112     static void checkBoundsBeginEnd(int begin, int end, int length) {
3113         if (begin < 0 || begin > end || end > length) {
3114             throw new StringIndexOutOfBoundsException(
3115                 "begin " + begin + ", end " + end + ", length " + length);
3116         }
3117     }
3118 }