1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Josh Bloch of Google Inc. and released to the public domain,
  32  * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
  33  */
  34 
  35 package java.util;
  36 
  37 import java.io.Serializable;
  38 import java.util.function.Consumer;
  39 import java.util.function.Predicate;
  40 import java.util.function.UnaryOperator;
  41 
  42 /**
  43  * Resizable-array implementation of the {@link Deque} interface.  Array
  44  * deques have no capacity restrictions; they grow as necessary to support
  45  * usage.  They are not thread-safe; in the absence of external
  46  * synchronization, they do not support concurrent access by multiple threads.
  47  * Null elements are prohibited.  This class is likely to be faster than
  48  * {@link Stack} when used as a stack, and faster than {@link LinkedList}
  49  * when used as a queue.
  50  *
  51  * <p>Most {@code ArrayDeque} operations run in amortized constant time.
  52  * Exceptions include
  53  * {@link #remove(Object) remove},
  54  * {@link #removeFirstOccurrence removeFirstOccurrence},
  55  * {@link #removeLastOccurrence removeLastOccurrence},
  56  * {@link #contains contains},
  57  * {@link #iterator iterator.remove()},
  58  * and the bulk operations, all of which run in linear time.
  59  *
  60  * <p>The iterators returned by this class's {@link #iterator() iterator}
  61  * method are <em>fail-fast</em>: If the deque is modified at any time after
  62  * the iterator is created, in any way except through the iterator's own
  63  * {@code remove} method, the iterator will generally throw a {@link
  64  * ConcurrentModificationException}.  Thus, in the face of concurrent
  65  * modification, the iterator fails quickly and cleanly, rather than risking
  66  * arbitrary, non-deterministic behavior at an undetermined time in the
  67  * future.
  68  *
  69  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  70  * as it is, generally speaking, impossible to make any hard guarantees in the
  71  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  72  * throw {@code ConcurrentModificationException} on a best-effort basis.
  73  * Therefore, it would be wrong to write a program that depended on this
  74  * exception for its correctness: <i>the fail-fast behavior of iterators
  75  * should be used only to detect bugs.</i>
  76  *
  77  * <p>This class and its iterator implement all of the
  78  * <em>optional</em> methods of the {@link Collection} and {@link
  79  * Iterator} interfaces.
  80  *
  81  * <p>This class is a member of the
  82  * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
  83  * Java Collections Framework</a>.
  84  *
  85  * @author  Josh Bloch and Doug Lea
  86  * @param <E> the type of elements held in this deque
  87  * @since   1.6
  88  */
  89 public class ArrayDeque<E> extends AbstractCollection<E>
  90                            implements Deque<E>, Cloneable, Serializable
  91 {
  92     /*
  93      * VMs excel at optimizing simple array loops where indices are
  94      * incrementing or decrementing over a valid slice, e.g.
  95      *
  96      * for (int i = start; i < end; i++) ... elements[i]
  97      *
  98      * Because in a circular array, elements are in general stored in
  99      * two disjoint such slices, we help the VM by writing unusual
 100      * nested loops for all traversals over the elements.  Having only
 101      * one hot inner loop body instead of two or three eases human
 102      * maintenance and encourages VM loop inlining into the caller.
 103      */
 104 
 105     /**
 106      * The array in which the elements of the deque are stored.
 107      * All array cells not holding deque elements are always null.
 108      * The array always has at least one null slot (at tail).
 109      */
 110     transient Object[] elements;
 111 
 112     /**
 113      * The index of the element at the head of the deque (which is the
 114      * element that would be removed by remove() or pop()); or an
 115      * arbitrary number 0 <= head < elements.length equal to tail if
 116      * the deque is empty.
 117      */
 118     transient int head;
 119 
 120     /**
 121      * The index at which the next element would be added to the tail
 122      * of the deque (via addLast(E), add(E), or push(E));
 123      * elements[tail] is always null.
 124      */
 125     transient int tail;
 126 
 127     /**
 128      * The maximum size of array to allocate.
 129      * Some VMs reserve some header words in an array.
 130      * Attempts to allocate larger arrays may result in
 131      * OutOfMemoryError: Requested array size exceeds VM limit
 132      */
 133     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 134 
 135     /**
 136      * Increases the capacity of this deque by at least the given amount.
 137      *
 138      * @param needed the required minimum extra capacity; must be positive
 139      */
 140     private void grow(int needed) {
 141         // overflow-conscious code
 142         final int oldCapacity = elements.length;
 143         int newCapacity;
 144         // Double capacity if small; else grow by 50%
 145         int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
 146         if (jump < needed
 147             || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
 148             newCapacity = newCapacity(needed, jump);
 149         final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
 150         // Exceptionally, here tail == head needs to be disambiguated
 151         if (tail < head || (tail == head && es[head] != null)) {
 152             // wrap around; slide first leg forward to end of array
 153             int newSpace = newCapacity - oldCapacity;
 154             System.arraycopy(es, head,
 155                              es, head + newSpace,
 156                              oldCapacity - head);
 157             for (int i = head, to = (head += newSpace); i < to; i++)
 158                 es[i] = null;
 159         }
 160     }
 161 
 162     /** Capacity calculation for edge conditions, especially overflow. */
 163     private int newCapacity(int needed, int jump) {
 164         final int oldCapacity = elements.length, minCapacity;
 165         if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
 166             if (minCapacity < 0)
 167                 throw new IllegalStateException("Sorry, deque too big");
 168             return Integer.MAX_VALUE;
 169         }
 170         if (needed > jump)
 171             return minCapacity;
 172         return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
 173             ? oldCapacity + jump
 174             : MAX_ARRAY_SIZE;
 175     }
 176 
 177     /**
 178      * Constructs an empty array deque with an initial capacity
 179      * sufficient to hold 16 elements.
 180      */
 181     public ArrayDeque() {
 182         elements = new Object[16];
 183     }
 184 
 185     /**
 186      * Constructs an empty array deque with an initial capacity
 187      * sufficient to hold the specified number of elements.
 188      *
 189      * @param numElements lower bound on initial capacity of the deque
 190      */
 191     public ArrayDeque(int numElements) {
 192         elements =
 193             new Object[(numElements < 1) ? 1 :
 194                        (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
 195                        numElements + 1];
 196     }
 197 
 198     /**
 199      * Constructs a deque containing the elements of the specified
 200      * collection, in the order they are returned by the collection's
 201      * iterator.  (The first element returned by the collection's
 202      * iterator becomes the first element, or <i>front</i> of the
 203      * deque.)
 204      *
 205      * @param c the collection whose elements are to be placed into the deque
 206      * @throws NullPointerException if the specified collection is null
 207      */
 208     public ArrayDeque(Collection<? extends E> c) {
 209         this(c.size());
 210         addAll(c);
 211     }
 212 
 213     /**
 214      * Increments i, mod modulus.
 215      * Precondition and postcondition: 0 <= i < modulus.
 216      */
 217     static final int inc(int i, int modulus) {
 218         if (++i >= modulus) i = 0;
 219         return i;
 220     }
 221 
 222     /**
 223      * Decrements i, mod modulus.
 224      * Precondition and postcondition: 0 <= i < modulus.
 225      */
 226     static final int dec(int i, int modulus) {
 227         if (--i < 0) i = modulus - 1;
 228         return i;
 229     }
 230 
 231     /**
 232      * Circularly adds the given distance to index i, mod modulus.
 233      * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
 234      * @return index 0 <= i < modulus
 235      */
 236     static final int add(int i, int distance, int modulus) {
 237         if ((i += distance) - modulus >= 0) i -= modulus;
 238         return i;
 239     }
 240 
 241     /**
 242      * Subtracts j from i, mod modulus.
 243      * Index i must be logically ahead of index j.
 244      * Precondition: 0 <= i < modulus, 0 <= j < modulus.
 245      * @return the "circular distance" from j to i; corner case i == j
 246      * is disambiguated to "empty", returning 0.
 247      */
 248     static final int sub(int i, int j, int modulus) {
 249         if ((i -= j) < 0) i += modulus;
 250         return i;
 251     }
 252 
 253     /**
 254      * Returns element at array index i.
 255      * This is a slight abuse of generics, accepted by javac.
 256      */
 257     @SuppressWarnings("unchecked")
 258     static final <E> E elementAt(Object[] es, int i) {
 259         return (E) es[i];
 260     }
 261 
 262     /**
 263      * A version of elementAt that checks for null elements.
 264      * This check doesn't catch all possible comodifications,
 265      * but does catch ones that corrupt traversal.
 266      */
 267     static final <E> E nonNullElementAt(Object[] es, int i) {
 268         @SuppressWarnings("unchecked") E e = (E) es[i];
 269         if (e == null)
 270             throw new ConcurrentModificationException();
 271         return e;
 272     }
 273 
 274     // The main insertion and extraction methods are addFirst,
 275     // addLast, pollFirst, pollLast. The other methods are defined in
 276     // terms of these.
 277 
 278     /**
 279      * Inserts the specified element at the front of this deque.
 280      *
 281      * @param e the element to add
 282      * @throws NullPointerException if the specified element is null
 283      */
 284     public void addFirst(E e) {
 285         if (e == null)
 286             throw new NullPointerException();
 287         final Object[] es = elements;
 288         es[head = dec(head, es.length)] = e;
 289         if (head == tail)
 290             grow(1);
 291     }
 292 
 293     /**
 294      * Inserts the specified element at the end of this deque.
 295      *
 296      * <p>This method is equivalent to {@link #add}.
 297      *
 298      * @param e the element to add
 299      * @throws NullPointerException if the specified element is null
 300      */
 301     public void addLast(E e) {
 302         if (e == null)
 303             throw new NullPointerException();
 304         final Object[] es = elements;
 305         es[tail] = e;
 306         if (head == (tail = inc(tail, es.length)))
 307             grow(1);
 308     }
 309 
 310     /**
 311      * Adds all of the elements in the specified collection at the end
 312      * of this deque, as if by calling {@link #addLast} on each one,
 313      * in the order that they are returned by the collection's iterator.
 314      *
 315      * @param c the elements to be inserted into this deque
 316      * @return {@code true} if this deque changed as a result of the call
 317      * @throws NullPointerException if the specified collection or any
 318      *         of its elements are null
 319      */
 320     public boolean addAll(Collection<? extends E> c) {
 321         final int s, needed;
 322         if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
 323             grow(needed);
 324         c.forEach(this::addLast);
 325         return size() > s;
 326     }
 327 
 328     /**
 329      * Inserts the specified element at the front of this deque.
 330      *
 331      * @param e the element to add
 332      * @return {@code true} (as specified by {@link Deque#offerFirst})
 333      * @throws NullPointerException if the specified element is null
 334      */
 335     public boolean offerFirst(E e) {
 336         addFirst(e);
 337         return true;
 338     }
 339 
 340     /**
 341      * Inserts the specified element at the end of this deque.
 342      *
 343      * @param e the element to add
 344      * @return {@code true} (as specified by {@link Deque#offerLast})
 345      * @throws NullPointerException if the specified element is null
 346      */
 347     public boolean offerLast(E e) {
 348         addLast(e);
 349         return true;
 350     }
 351 
 352     /**
 353      * @throws NoSuchElementException {@inheritDoc}
 354      */
 355     public E removeFirst() {
 356         E e = pollFirst();
 357         if (e == null)
 358             throw new NoSuchElementException();
 359         return e;
 360     }
 361 
 362     /**
 363      * @throws NoSuchElementException {@inheritDoc}
 364      */
 365     public E removeLast() {
 366         E e = pollLast();
 367         if (e == null)
 368             throw new NoSuchElementException();
 369         return e;
 370     }
 371 
 372     public E pollFirst() {
 373         final Object[] es;
 374         final int h;
 375         E e = elementAt(es = elements, h = head);
 376         if (e != null) {
 377             es[h] = null;
 378             head = inc(h, es.length);
 379         }
 380         return e;
 381     }
 382 
 383     public E pollLast() {
 384         final Object[] es;
 385         final int t;
 386         E e = elementAt(es = elements, t = dec(tail, es.length));
 387         if (e != null)
 388             es[tail = t] = null;
 389         return e;
 390     }
 391 
 392     /**
 393      * @throws NoSuchElementException {@inheritDoc}
 394      */
 395     public E getFirst() {
 396         E e = elementAt(elements, head);
 397         if (e == null)
 398             throw new NoSuchElementException();
 399         return e;
 400     }
 401 
 402     /**
 403      * @throws NoSuchElementException {@inheritDoc}
 404      */
 405     public E getLast() {
 406         final Object[] es = elements;
 407         E e = elementAt(es, dec(tail, es.length));
 408         if (e == null)
 409             throw new NoSuchElementException();
 410         return e;
 411     }
 412 
 413     public E peekFirst() {
 414         return elementAt(elements, head);
 415     }
 416 
 417     public E peekLast() {
 418         final Object[] es;
 419         return elementAt(es = elements, dec(tail, es.length));
 420     }
 421 
 422     /**
 423      * Removes the first occurrence of the specified element in this
 424      * deque (when traversing the deque from head to tail).
 425      * If the deque does not contain the element, it is unchanged.
 426      * More formally, removes the first element {@code e} such that
 427      * {@code o.equals(e)} (if such an element exists).
 428      * Returns {@code true} if this deque contained the specified element
 429      * (or equivalently, if this deque changed as a result of the call).
 430      *
 431      * @param o element to be removed from this deque, if present
 432      * @return {@code true} if the deque contained the specified element
 433      */
 434     public boolean removeFirstOccurrence(Object o) {
 435         if (o != null) {
 436             final Object[] es = elements;
 437             for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 438                  ; i = 0, to = end) {
 439                 for (; i < to; i++)
 440                     if (o.equals(es[i])) {
 441                         delete(i);
 442                         return true;
 443                     }
 444                 if (to == end) break;
 445             }
 446         }
 447         return false;
 448     }
 449 
 450     /**
 451      * Removes the last occurrence of the specified element in this
 452      * deque (when traversing the deque from head to tail).
 453      * If the deque does not contain the element, it is unchanged.
 454      * More formally, removes the last element {@code e} such that
 455      * {@code o.equals(e)} (if such an element exists).
 456      * Returns {@code true} if this deque contained the specified element
 457      * (or equivalently, if this deque changed as a result of the call).
 458      *
 459      * @param o element to be removed from this deque, if present
 460      * @return {@code true} if the deque contained the specified element
 461      */
 462     public boolean removeLastOccurrence(Object o) {
 463         if (o != null) {
 464             final Object[] es = elements;
 465             for (int i = tail, end = head, to = (i >= end) ? end : 0;
 466                  ; i = es.length, to = end) {
 467                 for (i--; i > to - 1; i--)
 468                     if (o.equals(es[i])) {
 469                         delete(i);
 470                         return true;
 471                     }
 472                 if (to == end) break;
 473             }
 474         }
 475         return false;
 476     }
 477 
 478     // *** Queue methods ***
 479 
 480     /**
 481      * Inserts the specified element at the end of this deque.
 482      *
 483      * <p>This method is equivalent to {@link #addLast}.
 484      *
 485      * @param e the element to add
 486      * @return {@code true} (as specified by {@link Collection#add})
 487      * @throws NullPointerException if the specified element is null
 488      */
 489     public boolean add(E e) {
 490         addLast(e);
 491         return true;
 492     }
 493 
 494     /**
 495      * Inserts the specified element at the end of this deque.
 496      *
 497      * <p>This method is equivalent to {@link #offerLast}.
 498      *
 499      * @param e the element to add
 500      * @return {@code true} (as specified by {@link Queue#offer})
 501      * @throws NullPointerException if the specified element is null
 502      */
 503     public boolean offer(E e) {
 504         return offerLast(e);
 505     }
 506 
 507     /**
 508      * Retrieves and removes the head of the queue represented by this deque.
 509      *
 510      * This method differs from {@link #poll() poll()} only in that it
 511      * throws an exception if this deque is empty.
 512      *
 513      * <p>This method is equivalent to {@link #removeFirst}.
 514      *
 515      * @return the head of the queue represented by this deque
 516      * @throws NoSuchElementException {@inheritDoc}
 517      */
 518     public E remove() {
 519         return removeFirst();
 520     }
 521 
 522     /**
 523      * Retrieves and removes the head of the queue represented by this deque
 524      * (in other words, the first element of this deque), or returns
 525      * {@code null} if this deque is empty.
 526      *
 527      * <p>This method is equivalent to {@link #pollFirst}.
 528      *
 529      * @return the head of the queue represented by this deque, or
 530      *         {@code null} if this deque is empty
 531      */
 532     public E poll() {
 533         return pollFirst();
 534     }
 535 
 536     /**
 537      * Retrieves, but does not remove, the head of the queue represented by
 538      * this deque.  This method differs from {@link #peek peek} only in
 539      * that it throws an exception if this deque is empty.
 540      *
 541      * <p>This method is equivalent to {@link #getFirst}.
 542      *
 543      * @return the head of the queue represented by this deque
 544      * @throws NoSuchElementException {@inheritDoc}
 545      */
 546     public E element() {
 547         return getFirst();
 548     }
 549 
 550     /**
 551      * Retrieves, but does not remove, the head of the queue represented by
 552      * this deque, or returns {@code null} if this deque is empty.
 553      *
 554      * <p>This method is equivalent to {@link #peekFirst}.
 555      *
 556      * @return the head of the queue represented by this deque, or
 557      *         {@code null} if this deque is empty
 558      */
 559     public E peek() {
 560         return peekFirst();
 561     }
 562 
 563     // *** Stack methods ***
 564 
 565     /**
 566      * Pushes an element onto the stack represented by this deque.  In other
 567      * words, inserts the element at the front of this deque.
 568      *
 569      * <p>This method is equivalent to {@link #addFirst}.
 570      *
 571      * @param e the element to push
 572      * @throws NullPointerException if the specified element is null
 573      */
 574     public void push(E e) {
 575         addFirst(e);
 576     }
 577 
 578     /**
 579      * Pops an element from the stack represented by this deque.  In other
 580      * words, removes and returns the first element of this deque.
 581      *
 582      * <p>This method is equivalent to {@link #removeFirst()}.
 583      *
 584      * @return the element at the front of this deque (which is the top
 585      *         of the stack represented by this deque)
 586      * @throws NoSuchElementException {@inheritDoc}
 587      */
 588     public E pop() {
 589         return removeFirst();
 590     }
 591 
 592     /**
 593      * Removes the element at the specified position in the elements array.
 594      * This can result in forward or backwards motion of array elements.
 595      * We optimize for least element motion.
 596      *
 597      * <p>This method is called delete rather than remove to emphasize
 598      * that its semantics differ from those of {@link List#remove(int)}.
 599      *
 600      * @return true if elements near tail moved backwards
 601      */
 602     boolean delete(int i) {
 603         final Object[] es = elements;
 604         final int capacity = es.length;
 605         final int h, t;
 606         // number of elements before to-be-deleted elt
 607         final int front = sub(i, h = head, capacity);
 608         // number of elements after to-be-deleted elt
 609         final int back = sub(t = tail, i, capacity) - 1;
 610         if (front < back) {
 611             // move front elements forwards
 612             if (h <= i) {
 613                 System.arraycopy(es, h, es, h + 1, front);
 614             } else { // Wrap around
 615                 System.arraycopy(es, 0, es, 1, i);
 616                 es[0] = es[capacity - 1];
 617                 System.arraycopy(es, h, es, h + 1, front - (i + 1));
 618             }
 619             es[h] = null;
 620             head = inc(h, capacity);
 621             return false;
 622         } else {
 623             // move back elements backwards
 624             tail = dec(t, capacity);
 625             if (i <= tail) {
 626                 System.arraycopy(es, i + 1, es, i, back);
 627             } else { // Wrap around
 628                 System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
 629                 es[capacity - 1] = es[0];
 630                 System.arraycopy(es, 1, es, 0, t - 1);
 631             }
 632             es[tail] = null;
 633             return true;
 634         }
 635     }
 636 
 637     // *** Collection Methods ***
 638 
 639     /**
 640      * Returns the number of elements in this deque.
 641      *
 642      * @return the number of elements in this deque
 643      */
 644     public int size() {
 645         return sub(tail, head, elements.length);
 646     }
 647 
 648     /**
 649      * Returns {@code true} if this deque contains no elements.
 650      *
 651      * @return {@code true} if this deque contains no elements
 652      */
 653     public boolean isEmpty() {
 654         return head == tail;
 655     }
 656 
 657     /**
 658      * Returns an iterator over the elements in this deque.  The elements
 659      * will be ordered from first (head) to last (tail).  This is the same
 660      * order that elements would be dequeued (via successive calls to
 661      * {@link #remove} or popped (via successive calls to {@link #pop}).
 662      *
 663      * @return an iterator over the elements in this deque
 664      */
 665     public Iterator<E> iterator() {
 666         return new DeqIterator();
 667     }
 668 
 669     public Iterator<E> descendingIterator() {
 670         return new DescendingIterator();
 671     }
 672 
 673     private class DeqIterator implements Iterator<E> {
 674         /** Index of element to be returned by subsequent call to next. */
 675         int cursor;
 676 
 677         /** Number of elements yet to be returned. */
 678         int remaining = size();
 679 
 680         /**
 681          * Index of element returned by most recent call to next.
 682          * Reset to -1 if element is deleted by a call to remove.
 683          */
 684         int lastRet = -1;
 685 
 686         DeqIterator() { cursor = head; }
 687 
 688         public final boolean hasNext() {
 689             return remaining > 0;
 690         }
 691 
 692         public E next() {
 693             if (remaining <= 0)
 694                 throw new NoSuchElementException();
 695             final Object[] es = elements;
 696             E e = nonNullElementAt(es, cursor);
 697             cursor = inc(lastRet = cursor, es.length);
 698             remaining--;
 699             return e;
 700         }
 701 
 702         void postDelete(boolean leftShifted) {
 703             if (leftShifted)
 704                 cursor = dec(cursor, elements.length);
 705         }
 706 
 707         public final void remove() {
 708             if (lastRet < 0)
 709                 throw new IllegalStateException();
 710             postDelete(delete(lastRet));
 711             lastRet = -1;
 712         }
 713 
 714         public void forEachRemaining(Consumer<? super E> action) {
 715             Objects.requireNonNull(action);
 716             int r;
 717             if ((r = remaining) <= 0)
 718                 return;
 719             remaining = 0;
 720             final Object[] es = elements;
 721             if (es[cursor] == null || sub(tail, cursor, es.length) != r)
 722                 throw new ConcurrentModificationException();
 723             for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
 724                  ; i = 0, to = end) {
 725                 for (; i < to; i++)
 726                     action.accept(elementAt(es, i));
 727                 if (to == end) {
 728                     if (end != tail)
 729                         throw new ConcurrentModificationException();
 730                     lastRet = dec(end, es.length);
 731                     break;
 732                 }
 733             }
 734         }
 735     }
 736 
 737     private class DescendingIterator extends DeqIterator {
 738         DescendingIterator() { cursor = dec(tail, elements.length); }
 739 
 740         public final E next() {
 741             if (remaining <= 0)
 742                 throw new NoSuchElementException();
 743             final Object[] es = elements;
 744             E e = nonNullElementAt(es, cursor);
 745             cursor = dec(lastRet = cursor, es.length);
 746             remaining--;
 747             return e;
 748         }
 749 
 750         void postDelete(boolean leftShifted) {
 751             if (!leftShifted)
 752                 cursor = inc(cursor, elements.length);
 753         }
 754 
 755         public final void forEachRemaining(Consumer<? super E> action) {
 756             Objects.requireNonNull(action);
 757             int r;
 758             if ((r = remaining) <= 0)
 759                 return;
 760             remaining = 0;
 761             final Object[] es = elements;
 762             if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
 763                 throw new ConcurrentModificationException();
 764             for (int i = cursor, end = head, to = (i >= end) ? end : 0;
 765                  ; i = es.length - 1, to = end) {
 766                 // hotspot generates faster code than for: i >= to !
 767                 for (; i > to - 1; i--)
 768                     action.accept(elementAt(es, i));
 769                 if (to == end) {
 770                     if (end != head)
 771                         throw new ConcurrentModificationException();
 772                     lastRet = end;
 773                     break;
 774                 }
 775             }
 776         }
 777     }
 778 
 779     /**
 780      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
 781      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
 782      * deque.
 783      *
 784      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
 785      * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
 786      * {@link Spliterator#NONNULL}.  Overriding implementations should document
 787      * the reporting of additional characteristic values.
 788      *
 789      * @return a {@code Spliterator} over the elements in this deque
 790      * @since 1.8
 791      */
 792     public Spliterator<E> spliterator() {
 793         return new DeqSpliterator();
 794     }
 795 
 796     final class DeqSpliterator implements Spliterator<E> {
 797         private int fence;      // -1 until first use
 798         private int cursor;     // current index, modified on traverse/split
 799 
 800         /** Constructs late-binding spliterator over all elements. */
 801         DeqSpliterator() {
 802             this.fence = -1;
 803         }
 804 
 805         /** Constructs spliterator over the given range. */
 806         DeqSpliterator(int origin, int fence) {
 807             // assert 0 <= origin && origin < elements.length;
 808             // assert 0 <= fence && fence < elements.length;
 809             this.cursor = origin;
 810             this.fence = fence;
 811         }
 812 
 813         /** Ensures late-binding initialization; then returns fence. */
 814         private int getFence() { // force initialization
 815             int t;
 816             if ((t = fence) < 0) {
 817                 t = fence = tail;
 818                 cursor = head;
 819             }
 820             return t;
 821         }
 822 
 823         public DeqSpliterator trySplit() {
 824             final Object[] es = elements;
 825             final int i, n;
 826             return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
 827                 ? null
 828                 : new DeqSpliterator(i, cursor = add(i, n, es.length));
 829         }
 830 
 831         public void forEachRemaining(Consumer<? super E> action) {
 832             if (action == null)
 833                 throw new NullPointerException();
 834             final int end = getFence(), cursor = this.cursor;
 835             final Object[] es = elements;
 836             if (cursor != end) {
 837                 this.cursor = end;
 838                 // null check at both ends of range is sufficient
 839                 if (es[cursor] == null || es[dec(end, es.length)] == null)
 840                     throw new ConcurrentModificationException();
 841                 for (int i = cursor, to = (i <= end) ? end : es.length;
 842                      ; i = 0, to = end) {
 843                     for (; i < to; i++)
 844                         action.accept(elementAt(es, i));
 845                     if (to == end) break;
 846                 }
 847             }
 848         }
 849 
 850         public boolean tryAdvance(Consumer<? super E> action) {
 851             Objects.requireNonNull(action);
 852             final Object[] es = elements;
 853             if (fence < 0) { fence = tail; cursor = head; } // late-binding
 854             final int i;
 855             if ((i = cursor) == fence)
 856                 return false;
 857             E e = nonNullElementAt(es, i);
 858             cursor = inc(i, es.length);
 859             action.accept(e);
 860             return true;
 861         }
 862 
 863         public long estimateSize() {
 864             return sub(getFence(), cursor, elements.length);
 865         }
 866 
 867         public int characteristics() {
 868             return Spliterator.NONNULL
 869                 | Spliterator.ORDERED
 870                 | Spliterator.SIZED
 871                 | Spliterator.SUBSIZED;
 872         }
 873     }
 874 
 875     /**
 876      * @throws NullPointerException {@inheritDoc}
 877      */
 878     public void forEach(Consumer<? super E> action) {
 879         Objects.requireNonNull(action);
 880         final Object[] es = elements;
 881         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 882              ; i = 0, to = end) {
 883             for (; i < to; i++)
 884                 action.accept(elementAt(es, i));
 885             if (to == end) {
 886                 if (end != tail) throw new ConcurrentModificationException();
 887                 break;
 888             }
 889         }
 890     }
 891 
 892     /**
 893      * @throws NullPointerException {@inheritDoc}
 894      */
 895     public boolean removeIf(Predicate<? super E> filter) {
 896         Objects.requireNonNull(filter);
 897         return bulkRemove(filter);
 898     }
 899 
 900     /**
 901      * @throws NullPointerException {@inheritDoc}
 902      */
 903     public boolean removeAll(Collection<?> c) {
 904         Objects.requireNonNull(c);
 905         return bulkRemove(e -> c.contains(e));
 906     }
 907 
 908     /**
 909      * @throws NullPointerException {@inheritDoc}
 910      */
 911     public boolean retainAll(Collection<?> c) {
 912         Objects.requireNonNull(c);
 913         return bulkRemove(e -> !c.contains(e));
 914     }
 915 
 916     /** Implementation of bulk remove methods. */
 917     private boolean bulkRemove(Predicate<? super E> filter) {
 918         final Object[] es = elements;
 919         // Optimize for initial run of survivors
 920         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 921              ; i = 0, to = end) {
 922             for (; i < to; i++)
 923                 if (filter.test(elementAt(es, i)))
 924                     return bulkRemoveModified(filter, i);
 925             if (to == end) {
 926                 if (end != tail) throw new ConcurrentModificationException();
 927                 break;
 928             }
 929         }
 930         return false;
 931     }
 932 
 933     // A tiny bit set implementation
 934 
 935     private static long[] nBits(int n) {
 936         return new long[((n - 1) >> 6) + 1];
 937     }
 938     private static void setBit(long[] bits, int i) {
 939         bits[i >> 6] |= 1L << i;
 940     }
 941     private static boolean isClear(long[] bits, int i) {
 942         return (bits[i >> 6] & (1L << i)) == 0;
 943     }
 944 
 945     /**
 946      * Helper for bulkRemove, in case of at least one deletion.
 947      * Tolerate predicates that reentrantly access the collection for
 948      * read (but writers still get CME), so traverse once to find
 949      * elements to delete, a second pass to physically expunge.
 950      *
 951      * @param beg valid index of first element to be deleted
 952      */
 953     private boolean bulkRemoveModified(
 954         Predicate<? super E> filter, final int beg) {
 955         final Object[] es = elements;
 956         final int capacity = es.length;
 957         final int end = tail;
 958         final long[] deathRow = nBits(sub(end, beg, capacity));
 959         deathRow[0] = 1L;   // set bit 0
 960         for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
 961              ; i = 0, to = end, k -= capacity) {
 962             for (; i < to; i++)
 963                 if (filter.test(elementAt(es, i)))
 964                     setBit(deathRow, i - k);
 965             if (to == end) break;
 966         }
 967         // a two-finger traversal, with hare i reading, tortoise w writing
 968         int w = beg;
 969         for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
 970              ; w = 0) { // w rejoins i on second leg
 971             // In this loop, i and w are on the same leg, with i > w
 972             for (; i < to; i++)
 973                 if (isClear(deathRow, i - k))
 974                     es[w++] = es[i];
 975             if (to == end) break;
 976             // In this loop, w is on the first leg, i on the second
 977             for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
 978                 if (isClear(deathRow, i - k))
 979                     es[w++] = es[i];
 980             if (i >= to) {
 981                 if (w == capacity) w = 0; // "corner" case
 982                 break;
 983             }
 984         }
 985         if (end != tail) throw new ConcurrentModificationException();
 986         circularClear(es, tail = w, end);
 987         return true;
 988     }
 989 
 990     /**
 991      * Returns {@code true} if this deque contains the specified element.
 992      * More formally, returns {@code true} if and only if this deque contains
 993      * at least one element {@code e} such that {@code o.equals(e)}.
 994      *
 995      * @param o object to be checked for containment in this deque
 996      * @return {@code true} if this deque contains the specified element
 997      */
 998     public boolean contains(Object o) {
 999         if (o != null) {
1000             final Object[] es = elements;
1001             for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1002                  ; i = 0, to = end) {
1003                 for (; i < to; i++)
1004                     if (o.equals(es[i]))
1005                         return true;
1006                 if (to == end) break;
1007             }
1008         }
1009         return false;
1010     }
1011 
1012     /**
1013      * Removes a single instance of the specified element from this deque.
1014      * If the deque does not contain the element, it is unchanged.
1015      * More formally, removes the first element {@code e} such that
1016      * {@code o.equals(e)} (if such an element exists).
1017      * Returns {@code true} if this deque contained the specified element
1018      * (or equivalently, if this deque changed as a result of the call).
1019      *
1020      * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1021      *
1022      * @param o element to be removed from this deque, if present
1023      * @return {@code true} if this deque contained the specified element
1024      */
1025     public boolean remove(Object o) {
1026         return removeFirstOccurrence(o);
1027     }
1028 
1029     /**
1030      * Removes all of the elements from this deque.
1031      * The deque will be empty after this call returns.
1032      */
1033     public void clear() {
1034         circularClear(elements, head, tail);
1035         head = tail = 0;
1036     }
1037 
1038     /**
1039      * Nulls out slots starting at array index i, upto index end.
1040      * Condition i == end means "empty" - nothing to do.
1041      */
1042     private static void circularClear(Object[] es, int i, int end) {
1043         // assert 0 <= i && i < es.length;
1044         // assert 0 <= end && end < es.length;
1045         for (int to = (i <= end) ? end : es.length;
1046              ; i = 0, to = end) {
1047             for (; i < to; i++) es[i] = null;
1048             if (to == end) break;
1049         }
1050     }
1051 
1052     /**
1053      * Returns an array containing all of the elements in this deque
1054      * in proper sequence (from first to last element).
1055      *
1056      * <p>The returned array will be "safe" in that no references to it are
1057      * maintained by this deque.  (In other words, this method must allocate
1058      * a new array).  The caller is thus free to modify the returned array.
1059      *
1060      * <p>This method acts as bridge between array-based and collection-based
1061      * APIs.
1062      *
1063      * @return an array containing all of the elements in this deque
1064      */
1065     public Object[] toArray() {
1066         return toArray(Object[].class);
1067     }
1068 
1069     private <T> T[] toArray(Class<T[]> klazz) {
1070         final Object[] es = elements;
1071         final T[] a;
1072         final int head = this.head, tail = this.tail, end;
1073         if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1074             // Uses null extension feature of copyOfRange
1075             a = Arrays.copyOfRange(es, head, end, klazz);
1076         } else {
1077             // integer overflow!
1078             a = Arrays.copyOfRange(es, 0, end - head, klazz);
1079             System.arraycopy(es, head, a, 0, es.length - head);
1080         }
1081         if (end != tail)
1082             System.arraycopy(es, 0, a, es.length - head, tail);
1083         return a;
1084     }
1085 
1086     /**
1087      * Returns an array containing all of the elements in this deque in
1088      * proper sequence (from first to last element); the runtime type of the
1089      * returned array is that of the specified array.  If the deque fits in
1090      * the specified array, it is returned therein.  Otherwise, a new array
1091      * is allocated with the runtime type of the specified array and the
1092      * size of this deque.
1093      *
1094      * <p>If this deque fits in the specified array with room to spare
1095      * (i.e., the array has more elements than this deque), the element in
1096      * the array immediately following the end of the deque is set to
1097      * {@code null}.
1098      *
1099      * <p>Like the {@link #toArray()} method, this method acts as bridge between
1100      * array-based and collection-based APIs.  Further, this method allows
1101      * precise control over the runtime type of the output array, and may,
1102      * under certain circumstances, be used to save allocation costs.
1103      *
1104      * <p>Suppose {@code x} is a deque known to contain only strings.
1105      * The following code can be used to dump the deque into a newly
1106      * allocated array of {@code String}:
1107      *
1108      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1109      *
1110      * Note that {@code toArray(new Object[0])} is identical in function to
1111      * {@code toArray()}.
1112      *
1113      * @param a the array into which the elements of the deque are to
1114      *          be stored, if it is big enough; otherwise, a new array of the
1115      *          same runtime type is allocated for this purpose
1116      * @return an array containing all of the elements in this deque
1117      * @throws ArrayStoreException if the runtime type of the specified array
1118      *         is not a supertype of the runtime type of every element in
1119      *         this deque
1120      * @throws NullPointerException if the specified array is null
1121      */
1122     @SuppressWarnings("unchecked")
1123     public <T> T[] toArray(T[] a) {
1124         final int size;
1125         if ((size = size()) > a.length)
1126             return toArray((Class<T[]>) a.getClass());
1127         final Object[] es = elements;
1128         for (int i = head, j = 0, len = Math.min(size, es.length - i);
1129              ; i = 0, len = tail) {
1130             System.arraycopy(es, i, a, j, len);
1131             if ((j += len) == size) break;
1132         }
1133         if (size < a.length)
1134             a[size] = null;
1135         return a;
1136     }
1137 
1138     // *** Object methods ***
1139 
1140     /**
1141      * Returns a copy of this deque.
1142      *
1143      * @return a copy of this deque
1144      */
1145     public ArrayDeque<E> clone() {
1146         try {
1147             @SuppressWarnings("unchecked")
1148             ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1149             result.elements = Arrays.copyOf(elements, elements.length);
1150             return result;
1151         } catch (CloneNotSupportedException e) {
1152             throw new AssertionError();
1153         }
1154     }
1155 
1156     private static final long serialVersionUID = 2340985798034038923L;
1157 
1158     /**
1159      * Saves this deque to a stream (that is, serializes it).
1160      *
1161      * @param s the stream
1162      * @throws java.io.IOException if an I/O error occurs
1163      * @serialData The current size ({@code int}) of the deque,
1164      * followed by all of its elements (each an object reference) in
1165      * first-to-last order.
1166      */
1167     private void writeObject(java.io.ObjectOutputStream s)
1168             throws java.io.IOException {
1169         s.defaultWriteObject();
1170 
1171         // Write out size
1172         s.writeInt(size());
1173 
1174         // Write out elements in order.
1175         final Object[] es = elements;
1176         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1177              ; i = 0, to = end) {
1178             for (; i < to; i++)
1179                 s.writeObject(es[i]);
1180             if (to == end) break;
1181         }
1182     }
1183 
1184     /**
1185      * Reconstitutes this deque from a stream (that is, deserializes it).
1186      * @param s the stream
1187      * @throws ClassNotFoundException if the class of a serialized object
1188      *         could not be found
1189      * @throws java.io.IOException if an I/O error occurs
1190      */
1191     private void readObject(java.io.ObjectInputStream s)
1192             throws java.io.IOException, ClassNotFoundException {
1193         s.defaultReadObject();
1194 
1195         // Read in size and allocate array
1196         int size = s.readInt();
1197         elements = new Object[size + 1];
1198         this.tail = size;
1199 
1200         // Read in all elements in the proper order.
1201         for (int i = 0; i < size; i++)
1202             elements[i] = s.readObject();
1203     }
1204 
1205     /** debugging */
1206     void checkInvariants() {
1207         // Use head and tail fields with empty slot at tail strategy.
1208         // head == tail disambiguates to "empty".
1209         try {
1210             int capacity = elements.length;
1211             // assert 0 <= head && head < capacity;
1212             // assert 0 <= tail && tail < capacity;
1213             // assert capacity > 0;
1214             // assert size() < capacity;
1215             // assert head == tail || elements[head] != null;
1216             // assert elements[tail] == null;
1217             // assert head == tail || elements[dec(tail, capacity)] != null;
1218         } catch (Throwable t) {
1219             System.err.printf("head=%d tail=%d capacity=%d%n",
1220                               head, tail, elements.length);
1221             System.err.printf("elements=%s%n",
1222                               Arrays.toString(elements));
1223             throw t;
1224         }
1225     }
1226 
1227 }