1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.Serializable;
  31 import java.lang.reflect.ParameterizedType;
  32 import java.lang.reflect.Type;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BiFunction;
  35 import java.util.function.Consumer;
  36 import java.util.function.Function;
  37 import jdk.internal.misc.SharedSecrets;
  38 
  39 /**
  40  * Hash table based implementation of the {@code Map} interface.  This
  41  * implementation provides all of the optional map operations, and permits
  42  * {@code null} values and the {@code null} key.  (The {@code HashMap}
  43  * class is roughly equivalent to {@code Hashtable}, except that it is
  44  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  45  * the order of the map; in particular, it does not guarantee that the order
  46  * will remain constant over time.
  47  *
  48  * <p>This implementation provides constant-time performance for the basic
  49  * operations ({@code get} and {@code put}), assuming the hash function
  50  * disperses the elements properly among the buckets.  Iteration over
  51  * collection views requires time proportional to the "capacity" of the
  52  * {@code HashMap} instance (the number of buckets) plus its size (the number
  53  * of key-value mappings).  Thus, it's very important not to set the initial
  54  * capacity too high (or the load factor too low) if iteration performance is
  55  * important.
  56  *
  57  * <p>An instance of {@code HashMap} has two parameters that affect its
  58  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  59  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  60  * capacity is simply the capacity at the time the hash table is created.  The
  61  * <i>load factor</i> is a measure of how full the hash table is allowed to
  62  * get before its capacity is automatically increased.  When the number of
  63  * entries in the hash table exceeds the product of the load factor and the
  64  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  65  * structures are rebuilt) so that the hash table has approximately twice the
  66  * number of buckets.
  67  *
  68  * <p>As a general rule, the default load factor (.75) offers a good
  69  * tradeoff between time and space costs.  Higher values decrease the
  70  * space overhead but increase the lookup cost (reflected in most of
  71  * the operations of the {@code HashMap} class, including
  72  * {@code get} and {@code put}).  The expected number of entries in
  73  * the map and its load factor should be taken into account when
  74  * setting its initial capacity, so as to minimize the number of
  75  * rehash operations.  If the initial capacity is greater than the
  76  * maximum number of entries divided by the load factor, no rehash
  77  * operations will ever occur.
  78  *
  79  * <p>If many mappings are to be stored in a {@code HashMap}
  80  * instance, creating it with a sufficiently large capacity will allow
  81  * the mappings to be stored more efficiently than letting it perform
  82  * automatic rehashing as needed to grow the table.  Note that using
  83  * many keys with the same {@code hashCode()} is a sure way to slow
  84  * down performance of any hash table. To ameliorate impact, when keys
  85  * are {@link Comparable}, this class may use comparison order among
  86  * keys to help break ties.
  87  *
  88  * <p><strong>Note that this implementation is not synchronized.</strong>
  89  * If multiple threads access a hash map concurrently, and at least one of
  90  * the threads modifies the map structurally, it <i>must</i> be
  91  * synchronized externally.  (A structural modification is any operation
  92  * that adds or deletes one or more mappings; merely changing the value
  93  * associated with a key that an instance already contains is not a
  94  * structural modification.)  This is typically accomplished by
  95  * synchronizing on some object that naturally encapsulates the map.
  96  *
  97  * If no such object exists, the map should be "wrapped" using the
  98  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  99  * method.  This is best done at creation time, to prevent accidental
 100  * unsynchronized access to the map:<pre>
 101  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 102  *
 103  * <p>The iterators returned by all of this class's "collection view methods"
 104  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 105  * the iterator is created, in any way except through the iterator's own
 106  * {@code remove} method, the iterator will throw a
 107  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 108  * modification, the iterator fails quickly and cleanly, rather than risking
 109  * arbitrary, non-deterministic behavior at an undetermined time in the
 110  * future.
 111  *
 112  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 113  * as it is, generally speaking, impossible to make any hard guarantees in the
 114  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 115  * throw {@code ConcurrentModificationException} on a best-effort basis.
 116  * Therefore, it would be wrong to write a program that depended on this
 117  * exception for its correctness: <i>the fail-fast behavior of iterators
 118  * should be used only to detect bugs.</i>
 119  *
 120  * <p>This class is a member of the
 121  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 122  * Java Collections Framework</a>.
 123  *
 124  * @param <K> the type of keys maintained by this map
 125  * @param <V> the type of mapped values
 126  *
 127  * @author  Doug Lea
 128  * @author  Josh Bloch
 129  * @author  Arthur van Hoff
 130  * @author  Neal Gafter
 131  * @see     Object#hashCode()
 132  * @see     Collection
 133  * @see     Map
 134  * @see     TreeMap
 135  * @see     Hashtable
 136  * @since   1.2
 137  */
 138 public class HashMap<K,V> extends AbstractMap<K,V>
 139     implements Map<K,V>, Cloneable, Serializable {
 140 
 141     private static final long serialVersionUID = 362498820763181265L;
 142 
 143     /*
 144      * Implementation notes.
 145      *
 146      * This map usually acts as a binned (bucketed) hash table, but
 147      * when bins get too large, they are transformed into bins of
 148      * TreeNodes, each structured similarly to those in
 149      * java.util.TreeMap. Most methods try to use normal bins, but
 150      * relay to TreeNode methods when applicable (simply by checking
 151      * instanceof a node).  Bins of TreeNodes may be traversed and
 152      * used like any others, but additionally support faster lookup
 153      * when overpopulated. However, since the vast majority of bins in
 154      * normal use are not overpopulated, checking for existence of
 155      * tree bins may be delayed in the course of table methods.
 156      *
 157      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 158      * ordered primarily by hashCode, but in the case of ties, if two
 159      * elements are of the same "class C implements Comparable<C>",
 160      * type then their compareTo method is used for ordering. (We
 161      * conservatively check generic types via reflection to validate
 162      * this -- see method comparableClassFor).  The added complexity
 163      * of tree bins is worthwhile in providing worst-case O(log n)
 164      * operations when keys either have distinct hashes or are
 165      * orderable, Thus, performance degrades gracefully under
 166      * accidental or malicious usages in which hashCode() methods
 167      * return values that are poorly distributed, as well as those in
 168      * which many keys share a hashCode, so long as they are also
 169      * Comparable. (If neither of these apply, we may waste about a
 170      * factor of two in time and space compared to taking no
 171      * precautions. But the only known cases stem from poor user
 172      * programming practices that are already so slow that this makes
 173      * little difference.)
 174      *
 175      * Because TreeNodes are about twice the size of regular nodes, we
 176      * use them only when bins contain enough nodes to warrant use
 177      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 178      * removal or resizing) they are converted back to plain bins.  In
 179      * usages with well-distributed user hashCodes, tree bins are
 180      * rarely used.  Ideally, under random hashCodes, the frequency of
 181      * nodes in bins follows a Poisson distribution
 182      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 183      * parameter of about 0.5 on average for the default resizing
 184      * threshold of 0.75, although with a large variance because of
 185      * resizing granularity. Ignoring variance, the expected
 186      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 187      * factorial(k)). The first values are:
 188      *
 189      * 0:    0.60653066
 190      * 1:    0.30326533
 191      * 2:    0.07581633
 192      * 3:    0.01263606
 193      * 4:    0.00157952
 194      * 5:    0.00015795
 195      * 6:    0.00001316
 196      * 7:    0.00000094
 197      * 8:    0.00000006
 198      * more: less than 1 in ten million
 199      *
 200      * The root of a tree bin is normally its first node.  However,
 201      * sometimes (currently only upon Iterator.remove), the root might
 202      * be elsewhere, but can be recovered following parent links
 203      * (method TreeNode.root()).
 204      *
 205      * All applicable internal methods accept a hash code as an
 206      * argument (as normally supplied from a public method), allowing
 207      * them to call each other without recomputing user hashCodes.
 208      * Most internal methods also accept a "tab" argument, that is
 209      * normally the current table, but may be a new or old one when
 210      * resizing or converting.
 211      *
 212      * When bin lists are treeified, split, or untreeified, we keep
 213      * them in the same relative access/traversal order (i.e., field
 214      * Node.next) to better preserve locality, and to slightly
 215      * simplify handling of splits and traversals that invoke
 216      * iterator.remove. When using comparators on insertion, to keep a
 217      * total ordering (or as close as is required here) across
 218      * rebalancings, we compare classes and identityHashCodes as
 219      * tie-breakers.
 220      *
 221      * The use and transitions among plain vs tree modes is
 222      * complicated by the existence of subclass LinkedHashMap. See
 223      * below for hook methods defined to be invoked upon insertion,
 224      * removal and access that allow LinkedHashMap internals to
 225      * otherwise remain independent of these mechanics. (This also
 226      * requires that a map instance be passed to some utility methods
 227      * that may create new nodes.)
 228      *
 229      * The concurrent-programming-like SSA-based coding style helps
 230      * avoid aliasing errors amid all of the twisty pointer operations.
 231      */
 232 
 233     /**
 234      * The default initial capacity - MUST be a power of two.
 235      */
 236     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 237 
 238     /**
 239      * The maximum capacity, used if a higher value is implicitly specified
 240      * by either of the constructors with arguments.
 241      * MUST be a power of two <= 1<<30.
 242      */
 243     static final int MAXIMUM_CAPACITY = 1 << 30;
 244 
 245     /**
 246      * The load factor used when none specified in constructor.
 247      */
 248     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 249 
 250     /**
 251      * The bin count threshold for using a tree rather than list for a
 252      * bin.  Bins are converted to trees when adding an element to a
 253      * bin with at least this many nodes. The value must be greater
 254      * than 2 and should be at least 8 to mesh with assumptions in
 255      * tree removal about conversion back to plain bins upon
 256      * shrinkage.
 257      */
 258     static final int TREEIFY_THRESHOLD = 8;
 259 
 260     /**
 261      * The bin count threshold for untreeifying a (split) bin during a
 262      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 263      * most 6 to mesh with shrinkage detection under removal.
 264      */
 265     static final int UNTREEIFY_THRESHOLD = 6;
 266 
 267     /**
 268      * The smallest table capacity for which bins may be treeified.
 269      * (Otherwise the table is resized if too many nodes in a bin.)
 270      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 271      * between resizing and treeification thresholds.
 272      */
 273     static final int MIN_TREEIFY_CAPACITY = 64;
 274 
 275     /**
 276      * Basic hash bin node, used for most entries.  (See below for
 277      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 278      */
 279     static class Node<K,V> implements Map.Entry<K,V> {
 280         final int hash;
 281         final K key;
 282         V value;
 283         Node<K,V> next;
 284 
 285         Node(int hash, K key, V value, Node<K,V> next) {
 286             this.hash = hash;
 287             this.key = key;
 288             this.value = value;
 289             this.next = next;
 290         }
 291 
 292         public final K getKey()        { return key; }
 293         public final V getValue()      { return value; }
 294         public final String toString() { return key + "=" + value; }
 295 
 296         public final int hashCode() {
 297             return Objects.hashCode(key) ^ Objects.hashCode(value);
 298         }
 299 
 300         public final V setValue(V newValue) {
 301             V oldValue = value;
 302             value = newValue;
 303             return oldValue;
 304         }
 305 
 306         public final boolean equals(Object o) {
 307             if (o == this)
 308                 return true;
 309             if (o instanceof Map.Entry) {
 310                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 311                 if (Objects.equals(key, e.getKey()) &&
 312                     Objects.equals(value, e.getValue()))
 313                     return true;
 314             }
 315             return false;
 316         }
 317     }
 318 
 319     /* ---------------- Static utilities -------------- */
 320 
 321     /**
 322      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 323      * to lower.  Because the table uses power-of-two masking, sets of
 324      * hashes that vary only in bits above the current mask will
 325      * always collide. (Among known examples are sets of Float keys
 326      * holding consecutive whole numbers in small tables.)  So we
 327      * apply a transform that spreads the impact of higher bits
 328      * downward. There is a tradeoff between speed, utility, and
 329      * quality of bit-spreading. Because many common sets of hashes
 330      * are already reasonably distributed (so don't benefit from
 331      * spreading), and because we use trees to handle large sets of
 332      * collisions in bins, we just XOR some shifted bits in the
 333      * cheapest possible way to reduce systematic lossage, as well as
 334      * to incorporate impact of the highest bits that would otherwise
 335      * never be used in index calculations because of table bounds.
 336      */
 337     static final int hash(Object key) {
 338         int h;
 339         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 340     }
 341 
 342     /**
 343      * Returns x's Class if it is of the form "class C implements
 344      * Comparable<C>", else null.
 345      */
 346     static Class<?> comparableClassFor(Object x) {
 347         if (x instanceof Comparable) {
 348             Class<?> c; Type[] ts, as; ParameterizedType p;
 349             if ((c = x.getClass()) == String.class) // bypass checks
 350                 return c;
 351             if ((ts = c.getGenericInterfaces()) != null) {
 352                 for (Type t : ts) {
 353                     if ((t instanceof ParameterizedType) &&
 354                         ((p = (ParameterizedType) t).getRawType() ==
 355                          Comparable.class) &&
 356                         (as = p.getActualTypeArguments()) != null &&
 357                         as.length == 1 && as[0] == c) // type arg is c
 358                         return c;
 359                 }
 360             }
 361         }
 362         return null;
 363     }
 364 
 365     /**
 366      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 367      * class), else 0.
 368      */
 369     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
 370     static int compareComparables(Class<?> kc, Object k, Object x) {
 371         return (x == null || x.getClass() != kc ? 0 :
 372                 ((Comparable)k).compareTo(x));
 373     }
 374 
 375     /**
 376      * Returns a power of two size for the given target capacity.
 377      */
 378     static final int tableSizeFor(int cap) {
 379         int n = cap - 1;
 380         n |= n >>> 1;
 381         n |= n >>> 2;
 382         n |= n >>> 4;
 383         n |= n >>> 8;
 384         n |= n >>> 16;
 385         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 386     }
 387 
 388     /* ---------------- Fields -------------- */
 389 
 390     /**
 391      * The table, initialized on first use, and resized as
 392      * necessary. When allocated, length is always a power of two.
 393      * (We also tolerate length zero in some operations to allow
 394      * bootstrapping mechanics that are currently not needed.)
 395      */
 396     transient Node<K,V>[] table;
 397 
 398     /**
 399      * Holds cached entrySet(). Note that AbstractMap fields are used
 400      * for keySet() and values().
 401      */
 402     transient Set<Map.Entry<K,V>> entrySet;
 403 
 404     /**
 405      * The number of key-value mappings contained in this map.
 406      */
 407     transient int size;
 408 
 409     /**
 410      * The number of times this HashMap has been structurally modified
 411      * Structural modifications are those that change the number of mappings in
 412      * the HashMap or otherwise modify its internal structure (e.g.,
 413      * rehash).  This field is used to make iterators on Collection-views of
 414      * the HashMap fail-fast.  (See ConcurrentModificationException).
 415      */
 416     transient int modCount;
 417 
 418     /**
 419      * The next size value at which to resize (capacity * load factor).
 420      *
 421      * @serial
 422      */
 423     // (The javadoc description is true upon serialization.
 424     // Additionally, if the table array has not been allocated, this
 425     // field holds the initial array capacity, or zero signifying
 426     // DEFAULT_INITIAL_CAPACITY.)
 427     int threshold;
 428 
 429     /**
 430      * The load factor for the hash table.
 431      *
 432      * @serial
 433      */
 434     final float loadFactor;
 435 
 436     /* ---------------- Public operations -------------- */
 437 
 438     /**
 439      * Constructs an empty {@code HashMap} with the specified initial
 440      * capacity and load factor.
 441      *
 442      * @param  initialCapacity the initial capacity
 443      * @param  loadFactor      the load factor
 444      * @throws IllegalArgumentException if the initial capacity is negative
 445      *         or the load factor is nonpositive
 446      */
 447     public HashMap(int initialCapacity, float loadFactor) {
 448         if (initialCapacity < 0)
 449             throw new IllegalArgumentException("Illegal initial capacity: " +
 450                                                initialCapacity);
 451         if (initialCapacity > MAXIMUM_CAPACITY)
 452             initialCapacity = MAXIMUM_CAPACITY;
 453         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 454             throw new IllegalArgumentException("Illegal load factor: " +
 455                                                loadFactor);
 456         this.loadFactor = loadFactor;
 457         this.threshold = tableSizeFor(initialCapacity);
 458     }
 459 
 460     /**
 461      * Constructs an empty {@code HashMap} with the specified initial
 462      * capacity and the default load factor (0.75).
 463      *
 464      * @param  initialCapacity the initial capacity.
 465      * @throws IllegalArgumentException if the initial capacity is negative.
 466      */
 467     public HashMap(int initialCapacity) {
 468         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 469     }
 470 
 471     /**
 472      * Constructs an empty {@code HashMap} with the default initial capacity
 473      * (16) and the default load factor (0.75).
 474      */
 475     public HashMap() {
 476         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 477     }
 478 
 479     /**
 480      * Constructs a new {@code HashMap} with the same mappings as the
 481      * specified {@code Map}.  The {@code HashMap} is created with
 482      * default load factor (0.75) and an initial capacity sufficient to
 483      * hold the mappings in the specified {@code Map}.
 484      *
 485      * @param   m the map whose mappings are to be placed in this map
 486      * @throws  NullPointerException if the specified map is null
 487      */
 488     public HashMap(Map<? extends K, ? extends V> m) {
 489         this.loadFactor = DEFAULT_LOAD_FACTOR;
 490         putMapEntries(m, false);
 491     }
 492 
 493     /**
 494      * Implements Map.putAll and Map constructor.
 495      *
 496      * @param m the map
 497      * @param evict false when initially constructing this map, else
 498      * true (relayed to method afterNodeInsertion).
 499      */
 500     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 501         int s = m.size();
 502         if (s > 0) {
 503             if (table == null) { // pre-size
 504                 float ft = ((float)s / loadFactor) + 1.0F;
 505                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
 506                          (int)ft : MAXIMUM_CAPACITY);
 507                 if (t > threshold)
 508                     threshold = tableSizeFor(t);
 509             }
 510             else if (s > threshold)
 511                 resize();
 512             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 513                 K key = e.getKey();
 514                 V value = e.getValue();
 515                 putVal(hash(key), key, value, false, evict);
 516             }
 517         }
 518     }
 519 
 520     /**
 521      * Returns the number of key-value mappings in this map.
 522      *
 523      * @return the number of key-value mappings in this map
 524      */
 525     public int size() {
 526         return size;
 527     }
 528 
 529     /**
 530      * Returns {@code true} if this map contains no key-value mappings.
 531      *
 532      * @return {@code true} if this map contains no key-value mappings
 533      */
 534     public boolean isEmpty() {
 535         return size == 0;
 536     }
 537 
 538     /**
 539      * Returns the value to which the specified key is mapped,
 540      * or {@code null} if this map contains no mapping for the key.
 541      *
 542      * <p>More formally, if this map contains a mapping from a key
 543      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 544      * key.equals(k))}, then this method returns {@code v}; otherwise
 545      * it returns {@code null}.  (There can be at most one such mapping.)
 546      *
 547      * <p>A return value of {@code null} does not <i>necessarily</i>
 548      * indicate that the map contains no mapping for the key; it's also
 549      * possible that the map explicitly maps the key to {@code null}.
 550      * The {@link #containsKey containsKey} operation may be used to
 551      * distinguish these two cases.
 552      *
 553      * @see #put(Object, Object)
 554      */
 555     public V get(Object key) {
 556         Node<K,V> e;
 557         return (e = getNode(hash(key), key)) == null ? null : e.value;
 558     }
 559 
 560     /**
 561      * Implements Map.get and related methods.
 562      *
 563      * @param hash hash for key
 564      * @param key the key
 565      * @return the node, or null if none
 566      */
 567     final Node<K,V> getNode(int hash, Object key) {
 568         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
 569         if ((tab = table) != null && (n = tab.length) > 0 &&
 570             (first = tab[(n - 1) & hash]) != null) {
 571             if (first.hash == hash && // always check first node
 572                 ((k = first.key) == key || (key != null && key.equals(k))))
 573                 return first;
 574             if ((e = first.next) != null) {
 575                 if (first instanceof TreeNode)
 576                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
 577                 do {
 578                     if (e.hash == hash &&
 579                         ((k = e.key) == key || (key != null && key.equals(k))))
 580                         return e;
 581                 } while ((e = e.next) != null);
 582             }
 583         }
 584         return null;
 585     }
 586 
 587     /**
 588      * Returns {@code true} if this map contains a mapping for the
 589      * specified key.
 590      *
 591      * @param   key   The key whose presence in this map is to be tested
 592      * @return {@code true} if this map contains a mapping for the specified
 593      * key.
 594      */
 595     public boolean containsKey(Object key) {
 596         return getNode(hash(key), key) != null;
 597     }
 598 
 599     /**
 600      * Associates the specified value with the specified key in this map.
 601      * If the map previously contained a mapping for the key, the old
 602      * value is replaced.
 603      *
 604      * @param key key with which the specified value is to be associated
 605      * @param value value to be associated with the specified key
 606      * @return the previous value associated with {@code key}, or
 607      *         {@code null} if there was no mapping for {@code key}.
 608      *         (A {@code null} return can also indicate that the map
 609      *         previously associated {@code null} with {@code key}.)
 610      */
 611     public V put(K key, V value) {
 612         return putVal(hash(key), key, value, false, true);
 613     }
 614 
 615     /**
 616      * Implements Map.put and related methods.
 617      *
 618      * @param hash hash for key
 619      * @param key the key
 620      * @param value the value to put
 621      * @param onlyIfAbsent if true, don't change existing value
 622      * @param evict if false, the table is in creation mode.
 623      * @return previous value, or null if none
 624      */
 625     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 626                    boolean evict) {
 627         Node<K,V>[] tab; Node<K,V> p; int n, i;
 628         if ((tab = table) == null || (n = tab.length) == 0)
 629             n = (tab = resize()).length;
 630         if ((p = tab[i = (n - 1) & hash]) == null)
 631             tab[i] = newNode(hash, key, value, null);
 632         else {
 633             Node<K,V> e; K k;
 634             if (p.hash == hash &&
 635                 ((k = p.key) == key || (key != null && key.equals(k))))
 636                 e = p;
 637             else if (p instanceof TreeNode)
 638                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
 639             else {
 640                 for (int binCount = 0; ; ++binCount) {
 641                     if ((e = p.next) == null) {
 642                         p.next = newNode(hash, key, value, null);
 643                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 644                             treeifyBin(tab, hash);
 645                         break;
 646                     }
 647                     if (e.hash == hash &&
 648                         ((k = e.key) == key || (key != null && key.equals(k))))
 649                         break;
 650                     p = e;
 651                 }
 652             }
 653             if (e != null) { // existing mapping for key
 654                 V oldValue = e.value;
 655                 if (!onlyIfAbsent || oldValue == null)
 656                     e.value = value;
 657                 afterNodeAccess(e);
 658                 return oldValue;
 659             }
 660         }
 661         ++modCount;
 662         if (++size > threshold)
 663             resize();
 664         afterNodeInsertion(evict);
 665         return null;
 666     }
 667 
 668     /**
 669      * Initializes or doubles table size.  If null, allocates in
 670      * accord with initial capacity target held in field threshold.
 671      * Otherwise, because we are using power-of-two expansion, the
 672      * elements from each bin must either stay at same index, or move
 673      * with a power of two offset in the new table.
 674      *
 675      * @return the table
 676      */
 677     final Node<K,V>[] resize() {
 678         Node<K,V>[] oldTab = table;
 679         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 680         int oldThr = threshold;
 681         int newCap, newThr = 0;
 682         if (oldCap > 0) {
 683             if (oldCap >= MAXIMUM_CAPACITY) {
 684                 threshold = Integer.MAX_VALUE;
 685                 return oldTab;
 686             }
 687             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 688                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 689                 newThr = oldThr << 1; // double threshold
 690         }
 691         else if (oldThr > 0) // initial capacity was placed in threshold
 692             newCap = oldThr;
 693         else {               // zero initial threshold signifies using defaults
 694             newCap = DEFAULT_INITIAL_CAPACITY;
 695             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 696         }
 697         if (newThr == 0) {
 698             float ft = (float)newCap * loadFactor;
 699             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 700                       (int)ft : Integer.MAX_VALUE);
 701         }
 702         threshold = newThr;
 703         @SuppressWarnings({"rawtypes","unchecked"})
 704         Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 705         table = newTab;
 706         if (oldTab != null) {
 707             for (int j = 0; j < oldCap; ++j) {
 708                 Node<K,V> e;
 709                 if ((e = oldTab[j]) != null) {
 710                     oldTab[j] = null;
 711                     if (e.next == null)
 712                         newTab[e.hash & (newCap - 1)] = e;
 713                     else if (e instanceof TreeNode)
 714                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 715                     else { // preserve order
 716                         Node<K,V> loHead = null, loTail = null;
 717                         Node<K,V> hiHead = null, hiTail = null;
 718                         Node<K,V> next;
 719                         do {
 720                             next = e.next;
 721                             if ((e.hash & oldCap) == 0) {
 722                                 if (loTail == null)
 723                                     loHead = e;
 724                                 else
 725                                     loTail.next = e;
 726                                 loTail = e;
 727                             }
 728                             else {
 729                                 if (hiTail == null)
 730                                     hiHead = e;
 731                                 else
 732                                     hiTail.next = e;
 733                                 hiTail = e;
 734                             }
 735                         } while ((e = next) != null);
 736                         if (loTail != null) {
 737                             loTail.next = null;
 738                             newTab[j] = loHead;
 739                         }
 740                         if (hiTail != null) {
 741                             hiTail.next = null;
 742                             newTab[j + oldCap] = hiHead;
 743                         }
 744                     }
 745                 }
 746             }
 747         }
 748         return newTab;
 749     }
 750 
 751     /**
 752      * Replaces all linked nodes in bin at index for given hash unless
 753      * table is too small, in which case resizes instead.
 754      */
 755     final void treeifyBin(Node<K,V>[] tab, int hash) {
 756         int n, index; Node<K,V> e;
 757         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 758             resize();
 759         else if ((e = tab[index = (n - 1) & hash]) != null) {
 760             TreeNode<K,V> hd = null, tl = null;
 761             do {
 762                 TreeNode<K,V> p = replacementTreeNode(e, null);
 763                 if (tl == null)
 764                     hd = p;
 765                 else {
 766                     p.prev = tl;
 767                     tl.next = p;
 768                 }
 769                 tl = p;
 770             } while ((e = e.next) != null);
 771             if ((tab[index] = hd) != null)
 772                 hd.treeify(tab);
 773         }
 774     }
 775 
 776     /**
 777      * Copies all of the mappings from the specified map to this map.
 778      * These mappings will replace any mappings that this map had for
 779      * any of the keys currently in the specified map.
 780      *
 781      * @param m mappings to be stored in this map
 782      * @throws NullPointerException if the specified map is null
 783      */
 784     public void putAll(Map<? extends K, ? extends V> m) {
 785         putMapEntries(m, true);
 786     }
 787 
 788     /**
 789      * Removes the mapping for the specified key from this map if present.
 790      *
 791      * @param  key key whose mapping is to be removed from the map
 792      * @return the previous value associated with {@code key}, or
 793      *         {@code null} if there was no mapping for {@code key}.
 794      *         (A {@code null} return can also indicate that the map
 795      *         previously associated {@code null} with {@code key}.)
 796      */
 797     public V remove(Object key) {
 798         Node<K,V> e;
 799         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 800             null : e.value;
 801     }
 802 
 803     /**
 804      * Implements Map.remove and related methods.
 805      *
 806      * @param hash hash for key
 807      * @param key the key
 808      * @param value the value to match if matchValue, else ignored
 809      * @param matchValue if true only remove if value is equal
 810      * @param movable if false do not move other nodes while removing
 811      * @return the node, or null if none
 812      */
 813     final Node<K,V> removeNode(int hash, Object key, Object value,
 814                                boolean matchValue, boolean movable) {
 815         Node<K,V>[] tab; Node<K,V> p; int n, index;
 816         if ((tab = table) != null && (n = tab.length) > 0 &&
 817             (p = tab[index = (n - 1) & hash]) != null) {
 818             Node<K,V> node = null, e; K k; V v;
 819             if (p.hash == hash &&
 820                 ((k = p.key) == key || (key != null && key.equals(k))))
 821                 node = p;
 822             else if ((e = p.next) != null) {
 823                 if (p instanceof TreeNode)
 824                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
 825                 else {
 826                     do {
 827                         if (e.hash == hash &&
 828                             ((k = e.key) == key ||
 829                              (key != null && key.equals(k)))) {
 830                             node = e;
 831                             break;
 832                         }
 833                         p = e;
 834                     } while ((e = e.next) != null);
 835                 }
 836             }
 837             if (node != null && (!matchValue || (v = node.value) == value ||
 838                                  (value != null && value.equals(v)))) {
 839                 if (node instanceof TreeNode)
 840                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
 841                 else if (node == p)
 842                     tab[index] = node.next;
 843                 else
 844                     p.next = node.next;
 845                 ++modCount;
 846                 --size;
 847                 afterNodeRemoval(node);
 848                 return node;
 849             }
 850         }
 851         return null;
 852     }
 853 
 854     /**
 855      * Removes all of the mappings from this map.
 856      * The map will be empty after this call returns.
 857      */
 858     public void clear() {
 859         Node<K,V>[] tab;
 860         modCount++;
 861         if ((tab = table) != null && size > 0) {
 862             size = 0;
 863             for (int i = 0; i < tab.length; ++i)
 864                 tab[i] = null;
 865         }
 866     }
 867 
 868     /**
 869      * Returns {@code true} if this map maps one or more keys to the
 870      * specified value.
 871      *
 872      * @param value value whose presence in this map is to be tested
 873      * @return {@code true} if this map maps one or more keys to the
 874      *         specified value
 875      */
 876     public boolean containsValue(Object value) {
 877         Node<K,V>[] tab; V v;
 878         if ((tab = table) != null && size > 0) {
 879             for (Node<K,V> e : tab) {
 880                 for (; e != null; e = e.next) {
 881                     if ((v = e.value) == value ||
 882                         (value != null && value.equals(v)))
 883                         return true;
 884                 }
 885             }
 886         }
 887         return false;
 888     }
 889 
 890     /**
 891      * Returns a {@link Set} view of the keys contained in this map.
 892      * The set is backed by the map, so changes to the map are
 893      * reflected in the set, and vice-versa.  If the map is modified
 894      * while an iteration over the set is in progress (except through
 895      * the iterator's own {@code remove} operation), the results of
 896      * the iteration are undefined.  The set supports element removal,
 897      * which removes the corresponding mapping from the map, via the
 898      * {@code Iterator.remove}, {@code Set.remove},
 899      * {@code removeAll}, {@code retainAll}, and {@code clear}
 900      * operations.  It does not support the {@code add} or {@code addAll}
 901      * operations.
 902      *
 903      * @return a set view of the keys contained in this map
 904      */
 905     public Set<K> keySet() {
 906         Set<K> ks = keySet;
 907         if (ks == null) {
 908             ks = new KeySet();
 909             keySet = ks;
 910         }
 911         return ks;
 912     }
 913 
 914     final class KeySet extends AbstractSet<K> {
 915         public final int size()                 { return size; }
 916         public final void clear()               { HashMap.this.clear(); }
 917         public final Iterator<K> iterator()     { return new KeyIterator(); }
 918         public final boolean contains(Object o) { return containsKey(o); }
 919         public final boolean remove(Object key) {
 920             return removeNode(hash(key), key, null, false, true) != null;
 921         }
 922         public final Spliterator<K> spliterator() {
 923             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
 924         }
 925         public final void forEach(Consumer<? super K> action) {
 926             Node<K,V>[] tab;
 927             if (action == null)
 928                 throw new NullPointerException();
 929             if (size > 0 && (tab = table) != null) {
 930                 int mc = modCount;
 931                 for (Node<K,V> e : tab) {
 932                     for (; e != null; e = e.next)
 933                         action.accept(e.key);
 934                 }
 935                 if (modCount != mc)
 936                     throw new ConcurrentModificationException();
 937             }
 938         }
 939     }
 940 
 941     /**
 942      * Returns a {@link Collection} view of the values contained in this map.
 943      * The collection is backed by the map, so changes to the map are
 944      * reflected in the collection, and vice-versa.  If the map is
 945      * modified while an iteration over the collection is in progress
 946      * (except through the iterator's own {@code remove} operation),
 947      * the results of the iteration are undefined.  The collection
 948      * supports element removal, which removes the corresponding
 949      * mapping from the map, via the {@code Iterator.remove},
 950      * {@code Collection.remove}, {@code removeAll},
 951      * {@code retainAll} and {@code clear} operations.  It does not
 952      * support the {@code add} or {@code addAll} operations.
 953      *
 954      * @return a view of the values contained in this map
 955      */
 956     public Collection<V> values() {
 957         Collection<V> vs = values;
 958         if (vs == null) {
 959             vs = new Values();
 960             values = vs;
 961         }
 962         return vs;
 963     }
 964 
 965     final class Values extends AbstractCollection<V> {
 966         public final int size()                 { return size; }
 967         public final void clear()               { HashMap.this.clear(); }
 968         public final Iterator<V> iterator()     { return new ValueIterator(); }
 969         public final boolean contains(Object o) { return containsValue(o); }
 970         public final Spliterator<V> spliterator() {
 971             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
 972         }
 973         public final void forEach(Consumer<? super V> action) {
 974             Node<K,V>[] tab;
 975             if (action == null)
 976                 throw new NullPointerException();
 977             if (size > 0 && (tab = table) != null) {
 978                 int mc = modCount;
 979                 for (Node<K,V> e : tab) {
 980                     for (; e != null; e = e.next)
 981                         action.accept(e.value);
 982                 }
 983                 if (modCount != mc)
 984                     throw new ConcurrentModificationException();
 985             }
 986         }
 987     }
 988 
 989     /**
 990      * Returns a {@link Set} view of the mappings contained in this map.
 991      * The set is backed by the map, so changes to the map are
 992      * reflected in the set, and vice-versa.  If the map is modified
 993      * while an iteration over the set is in progress (except through
 994      * the iterator's own {@code remove} operation, or through the
 995      * {@code setValue} operation on a map entry returned by the
 996      * iterator) the results of the iteration are undefined.  The set
 997      * supports element removal, which removes the corresponding
 998      * mapping from the map, via the {@code Iterator.remove},
 999      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
1000      * {@code clear} operations.  It does not support the
1001      * {@code add} or {@code addAll} operations.
1002      *
1003      * @return a set view of the mappings contained in this map
1004      */
1005     public Set<Map.Entry<K,V>> entrySet() {
1006         Set<Map.Entry<K,V>> es;
1007         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
1008     }
1009 
1010     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1011         public final int size()                 { return size; }
1012         public final void clear()               { HashMap.this.clear(); }
1013         public final Iterator<Map.Entry<K,V>> iterator() {
1014             return new EntryIterator();
1015         }
1016         public final boolean contains(Object o) {
1017             if (!(o instanceof Map.Entry))
1018                 return false;
1019             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1020             Object key = e.getKey();
1021             Node<K,V> candidate = getNode(hash(key), key);
1022             return candidate != null && candidate.equals(e);
1023         }
1024         public final boolean remove(Object o) {
1025             if (o instanceof Map.Entry) {
1026                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1027                 Object key = e.getKey();
1028                 Object value = e.getValue();
1029                 return removeNode(hash(key), key, value, true, true) != null;
1030             }
1031             return false;
1032         }
1033         public final Spliterator<Map.Entry<K,V>> spliterator() {
1034             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
1035         }
1036         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1037             Node<K,V>[] tab;
1038             if (action == null)
1039                 throw new NullPointerException();
1040             if (size > 0 && (tab = table) != null) {
1041                 int mc = modCount;
1042                 for (Node<K,V> e : tab) {
1043                     for (; e != null; e = e.next)
1044                         action.accept(e);
1045                 }
1046                 if (modCount != mc)
1047                     throw new ConcurrentModificationException();
1048             }
1049         }
1050     }
1051 
1052     // Overrides of JDK8 Map extension methods
1053 
1054     @Override
1055     public V getOrDefault(Object key, V defaultValue) {
1056         Node<K,V> e;
1057         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
1058     }
1059 
1060     @Override
1061     public V putIfAbsent(K key, V value) {
1062         return putVal(hash(key), key, value, true, true);
1063     }
1064 
1065     @Override
1066     public boolean remove(Object key, Object value) {
1067         return removeNode(hash(key), key, value, true, true) != null;
1068     }
1069 
1070     @Override
1071     public boolean replace(K key, V oldValue, V newValue) {
1072         Node<K,V> e; V v;
1073         if ((e = getNode(hash(key), key)) != null &&
1074             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1075             e.value = newValue;
1076             afterNodeAccess(e);
1077             return true;
1078         }
1079         return false;
1080     }
1081 
1082     @Override
1083     public V replace(K key, V value) {
1084         Node<K,V> e;
1085         if ((e = getNode(hash(key), key)) != null) {
1086             V oldValue = e.value;
1087             e.value = value;
1088             afterNodeAccess(e);
1089             return oldValue;
1090         }
1091         return null;
1092     }
1093 
1094     /**
1095      * {@inheritDoc}
1096      *
1097      * <p>This method will, on a best-effort basis, throw a
1098      * {@link ConcurrentModificationException} if it is detected that the
1099      * mapping function modifies this map during computation.
1100      *
1101      * @throws ConcurrentModificationException if it is detected that the
1102      * mapping function modified this map
1103      */
1104     @Override
1105     public V computeIfAbsent(K key,
1106                              Function<? super K, ? extends V> mappingFunction) {
1107         if (mappingFunction == null)
1108             throw new NullPointerException();
1109         int hash = hash(key);
1110         Node<K,V>[] tab; Node<K,V> first; int n, i;
1111         int binCount = 0;
1112         TreeNode<K,V> t = null;
1113         Node<K,V> old = null;
1114         if (size > threshold || (tab = table) == null ||
1115             (n = tab.length) == 0)
1116             n = (tab = resize()).length;
1117         if ((first = tab[i = (n - 1) & hash]) != null) {
1118             if (first instanceof TreeNode)
1119                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1120             else {
1121                 Node<K,V> e = first; K k;
1122                 do {
1123                     if (e.hash == hash &&
1124                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1125                         old = e;
1126                         break;
1127                     }
1128                     ++binCount;
1129                 } while ((e = e.next) != null);
1130             }
1131             V oldValue;
1132             if (old != null && (oldValue = old.value) != null) {
1133                 afterNodeAccess(old);
1134                 return oldValue;
1135             }
1136         }
1137         int mc = modCount;
1138         V v = mappingFunction.apply(key);
1139         if (mc != modCount) { throw new ConcurrentModificationException(); }
1140         if (v == null) {
1141             return null;
1142         } else if (old != null) {
1143             old.value = v;
1144             afterNodeAccess(old);
1145             return v;
1146         }
1147         else if (t != null)
1148             t.putTreeVal(this, tab, hash, key, v);
1149         else {
1150             tab[i] = newNode(hash, key, v, first);
1151             if (binCount >= TREEIFY_THRESHOLD - 1)
1152                 treeifyBin(tab, hash);
1153         }
1154         modCount = mc + 1;
1155         ++size;
1156         afterNodeInsertion(true);
1157         return v;
1158     }
1159 
1160     /**
1161      * {@inheritDoc}
1162      *
1163      * <p>This method will, on a best-effort basis, throw a
1164      * {@link ConcurrentModificationException} if it is detected that the
1165      * remapping function modifies this map during computation.
1166      *
1167      * @throws ConcurrentModificationException if it is detected that the
1168      * remapping function modified this map
1169      */
1170     @Override
1171     public V computeIfPresent(K key,
1172                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1173         if (remappingFunction == null)
1174             throw new NullPointerException();
1175         Node<K,V> e; V oldValue;
1176         int hash = hash(key);
1177         if ((e = getNode(hash, key)) != null &&
1178             (oldValue = e.value) != null) {
1179             int mc = modCount;
1180             V v = remappingFunction.apply(key, oldValue);
1181             if (mc != modCount) { throw new ConcurrentModificationException(); }
1182             if (v != null) {
1183                 e.value = v;
1184                 afterNodeAccess(e);
1185                 return v;
1186             }
1187             else
1188                 removeNode(hash, key, null, false, true);
1189         }
1190         return null;
1191     }
1192 
1193     /**
1194      * {@inheritDoc}
1195      *
1196      * <p>This method will, on a best-effort basis, throw a
1197      * {@link ConcurrentModificationException} if it is detected that the
1198      * remapping function modifies this map during computation.
1199      *
1200      * @throws ConcurrentModificationException if it is detected that the
1201      * remapping function modified this map
1202      */
1203     @Override
1204     public V compute(K key,
1205                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1206         if (remappingFunction == null)
1207             throw new NullPointerException();
1208         int hash = hash(key);
1209         Node<K,V>[] tab; Node<K,V> first; int n, i;
1210         int binCount = 0;
1211         TreeNode<K,V> t = null;
1212         Node<K,V> old = null;
1213         if (size > threshold || (tab = table) == null ||
1214             (n = tab.length) == 0)
1215             n = (tab = resize()).length;
1216         if ((first = tab[i = (n - 1) & hash]) != null) {
1217             if (first instanceof TreeNode)
1218                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1219             else {
1220                 Node<K,V> e = first; K k;
1221                 do {
1222                     if (e.hash == hash &&
1223                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1224                         old = e;
1225                         break;
1226                     }
1227                     ++binCount;
1228                 } while ((e = e.next) != null);
1229             }
1230         }
1231         V oldValue = (old == null) ? null : old.value;
1232         int mc = modCount;
1233         V v = remappingFunction.apply(key, oldValue);
1234         if (mc != modCount) { throw new ConcurrentModificationException(); }
1235         if (old != null) {
1236             if (v != null) {
1237                 old.value = v;
1238                 afterNodeAccess(old);
1239             }
1240             else
1241                 removeNode(hash, key, null, false, true);
1242         }
1243         else if (v != null) {
1244             if (t != null)
1245                 t.putTreeVal(this, tab, hash, key, v);
1246             else {
1247                 tab[i] = newNode(hash, key, v, first);
1248                 if (binCount >= TREEIFY_THRESHOLD - 1)
1249                     treeifyBin(tab, hash);
1250             }
1251             modCount = mc + 1;
1252             ++size;
1253             afterNodeInsertion(true);
1254         }
1255         return v;
1256     }
1257 
1258     /**
1259      * {@inheritDoc}
1260      *
1261      * <p>This method will, on a best-effort basis, throw a
1262      * {@link ConcurrentModificationException} if it is detected that the
1263      * remapping function modifies this map during computation.
1264      *
1265      * @throws ConcurrentModificationException if it is detected that the
1266      * remapping function modified this map
1267      */
1268     @Override
1269     public V merge(K key, V value,
1270                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1271         if (value == null)
1272             throw new NullPointerException();
1273         if (remappingFunction == null)
1274             throw new NullPointerException();
1275         int hash = hash(key);
1276         Node<K,V>[] tab; Node<K,V> first; int n, i;
1277         int binCount = 0;
1278         TreeNode<K,V> t = null;
1279         Node<K,V> old = null;
1280         if (size > threshold || (tab = table) == null ||
1281             (n = tab.length) == 0)
1282             n = (tab = resize()).length;
1283         if ((first = tab[i = (n - 1) & hash]) != null) {
1284             if (first instanceof TreeNode)
1285                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1286             else {
1287                 Node<K,V> e = first; K k;
1288                 do {
1289                     if (e.hash == hash &&
1290                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1291                         old = e;
1292                         break;
1293                     }
1294                     ++binCount;
1295                 } while ((e = e.next) != null);
1296             }
1297         }
1298         if (old != null) {
1299             V v;
1300             if (old.value != null) {
1301                 int mc = modCount;
1302                 v = remappingFunction.apply(old.value, value);
1303                 if (mc != modCount) {
1304                     throw new ConcurrentModificationException();
1305                 }
1306             } else {
1307                 v = value;
1308             }
1309             if (v != null) {
1310                 old.value = v;
1311                 afterNodeAccess(old);
1312             }
1313             else
1314                 removeNode(hash, key, null, false, true);
1315             return v;
1316         }
1317         if (value != null) {
1318             if (t != null)
1319                 t.putTreeVal(this, tab, hash, key, value);
1320             else {
1321                 tab[i] = newNode(hash, key, value, first);
1322                 if (binCount >= TREEIFY_THRESHOLD - 1)
1323                     treeifyBin(tab, hash);
1324             }
1325             ++modCount;
1326             ++size;
1327             afterNodeInsertion(true);
1328         }
1329         return value;
1330     }
1331 
1332     @Override
1333     public void forEach(BiConsumer<? super K, ? super V> action) {
1334         Node<K,V>[] tab;
1335         if (action == null)
1336             throw new NullPointerException();
1337         if (size > 0 && (tab = table) != null) {
1338             int mc = modCount;
1339             for (Node<K,V> e : tab) {
1340                 for (; e != null; e = e.next)
1341                     action.accept(e.key, e.value);
1342             }
1343             if (modCount != mc)
1344                 throw new ConcurrentModificationException();
1345         }
1346     }
1347 
1348     @Override
1349     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1350         Node<K,V>[] tab;
1351         if (function == null)
1352             throw new NullPointerException();
1353         if (size > 0 && (tab = table) != null) {
1354             int mc = modCount;
1355             for (Node<K,V> e : tab) {
1356                 for (; e != null; e = e.next) {
1357                     e.value = function.apply(e.key, e.value);
1358                 }
1359             }
1360             if (modCount != mc)
1361                 throw new ConcurrentModificationException();
1362         }
1363     }
1364 
1365     /* ------------------------------------------------------------ */
1366     // Cloning and serialization
1367 
1368     /**
1369      * Returns a shallow copy of this {@code HashMap} instance: the keys and
1370      * values themselves are not cloned.
1371      *
1372      * @return a shallow copy of this map
1373      */
1374     @SuppressWarnings("unchecked")
1375     @Override
1376     public Object clone() {
1377         HashMap<K,V> result;
1378         try {
1379             result = (HashMap<K,V>)super.clone();
1380         } catch (CloneNotSupportedException e) {
1381             // this shouldn't happen, since we are Cloneable
1382             throw new InternalError(e);
1383         }
1384         result.reinitialize();
1385         result.putMapEntries(this, false);
1386         return result;
1387     }
1388 
1389     // These methods are also used when serializing HashSets
1390     final float loadFactor() { return loadFactor; }
1391     final int capacity() {
1392         return (table != null) ? table.length :
1393             (threshold > 0) ? threshold :
1394             DEFAULT_INITIAL_CAPACITY;
1395     }
1396 
1397     /**
1398      * Saves this map to a stream (that is, serializes it).
1399      *
1400      * @param s the stream
1401      * @throws IOException if an I/O error occurs
1402      * @serialData The <i>capacity</i> of the HashMap (the length of the
1403      *             bucket array) is emitted (int), followed by the
1404      *             <i>size</i> (an int, the number of key-value
1405      *             mappings), followed by the key (Object) and value (Object)
1406      *             for each key-value mapping.  The key-value mappings are
1407      *             emitted in no particular order.
1408      */
1409     private void writeObject(java.io.ObjectOutputStream s)
1410         throws IOException {
1411         int buckets = capacity();
1412         // Write out the threshold, loadfactor, and any hidden stuff
1413         s.defaultWriteObject();
1414         s.writeInt(buckets);
1415         s.writeInt(size);
1416         internalWriteEntries(s);
1417     }
1418 
1419     /**
1420      * Reconstitutes this map from a stream (that is, deserializes it).
1421      * @param s the stream
1422      * @throws ClassNotFoundException if the class of a serialized object
1423      *         could not be found
1424      * @throws IOException if an I/O error occurs
1425      */
1426     private void readObject(java.io.ObjectInputStream s)
1427         throws IOException, ClassNotFoundException {
1428         // Read in the threshold (ignored), loadfactor, and any hidden stuff
1429         s.defaultReadObject();
1430         reinitialize();
1431         if (loadFactor <= 0 || Float.isNaN(loadFactor))
1432             throw new InvalidObjectException("Illegal load factor: " +
1433                                              loadFactor);
1434         s.readInt();                // Read and ignore number of buckets
1435         int mappings = s.readInt(); // Read number of mappings (size)
1436         if (mappings < 0)
1437             throw new InvalidObjectException("Illegal mappings count: " +
1438                                              mappings);
1439         else if (mappings > 0) { // (if zero, use defaults)
1440             // Size the table using given load factor only if within
1441             // range of 0.25...4.0
1442             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
1443             float fc = (float)mappings / lf + 1.0f;
1444             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1445                        DEFAULT_INITIAL_CAPACITY :
1446                        (fc >= MAXIMUM_CAPACITY) ?
1447                        MAXIMUM_CAPACITY :
1448                        tableSizeFor((int)fc));
1449             float ft = (float)cap * lf;
1450             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1451                          (int)ft : Integer.MAX_VALUE);
1452 
1453             // Check Map.Entry[].class since it's the nearest public type to
1454             // what we're actually creating.
1455             SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, cap);
1456             @SuppressWarnings({"rawtypes","unchecked"})
1457             Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1458             table = tab;
1459 
1460             // Read the keys and values, and put the mappings in the HashMap
1461             for (int i = 0; i < mappings; i++) {
1462                 @SuppressWarnings("unchecked")
1463                     K key = (K) s.readObject();
1464                 @SuppressWarnings("unchecked")
1465                     V value = (V) s.readObject();
1466                 putVal(hash(key), key, value, false, false);
1467             }
1468         }
1469     }
1470 
1471     /* ------------------------------------------------------------ */
1472     // iterators
1473 
1474     abstract class HashIterator {
1475         Node<K,V> next;        // next entry to return
1476         Node<K,V> current;     // current entry
1477         int expectedModCount;  // for fast-fail
1478         int index;             // current slot
1479 
1480         HashIterator() {
1481             expectedModCount = modCount;
1482             Node<K,V>[] t = table;
1483             current = next = null;
1484             index = 0;
1485             if (t != null && size > 0) { // advance to first entry
1486                 do {} while (index < t.length && (next = t[index++]) == null);
1487             }
1488         }
1489 
1490         public final boolean hasNext() {
1491             return next != null;
1492         }
1493 
1494         final Node<K,V> nextNode() {
1495             Node<K,V>[] t;
1496             Node<K,V> e = next;
1497             if (modCount != expectedModCount)
1498                 throw new ConcurrentModificationException();
1499             if (e == null)
1500                 throw new NoSuchElementException();
1501             if ((next = (current = e).next) == null && (t = table) != null) {
1502                 do {} while (index < t.length && (next = t[index++]) == null);
1503             }
1504             return e;
1505         }
1506 
1507         public final void remove() {
1508             Node<K,V> p = current;
1509             if (p == null)
1510                 throw new IllegalStateException();
1511             if (modCount != expectedModCount)
1512                 throw new ConcurrentModificationException();
1513             current = null;
1514             removeNode(p.hash, p.key, null, false, false);
1515             expectedModCount = modCount;
1516         }
1517     }
1518 
1519     final class KeyIterator extends HashIterator
1520         implements Iterator<K> {
1521         public final K next() { return nextNode().key; }
1522     }
1523 
1524     final class ValueIterator extends HashIterator
1525         implements Iterator<V> {
1526         public final V next() { return nextNode().value; }
1527     }
1528 
1529     final class EntryIterator extends HashIterator
1530         implements Iterator<Map.Entry<K,V>> {
1531         public final Map.Entry<K,V> next() { return nextNode(); }
1532     }
1533 
1534     /* ------------------------------------------------------------ */
1535     // spliterators
1536 
1537     static class HashMapSpliterator<K,V> {
1538         final HashMap<K,V> map;
1539         Node<K,V> current;          // current node
1540         int index;                  // current index, modified on advance/split
1541         int fence;                  // one past last index
1542         int est;                    // size estimate
1543         int expectedModCount;       // for comodification checks
1544 
1545         HashMapSpliterator(HashMap<K,V> m, int origin,
1546                            int fence, int est,
1547                            int expectedModCount) {
1548             this.map = m;
1549             this.index = origin;
1550             this.fence = fence;
1551             this.est = est;
1552             this.expectedModCount = expectedModCount;
1553         }
1554 
1555         final int getFence() { // initialize fence and size on first use
1556             int hi;
1557             if ((hi = fence) < 0) {
1558                 HashMap<K,V> m = map;
1559                 est = m.size;
1560                 expectedModCount = m.modCount;
1561                 Node<K,V>[] tab = m.table;
1562                 hi = fence = (tab == null) ? 0 : tab.length;
1563             }
1564             return hi;
1565         }
1566 
1567         public final long estimateSize() {
1568             getFence(); // force init
1569             return (long) est;
1570         }
1571     }
1572 
1573     static final class KeySpliterator<K,V>
1574         extends HashMapSpliterator<K,V>
1575         implements Spliterator<K> {
1576         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1577                        int expectedModCount) {
1578             super(m, origin, fence, est, expectedModCount);
1579         }
1580 
1581         public KeySpliterator<K,V> trySplit() {
1582             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1583             return (lo >= mid || current != null) ? null :
1584                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1585                                         expectedModCount);
1586         }
1587 
1588         public void forEachRemaining(Consumer<? super K> action) {
1589             int i, hi, mc;
1590             if (action == null)
1591                 throw new NullPointerException();
1592             HashMap<K,V> m = map;
1593             Node<K,V>[] tab = m.table;
1594             if ((hi = fence) < 0) {
1595                 mc = expectedModCount = m.modCount;
1596                 hi = fence = (tab == null) ? 0 : tab.length;
1597             }
1598             else
1599                 mc = expectedModCount;
1600             if (tab != null && tab.length >= hi &&
1601                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1602                 Node<K,V> p = current;
1603                 current = null;
1604                 do {
1605                     if (p == null)
1606                         p = tab[i++];
1607                     else {
1608                         action.accept(p.key);
1609                         p = p.next;
1610                     }
1611                 } while (p != null || i < hi);
1612                 if (m.modCount != mc)
1613                     throw new ConcurrentModificationException();
1614             }
1615         }
1616 
1617         public boolean tryAdvance(Consumer<? super K> action) {
1618             int hi;
1619             if (action == null)
1620                 throw new NullPointerException();
1621             Node<K,V>[] tab = map.table;
1622             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1623                 while (current != null || index < hi) {
1624                     if (current == null)
1625                         current = tab[index++];
1626                     else {
1627                         K k = current.key;
1628                         current = current.next;
1629                         action.accept(k);
1630                         if (map.modCount != expectedModCount)
1631                             throw new ConcurrentModificationException();
1632                         return true;
1633                     }
1634                 }
1635             }
1636             return false;
1637         }
1638 
1639         public int characteristics() {
1640             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1641                 Spliterator.DISTINCT;
1642         }
1643     }
1644 
1645     static final class ValueSpliterator<K,V>
1646         extends HashMapSpliterator<K,V>
1647         implements Spliterator<V> {
1648         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1649                          int expectedModCount) {
1650             super(m, origin, fence, est, expectedModCount);
1651         }
1652 
1653         public ValueSpliterator<K,V> trySplit() {
1654             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1655             return (lo >= mid || current != null) ? null :
1656                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1657                                           expectedModCount);
1658         }
1659 
1660         public void forEachRemaining(Consumer<? super V> action) {
1661             int i, hi, mc;
1662             if (action == null)
1663                 throw new NullPointerException();
1664             HashMap<K,V> m = map;
1665             Node<K,V>[] tab = m.table;
1666             if ((hi = fence) < 0) {
1667                 mc = expectedModCount = m.modCount;
1668                 hi = fence = (tab == null) ? 0 : tab.length;
1669             }
1670             else
1671                 mc = expectedModCount;
1672             if (tab != null && tab.length >= hi &&
1673                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1674                 Node<K,V> p = current;
1675                 current = null;
1676                 do {
1677                     if (p == null)
1678                         p = tab[i++];
1679                     else {
1680                         action.accept(p.value);
1681                         p = p.next;
1682                     }
1683                 } while (p != null || i < hi);
1684                 if (m.modCount != mc)
1685                     throw new ConcurrentModificationException();
1686             }
1687         }
1688 
1689         public boolean tryAdvance(Consumer<? super V> action) {
1690             int hi;
1691             if (action == null)
1692                 throw new NullPointerException();
1693             Node<K,V>[] tab = map.table;
1694             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1695                 while (current != null || index < hi) {
1696                     if (current == null)
1697                         current = tab[index++];
1698                     else {
1699                         V v = current.value;
1700                         current = current.next;
1701                         action.accept(v);
1702                         if (map.modCount != expectedModCount)
1703                             throw new ConcurrentModificationException();
1704                         return true;
1705                     }
1706                 }
1707             }
1708             return false;
1709         }
1710 
1711         public int characteristics() {
1712             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1713         }
1714     }
1715 
1716     static final class EntrySpliterator<K,V>
1717         extends HashMapSpliterator<K,V>
1718         implements Spliterator<Map.Entry<K,V>> {
1719         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1720                          int expectedModCount) {
1721             super(m, origin, fence, est, expectedModCount);
1722         }
1723 
1724         public EntrySpliterator<K,V> trySplit() {
1725             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1726             return (lo >= mid || current != null) ? null :
1727                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1728                                           expectedModCount);
1729         }
1730 
1731         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1732             int i, hi, mc;
1733             if (action == null)
1734                 throw new NullPointerException();
1735             HashMap<K,V> m = map;
1736             Node<K,V>[] tab = m.table;
1737             if ((hi = fence) < 0) {
1738                 mc = expectedModCount = m.modCount;
1739                 hi = fence = (tab == null) ? 0 : tab.length;
1740             }
1741             else
1742                 mc = expectedModCount;
1743             if (tab != null && tab.length >= hi &&
1744                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1745                 Node<K,V> p = current;
1746                 current = null;
1747                 do {
1748                     if (p == null)
1749                         p = tab[i++];
1750                     else {
1751                         action.accept(p);
1752                         p = p.next;
1753                     }
1754                 } while (p != null || i < hi);
1755                 if (m.modCount != mc)
1756                     throw new ConcurrentModificationException();
1757             }
1758         }
1759 
1760         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1761             int hi;
1762             if (action == null)
1763                 throw new NullPointerException();
1764             Node<K,V>[] tab = map.table;
1765             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1766                 while (current != null || index < hi) {
1767                     if (current == null)
1768                         current = tab[index++];
1769                     else {
1770                         Node<K,V> e = current;
1771                         current = current.next;
1772                         action.accept(e);
1773                         if (map.modCount != expectedModCount)
1774                             throw new ConcurrentModificationException();
1775                         return true;
1776                     }
1777                 }
1778             }
1779             return false;
1780         }
1781 
1782         public int characteristics() {
1783             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1784                 Spliterator.DISTINCT;
1785         }
1786     }
1787 
1788     /* ------------------------------------------------------------ */
1789     // LinkedHashMap support
1790 
1791 
1792     /*
1793      * The following package-protected methods are designed to be
1794      * overridden by LinkedHashMap, but not by any other subclass.
1795      * Nearly all other internal methods are also package-protected
1796      * but are declared final, so can be used by LinkedHashMap, view
1797      * classes, and HashSet.
1798      */
1799 
1800     // Create a regular (non-tree) node
1801     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1802         return new Node<>(hash, key, value, next);
1803     }
1804 
1805     // For conversion from TreeNodes to plain nodes
1806     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1807         return new Node<>(p.hash, p.key, p.value, next);
1808     }
1809 
1810     // Create a tree bin node
1811     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1812         return new TreeNode<>(hash, key, value, next);
1813     }
1814 
1815     // For treeifyBin
1816     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1817         return new TreeNode<>(p.hash, p.key, p.value, next);
1818     }
1819 
1820     /**
1821      * Reset to initial default state.  Called by clone and readObject.
1822      */
1823     void reinitialize() {
1824         table = null;
1825         entrySet = null;
1826         keySet = null;
1827         values = null;
1828         modCount = 0;
1829         threshold = 0;
1830         size = 0;
1831     }
1832 
1833     // Callbacks to allow LinkedHashMap post-actions
1834     void afterNodeAccess(Node<K,V> p) { }
1835     void afterNodeInsertion(boolean evict) { }
1836     void afterNodeRemoval(Node<K,V> p) { }
1837 
1838     // Called only from writeObject, to ensure compatible ordering.
1839     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1840         Node<K,V>[] tab;
1841         if (size > 0 && (tab = table) != null) {
1842             for (Node<K,V> e : tab) {
1843                 for (; e != null; e = e.next) {
1844                     s.writeObject(e.key);
1845                     s.writeObject(e.value);
1846                 }
1847             }
1848         }
1849     }
1850 
1851     /* ------------------------------------------------------------ */
1852     // Tree bins
1853 
1854     /**
1855      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1856      * extends Node) so can be used as extension of either regular or
1857      * linked node.
1858      */
1859     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1860         TreeNode<K,V> parent;  // red-black tree links
1861         TreeNode<K,V> left;
1862         TreeNode<K,V> right;
1863         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1864         boolean red;
1865         TreeNode(int hash, K key, V val, Node<K,V> next) {
1866             super(hash, key, val, next);
1867         }
1868 
1869         /**
1870          * Returns root of tree containing this node.
1871          */
1872         final TreeNode<K,V> root() {
1873             for (TreeNode<K,V> r = this, p;;) {
1874                 if ((p = r.parent) == null)
1875                     return r;
1876                 r = p;
1877             }
1878         }
1879 
1880         /**
1881          * Ensures that the given root is the first node of its bin.
1882          */
1883         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1884             int n;
1885             if (root != null && tab != null && (n = tab.length) > 0) {
1886                 int index = (n - 1) & root.hash;
1887                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1888                 if (root != first) {
1889                     Node<K,V> rn;
1890                     tab[index] = root;
1891                     TreeNode<K,V> rp = root.prev;
1892                     if ((rn = root.next) != null)
1893                         ((TreeNode<K,V>)rn).prev = rp;
1894                     if (rp != null)
1895                         rp.next = rn;
1896                     if (first != null)
1897                         first.prev = root;
1898                     root.next = first;
1899                     root.prev = null;
1900                 }
1901                 assert checkInvariants(root);
1902             }
1903         }
1904 
1905         /**
1906          * Finds the node starting at root p with the given hash and key.
1907          * The kc argument caches comparableClassFor(key) upon first use
1908          * comparing keys.
1909          */
1910         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
1911             TreeNode<K,V> p = this;
1912             do {
1913                 int ph, dir; K pk;
1914                 TreeNode<K,V> pl = p.left, pr = p.right, q;
1915                 if ((ph = p.hash) > h)
1916                     p = pl;
1917                 else if (ph < h)
1918                     p = pr;
1919                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1920                     return p;
1921                 else if (pl == null)
1922                     p = pr;
1923                 else if (pr == null)
1924                     p = pl;
1925                 else if ((kc != null ||
1926                           (kc = comparableClassFor(k)) != null) &&
1927                          (dir = compareComparables(kc, k, pk)) != 0)
1928                     p = (dir < 0) ? pl : pr;
1929                 else if ((q = pr.find(h, k, kc)) != null)
1930                     return q;
1931                 else
1932                     p = pl;
1933             } while (p != null);
1934             return null;
1935         }
1936 
1937         /**
1938          * Calls find for root node.
1939          */
1940         final TreeNode<K,V> getTreeNode(int h, Object k) {
1941             return ((parent != null) ? root() : this).find(h, k, null);
1942         }
1943 
1944         /**
1945          * Tie-breaking utility for ordering insertions when equal
1946          * hashCodes and non-comparable. We don't require a total
1947          * order, just a consistent insertion rule to maintain
1948          * equivalence across rebalancings. Tie-breaking further than
1949          * necessary simplifies testing a bit.
1950          */
1951         static int tieBreakOrder(Object a, Object b) {
1952             int d;
1953             if (a == null || b == null ||
1954                 (d = a.getClass().getName().
1955                  compareTo(b.getClass().getName())) == 0)
1956                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1957                      -1 : 1);
1958             return d;
1959         }
1960 
1961         /**
1962          * Forms tree of the nodes linked from this node.
1963          */
1964         final void treeify(Node<K,V>[] tab) {
1965             TreeNode<K,V> root = null;
1966             for (TreeNode<K,V> x = this, next; x != null; x = next) {
1967                 next = (TreeNode<K,V>)x.next;
1968                 x.left = x.right = null;
1969                 if (root == null) {
1970                     x.parent = null;
1971                     x.red = false;
1972                     root = x;
1973                 }
1974                 else {
1975                     K k = x.key;
1976                     int h = x.hash;
1977                     Class<?> kc = null;
1978                     for (TreeNode<K,V> p = root;;) {
1979                         int dir, ph;
1980                         K pk = p.key;
1981                         if ((ph = p.hash) > h)
1982                             dir = -1;
1983                         else if (ph < h)
1984                             dir = 1;
1985                         else if ((kc == null &&
1986                                   (kc = comparableClassFor(k)) == null) ||
1987                                  (dir = compareComparables(kc, k, pk)) == 0)
1988                             dir = tieBreakOrder(k, pk);
1989 
1990                         TreeNode<K,V> xp = p;
1991                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
1992                             x.parent = xp;
1993                             if (dir <= 0)
1994                                 xp.left = x;
1995                             else
1996                                 xp.right = x;
1997                             root = balanceInsertion(root, x);
1998                             break;
1999                         }
2000                     }
2001                 }
2002             }
2003             moveRootToFront(tab, root);
2004         }
2005 
2006         /**
2007          * Returns a list of non-TreeNodes replacing those linked from
2008          * this node.
2009          */
2010         final Node<K,V> untreeify(HashMap<K,V> map) {
2011             Node<K,V> hd = null, tl = null;
2012             for (Node<K,V> q = this; q != null; q = q.next) {
2013                 Node<K,V> p = map.replacementNode(q, null);
2014                 if (tl == null)
2015                     hd = p;
2016                 else
2017                     tl.next = p;
2018                 tl = p;
2019             }
2020             return hd;
2021         }
2022 
2023         /**
2024          * Tree version of putVal.
2025          */
2026         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
2027                                        int h, K k, V v) {
2028             Class<?> kc = null;
2029             boolean searched = false;
2030             TreeNode<K,V> root = (parent != null) ? root() : this;
2031             for (TreeNode<K,V> p = root;;) {
2032                 int dir, ph; K pk;
2033                 if ((ph = p.hash) > h)
2034                     dir = -1;
2035                 else if (ph < h)
2036                     dir = 1;
2037                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
2038                     return p;
2039                 else if ((kc == null &&
2040                           (kc = comparableClassFor(k)) == null) ||
2041                          (dir = compareComparables(kc, k, pk)) == 0) {
2042                     if (!searched) {
2043                         TreeNode<K,V> q, ch;
2044                         searched = true;
2045                         if (((ch = p.left) != null &&
2046                              (q = ch.find(h, k, kc)) != null) ||
2047                             ((ch = p.right) != null &&
2048                              (q = ch.find(h, k, kc)) != null))
2049                             return q;
2050                     }
2051                     dir = tieBreakOrder(k, pk);
2052                 }
2053 
2054                 TreeNode<K,V> xp = p;
2055                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2056                     Node<K,V> xpn = xp.next;
2057                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
2058                     if (dir <= 0)
2059                         xp.left = x;
2060                     else
2061                         xp.right = x;
2062                     xp.next = x;
2063                     x.parent = x.prev = xp;
2064                     if (xpn != null)
2065                         ((TreeNode<K,V>)xpn).prev = x;
2066                     moveRootToFront(tab, balanceInsertion(root, x));
2067                     return null;
2068                 }
2069             }
2070         }
2071 
2072         /**
2073          * Removes the given node, that must be present before this call.
2074          * This is messier than typical red-black deletion code because we
2075          * cannot swap the contents of an interior node with a leaf
2076          * successor that is pinned by "next" pointers that are accessible
2077          * independently during traversal. So instead we swap the tree
2078          * linkages. If the current tree appears to have too few nodes,
2079          * the bin is converted back to a plain bin. (The test triggers
2080          * somewhere between 2 and 6 nodes, depending on tree structure).
2081          */
2082         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
2083                                   boolean movable) {
2084             int n;
2085             if (tab == null || (n = tab.length) == 0)
2086                 return;
2087             int index = (n - 1) & hash;
2088             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2089             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2090             if (pred == null)
2091                 tab[index] = first = succ;
2092             else
2093                 pred.next = succ;
2094             if (succ != null)
2095                 succ.prev = pred;
2096             if (first == null)
2097                 return;
2098             if (root.parent != null)
2099                 root = root.root();
2100             if (root == null
2101                 || (movable
2102                     && (root.right == null
2103                         || (rl = root.left) == null
2104                         || rl.left == null))) {
2105                 tab[index] = first.untreeify(map);  // too small
2106                 return;
2107             }
2108             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2109             if (pl != null && pr != null) {
2110                 TreeNode<K,V> s = pr, sl;
2111                 while ((sl = s.left) != null) // find successor
2112                     s = sl;
2113                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2114                 TreeNode<K,V> sr = s.right;
2115                 TreeNode<K,V> pp = p.parent;
2116                 if (s == pr) { // p was s's direct parent
2117                     p.parent = s;
2118                     s.right = p;
2119                 }
2120                 else {
2121                     TreeNode<K,V> sp = s.parent;
2122                     if ((p.parent = sp) != null) {
2123                         if (s == sp.left)
2124                             sp.left = p;
2125                         else
2126                             sp.right = p;
2127                     }
2128                     if ((s.right = pr) != null)
2129                         pr.parent = s;
2130                 }
2131                 p.left = null;
2132                 if ((p.right = sr) != null)
2133                     sr.parent = p;
2134                 if ((s.left = pl) != null)
2135                     pl.parent = s;
2136                 if ((s.parent = pp) == null)
2137                     root = s;
2138                 else if (p == pp.left)
2139                     pp.left = s;
2140                 else
2141                     pp.right = s;
2142                 if (sr != null)
2143                     replacement = sr;
2144                 else
2145                     replacement = p;
2146             }
2147             else if (pl != null)
2148                 replacement = pl;
2149             else if (pr != null)
2150                 replacement = pr;
2151             else
2152                 replacement = p;
2153             if (replacement != p) {
2154                 TreeNode<K,V> pp = replacement.parent = p.parent;
2155                 if (pp == null)
2156                     root = replacement;
2157                 else if (p == pp.left)
2158                     pp.left = replacement;
2159                 else
2160                     pp.right = replacement;
2161                 p.left = p.right = p.parent = null;
2162             }
2163 
2164             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2165 
2166             if (replacement == p) {  // detach
2167                 TreeNode<K,V> pp = p.parent;
2168                 p.parent = null;
2169                 if (pp != null) {
2170                     if (p == pp.left)
2171                         pp.left = null;
2172                     else if (p == pp.right)
2173                         pp.right = null;
2174                 }
2175             }
2176             if (movable)
2177                 moveRootToFront(tab, r);
2178         }
2179 
2180         /**
2181          * Splits nodes in a tree bin into lower and upper tree bins,
2182          * or untreeifies if now too small. Called only from resize;
2183          * see above discussion about split bits and indices.
2184          *
2185          * @param map the map
2186          * @param tab the table for recording bin heads
2187          * @param index the index of the table being split
2188          * @param bit the bit of hash to split on
2189          */
2190         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2191             TreeNode<K,V> b = this;
2192             // Relink into lo and hi lists, preserving order
2193             TreeNode<K,V> loHead = null, loTail = null;
2194             TreeNode<K,V> hiHead = null, hiTail = null;
2195             int lc = 0, hc = 0;
2196             for (TreeNode<K,V> e = b, next; e != null; e = next) {
2197                 next = (TreeNode<K,V>)e.next;
2198                 e.next = null;
2199                 if ((e.hash & bit) == 0) {
2200                     if ((e.prev = loTail) == null)
2201                         loHead = e;
2202                     else
2203                         loTail.next = e;
2204                     loTail = e;
2205                     ++lc;
2206                 }
2207                 else {
2208                     if ((e.prev = hiTail) == null)
2209                         hiHead = e;
2210                     else
2211                         hiTail.next = e;
2212                     hiTail = e;
2213                     ++hc;
2214                 }
2215             }
2216 
2217             if (loHead != null) {
2218                 if (lc <= UNTREEIFY_THRESHOLD)
2219                     tab[index] = loHead.untreeify(map);
2220                 else {
2221                     tab[index] = loHead;
2222                     if (hiHead != null) // (else is already treeified)
2223                         loHead.treeify(tab);
2224                 }
2225             }
2226             if (hiHead != null) {
2227                 if (hc <= UNTREEIFY_THRESHOLD)
2228                     tab[index + bit] = hiHead.untreeify(map);
2229                 else {
2230                     tab[index + bit] = hiHead;
2231                     if (loHead != null)
2232                         hiHead.treeify(tab);
2233                 }
2234             }
2235         }
2236 
2237         /* ------------------------------------------------------------ */
2238         // Red-black tree methods, all adapted from CLR
2239 
2240         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2241                                               TreeNode<K,V> p) {
2242             TreeNode<K,V> r, pp, rl;
2243             if (p != null && (r = p.right) != null) {
2244                 if ((rl = p.right = r.left) != null)
2245                     rl.parent = p;
2246                 if ((pp = r.parent = p.parent) == null)
2247                     (root = r).red = false;
2248                 else if (pp.left == p)
2249                     pp.left = r;
2250                 else
2251                     pp.right = r;
2252                 r.left = p;
2253                 p.parent = r;
2254             }
2255             return root;
2256         }
2257 
2258         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2259                                                TreeNode<K,V> p) {
2260             TreeNode<K,V> l, pp, lr;
2261             if (p != null && (l = p.left) != null) {
2262                 if ((lr = p.left = l.right) != null)
2263                     lr.parent = p;
2264                 if ((pp = l.parent = p.parent) == null)
2265                     (root = l).red = false;
2266                 else if (pp.right == p)
2267                     pp.right = l;
2268                 else
2269                     pp.left = l;
2270                 l.right = p;
2271                 p.parent = l;
2272             }
2273             return root;
2274         }
2275 
2276         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2277                                                     TreeNode<K,V> x) {
2278             x.red = true;
2279             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2280                 if ((xp = x.parent) == null) {
2281                     x.red = false;
2282                     return x;
2283                 }
2284                 else if (!xp.red || (xpp = xp.parent) == null)
2285                     return root;
2286                 if (xp == (xppl = xpp.left)) {
2287                     if ((xppr = xpp.right) != null && xppr.red) {
2288                         xppr.red = false;
2289                         xp.red = false;
2290                         xpp.red = true;
2291                         x = xpp;
2292                     }
2293                     else {
2294                         if (x == xp.right) {
2295                             root = rotateLeft(root, x = xp);
2296                             xpp = (xp = x.parent) == null ? null : xp.parent;
2297                         }
2298                         if (xp != null) {
2299                             xp.red = false;
2300                             if (xpp != null) {
2301                                 xpp.red = true;
2302                                 root = rotateRight(root, xpp);
2303                             }
2304                         }
2305                     }
2306                 }
2307                 else {
2308                     if (xppl != null && xppl.red) {
2309                         xppl.red = false;
2310                         xp.red = false;
2311                         xpp.red = true;
2312                         x = xpp;
2313                     }
2314                     else {
2315                         if (x == xp.left) {
2316                             root = rotateRight(root, x = xp);
2317                             xpp = (xp = x.parent) == null ? null : xp.parent;
2318                         }
2319                         if (xp != null) {
2320                             xp.red = false;
2321                             if (xpp != null) {
2322                                 xpp.red = true;
2323                                 root = rotateLeft(root, xpp);
2324                             }
2325                         }
2326                     }
2327                 }
2328             }
2329         }
2330 
2331         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2332                                                    TreeNode<K,V> x) {
2333             for (TreeNode<K,V> xp, xpl, xpr;;) {
2334                 if (x == null || x == root)
2335                     return root;
2336                 else if ((xp = x.parent) == null) {
2337                     x.red = false;
2338                     return x;
2339                 }
2340                 else if (x.red) {
2341                     x.red = false;
2342                     return root;
2343                 }
2344                 else if ((xpl = xp.left) == x) {
2345                     if ((xpr = xp.right) != null && xpr.red) {
2346                         xpr.red = false;
2347                         xp.red = true;
2348                         root = rotateLeft(root, xp);
2349                         xpr = (xp = x.parent) == null ? null : xp.right;
2350                     }
2351                     if (xpr == null)
2352                         x = xp;
2353                     else {
2354                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2355                         if ((sr == null || !sr.red) &&
2356                             (sl == null || !sl.red)) {
2357                             xpr.red = true;
2358                             x = xp;
2359                         }
2360                         else {
2361                             if (sr == null || !sr.red) {
2362                                 if (sl != null)
2363                                     sl.red = false;
2364                                 xpr.red = true;
2365                                 root = rotateRight(root, xpr);
2366                                 xpr = (xp = x.parent) == null ?
2367                                     null : xp.right;
2368                             }
2369                             if (xpr != null) {
2370                                 xpr.red = (xp == null) ? false : xp.red;
2371                                 if ((sr = xpr.right) != null)
2372                                     sr.red = false;
2373                             }
2374                             if (xp != null) {
2375                                 xp.red = false;
2376                                 root = rotateLeft(root, xp);
2377                             }
2378                             x = root;
2379                         }
2380                     }
2381                 }
2382                 else { // symmetric
2383                     if (xpl != null && xpl.red) {
2384                         xpl.red = false;
2385                         xp.red = true;
2386                         root = rotateRight(root, xp);
2387                         xpl = (xp = x.parent) == null ? null : xp.left;
2388                     }
2389                     if (xpl == null)
2390                         x = xp;
2391                     else {
2392                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2393                         if ((sl == null || !sl.red) &&
2394                             (sr == null || !sr.red)) {
2395                             xpl.red = true;
2396                             x = xp;
2397                         }
2398                         else {
2399                             if (sl == null || !sl.red) {
2400                                 if (sr != null)
2401                                     sr.red = false;
2402                                 xpl.red = true;
2403                                 root = rotateLeft(root, xpl);
2404                                 xpl = (xp = x.parent) == null ?
2405                                     null : xp.left;
2406                             }
2407                             if (xpl != null) {
2408                                 xpl.red = (xp == null) ? false : xp.red;
2409                                 if ((sl = xpl.left) != null)
2410                                     sl.red = false;
2411                             }
2412                             if (xp != null) {
2413                                 xp.red = false;
2414                                 root = rotateRight(root, xp);
2415                             }
2416                             x = root;
2417                         }
2418                     }
2419                 }
2420             }
2421         }
2422 
2423         /**
2424          * Recursive invariant check
2425          */
2426         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2427             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2428                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2429             if (tb != null && tb.next != t)
2430                 return false;
2431             if (tn != null && tn.prev != t)
2432                 return false;
2433             if (tp != null && t != tp.left && t != tp.right)
2434                 return false;
2435             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2436                 return false;
2437             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2438                 return false;
2439             if (t.red && tl != null && tl.red && tr != null && tr.red)
2440                 return false;
2441             if (tl != null && !checkInvariants(tl))
2442                 return false;
2443             if (tr != null && !checkInvariants(tr))
2444                 return false;
2445             return true;
2446         }
2447     }
2448 
2449 }