1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Doug Lea with assistance from members of JCP JSR-166
  32  * Expert Group and released to the public domain, as explained at
  33  * http://creativecommons.org/publicdomain/zero/1.0/
  34  */
  35 
  36 package java.util.concurrent;
  37 
  38 import java.lang.invoke.MethodHandles;
  39 import java.lang.invoke.VarHandle;
  40 import java.io.Serializable;
  41 import java.util.AbstractCollection;
  42 import java.util.AbstractMap;
  43 import java.util.AbstractSet;
  44 import java.util.ArrayList;
  45 import java.util.Collection;
  46 import java.util.Collections;
  47 import java.util.Comparator;
  48 import java.util.Iterator;
  49 import java.util.List;
  50 import java.util.Map;
  51 import java.util.NavigableSet;
  52 import java.util.NoSuchElementException;
  53 import java.util.Set;
  54 import java.util.SortedMap;
  55 import java.util.Spliterator;
  56 import java.util.function.BiConsumer;
  57 import java.util.function.BiFunction;
  58 import java.util.function.Consumer;
  59 import java.util.function.Function;
  60 import java.util.function.Predicate;
  61 import java.util.concurrent.atomic.LongAdder;
  62 
  63 /**
  64  * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
  65  * The map is sorted according to the {@linkplain Comparable natural
  66  * ordering} of its keys, or by a {@link Comparator} provided at map
  67  * creation time, depending on which constructor is used.
  68  *
  69  * <p>This class implements a concurrent variant of <a
  70  * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
  71  * providing expected average <i>log(n)</i> time cost for the
  72  * {@code containsKey}, {@code get}, {@code put} and
  73  * {@code remove} operations and their variants.  Insertion, removal,
  74  * update, and access operations safely execute concurrently by
  75  * multiple threads.
  76  *
  77  * <p>Iterators and spliterators are
  78  * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
  79  *
  80  * <p>Ascending key ordered views and their iterators are faster than
  81  * descending ones.
  82  *
  83  * <p>All {@code Map.Entry} pairs returned by methods in this class
  84  * and its views represent snapshots of mappings at the time they were
  85  * produced. They do <em>not</em> support the {@code Entry.setValue}
  86  * method. (Note however that it is possible to change mappings in the
  87  * associated map using {@code put}, {@code putIfAbsent}, or
  88  * {@code replace}, depending on exactly which effect you need.)
  89  *
  90  * <p>Beware that bulk operations {@code putAll}, {@code equals},
  91  * {@code toArray}, {@code containsValue}, and {@code clear} are
  92  * <em>not</em> guaranteed to be performed atomically. For example, an
  93  * iterator operating concurrently with a {@code putAll} operation
  94  * might view only some of the added elements.
  95  *
  96  * <p>This class and its views and iterators implement all of the
  97  * <em>optional</em> methods of the {@link Map} and {@link Iterator}
  98  * interfaces. Like most other concurrent collections, this class does
  99  * <em>not</em> permit the use of {@code null} keys or values because some
 100  * null return values cannot be reliably distinguished from the absence of
 101  * elements.
 102  *
 103  * <p>This class is a member of the
 104  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 105  * Java Collections Framework</a>.
 106  *
 107  * @author Doug Lea
 108  * @param <K> the type of keys maintained by this map
 109  * @param <V> the type of mapped values
 110  * @since 1.6
 111  */
 112 public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
 113     implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable {
 114     /*
 115      * This class implements a tree-like two-dimensionally linked skip
 116      * list in which the index levels are represented in separate
 117      * nodes from the base nodes holding data.  There are two reasons
 118      * for taking this approach instead of the usual array-based
 119      * structure: 1) Array based implementations seem to encounter
 120      * more complexity and overhead 2) We can use cheaper algorithms
 121      * for the heavily-traversed index lists than can be used for the
 122      * base lists.  Here's a picture of some of the basics for a
 123      * possible list with 2 levels of index:
 124      *
 125      * Head nodes          Index nodes
 126      * +-+    right        +-+                      +-+
 127      * |2|---------------->| |--------------------->| |->null
 128      * +-+                 +-+                      +-+
 129      *  | down              |                        |
 130      *  v                   v                        v
 131      * +-+            +-+  +-+       +-+            +-+       +-+
 132      * |1|----------->| |->| |------>| |----------->| |------>| |->null
 133      * +-+            +-+  +-+       +-+            +-+       +-+
 134      *  v              |    |         |              |         |
 135      * Nodes  next     v    v         v              v         v
 136      * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
 137      * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
 138      * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
 139      *
 140      * The base lists use a variant of the HM linked ordered set
 141      * algorithm. See Tim Harris, "A pragmatic implementation of
 142      * non-blocking linked lists"
 143      * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
 144      * Michael "High Performance Dynamic Lock-Free Hash Tables and
 145      * List-Based Sets"
 146      * http://www.research.ibm.com/people/m/michael/pubs.htm.  The
 147      * basic idea in these lists is to mark the "next" pointers of
 148      * deleted nodes when deleting to avoid conflicts with concurrent
 149      * insertions, and when traversing to keep track of triples
 150      * (predecessor, node, successor) in order to detect when and how
 151      * to unlink these deleted nodes.
 152      *
 153      * Rather than using mark-bits to mark list deletions (which can
 154      * be slow and space-intensive using AtomicMarkedReference), nodes
 155      * use direct CAS'able next pointers.  On deletion, instead of
 156      * marking a pointer, they splice in another node that can be
 157      * thought of as standing for a marked pointer (see method
 158      * unlinkNode).  Using plain nodes acts roughly like "boxed"
 159      * implementations of marked pointers, but uses new nodes only
 160      * when nodes are deleted, not for every link.  This requires less
 161      * space and supports faster traversal. Even if marked references
 162      * were better supported by JVMs, traversal using this technique
 163      * might still be faster because any search need only read ahead
 164      * one more node than otherwise required (to check for trailing
 165      * marker) rather than unmasking mark bits or whatever on each
 166      * read.
 167      *
 168      * This approach maintains the essential property needed in the HM
 169      * algorithm of changing the next-pointer of a deleted node so
 170      * that any other CAS of it will fail, but implements the idea by
 171      * changing the pointer to point to a different node (with
 172      * otherwise illegal null fields), not by marking it.  While it
 173      * would be possible to further squeeze space by defining marker
 174      * nodes not to have key/value fields, it isn't worth the extra
 175      * type-testing overhead.  The deletion markers are rarely
 176      * encountered during traversal, are easily detected via null
 177      * checks that are needed anyway, and are normally quickly garbage
 178      * collected. (Note that this technique would not work well in
 179      * systems without garbage collection.)
 180      *
 181      * In addition to using deletion markers, the lists also use
 182      * nullness of value fields to indicate deletion, in a style
 183      * similar to typical lazy-deletion schemes.  If a node's value is
 184      * null, then it is considered logically deleted and ignored even
 185      * though it is still reachable.
 186      *
 187      * Here's the sequence of events for a deletion of node n with
 188      * predecessor b and successor f, initially:
 189      *
 190      *        +------+       +------+      +------+
 191      *   ...  |   b  |------>|   n  |----->|   f  | ...
 192      *        +------+       +------+      +------+
 193      *
 194      * 1. CAS n's value field from non-null to null.
 195      *    Traversals encountering a node with null value ignore it.
 196      *    However, ongoing insertions and deletions might still modify
 197      *    n's next pointer.
 198      *
 199      * 2. CAS n's next pointer to point to a new marker node.
 200      *    From this point on, no other nodes can be appended to n.
 201      *    which avoids deletion errors in CAS-based linked lists.
 202      *
 203      *        +------+       +------+      +------+       +------+
 204      *   ...  |   b  |------>|   n  |----->|marker|------>|   f  | ...
 205      *        +------+       +------+      +------+       +------+
 206      *
 207      * 3. CAS b's next pointer over both n and its marker.
 208      *    From this point on, no new traversals will encounter n,
 209      *    and it can eventually be GCed.
 210      *        +------+                                    +------+
 211      *   ...  |   b  |----------------------------------->|   f  | ...
 212      *        +------+                                    +------+
 213      *
 214      * A failure at step 1 leads to simple retry due to a lost race
 215      * with another operation. Steps 2-3 can fail because some other
 216      * thread noticed during a traversal a node with null value and
 217      * helped out by marking and/or unlinking.  This helping-out
 218      * ensures that no thread can become stuck waiting for progress of
 219      * the deleting thread.
 220      *
 221      * Skip lists add indexing to this scheme, so that the base-level
 222      * traversals start close to the locations being found, inserted
 223      * or deleted -- usually base level traversals only traverse a few
 224      * nodes. This doesn't change the basic algorithm except for the
 225      * need to make sure base traversals start at predecessors (here,
 226      * b) that are not (structurally) deleted, otherwise retrying
 227      * after processing the deletion.
 228      *
 229      * Index levels are maintained using CAS to link and unlink
 230      * successors ("right" fields).  Races are allowed in index-list
 231      * operations that can (rarely) fail to link in a new index node.
 232      * (We can't do this of course for data nodes.)  However, even
 233      * when this happens, the index lists correctly guide search.
 234      * This can impact performance, but since skip lists are
 235      * probabilistic anyway, the net result is that under contention,
 236      * the effective "p" value may be lower than its nominal value.
 237      *
 238      * Index insertion and deletion sometimes require a separate
 239      * traversal pass occurring after the base-level action, to add or
 240      * remove index nodes.  This adds to single-threaded overhead, but
 241      * improves contended multithreaded performance by narrowing
 242      * interference windows, and allows deletion to ensure that all
 243      * index nodes will be made unreachable upon return from a public
 244      * remove operation, thus avoiding unwanted garbage retention.
 245      *
 246      * Indexing uses skip list parameters that maintain good search
 247      * performance while using sparser-than-usual indices: The
 248      * hardwired parameters k=1, p=0.5 (see method doPut) mean that
 249      * about one-quarter of the nodes have indices. Of those that do,
 250      * half have one level, a quarter have two, and so on (see Pugh's
 251      * Skip List Cookbook, sec 3.4), up to a maximum of 62 levels
 252      * (appropriate for up to 2^63 elements).  The expected total
 253      * space requirement for a map is slightly less than for the
 254      * current implementation of java.util.TreeMap.
 255      *
 256      * Changing the level of the index (i.e, the height of the
 257      * tree-like structure) also uses CAS.  Creation of an index with
 258      * height greater than the current level adds a level to the head
 259      * index by CAS'ing on a new top-most head. To maintain good
 260      * performance after a lot of removals, deletion methods
 261      * heuristically try to reduce the height if the topmost levels
 262      * appear to be empty.  This may encounter races in which it is
 263      * possible (but rare) to reduce and "lose" a level just as it is
 264      * about to contain an index (that will then never be
 265      * encountered). This does no structural harm, and in practice
 266      * appears to be a better option than allowing unrestrained growth
 267      * of levels.
 268      *
 269      * This class provides concurrent-reader-style memory consistency,
 270      * ensuring that read-only methods report status and/or values no
 271      * staler than those holding at method entry. This is done by
 272      * performing all publication and structural updates using
 273      * (volatile) CAS, placing an acquireFence in a few access
 274      * methods, and ensuring that linked objects are transitively
 275      * acquired via dependent reads (normally once) unless performing
 276      * a volatile-mode CAS operation (that also acts as an acquire and
 277      * release).  This form of fence-hoisting is similar to RCU and
 278      * related techniques (see McKenney's online book
 279      * https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
 280      * It minimizes overhead that may otherwise occur when using so
 281      * many volatile-mode reads. Using explicit acquireFences is
 282      * logistically easier than targeting particular fields to be read
 283      * in acquire mode: fences are just hoisted up as far as possible,
 284      * to the entry points or loop headers of a few methods. A
 285      * potential disadvantage is that these few remaining fences are
 286      * not easily optimized away by compilers under exclusively
 287      * single-thread use.  It requires some care to avoid volatile
 288      * mode reads of other fields. (Note that the memory semantics of
 289      * a reference dependently read in plain mode exactly once are
 290      * equivalent to those for atomic opaque mode.)  Iterators and
 291      * other traversals encounter each node and value exactly once.
 292      * Other operations locate an element (or position to insert an
 293      * element) via a sequence of dereferences. This search is broken
 294      * into two parts. Method findPredecessor (and its specialized
 295      * embeddings) searches index nodes only, returning a base-level
 296      * predecessor of the key. Callers carry out the base-level
 297      * search, restarting if encountering a marker preventing link
 298      * modification.  In some cases, it is possible to encounter a
 299      * node multiple times while descending levels. For mutative
 300      * operations, the reported value is validated using CAS (else
 301      * retrying), preserving linearizability with respect to each
 302      * other. Others may return any (non-null) value holding in the
 303      * course of the method call.  (Search-based methods also include
 304      * some useless-looking explicit null checks designed to allow
 305      * more fields to be nulled out upon removal, to reduce floating
 306      * garbage, but which is not currently done, pending discovery of
 307      * a way to do this with less impact on other operations.)
 308      *
 309      * To produce random values without interference across threads,
 310      * we use within-JDK thread local random support (via the
 311      * "secondary seed", to avoid interference with user-level
 312      * ThreadLocalRandom.)
 313      *
 314      * For explanation of algorithms sharing at least a couple of
 315      * features with this one, see Mikhail Fomitchev's thesis
 316      * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
 317      * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
 318      * thesis (http://www.cs.chalmers.se/~phs/).
 319      *
 320      * Notation guide for local variables
 321      * Node:         b, n, f, p for  predecessor, node, successor, aux
 322      * Index:        q, r, d    for index node, right, down.
 323      * Head:         h
 324      * Keys:         k, key
 325      * Values:       v, value
 326      * Comparisons:  c
 327      */
 328 
 329     private static final long serialVersionUID = -8627078645895051609L;
 330 
 331     /**
 332      * The comparator used to maintain order in this map, or null if
 333      * using natural ordering.  (Non-private to simplify access in
 334      * nested classes.)
 335      * @serial
 336      */
 337     final Comparator<? super K> comparator;
 338 
 339     /** Lazily initialized topmost index of the skiplist. */
 340     private transient Index<K,V> head;
 341     /** Lazily initialized element count */
 342     private transient LongAdder adder;
 343     /** Lazily initialized key set */
 344     private transient KeySet<K,V> keySet;
 345     /** Lazily initialized values collection */
 346     private transient Values<K,V> values;
 347     /** Lazily initialized entry set */
 348     private transient EntrySet<K,V> entrySet;
 349     /** Lazily initialized descending map */
 350     private transient SubMap<K,V> descendingMap;
 351 
 352     /**
 353      * Nodes hold keys and values, and are singly linked in sorted
 354      * order, possibly with some intervening marker nodes. The list is
 355      * headed by a header node accessible as head.node. Headers and
 356      * marker nodes have null keys. The val field (but currently not
 357      * the key field) is nulled out upon deletion.
 358      */
 359     static final class Node<K,V> {
 360         final K key; // currently, never detached
 361         V val;
 362         Node<K,V> next;
 363         Node(K key, V value, Node<K,V> next) {
 364             this.key = key;
 365             this.val = value;
 366             this.next = next;
 367         }
 368     }
 369 
 370     /**
 371      * Index nodes represent the levels of the skip list.
 372      */
 373     static final class Index<K,V> {
 374         final Node<K,V> node;  // currently, never detached
 375         final Index<K,V> down;
 376         Index<K,V> right;
 377         Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
 378             this.node = node;
 379             this.down = down;
 380             this.right = right;
 381         }
 382     }
 383 
 384     /* ----------------  Utilities -------------- */
 385 
 386     /**
 387      * Compares using comparator or natural ordering if null.
 388      * Called only by methods that have performed required type checks.
 389      */
 390     @SuppressWarnings({"unchecked", "rawtypes"})
 391     static int cpr(Comparator c, Object x, Object y) {
 392         return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
 393     }
 394 
 395     /**
 396      * Returns the header for base node list, or null if uninitialized
 397      */
 398     final Node<K,V> baseHead() {
 399         Index<K,V> h;
 400         VarHandle.acquireFence();
 401         return ((h = head) == null) ? null : h.node;
 402     }
 403 
 404     /**
 405      * Tries to unlink deleted node n from predecessor b (if both
 406      * exist), by first splicing in a marker if not already present.
 407      * Upon return, node n is sure to be unlinked from b, possibly
 408      * via the actions of some other thread.
 409      *
 410      * @param b if nonnull, predecessor
 411      * @param n if nonnull, node known to be deleted
 412      */
 413     static <K,V> void unlinkNode(Node<K,V> b, Node<K,V> n) {
 414         if (b != null && n != null) {
 415             Node<K,V> f, p;
 416             for (;;) {
 417                 if ((f = n.next) != null && f.key == null) {
 418                     p = f.next;               // already marked
 419                     break;
 420                 }
 421                 else if (NEXT.compareAndSet(n, f,
 422                                             new Node<K,V>(null, null, f))) {
 423                     p = f;                    // add marker
 424                     break;
 425                 }
 426             }
 427             NEXT.compareAndSet(b, n, p);
 428         }
 429     }
 430 
 431     /**
 432      * Adds to element count, initializing adder if necessary
 433      *
 434      * @param c count to add
 435      */
 436     private void addCount(long c) {
 437         LongAdder a;
 438         do {} while ((a = adder) == null &&
 439                      !ADDER.compareAndSet(this, null, a = new LongAdder()));
 440         a.add(c);
 441     }
 442 
 443     /**
 444      * Returns element count, initializing adder if necessary.
 445      */
 446     final long getAdderCount() {
 447         LongAdder a; long c;
 448         do {} while ((a = adder) == null &&
 449                      !ADDER.compareAndSet(this, null, a = new LongAdder()));
 450         return ((c = a.sum()) <= 0L) ? 0L : c; // ignore transient negatives
 451     }
 452 
 453     /* ---------------- Traversal -------------- */
 454 
 455     /**
 456      * Returns an index node with key strictly less than given key.
 457      * Also unlinks indexes to deleted nodes found along the way.
 458      * Callers rely on this side-effect of clearing indices to deleted
 459      * nodes.
 460      *
 461      * @param key if nonnull the key
 462      * @return a predecessor node of key, or null if uninitialized or null key
 463      */
 464     private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
 465         Index<K,V> q;
 466         VarHandle.acquireFence();
 467         if ((q = head) == null || key == null)
 468             return null;
 469         else {
 470             for (Index<K,V> r, d;;) {
 471                 while ((r = q.right) != null) {
 472                     Node<K,V> p; K k;
 473                     if ((p = r.node) == null || (k = p.key) == null ||
 474                         p.val == null)  // unlink index to deleted node
 475                         RIGHT.compareAndSet(q, r, r.right);
 476                     else if (cpr(cmp, key, k) > 0)
 477                         q = r;
 478                     else
 479                         break;
 480                 }
 481                 if ((d = q.down) != null)
 482                     q = d;
 483                 else
 484                     return q.node;
 485             }
 486         }
 487     }
 488 
 489     /**
 490      * Returns node holding key or null if no such, clearing out any
 491      * deleted nodes seen along the way.  Repeatedly traverses at
 492      * base-level looking for key starting at predecessor returned
 493      * from findPredecessor, processing base-level deletions as
 494      * encountered. Restarts occur, at traversal step encountering
 495      * node n, if n's key field is null, indicating it is a marker, so
 496      * its predecessor is deleted before continuing, which we help do
 497      * by re-finding a valid predecessor.  The traversal loops in
 498      * doPut, doRemove, and findNear all include the same checks.
 499      *
 500      * @param key the key
 501      * @return node holding key, or null if no such
 502      */
 503     private Node<K,V> findNode(Object key) {
 504         if (key == null)
 505             throw new NullPointerException(); // don't postpone errors
 506         Comparator<? super K> cmp = comparator;
 507         Node<K,V> b;
 508         outer: while ((b = findPredecessor(key, cmp)) != null) {
 509             for (;;) {
 510                 Node<K,V> n; K k; V v; int c;
 511                 if ((n = b.next) == null)
 512                     break outer;               // empty
 513                 else if ((k = n.key) == null)
 514                     break;                     // b is deleted
 515                 else if ((v = n.val) == null)
 516                     unlinkNode(b, n);          // n is deleted
 517                 else if ((c = cpr(cmp, key, k)) > 0)
 518                     b = n;
 519                 else if (c == 0)
 520                     return n;
 521                 else
 522                     break outer;
 523             }
 524         }
 525         return null;
 526     }
 527 
 528     /**
 529      * Gets value for key. Same idea as findNode, except skips over
 530      * deletions and markers, and returns first encountered value to
 531      * avoid possibly inconsistent rereads.
 532      *
 533      * @param key the key
 534      * @return the value, or null if absent
 535      */
 536     private V doGet(Object key) {
 537         Index<K,V> q;
 538         VarHandle.acquireFence();
 539         if (key == null)
 540             throw new NullPointerException();
 541         Comparator<? super K> cmp = comparator;
 542         V result = null;
 543         if ((q = head) != null) {
 544             outer: for (Index<K,V> r, d;;) {
 545                 while ((r = q.right) != null) {
 546                     Node<K,V> p; K k; V v; int c;
 547                     if ((p = r.node) == null || (k = p.key) == null ||
 548                         (v = p.val) == null)
 549                         RIGHT.compareAndSet(q, r, r.right);
 550                     else if ((c = cpr(cmp, key, k)) > 0)
 551                         q = r;
 552                     else if (c == 0) {
 553                         result = v;
 554                         break outer;
 555                     }
 556                     else
 557                         break;
 558                 }
 559                 if ((d = q.down) != null)
 560                     q = d;
 561                 else {
 562                     Node<K,V> b, n;
 563                     if ((b = q.node) != null) {
 564                         while ((n = b.next) != null) {
 565                             V v; int c;
 566                             K k = n.key;
 567                             if ((v = n.val) == null || k == null ||
 568                                 (c = cpr(cmp, key, k)) > 0)
 569                                 b = n;
 570                             else {
 571                                 if (c == 0)
 572                                     result = v;
 573                                 break;
 574                             }
 575                         }
 576                     }
 577                     break;
 578                 }
 579             }
 580         }
 581         return result;
 582     }
 583 
 584     /* ---------------- Insertion -------------- */
 585 
 586     /**
 587      * Main insertion method.  Adds element if not present, or
 588      * replaces value if present and onlyIfAbsent is false.
 589      *
 590      * @param key the key
 591      * @param value the value that must be associated with key
 592      * @param onlyIfAbsent if should not insert if already present
 593      * @return the old value, or null if newly inserted
 594      */
 595     private V doPut(K key, V value, boolean onlyIfAbsent) {
 596         if (key == null)
 597             throw new NullPointerException();
 598         Comparator<? super K> cmp = comparator;
 599         for (;;) {
 600             Index<K,V> h; Node<K,V> b;
 601             VarHandle.acquireFence();
 602             int levels = 0;                    // number of levels descended
 603             if ((h = head) == null) {          // try to initialize
 604                 Node<K,V> base = new Node<K,V>(null, null, null);
 605                 h = new Index<K,V>(base, null, null);
 606                 b = (HEAD.compareAndSet(this, null, h)) ? base : null;
 607             }
 608             else {
 609                 for (Index<K,V> q = h, r, d;;) { // count while descending
 610                     while ((r = q.right) != null) {
 611                         Node<K,V> p; K k;
 612                         if ((p = r.node) == null || (k = p.key) == null ||
 613                             p.val == null)
 614                             RIGHT.compareAndSet(q, r, r.right);
 615                         else if (cpr(cmp, key, k) > 0)
 616                             q = r;
 617                         else
 618                             break;
 619                     }
 620                     if ((d = q.down) != null) {
 621                         ++levels;
 622                         q = d;
 623                     }
 624                     else {
 625                         b = q.node;
 626                         break;
 627                     }
 628                 }
 629             }
 630             if (b != null) {
 631                 Node<K,V> z = null;              // new node, if inserted
 632                 for (;;) {                       // find insertion point
 633                     Node<K,V> n, p; K k; V v; int c;
 634                     if ((n = b.next) == null) {
 635                         if (b.key == null)       // if empty, type check key now
 636                             cpr(cmp, key, key);
 637                         c = -1;
 638                     }
 639                     else if ((k = n.key) == null)
 640                         break;                   // can't append; restart
 641                     else if ((v = n.val) == null) {
 642                         unlinkNode(b, n);
 643                         c = 1;
 644                     }
 645                     else if ((c = cpr(cmp, key, k)) > 0)
 646                         b = n;
 647                     else if (c == 0 &&
 648                              (onlyIfAbsent || VAL.compareAndSet(n, v, value)))
 649                         return v;
 650 
 651                     if (c < 0 &&
 652                         NEXT.compareAndSet(b, n,
 653                                            p = new Node<K,V>(key, value, n))) {
 654                         z = p;
 655                         break;
 656                     }
 657                 }
 658 
 659                 if (z != null) {
 660                     int lr = ThreadLocalRandom.nextSecondarySeed();
 661                     if ((lr & 0x3) == 0) {       // add indices with 1/4 prob
 662                         int hr = ThreadLocalRandom.nextSecondarySeed();
 663                         long rnd = ((long)hr << 32) | ((long)lr & 0xffffffffL);
 664                         int skips = levels;      // levels to descend before add
 665                         Index<K,V> x = null;
 666                         for (;;) {               // create at most 62 indices
 667                             x = new Index<K,V>(z, x, null);
 668                             if (rnd >= 0L || --skips < 0)
 669                                 break;
 670                             else
 671                                 rnd <<= 1;
 672                         }
 673                         if (addIndices(h, skips, x, cmp) && skips < 0 &&
 674                             head == h) {         // try to add new level
 675                             Index<K,V> hx = new Index<K,V>(z, x, null);
 676                             Index<K,V> nh = new Index<K,V>(h.node, h, hx);
 677                             HEAD.compareAndSet(this, h, nh);
 678                         }
 679                         if (z.val == null)       // deleted while adding indices
 680                             findPredecessor(key, cmp); // clean
 681                     }
 682                     addCount(1L);
 683                     return null;
 684                 }
 685             }
 686         }
 687     }
 688 
 689     /**
 690      * Add indices after an insertion. Descends iteratively to the
 691      * highest level of insertion, then recursively, to chain index
 692      * nodes to lower ones. Returns null on (staleness) failure,
 693      * disabling higher-level insertions. Recursion depths are
 694      * exponentially less probable.
 695      *
 696      * @param q starting index for current level
 697      * @param skips levels to skip before inserting
 698      * @param x index for this insertion
 699      * @param cmp comparator
 700      */
 701     static <K,V> boolean addIndices(Index<K,V> q, int skips, Index<K,V> x,
 702                                     Comparator<? super K> cmp) {
 703         Node<K,V> z; K key;
 704         if (x != null && (z = x.node) != null && (key = z.key) != null &&
 705             q != null) {                            // hoist checks
 706             boolean retrying = false;
 707             for (;;) {                              // find splice point
 708                 Index<K,V> r, d; int c;
 709                 if ((r = q.right) != null) {
 710                     Node<K,V> p; K k;
 711                     if ((p = r.node) == null || (k = p.key) == null ||
 712                         p.val == null) {
 713                         RIGHT.compareAndSet(q, r, r.right);
 714                         c = 0;
 715                     }
 716                     else if ((c = cpr(cmp, key, k)) > 0)
 717                         q = r;
 718                     else if (c == 0)
 719                         break;                      // stale
 720                 }
 721                 else
 722                     c = -1;
 723 
 724                 if (c < 0) {
 725                     if ((d = q.down) != null && skips > 0) {
 726                         --skips;
 727                         q = d;
 728                     }
 729                     else if (d != null && !retrying &&
 730                              !addIndices(d, 0, x.down, cmp))
 731                         break;
 732                     else {
 733                         x.right = r;
 734                         if (RIGHT.compareAndSet(q, r, x))
 735                             return true;
 736                         else
 737                             retrying = true;         // re-find splice point
 738                     }
 739                 }
 740             }
 741         }
 742         return false;
 743     }
 744 
 745     /* ---------------- Deletion -------------- */
 746 
 747     /**
 748      * Main deletion method. Locates node, nulls value, appends a
 749      * deletion marker, unlinks predecessor, removes associated index
 750      * nodes, and possibly reduces head index level.
 751      *
 752      * @param key the key
 753      * @param value if non-null, the value that must be
 754      * associated with key
 755      * @return the node, or null if not found
 756      */
 757     final V doRemove(Object key, Object value) {
 758         if (key == null)
 759             throw new NullPointerException();
 760         Comparator<? super K> cmp = comparator;
 761         V result = null;
 762         Node<K,V> b;
 763         outer: while ((b = findPredecessor(key, cmp)) != null &&
 764                       result == null) {
 765             for (;;) {
 766                 Node<K,V> n; K k; V v; int c;
 767                 if ((n = b.next) == null)
 768                     break outer;
 769                 else if ((k = n.key) == null)
 770                     break;
 771                 else if ((v = n.val) == null)
 772                     unlinkNode(b, n);
 773                 else if ((c = cpr(cmp, key, k)) > 0)
 774                     b = n;
 775                 else if (c < 0)
 776                     break outer;
 777                 else if (value != null && !value.equals(v))
 778                     break outer;
 779                 else if (VAL.compareAndSet(n, v, null)) {
 780                     result = v;
 781                     unlinkNode(b, n);
 782                     break; // loop to clean up
 783                 }
 784             }
 785         }
 786         if (result != null) {
 787             tryReduceLevel();
 788             addCount(-1L);
 789         }
 790         return result;
 791     }
 792 
 793     /**
 794      * Possibly reduce head level if it has no nodes.  This method can
 795      * (rarely) make mistakes, in which case levels can disappear even
 796      * though they are about to contain index nodes. This impacts
 797      * performance, not correctness.  To minimize mistakes as well as
 798      * to reduce hysteresis, the level is reduced by one only if the
 799      * topmost three levels look empty. Also, if the removed level
 800      * looks non-empty after CAS, we try to change it back quick
 801      * before anyone notices our mistake! (This trick works pretty
 802      * well because this method will practically never make mistakes
 803      * unless current thread stalls immediately before first CAS, in
 804      * which case it is very unlikely to stall again immediately
 805      * afterwards, so will recover.)
 806      *
 807      * We put up with all this rather than just let levels grow
 808      * because otherwise, even a small map that has undergone a large
 809      * number of insertions and removals will have a lot of levels,
 810      * slowing down access more than would an occasional unwanted
 811      * reduction.
 812      */
 813     private void tryReduceLevel() {
 814         Index<K,V> h, d, e;
 815         if ((h = head) != null && h.right == null &&
 816             (d = h.down) != null && d.right == null &&
 817             (e = d.down) != null && e.right == null &&
 818             HEAD.compareAndSet(this, h, d) &&
 819             h.right != null)   // recheck
 820             HEAD.compareAndSet(this, d, h);  // try to backout
 821     }
 822 
 823     /* ---------------- Finding and removing first element -------------- */
 824 
 825     /**
 826      * Gets first valid node, unlinking deleted nodes if encountered.
 827      * @return first node or null if empty
 828      */
 829     final Node<K,V> findFirst() {
 830         Node<K,V> b, n;
 831         if ((b = baseHead()) != null) {
 832             while ((n = b.next) != null) {
 833                 if (n.val == null)
 834                     unlinkNode(b, n);
 835                 else
 836                     return n;
 837             }
 838         }
 839         return null;
 840     }
 841 
 842     /**
 843      * Entry snapshot version of findFirst
 844      */
 845     final AbstractMap.SimpleImmutableEntry<K,V> findFirstEntry() {
 846         Node<K,V> b, n; V v;
 847         if ((b = baseHead()) != null) {
 848             while ((n = b.next) != null) {
 849                 if ((v = n.val) == null)
 850                     unlinkNode(b, n);
 851                 else
 852                     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
 853             }
 854         }
 855         return null;
 856     }
 857 
 858     /**
 859      * Removes first entry; returns its snapshot.
 860      * @return null if empty, else snapshot of first entry
 861      */
 862     private AbstractMap.SimpleImmutableEntry<K,V> doRemoveFirstEntry() {
 863         Node<K,V> b, n; V v;
 864         if ((b = baseHead()) != null) {
 865             while ((n = b.next) != null) {
 866                 if ((v = n.val) == null || VAL.compareAndSet(n, v, null)) {
 867                     K k = n.key;
 868                     unlinkNode(b, n);
 869                     if (v != null) {
 870                         tryReduceLevel();
 871                         findPredecessor(k, comparator); // clean index
 872                         addCount(-1L);
 873                         return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
 874                     }
 875                 }
 876             }
 877         }
 878         return null;
 879     }
 880 
 881     /* ---------------- Finding and removing last element -------------- */
 882 
 883     /**
 884      * Specialized version of find to get last valid node.
 885      * @return last node or null if empty
 886      */
 887     final Node<K,V> findLast() {
 888         outer: for (;;) {
 889             Index<K,V> q; Node<K,V> b;
 890             VarHandle.acquireFence();
 891             if ((q = head) == null)
 892                 break;
 893             for (Index<K,V> r, d;;) {
 894                 while ((r = q.right) != null) {
 895                     Node<K,V> p;
 896                     if ((p = r.node) == null || p.val == null)
 897                         RIGHT.compareAndSet(q, r, r.right);
 898                     else
 899                         q = r;
 900                 }
 901                 if ((d = q.down) != null)
 902                     q = d;
 903                 else {
 904                     b = q.node;
 905                     break;
 906                 }
 907             }
 908             if (b != null) {
 909                 for (;;) {
 910                     Node<K,V> n;
 911                     if ((n = b.next) == null) {
 912                         if (b.key == null) // empty
 913                             break outer;
 914                         else
 915                             return b;
 916                     }
 917                     else if (n.key == null)
 918                         break;
 919                     else if (n.val == null)
 920                         unlinkNode(b, n);
 921                     else
 922                         b = n;
 923                 }
 924             }
 925         }
 926         return null;
 927     }
 928 
 929     /**
 930      * Entry version of findLast
 931      * @return Entry for last node or null if empty
 932      */
 933     final AbstractMap.SimpleImmutableEntry<K,V> findLastEntry() {
 934         for (;;) {
 935             Node<K,V> n; V v;
 936             if ((n = findLast()) == null)
 937                 return null;
 938             if ((v = n.val) != null)
 939                 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
 940         }
 941     }
 942 
 943     /**
 944      * Removes last entry; returns its snapshot.
 945      * Specialized variant of doRemove.
 946      * @return null if empty, else snapshot of last entry
 947      */
 948     private Map.Entry<K,V> doRemoveLastEntry() {
 949         outer: for (;;) {
 950             Index<K,V> q; Node<K,V> b;
 951             VarHandle.acquireFence();
 952             if ((q = head) == null)
 953                 break;
 954             for (;;) {
 955                 Index<K,V> d, r; Node<K,V> p;
 956                 while ((r = q.right) != null) {
 957                     if ((p = r.node) == null || p.val == null)
 958                         RIGHT.compareAndSet(q, r, r.right);
 959                     else if (p.next != null)
 960                         q = r;  // continue only if a successor
 961                     else
 962                         break;
 963                 }
 964                 if ((d = q.down) != null)
 965                     q = d;
 966                 else {
 967                     b = q.node;
 968                     break;
 969                 }
 970             }
 971             if (b != null) {
 972                 for (;;) {
 973                     Node<K,V> n; K k; V v;
 974                     if ((n = b.next) == null) {
 975                         if (b.key == null) // empty
 976                             break outer;
 977                         else
 978                             break; // retry
 979                     }
 980                     else if ((k = n.key) == null)
 981                         break;
 982                     else if ((v = n.val) == null)
 983                         unlinkNode(b, n);
 984                     else if (n.next != null)
 985                         b = n;
 986                     else if (VAL.compareAndSet(n, v, null)) {
 987                         unlinkNode(b, n);
 988                         tryReduceLevel();
 989                         findPredecessor(k, comparator); // clean index
 990                         addCount(-1L);
 991                         return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
 992                     }
 993                 }
 994             }
 995         }
 996         return null;
 997     }
 998 
 999     /* ---------------- Relational operations -------------- */
1000 
1001     // Control values OR'ed as arguments to findNear
1002 
1003     private static final int EQ = 1;
1004     private static final int LT = 2;
1005     private static final int GT = 0; // Actually checked as !LT
1006 
1007     /**
1008      * Utility for ceiling, floor, lower, higher methods.
1009      * @param key the key
1010      * @param rel the relation -- OR'ed combination of EQ, LT, GT
1011      * @return nearest node fitting relation, or null if no such
1012      */
1013     final Node<K,V> findNear(K key, int rel, Comparator<? super K> cmp) {
1014         if (key == null)
1015             throw new NullPointerException();
1016         Node<K,V> result;
1017         outer: for (Node<K,V> b;;) {
1018             if ((b = findPredecessor(key, cmp)) == null) {
1019                 result = null;
1020                 break;                   // empty
1021             }
1022             for (;;) {
1023                 Node<K,V> n; K k; int c;
1024                 if ((n = b.next) == null) {
1025                     result = ((rel & LT) != 0 && b.key != null) ? b : null;
1026                     break outer;
1027                 }
1028                 else if ((k = n.key) == null)
1029                     break;
1030                 else if (n.val == null)
1031                     unlinkNode(b, n);
1032                 else if (((c = cpr(cmp, key, k)) == 0 && (rel & EQ) != 0) ||
1033                          (c < 0 && (rel & LT) == 0)) {
1034                     result = n;
1035                     break outer;
1036                 }
1037                 else if (c <= 0 && (rel & LT) != 0) {
1038                     result = (b.key != null) ? b : null;
1039                     break outer;
1040                 }
1041                 else
1042                     b = n;
1043             }
1044         }
1045         return result;
1046     }
1047 
1048     /**
1049      * Variant of findNear returning SimpleImmutableEntry
1050      * @param key the key
1051      * @param rel the relation -- OR'ed combination of EQ, LT, GT
1052      * @return Entry fitting relation, or null if no such
1053      */
1054     final AbstractMap.SimpleImmutableEntry<K,V> findNearEntry(K key, int rel,
1055                                                               Comparator<? super K> cmp) {
1056         for (;;) {
1057             Node<K,V> n; V v;
1058             if ((n = findNear(key, rel, cmp)) == null)
1059                 return null;
1060             if ((v = n.val) != null)
1061                 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
1062         }
1063     }
1064 
1065     /* ---------------- Constructors -------------- */
1066 
1067     /**
1068      * Constructs a new, empty map, sorted according to the
1069      * {@linkplain Comparable natural ordering} of the keys.
1070      */
1071     public ConcurrentSkipListMap() {
1072         this.comparator = null;
1073     }
1074 
1075     /**
1076      * Constructs a new, empty map, sorted according to the specified
1077      * comparator.
1078      *
1079      * @param comparator the comparator that will be used to order this map.
1080      *        If {@code null}, the {@linkplain Comparable natural
1081      *        ordering} of the keys will be used.
1082      */
1083     public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1084         this.comparator = comparator;
1085     }
1086 
1087     /**
1088      * Constructs a new map containing the same mappings as the given map,
1089      * sorted according to the {@linkplain Comparable natural ordering} of
1090      * the keys.
1091      *
1092      * @param  m the map whose mappings are to be placed in this map
1093      * @throws ClassCastException if the keys in {@code m} are not
1094      *         {@link Comparable}, or are not mutually comparable
1095      * @throws NullPointerException if the specified map or any of its keys
1096      *         or values are null
1097      */
1098     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1099         this.comparator = null;
1100         putAll(m);
1101     }
1102 
1103     /**
1104      * Constructs a new map containing the same mappings and using the
1105      * same ordering as the specified sorted map.
1106      *
1107      * @param m the sorted map whose mappings are to be placed in this
1108      *        map, and whose comparator is to be used to sort this map
1109      * @throws NullPointerException if the specified sorted map or any of
1110      *         its keys or values are null
1111      */
1112     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1113         this.comparator = m.comparator();
1114         buildFromSorted(m); // initializes transients
1115     }
1116 
1117     /**
1118      * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1119      * instance. (The keys and values themselves are not cloned.)
1120      *
1121      * @return a shallow copy of this map
1122      */
1123     public ConcurrentSkipListMap<K,V> clone() {
1124         try {
1125             @SuppressWarnings("unchecked")
1126             ConcurrentSkipListMap<K,V> clone =
1127                 (ConcurrentSkipListMap<K,V>) super.clone();
1128             clone.keySet = null;
1129             clone.entrySet = null;
1130             clone.values = null;
1131             clone.descendingMap = null;
1132             clone.buildFromSorted(this);
1133             return clone;
1134         } catch (CloneNotSupportedException e) {
1135             throw new InternalError();
1136         }
1137     }
1138 
1139     /**
1140      * Streamlined bulk insertion to initialize from elements of
1141      * given sorted map.  Call only from constructor or clone
1142      * method.
1143      */
1144     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1145         if (map == null)
1146             throw new NullPointerException();
1147         Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1148             map.entrySet().iterator();
1149 
1150         /*
1151          * Add equally spaced indices at log intervals, using the bits
1152          * of count during insertion. The maximum possible resulting
1153          * level is less than the number of bits in a long (64). The
1154          * preds array tracks the current rightmost node at each
1155          * level.
1156          */
1157         @SuppressWarnings("unchecked")
1158         Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1159         Node<K,V> bp = new Node<K,V>(null, null, null);
1160         Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1161         long count = 0;
1162 
1163         while (it.hasNext()) {
1164             Map.Entry<? extends K, ? extends V> e = it.next();
1165             K k = e.getKey();
1166             V v = e.getValue();
1167             if (k == null || v == null)
1168                 throw new NullPointerException();
1169             Node<K,V> z = new Node<K,V>(k, v, null);
1170             bp = bp.next = z;
1171             if ((++count & 3L) == 0L) {
1172                 long m = count >>> 2;
1173                 int i = 0;
1174                 Index<K,V> idx = null, q;
1175                 do {
1176                     idx = new Index<K,V>(z, idx, null);
1177                     if ((q = preds[i]) == null)
1178                         preds[i] = h = new Index<K,V>(h.node, h, idx);
1179                     else
1180                         preds[i] = q.right = idx;
1181                 } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1182             }
1183         }
1184         if (count != 0L) {
1185             VarHandle.releaseFence(); // emulate volatile stores
1186             addCount(count);
1187             head = h;
1188             VarHandle.fullFence();
1189         }
1190     }
1191 
1192     /* ---------------- Serialization -------------- */
1193 
1194     /**
1195      * Saves this map to a stream (that is, serializes it).
1196      *
1197      * @param s the stream
1198      * @throws java.io.IOException if an I/O error occurs
1199      * @serialData The key (Object) and value (Object) for each
1200      * key-value mapping represented by the map, followed by
1201      * {@code null}. The key-value mappings are emitted in key-order
1202      * (as determined by the Comparator, or by the keys' natural
1203      * ordering if no Comparator).
1204      */
1205     private void writeObject(java.io.ObjectOutputStream s)
1206         throws java.io.IOException {
1207         // Write out the Comparator and any hidden stuff
1208         s.defaultWriteObject();
1209 
1210         // Write out keys and values (alternating)
1211         Node<K,V> b, n; V v;
1212         if ((b = baseHead()) != null) {
1213             while ((n = b.next) != null) {
1214                 if ((v = n.val) != null) {
1215                     s.writeObject(n.key);
1216                     s.writeObject(v);
1217                 }
1218                 b = n;
1219             }
1220         }
1221         s.writeObject(null);
1222     }
1223 
1224     /**
1225      * Reconstitutes this map from a stream (that is, deserializes it).
1226      * @param s the stream
1227      * @throws ClassNotFoundException if the class of a serialized object
1228      *         could not be found
1229      * @throws java.io.IOException if an I/O error occurs
1230      */
1231     @SuppressWarnings("unchecked")
1232     private void readObject(final java.io.ObjectInputStream s)
1233         throws java.io.IOException, ClassNotFoundException {
1234         // Read in the Comparator and any hidden stuff
1235         s.defaultReadObject();
1236 
1237         // Same idea as buildFromSorted
1238         @SuppressWarnings("unchecked")
1239         Index<K,V>[] preds = (Index<K,V>[])new Index<?,?>[64];
1240         Node<K,V> bp = new Node<K,V>(null, null, null);
1241         Index<K,V> h = preds[0] = new Index<K,V>(bp, null, null);
1242         Comparator<? super K> cmp = comparator;
1243         K prevKey = null;
1244         long count = 0;
1245 
1246         for (;;) {
1247             K k = (K)s.readObject();
1248             if (k == null)
1249                 break;
1250             V v = (V)s.readObject();
1251             if (v == null)
1252                 throw new NullPointerException();
1253             if (prevKey != null && cpr(cmp, prevKey, k) > 0)
1254                 throw new IllegalStateException("out of order");
1255             prevKey = k;
1256             Node<K,V> z = new Node<K,V>(k, v, null);
1257             bp = bp.next = z;
1258             if ((++count & 3L) == 0L) {
1259                 long m = count >>> 2;
1260                 int i = 0;
1261                 Index<K,V> idx = null, q;
1262                 do {
1263                     idx = new Index<K,V>(z, idx, null);
1264                     if ((q = preds[i]) == null)
1265                         preds[i] = h = new Index<K,V>(h.node, h, idx);
1266                     else
1267                         preds[i] = q.right = idx;
1268                 } while (++i < preds.length && ((m >>>= 1) & 1L) != 0L);
1269             }
1270         }
1271         if (count != 0L) {
1272             VarHandle.releaseFence();
1273             addCount(count);
1274             head = h;
1275             VarHandle.fullFence();
1276         }
1277     }
1278 
1279     /* ------ Map API methods ------ */
1280 
1281     /**
1282      * Returns {@code true} if this map contains a mapping for the specified
1283      * key.
1284      *
1285      * @param key key whose presence in this map is to be tested
1286      * @return {@code true} if this map contains a mapping for the specified key
1287      * @throws ClassCastException if the specified key cannot be compared
1288      *         with the keys currently in the map
1289      * @throws NullPointerException if the specified key is null
1290      */
1291     public boolean containsKey(Object key) {
1292         return doGet(key) != null;
1293     }
1294 
1295     /**
1296      * Returns the value to which the specified key is mapped,
1297      * or {@code null} if this map contains no mapping for the key.
1298      *
1299      * <p>More formally, if this map contains a mapping from a key
1300      * {@code k} to a value {@code v} such that {@code key} compares
1301      * equal to {@code k} according to the map's ordering, then this
1302      * method returns {@code v}; otherwise it returns {@code null}.
1303      * (There can be at most one such mapping.)
1304      *
1305      * @throws ClassCastException if the specified key cannot be compared
1306      *         with the keys currently in the map
1307      * @throws NullPointerException if the specified key is null
1308      */
1309     public V get(Object key) {
1310         return doGet(key);
1311     }
1312 
1313     /**
1314      * Returns the value to which the specified key is mapped,
1315      * or the given defaultValue if this map contains no mapping for the key.
1316      *
1317      * @param key the key
1318      * @param defaultValue the value to return if this map contains
1319      * no mapping for the given key
1320      * @return the mapping for the key, if present; else the defaultValue
1321      * @throws NullPointerException if the specified key is null
1322      * @since 1.8
1323      */
1324     public V getOrDefault(Object key, V defaultValue) {
1325         V v;
1326         return (v = doGet(key)) == null ? defaultValue : v;
1327     }
1328 
1329     /**
1330      * Associates the specified value with the specified key in this map.
1331      * If the map previously contained a mapping for the key, the old
1332      * value is replaced.
1333      *
1334      * @param key key with which the specified value is to be associated
1335      * @param value value to be associated with the specified key
1336      * @return the previous value associated with the specified key, or
1337      *         {@code null} if there was no mapping for the key
1338      * @throws ClassCastException if the specified key cannot be compared
1339      *         with the keys currently in the map
1340      * @throws NullPointerException if the specified key or value is null
1341      */
1342     public V put(K key, V value) {
1343         if (value == null)
1344             throw new NullPointerException();
1345         return doPut(key, value, false);
1346     }
1347 
1348     /**
1349      * Removes the mapping for the specified key from this map if present.
1350      *
1351      * @param  key key for which mapping should be removed
1352      * @return the previous value associated with the specified key, or
1353      *         {@code null} if there was no mapping for the key
1354      * @throws ClassCastException if the specified key cannot be compared
1355      *         with the keys currently in the map
1356      * @throws NullPointerException if the specified key is null
1357      */
1358     public V remove(Object key) {
1359         return doRemove(key, null);
1360     }
1361 
1362     /**
1363      * Returns {@code true} if this map maps one or more keys to the
1364      * specified value.  This operation requires time linear in the
1365      * map size. Additionally, it is possible for the map to change
1366      * during execution of this method, in which case the returned
1367      * result may be inaccurate.
1368      *
1369      * @param value value whose presence in this map is to be tested
1370      * @return {@code true} if a mapping to {@code value} exists;
1371      *         {@code false} otherwise
1372      * @throws NullPointerException if the specified value is null
1373      */
1374     public boolean containsValue(Object value) {
1375         if (value == null)
1376             throw new NullPointerException();
1377         Node<K,V> b, n; V v;
1378         if ((b = baseHead()) != null) {
1379             while ((n = b.next) != null) {
1380                 if ((v = n.val) != null && value.equals(v))
1381                     return true;
1382                 else
1383                     b = n;
1384             }
1385         }
1386         return false;
1387     }
1388 
1389     /**
1390      * {@inheritDoc}
1391      */
1392     public int size() {
1393         long c;
1394         return ((baseHead() == null) ? 0 :
1395                 ((c = getAdderCount()) >= Integer.MAX_VALUE) ?
1396                 Integer.MAX_VALUE : (int) c);
1397     }
1398 
1399     /**
1400      * {@inheritDoc}
1401      */
1402     public boolean isEmpty() {
1403         return findFirst() == null;
1404     }
1405 
1406     /**
1407      * Removes all of the mappings from this map.
1408      */
1409     public void clear() {
1410         Index<K,V> h, r, d; Node<K,V> b;
1411         VarHandle.acquireFence();
1412         while ((h = head) != null) {
1413             if ((r = h.right) != null)        // remove indices
1414                 RIGHT.compareAndSet(h, r, null);
1415             else if ((d = h.down) != null)    // remove levels
1416                 HEAD.compareAndSet(this, h, d);
1417             else {
1418                 long count = 0L;
1419                 if ((b = h.node) != null) {    // remove nodes
1420                     Node<K,V> n; V v;
1421                     while ((n = b.next) != null) {
1422                         if ((v = n.val) != null &&
1423                             VAL.compareAndSet(n, v, null)) {
1424                             --count;
1425                             v = null;
1426                         }
1427                         if (v == null)
1428                             unlinkNode(b, n);
1429                     }
1430                 }
1431                 if (count != 0L)
1432                     addCount(count);
1433                 else
1434                     break;
1435             }
1436         }
1437     }
1438 
1439     /**
1440      * If the specified key is not already associated with a value,
1441      * attempts to compute its value using the given mapping function
1442      * and enters it into this map unless {@code null}.  The function
1443      * is <em>NOT</em> guaranteed to be applied once atomically only
1444      * if the value is not present.
1445      *
1446      * @param key key with which the specified value is to be associated
1447      * @param mappingFunction the function to compute a value
1448      * @return the current (existing or computed) value associated with
1449      *         the specified key, or null if the computed value is null
1450      * @throws NullPointerException if the specified key is null
1451      *         or the mappingFunction is null
1452      * @since 1.8
1453      */
1454     public V computeIfAbsent(K key,
1455                              Function<? super K, ? extends V> mappingFunction) {
1456         if (key == null || mappingFunction == null)
1457             throw new NullPointerException();
1458         V v, p, r;
1459         if ((v = doGet(key)) == null &&
1460             (r = mappingFunction.apply(key)) != null)
1461             v = (p = doPut(key, r, true)) == null ? r : p;
1462         return v;
1463     }
1464 
1465     /**
1466      * If the value for the specified key is present, attempts to
1467      * compute a new mapping given the key and its current mapped
1468      * value. The function is <em>NOT</em> guaranteed to be applied
1469      * once atomically.
1470      *
1471      * @param key key with which a value may be associated
1472      * @param remappingFunction the function to compute a value
1473      * @return the new value associated with the specified key, or null if none
1474      * @throws NullPointerException if the specified key is null
1475      *         or the remappingFunction is null
1476      * @since 1.8
1477      */
1478     public V computeIfPresent(K key,
1479                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1480         if (key == null || remappingFunction == null)
1481             throw new NullPointerException();
1482         Node<K,V> n; V v;
1483         while ((n = findNode(key)) != null) {
1484             if ((v = n.val) != null) {
1485                 V r = remappingFunction.apply(key, v);
1486                 if (r != null) {
1487                     if (VAL.compareAndSet(n, v, r))
1488                         return r;
1489                 }
1490                 else if (doRemove(key, v) != null)
1491                     break;
1492             }
1493         }
1494         return null;
1495     }
1496 
1497     /**
1498      * Attempts to compute a mapping for the specified key and its
1499      * current mapped value (or {@code null} if there is no current
1500      * mapping). The function is <em>NOT</em> guaranteed to be applied
1501      * once atomically.
1502      *
1503      * @param key key with which the specified value is to be associated
1504      * @param remappingFunction the function to compute a value
1505      * @return the new value associated with the specified key, or null if none
1506      * @throws NullPointerException if the specified key is null
1507      *         or the remappingFunction is null
1508      * @since 1.8
1509      */
1510     public V compute(K key,
1511                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1512         if (key == null || remappingFunction == null)
1513             throw new NullPointerException();
1514         for (;;) {
1515             Node<K,V> n; V v; V r;
1516             if ((n = findNode(key)) == null) {
1517                 if ((r = remappingFunction.apply(key, null)) == null)
1518                     break;
1519                 if (doPut(key, r, true) == null)
1520                     return r;
1521             }
1522             else if ((v = n.val) != null) {
1523                 if ((r = remappingFunction.apply(key, v)) != null) {
1524                     if (VAL.compareAndSet(n, v, r))
1525                         return r;
1526                 }
1527                 else if (doRemove(key, v) != null)
1528                     break;
1529             }
1530         }
1531         return null;
1532     }
1533 
1534     /**
1535      * If the specified key is not already associated with a value,
1536      * associates it with the given value.  Otherwise, replaces the
1537      * value with the results of the given remapping function, or
1538      * removes if {@code null}. The function is <em>NOT</em>
1539      * guaranteed to be applied once atomically.
1540      *
1541      * @param key key with which the specified value is to be associated
1542      * @param value the value to use if absent
1543      * @param remappingFunction the function to recompute a value if present
1544      * @return the new value associated with the specified key, or null if none
1545      * @throws NullPointerException if the specified key or value is null
1546      *         or the remappingFunction is null
1547      * @since 1.8
1548      */
1549     public V merge(K key, V value,
1550                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1551         if (key == null || value == null || remappingFunction == null)
1552             throw new NullPointerException();
1553         for (;;) {
1554             Node<K,V> n; V v; V r;
1555             if ((n = findNode(key)) == null) {
1556                 if (doPut(key, value, true) == null)
1557                     return value;
1558             }
1559             else if ((v = n.val) != null) {
1560                 if ((r = remappingFunction.apply(v, value)) != null) {
1561                     if (VAL.compareAndSet(n, v, r))
1562                         return r;
1563                 }
1564                 else if (doRemove(key, v) != null)
1565                     return null;
1566             }
1567         }
1568     }
1569 
1570     /* ---------------- View methods -------------- */
1571 
1572     /*
1573      * Note: Lazy initialization works for views because view classes
1574      * are stateless/immutable so it doesn't matter wrt correctness if
1575      * more than one is created (which will only rarely happen).  Even
1576      * so, the following idiom conservatively ensures that the method
1577      * returns the one it created if it does so, not one created by
1578      * another racing thread.
1579      */
1580 
1581     /**
1582      * Returns a {@link NavigableSet} view of the keys contained in this map.
1583      *
1584      * <p>The set's iterator returns the keys in ascending order.
1585      * The set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1586      * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1587      * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1588      * key order.
1589      *
1590      * <p>The {@linkplain Spliterator#getComparator() spliterator's comparator}
1591      * is {@code null} if the {@linkplain #comparator() map's comparator}
1592      * is {@code null}.
1593      * Otherwise, the spliterator's comparator is the same as or imposes the
1594      * same total ordering as the map's comparator.
1595      *
1596      * <p>The set is backed by the map, so changes to the map are
1597      * reflected in the set, and vice-versa.  The set supports element
1598      * removal, which removes the corresponding mapping from the map,
1599      * via the {@code Iterator.remove}, {@code Set.remove},
1600      * {@code removeAll}, {@code retainAll}, and {@code clear}
1601      * operations.  It does not support the {@code add} or {@code addAll}
1602      * operations.
1603      *
1604      * <p>The view's iterators and spliterators are
1605      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1606      *
1607      * <p>This method is equivalent to method {@code navigableKeySet}.
1608      *
1609      * @return a navigable set view of the keys in this map
1610      */
1611     public NavigableSet<K> keySet() {
1612         KeySet<K,V> ks;
1613         if ((ks = keySet) != null) return ks;
1614         return keySet = new KeySet<>(this);
1615     }
1616 
1617     public NavigableSet<K> navigableKeySet() {
1618         KeySet<K,V> ks;
1619         if ((ks = keySet) != null) return ks;
1620         return keySet = new KeySet<>(this);
1621     }
1622 
1623     /**
1624      * Returns a {@link Collection} view of the values contained in this map.
1625      * <p>The collection's iterator returns the values in ascending order
1626      * of the corresponding keys. The collections's spliterator additionally
1627      * reports {@link Spliterator#CONCURRENT}, {@link Spliterator#NONNULL} and
1628      * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1629      * order of the corresponding keys.
1630      *
1631      * <p>The collection is backed by the map, so changes to the map are
1632      * reflected in the collection, and vice-versa.  The collection
1633      * supports element removal, which removes the corresponding
1634      * mapping from the map, via the {@code Iterator.remove},
1635      * {@code Collection.remove}, {@code removeAll},
1636      * {@code retainAll} and {@code clear} operations.  It does not
1637      * support the {@code add} or {@code addAll} operations.
1638      *
1639      * <p>The view's iterators and spliterators are
1640      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1641      */
1642     public Collection<V> values() {
1643         Values<K,V> vs;
1644         if ((vs = values) != null) return vs;
1645         return values = new Values<>(this);
1646     }
1647 
1648     /**
1649      * Returns a {@link Set} view of the mappings contained in this map.
1650      *
1651      * <p>The set's iterator returns the entries in ascending key order.  The
1652      * set's spliterator additionally reports {@link Spliterator#CONCURRENT},
1653      * {@link Spliterator#NONNULL}, {@link Spliterator#SORTED} and
1654      * {@link Spliterator#ORDERED}, with an encounter order that is ascending
1655      * key order.
1656      *
1657      * <p>The set is backed by the map, so changes to the map are
1658      * reflected in the set, and vice-versa.  The set supports element
1659      * removal, which removes the corresponding mapping from the map,
1660      * via the {@code Iterator.remove}, {@code Set.remove},
1661      * {@code removeAll}, {@code retainAll} and {@code clear}
1662      * operations.  It does not support the {@code add} or
1663      * {@code addAll} operations.
1664      *
1665      * <p>The view's iterators and spliterators are
1666      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1667      *
1668      * <p>The {@code Map.Entry} elements traversed by the {@code iterator}
1669      * or {@code spliterator} do <em>not</em> support the {@code setValue}
1670      * operation.
1671      *
1672      * @return a set view of the mappings contained in this map,
1673      *         sorted in ascending key order
1674      */
1675     public Set<Map.Entry<K,V>> entrySet() {
1676         EntrySet<K,V> es;
1677         if ((es = entrySet) != null) return es;
1678         return entrySet = new EntrySet<K,V>(this);
1679     }
1680 
1681     public ConcurrentNavigableMap<K,V> descendingMap() {
1682         ConcurrentNavigableMap<K,V> dm;
1683         if ((dm = descendingMap) != null) return dm;
1684         return descendingMap =
1685             new SubMap<K,V>(this, null, false, null, false, true);
1686     }
1687 
1688     public NavigableSet<K> descendingKeySet() {
1689         return descendingMap().navigableKeySet();
1690     }
1691 
1692     /* ---------------- AbstractMap Overrides -------------- */
1693 
1694     /**
1695      * Compares the specified object with this map for equality.
1696      * Returns {@code true} if the given object is also a map and the
1697      * two maps represent the same mappings.  More formally, two maps
1698      * {@code m1} and {@code m2} represent the same mappings if
1699      * {@code m1.entrySet().equals(m2.entrySet())}.  This
1700      * operation may return misleading results if either map is
1701      * concurrently modified during execution of this method.
1702      *
1703      * @param o object to be compared for equality with this map
1704      * @return {@code true} if the specified object is equal to this map
1705      */
1706     public boolean equals(Object o) {
1707         if (o == this)
1708             return true;
1709         if (!(o instanceof Map))
1710             return false;
1711         Map<?,?> m = (Map<?,?>) o;
1712         try {
1713             Comparator<? super K> cmp = comparator;
1714             @SuppressWarnings("unchecked")
1715             Iterator<Map.Entry<?,?>> it =
1716                 (Iterator<Map.Entry<?,?>>)m.entrySet().iterator();
1717             if (m instanceof SortedMap &&
1718                 ((SortedMap<?,?>)m).comparator() == cmp) {
1719                 Node<K,V> b, n;
1720                 if ((b = baseHead()) != null) {
1721                     while ((n = b.next) != null) {
1722                         K k; V v;
1723                         if ((v = n.val) != null && (k = n.key) != null) {
1724                             if (!it.hasNext())
1725                                 return false;
1726                             Map.Entry<?,?> e = it.next();
1727                             Object mk = e.getKey();
1728                             Object mv = e.getValue();
1729                             if (mk == null || mv == null)
1730                                 return false;
1731                             try {
1732                                 if (cpr(cmp, k, mk) != 0)
1733                                     return false;
1734                             } catch (ClassCastException cce) {
1735                                 return false;
1736                             }
1737                             if (!mv.equals(v))
1738                                 return false;
1739                         }
1740                         b = n;
1741                     }
1742                 }
1743                 return !it.hasNext();
1744             }
1745             else {
1746                 while (it.hasNext()) {
1747                     V v;
1748                     Map.Entry<?,?> e = it.next();
1749                     Object mk = e.getKey();
1750                     Object mv = e.getValue();
1751                     if (mk == null || mv == null ||
1752                         (v = get(mk)) == null || !v.equals(mv))
1753                         return false;
1754                 }
1755                 Node<K,V> b, n;
1756                 if ((b = baseHead()) != null) {
1757                     K k; V v; Object mv;
1758                     while ((n = b.next) != null) {
1759                         if ((v = n.val) != null && (k = n.key) != null &&
1760                             ((mv = m.get(k)) == null || !mv.equals(v)))
1761                             return false;
1762                         b = n;
1763                     }
1764                 }
1765                 return true;
1766             }
1767         } catch (ClassCastException unused) {
1768             return false;
1769         } catch (NullPointerException unused) {
1770             return false;
1771         }
1772     }
1773 
1774     /* ------ ConcurrentMap API methods ------ */
1775 
1776     /**
1777      * {@inheritDoc}
1778      *
1779      * @return the previous value associated with the specified key,
1780      *         or {@code null} if there was no mapping for the key
1781      * @throws ClassCastException if the specified key cannot be compared
1782      *         with the keys currently in the map
1783      * @throws NullPointerException if the specified key or value is null
1784      */
1785     public V putIfAbsent(K key, V value) {
1786         if (value == null)
1787             throw new NullPointerException();
1788         return doPut(key, value, true);
1789     }
1790 
1791     /**
1792      * {@inheritDoc}
1793      *
1794      * @throws ClassCastException if the specified key cannot be compared
1795      *         with the keys currently in the map
1796      * @throws NullPointerException if the specified key is null
1797      */
1798     public boolean remove(Object key, Object value) {
1799         if (key == null)
1800             throw new NullPointerException();
1801         return value != null && doRemove(key, value) != null;
1802     }
1803 
1804     /**
1805      * {@inheritDoc}
1806      *
1807      * @throws ClassCastException if the specified key cannot be compared
1808      *         with the keys currently in the map
1809      * @throws NullPointerException if any of the arguments are null
1810      */
1811     public boolean replace(K key, V oldValue, V newValue) {
1812         if (key == null || oldValue == null || newValue == null)
1813             throw new NullPointerException();
1814         for (;;) {
1815             Node<K,V> n; V v;
1816             if ((n = findNode(key)) == null)
1817                 return false;
1818             if ((v = n.val) != null) {
1819                 if (!oldValue.equals(v))
1820                     return false;
1821                 if (VAL.compareAndSet(n, v, newValue))
1822                     return true;
1823             }
1824         }
1825     }
1826 
1827     /**
1828      * {@inheritDoc}
1829      *
1830      * @return the previous value associated with the specified key,
1831      *         or {@code null} if there was no mapping for the key
1832      * @throws ClassCastException if the specified key cannot be compared
1833      *         with the keys currently in the map
1834      * @throws NullPointerException if the specified key or value is null
1835      */
1836     public V replace(K key, V value) {
1837         if (key == null || value == null)
1838             throw new NullPointerException();
1839         for (;;) {
1840             Node<K,V> n; V v;
1841             if ((n = findNode(key)) == null)
1842                 return null;
1843             if ((v = n.val) != null && VAL.compareAndSet(n, v, value))
1844                 return v;
1845         }
1846     }
1847 
1848     /* ------ SortedMap API methods ------ */
1849 
1850     public Comparator<? super K> comparator() {
1851         return comparator;
1852     }
1853 
1854     /**
1855      * @throws NoSuchElementException {@inheritDoc}
1856      */
1857     public K firstKey() {
1858         Node<K,V> n = findFirst();
1859         if (n == null)
1860             throw new NoSuchElementException();
1861         return n.key;
1862     }
1863 
1864     /**
1865      * @throws NoSuchElementException {@inheritDoc}
1866      */
1867     public K lastKey() {
1868         Node<K,V> n = findLast();
1869         if (n == null)
1870             throw new NoSuchElementException();
1871         return n.key;
1872     }
1873 
1874     /**
1875      * @throws ClassCastException {@inheritDoc}
1876      * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1877      * @throws IllegalArgumentException {@inheritDoc}
1878      */
1879     public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1880                                               boolean fromInclusive,
1881                                               K toKey,
1882                                               boolean toInclusive) {
1883         if (fromKey == null || toKey == null)
1884             throw new NullPointerException();
1885         return new SubMap<K,V>
1886             (this, fromKey, fromInclusive, toKey, toInclusive, false);
1887     }
1888 
1889     /**
1890      * @throws ClassCastException {@inheritDoc}
1891      * @throws NullPointerException if {@code toKey} is null
1892      * @throws IllegalArgumentException {@inheritDoc}
1893      */
1894     public ConcurrentNavigableMap<K,V> headMap(K toKey,
1895                                                boolean inclusive) {
1896         if (toKey == null)
1897             throw new NullPointerException();
1898         return new SubMap<K,V>
1899             (this, null, false, toKey, inclusive, false);
1900     }
1901 
1902     /**
1903      * @throws ClassCastException {@inheritDoc}
1904      * @throws NullPointerException if {@code fromKey} is null
1905      * @throws IllegalArgumentException {@inheritDoc}
1906      */
1907     public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1908                                                boolean inclusive) {
1909         if (fromKey == null)
1910             throw new NullPointerException();
1911         return new SubMap<K,V>
1912             (this, fromKey, inclusive, null, false, false);
1913     }
1914 
1915     /**
1916      * @throws ClassCastException {@inheritDoc}
1917      * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1918      * @throws IllegalArgumentException {@inheritDoc}
1919      */
1920     public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1921         return subMap(fromKey, true, toKey, false);
1922     }
1923 
1924     /**
1925      * @throws ClassCastException {@inheritDoc}
1926      * @throws NullPointerException if {@code toKey} is null
1927      * @throws IllegalArgumentException {@inheritDoc}
1928      */
1929     public ConcurrentNavigableMap<K,V> headMap(K toKey) {
1930         return headMap(toKey, false);
1931     }
1932 
1933     /**
1934      * @throws ClassCastException {@inheritDoc}
1935      * @throws NullPointerException if {@code fromKey} is null
1936      * @throws IllegalArgumentException {@inheritDoc}
1937      */
1938     public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
1939         return tailMap(fromKey, true);
1940     }
1941 
1942     /* ---------------- Relational operations -------------- */
1943 
1944     /**
1945      * Returns a key-value mapping associated with the greatest key
1946      * strictly less than the given key, or {@code null} if there is
1947      * no such key. The returned entry does <em>not</em> support the
1948      * {@code Entry.setValue} method.
1949      *
1950      * @throws ClassCastException {@inheritDoc}
1951      * @throws NullPointerException if the specified key is null
1952      */
1953     public Map.Entry<K,V> lowerEntry(K key) {
1954         return findNearEntry(key, LT, comparator);
1955     }
1956 
1957     /**
1958      * @throws ClassCastException {@inheritDoc}
1959      * @throws NullPointerException if the specified key is null
1960      */
1961     public K lowerKey(K key) {
1962         Node<K,V> n = findNear(key, LT, comparator);
1963         return (n == null) ? null : n.key;
1964     }
1965 
1966     /**
1967      * Returns a key-value mapping associated with the greatest key
1968      * less than or equal to the given key, or {@code null} if there
1969      * is no such key. The returned entry does <em>not</em> support
1970      * the {@code Entry.setValue} method.
1971      *
1972      * @param key the key
1973      * @throws ClassCastException {@inheritDoc}
1974      * @throws NullPointerException if the specified key is null
1975      */
1976     public Map.Entry<K,V> floorEntry(K key) {
1977         return findNearEntry(key, LT|EQ, comparator);
1978     }
1979 
1980     /**
1981      * @param key the key
1982      * @throws ClassCastException {@inheritDoc}
1983      * @throws NullPointerException if the specified key is null
1984      */
1985     public K floorKey(K key) {
1986         Node<K,V> n = findNear(key, LT|EQ, comparator);
1987         return (n == null) ? null : n.key;
1988     }
1989 
1990     /**
1991      * Returns a key-value mapping associated with the least key
1992      * greater than or equal to the given key, or {@code null} if
1993      * there is no such entry. The returned entry does <em>not</em>
1994      * support the {@code Entry.setValue} method.
1995      *
1996      * @throws ClassCastException {@inheritDoc}
1997      * @throws NullPointerException if the specified key is null
1998      */
1999     public Map.Entry<K,V> ceilingEntry(K key) {
2000         return findNearEntry(key, GT|EQ, comparator);
2001     }
2002 
2003     /**
2004      * @throws ClassCastException {@inheritDoc}
2005      * @throws NullPointerException if the specified key is null
2006      */
2007     public K ceilingKey(K key) {
2008         Node<K,V> n = findNear(key, GT|EQ, comparator);
2009         return (n == null) ? null : n.key;
2010     }
2011 
2012     /**
2013      * Returns a key-value mapping associated with the least key
2014      * strictly greater than the given key, or {@code null} if there
2015      * is no such key. The returned entry does <em>not</em> support
2016      * the {@code Entry.setValue} method.
2017      *
2018      * @param key the key
2019      * @throws ClassCastException {@inheritDoc}
2020      * @throws NullPointerException if the specified key is null
2021      */
2022     public Map.Entry<K,V> higherEntry(K key) {
2023         return findNearEntry(key, GT, comparator);
2024     }
2025 
2026     /**
2027      * @param key the key
2028      * @throws ClassCastException {@inheritDoc}
2029      * @throws NullPointerException if the specified key is null
2030      */
2031     public K higherKey(K key) {
2032         Node<K,V> n = findNear(key, GT, comparator);
2033         return (n == null) ? null : n.key;
2034     }
2035 
2036     /**
2037      * Returns a key-value mapping associated with the least
2038      * key in this map, or {@code null} if the map is empty.
2039      * The returned entry does <em>not</em> support
2040      * the {@code Entry.setValue} method.
2041      */
2042     public Map.Entry<K,V> firstEntry() {
2043         return findFirstEntry();
2044     }
2045 
2046     /**
2047      * Returns a key-value mapping associated with the greatest
2048      * key in this map, or {@code null} if the map is empty.
2049      * The returned entry does <em>not</em> support
2050      * the {@code Entry.setValue} method.
2051      */
2052     public Map.Entry<K,V> lastEntry() {
2053         return findLastEntry();
2054     }
2055 
2056     /**
2057      * Removes and returns a key-value mapping associated with
2058      * the least key in this map, or {@code null} if the map is empty.
2059      * The returned entry does <em>not</em> support
2060      * the {@code Entry.setValue} method.
2061      */
2062     public Map.Entry<K,V> pollFirstEntry() {
2063         return doRemoveFirstEntry();
2064     }
2065 
2066     /**
2067      * Removes and returns a key-value mapping associated with
2068      * the greatest key in this map, or {@code null} if the map is empty.
2069      * The returned entry does <em>not</em> support
2070      * the {@code Entry.setValue} method.
2071      */
2072     public Map.Entry<K,V> pollLastEntry() {
2073         return doRemoveLastEntry();
2074     }
2075 
2076     /* ---------------- Iterators -------------- */
2077 
2078     /**
2079      * Base of iterator classes
2080      */
2081     abstract class Iter<T> implements Iterator<T> {
2082         /** the last node returned by next() */
2083         Node<K,V> lastReturned;
2084         /** the next node to return from next(); */
2085         Node<K,V> next;
2086         /** Cache of next value field to maintain weak consistency */
2087         V nextValue;
2088 
2089         /** Initializes ascending iterator for entire range. */
2090         Iter() {
2091             advance(baseHead());
2092         }
2093 
2094         public final boolean hasNext() {
2095             return next != null;
2096         }
2097 
2098         /** Advances next to higher entry. */
2099         final void advance(Node<K,V> b) {
2100             Node<K,V> n = null;
2101             V v = null;
2102             if ((lastReturned = b) != null) {
2103                 while ((n = b.next) != null && (v = n.val) == null)
2104                     b = n;
2105             }
2106             nextValue = v;
2107             next = n;
2108         }
2109 
2110         public final void remove() {
2111             Node<K,V> n; K k;
2112             if ((n = lastReturned) == null || (k = n.key) == null)
2113                 throw new IllegalStateException();
2114             // It would not be worth all of the overhead to directly
2115             // unlink from here. Using remove is fast enough.
2116             ConcurrentSkipListMap.this.remove(k);
2117             lastReturned = null;
2118         }
2119     }
2120 
2121     final class ValueIterator extends Iter<V> {
2122         public V next() {
2123             V v;
2124             if ((v = nextValue) == null)
2125                 throw new NoSuchElementException();
2126             advance(next);
2127             return v;
2128         }
2129     }
2130 
2131     final class KeyIterator extends Iter<K> {
2132         public K next() {
2133             Node<K,V> n;
2134             if ((n = next) == null)
2135                 throw new NoSuchElementException();
2136             K k = n.key;
2137             advance(n);
2138             return k;
2139         }
2140     }
2141 
2142     final class EntryIterator extends Iter<Map.Entry<K,V>> {
2143         public Map.Entry<K,V> next() {
2144             Node<K,V> n;
2145             if ((n = next) == null)
2146                 throw new NoSuchElementException();
2147             K k = n.key;
2148             V v = nextValue;
2149             advance(n);
2150             return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2151         }
2152     }
2153 
2154     /* ---------------- View Classes -------------- */
2155 
2156     /*
2157      * View classes are static, delegating to a ConcurrentNavigableMap
2158      * to allow use by SubMaps, which outweighs the ugliness of
2159      * needing type-tests for Iterator methods.
2160      */
2161 
2162     static final <E> List<E> toList(Collection<E> c) {
2163         // Using size() here would be a pessimization.
2164         ArrayList<E> list = new ArrayList<E>();
2165         for (E e : c)
2166             list.add(e);
2167         return list;
2168     }
2169 
2170     static final class KeySet<K,V>
2171             extends AbstractSet<K> implements NavigableSet<K> {
2172         final ConcurrentNavigableMap<K,V> m;
2173         KeySet(ConcurrentNavigableMap<K,V> map) { m = map; }
2174         public int size() { return m.size(); }
2175         public boolean isEmpty() { return m.isEmpty(); }
2176         public boolean contains(Object o) { return m.containsKey(o); }
2177         public boolean remove(Object o) { return m.remove(o) != null; }
2178         public void clear() { m.clear(); }
2179         public K lower(K e) { return m.lowerKey(e); }
2180         public K floor(K e) { return m.floorKey(e); }
2181         public K ceiling(K e) { return m.ceilingKey(e); }
2182         public K higher(K e) { return m.higherKey(e); }
2183         public Comparator<? super K> comparator() { return m.comparator(); }
2184         public K first() { return m.firstKey(); }
2185         public K last() { return m.lastKey(); }
2186         public K pollFirst() {
2187             Map.Entry<K,V> e = m.pollFirstEntry();
2188             return (e == null) ? null : e.getKey();
2189         }
2190         public K pollLast() {
2191             Map.Entry<K,V> e = m.pollLastEntry();
2192             return (e == null) ? null : e.getKey();
2193         }
2194         public Iterator<K> iterator() {
2195             return (m instanceof ConcurrentSkipListMap)
2196                 ? ((ConcurrentSkipListMap<K,V>)m).new KeyIterator()
2197                 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2198         }
2199         public boolean equals(Object o) {
2200             if (o == this)
2201                 return true;
2202             if (!(o instanceof Set))
2203                 return false;
2204             Collection<?> c = (Collection<?>) o;
2205             try {
2206                 return containsAll(c) && c.containsAll(this);
2207             } catch (ClassCastException | NullPointerException unused) {
2208                 return false;
2209             }
2210         }
2211         public Object[] toArray()     { return toList(this).toArray();  }
2212         public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2213         public Iterator<K> descendingIterator() {
2214             return descendingSet().iterator();
2215         }
2216         public NavigableSet<K> subSet(K fromElement,
2217                                       boolean fromInclusive,
2218                                       K toElement,
2219                                       boolean toInclusive) {
2220             return new KeySet<>(m.subMap(fromElement, fromInclusive,
2221                                          toElement,   toInclusive));
2222         }
2223         public NavigableSet<K> headSet(K toElement, boolean inclusive) {
2224             return new KeySet<>(m.headMap(toElement, inclusive));
2225         }
2226         public NavigableSet<K> tailSet(K fromElement, boolean inclusive) {
2227             return new KeySet<>(m.tailMap(fromElement, inclusive));
2228         }
2229         public NavigableSet<K> subSet(K fromElement, K toElement) {
2230             return subSet(fromElement, true, toElement, false);
2231         }
2232         public NavigableSet<K> headSet(K toElement) {
2233             return headSet(toElement, false);
2234         }
2235         public NavigableSet<K> tailSet(K fromElement) {
2236             return tailSet(fromElement, true);
2237         }
2238         public NavigableSet<K> descendingSet() {
2239             return new KeySet<>(m.descendingMap());
2240         }
2241 
2242         public Spliterator<K> spliterator() {
2243             return (m instanceof ConcurrentSkipListMap)
2244                 ? ((ConcurrentSkipListMap<K,V>)m).keySpliterator()
2245                 : ((SubMap<K,V>)m).new SubMapKeyIterator();
2246         }
2247     }
2248 
2249     static final class Values<K,V> extends AbstractCollection<V> {
2250         final ConcurrentNavigableMap<K,V> m;
2251         Values(ConcurrentNavigableMap<K,V> map) {
2252             m = map;
2253         }
2254         public Iterator<V> iterator() {
2255             return (m instanceof ConcurrentSkipListMap)
2256                 ? ((ConcurrentSkipListMap<K,V>)m).new ValueIterator()
2257                 : ((SubMap<K,V>)m).new SubMapValueIterator();
2258         }
2259         public int size() { return m.size(); }
2260         public boolean isEmpty() { return m.isEmpty(); }
2261         public boolean contains(Object o) { return m.containsValue(o); }
2262         public void clear() { m.clear(); }
2263         public Object[] toArray()     { return toList(this).toArray();  }
2264         public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2265 
2266         public Spliterator<V> spliterator() {
2267             return (m instanceof ConcurrentSkipListMap)
2268                 ? ((ConcurrentSkipListMap<K,V>)m).valueSpliterator()
2269                 : ((SubMap<K,V>)m).new SubMapValueIterator();
2270         }
2271 
2272         public boolean removeIf(Predicate<? super V> filter) {
2273             if (filter == null) throw new NullPointerException();
2274             if (m instanceof ConcurrentSkipListMap)
2275                 return ((ConcurrentSkipListMap<K,V>)m).removeValueIf(filter);
2276             // else use iterator
2277             Iterator<Map.Entry<K,V>> it =
2278                 ((SubMap<K,V>)m).new SubMapEntryIterator();
2279             boolean removed = false;
2280             while (it.hasNext()) {
2281                 Map.Entry<K,V> e = it.next();
2282                 V v = e.getValue();
2283                 if (filter.test(v) && m.remove(e.getKey(), v))
2284                     removed = true;
2285             }
2286             return removed;
2287         }
2288     }
2289 
2290     static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
2291         final ConcurrentNavigableMap<K,V> m;
2292         EntrySet(ConcurrentNavigableMap<K,V> map) {
2293             m = map;
2294         }
2295         public Iterator<Map.Entry<K,V>> iterator() {
2296             return (m instanceof ConcurrentSkipListMap)
2297                 ? ((ConcurrentSkipListMap<K,V>)m).new EntryIterator()
2298                 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2299         }
2300 
2301         public boolean contains(Object o) {
2302             if (!(o instanceof Map.Entry))
2303                 return false;
2304             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2305             V v = m.get(e.getKey());
2306             return v != null && v.equals(e.getValue());
2307         }
2308         public boolean remove(Object o) {
2309             if (!(o instanceof Map.Entry))
2310                 return false;
2311             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2312             return m.remove(e.getKey(),
2313                             e.getValue());
2314         }
2315         public boolean isEmpty() {
2316             return m.isEmpty();
2317         }
2318         public int size() {
2319             return m.size();
2320         }
2321         public void clear() {
2322             m.clear();
2323         }
2324         public boolean equals(Object o) {
2325             if (o == this)
2326                 return true;
2327             if (!(o instanceof Set))
2328                 return false;
2329             Collection<?> c = (Collection<?>) o;
2330             try {
2331                 return containsAll(c) && c.containsAll(this);
2332             } catch (ClassCastException | NullPointerException unused) {
2333                 return false;
2334             }
2335         }
2336         public Object[] toArray()     { return toList(this).toArray();  }
2337         public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2338 
2339         public Spliterator<Map.Entry<K,V>> spliterator() {
2340             return (m instanceof ConcurrentSkipListMap)
2341                 ? ((ConcurrentSkipListMap<K,V>)m).entrySpliterator()
2342                 : ((SubMap<K,V>)m).new SubMapEntryIterator();
2343         }
2344         public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
2345             if (filter == null) throw new NullPointerException();
2346             if (m instanceof ConcurrentSkipListMap)
2347                 return ((ConcurrentSkipListMap<K,V>)m).removeEntryIf(filter);
2348             // else use iterator
2349             Iterator<Map.Entry<K,V>> it =
2350                 ((SubMap<K,V>)m).new SubMapEntryIterator();
2351             boolean removed = false;
2352             while (it.hasNext()) {
2353                 Map.Entry<K,V> e = it.next();
2354                 if (filter.test(e) && m.remove(e.getKey(), e.getValue()))
2355                     removed = true;
2356             }
2357             return removed;
2358         }
2359     }
2360 
2361     /**
2362      * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2363      * represent a subrange of mappings of their underlying maps.
2364      * Instances of this class support all methods of their underlying
2365      * maps, differing in that mappings outside their range are ignored,
2366      * and attempts to add mappings outside their ranges result in {@link
2367      * IllegalArgumentException}.  Instances of this class are constructed
2368      * only using the {@code subMap}, {@code headMap}, and {@code tailMap}
2369      * methods of their underlying maps.
2370      *
2371      * @serial include
2372      */
2373     static final class SubMap<K,V> extends AbstractMap<K,V>
2374         implements ConcurrentNavigableMap<K,V>, Serializable {
2375         private static final long serialVersionUID = -7647078645895051609L;
2376 
2377         /** Underlying map */
2378         final ConcurrentSkipListMap<K,V> m;
2379         /** lower bound key, or null if from start */
2380         private final K lo;
2381         /** upper bound key, or null if to end */
2382         private final K hi;
2383         /** inclusion flag for lo */
2384         private final boolean loInclusive;
2385         /** inclusion flag for hi */
2386         private final boolean hiInclusive;
2387         /** direction */
2388         final boolean isDescending;
2389 
2390         // Lazily initialized view holders
2391         private transient KeySet<K,V> keySetView;
2392         private transient Values<K,V> valuesView;
2393         private transient EntrySet<K,V> entrySetView;
2394 
2395         /**
2396          * Creates a new submap, initializing all fields.
2397          */
2398         SubMap(ConcurrentSkipListMap<K,V> map,
2399                K fromKey, boolean fromInclusive,
2400                K toKey, boolean toInclusive,
2401                boolean isDescending) {
2402             Comparator<? super K> cmp = map.comparator;
2403             if (fromKey != null && toKey != null &&
2404                 cpr(cmp, fromKey, toKey) > 0)
2405                 throw new IllegalArgumentException("inconsistent range");
2406             this.m = map;
2407             this.lo = fromKey;
2408             this.hi = toKey;
2409             this.loInclusive = fromInclusive;
2410             this.hiInclusive = toInclusive;
2411             this.isDescending = isDescending;
2412         }
2413 
2414         /* ----------------  Utilities -------------- */
2415 
2416         boolean tooLow(Object key, Comparator<? super K> cmp) {
2417             int c;
2418             return (lo != null && ((c = cpr(cmp, key, lo)) < 0 ||
2419                                    (c == 0 && !loInclusive)));
2420         }
2421 
2422         boolean tooHigh(Object key, Comparator<? super K> cmp) {
2423             int c;
2424             return (hi != null && ((c = cpr(cmp, key, hi)) > 0 ||
2425                                    (c == 0 && !hiInclusive)));
2426         }
2427 
2428         boolean inBounds(Object key, Comparator<? super K> cmp) {
2429             return !tooLow(key, cmp) && !tooHigh(key, cmp);
2430         }
2431 
2432         void checkKeyBounds(K key, Comparator<? super K> cmp) {
2433             if (key == null)
2434                 throw new NullPointerException();
2435             if (!inBounds(key, cmp))
2436                 throw new IllegalArgumentException("key out of range");
2437         }
2438 
2439         /**
2440          * Returns true if node key is less than upper bound of range.
2441          */
2442         boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n,
2443                             Comparator<? super K> cmp) {
2444             if (n == null)
2445                 return false;
2446             if (hi == null)
2447                 return true;
2448             K k = n.key;
2449             if (k == null) // pass by markers and headers
2450                 return true;
2451             int c = cpr(cmp, k, hi);
2452             return c < 0 || (c == 0 && hiInclusive);
2453         }
2454 
2455         /**
2456          * Returns lowest node. This node might not be in range, so
2457          * most usages need to check bounds.
2458          */
2459         ConcurrentSkipListMap.Node<K,V> loNode(Comparator<? super K> cmp) {
2460             if (lo == null)
2461                 return m.findFirst();
2462             else if (loInclusive)
2463                 return m.findNear(lo, GT|EQ, cmp);
2464             else
2465                 return m.findNear(lo, GT, cmp);
2466         }
2467 
2468         /**
2469          * Returns highest node. This node might not be in range, so
2470          * most usages need to check bounds.
2471          */
2472         ConcurrentSkipListMap.Node<K,V> hiNode(Comparator<? super K> cmp) {
2473             if (hi == null)
2474                 return m.findLast();
2475             else if (hiInclusive)
2476                 return m.findNear(hi, LT|EQ, cmp);
2477             else
2478                 return m.findNear(hi, LT, cmp);
2479         }
2480 
2481         /**
2482          * Returns lowest absolute key (ignoring directionality).
2483          */
2484         K lowestKey() {
2485             Comparator<? super K> cmp = m.comparator;
2486             ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2487             if (isBeforeEnd(n, cmp))
2488                 return n.key;
2489             else
2490                 throw new NoSuchElementException();
2491         }
2492 
2493         /**
2494          * Returns highest absolute key (ignoring directionality).
2495          */
2496         K highestKey() {
2497             Comparator<? super K> cmp = m.comparator;
2498             ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2499             if (n != null) {
2500                 K last = n.key;
2501                 if (inBounds(last, cmp))
2502                     return last;
2503             }
2504             throw new NoSuchElementException();
2505         }
2506 
2507         Map.Entry<K,V> lowestEntry() {
2508             Comparator<? super K> cmp = m.comparator;
2509             for (;;) {
2510                 ConcurrentSkipListMap.Node<K,V> n; V v;
2511                 if ((n = loNode(cmp)) == null || !isBeforeEnd(n, cmp))
2512                     return null;
2513                 else if ((v = n.val) != null)
2514                     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2515             }
2516         }
2517 
2518         Map.Entry<K,V> highestEntry() {
2519             Comparator<? super K> cmp = m.comparator;
2520             for (;;) {
2521                 ConcurrentSkipListMap.Node<K,V> n; V v;
2522                 if ((n = hiNode(cmp)) == null || !inBounds(n.key, cmp))
2523                     return null;
2524                 else if ((v = n.val) != null)
2525                     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2526             }
2527         }
2528 
2529         Map.Entry<K,V> removeLowest() {
2530             Comparator<? super K> cmp = m.comparator;
2531             for (;;) {
2532                 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2533                 if ((n = loNode(cmp)) == null)
2534                     return null;
2535                 else if (!inBounds((k = n.key), cmp))
2536                     return null;
2537                 else if ((v = m.doRemove(k, null)) != null)
2538                     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2539             }
2540         }
2541 
2542         Map.Entry<K,V> removeHighest() {
2543             Comparator<? super K> cmp = m.comparator;
2544             for (;;) {
2545                 ConcurrentSkipListMap.Node<K,V> n; K k; V v;
2546                 if ((n = hiNode(cmp)) == null)
2547                     return null;
2548                 else if (!inBounds((k = n.key), cmp))
2549                     return null;
2550                 else if ((v = m.doRemove(k, null)) != null)
2551                     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2552             }
2553         }
2554 
2555         /**
2556          * Submap version of ConcurrentSkipListMap.findNearEntry.
2557          */
2558         Map.Entry<K,V> getNearEntry(K key, int rel) {
2559             Comparator<? super K> cmp = m.comparator;
2560             if (isDescending) { // adjust relation for direction
2561                 if ((rel & LT) == 0)
2562                     rel |= LT;
2563                 else
2564                     rel &= ~LT;
2565             }
2566             if (tooLow(key, cmp))
2567                 return ((rel & LT) != 0) ? null : lowestEntry();
2568             if (tooHigh(key, cmp))
2569                 return ((rel & LT) != 0) ? highestEntry() : null;
2570             AbstractMap.SimpleImmutableEntry<K,V> e =
2571                 m.findNearEntry(key, rel, cmp);
2572             if (e == null || !inBounds(e.getKey(), cmp))
2573                 return null;
2574             else
2575                 return e;
2576         }
2577 
2578         // Almost the same as getNearEntry, except for keys
2579         K getNearKey(K key, int rel) {
2580             Comparator<? super K> cmp = m.comparator;
2581             if (isDescending) { // adjust relation for direction
2582                 if ((rel & LT) == 0)
2583                     rel |= LT;
2584                 else
2585                     rel &= ~LT;
2586             }
2587             if (tooLow(key, cmp)) {
2588                 if ((rel & LT) == 0) {
2589                     ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2590                     if (isBeforeEnd(n, cmp))
2591                         return n.key;
2592                 }
2593                 return null;
2594             }
2595             if (tooHigh(key, cmp)) {
2596                 if ((rel & LT) != 0) {
2597                     ConcurrentSkipListMap.Node<K,V> n = hiNode(cmp);
2598                     if (n != null) {
2599                         K last = n.key;
2600                         if (inBounds(last, cmp))
2601                             return last;
2602                     }
2603                 }
2604                 return null;
2605             }
2606             for (;;) {
2607                 Node<K,V> n = m.findNear(key, rel, cmp);
2608                 if (n == null || !inBounds(n.key, cmp))
2609                     return null;
2610                 if (n.val != null)
2611                     return n.key;
2612             }
2613         }
2614 
2615         /* ----------------  Map API methods -------------- */
2616 
2617         public boolean containsKey(Object key) {
2618             if (key == null) throw new NullPointerException();
2619             return inBounds(key, m.comparator) && m.containsKey(key);
2620         }
2621 
2622         public V get(Object key) {
2623             if (key == null) throw new NullPointerException();
2624             return (!inBounds(key, m.comparator)) ? null : m.get(key);
2625         }
2626 
2627         public V put(K key, V value) {
2628             checkKeyBounds(key, m.comparator);
2629             return m.put(key, value);
2630         }
2631 
2632         public V remove(Object key) {
2633             return (!inBounds(key, m.comparator)) ? null : m.remove(key);
2634         }
2635 
2636         public int size() {
2637             Comparator<? super K> cmp = m.comparator;
2638             long count = 0;
2639             for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2640                  isBeforeEnd(n, cmp);
2641                  n = n.next) {
2642                 if (n.val != null)
2643                     ++count;
2644             }
2645             return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2646         }
2647 
2648         public boolean isEmpty() {
2649             Comparator<? super K> cmp = m.comparator;
2650             return !isBeforeEnd(loNode(cmp), cmp);
2651         }
2652 
2653         public boolean containsValue(Object value) {
2654             if (value == null)
2655                 throw new NullPointerException();
2656             Comparator<? super K> cmp = m.comparator;
2657             for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2658                  isBeforeEnd(n, cmp);
2659                  n = n.next) {
2660                 V v = n.val;
2661                 if (v != null && value.equals(v))
2662                     return true;
2663             }
2664             return false;
2665         }
2666 
2667         public void clear() {
2668             Comparator<? super K> cmp = m.comparator;
2669             for (ConcurrentSkipListMap.Node<K,V> n = loNode(cmp);
2670                  isBeforeEnd(n, cmp);
2671                  n = n.next) {
2672                 if (n.val != null)
2673                     m.remove(n.key);
2674             }
2675         }
2676 
2677         /* ----------------  ConcurrentMap API methods -------------- */
2678 
2679         public V putIfAbsent(K key, V value) {
2680             checkKeyBounds(key, m.comparator);
2681             return m.putIfAbsent(key, value);
2682         }
2683 
2684         public boolean remove(Object key, Object value) {
2685             return inBounds(key, m.comparator) && m.remove(key, value);
2686         }
2687 
2688         public boolean replace(K key, V oldValue, V newValue) {
2689             checkKeyBounds(key, m.comparator);
2690             return m.replace(key, oldValue, newValue);
2691         }
2692 
2693         public V replace(K key, V value) {
2694             checkKeyBounds(key, m.comparator);
2695             return m.replace(key, value);
2696         }
2697 
2698         /* ----------------  SortedMap API methods -------------- */
2699 
2700         public Comparator<? super K> comparator() {
2701             Comparator<? super K> cmp = m.comparator();
2702             if (isDescending)
2703                 return Collections.reverseOrder(cmp);
2704             else
2705                 return cmp;
2706         }
2707 
2708         /**
2709          * Utility to create submaps, where given bounds override
2710          * unbounded(null) ones and/or are checked against bounded ones.
2711          */
2712         SubMap<K,V> newSubMap(K fromKey, boolean fromInclusive,
2713                               K toKey, boolean toInclusive) {
2714             Comparator<? super K> cmp = m.comparator;
2715             if (isDescending) { // flip senses
2716                 K tk = fromKey;
2717                 fromKey = toKey;
2718                 toKey = tk;
2719                 boolean ti = fromInclusive;
2720                 fromInclusive = toInclusive;
2721                 toInclusive = ti;
2722             }
2723             if (lo != null) {
2724                 if (fromKey == null) {
2725                     fromKey = lo;
2726                     fromInclusive = loInclusive;
2727                 }
2728                 else {
2729                     int c = cpr(cmp, fromKey, lo);
2730                     if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2731                         throw new IllegalArgumentException("key out of range");
2732                 }
2733             }
2734             if (hi != null) {
2735                 if (toKey == null) {
2736                     toKey = hi;
2737                     toInclusive = hiInclusive;
2738                 }
2739                 else {
2740                     int c = cpr(cmp, toKey, hi);
2741                     if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2742                         throw new IllegalArgumentException("key out of range");
2743                 }
2744             }
2745             return new SubMap<K,V>(m, fromKey, fromInclusive,
2746                                    toKey, toInclusive, isDescending);
2747         }
2748 
2749         public SubMap<K,V> subMap(K fromKey, boolean fromInclusive,
2750                                   K toKey, boolean toInclusive) {
2751             if (fromKey == null || toKey == null)
2752                 throw new NullPointerException();
2753             return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2754         }
2755 
2756         public SubMap<K,V> headMap(K toKey, boolean inclusive) {
2757             if (toKey == null)
2758                 throw new NullPointerException();
2759             return newSubMap(null, false, toKey, inclusive);
2760         }
2761 
2762         public SubMap<K,V> tailMap(K fromKey, boolean inclusive) {
2763             if (fromKey == null)
2764                 throw new NullPointerException();
2765             return newSubMap(fromKey, inclusive, null, false);
2766         }
2767 
2768         public SubMap<K,V> subMap(K fromKey, K toKey) {
2769             return subMap(fromKey, true, toKey, false);
2770         }
2771 
2772         public SubMap<K,V> headMap(K toKey) {
2773             return headMap(toKey, false);
2774         }
2775 
2776         public SubMap<K,V> tailMap(K fromKey) {
2777             return tailMap(fromKey, true);
2778         }
2779 
2780         public SubMap<K,V> descendingMap() {
2781             return new SubMap<K,V>(m, lo, loInclusive,
2782                                    hi, hiInclusive, !isDescending);
2783         }
2784 
2785         /* ----------------  Relational methods -------------- */
2786 
2787         public Map.Entry<K,V> ceilingEntry(K key) {
2788             return getNearEntry(key, GT|EQ);
2789         }
2790 
2791         public K ceilingKey(K key) {
2792             return getNearKey(key, GT|EQ);
2793         }
2794 
2795         public Map.Entry<K,V> lowerEntry(K key) {
2796             return getNearEntry(key, LT);
2797         }
2798 
2799         public K lowerKey(K key) {
2800             return getNearKey(key, LT);
2801         }
2802 
2803         public Map.Entry<K,V> floorEntry(K key) {
2804             return getNearEntry(key, LT|EQ);
2805         }
2806 
2807         public K floorKey(K key) {
2808             return getNearKey(key, LT|EQ);
2809         }
2810 
2811         public Map.Entry<K,V> higherEntry(K key) {
2812             return getNearEntry(key, GT);
2813         }
2814 
2815         public K higherKey(K key) {
2816             return getNearKey(key, GT);
2817         }
2818 
2819         public K firstKey() {
2820             return isDescending ? highestKey() : lowestKey();
2821         }
2822 
2823         public K lastKey() {
2824             return isDescending ? lowestKey() : highestKey();
2825         }
2826 
2827         public Map.Entry<K,V> firstEntry() {
2828             return isDescending ? highestEntry() : lowestEntry();
2829         }
2830 
2831         public Map.Entry<K,V> lastEntry() {
2832             return isDescending ? lowestEntry() : highestEntry();
2833         }
2834 
2835         public Map.Entry<K,V> pollFirstEntry() {
2836             return isDescending ? removeHighest() : removeLowest();
2837         }
2838 
2839         public Map.Entry<K,V> pollLastEntry() {
2840             return isDescending ? removeLowest() : removeHighest();
2841         }
2842 
2843         /* ---------------- Submap Views -------------- */
2844 
2845         public NavigableSet<K> keySet() {
2846             KeySet<K,V> ks;
2847             if ((ks = keySetView) != null) return ks;
2848             return keySetView = new KeySet<>(this);
2849         }
2850 
2851         public NavigableSet<K> navigableKeySet() {
2852             KeySet<K,V> ks;
2853             if ((ks = keySetView) != null) return ks;
2854             return keySetView = new KeySet<>(this);
2855         }
2856 
2857         public Collection<V> values() {
2858             Values<K,V> vs;
2859             if ((vs = valuesView) != null) return vs;
2860             return valuesView = new Values<>(this);
2861         }
2862 
2863         public Set<Map.Entry<K,V>> entrySet() {
2864             EntrySet<K,V> es;
2865             if ((es = entrySetView) != null) return es;
2866             return entrySetView = new EntrySet<K,V>(this);
2867         }
2868 
2869         public NavigableSet<K> descendingKeySet() {
2870             return descendingMap().navigableKeySet();
2871         }
2872 
2873         /**
2874          * Variant of main Iter class to traverse through submaps.
2875          * Also serves as back-up Spliterator for views.
2876          */
2877         abstract class SubMapIter<T> implements Iterator<T>, Spliterator<T> {
2878             /** the last node returned by next() */
2879             Node<K,V> lastReturned;
2880             /** the next node to return from next(); */
2881             Node<K,V> next;
2882             /** Cache of next value field to maintain weak consistency */
2883             V nextValue;
2884 
2885             SubMapIter() {
2886                 VarHandle.acquireFence();
2887                 Comparator<? super K> cmp = m.comparator;
2888                 for (;;) {
2889                     next = isDescending ? hiNode(cmp) : loNode(cmp);
2890                     if (next == null)
2891                         break;
2892                     V x = next.val;
2893                     if (x != null) {
2894                         if (! inBounds(next.key, cmp))
2895                             next = null;
2896                         else
2897                             nextValue = x;
2898                         break;
2899                     }
2900                 }
2901             }
2902 
2903             public final boolean hasNext() {
2904                 return next != null;
2905             }
2906 
2907             final void advance() {
2908                 if (next == null)
2909                     throw new NoSuchElementException();
2910                 lastReturned = next;
2911                 if (isDescending)
2912                     descend();
2913                 else
2914                     ascend();
2915             }
2916 
2917             private void ascend() {
2918                 Comparator<? super K> cmp = m.comparator;
2919                 for (;;) {
2920                     next = next.next;
2921                     if (next == null)
2922                         break;
2923                     V x = next.val;
2924                     if (x != null) {
2925                         if (tooHigh(next.key, cmp))
2926                             next = null;
2927                         else
2928                             nextValue = x;
2929                         break;
2930                     }
2931                 }
2932             }
2933 
2934             private void descend() {
2935                 Comparator<? super K> cmp = m.comparator;
2936                 for (;;) {
2937                     next = m.findNear(lastReturned.key, LT, cmp);
2938                     if (next == null)
2939                         break;
2940                     V x = next.val;
2941                     if (x != null) {
2942                         if (tooLow(next.key, cmp))
2943                             next = null;
2944                         else
2945                             nextValue = x;
2946                         break;
2947                     }
2948                 }
2949             }
2950 
2951             public void remove() {
2952                 Node<K,V> l = lastReturned;
2953                 if (l == null)
2954                     throw new IllegalStateException();
2955                 m.remove(l.key);
2956                 lastReturned = null;
2957             }
2958 
2959             public Spliterator<T> trySplit() {
2960                 return null;
2961             }
2962 
2963             public boolean tryAdvance(Consumer<? super T> action) {
2964                 if (hasNext()) {
2965                     action.accept(next());
2966                     return true;
2967                 }
2968                 return false;
2969             }
2970 
2971             public void forEachRemaining(Consumer<? super T> action) {
2972                 while (hasNext())
2973                     action.accept(next());
2974             }
2975 
2976             public long estimateSize() {
2977                 return Long.MAX_VALUE;
2978             }
2979 
2980         }
2981 
2982         final class SubMapValueIterator extends SubMapIter<V> {
2983             public V next() {
2984                 V v = nextValue;
2985                 advance();
2986                 return v;
2987             }
2988             public int characteristics() {
2989                 return 0;
2990             }
2991         }
2992 
2993         final class SubMapKeyIterator extends SubMapIter<K> {
2994             public K next() {
2995                 Node<K,V> n = next;
2996                 advance();
2997                 return n.key;
2998             }
2999             public int characteristics() {
3000                 return Spliterator.DISTINCT | Spliterator.ORDERED |
3001                     Spliterator.SORTED;
3002             }
3003             public final Comparator<? super K> getComparator() {
3004                 return SubMap.this.comparator();
3005             }
3006         }
3007 
3008         final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3009             public Map.Entry<K,V> next() {
3010                 Node<K,V> n = next;
3011                 V v = nextValue;
3012                 advance();
3013                 return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3014             }
3015             public int characteristics() {
3016                 return Spliterator.DISTINCT;
3017             }
3018         }
3019     }
3020 
3021     // default Map method overrides
3022 
3023     public void forEach(BiConsumer<? super K, ? super V> action) {
3024         if (action == null) throw new NullPointerException();
3025         Node<K,V> b, n; V v;
3026         if ((b = baseHead()) != null) {
3027             while ((n = b.next) != null) {
3028                 if ((v = n.val) != null)
3029                     action.accept(n.key, v);
3030                 b = n;
3031             }
3032         }
3033     }
3034 
3035     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3036         if (function == null) throw new NullPointerException();
3037         Node<K,V> b, n; V v;
3038         if ((b = baseHead()) != null) {
3039             while ((n = b.next) != null) {
3040                 while ((v = n.val) != null) {
3041                     V r = function.apply(n.key, v);
3042                     if (r == null) throw new NullPointerException();
3043                     if (VAL.compareAndSet(n, v, r))
3044                         break;
3045                 }
3046                 b = n;
3047             }
3048         }
3049     }
3050 
3051     /**
3052      * Helper method for EntrySet.removeIf.
3053      */
3054     boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
3055         if (function == null) throw new NullPointerException();
3056         boolean removed = false;
3057         Node<K,V> b, n; V v;
3058         if ((b = baseHead()) != null) {
3059             while ((n = b.next) != null) {
3060                 if ((v = n.val) != null) {
3061                     K k = n.key;
3062                     Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
3063                     if (function.test(e) && remove(k, v))
3064                         removed = true;
3065                 }
3066                 b = n;
3067             }
3068         }
3069         return removed;
3070     }
3071 
3072     /**
3073      * Helper method for Values.removeIf.
3074      */
3075     boolean removeValueIf(Predicate<? super V> function) {
3076         if (function == null) throw new NullPointerException();
3077         boolean removed = false;
3078         Node<K,V> b, n; V v;
3079         if ((b = baseHead()) != null) {
3080             while ((n = b.next) != null) {
3081                 if ((v = n.val) != null && function.test(v) && remove(n.key, v))
3082                     removed = true;
3083                 b = n;
3084             }
3085         }
3086         return removed;
3087     }
3088 
3089     /**
3090      * Base class providing common structure for Spliterators.
3091      * (Although not all that much common functionality; as usual for
3092      * view classes, details annoyingly vary in key, value, and entry
3093      * subclasses in ways that are not worth abstracting out for
3094      * internal classes.)
3095      *
3096      * The basic split strategy is to recursively descend from top
3097      * level, row by row, descending to next row when either split
3098      * off, or the end of row is encountered. Control of the number of
3099      * splits relies on some statistical estimation: The expected
3100      * remaining number of elements of a skip list when advancing
3101      * either across or down decreases by about 25%.
3102      */
3103     abstract static class CSLMSpliterator<K,V> {
3104         final Comparator<? super K> comparator;
3105         final K fence;     // exclusive upper bound for keys, or null if to end
3106         Index<K,V> row;    // the level to split out
3107         Node<K,V> current; // current traversal node; initialize at origin
3108         long est;          // size estimate
3109         CSLMSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3110                         Node<K,V> origin, K fence, long est) {
3111             this.comparator = comparator; this.row = row;
3112             this.current = origin; this.fence = fence; this.est = est;
3113         }
3114 
3115         public final long estimateSize() { return est; }
3116     }
3117 
3118     static final class KeySpliterator<K,V> extends CSLMSpliterator<K,V>
3119         implements Spliterator<K> {
3120         KeySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3121                        Node<K,V> origin, K fence, long est) {
3122             super(comparator, row, origin, fence, est);
3123         }
3124 
3125         public KeySpliterator<K,V> trySplit() {
3126             Node<K,V> e; K ek;
3127             Comparator<? super K> cmp = comparator;
3128             K f = fence;
3129             if ((e = current) != null && (ek = e.key) != null) {
3130                 for (Index<K,V> q = row; q != null; q = row = q.down) {
3131                     Index<K,V> s; Node<K,V> b, n; K sk;
3132                     if ((s = q.right) != null && (b = s.node) != null &&
3133                         (n = b.next) != null && n.val != null &&
3134                         (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3135                         (f == null || cpr(cmp, sk, f) < 0)) {
3136                         current = n;
3137                         Index<K,V> r = q.down;
3138                         row = (s.right != null) ? s : s.down;
3139                         est -= est >>> 2;
3140                         return new KeySpliterator<K,V>(cmp, r, e, sk, est);
3141                     }
3142                 }
3143             }
3144             return null;
3145         }
3146 
3147         public void forEachRemaining(Consumer<? super K> action) {
3148             if (action == null) throw new NullPointerException();
3149             Comparator<? super K> cmp = comparator;
3150             K f = fence;
3151             Node<K,V> e = current;
3152             current = null;
3153             for (; e != null; e = e.next) {
3154                 K k;
3155                 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3156                     break;
3157                 if (e.val != null)
3158                     action.accept(k);
3159             }
3160         }
3161 
3162         public boolean tryAdvance(Consumer<? super K> action) {
3163             if (action == null) throw new NullPointerException();
3164             Comparator<? super K> cmp = comparator;
3165             K f = fence;
3166             Node<K,V> e = current;
3167             for (; e != null; e = e.next) {
3168                 K k;
3169                 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3170                     e = null;
3171                     break;
3172                 }
3173                 if (e.val != null) {
3174                     current = e.next;
3175                     action.accept(k);
3176                     return true;
3177                 }
3178             }
3179             current = e;
3180             return false;
3181         }
3182 
3183         public int characteristics() {
3184             return Spliterator.DISTINCT | Spliterator.SORTED |
3185                 Spliterator.ORDERED | Spliterator.CONCURRENT |
3186                 Spliterator.NONNULL;
3187         }
3188 
3189         public final Comparator<? super K> getComparator() {
3190             return comparator;
3191         }
3192     }
3193     // factory method for KeySpliterator
3194     final KeySpliterator<K,V> keySpliterator() {
3195         Index<K,V> h; Node<K,V> n; long est;
3196         VarHandle.acquireFence();
3197         if ((h = head) == null) {
3198             n = null;
3199             est = 0L;
3200         }
3201         else {
3202             n = h.node;
3203             est = getAdderCount();
3204         }
3205         return new KeySpliterator<K,V>(comparator, h, n, null, est);
3206     }
3207 
3208     static final class ValueSpliterator<K,V> extends CSLMSpliterator<K,V>
3209         implements Spliterator<V> {
3210         ValueSpliterator(Comparator<? super K> comparator, Index<K,V> row,
3211                        Node<K,V> origin, K fence, long est) {
3212             super(comparator, row, origin, fence, est);
3213         }
3214 
3215         public ValueSpliterator<K,V> trySplit() {
3216             Node<K,V> e; K ek;
3217             Comparator<? super K> cmp = comparator;
3218             K f = fence;
3219             if ((e = current) != null && (ek = e.key) != null) {
3220                 for (Index<K,V> q = row; q != null; q = row = q.down) {
3221                     Index<K,V> s; Node<K,V> b, n; K sk;
3222                     if ((s = q.right) != null && (b = s.node) != null &&
3223                         (n = b.next) != null && n.val != null &&
3224                         (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3225                         (f == null || cpr(cmp, sk, f) < 0)) {
3226                         current = n;
3227                         Index<K,V> r = q.down;
3228                         row = (s.right != null) ? s : s.down;
3229                         est -= est >>> 2;
3230                         return new ValueSpliterator<K,V>(cmp, r, e, sk, est);
3231                     }
3232                 }
3233             }
3234             return null;
3235         }
3236 
3237         public void forEachRemaining(Consumer<? super V> action) {
3238             if (action == null) throw new NullPointerException();
3239             Comparator<? super K> cmp = comparator;
3240             K f = fence;
3241             Node<K,V> e = current;
3242             current = null;
3243             for (; e != null; e = e.next) {
3244                 K k; V v;
3245                 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3246                     break;
3247                 if ((v = e.val) != null)
3248                     action.accept(v);
3249             }
3250         }
3251 
3252         public boolean tryAdvance(Consumer<? super V> action) {
3253             if (action == null) throw new NullPointerException();
3254             Comparator<? super K> cmp = comparator;
3255             K f = fence;
3256             Node<K,V> e = current;
3257             for (; e != null; e = e.next) {
3258                 K k; V v;
3259                 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3260                     e = null;
3261                     break;
3262                 }
3263                 if ((v = e.val) != null) {
3264                     current = e.next;
3265                     action.accept(v);
3266                     return true;
3267                 }
3268             }
3269             current = e;
3270             return false;
3271         }
3272 
3273         public int characteristics() {
3274             return Spliterator.CONCURRENT | Spliterator.ORDERED |
3275                 Spliterator.NONNULL;
3276         }
3277     }
3278 
3279     // Almost the same as keySpliterator()
3280     final ValueSpliterator<K,V> valueSpliterator() {
3281         Index<K,V> h; Node<K,V> n; long est;
3282         VarHandle.acquireFence();
3283         if ((h = head) == null) {
3284             n = null;
3285             est = 0L;
3286         }
3287         else {
3288             n = h.node;
3289             est = getAdderCount();
3290         }
3291         return new ValueSpliterator<K,V>(comparator, h, n, null, est);
3292     }
3293 
3294     static final class EntrySpliterator<K,V> extends CSLMSpliterator<K,V>
3295         implements Spliterator<Map.Entry<K,V>> {
3296         EntrySpliterator(Comparator<? super K> comparator, Index<K,V> row,
3297                          Node<K,V> origin, K fence, long est) {
3298             super(comparator, row, origin, fence, est);
3299         }
3300 
3301         public EntrySpliterator<K,V> trySplit() {
3302             Node<K,V> e; K ek;
3303             Comparator<? super K> cmp = comparator;
3304             K f = fence;
3305             if ((e = current) != null && (ek = e.key) != null) {
3306                 for (Index<K,V> q = row; q != null; q = row = q.down) {
3307                     Index<K,V> s; Node<K,V> b, n; K sk;
3308                     if ((s = q.right) != null && (b = s.node) != null &&
3309                         (n = b.next) != null && n.val != null &&
3310                         (sk = n.key) != null && cpr(cmp, sk, ek) > 0 &&
3311                         (f == null || cpr(cmp, sk, f) < 0)) {
3312                         current = n;
3313                         Index<K,V> r = q.down;
3314                         row = (s.right != null) ? s : s.down;
3315                         est -= est >>> 2;
3316                         return new EntrySpliterator<K,V>(cmp, r, e, sk, est);
3317                     }
3318                 }
3319             }
3320             return null;
3321         }
3322 
3323         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3324             if (action == null) throw new NullPointerException();
3325             Comparator<? super K> cmp = comparator;
3326             K f = fence;
3327             Node<K,V> e = current;
3328             current = null;
3329             for (; e != null; e = e.next) {
3330                 K k; V v;
3331                 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0)
3332                     break;
3333                 if ((v = e.val) != null) {
3334                     action.accept
3335                         (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3336                 }
3337             }
3338         }
3339 
3340         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3341             if (action == null) throw new NullPointerException();
3342             Comparator<? super K> cmp = comparator;
3343             K f = fence;
3344             Node<K,V> e = current;
3345             for (; e != null; e = e.next) {
3346                 K k; V v;
3347                 if ((k = e.key) != null && f != null && cpr(cmp, f, k) <= 0) {
3348                     e = null;
3349                     break;
3350                 }
3351                 if ((v = e.val) != null) {
3352                     current = e.next;
3353                     action.accept
3354                         (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
3355                     return true;
3356                 }
3357             }
3358             current = e;
3359             return false;
3360         }
3361 
3362         public int characteristics() {
3363             return Spliterator.DISTINCT | Spliterator.SORTED |
3364                 Spliterator.ORDERED | Spliterator.CONCURRENT |
3365                 Spliterator.NONNULL;
3366         }
3367 
3368         public final Comparator<Map.Entry<K,V>> getComparator() {
3369             // Adapt or create a key-based comparator
3370             if (comparator != null) {
3371                 return Map.Entry.comparingByKey(comparator);
3372             }
3373             else {
3374                 return (Comparator<Map.Entry<K,V>> & Serializable) (e1, e2) -> {
3375                     @SuppressWarnings("unchecked")
3376                     Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3377                     return k1.compareTo(e2.getKey());
3378                 };
3379             }
3380         }
3381     }
3382 
3383     // Almost the same as keySpliterator()
3384     final EntrySpliterator<K,V> entrySpliterator() {
3385         Index<K,V> h; Node<K,V> n; long est;
3386         VarHandle.acquireFence();
3387         if ((h = head) == null) {
3388             n = null;
3389             est = 0L;
3390         }
3391         else {
3392             n = h.node;
3393             est = getAdderCount();
3394         }
3395         return new EntrySpliterator<K,V>(comparator, h, n, null, est);
3396     }
3397 
3398     // VarHandle mechanics
3399     private static final VarHandle HEAD;
3400     private static final VarHandle ADDER;
3401     private static final VarHandle NEXT;
3402     private static final VarHandle VAL;
3403     private static final VarHandle RIGHT;
3404     static {
3405         try {
3406             MethodHandles.Lookup l = MethodHandles.lookup();
3407             HEAD = l.findVarHandle(ConcurrentSkipListMap.class, "head",
3408                                    Index.class);
3409             ADDER = l.findVarHandle(ConcurrentSkipListMap.class, "adder",
3410                                     LongAdder.class);
3411             NEXT = l.findVarHandle(Node.class, "next", Node.class);
3412             VAL = l.findVarHandle(Node.class, "val", Object.class);
3413             RIGHT = l.findVarHandle(Index.class, "right", Index.class);
3414         } catch (ReflectiveOperationException e) {
3415             throw new Error(e);
3416         }
3417     }
3418 }